WO2021075925A1 - 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법 - Google Patents

전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법 Download PDF

Info

Publication number
WO2021075925A1
WO2021075925A1 PCT/KR2020/014194 KR2020014194W WO2021075925A1 WO 2021075925 A1 WO2021075925 A1 WO 2021075925A1 KR 2020014194 W KR2020014194 W KR 2020014194W WO 2021075925 A1 WO2021075925 A1 WO 2021075925A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous layer
separator
insulating porous
binder resin
inorganic particles
Prior art date
Application number
PCT/KR2020/014194
Other languages
English (en)
French (fr)
Inventor
김민지
성동욱
정소미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080067181.3A priority Critical patent/CN114503352A/zh
Priority to EP20877496.8A priority patent/EP4037050A4/en
Priority to US17/760,809 priority patent/US20220336924A1/en
Publication of WO2021075925A1 publication Critical patent/WO2021075925A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for an electrochemical device and an electrochemical device including the separator. In addition, the present invention relates to a method of manufacturing the separation membrane.
  • a secondary battery such as a lithium secondary battery has an electrode assembly including a positive electrode, a negative electrode, and a separator, and the electrode assembly may be manufactured in a structure in which a separator is interposed between the positive electrode and the negative electrode.
  • a separator substrate of such a lithium secondary battery a porous film using a polyolefin-based polymer resin is used, and the porous polymer film shrinks or melts at a high temperature, resulting in low heat resistance.
  • a free standing type separator composed of only inorganic substances and a binder resin that covers the surface of the porous polymer film with an inorganic particle coating layer or without a polymer separator substrate.
  • an inorganic material is applied to the separator as described above, heat shrinkage and safety are excellent, but due to volume expansion of the separator, a thickness increase and a change in horizontal and vertical dimensions occur, which may cause a defect in the appearance of the battery.
  • the cell resistance is increased because bubbles are generated inside the electrode and the separator are spaced apart, the interface resistance between the electrode and the separator is increased, and lithium may be precipitated through the spaced gap. Therefore, it is necessary to lower the rate of dimensional change of the free standing type separator.
  • An object of the present invention is to provide a free standing type separator including a binder resin and inorganic particles.
  • another object of the present invention is to provide a separator with improved crystallinity of the binder resin by stretching, thereby increasing tensile strength and less dimensional change due to impregnation with an electrolyte solution.
  • an object of the present invention is to provide a method of manufacturing a separation membrane having the constitutional characteristics as described above.
  • Another object of the present invention is to provide an electrochemical device comprising an anode, a cathode, a separator interposed between the anode and the cathode, and an electrolyte, wherein the separator is a separator having the above-described characteristics.
  • the first aspect of the present invention is a separator comprising an insulating porous layer, the insulating porous layer includes inorganic particles and a binder resin, and the inorganic particles are in a ratio of 70 wt% to 90 wt% relative to 100 wt% of the insulating porous layer.
  • the binder resin includes 50 wt% or more of a polyvinylidene fluoride homopolymer relative to 100 wt% of the binder resin, and the binder resin has a crystallinity of 50% or more.
  • the inorganic particles are bound through a binder resin in the insulating porous layer, and pores derived from an interstitial volume between the inorganic particles are formed. It has a porosity characteristic.
  • the inorganic particles are Al 2 O 3 , AlOOH, Al(OH) 3 , AlN, BN, MgO, Mg(OH) 2 , SiO 2 , ZnO , TiO 2 , BaTiO 3 to include at least one selected from the group consisting of.
  • the inorganic particles have a particle diameter in the range of 0.001 ⁇ m to 3 ⁇ m.
  • a fifth aspect of the present invention according to at least one of the first to fourth aspects, wherein the polyvinylidene fluoride homopolymer has a molecular weight (Mw) in the range of 600,000 mol/g to 2,000,000 mol/g.
  • Mw molecular weight
  • the separator is made of only the porous insulating layer(s).
  • a seventh aspect of the present invention relates to a method of manufacturing the separation membrane according to at least one of the first to sixth aspects, and the method includes the step of stretching the insulating porous layer in at least one direction or more.
  • the insulating porous layer has a rectangular planar shape in which a ratio of width to height exceeds 1, and is stretched in a horizontal direction or a vertical direction or both. It includes the step of stretching.
  • the stretching step is performed under a condition in which the insulating porous layer is heated.
  • the stretching is performed at a temperature equal to or higher than the glass transition temperature of the binder resin and a temperature equal to or lower than the melting point of the binder resin.
  • the separator according to the present invention is mainly composed of inorganic particles and a binder resin, and can be used as a free standing type separator that does not include a separator substrate such as a polymer resin film, and has an effect that no heat shrinkage problem occurs.
  • the separator of the present invention improves the crystallinity of the binder resin by stretching, thereby increasing the tensile strength, and has a low dimensional change rate due to impregnation of the electrolyte solution.
  • FIG. 1 is a schematic diagram showing a stretching process of an insulating porous layer according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a shape in which the insulating porous layers are stretched in two directions perpendicular to each other.
  • the insulating porous layer may be used as a separator for an electrochemical device.
  • the electrochemical device includes, for example, a unit cell formed by sequentially stacking a positive electrode, a separator, and a negative electrode, and may be a secondary battery capable of repetitive charging and discharging.
  • the present invention relates to a separator for an electrochemical device including the insulating porous layer, and in particular, the separator may be a free standing type separator composed of only the insulating porous layer.
  • the single-type separator is composed of only the insulating porous layer(s) and does not include elements other than the insulating porous layer according to the present invention, such as a separator substrate such as a polymer resin film.
  • the insulating porous layer is an organic/inorganic composite film including inorganic particles and a binder resin.
  • the inorganic particles may be bound to each other by the binder resin and filled in a layered form.
  • the organic/inorganic composite membrane has a porosity characteristic due to pores formed by interstitial volumes between inorganic particles.
  • the interstitial volume refers to a space defined by the inorganic particles substantially interviewed in the filling structure of the inorganic particles.
  • the pores have a structure connected to each other, meaning that gas or liquid can pass from one side of the substrate to the other side.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable and have a particle size corresponding to the thickness of the insulating porous layer. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and/or reduction reaction does not occur in the operating voltage range of the applied battery (eg, 0 to 5V based on Li/Li +). As a non-limiting example, the inorganic particles may have a particle diameter ranging from 0.001 ⁇ m to 3 ⁇ m or a particle diameter ranging from 0.001 ⁇ m to 2 ⁇ m.
  • the inorganic particles are less than 0.001 ⁇ m, dispersibility may be reduced, and if it exceeds 3 ⁇ m, it is difficult to thin the thickness of the formed insulating porous layer. This can be degraded.
  • the size of the inorganic particles may be controlled in the range of about 20 nm to 500 nm.
  • Non-limiting examples of the inorganic particles include Al 2 O 3 , AlOOH, Al(OH) 3 , AlN, BN, MgO, Mg(OH) 2 , SiO 2 , ZnO, TiO 2 , BaTiO 3 or a mixture thereof. .
  • the binder resin is not particularly limited as long as it can provide binding strength between inorganic particles and between the insulating porous layer and the electrode.
  • the content of the inorganic particles in the insulating porous layer may range from 70 wt% to 90 wt% based on 100 wt% of the insulating porous layer. If the content of the inorganic particles is too high, the amount of the binder resin decreases, so that the inorganic particles are easily separated from the insulating porous layer and the insulating porous layer is crushed, and durability may be deteriorated. On the other hand, if the content of the inorganic particles is too low, the ratio of the binder resin increases and the porosity decreases, so that resistance characteristics may be deteriorated.
  • the thickness of the insulating porous layer is not particularly limited, but may have a thickness in the range of, for example, 0.01 to 50 ⁇ m.
  • the pore size and porosity of the insulating porous layer are also not particularly limited, but the pore size is preferably in the range of 0.001 to 3 ⁇ m or 0.001 to 2 ⁇ m, and the porosity is preferably in the range of 10 vol% to 90 vol%.
  • the pore size and porosity mainly depend on the size of inorganic particles, but may be affected by the type of binder resin. For example, when inorganic particles having a particle diameter of 1 ⁇ m or less are used, pores formed are also approximately 1 ⁇ m or less.
  • Such a pore structure is filled with an electrolyte to be injected later, and the filled electrolyte serves as an ion transfer.
  • the pore size and porosity are less than 0.001 ⁇ m and 10%, respectively, it may act as a resistance layer, and when the pore size and porosity exceed 10 ⁇ m and 90%, respectively, mechanical properties may be deteriorated.
  • the method of measuring the porosity or the pore size is not particularly limited, and the size (micro) and mesopore volume are measured using a BET (Brunauer-Emmett-Teller) measurement method using an adsorption gas such as nitrogen, which is generally used. ) Or the like, or it can be measured using a generally used mercury permeation method (Hg porosimeter).
  • the porosity can be calculated from the apparent density of the insulating porous layer and the true density of components constituting the insulating porous layer.
  • the insulating porous layer according to an exemplary embodiment of the present invention may be prepared by preparing a composition for forming an insulating porous layer including inorganic particles and a binder resin, and forming a film of the composition in a sheet shape.
  • the composition for forming the insulating porous layer may be prepared by preparing a polymer solution in which a binder resin is dissolved in a solvent and a dispersion in which inorganic particles are dispersed in a solvent, and then mixing them.
  • the inorganic particles can be added in a state of being crushed to have a predetermined average particle diameter in advance, or after adding the inorganic particles to a solvent, the inorganic particles are crushed and dispersed while controlling to have a predetermined particle diameter using a ball mill method, etc. Can be manufactured.
  • the concentration of the solid content excluding the solvent in the polymer solution may be controlled to 10 wt% or less, for example, 5 wt% to 7 wt%.
  • the concentration of the solid content exceeds 10 wt%, since the binder resin is not sufficiently dissolved, it is preferable to control it to 10 wt% or less.
  • the concentration of the solid content excluding the solvent in the dispersion is preferably controlled in the range of 30wt% to 70wt%.
  • Mixing of the polymer solution and dispersion may use a mixing device such as a homodiper.
  • a mixing device such as a homodiper.
  • the composition when it is prepared using a homodiper, it may be mixed for about 30 minutes at about 2000 rpm.
  • the composition is applied to a release sheet and dried to obtain a member for an insulating porous layer.
  • the coating may be performed by selecting an appropriate one of known coating methods such as a dip coating method, a slot die coating method, a microgravure coating method, a wire coating method or a doctor blade coating method.
  • the slot die coating the composition supplied through the slot die is applied to the entire surface of the release sheet, and the thickness of the coated composition can be adjusted according to the flow rate supplied from the metering pump.
  • dip coating is a method of coating by dipping a release sheet in a tank containing the composition, and the thickness of the coated composition may be adjusted according to the concentration of the composition and the speed at which the release sheet is taken out from the composition tank.
  • the release sheet is not particularly limited as long as it does not damage the insulating porous layer member upon removal.
  • a glass plate or a polymer film made of polyethylene terephthalate may be used as the release sheet.
  • the composition has a solubility index similar to that of the binder resin to be used as a solvent, and has a low boiling point so that the organic solvent is well removed in the drying process. This is to facilitate uniform mixing and subsequent solvent removal.
  • the boiling point of the solvent is preferably 80°C to 180°C or 100°C to 165°C.
  • non-limiting examples of the solvent include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, and N-methyl-2- Pyrrolidone (N-methyl-2-pyrrolidone, NMP), cyclohexane, mesitylene, dimethylacetamide, dimethylsulfone, dimethylcarbonate, methyl ethyl ketone ( methyl ethyl ketone), methyl acetate, and cyclohexanone.
  • the solvent may include one or a mixture of two or more selected from among them.
  • the solvent is N-methyl-2-pyrrolidone (NMP), cyclohexane, mesitylene, dimethylacetamide, dimethylsulfone ) And a mixture of two or more selected from dimethylcarbonate.
  • the binder resin that can be used for the insulating porous layer is a polyvinylidene fluoride (PVdF)-based resin, styrene-butadiene rubber (SBR), and polytetrafluoroethylene (PTFE).
  • PVdF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • PTFE polytetrafluoroethylene
  • polytetrafluoroethylene polyethylene glycol (PEG, polyethylene glycol), polypropylene glycol (PPG, polypropylene glycol), toluene, diisocyanate (TDI, toluene diisocyanate), polymethylmethacrylate, polyacrylonitrile , Polyvinylpyrrolidone, polyvinylacetate, ethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate (cellulose acetate butyrate), cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose ), pullulan (pullulan), carboxyl methyl cellulose (carboxyl methyl cellulose), acrylonitrile-styrene-butadiene copolymer (acrylonitrile-styrene-buta
