WO2021075561A1 - 熱間圧延用遠心鋳造複合ロール - Google Patents

熱間圧延用遠心鋳造複合ロール Download PDF

Info

Publication number
WO2021075561A1
WO2021075561A1 PCT/JP2020/039148 JP2020039148W WO2021075561A1 WO 2021075561 A1 WO2021075561 A1 WO 2021075561A1 JP 2020039148 W JP2020039148 W JP 2020039148W WO 2021075561 A1 WO2021075561 A1 WO 2021075561A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
outer layer
hot rolling
composite roll
layer
Prior art date
Application number
PCT/JP2020/039148
Other languages
English (en)
French (fr)
Inventor
泰則 野崎
小田 望
服部 敏幸
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US17/762,548 priority Critical patent/US11712723B2/en
Priority to EP20876091.8A priority patent/EP4019155A4/en
Priority to KR1020227009876A priority patent/KR20220084025A/ko
Priority to CN202080071546.XA priority patent/CN114555252B/zh
Priority to JP2021552475A priority patent/JPWO2021075561A1/ja
Publication of WO2021075561A1 publication Critical patent/WO2021075561A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/021Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/032Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • B22D13/023Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/04Heat treatments of cast-iron of white cast-iron
    • C21D5/06Malleabilising
    • C21D5/14Graphitising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/06Thermomechanical rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis

Definitions

  • the present invention relates to a centrifugal casting composite roll suitable for use in a hot rolling mill for steel sheets, particularly in the fifth to seventh stands, and particularly has good wear resistance over the entire rolling use area and suppresses the occurrence of casting defects.
  • the present invention relates to a centrifugal casting composite roll for hot rolling in which the boundary between the outer layer and the inner layer is sound.
  • the hot strip mill After heating a slab with a thickness of several tens to 300 mm manufactured by continuous casting or the like, it is passed between rolls of a plurality of rough rolling mills and a plurality of finishing rolling mills in order, and is approximately 1 mm to several tens of mm. It is rolled to the thickness of.
  • the finish rolling mill usually has five to seven quadruple rolling mill stands arranged in series, and a finishing rolling mill consisting of seven stands is particularly widely used. In a 7-stand finishing rolling mill, the 1st to 3rd stands are called the front stand, and the 4th to 7th stands are called the rear stand.
  • a centrifugal casting composite roll having a composite structure in which an outer layer having excellent wear resistance and an inner layer having excellent toughness are welded and integrated It is also called simply "composite roll”
  • composite roll due to the thermal and mechanical load caused by rolling, damage such as wear, rough skin, and heat cracks may occur on the outer layer surface. Therefore, after using for a certain period of time, the composite roll is removed from the rolling mill and the damage is ground and removed (correction). To do. Due to the modification, the body diameter of the composite roll gradually decreases from the initial diameter to the minimum diameter (discard diameter) that can be used for rolling.
  • the roll diameter from the initial diameter to the waste diameter is referred to as an effective rolling diameter (simply referred to as “effective diameter”), and the effective diameter region from the initial diameter to the waste diameter is referred to as “use range”.
  • a centrifugal casting composite roll in which an outer layer made of high alloy Glen cast iron and an inner layer made of cast iron having excellent toughness are metallurgically integrated has been conventionally used.
  • the high alloy grain cast iron outer layer is composed of graphite, carbide and matrix structure, and is particularly excellent in seizure resistance. Therefore, even when a drawing accident is encountered, cracks are extremely unlikely to occur or grow, that is, excellent accident resistance. There is.
  • drawing accidents often occur due to folding and rolling of thin steel plates, so a composite roll having a high alloy grain cast iron having good accident resistance as an outer layer is often used.
  • the high alloy Glen cast iron is inferior in wear resistance to the high chromium cast iron material and the high-speed material, various improvements have been made.
  • Japanese Patent Application Laid-Open No. 2004-68142 describes C: 2.9 to 3.8%, Si: 0.8 to 2.0%, Mn: 0.2 to 1.5%, Cr: 1.5 to C on a mass basis as an outer layer material used for the outer layer of a composite roll for hot rolling. 3.5%, Mo: 0.8-3.5%, Ni: 3.0-7.0%, V: 1.0-3.5%, Nb: 0.1-0.8%, B: 0.020-0.2%, REM: 0.002-0.030%, and the formula ( 1): [2.5 ⁇ C- (0.236 x V + 0.129 x Nb) ⁇ 3.2], and formula (2): [0.5 ⁇ Cr / C ⁇ 1.0], and the composition is composed of the balance Fe and unavoidable impurities.
  • the roll outer layer material for hot rolling is disclosed.
  • Japanese Patent Application Laid-Open No. 2004-68142 describes that the composite roll having the outer layer material has both excellent seizure resistance and wear resistance, and is suitable for a roll for a post-stage stand for hot rolling of a steel sheet. ing.
  • test material L which has a high C content of 3.76%, so that graphite and carbides are excessive and the strength and toughness are lowered.
  • Japanese Patent Application Laid-Open No. 2001-279367 describes C: 2.7 to 4.0%, Si: 0.5 to 2%, Mn: 0.2 to 2%, Mo: 0.2 to 0.8%, Ni: 2.5 to 6.0%, Cr: 1.0 to 0 on a mass basis.
  • a centrifugal casting roll for hot rolling which comprises an outer layer made of cast iron and an inner layer made of high-grade cast iron or spheroidal graphite cast iron, is disclosed.
  • Japanese Patent Application Laid-Open No. 2001-279367 describes, as specific examples of the outer layer, C: 3.2%, Si: 2.4%, Mn: 0.8%, Mo: 0.6%, Ni: 4.2%, Cr: 2.2%, Nb: 1.5%, V.
  • Test material 11 containing: 3.5% and B: 0.04% is described.
  • the test material 11 not only the MC carbide tends to be biased toward the inner peripheral side of the outer layer because the V content is too high at 3.5%, but also the MC carbide content increases because the Veq is as high as 4.33% by mass. Tissue unevenness and tissue coarsening are likely to occur.
  • Japanese Patent Application Laid-Open No. 2008-50681 has C: 2.5 to 3.4%, Si: 0.5 to 2.0%, Mn: 0.5 to 1.0%, Ni: 3.0 to 6.0%, Cr: 1.0 to 2.0%, Mo: 0.2 to It contains 0.8%, V: 1.0 to 4.0%, Nb: 0.2 to 1.0%, and the mass% of V and Nb is the formula (1): 1 ⁇ (V-1) / Nb ⁇ 4, and the formula (2). : 0.7 ⁇ 1.8 (V-1) + Nb ⁇ 5.0 is satisfied, and the outer layer material of the composite roll for centrifugal casting rolling, which is composed of the balance Fe and unavoidable impurities, is disclosed.
