WO2021075597A1 - 유무기 복합 고체 고분자 전해질, 이를 포함하는 일체형 전극 구조체 및 전기화학소자, 그리고 상기 유무기 복합 고체 고분자 전해질의 제조방법 - Google Patents
유무기 복합 고체 고분자 전해질, 이를 포함하는 일체형 전극 구조체 및 전기화학소자, 그리고 상기 유무기 복합 고체 고분자 전해질의 제조방법 Download PDFInfo
- Publication number
- WO2021075597A1 WO2021075597A1 PCT/KR2019/013644 KR2019013644W WO2021075597A1 WO 2021075597 A1 WO2021075597 A1 WO 2021075597A1 KR 2019013644 W KR2019013644 W KR 2019013644W WO 2021075597 A1 WO2021075597 A1 WO 2021075597A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- polymer electrolyte
- solid polymer
- lithium
- composite solid
- Prior art date
Links
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 94
- 239000007787 solid Substances 0.000 title claims abstract description 93
- 239000002131 composite material Substances 0.000 title claims abstract description 89
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 47
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 47
- 239000010416 ion conductor Substances 0.000 claims abstract description 42
- 239000002243 precursor Substances 0.000 claims abstract description 38
- 229920001400 block copolymer Polymers 0.000 claims abstract description 34
- 239000000178 monomer Substances 0.000 claims abstract description 30
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 23
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 23
- 229920001577 copolymer Polymers 0.000 claims abstract description 20
- 229910052744 lithium Inorganic materials 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 20
- 239000010936 titanium Substances 0.000 claims description 18
- UUEYEUDSRFNIQJ-UHFFFAOYSA-N CCOC(N)=O.CCOC(N)=O.CC(=C)C(O)=O.CC(=C)C(O)=O Chemical compound CCOC(N)=O.CCOC(N)=O.CC(=C)C(O)=O.CC(=C)C(O)=O UUEYEUDSRFNIQJ-UHFFFAOYSA-N 0.000 claims description 12
- -1 lithium halide Chemical class 0.000 claims description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 11
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 10
- 239000002223 garnet Substances 0.000 claims description 10
- 229910021432 inorganic complex Inorganic materials 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229920001451 polypropylene glycol Polymers 0.000 claims description 5
- 229910013872 LiPF Inorganic materials 0.000 claims description 4
- 101150058243 Lipf gene Proteins 0.000 claims description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 125000004386 diacrylate group Chemical group 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229920000428 triblock copolymer Polymers 0.000 claims description 4
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 claims description 4
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 3
- 229910009178 Li1.3Al0.3Ti1.7(PO4)3 Inorganic materials 0.000 claims description 3
- ANHNWIVSXPUAKW-UHFFFAOYSA-N [P]=S.[Sn].[Li] Chemical compound [P]=S.[Sn].[Li] ANHNWIVSXPUAKW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052794 bromium Inorganic materials 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 229920000359 diblock copolymer Polymers 0.000 claims description 3
- 229910052740 iodine Inorganic materials 0.000 claims description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 3
- 229910000659 lithium lanthanum titanates (LLT) Inorganic materials 0.000 claims description 3
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 2
- 229910018091 Li 2 S Inorganic materials 0.000 claims description 2
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 claims description 2
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 claims description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 claims description 2
- 229910020724 Li0.34La0.51TiO2.94 Inorganic materials 0.000 claims description 2
- 229910008550 Li2O—Al2O3—SiO2—P2O5—TiO2—GeO2 Inorganic materials 0.000 claims description 2
- 229910007860 Li3.25Ge0.25P0.75S4 Inorganic materials 0.000 claims description 2
- 229910010082 LiAlH Inorganic materials 0.000 claims description 2
- 229910010093 LiAlO Inorganic materials 0.000 claims description 2
- 229910015015 LiAsF 6 Inorganic materials 0.000 claims description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 2
- 229910013131 LiN Inorganic materials 0.000 claims description 2
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 claims description 2
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 claims description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 2
- 229910012513 LiSbF 6 Inorganic materials 0.000 claims description 2
- 229910012465 LiTi Inorganic materials 0.000 claims description 2
- 229910013439 LiZr Inorganic materials 0.000 claims description 2
- 229910016838 LixGeyPzSw Inorganic materials 0.000 claims description 2
- 239000002228 NASICON Substances 0.000 claims description 2
- MKGYHFFYERNDHK-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Ti+4].[Li+] Chemical compound P(=O)([O-])([O-])[O-].[Ti+4].[Li+] MKGYHFFYERNDHK-UHFFFAOYSA-K 0.000 claims description 2
- PPVYRCKAOVCGRJ-UHFFFAOYSA-K P(=S)([O-])([O-])[O-].[Ge+2].[Li+] Chemical compound P(=S)([O-])([O-])[O-].[Ge+2].[Li+] PPVYRCKAOVCGRJ-UHFFFAOYSA-K 0.000 claims description 2
- 229910020215 Pb(Mg1/3Nb2/3)O3PbTiO3 Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910020346 SiS 2 Inorganic materials 0.000 claims description 2
- LTDAQVLIZRQEBW-UHFFFAOYSA-N [Li].[S].[Sn] Chemical compound [Li].[S].[Sn] LTDAQVLIZRQEBW-UHFFFAOYSA-N 0.000 claims description 2
- ZOJZLMMAVKKSFE-UHFFFAOYSA-N [P]=S.[Li] Chemical compound [P]=S.[Li] ZOJZLMMAVKKSFE-UHFFFAOYSA-N 0.000 claims description 2
- CVJYOKLQNGVTIS-UHFFFAOYSA-K aluminum;lithium;titanium(4+);phosphate Chemical compound [Li+].[Al+3].[Ti+4].[O-]P([O-])([O-])=O CVJYOKLQNGVTIS-UHFFFAOYSA-K 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 229910000103 lithium hydride Inorganic materials 0.000 claims description 2
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims 1
- 150000004678 hydrides Chemical class 0.000 claims 1
- 239000012528 membrane Substances 0.000 description 23
- 150000002500 ions Chemical class 0.000 description 14
- 239000010408 film Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 239000007784 solid electrolyte Substances 0.000 description 9
- 239000000306 component Substances 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical class CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical class CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- MTLWTRLYHAQCAM-UHFFFAOYSA-N 2-[(1-cyano-2-methylpropyl)diazenyl]-3-methylbutanenitrile Chemical compound CC(C)C(C#N)N=NC(C#N)C(C)C MTLWTRLYHAQCAM-UHFFFAOYSA-N 0.000 description 1