  • the polyvinylidene fluoride-based binder resin is, for example, polyvinylidene fluoride homopolymer, polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polyvinylidene fluoride. Selected from the group consisting of ide-co-tetrafluoroethylene, polyvinylidene fluoride-co-trifluoroethylene, polyvinylidene fluoride-co-trifluorochloroethylene and polyvinylidene fluoride-co-ethylene Any one or a mixture of two or more of them may be included.
  • the binder resin may include a polyvinylidene fluoride (PVdF) polymer, and preferably includes a polyvinylidene fluoride (PVdF) homopolymer containing vinylidene fluoride as a monomer.
  • the binder resin comprises a polyvinylidene fluoride (PVdF) homopolymer of 50 wt% or more, preferably 75 wt% or more, more preferably 90 wt% or more based on 100 wt% of the binder resin. will be.
  • the polyvinylidene fluoride (PVdF) homopolymer preferably has a molecular weight (Mw) in the range of 600,000 mol/g to 2,000,000 mol/g.
  • Mw molecular weight
  • the molecular weight is less than the above range, when a separator having an insulating porous layer alone is prepared, the mechanical strength is low, and durability may be deteriorated.
  • the molecular weight exceeds the above range, the solubility is low when preparing the polymer solution, and fairness may be deteriorated.
  • the molecular weight may be measured using, for example, gel permeation chromatography (GPC, PL GPC220, Agilent Technologies).
  • the drying may be performed by natural drying or heat drying.
  • the heating may be performed through a heating process such as a heater, an oven, resistance heating, electric induction heating, hot air heating, and infrared heating.
  • the release paper may simultaneously function not only as a support on which the slurry is coated, but also as a means for removing the organic solvent by drying the slurry. Therefore, the heating may be performed by a method of heating the release sheet by providing a heating means on the release sheet.
  • the heating may be performed in a temperature range of about 40°C to about 200°C, preferably about 60°C to about 180°C.
  • the heating time is not particularly limited, but may be performed for, for example, about 10 minutes to 2 hours.
  • the obtained insulating porous layer member is stretched to prepare an insulating porous layer.
  • the stretching may be performed in any one or more directions of the insulating porous layer.
  • the stretching method may be performed using a means capable of applying a physical force capable of being tensioned in a predetermined direction to the insulating porous layer, and is not particularly limited to any one method.
  • 1 is a schematic diagram showing a stretching process of an insulating porous layer according to an embodiment of the present invention.
  • the insulating porous layer 20 is erected in the vertical direction (gravity direction) and the upper end is fixed with the first jig 11 and a weight (second jig) 12 is attached to the lower end so that it is elongated in the vertical direction, that is, in the direction of gravity. can do.
  • the stretching may be performed while being heated in the oven 13, and the first jig may be connected to an upper portion of the oven.
  • the insulating porous layer can be stretched by laying the insulating porous layer in a vertical direction in the gravitational direction, that is, in a horizontal direction, connecting the first and second jigs to one end thereof and the other end of the opposite direction, and pulling it in the opposite direction.
  • the insulating porous layer may be stretched in first and second directions, and the first and second directions may be perpendicular to each other.
  • the planar shape of the insulating porous layer is a rectangle in which the horizontal and vertical ratio exceeds 1
  • the stretching may be performed in a horizontal direction or a vertical direction.
  • it can be stretched for both the transverse and longitudinal directions.
  • stretching in each direction may be performed sequentially or simultaneously.
  • 2 is a schematic diagram of a shape in which the insulating porous layer 20 is stretched in the first 30A and the second direction 30B, and the first and second directions form a right angle to each other.
  • the orientation and crystallinity of the binder is increased by this stretching process, thereby improving the physical strength of the insulating porous layer and reducing the change in size even after being impregnated with the electrolyte.
  • the degree of crystallinity by a method of measuring the intensity of crystallinity in the infrared absorption spectrum is 50% or more.
  • the degree of crystallinity represents the weight fraction of the crystal part with respect to the entire polymer resin.
  • the crystallinity measurement is obtained by assuming the additive and subtractive properties from the two densities of the crystalline portion and the amorphous portion (density method, crystallization method), the measurement method by heat of fusion, and the intensity distribution of the X-ray diffraction image by diffraction by the amorphous portion and the crystal portion.
  • X-ray method X-ray method
  • methods to obtain from the intensity of the crystallinity of the infrared absorption spectrum I can.
  • the elongation is preferably within 10% of the elongation.
  • the elongation refers to the ratio (%) of the increased length to the initial length.
  • the stretching may be performed under conditions in which the insulating porous layer is heated.
  • the stretching is preferably carried out in a temperature range above the glass transition temperature and below the melting point of the binder resin.
  • the stretching is performed below the glass transition temperature, the insulating porous layer is not stretched, and when the melting point is exceeded, the binder resin is melted and the insulating porous layer may be broken during stretching.
  • the insulating porous layer according to the present invention may itself be used as a separator for an electrochemical device (free standing type separator).
  • the insulating porous layer may be stacked together with another separator material having different characteristics to provide a separator.
  • the present invention provides a secondary battery including the separator manufactured by the above-described method.
  • the secondary battery includes a positive electrode, a negative electrode, and a separator interposed between the negative electrode and the positive electrode, and the separator may be formed of only an insulating porous layer having the above-described characteristics.
  • the separator may be a composite separator including the insulating porous layer.
  • the electrochemical device includes all devices that undergo an electrochemical reaction, and specific examples include all types of primary cells, secondary cells, fuel cells, solar cells, or capacitors such as super capacitor devices.
  • a lithium secondary battery such as a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery is preferred.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder resin on at least one surface of the current collector.
  • the positive electrode active material may include a layered compound such as a lithium manganese composite oxide (LiMn 2 O 4 , LiMnO 2, etc.), a lithium cobalt oxide (LiCoO 2 ), or a lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as formula Li 1+x Mn 2-x O 4 (wherein x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7; Ni site-type lithium nickel oxide represented by the formula Li
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material, a conductive material, and a binder resin on at least one surface of the current collector.
  • the negative electrode includes carbon such as lithium metal oxide, non-graphitizable carbon, and graphite-based carbon as a negative electrode active material; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : Al, B, P, Si, elements of groups 1, 2, and 3 of the periodic table, halogen, metal complex oxides such as 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); Lithium metal; Lithium alloy; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3
  • the conductive material is, for example, graphite, carbon black, carbon fiber or metal fiber, metal powder, conductive whisker, conductive metal oxide, activated carbon, and polyphenylene derivative It may be any one selected from the group consisting of, or a mixture of two or more conductive materials among them. More specifically, natural graphite, artificial graphite, super-p, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, denka black, aluminum powder, nickel powder, oxidation It may be one selected from the group consisting of zinc, potassium titanate, and titanium oxide, or a mixture of two or more conductive materials.
  • the current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, for example, stainless steel, copper, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface-treated carbon, nickel, titanium, silver, or the like may be used on the surface.
  • binder resin a polymer commonly used in electrodes in the art may be used.
  • Non-limiting examples of such a binder resin include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene (polyvinylidene fluoride-cotrichloroethylene), polymethyl methacrylate ( polymethylmethacrylate), polyetylexyl acrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, flulan and carboxyl
  • the electrode assembly prepared as described above may be charged into an appropriate case and an electrolyte may be injected to manufacture a battery.
  • the electrolyte is a salt having a structure such as A + B - , where A + contains an ion consisting of an alkali metal cation such as Li + , Na + , K + or a combination thereof, and B- is PF 6 -, BF 4 -, Cl - , Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 )
  • a salt containing an ion or a combination thereof such as 3 - is propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) , Dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP),
  • the present invention provides a battery module including a battery including the electrode assembly as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device include a power tool that is powered by an omnipotent motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • a polymer solution was prepared by dissolving PVdF (Tm 164°C, Tg -40°C, Mw 1,400,000g/mol) in NMP, and the solid content concentration was 5wt%.
  • AlOOH D50 40nm
  • the ball mill was carried out for 3 hours by introducing a bead size of 0.5 cm.
  • the polymer solution and the dispersion were mixed with a homodiper to prepare a composition for an insulating porous layer. The mixing was carried out for about 30 minutes at a speed of about 2000 rpm.
  • the binder resin was about 20% based on 100% of the total weight of the binder resin and inorganic particles.
  • the obtained composition was applied to a thickness of 350 ⁇ m on a glass plate using a bar coater equipment.
  • the glass plate coated with the composition was placed in a convection oven, dried at 150° C. for 30 minutes, and the glass plate was removed to obtain an insulating porous layer member.
  • the obtained insulating porous layer member was prepared in a size of 8 cm x 10 cm (width x length).
  • the insulating porous layer member was stretched while heating.
  • One end of the insulating porous layer member was snapped to a first jig fixed to the top of the oven, and a second jig weighing about 466 g was bitten to the other end of the insulating porous layer member to apply a tensile force in the direction of gravity.
  • the stretching was performed in a convection oven at 160° C. for about 10 minutes. In this way, the insulating porous layer member was stretched to obtain an insulating porous layer.
  • Two insulating porous layer specimens were prepared by the same method, one of which was designated as Example 1-1, and the other was designated as Example 1-2.
  • An insulating porous layer specimen was prepared in the same manner as in Example 1, except that PVdF (Tm 160°C, Tg -40°C, Mw 1,400,000g/mol) was used.
  • An insulating porous layer specimen was prepared in the same manner as in Example 1, except that PVdF (Tm 150°C, Tg -40°C, Mw 600,000g/mol) was used.
  • Example 1 the insulating porous layer was prepared only by the method of item (1) without the stretching process performed in item (2).
  • Two insulating porous layer specimens were prepared by the same method, one of which was designated as Comparative Example 1-1, and the other was designated as Comparative Example 1-2.
  • Example 2 the insulating porous layer was prepared only by the method of item (1) without the stretching process performed in item (2).
  • Example 3 the insulating porous layer was prepared only by the method of item (1) without the stretching process performed in item (2).
  • the elongation rate is expressed as a ratio (%) of the increase in the length of the separation membrane after stretching compared to the length of the initial separation membrane, and can be expressed as the following equation.
  • Elongation (%) ⁇ (length of the initial separation membrane-length of the separation membrane after stretching)/length of the initial separation membrane ⁇ x100
  • a specimen was prepared by cutting the insulating porous layer obtained in the above Examples and Comparative Examples into a size of 15 mm x 150 mm. Each insulating porous layer specimen was adhered to correspond to the minor axis direction and the major axis direction of the slide glass. After attaching one end of the insulating porous layer on the slide glass and the other end of the insulating porous layer to which the slide glass is not adhered to the UTM (Universal Testing Machine), pull in opposite directions to increase the strength at which the insulating porous layer is broken. It was measured. At this time, the measurement speed of the UTM device was 500 mm/min, and the length of the measurement portion was 100 mm. The measurement results are summarized and shown in [Table 1] below.
  • a specimen was prepared by cutting the insulating porous layer obtained in Examples and Comparative Examples into a size of 15 cm x 15 cm. Ethylene carbonate/ethyl methyl carbonate/dimethyl carbonate was mixed in a ratio (volume ratio) of 3:3:4, and an electrolyte solution containing 1.0M LiPF 6 as a lithium salt was prepared. . Each insulating porous layer specimen was impregnated in 10 ml of the electrolyte solution for 1 hour, and then the horizontal and vertical lengths of the changed insulating porous layer were measured to calculate the dimensional change rate, and the average value thereof was used. Referring to Tables 1 and 2, in the case of Comparative Example 1, the size was increased by 1.8 times compared to Example 1, and in the case of Comparative Example 2, it was confirmed that the size was increased by about 1.5 times compared to Example 2.
  • Example 1-1 Example 1-2
  • Example 2 Example 3 Elongation (%) 8 2 8 8
  • Tensile strength (Kgf/cm 2 ) 147 165 162 135
  • Dimensional change rate (%) 1.0 1.0 1.2 1.1
  • Comparative Example 1-1 Comparative Example 1-2 Comparative Example 2 Comparative Example 3 Elongation (%) - - - - Thickness ( ⁇ m) 15.7 14.4 16.2 15.8 Gurley(sec/100cc) 162 333 192 200 Electrical resistance ( ⁇ ) 0.55 0.95 0.75 0.83 Crystallinity (%) 39 46 52 48 Tensile strength (Kgf/cm 2 ) 121 164 140 110 Dimensional change rate (%) 1.8 1.5 2.0 2.0 2.0

Abstract

본 발명에 따른 분리막은 주로 무기물 입자 및 바인더 수지로 구성되며 고분자 수지 필름과 같은 분리막 기재를 포함하지 않는 단독형(free standing type) 분리막으로 사용될 수 있는 것으로서 열수축 문제가 발생되지 않는 효과가 있다. 또한, 본 발명의 분리막은 연신에 의해 바인더 수지의 결정화도가 향상되어 인장 강도가 증가하며 전해액의 함침에 의한 치수 변화율이 낮다.

Description

전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법
본 출원은 2019년 10월 18일에 출원된 한국특허출원 제10-2019-0130072호에 기초한 우선권을 주장한다. 본 발명은 전기화학소자용 분리막 및 상기 분리막을 포함하는 전기화학소자에 대한 것이다. 또한, 본 발명은 상기 분리막을 제조하는 방법에 대한 것이다.
최근, 전기화학소자 분야에서 그의 안전성 확보에 대해 크게 주목하고 있다. 특히, 리튬 이차전지와 같은 이차전지는 양극, 음극 및 분리막을 구비한 전극 조립체를 갖는데, 이러한 전극 조립체는 양극과 음극 사이에 분리막이 개재된 구조로 제작될 수 있다. 이러한 리튬 이차전지의 분리막 기재로서 폴리올레핀계 고분자 수지를 이용한 다공성 필름이 사용되고 있는데 이러한 다공성 고분자 필름은 고온에서 수축되거나 용융되어 내열성이 낮은 문제가 있었다. 이러한 문제를 해소하기 위해 상기 다공성 고분자 필름의 표면을 무기물 입자 코팅층으로 피복하거나 고분자 분리막 기재 없이 무기물과 바인더 수지로만 이루어진 free standing type 분리막이 제안되고 있다. 이와 같이 분리막에 무기물이 적용되는 경우, 열수축 및 안전성이 우수하지만, 분리막의 부피 팽창으로 인하여 두께 증가 및 가로 세로 치수 변화가 발생하며 이로 인해 전지의 외관 불량이 발생할 수 있다. 또한, 전극과 분리막 사이가 이격되어 내부에 기포가 발생하고 전극과 분리막의 계면 저항이 증가하며, 이격된 틈으로 리튬이 석출될 수 있어 셀 저항이 증가되는 문제가 있다. 이에 free standing type 의 분리막의 치수 변화율을 낮출 필요가 있다. 또한, 이러한 free standing type 의 분리막을 전지 제조에 적용하는 경우 전지 조립 공정성 확보를 위해 분리막의 인장강도를 높일 필요가 있다.
본 발명은 바인더 수지와 무기물 입자를 포함하는 free standing 타입의 분리막을 제공하는 것을 목적으로 한다. 구체적으로 연신에 의해서 바인더 수지의 결정화도가 향상되어 인장 강도가 증가되고 전해액 함침에 따른 치수 변화가 적은 분리막을 제공하는 것을 또 다른 목적으로 한다. 또한, 본 발명은 상기와 같은 구성적 특징을 갖는 분리막을 제조하는 방법을 제공하는 것을 목적으로 한다. 본 발명의 다른 과제는, 양극, 음극, 양극과 음극 사이에 개재된 분리막 및 전해액을 포함하며, 상기 분리막은 전술한 특징을 갖는 분리막인 것인 전기화학소자를 제공하는 것을 목적으로 한다. 본 발명의 다른 목적 및 장점들은 하기 설명에 의해 이해될 수 있을 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에서 기재되는 수단 또는 방법, 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 제1 측면은 절연성 다공층을 포함하는 분리막이며, 상기 절연성 다공층은 무기물 입자와 바인더 수지를 포함하고, 상기 무기물 입자는 상기 절연성 다공층 100 wt% 대비 70wt% 내지 90wt%의 비율로 포함되며, 상기 바인더 수지는 바인더 수지 100wt% 대비 폴리불화비닐리덴 호모(homo) 폴리머를 50wt% 이상 포함하고, 상기 바인더 수지의 결정화도가 50% 이상인 것이다.
본 발명의 제2 측면은 상기 제1 측면에 있어서, 상기 절연성 다공층에서 상기 무기물 입자들이 바인더 수지를 매개로 하여 결착되어 있으며 무기물 입자들 사이의 인터스티셜 볼륨(interstitial volume)에서 유래되는 기공을 갖는 다공성 특성을 갖는 것이다.
본 발명의 제3 측면은 상기 제1 또는 제2 측면에 있어서, 상기 무기물 입자들은 Al 2O 3, AlOOH, Al(OH) 3, AlN, BN, MgO, Mg(OH) 2, SiO 2, ZnO, TiO 2, BaTiO 3 로 이루어지는 군에서 선택된 1종 이상을 포함하는 것이다.
본 발명의 제4 측면은 상기 제1 내지 제3 측면 중 적어도 어느 하나에 있어서, 상기 무기물 입자들은 입경이 0.001㎛ 내지 3㎛의 범위에 포함되는 것이다.
본 발명의 제5 측면은 상기 제1 내지 제4 측면 중 적어도 어느 하나에 있어서, 상기 폴리불화비닐리덴 호모 폴리머는 분자량(Mw)이 600,000 mol/g 내지 2,000,000mol/g의 범위를 갖는 것이다.
본 발명의 제6 측면은 상기 제1 내지 제5 측면 중 적어도 어느 하나에 있어서, 상기 분리막은 상기 다공성 절연층(들)만으로 이루어진 것이다.
본 발명의 제7 측면은 상기 제1 내지 제6 측면 중 적어도 어느 하나에 따른 분리막을 제조하는 방법에 대한 것으로서, 상기 방법은 상기 절연성 다공층이 적어도 일방향 이상의 방향으로 연신되는 단계를 포함한다.
본 발명의 제8 측면은 상기 제7 측면에 있어서, 상기 절연성 다공층은 가로와 세로의 비율이 1을 초과하는 장방형의 평면 형상을 가지며, 이를 가로 방향 또는 세로 방향 또는 이 둘 모두의 방향으로 인장하여 연신되는 단계를 포함한다.
본 발명의 제9 측면은 상기 제7 또는 제8 측면에 있어서, 상기 연신되는 단계는 절연성 다공층이 가온되는 조건하에서 수행되는 것이다.
본 발명의 제10 측면은 상기 제9 측면에 있어서, 상기 연신은 바인더 수지의 유리전이 온도 이상의 온도 및 바인더 수지의 용융점 이하의 온도 범위에서 수행되는 것이다.
본 발명에 따른 분리막은 주로 무기물 입자 및 바인더 수지로 구성되며 고분자 수지 필름과 같은 분리막 기재를 포함하지 않는 단독형(free standing type) 분리막으로 사용할 수 있는 것으로서 열수축 문제가 발생되지 않는 효과가 있다. 또한, 본 발명의 분리막은 연신에 의해 바인더 수지의 결정화도가 향상되어 인장 강도가 증가하며 전해액의 함침에 의한 치수 변화율이 낮다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용 및 다음의 바람직한 실시예의 상세한 설명과 함께 본 발명의 기술사상 및 원리를 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 일 실시양태에 따른 절연성 다공층의 연신 공정을 개략적으로 도식화하여 나타낸 것이다
도 2는 절연성 다공층이 서로 직각인 두 방향으로 연신되는 모양을 개략적으로 도식화하여 나타낸 것이다.
이하 본 발명에 대해 상세하게 설명하다. 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재되고 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 일 측면은 절연성 다공층에 대한 것이다. 상기 절연성 다공층은 전기화학소자용 분리막으로 사용될 수 있다. 본원 명세서에 있어서 상기 전기화학소자는 예를 들어 양극, 분리막, 음극이 순차적으로 적층되어 형성된 단위셀을 포함하는 것으로서 반복적인 충방전이 가능한 이차 전지일 수 있다.
또한, 본 발명은 상기 절연성 다공층을 포함하는 전기화학소자용 분리막에 대한 것으로서, 특히 상기 분리막은 상기 절연성 다공층 만으로 이루어진 단독형(free standing type) 분리막일 수 있다. 본 발명에 있어서, 상기 단독형 분리막은 상기 절연성 다공층(들)만으로 이루어진 것으로서 고분자 수지 필름과 같은 분리막 기재 등 본 발명에 따른 절연성 다공층이 아닌 요소를 포함하지 않는 것을 의미한다.
본 발명의 구체적인 일 실시양태에 따르면 상기 절연성 다공층은 무기 입자와 바인더 수지를 포함하는 유/무기 복합막인 것이다. 상기 절연성 다공층 중에서 상기 무기 입자들은 상기 바인더 수지에 의해서 상호 결착되어 층상으로 충진된 형태를 나타낼 수 있다. 본 발명에 있어서 상기 유/무기 복합막은 무기 입자들간의 인터스티셜 볼륨(interstitial volume)에 의해 형성되는 기공에 의한 다공성 특성을 갖는다. 상기 인터스티셜 볼륨은 무기 입자들의 충진 구조에서 실질적으로 면접하는 무기 입자들에 의해 한정되는 공간을 의미한다. 상기 기공들은 상호간에 서로 연결된 구조로 되어 있어서 기재의 한쪽 면으로부터 다른 쪽 면으로 기체 또는 액체가 통과 가능한 것을 의미한다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 무기물 입자는 전기화학적으로 안정하고, 상기 절연성 다공층의 두께에 부합하는 입도를 가지기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li + 기준으로 0 ~ 5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 비제한적인 예로, 상기 무기물 입자는 0.001 내지 3 ㎛ 범위의 입경 또는 0.001㎛ 내지 2㎛ 범위의 입경을 가질 수 있다. 상기 무기물 입자가 0.001 ㎛ 미만인 경우 분산성이 저하될 수 있고, 3 ㎛를 초과하는 경우 형성되는 절연성 다공층의 두께를 박막화 하기 어려우며 절연성 다공층 단독으로 분리막이 제공되는 경우 기공의 크기가 너무 커져서 절연성이 저하될 수 있다. 이러한 점을 고려하여, 예를 들어 상기 무기물 입자는 입경의 크기가 약 20nm 내지 500nm 의 범위로 제어될 수 있다.