- MTPIZGPBYCHTGQ-UHFFFAOYSA-N 2-[2,2-bis(2-prop-2-enoyloxyethoxymethyl)butoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCC(CC)(COCCOC(=O)C=C)COCCOC(=O)C=C MTPIZGPBYCHTGQ-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- POYODSZSSBWJPD-UHFFFAOYSA-N 2-methylprop-2-enoyloxy 2-methylprop-2-eneperoxoate Chemical compound CC(=C)C(=O)OOOC(=O)C(C)=C POYODSZSSBWJPD-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical class C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000005279 LLTO - Lithium Lanthanum Titanium Oxide Substances 0.000 description 1
- 229910010941 LiFSI Inorganic materials 0.000 description 1
- 229910012305 LiPON Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920000463 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- QWMBOURGUJLFKX-UHFFFAOYSA-N S(Cl)Cl.[P].[Li] Chemical compound S(Cl)Cl.[P].[Li] QWMBOURGUJLFKX-UHFFFAOYSA-N 0.000 description 1
- INXWLSDYDXPENO-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CO)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C INXWLSDYDXPENO-UHFFFAOYSA-N 0.000 description 1
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 description 1
- NRJJZXGPUXHHTC-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] Chemical compound [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] NRJJZXGPUXHHTC-UHFFFAOYSA-N 0.000 description 1
- OEMGCAOEZNBNAE-UHFFFAOYSA-N [P].[Li] Chemical compound [P].[Li] OEMGCAOEZNBNAE-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- YQHLDYVWEZKEOX-UHFFFAOYSA-N cumene hydroperoxide Chemical class OOC(C)(C)C1=CC=CC=C1 YQHLDYVWEZKEOX-UHFFFAOYSA-N 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical class CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- DOMLXBPXLNDFAB-UHFFFAOYSA-N ethoxyethane;methyl prop-2-enoate Chemical compound CCOCC.COC(=O)C=C DOMLXBPXLNDFAB-UHFFFAOYSA-N 0.000 description 1
- XAQCPVMJIHJSDQ-UHFFFAOYSA-N ethyl carbamate;2-methylprop-2-enoic acid;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O.CC(=C)C(O)=O XAQCPVMJIHJSDQ-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 1
- 125000005638 hydrazono group Chemical group 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- UIDWHMKSOZZDAV-UHFFFAOYSA-N lithium tin Chemical compound [Li].[Sn] UIDWHMKSOZZDAV-UHFFFAOYSA-N 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- It relates to an organic-inorganic composite solid polymer electrolyte, an integrated electrode structure and an electrochemical device including the same, and a method of manufacturing the organic-inorganic composite solid polymer electrolyte.
- secondary batteries which are core components, are also required to be lighter and smaller, and development of batteries having high output and high energy density is required.
- one of the high-performance, next-generation, high-tech new batteries that are receiving the most attention in recent years is a lithium metal secondary battery.
- the lithium metal electrode used as an electrode has high reactivity with the electrolyte component, and forms a passivation film by reaction with the organic electrolyte, and oxidation (dissolution, dissolution) and reduction (precipitation) of lithium on the lithium metal surface during charge and discharge. , deposition) reaction is repeated non-uniformly, the formation and growth of the passivation film is extreme. Accordingly, not only causes a decrease in the capacity of the battery during charging and discharging, and as the charging/discharging process is repeated, a dendrite in which lithium ions grow in the form of needles is formed on the lithium metal surface, thereby reducing the charging/discharging cycle of the lithium secondary battery. It is shortened and causes a safety problem of the battery, such as causing a short between electrodes.
- Korean Patent Laid-Open No. 10-2016-0079405 proposes a technology for manufacturing a solid polymer electrolyte membrane with properties that improve ionic conductivity, mechanical properties, ease of process, and electrochemical stability compared to conventional solid electrolytes. Due to the nature of chain polymers such as polyethylene oxide methacrylate (PEOMA), when the content of inorganic additives is 40-50% by weight, it is difficult to see any effect.
- PEOMA polyethylene oxide methacrylate
- polymers are polyethylene oxide, polyethylene glycol, polypropylene oxide, polysiloxane, polyphosphazene, etc. It is very difficult to use at room temperature as a material having very low ionic conductivity at room temperature is applied, and it is expected that the battery can be used at 50°C or higher.
- PEO is a well-known ion conductive polymer, but its ion conductivity at room temperature is 10 -7 S/cm, so it cannot be applied to a battery operated at room temperature. It can be operated at a high temperature of 60°C or higher, which is the glass transition temperature (Tg) of PEO. It is a possible polyelectrolyte. It is thought that the room temperature ion conductivity will be further lowered when these polymers and inorganic ceramic materials with a level of 10 -4 S/cm are combined.
- Tg glass transition temperature
- One aspect of the present invention is to provide an organic-inorganic composite solid polymer electrolyte capable of improving room temperature ionic conductivity and securing mechanical strength while minimizing or without deteriorating the ionic conductivity of an inorganic lithium ion conductor on a surface of a lithium metal electrode.
- Another aspect of the present invention is to provide an integrated electrode structure to which the organic-inorganic composite solid polymer electrolyte is applied.
- Another aspect of the present invention is to provide an electrochemical device to which the organic-inorganic composite solid polymer electrolyte is applied.
- Another aspect of the present invention is to provide a method of preparing the organic-inorganic composite solid polymer electrolyte.
- An organic-inorganic composite solid polymer electrolyte comprising a is provided.
- Lithium metal electrodes And the solid polymer electrolyte disposed on the lithium metal electrode.
- An electrochemical device including the electrode structure is provided.
- a precursor mixture including an inorganic lithium ion conductor, a crosslinkable precursor including a urethane group-containing polyfunctional acrylic monomer and a polyfunctional block copolymer, and a lithium salt;
- the organic-inorganic composite solid polymer electrolyte according to an embodiment has high elasticity and high strength characteristics, and can exhibit high ionic conductivity and mechanical strength at room temperature without deteriorating the characteristics of the ionic conductivity of the used inorganic lithium ion conductor. It can be manufactured in a large area without it.