상기 무기물 입자의 비제한적인 예로서는 Al 2O 3, AlOOH, Al(OH) 3, AlN, BN, MgO, Mg(OH) 2, SiO 2, ZnO, TiO 2, BaTiO 3 또는 이들의 혼합물 등이 있다.
또한, 상기 바인더 수지는 무기물 입자들간의 결착력 및 절연성 다공층과 전극 사이의 결착력을 제공할 수 있는 것이라면 특별히 한정되는 것은 아니다. 상기 절연성 다공층에서 상기 무기물 입자의 함량은 절연성 다공층 100wt% 기준으로 70 wt% 내지 90 wt% 범위일 수 있다. 무기물 입자의 함량이 너무 높으면 바인더 수지의 양이 감소하여 무기물 입자가 절연성 다공층에서 잘 탈리되고 절연성 다공층이 부스러지는 등 내구성이 저하될 수 있다. 반면에 무기물 입자의 함량이 너무 낮으면 바인더 수지 비율이 증가하여 기공도가 낮아지므로 저항 특성이 저하될 수 있다.
상기 절연성 다공층의 두께는 특별한 제한이 없으나, 예를 들어 0.01 내지 50㎛ 범위의 두께를 가질 수 있다.
또한, 상기 절연성 다공층의 기공 크기 및 기공도 역시 특별한 제한이 없으나, 기공 크기는 0.001 내지 3㎛ 범위 또는 0.001 내지 2㎛ 범위가 바람직하며, 기공도는 10vol% 내지 90vol% 범위가 바람직하다. 기공 크기 및 기공도는 주로 무기물 입자의 크기에 의존하나, 바인더 수지의 종류에 따라 영향을 받을 수 있다. 예컨대 입경이 1 ㎛ 이하인 무기물 입자를 사용하는 경우 형성되는 기공 역시 대략 1 ㎛ 이하를 나타내게 된다. 이와 같은 기공 구조는 추후 주액되는 전해액으로 채워지게 되고, 이와 같이 채워진 전해액은 이온 전달 역할을 하게 된다. 기공 크기 및 기공도가 각각 0.001㎛ 및 10% 미만일 경우 저항층으로 작용할 수 있으며, 기공 크기 및 기공도가 10㎛ 및 90%를 각각 초과할 경우에는 기계적 물성이 저하될 수 있다.
또한, 상기 기공도나 기공 크기의 측정법은 특별히 한정되지 않으며, 일반적으로 사용되는 질소 등의 흡착 기체를 이용한 BET(Brunauer-Emmett-Teller) 측정법을 이용하여 크기(micro) 및 메소 세공 부피(meso pore volume) 등을 측정할 수도 있고, 또는 일반적으로 이용되는 수은 침투법 (Hg porosimeter)을 활용하여 측정할 수도 있다. 또한 상기 기공도는 절연성 다공층의 겉보기 밀도와 절연성 다공층을 구성하는 성분들의 진밀도를 구하여 이로부터 기공도를 계산해 낼 수 있다.
본 발명의 실 실시양태에 따른 상기 절연성 다공층은 무기물 입자 및 바인더 수지를 구비하는 절연성 다공층 형성용 조성물을 준비하고 이러한 조성물을 시트상으로 제막하는 방법으로 제조될 수 있다.
먼저 상기 절연성 다공층 형성용 조성물은 바인더 수지가 용매 중 용해된 고분자 용액 및 무기물 입자가 용매 중 분산된 분산액을 각각 준비한 다음 이들을 혼합하는 방법으로 제조될 수 있다. 상기 무기물 입자들은 미리 소정의 평균 입경을 갖도록 파쇄된 상태에서 첨가할 수 있으며, 또는 용매에 무기물 입자를 첨가한 후 무기물 입자를 볼밀법 등을 이용해서 소정의 입경을 갖도록 제어하면서 파쇄하여 분산시켜 분산액을 제조할 수 있다. 한편, 본 발명의 일 실시양태에 있어서, 상기 고분자 용액 중 용매를 제외한 고형분의 농도는 10wt% 이하, 예를 들어 5wt% 내지 7wt%로 제어될 수 있다. 고형분의 농도가 10wt%를 초과하는 경우 바인더 수지가 충분히 용해되지 않기 때문에 10wt% 이하로 제어하는 것이 바람직하다. 또한, 상기 분산액 중 용매를 제외한 고형분의 농도는 30wt% 내지 70wt%의 범위에서 제어되는 것이 바람직하다.
상기 고분자 용액과 분산액의 혼합은 homodiper 등의 믹싱 장치를 사용할 수 있다. 예를 들어 homodiper를 이용해서 상기 조성물을 제조하는 경우 약 2000rpm에서 약 30분간 혼합할 수 있다.
다음으로 상기 조성물을 이형 시트에 도포하고 건조하여 절연성 다공층용 부재를 수득한다. 상기 도포는 딥 코팅법, 슬롯다이 코팅법, 마이크로 그래비어 코팅법, 와이어 코팅법이나 닥터블레이드 코팅법과 같은 공지의 도포 방법 중 적절한 것을 선택하여 수행될 수 있다. 특히, 슬롯 다이 코팅이나 딥 코팅 방법을 사용하는 것이 바람직하다. 슬롯 다이 코팅은 슬롯 다이를 통해 공급된 조성물이 이형 시트의 전면에 도포되는 방식으로 정량 펌프에서 공급되는 유량에 따라 코팅된 조성물의 두께를 조절할 수 있다. 또한 딥 코팅은 조성물이 들어있는 탱크에 이형 시트를 담그어 코팅하는 방법으로, 조성물의 농도 및 조성물 탱크에서 이형 시트를 꺼내는 속도에 따라 코팅된 조성물 두께를 조절할 수 있다.
한편, 상기 이형 시트는 제거시 절연성 다공층용 부재를 손상시키지 않는 것이라면 특별히 한정되는 것은 아니다. 예를 들어 상기 이형 시트로는 유리판이나 폴리에틸렌테레프탈레이트 소재의 고분자 필름이 사용될 수 있다.
상기 조성물에서 용매로는 사용하고자 하는 바인더 수지와 용해도 지수가 유사하며, 건조 공정에서 유기 용매가 잘 제거되도록 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서이다. 이러한 점을 고려하였을 때 상기 용매의 비점은 80℃ 내지 180℃ 또는 100℃ 내지 165℃인 것이 바람직하다. 본 발명에 있어서, 상기 용매의 비제한적인 예로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 사이클로헥산(cyclohexane), 메시틸렌(mesitylene), 디메틸아세트아미드(dimethylacetamide), 디메틸설폰(dimethylsulfone), 디메틸카보네이트(dimethylcarbonate), 메틸에틸케톤(methyl ethyl ketone), 메틸 아세테이트(methyl acetate), 시클로헥산온(cyclohexanone) 등을 들 수 있다. 상기 용매는 이 중 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다. 바람직하게는 상기 용매는 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 사이클로헥산(cyclohexane), 메시틸렌(mesitylene), 디메틸아세트아미드(dimethylacetamide), 디메틸설폰(dimethylsulfone) 및 디메틸카보네이트(dimethylcarbonate)로부터 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명에 있어서, 상기 절연성 다공층에 사용될 수 있는 바인더 수지는 폴리비닐리덴 플루오라이드(PVdF, polyvinylidene fluoride)계 수지, 스티렌-부타디엔 고무(SBR, styrene-butadiene rubber), 폴리테트라플루오로에틸렌(PTFE, polytetrafluoroethylene), 폴리에틸렌글리콜(PEG, polyethylene glycol), 폴리프로필렌글리콜(PPG, polypropylene glycol), 톨루엔, 다이이소시아네이트(TDI, toluene diisocyanate), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 에틸렌-코-비닐 아세테이트(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 셀룰로스 아세테이트(cellulose acetate), 셀룰로스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알코올(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로스(cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란(pullulan), 카복실 메틸 셀룰로스(carboxyl methyl cellulose), 아크릴로니트릴-스티렌-부타디엔 공중합체(acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 폴리비닐리덴 플루오라이드계 바인더 수지는 예를 들어 폴리비닐리덴 플루오라이드 호모 폴리머, 폴리비닐리덴 플루오라이드-코-헥사플루오로프로필렌, 폴리비닐리덴 플루오라이드-코-트라이클로로에틸렌, 폴리비닐리덴 플루오라이드-코-테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드-코-트리플루오로에틸렌, 폴리비닐리덴 플루오라이드-코-트리플루오로클로로에틸렌 및 폴리비닐리덴 플루오라이드-코-에틸렌으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
본 발명에 있어서, 상기 바인더 수지는 폴리비닐리덴 플루오라이드(PVdF)계 고분자를 포함할 수 있으며, 바람직하게는 단량체로 비닐리덴플루오라이드를 포함하는 폴리비닐리덴 플루오라이드(PVdF) 호모 폴리머를 포함한다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 바인더 수지는 바인더 수지 100wt% 대비 50wt% 이상, 바람직하게는 75wt% 이상, 더욱 바람직하게는 90wt% 이상 폴리비닐리덴 플루오라이드(PVdF) 호모 폴리머를 포함하는 것이다.