- the organic-inorganic composite solid polymer electrolyte may be applied to various electrochemical devices including lithium metal secondary batteries to improve performance.
- Example 1 is a graph showing the results of measuring the ionic conductivity of the organic-inorganic composite solid polymer electrolyte membranes prepared in Examples 1 to 3 and Comparative Example 1 at room temperature.
- FIG. 2 is a graph showing the results of measuring ionic conductivity according to temperature change of the organic-inorganic composite solid polymer electrolyte membranes prepared in Examples 1 to 3 and Comparative Example 1.
- FIG. 2 is a graph showing the results of measuring ionic conductivity according to temperature change of the organic-inorganic composite solid polymer electrolyte membranes prepared in Examples 1 to 3 and Comparative Example 1.
- substituted means that at least one hydrogen atom is a halogen atom (F, Cl, Br, I), a C1 to C20 alkoxy group, a nitro group, a cyano group, an amino group, an imino group, an azido group, Amidino group, hydrazino group, hydrazono group, carbonyl group, carbamyl group, thiol group, ester group, carboxyl group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid or salt thereof, C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 to C20 alkynyl group, C6 to C20 aryl group, C3 to C20 cycloalkyl group, C3 to C20 cycloalkenyl group, C3 to C20 cycloalkynyl group, C2 to C20 heterocycloalkyl group, C2 to C20 heterocyclo
- hetero means that at least one hetero atom of at least one of N, O, S, and P is included in the formula.
- (meth)acrylate means that both “acrylate” and “methacrylate” are possible
- (meth)acrylic acid refers to “acrylic acid” and “methacrylic acid. “It means both are possible.
- Lithium salt includes.
- the organic-inorganic composite solid polymer electrolyte is made of a crosslinked-structured copolymer prepared with a urethane group-containing polyfunctional acrylic monomer and a polyfunctional block copolymer as a main skeleton, and an inorganic lithium ion conductor is embedded in it in the form of particles. It can have a shape.
- the copolymer itself has excellent mechanical properties, and even when a large amount of inorganic lithium ion conductors are mixed, the shape of the membrane can be maintained without dropping of the inorganic lithium ion conductor, and excellent ionic conductivity can be secured. I can.
- the inorganic lithium ion conductor may include at least one selected from oxide-based, phosphate-based, sulfide-based, and LiPON-based inorganic materials having lithium ion conductivity.
- the inorganic lithium ion conductor is, for example, a garnet type compound, an azirodite type compound, a lithium super-ion-conductor (LISICON) compound, a Na super ionic conductor-like (NASICON) compound, a lithium nitride (Li nitride), lithium hydride, perovskite, lithium halide, and sulfide compounds.
- the inorganic lithium ion conductor a garnet type LLZO, Al doped Lithium Lanthanum Zirconium Oxide (Li 7-3x Al x La 3 Zr 2 O 12 ) (0 ⁇ x ⁇ 1), a pseudo oxide type solid electrolyte Lithium Lanthanum Titanate(LLTO) (Li 0.34 La 0.51 TiOy) (0 ⁇ y ⁇ 3), Lithium Aluminum Titanium Phosphate(LATP) (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 ) can be used as a sulfur compound.
- LLTO Lithium Lanthanum Zirconium Oxide
- LATP Lithium Aluminum Titanium Phosphate
- Lithium Phosphorus Sulfide(LPS) Li 3 PS 4
- Lithium Tin Sulfide(LTS) Li 4 SnS 4
- Lithium Phosphorus Sulfur Chloride Iodide(LPSCLL) Li 6 PS 5 Cl 0.9 I 0.1
- Lithium Tin Phosphorus Sulfide (LSPS) Li 10 SnP 2 S 12
- the inorganic lithium ion conductor may include garnet-type ceramics represented by Formula 3 below or aluminum-doped ceramics represented by Formula 4 below.
- the inorganic lithium ion conductor may have a particle or columnar structure.
- grains of the inorganic lithium ion conductor may have a polyhedral shape.
- the contact area between grains increases, so that the ion conduction resistance may decrease, and the possibility of contact between the crystal plane and the active material, which is advantageous for charge transfer reaction, may increase, thus increasing the electrochemical reaction kinetics. .
- the inorganic lithium ion conductor may have an average particle size in the range of 10 nm to 30 ⁇ m.
- the average particle size of the inorganic lithium ion conductor may range from 100 nm to 20 ⁇ m, 200 nm to 10 ⁇ m, 300 nm to 1 ⁇ m, or 400 nm to 600 nm.
- dispersion in the precursor solution is easy and the film thickness of the solid polymer electrolyte can be reduced.
- the content of the inorganic lithium ion conductor may be 30 to 90% by weight, 40 to 85% by weight, or 50 to 80% based on the total weight of the inorganic lithium ion conductor and the copolymer. In the above range, it is possible to provide an organic-inorganic composite solid polymer electrolyte having high lithium ion conductivity, and it is possible to form a composite with a copolymer.
- the inorganic lithium ion conductor and the organic-inorganic composite solid polymer electrolyte may exhibit high ionic conductivity even at a high content in which the content of the inorganic lithium ion conductor exceeds 50% by weight based on the total weight of the copolymer.
- the copolymer of the crosslinkable precursor including the urethane group-containing polyfunctional acrylic monomer and the polyfunctional block copolymer maintains an amorphous state by controlling the crystallinity of the polymer, and Chemical properties can be improved.
- the crosslinked matrix made of urethane-containing polyfunctional acrylic monomers and polyfunctional block copolymers as the main skeleton has very low crystallization of the polymer itself and free movement of lithium ions due to the segmental motion of the polymer in the amorphous region inside. Conductivity can be improved.
- the copolymer has a polymer crosslinked structure to improve the mechanical properties of the copolymer itself, and inorganic lithium ions are evenly dispersed in the polymer matrix, so that dropping from the polymer does not occur.
- the urethane group-containing polyfunctional acrylic monomer may include diurethane dimethacrylate, diurethane diacrylate, or a combination thereof.
- the urethane group-containing polyfunctional acrylic monomer may include a diurethane dimethacrylate represented by Formula 1 below.
- each R is independently a hydrogen atom or a C1-C3 alkyl group.
- the urethane group-containing polyfunctional acrylic monomer has high mechanical strength and elasticity, including the urethane moiety, when forming a copolymer structure with a polyfunctional block copolymer, it maintains high mechanical strength and has elasticity.
- a composite solid polymer electrolyte can be prepared.
- urethane group-containing polyfunctional acrylic monomer In addition to the urethane group-containing polyfunctional acrylic monomer, other monomers including a polyfunctional functional group having a similar structure may be further mixed and used. Other monomers containing such a polyfunctional functional group include, for example, urethane acrylate methacrylate, urethane epoxy methacrylate, Arkema's product names Satomer N3DE180, N3DF230, etc. You can use one or more of your choices.
- the multifunctional block copolymer includes a (meth)acrylate group at both ends, and may include a diblock copolymer or a triblock copolymer including a polyethylene oxide repeating unit and a polypropylene oxide repeating unit. .
- the multifunctional block copolymer includes a (meth)acrylate group at both ends, and a triblock copolymer consisting of a first block of polyethylene oxide, a second block of polypropylene oxide, and a third block of polyethylene oxide It may include.
- the multifunctional block copolymer may be represented by the following formula (2).
- x, y, and z are each independently an integer of 1 to 50.
- the multifunctional block copolymer of the above structure is similar in structure to polyethylene glycol dimethacrylate (PEGDMA), which is widely known in the past, but PEGDMA has a single linear structure with high crystallinity and cracks depending on the degree of crosslinking after crosslinking polymerization.
- PEGDMA polyethylene glycol dimethacrylate
- the multifunctional block copolymer destroys the crystallinity that appears in the ethylene oxide single structure due to the structure of a block copolymer of propylene oxide and ethylene oxide. You can add flexibility.
- the weight average molecular weight (Mw) of the multifunctional block copolymer may range from 500 to 20,000.
- the weight average molecular weight (Mw) of the multifunctional block copolymer may be in the range of 1,000 to 20,000, or in the range of 1,000 to 10,000.
- the weight average molecular weight (Mw) of the polyfunctional block copolymer is within the above range, the length of the block copolymer itself is appropriate so that the polymer may not change to brittle after crosslinking, and a lithium metal electrode that does not use a solvent It can be easy to control viscosity and thickness during coating.
- the weight ratio of the urethane group-containing polyfunctional acrylic monomer and the polyfunctional block copolymer may range from 1:100 to 100:1.
- the weight ratio of the urethane group-containing polyfunctional acrylic monomer and the polyfunctional block copolymer may range from 1:10 to 10:1.
- the weight ratio of the urethane group-containing polyfunctional acrylic monomer and the polyfunctional block copolymer may range from 1:5 to 5:1.
- the crystallinity of the polymer can be controlled to maintain an amorphous state, and ionic conductivity and electrochemical properties can be improved.
- polyfunctional block copolymer In addition to the polyfunctional block copolymer, other monomers or polymers having a similar structure may be additionally mixed and used.
- Such other monomers or polymers include, for example, dipentaerythritol penta-/hexa-acrylate, glycerol propoxylate triacrylate, di(trimethylolpropane). ) Tetraacrylate (Di(trimethylolpropane) tetraacrylate), trimethylolpropane ethoxylate triacrylate, and poly(ethylene glycol) methyl ether acrylate, etc.
- One or more can be used from this, but is not limited thereto.
- the lithium salt serves to secure an ion conduction path of the organic-inorganic composite solid polymer electrolyte.
- the lithium salt may be used without limitation as long as it is commonly used in the art.
- lithium salts include LiSCN, LiN(CN) 2 , LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiC(CF 3 SO 2 ) 3 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiSbF 6 , LiPF 3 (CF 2 CF 3 ) 3 , LiPF 3 (CF 3 ) 3 and LiB(C 2 O 4 ) 2 It may include one or more selected, but is not limited thereto.
- the content of the lithium salt contained in the organic-inorganic composite solid polymer electrolyte is not particularly limited, but may be, for example, 1% to 50% by weight based on the total weight of the copolymer and the lithium salt excluding the inorganic lithium ion conductor.
- the content of the lithium salt may be 5% by weight to 50% by weight, and specifically 10% by weight to 30% by weight, based on the total weight of the copolymer and the lithium salt.
- Lithium ion mobility and ion conductivity may be excellent in the above range.
- the organic-inorganic composite solid polymer electrolyte comprises a lithium salt and a copolymer of an inorganic lithium ion conductor as an inorganic material and a crosslinkable precursor including a urethane group-containing polyfunctional acrylic monomer and a polyfunctional block copolymer as an organic material. It is possible to maintain an amorphous state by controlling the crystallinity of and improve ionic conductivity and electrochemical properties.
- the organic-inorganic composite organic-inorganic composite solid polymer electrolyte membrane having excellent mechanical properties can be manufactured by using a small amount of organic materials by improving the mechanical properties and elastomeric properties of the copolymer itself with the organic-inorganic composite crosslinked structure.
- the organic-inorganic composite solid polymer electrolyte can be used as an all-solid electrolyte that does not use liquid in the form of a membrane, and improves ionic conductivity, mechanical properties, and electrochemical stability compared to conventional polymer electrolytes, and in particular, 10 -4 S/cm or more. It may have room temperature ion conductivity.
- the ionic conductivity ( ⁇ ) of the organic-inorganic composite solid polymer electrolyte may be 4 x 10 -4 S/cm to 6 x 10 -4 S/cm at room temperature and in a temperature range of 25°C to 70°C.
- the organic-inorganic composite solid polymer electrolyte may be directly coated on a free standing film or a lithium metal electrode to minimize the interface between the lithium metal electrode and the solid polymer electrolyte.
- the organic-inorganic composite solid polymer electrolyte has excellent ionic conductivity and mechanical strength, and can implement an electrolyte membrane that can be used in an electrochemical device such as a high-density, high-energy lithium secondary battery using a lithium metal electrode.
- an electrochemical device such as a high-density, high-energy lithium secondary battery using a lithium metal electrode.
- there is no leakage using the organic-inorganic complex solid polymer electrolyte there is no electrochemical side reaction occurring at the negative electrode and the positive electrode, and unlike an electrolyte using a liquid electrolyte, there is no electrolyte decomposition reaction, and battery characteristics and stability can be improved. .