한편, 상기 폴리비닐리덴 플루오라이드(PVdF) 호모 폴리머는 분자량(Mw)이 600,000 mol/g 내지 2,000,000mol/g의 범위를 갖는 것이 바람직하다. 분자량이 상기 범위에 미치지 못하는 경우에는 절연성 다공층 단독의 분리막을 제조하는 경우 기계적 강도가 낮아 내구성이 저하될 수 있다. 반면 분자량이 상기 범위를 지나치게 초과하는 경우에는 고분자 용액 제조시 용해성이 낮아 공정성이 저하될 수 있다. 본 발명에 있어서, 상기 분자량은 예를 들어 겔 투과 크로마토그래피(GPC: gel permeation chromatography, PL GPC220, Agilent Technologies)를 이용하여 측정될 수 있다.
다음으로 도포된 조성물을 건조하여 용매를 제거하고 시트 형상의 절연성 다공층용 부재를 수득한다. 상기 건조는 자연 건조 방식에 의하거나, 가열 건조의 방식으로 수행될 수 있다. 상기 가열은 통상적으로 히터(heater), 오븐(oven), 저항 가열, 전기 유도 가열, 열풍 가열, 적외선 가열 등의 가열 공정을 통하여 이루어질 수 있다. 상기 이형지는 상기 슬러리가 코팅되는 지지체로서의 기능뿐만 아니라 상기 슬러리를 건조하여 유기 용매를 제거하기 위한 수단으로서의 기능을 동시에 가질 수 있다. 따라서 상기 가열은 상기 이형 시트에 가열 수단을 구비하여 이형 시트를 가열하는 방법으로 수행될 수 있다. 상기 가열은 약 40℃ 내지 약 200℃의 온도 범위, 바람직하게는 약 60℃ 내지 약 180℃의 온도 범위에서 수행될 수 있다. 또한, 상기 가열시간은 특별히 한정되는 것은 아니나, 예를 들어 약 10분 내지 2시간 동안 수행될 수 있다. 건조가 완료되면 상기 이형 시트를 제거하고 절연성 다공층용 부재를 수득한다.
다음으로 상기 수득된 절연성 다공층용 부재를 연신하여 절연성 다공층을 제조한다. 상기 연신은 절연성 다공층의 특정한 어느 한 방향 또는 그 이상의 방향에 대해서 수행될 수 있다.
상기 연신 방법은 절연성 다공층이 소정 방향으로 인장될 수 있는 물리력이 가하여 질 수 있는 수단을 이용하여 수행될 수 있는 것으로서 어느 하나의 방법으로 특별히 한정되는 것은 아니다. 도 1은 본 발명의 일 실시양태에 따른 절연성 다공층의 연신 공정을 개략적으로 도식화하여 나타낸 것이다. 이에 따르면 절연성 다공층(20)을 상하 방향(중력 방향)으로 세워 상단부를 제1 지그(11)로 고정하고 하단부에 추(제2 지그)(12)를 달아 상하 방향, 즉 중력 방향으로 연신되도록 할 수 있다. 예를 들어 상기 연신은 오븐(13) 중에서 가열 되면서 수행될 수 있으며, 상기 제1 지그는 오븐의 상부에 연결될 수 있다. 또는 절연성 다공층을 중력 방향의 수직 방향 즉, 수평 방향으로 눕히고 이의 일측 단부 및 반대 방향의 타측 단부에 각각 제1 및 제2 지그를 연결하고 반대 방향으로 잡아 당기는 방법으로 절연성 다공층을 연신시킬 수 있다.
본 발명의 일 실시양태에 있어서, 상기 절연성 다공층에 대해서 제1 및 제2 방향으로 연신될 수 있으며 상기 제1 및 제2 방향은 서로 직각을 이를 수 있다. 예를 들어 상기 절연성 다공층의 평면 형상이 가로 세로의 비율이 1을 초과하는 직사각형인 경우 상기 연신은 가로 방향 또는 세로 방향으로 수행될 수 있다. 또는 가로 및 세로 방향 둘 모두에 대해 연신될 수 있다. 이와 같이 두 방향 이상 연신이 수행되는 경우에는 각 방향에 대한 연신이 순차적으로 또는 동시에 이루어질 수 있다. 도 2는 절연성 다공층(20)이 제1(30A) 및 제2 방향(30B)으로 연신되며 상기 제1 및 제2 방향은 서로 직각을 이루는 모양을 개략적으로 도식화하여 나타낸 것이다.
이러한 연신 공정에 의해서 바인더의 배향도 및 결정화도가 높아지고 이에 의해서 상기 절연성 다공층의 물리적 강도가 개선되고 전해액에 함침된 이후에도 치수의 변화가 적다.
본 발명의 일 실시양태에 있어서 적외선 흡수 스펙트럼의 결정성 대폭의 강도에 의한 측정 방법에 의한 결정화도가 50% 이상인 것이 바람직하다. 본 명세서에서 상기 결정화도는 고분자 수지 전체에 대한 결정 부분의 무게 분율을 나타낸 것이다. 상기 결정화도 측정은 결정 부분과 비결정 부분의 두 밀도로부터 그 가감성을 가정하여 구하는 방법(밀도법, 정침법), 융해열에 의한 측정 방법, X선 회절상의 강도 분포를 비결정 부분에 의한 회절과 결정 부분에 의한 회절로 분리하여 구하는 방법(X선 법), 적외선 흡수 스펙트럼의 결정성 대폭의 강도로부터 구하는 방법 등이 있으며, 구체적으로 적외선 흡수 스펙트럼의 결정성 대폭의 강도로부터 구하는 방법 등을 적용하여 측정할 수 있다.
한편, 본 발명에 있어서 상기 연신은 연신율이 10% 이내인 것이 바람직하다. 본원 명세서에서 연신율은 초기 길이 대비 늘어난 길이의 비율(%)을 의미한다.
한편, 상기 연신은 절연성 다공층이 가온되는 조건하에서 수행될 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 연신은 바인더 수지의 유리전이 온도 이상 및 용융점 이하의 온도 범위에서 수행되는 것이 바람직하다. 상기 연신이 유리 전이 온도 이하에서 수행되는 경우에는 절연성 다공층 절연성 다공층이 연신되지 않으며, 용융점을 초과하는 경우에는 바인더 수지가 용융되어 연신 중 절연성 다공층이 파단될 수 있다.
본 발명에 따른 절연성 다공층은 그 자체로 전기화학소자용 분리막을 사용될 수 있다(free standing type 분리막). 또는 상기 절연성 다공층은 다른 특성을 갖는 다른 분리막 소재와 함께 적층되어 분리막으로 제공될 수 있다.
또한, 본 발명은 전술한 방법에 의해 제조된 분리막을 포함하는 이차 전지를 제공한다. 상기 이차 전지는 양극, 음극 및 상기 음극과 양극 사이에 개재되는 분리막을 포함하며, 상기 분리막은 전술한 특징을 갖는 절연성 다공층만으로 이루어질 수 있다. 또는 상기 분리막은 상기 절연성 다공층을 포함하는 복합 분리막일 수 있다.
상기 전기화학소자는 전기화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 일차전지, 이차전지, 연료전지, 태양전지 또는 슈퍼 커패시터 소자와 같은 커패시터(capacitor) 등이 있다. 특히, 상기 이차전지 중 리튬 이차전지, 예컨대 리튬 이온 이차전지, 리튬 폴리머 이차전지 또는 리튬 이온 폴리머 이차전지 등이 바람직하다.
본 발명에 있어서, 상기 양극은 양극 집전체 및 상기 집전체의 적어도 일측 표면에 양극 활물질, 도전재 및 바인더 수지를 포함하는 양극 활물질층을 구비한다. 상기 양극 활물질은 리튬 망간복합 산화물(LiMn 2O 4, LiMnO 2 등), 리튬 코발트 산화물(LiCoO 2), 리튬 니켈 산화물(LiNiO 2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li 1+xMn 2-xO 4 (여기서, x 는 0 ~ 0.33 임), LiMnO 3, LiMn 2O 3, LiMnO 2 등의 리튬 망간 산화물; 리튬 동 산화물(Li 2CuO 2); LiV 3O 8, LiFe 3O 4, V 2O 5, Cu 2V 2O 7 등의 바나듐 산화물; 화학식 LiNi 1-xM xO 2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn 2-xM xO 2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li 2Mn 3MO 8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn 2O 4; 디설파이드 화합물; Fe 2(MoO 4) 3 중 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명에 있어서, 상기 음극은 음극 집전체 및 상기 집전체의 적어도 일측 표면에 음극 활물질, 도전재 및 바인더 수지를 포함하는 음극 활물질층을 구비한다. 상기 음극은 음극 활물질로 리튬 금속산화물, 난흑연화 탄소, 흑연계 탄소 등의 탄소; Li xFe 2O 3(0≤x≤1), Li xWO 2(0≤x≤1), Sn xMe 1-xMe' yO z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO 2, PbO, PbO 2, Pb 2O 3, Pb 3O 4, Sb 2O 3, Sb 2O 4, Sb 2O 5, GeO, GeO 2, Bi 2O 3, Bi 2O 4, 및 Bi 2O 5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물 중 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 도전재는, 예를 들어, 흑연, 카본블랙, 탄소 섬유 또는 금속 섬유, 금속 분말, 도전성 위스커, 도전성 금속 산화물, 활성 카본(activated carbon) 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다. 더욱 구체적으로는 천연 흑연, 인조 흑연, 슈퍼 피(super-p), 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 덴카(denka) 블랙, 알루미늄 분말, 니켈 분말, 산화 아연, 티탄산 칼륨 및 산화 티탄으로 이루어진 군으로부터 선택된 1종 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다.