- the thickness of the lithium metal electrode may be 100 ⁇ m or less, for example, 80 ⁇ m or less, or 50 ⁇ m or less, or 30 ⁇ m or less, or 20 ⁇ m or less. According to another embodiment, the thickness of the lithium metal electrode may be 0.1 to 60 ⁇ m. Specifically, the thickness of the lithium metal electrode may be 1 to 25 ⁇ m, for example 5 to 20 ⁇ m.
- the above-described organic-inorganic composite solid polymer electrolyte is disposed on the lithium metal electrode to be integrated with the lithium metal electrode. Since the organic-inorganic composite solid polymer electrolyte has high ionic conductivity and mechanical strength even at room temperature and high temperature, it is possible to improve the performance of the lithium metal electrode.
- An electrochemical device includes the organic-inorganic composite solid polymer electrolyte.
- the telephony device uses the organic-inorganic complex solid polymer electrolyte to have excellent safety and high energy density, maintain the characteristics of the battery even at a temperature of 60°C or higher, and enable all electronic products to operate even at such high temperatures. can do.
- the electrochemical device may be a lithium secondary battery such as a lithium ion battery, a lithium polymer battery, a lithium air battery, and a lithium solid state battery.
- a lithium secondary battery such as a lithium ion battery, a lithium polymer battery, a lithium air battery, and a lithium solid state battery.
- the electrochemical device to which the organic-inorganic complex solid polymer electrolyte is applied is suitable for applications requiring high capacity, high power and high temperature driving, such as electric vehicles, in addition to conventional mobile phones and portable computers. , Fuel cells, supercapacitors, etc. can be used in hybrid vehicles. In addition, the electrochemical device can be used in all other applications requiring high power, high voltage, and high temperature driving.
- a precursor mixture including an inorganic lithium ion conductor, a crosslinkable precursor including a urethane group-containing polyfunctional acrylic monomer and a polyfunctional block copolymer, and a lithium salt;
- inorganic solid electrolytes were generally manufactured in pellet form by applying an inorganic material such as LLZO to a pressure of 1,0 MPa or more, but the organic-inorganic composite solid polymer electrolyte according to an embodiment does not apply pressure, and an inorganic lithium ion conductor is combined with a polymer. It is possible to manufacture an organic-inorganic complex solid polymer electrolyte in the form of a film through the complexing.
- the inorganic lithium ion conductor, a crosslinkable precursor including a urethane group-containing polyfunctional acrylic monomer and a polyfunctional block copolymer, and a lithium salt are as described above.
- the precursor mixture may further include a crosslinking agent, a photoinitiator, and the like to assist crosslinking of the crosslinkable precursor.
- a crosslinking agent a photoinitiator, and the like
- the content of a crosslinking agent, a photoinitiator, and the like may be in a conventional range, and for example, may be used in a range of 1 to 5 parts by weight based on 100 parts by weight of the crosslinkable precursor.
- the precursor mixture may further include an initiator to form a copolymer having a crosslinked structure with a crosslinking agent.
- precursor materials such as inorganic lithium ion conductor, crosslinkable precursor and lithium salt, for example, ball milling, mortar and pestel, or ultrasonic homogenizer.
- It can be mixed using a method such as mixing, and is not particularly limited.
- the precursor mixture is applied in the form of a film and cured to form an organic-inorganic composite solid polymer electrolyte.
- the precursor mixture may be applied in the form of a film without using a solvent and including the crosslinkable precursor, an optional initiator, and a lithium salt.
- a method of applying the precursor mixture in a film form is various and is not particularly limited.
- a precursor mixture may be injected between two glass plates, and a certain pressure is applied to the glass plate using a clamp so that the thickness of the electrolyte membrane can be adjusted.
- the precursor mixture may be coated directly on the lithium metal electrode using a coating device such as spin coating to form a thin film having a predetermined thickness.
- the coating process may be performed using equipment such as a doctor blade, drop casting, and a glass plate pressing method.
- a method of curing the precursor mixture may include a curing method using UV, heat, or high energy radiation (electron beam, ⁇ -ray).
- the precursor mixture may be directly irradiated with UV (365 nm) or thermally polymerized and crosslinked at about 60° C. to prepare an organic-inorganic composite solid polymer electrolyte.
- a monolithic organic-inorganic composite solid polymer electrolyte membrane may be prepared.
- Garnet type Al-doped LLZO (Ampcera Inc, Li 7 Al x La 3 Zr 2 O 12 , particle size: ⁇ 500nm) 5g as an inorganic lithium ion conductor and Diurethane dimethacrylate (DUDMA) of Formula 1 (Sigma-Aldrich, 470.56/ mol) 1 g and 0.5 g of Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) diacrylate (PPG-b-PEG) (Sigma-Aldrich, average Mn ⁇ 1200) of Formula 2 After mixing for 20 minutes using a mortar and pestle, 0.65 g of lithium salt LiFSI (lithium bis(fluorosulfonyl)imide) was added to the vial and mixed again.
- LiFSI lithium bis(fluorosulfonyl)imide
- Initiator BEE (Benzoin ethyl ether, Sigma-Aldrich, 240.30 g/mol) was added to the mixed mixture in an amount of 3% based on the total weight of the monomer and mixed again to prepare a composite solid electrolyte precursor mixture.
- Example 1 an organic-inorganic composite solid polymer electrolyte membrane was prepared by performing the same procedure as in Example 1, except that the contents of LLZO, DUDMA, and PPG-b-PEG were adjusted to 3g, 1g, and 0.5g, respectively.
- An organic-inorganic composite solid polymer electrolyte membrane was prepared in the same manner as in Example 1, except that the contents of LLZO, DUDMA, and PPG-b-PEG in Example 1 were adjusted to 2g, 1g, and 0.5g, respectively.
- Example 1 an organic-inorganic composite solid polymer electrolyte membrane was prepared by performing the same procedure as in Example 1, except that the contents of DUDMA and PPG-b-PEG were adjusted to 4g and 2g, respectively, without using LLZO.
- Ion conductivity is measured between 1Hz and 1MHz frequency using Solatron 1260A Impedance/Gain-Phase Analyzer with constant pressure applied with springs from both sides after placing the sample between the sus disks using two 1cm 2 sus disks. I did.
- Example 1 Example 2 Example 3 Comparative Example 1 LLZO/DUDMA / PPG-b-PEG 5g/1g/0.5g 3g/1g/0.5g 2g/1g/0.5g 0g/4g/2g Room temperature ion conductivity 4.24x10 -4 2.93x10 -4 2.91x10 -4 1.23x10 -5
- the organic-inorganic composite solid polymer electrolyte membranes prepared in Examples 1 to 3 and Comparative Example 1 exhibit a difference in ionic conductivity according to the content ratio of LLZO, and at room temperature of 10 -4 S/cm or more. High ionic conductivity was measured.
- the ionic conductivity of the pure organic-inorganic composite solid polymer electrolyte that does not contain the inorganic lithium ion conductor LLZO is relatively high at 10 -5 S/cm at room temperature, but has a lower characteristic than that of the organic-inorganic composite solid polymer electrolyte membrane including LLZO. have. The state of the organic-inorganic composite solid polymer electrolyte membrane after the ion conductivity measurement was not significantly changed.
- Example 2 Example 3 Comparative Example 1 25°C 4.24x10 -4 2.93x10 -4 2.19x10 -4 1.23x10 -5 40°C 4.90 x10 -4 3.24 x10 -4 2.95 x10 -4 7.1 x10 -5 50°C 5.60 x10 -4 3.37 x10 -4 3.22 x10 -4 8.4 x10 -5 70°C 6.15 x10 -4 4.17x10 -4 3.51 x10 -4 1.71 x10 -4
- the ionic conductivity of the LLZO composite organic-inorganic composite solid polymer electrolyte of Example 1 was 6.15 ⁇ 10 -4 S/cm at 70° C., whereas the ionic conductivity was relatively applicable to a battery.
- the ionic conductivity was lower than that of the composite electrolyte containing LLZO at a level of ⁇ 10 -5 S/cm even at 50°C.
- oligomers or other materials to improve the ionic conductivity Additives must be added to achieve a level applicable to the battery.
- Examples 1 to 3 showed low ionic conductivity of ⁇ 10 -4 S/cm at the initial room temperature, but as the temperature increased, ions were hopping due to an increase in the activation energy of the organic-inorganic composite solid polymer electrolyte membrane itself. And diffusion becomes active, and ionic conductivity is also considered to increase.
- it has excellent ion conductivity at room temperature and high temperature, and in particular, it is possible to manufacture a composite electrolyte membrane by mixing a small amount of polymer and inorganic lithium ion conductor, and maintains the shape and characteristics of the composite polymer electrolyte membrane without deterioration of the properties of the membrane or damage due to volume expansion. It can be seen that it exhibits excellent mechanical and stable properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
실시예 1 | 실시예 2 | 실시예 3 | 비교예 1 | |
LLZO/DUDMA / PPG-b-PEG | 5g/1g/0.5g | 3g/1g/0.5g | 2g/1g/0.5g | 0g/4g/2g |
상온 이온전도도 | 4.24x10-4 | 2.93x10-4 | 2.91x10-4 | 1.23x10-5 |
온도 | 실시예 1 | 실시예 2 | 실시예 3 | 비교예 1 |
25℃ | 4.24x10-4 | 2.93x10-4 | 2.19x10-4 | 1.23x10-5 |
40℃ | 4.90 x10-4 | 3.24 x10-4 | 2.95 x10-4 | 7.1 x10-5 |
50℃ | 5.60 x10-4 | 3.37 x10-4 | 3.22 x10-4 | 8.4 x10-5 |
70℃ | 6.15 x10-4 | 4.17x10-4 | 3.51 x10-4 | 1.71 x10-4 |
Claims (23)
- 무기 리튬 이온전도체;우레탄기 함유 다관능성 아크릴계 모노머 및 다관능성 블록공중합체를 포함하는 가교성 전구체의 공중합체; 및리튬염;을 포함하는 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 무기 리튬 이온전도체가 가넷형 화합물, 아지로다이트(Argyrodite)형 화합물, LISICON(lithium super-ion-conductor) 화합물, NASICON(Na super ionic conductor-like) 화합물, 리튬 나이트라이드(Li nitride), 리튬 하이드라이드(Li hydride), 페로브스카이트(Perovskite), 리튬 할라이드(lithum halide) 및 황화물계 화합물로 이루어진 군으로부터 선택된 하나 이상인 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 무기 리튬 이온전도체가 가넷(Garnet)계 세라믹스 Li3+xLa3M2O12(0≤x≤5, M = W, Ta, Te, Nb 및 Zr 중 적어도 하나임), 도핑된 가넷(Garnet)계 세라믹스 Li7-3xM'xLa3M2O12(0<x≤1, M W, Ta, Te, Nb, 및 Zr 중 적어도 하나이고, M' = Al, Ga, Nb, Ta, Fe, Zn, Y, Sm 및 Gd 중 적어도 하나임), Li1+x+yAlxTi2-xSiyP3-yO12 (0<x<2, 0≤y<3), BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT)(O≤x<1, O≤y<1),Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3,0<x<2,0<y<3), 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), Li1+x+y(Al, Ga)x(Ti, Ge)2-xSiyP3-yO12(O≤x≤1, O≤y≤1), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), 리튬게르마늄티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2(LixSiySz, 0≤<3,0<y<2, 0<z<4) 계열 글래스, P2S5(LixPySz, 0≤x<3, 0<y<3, 0<z<7) 계열 글래스, Li3xLa2/3-xTiO3(0≤x≤1/6), Li7La3Zr2O12, Li1+yAlyTi2-y(PO4) 3(0≤y≤1) 및 Li1+zAlzGe2-z(PO4) 3(0≤z≤1), Li2O, LiF, LiOH, Li2CO3, LiAlO2, Li2O-Al2O3-SiO2-P2O5-TiO2-GeO2계 세라믹스, Li10GeP2S12, Li3.25Ge0.25P0.75S4, Li3PS4, Li6PS5Br, Li6PS5Cl, Li7PS5, Li6PS5I, Li1.3 Al0.3Ti1.7(PO4)3, LiTi2(PO4)3, LiGe2(PO4)3, LiHf2(PO4)3, LiZr2(PO4)3, Li2NH2, Li3(NH2)2I, LiBH4, LiAlH4, LiNH2, Li0.34La0.51TiO2.94, LiSr2Ti2NbO9, Li0.06La0.66Ti0.93Al0.03O3, Li0.34Nd0.55TiO3, Li2CdCl4, Li2MgCl4, Li2ZnI4, Li2CdI4, Li4.9Ga0.5+δLa3Zr1.7W0.3O12(0≤δ<1.6), Li4.9Ga0.5+δLa3Zr1.7W0.3O12(1.7≤δ≤2.5), Li5.39Ga0.5+δLa3Zr1.7W0.3O12(0≤δ≤1.11), 리튬포스포러스설파이드(Li3PS4), 리튬틴설파이드(Li4SnS4), 리튬포스포러스설퍼클로라이드아이오다이드(Li6PS5Cl0.9I0.1), 리튬틴포스포러스설파이드 (Li10SnP2S12), Li2S, Li2S-P2S5, Li2S-SiS2, Li2S-GeS2, Li2S-B2S5, 및 Li2S-Al2S5 로 이루어진 군으로부터 선택된 하나 이상을 포함하는 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 무기 리튬 이온전도체는 하기 화학식 3으로 표시되는 가넷트형 세라믹스 또는 하기 화학식 4로 표시되는 알루미늄 도핑된 세라믹스를 포함하는 유무기 복합 고체 고분자 전해질:[화학식 3]LixLayZrzO12상기 식 중, 6<x<9, 2<y<4, 및 1<z<3이다.[화학식 4]LixLayZrzAlwO12상기 식 중, 5<x<9, 2<y<4, 1<z<3, 및 0<w<l이다.