상기 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 구리, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 바인더 수지로는 당업계에서 전극에 통상적으로 사용되는 고분자를 사용할 수 있다. 이러한 바인더 수지의 비제한적인 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-cotrichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyetylexyl acrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetatepropionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀 룰로오스 (carboxyl methyl cellulose)등을 들 수 있으며, 이에 한정되는 것은 아니다.
상기와 같이 준비된 전극 조립체는 적절한 케이스에 장입하고 전해액을 주입하여 전지를 제조할 수 있다.
본 발명에 있어서, 상기 전해액은 A +B -와 같은 구조의 염으로서, A +는 Li +,Na +,K +와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B -는 PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3CO 2 -, CF 3SO 3 -, N(CF 3SO 2) 2 -,C(CF 2SO 2) 3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤), 에스테르계 화합물 및 이 중 선택된 1종 이상의 혼합물을 포함하는 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
또한, 본 발명은, 상기 전극 조립체를 포함하는 전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다. 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
(1) 절연성 다공층 부재의 준비
NMP 에 PVdF(Tm 164℃, Tg -40℃, Mw 1,400,000g/mol)를 용해시켜 고분자 용액을 제조하였으며, 고형분 농도는 5wt%였다. 또한, NMP에 AlOOH(D50 40nm)을 투입하여 볼밀(ball mill) 방식으로 분산시켜 분산액(고형분 농도 50wt%)을 준비하였다. 볼밀은 비드 사이즈 0.5cm를 투입하여 3시간 동안 진행하였다. 다음으로 상기 고분자 용액과 분산액을 homodiper로 혼합하여 절연성 다공층용 조성물을 준비하였다. 상기 혼합은 약 2000rpm의 속도로 약 30분 동안 진행되었다. 상기 절연성 다공층용 조성물에서 바인더 수지는 바인더 수지와 무기물 입자의 총 중량 100% 대비 약 20%로 하였다. 수득된 상기 조성물을 유리판 위에 바 코터(bar coater) 장비를 이용해서 350㎛ 두께로 도포하였다.
상기 조성물이 도포된 유리판을 컨벡션 오븐에 넣고 150℃에서 30분간 건조하고 유리판을 제거하여 절연성 다공층 부재를 수득하였다. 수득된 상기 절연성 다공층 부재를 8cm x 10cm(폭x길이) 크기로 준비하였다.
(2) 절연성 다공층 부재의 연신 및 절연성 다공층의 준비
다음으로 상기 절연성 다공층 부재를 가온하면서 연신하였다. 절연성 다공층 부재의 일측단을 오븐 상단에 고정된 제1 지그에 물리고 절연성 다공층 부재의 타측단에 약 466g 무게의 제2 지그를 물려 중력 방향으로 인장력이 가하여 지도록 하였다. 상기 연신은 160℃의 컨벡션 오븐에서 약 10분 동안 진행되었다. 이와 같은 방법으로 절연성 다공층 부재를 연신하여 절연성 다공층을 수득하였다. 동일한 방법으로 절연성 다공층 시편 2장을 준비하였으며 그 중 하나를 실시예 1-1로 표시하였고, 나머지 하나를 실시예 1-2로 하였다.
실시예 2
PVdF(Tm 160℃, Tg -40℃, Mw 1,400,000g/mol)을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 절연성 다공층 시편을 준비하였다.
실시예 3
PVdF(Tm 150℃, Tg -40℃, Mw 600,000g/mol)을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 절연성 다공층 시편을 준비하였다.
비교예 1
상기 실시예 1에서 항목 (2)에서 수행된 연신 공정 없이 항목 (1)의 방법만으로 절연성 다공층을 준비하였다. 동일한 방법으로 절연성 다공층 시편 2장을 준비하였으며 그 중 하나를 비교예 1-1로 표시하였고, 나머지 하나를 비교예 1-2로 하였다.
비교예 2
상기 실시예 2에서 항목 (2)에서 수행된 연신 공정 없이 항목 (1)의 방법만으로 절연성 다공층을 준비하였다.
비교예 3
상기 실시예 3에서 항목 (2)에서 수행된 연신 공정 없이 항목 (1)의 방법만으로 절연성 다공층을 준비하였다.
연신율 계산
연신율은 최초 분리막의 길이 대비 연신 후 분리막의 길이 증가분을 비율(%)로 나타낸 것으로서 아래 식과 같이 나타낼 수 있다.
연신율 (%) = {(초기 분리막의 길이 - 연신 후 늘어난 분리막의 길이)/초기 분리막의 길이}x100
결정화도 측정
결정화도 측정은 NMR 장비(Agilent 600 NMR equipped with 1.6mm MAS (magic angle spinning) probe)를 이용하여 측정하였으며, 실험 조건은 single pulse experiment with d1= 30 s, ns varied from 64 to 1744, MAS frequency= 35 kHz 이다. 하기 표 1에 따르면 실시예 1 및 실시예 2는 50% 이상의 결정화도가 확인되었으나, 비교예 1 및 비교예 2는 결정화도가 50% 미만으로 낮은 것을 확인할 수 있었다 .
인장 강도의 측정
상기 실시예 및 비교예에서 수득된 절연성 다공층을 15mm x 150mm의 크기로 재단하여 시편을 준비하였다. 각 절연성 다공층 시편을 슬라이드 글라스의 단축 방향 및 장축 방향과 대응되도록 맞추어 접착시켰다. 슬라이드 글라스상에 위치하는 절연성 다공층 일측 말단부와 상기 슬라이드 글라스 미접착된 절연성 다공층의 타측 말단부를 UTM(Universal Testing Machine)에 장착한 후, 서로 반대 방향으로 당기면서 절연성 다공층이 파단되는 강도를 측정하였다. 이때 UTM 장치의 측정 속도는 500mm/min이며, 측정부의 길이는 100mm로 하였다. 측정 결과를 아래 [표 1]에 정리하여 나타내었다.
치수 변화율 측정
상기 실시예 및 비교예에서 수득된 절연성 다공층을 15cm x 15cm의 크기로 재단하여 시편을 준비하였다. 에틸렌 카보네이트(Ethylene carbonate)/에틸메틸카보네이트(Ethyl methyl carbonate)/디메틸카보네이트(Dimethyl carbonate)를 3:3:4의 비율(부피비)로 혼합하고 리튬염으로서 LiPF 6 1.0M을 포함하는 전해액을 준비하였다. 각 절연성 다공층 시편을 상기 전해액 10ml에 1시간 동안 함침시킨 후 변화된 절연성 다공층의 가로 및 세로 길이를 측정하여 치수 변화율을 계산하고 이들의 평균 값을 사용하였다. 상기 표 1 및 표 2를 참조하면 비교예 1의 경우 실시예 1에 비해서 1.8배 치수가 증가하였으며, 비교예 2의 경우에는 실시예 2에 비해서 약 1.5배 치수가 증가한 것을 확인할 수 있었다.
저항 측정
각 실시예 및 비교예의 절연성 다공층 시편에 대해 다음과 같은 방법으로 저항을 측정하였다. 에틸렌 카보네이트, 프로필렌 카보네이트 및 프로필 프로피오네이트가 25:10:65의 비율(부피비) 로 혼합된 용매에 LiPF 6를 1몰 농도로 용해시켜 전해액을 준비하였다. 각 절연성 다공층 시편을 상기 전해액으로 함침시킨 후 멀티 프로브(Multi probe) 분석장치(Hioki 社)를 사용하여 전기 저항을 측정하였다. 아래 [표 1]을 확인해 보면 실시예의 절연성 다공층 시편의 경우 비교예 절연성 다공층 시편에 비해서 저저항 특성을 나타내는 것을 확인하였다.
실시예 1-1 실시예 1-2 실시예 2 실시예 3
연신율(%) 8 2 8 8
두께 (㎛) 15.2 15.3 15.5 15.3
Gurley(sec/100cc) 119 326 150 165
Electrical resistance (Ω) 0.55 0.92 0.62 0.69
결정화도(%) 60 62 58 54
인장강도(Kgf/cm 2) 147 165 162 135
치수변화율(%) 1.0 1.0 1.2 1.1
비교예 1-1 비교예 1-2 비교예 2 비교예 3
연신율(%) - - - -
두께 (㎛) 15.7 14.4 16.2 15.8
Gurley(sec/100cc) 162 333 192 200
Electrical resistance (Ω) 0.55 0.95 0.75 0.83
결정화도(%) 39 46 52 48
인장강도(Kgf/cm 2) 121 164 140 110
치수변화율(%) 1.8 1.5 2.0 2.0