- 제1항에 있어서,상기 무기 리튬 이온전도체의 평균입자 크기가 10 nm 내지 30 ㎛ 범위인 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 무기 리튬 이온전도체의 함량은, 상기 무기 리튬 이온전도체 및 상기 공중합체 총 중량을 기준으로 30 내지 90 중량%인 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 우레탄기 함유 다관능성 아크릴계 모노머는 디우레탄 디메타크릴레이트, 디우레탄 디아크릴레이트 또는 이들의 조합을 포함하는 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 다관능성 블록공중합체는 양말단에 (메타)아크릴레이트기를 포함하고, 폴리에틸렌옥사이드 반복단위 및 폴리프로필렌옥사이드 반복단위를 포함하는 디블록 공중합체 또는 트리블록 공중합체를 포함하는 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 다관능성 블록공중합체의 중량평균분자량(Mw)이 500 내지 20,000 범위인 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 우레탄기 함유 다관능성 아크릴계 모노머 및 상기 다관능성 블록공중합체의 중량비는 1:100 내지 100:1 범위인 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 우레탄기 함유 다관능성 아크릴계 모노머 및 상기 다관능성 블록공중합체의 중량비는 1:10 내지 10:1 범위인 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 리튬염은 LiSCN, LiN(CN)2, LiClO4, LiBF4, LiAsF6, LiPF6, LiCF3SO3, LiC(CF3SO2)3, LiN(SO2C2F5)2, LiN(SO2CF3)2, LiN(SO2F)2, LiSbF6, LiPF3(CF2CF3)3, LiPF3(CF3)3 및 LiB(C2O4)2 중에서 선택된 하나 이상을 포함하는 유무기 복합 고체 고분자 전해질.
- 제1항에 있어서,상기 공중합체 및 상기 리튬염의 총중량 중, 상기 리튬염의 함량은 1 중량% 내지 50 중량%인 유무기 복합 고체 고분자 전해질.
- 리튬 메탈 전극; 및상기 리튬 메탈 전극 상에 배치되고, 제1항 내지 제15항 중 어느 한 항에 따른 유무기 복합 고체 고분자 전해질;을 포함하는 일체형 전극 구조체.
- 제1항 내지 제15항 중 어느 한 항에 따른 유무기 복합 고체 고분자 전해질을 포함하는 전기화학소자.
- 무기 리튬 이온전도체, 우레탄기 함유 다관능성 아크릴계 모노머 및 다관능성 블록공중합체를 포함하는 가교성 전구체 및 리튬염을 포함하는 전구체 혼합물을 준비하는 단계; 및상기 전구체 혼합물을 막 형태로 도포하고 경화시키는 단계;를 포함하는 제1항에 따른 유무기 복합 고체 고분자 전해질의 제조방법.
- 제18항에 있어서,상기 우레탄기 함유 다관능성 아크릴계 모노머는 디우레탄 디메타크릴레이트, 디우레탄 디아크릴레이트 또는 이들의 조합을 포함하는 유무기 복합 고체 고분자 전해질의 제조방법.
- 제18항에 있어서,상기 다관능성 블록공중합체는 양말단에 아크릴레이트기를 포함하고, 폴리에틸렌옥사이드 반복단위 및 폴리프로필렌옥사이드 반복단위를 포함하는 디블록 공중합체 또는 트리블록 공중합체를 포함하는 유무기 복합 고체 고분자 전해질의 제조방법.