Claims (10)

  1. 절연성 다공층을 포함하는 분리막이며,
    상기 절연성 다공층은 무기물 입자와 바인더 수지를 포함하고,
    상기 무기물 입자는 상기 절연성 다공층 100 wt% 대비 70wt% 내지 90wt%의 비율로 포함되며,
    상기 바인더 수지는 바인더 수지 100wt% 대비 폴리불화비닐리덴 호모(homo) 폴리머를 50wt% 이상 포함하고, 상기 바인더 수지의 결정화도가 50% 이상인 것인 전기화학소자용 분리막.
  2. 제1항에 있어서,
    상기 절연성 다공층에서 상기 무기물 입자들이 바인더 수지를 매개로 하여 결착되어 있으며 무기물 입자들 사이의 인터스티셜 볼륨(interstitial volume)에서 유래되는 기공을 갖는 다공성 특성을 갖는 것인 전기화학소자용 분리막.
  3. 제1항에 있어서,
    상기 무기물 입자들은 Al 2O 3, AlOOH, Al(OH) 3, AlN, BN, MgO, Mg(OH) 2, SiO 2, ZnO, TiO 2, BaTiO 3 로 이루어지는 군에서 선택된 1종 이상을 포함하는 것인 전기화학소자용 분리막.
  4. 제1항에 있어서,
    상기 무기물 입자들은 입경이 0.001㎛ 내지 3㎛의 범위에 포함되는 것인 전기화학소자용 분리막.
  5. 제1항에 있어서,
    상기 폴리불화비닐리덴 호모 폴리머는 분자량(Mw)이 600,000 mol/g 내지 2,000,000mol/g의 범위를 갖는 것인 전기화학소자용 분리막.
  6. 제1항에 있어서,
    상기 분리막은 상기 다공성 절연층(들)만으로 이루어진 것인 전기화학소자용 분리막.
  7. 제1항에 따른 분리막을 제조하는 방법이며,
    상기 절연성 다공층이 적어도 일방향 이상의 방향으로 연신되는 단계를 포함하는 것인 전기화학소자용 분리막을 제조하는 방법.
  8. 제7항에 있어서,
    상기 절연성 다공층은 가로와 세로의 비율이 1을 초과하는 장방형의 평면 형상을 가지며, 이를 가로 방향 또는 세로 방향 또는 이 둘 모두의 방향으로 인장하여 연신되는 단계를 포함하는 것인 전기화학소자용 분리막을 제조하는 방법.
  9. 제7항에 있어서,
    상기 연신되는 단계는 절연성 다공층이 가온되는 조건하에서 수행되는 것인 전기화학소자용 분리막을 제조 하는 방법.
  10. 제9항에 있어서,
    상기 연신은 바인더 수지의 유리전이 온도 이상의 온도 및 바인더 수지의 용융점 이하의 온도 범위에서 수행되는 것인 전기화학소자용 분리막을 제조 하는 방법.
PCT/KR2020/014194 2019-10-18 2020-10-16 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법 WO2021075925A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080067181.3A CN114503352A (zh) 2019-10-18 2020-10-16 电化学装置用隔膜、包括隔膜的电化学装置和制备隔膜的方法
EP20877496.8A EP4037050A4 (en) 2019-10-18 2020-10-16 SEPARATOR FOR ELECTROCHEMICAL DEVICE, ELECTROCHEMICAL DEVICE COMPRISING THE SAME AND METHOD FOR MANUFACTURING SEPARATOR
US17/760,809 US20220336924A1 (en) 2019-10-18 2020-10-16 Separator for Electrochemical Device, Electrochemical Device Comprising Separator and Method for Preparing Separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190130072 2019-10-18
KR10-2019-0130072 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075925A1 true WO2021075925A1 (ko) 2021-04-22

Family

ID=75537922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014194 WO2021075925A1 (ko) 2019-10-18 2020-10-16 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법

Country Status (5)

Country Link
US (1) US20220336924A1 (ko)
EP (1) EP4037050A4 (ko)
KR (1) KR20210046573A (ko)
CN (1) CN114503352A (ko)
WO (1) WO2021075925A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010108148A1 (en) * 2009-03-19 2010-09-23 Amtek Research International Freestanding, heat resistant microporous film for use in energy storage devices
WO2012018675A1 (en) * 2010-08-02 2012-02-09 Celgard, Llc High melt temperature microporous lithium-ion rechargeable battery separators and methods of preparation and use
KR20180123527A (ko) * 2016-03-14 2018-11-16 암테크 리서치 인터내셔널 엘엘씨 적층 가능한, 치수-안정성 미세다공성 웹
KR20190049604A (ko) * 2017-10-31 2019-05-09 주식회사 엘지화학 다공성 분리막 및 이를 포함하는 전기화학소자
WO2019169410A1 (en) * 2018-03-02 2019-09-06 Amtek Research International Llc Dimensionally-stable microporous webs
KR20190130072A (ko) 2013-12-23 2019-11-20 쥴 랩스, 인크. 기화 디바이스 시스템 및 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749301B1 (ko) * 2004-07-07 2007-08-14 주식회사 엘지화학 신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자
JP5799498B2 (ja) * 2009-12-04 2015-10-28 ソニー株式会社 セパレータおよび電池
KR101488919B1 (ko) * 2012-02-29 2015-02-03 제일모직 주식회사 유기 및 무기 혼합물 코팅층을 포함하는 분리막 및 이를 이용한 전지
KR101430975B1 (ko) * 2013-08-21 2014-08-18 에스케이씨 주식회사 내열성이 우수한 이차전지용 분리막
US20160268571A1 (en) * 2013-12-26 2016-09-15 Teijin Limited Non-aqeous secondary cell separator and non-aqueous secondary cell
CN106848160B (zh) * 2016-03-11 2019-05-17 住友化学株式会社 多孔层
CN108666512A (zh) * 2018-05-18 2018-10-16 深圳市博盛新材料有限公司 一种锂离子电池复合隔膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010108148A1 (en) * 2009-03-19 2010-09-23 Amtek Research International Freestanding, heat resistant microporous film for use in energy storage devices
WO2012018675A1 (en) * 2010-08-02 2012-02-09 Celgard, Llc High melt temperature microporous lithium-ion rechargeable battery separators and methods of preparation and use
KR20190130072A (ko) 2013-12-23 2019-11-20 쥴 랩스, 인크. 기화 디바이스 시스템 및 방법
KR20180123527A (ko) * 2016-03-14 2018-11-16 암테크 리서치 인터내셔널 엘엘씨 적층 가능한, 치수-안정성 미세다공성 웹
KR20190049604A (ko) * 2017-10-31 2019-05-09 주식회사 엘지화학 다공성 분리막 및 이를 포함하는 전기화학소자
WO2019169410A1 (en) * 2018-03-02 2019-09-06 Amtek Research International Llc Dimensionally-stable microporous webs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4037050A4

Also Published As

Publication number Publication date
KR20210046573A (ko) 2021-04-28
US20220336924A1 (en) 2022-10-20
EP4037050A4 (en) 2022-12-21
CN114503352A (zh) 2022-05-13
EP4037050A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2016064256A1 (ko) 유/무기 복합 다공층을 포함하는 이차 전지용 세퍼레이터 및 이의 제조 방법
WO2017188537A1 (ko) 다공성 접착층을 포함하는 분리막 및 이를 이용한 리튬 이차 전지
WO2012074300A2 (ko) 리튬 이차전지
WO2020214010A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2017111566A1 (ko) 출력 특성이 향상된 음극 활물질 상기 음극 활물질을 포함하는 전기화학소자용 전극
WO2022075823A1 (ko) 접착층을 포함하는 이차 전지용 분리막 및 상기 분리막의 제조방법
WO2018016737A1 (ko) 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법
WO2015076573A1 (ko) 이차 전지
WO2018208035A1 (ko) 리튬 이차전지의 제조방법
WO2014208926A1 (ko) 코팅층을 포함하는 분리막 및 상기 분리막을 이용한 전지
WO2021075924A1 (ko) 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법
WO2016117950A1 (ko) 출력특성이 향상된 리튬이차전지
WO2021034060A1 (ko) 내열층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 이차 전지
WO2018174573A1 (ko) 고출력 특성을 갖는 음극 활물질 및 이를 포함하는 리튬이차전지
WO2020226367A1 (ko) 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막
WO2015076574A1 (ko) 분리막 및 이를 이용한 이차 전지
WO2020214016A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2020190101A1 (ko) 전기화학소자용 분리막 및 이의 제조 방법
WO2020050559A1 (ko) 분리막 기재가 없는 이차전지용 분리막
WO2023008952A1 (ko) 습윤 접착력이 우수한 전극용 절연 조성물, 및 이의 제조방법
WO2021075925A1 (ko) 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법
WO2023008953A1 (ko) 습윤 접착력이 우수한 절연층을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021101222A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2021101219A1 (ko) 음극의 제조방법, 이로부터 제조된 음극, 및 이를 포함하는 이차전지
WO2023243804A1 (ko) 전기화학소자용 폴리올레핀 분리막 및 이를 구비한 전기화학소자

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020877496

Country of ref document: EP

Effective date: 20220425