- 제18항에 있어서,상기 경화는 UV, 열 또는 고에너지 복사를 이용하여 수행되는 유무기 복합 고체 고분자 전해질의 제조방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/768,424 US20240136567A1 (en) | 2019-10-17 | 2019-10-17 | Organic-inorganic composite solid polymer electrolyte, integrated electrode structure and electrochemical element including same, and method for producing organic-inorganic composite solid polymer electrolyte |
PCT/KR2019/013644 WO2021075597A1 (ko) | 2019-10-17 | 2019-10-17 | 유무기 복합 고체 고분자 전해질, 이를 포함하는 일체형 전극 구조체 및 전기화학소자, 그리고 상기 유무기 복합 고체 고분자 전해질의 제조방법 |
JP2022522791A JP7493265B2 (ja) | 2019-10-17 | 2019-10-17 | 有機・無機複合固体高分子電解質、それを含む一体型電極構造体及び電気化学素子、並びに該有機・無機複合固体高分子電解質の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2019/013644 WO2021075597A1 (ko) | 2019-10-17 | 2019-10-17 | 유무기 복합 고체 고분자 전해질, 이를 포함하는 일체형 전극 구조체 및 전기화학소자, 그리고 상기 유무기 복합 고체 고분자 전해질의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021075597A1 true WO2021075597A1 (ko) | 2021-04-22 |
Family
ID=75538553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/013644 WO2021075597A1 (ko) | 2019-10-17 | 2019-10-17 | 유무기 복합 고체 고분자 전해질, 이를 포함하는 일체형 전극 구조체 및 전기화학소자, 그리고 상기 유무기 복합 고체 고분자 전해질의 제조방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240136567A1 (ko) |
JP (1) | JP7493265B2 (ko) |
WO (1) | WO2021075597A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002216845A (ja) * | 2001-01-18 | 2002-08-02 | Nippon Synthetic Chem Ind Co Ltd:The | 高分子固体電解質及びそれを用いた電気化学素子、二次電池 |
KR20100020408A (ko) * | 2008-08-12 | 2010-02-22 | 삼성전자주식회사 | 적층 전해질막, 그 제조방법, 및 막전극 접합체 |
KR20170090887A (ko) * | 2016-01-29 | 2017-08-08 | 삼성에스디아이 주식회사 | 리튬이차전지용 고분자 전해질 및 이를 포함한 리튬이차전지 |
KR20170095692A (ko) * | 2016-02-15 | 2017-08-23 | 한국생산기술연구원 | 전고체 리튬이차전지용 집전체-전극 복합체, 및 이의 제조방법, 및 이를 구비하는 전고체 리튬이차전지 |
KR20190084817A (ko) * | 2018-01-09 | 2019-07-17 | 삼성전자주식회사 | 복합막, 이를 포함한 음극 구조체 및 리튬전지, 및 복합막 제조방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0384807A (ja) * | 1989-08-28 | 1991-04-10 | Yuasa Battery Co Ltd | 高分子固体電解質 |
US20180254518A1 (en) * | 2017-03-03 | 2018-09-06 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
-
2019
- 2019-10-17 WO PCT/KR2019/013644 patent/WO2021075597A1/ko active Application Filing
- 2019-10-17 JP JP2022522791A patent/JP7493265B2/ja active Active
- 2019-10-17 US US17/768,424 patent/US20240136567A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002216845A (ja) * | 2001-01-18 | 2002-08-02 | Nippon Synthetic Chem Ind Co Ltd:The | 高分子固体電解質及びそれを用いた電気化学素子、二次電池 |
KR20100020408A (ko) * | 2008-08-12 | 2010-02-22 | 삼성전자주식회사 | 적층 전해질막, 그 제조방법, 및 막전극 접합체 |
KR20170090887A (ko) * | 2016-01-29 | 2017-08-08 | 삼성에스디아이 주식회사 | 리튬이차전지용 고분자 전해질 및 이를 포함한 리튬이차전지 |
KR20170095692A (ko) * | 2016-02-15 | 2017-08-23 | 한국생산기술연구원 | 전고체 리튬이차전지용 집전체-전극 복합체, 및 이의 제조방법, 및 이를 구비하는 전고체 리튬이차전지 |
KR20190084817A (ko) * | 2018-01-09 | 2019-07-17 | 삼성전자주식회사 | 복합막, 이를 포함한 음극 구조체 및 리튬전지, 및 복합막 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
JP2022552547A (ja) | 2022-12-16 |
JP7493265B2 (ja) | 2024-05-31 |
US20240136567A1 (en) | 2024-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102310319B1 (ko) | 유무기 복합 고체 고분자 전해질, 이를 포함하는 일체형 전극 구조체 및 전기화학소자, 그리고 상기 유무기 복합 고체 고분자 전해질의 제조방법 | |
KR102664381B1 (ko) | 리튬 전지 | |
WO2017217596A1 (ko) | 리튬금속전지용 복합 전해질, 그 제조방법 및 이를 포함한 리튬금속전지 | |
WO2017146426A1 (ko) | 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지 | |
WO2019009564A1 (ko) | 분리막, 이를 채용한 리튬전지 및 분리막의 제조 방법 | |
WO2021080052A1 (ko) | 리튬 메탈 음극 구조체, 이를 포함하는 전기화학소자, 및 상기 리튬 메탈 음극 구조체의 제조방법 | |
WO2023018174A1 (ko) | 산화물계 고체전해질 및 황화물계 고체전해질이 코팅된 양극활물질 및 이를 포함하는 전고체전지 | |
WO2018056615A1 (ko) | 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬이차전지 | |
WO2020159202A1 (ko) | 음극 및 이를 포함하는 리튬 이차전지 | |
WO2022240225A1 (ko) | 세퍼레이터 코팅용 조성물, 이를 이용한 세퍼레이터의 제조 방법, 세퍼레이터 및 이를 채용한 리튬 전지 | |
WO2017074116A1 (ko) | 다층 구조의 고분자 전해질 및 이를 포함하는 전고체 전지 | |
WO2020054889A1 (ko) | 고체 고분자 전해질, 이를 포함하는 전극 구조체 및 전기화학소자, 그리고 고체 고분자 전해질 막의 제조방법 | |
WO2021085946A1 (ko) | 음극 활물질의 제조 방법, 음극 활물질, 이를 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 | |
WO2021075597A1 (ko) | 유무기 복합 고체 고분자 전해질, 이를 포함하는 일체형 전극 구조체 및 전기화학소자, 그리고 상기 유무기 복합 고체 고분자 전해질의 제조방법 | |
WO2022245083A1 (ko) | 이차전지용 분리막 및 이를 포함하는 이차전지 | |
WO2022240275A1 (ko) | 세퍼레이터 코팅용 조성물, 이를 이용한 세퍼레이터의 제조 방법, 세퍼레이터 및 이를 채용한 리튬 전지 | |
WO2020262731A1 (ko) | 고분자 전해질막, 이를 포함하는 전극 구조체 및 전기화학소자, 그리고 상기 고분자 전해질막의 제조방법 | |
WO2024210301A1 (ko) | 전고체 전지용 음극 및 이를 포함하는 전고체 전지 | |
WO2024090706A1 (ko) | 전고체 전지 | |
WO2024085735A1 (ko) | 이차전지용 분리막, 이의 제조방법 및 이차전지 | |
WO2024101797A1 (ko) | 전고체 금속 전지 | |
WO2024143749A1 (ko) | 리튬 이차 전지용 전극 구조체 및 이의 제조 방법 | |
WO2024049214A1 (ko) | 전극 적층체의 제조 방법 | |
WO2022265276A1 (ko) | 리튬-황 전지용 전해질 및 이를 포함한 리튬-황 전지 | |
WO2024101793A1 (ko) | 전고체 전지용 탄성 시트 및 이를 포함하는 전고체 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19949070 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 17768424 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022522791 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19949070 Country of ref document: EP Kind code of ref document: A1 |