  • Japanese Patent Application Laid-Open No. 2008-50681 describes that this outer layer material has excellent wear resistance and does not have rough skin due to gravity segregation and crystallization of coarse MC carbides.
  • JP-A-2008-50681 include (1) C: 3.1%, Si: 1.8%, Mn: 0.8%, Ni: 4.5%, Cr: 1.1%, Mo: 0.3%, V: 3.0%, Test piece for outer layer containing Nb: 1.0%, B: 0.03%, (2) C: 3.2%, Si: 1.8%, Mn: 0.6%, Ni: 4.1%, Cr: 1.2%, Mo: 0.8%, Test piece for outer layer containing V: 2.0% and Nb: 1.0%, and (3) C: 3.5%, Si: 1.1%, Mn: 0.4%, Ni: 2.9%, Cr: 1.9%, Mo: 0.2 Specimens for outer layers containing%, V: 2.0%, and Nb: 1.2% are listed.
  • the test piece in (1) has a problem that the distribution of MC carbides is biased toward the inner circumference of the outer layer because the V / Nb ratio is too large at 3.
  • the test piece of (2) and (3) do not contain B, but the test piece of (2) is inferior in abrasion resistance because Veq is too small at 2.55% by mass, and (3) Since the Mo content of the test piece is too low at 0.2%, the hardenability is insufficient, the base hardness is low, and the abrasion resistance and accident resistance are inferior.
  • Japanese Patent Application Laid-Open No. 2017-185548 has C: 2.6 to 3.8%, Si: 0.1 to 3.0%, Mn: 0.3 to 2.0%, Ni: 2.3 to 5.5%, Cr: 0.5 to 2.5%, Mo: 0.2 to An outer layer containing 3.0%, V: 0.2 to 3.8%, Nb: 0.4 to 6.8%, the balance consisting of Fe and unavoidable impurities, and having a structure containing 0.3 to 10% graphite particles on an area basis, and ductile cast iron.
  • the C content at positions 100 mm apart from both end faces of the outer layer in the axial direction is 0.05 to 0.3 with respect to the C content at the center of the axial length of the outer layer.
  • Hot rolling in which the Nb content at positions that are mass% higher and 100 mm apart from both end faces of the outer layer in the axial direction is 0.5 to 3.0 mass% higher than the Nb content at the center of the axial length of the outer layer.
  • a centrifugal casting composite roll for use. This roll performs local wear of the outer layer so that the central part of the outer layer facing the central part of the width of the rolled steel sheet and the outer layer end part facing the vicinity of the width end on both sides of the steel sheet proceed on average. It has an outer layer that can be reduced and has excellent wear resistance.
  • the outer layer wears evenly in the roll axis direction, when the roll is subjected to rolling again, the polishing until the locally worn part disappears during roll polishing is suppressed with a small loss, and the loss of the outer layer material is suppressed. Can be made smaller.
  • the outer layer of Example 1 is C: 3.34%, Si: 1.3%, Mn: 0.81%, Ni: 4.12%, Cr: 1.86%, Mo: 0.82%, V: 2.33. % And Nb: 0.78%
  • the outer layer of Example 2 is C: 3.51%, Si: 1.45%, Mn: 0.65%, Ni: 4.51%, Cr: 1.58%, Mo: 0.64%.
  • V: 2.55%, and Nb: 0.92% since V / Nb is too large at 2.99 and 2.77 in all examples, the distribution of MC carbide tends to be biased toward the inner circumference of the outer layer, the yield of MC carbide in the layer used decreases, and wear resistance. Deteriorates.
  • Japanese Patent Application Laid-Open No. 2003-73767 contains C: 2.5 to 4.0%, Si: 0.8 to 2.5%, Mn: 0.2 to 1.5%, Cr: 1.0 to 3.5%, Mo: 0.5 to 4.0%, Ni: 3.0 to% by mass. Contains 7.0%, V: 1.0-3.5%, Nb: 0.2-1.0%, Al: 0.02-0.2%, and B: 0.020-0.10%, Cr / C is 1 or less, balance Fe and unavoidable impurities Disclosed is an outer layer material for a roll for hot rolling, which has a composition consisting of the above and has a structure containing graphite having an area ratio of 0.6 to 4%.
  • the ring material D contains C: 2.6%, Si: 1.7%, Mn: 0.5%, Ni: 4.9%, Cr: 3.0%, Mo: 1.2%, V: It has a composition containing 1.8%, Nb: 1.3%, Al: 0.081%, and B: 0.046%.
  • this ring material D has a V / Nb of 1.38, which is too small, and a Veq of 2.52, which is too small.
  • Japanese Patent Application Laid-Open No. 2015-193025 describes C: 3.0 to 4.5%, Si: more than 0% and 2.0% or less, Mn: more than 0% and 1.5% or less, Ni: 3.0 to 5.0%, Cr: 1.4 on a mass basis. ⁇ 4.0%, Mo: 0.1 ⁇ 3.0%, and V: more than 0% and 3.0% or less, the balance is Fe and unavoidable impurities, and the condition is 4.0% ⁇ C + Si / 3 + Cr / 7.5 ⁇ 5.5%.
  • a composite roll for rolling having an outer layer having a composition that satisfies the requirements and having an outer layer having an area ratio of cementite in the metal structure of the peripheral surface of 40 to 60%.
  • the outer layer of No. 1 is C: 3.7%, Si: 1.3%, Mn: 0.8%, Ni: 4.0%, Cr: 2.1%, Mo: 0.2%, It has a composition containing V: 2.1%, Nb: 1.2%, and B: 0.05%.
  • the C content is too high at 3.7% and the Mo content is too low at 0.2%, the amount of carbides is excessive and the crack resistance is lowered, and the hardenability is insufficient and the base hardness is low. There is a problem that it is insufficient and inferior in abrasion resistance and rough skin resistance.
  • Japanese Patent Application Laid-Open No. 2015-080813 is a composite roll for centrifugal casting rolling having an outer layer and an inner layer, in which the chemical components of the outer layer are C: 1.5 to 4.0%, Si: 0.5 to 3.0%, Mn: 0.1 by mass ratio. ⁇ 1.5%, Ni: 1.0 ⁇ 6.0%, Cr: 0.1 ⁇ 3.0%, Mo: 0.1 ⁇ 3.0%, and V: 1.0 ⁇ 6.0%, the balance is Fe and unavoidable impurities, and 4.0 ⁇ V + C ⁇
  • a composite roll for centrifugal casting and rolling that satisfies 8.0 and 0.2 ⁇ Si / (Cr + 2V) ⁇ 0.3 is disclosed.
  • the outer layer of No. 8 is C: 3.4%, Si: 1.6%, Mn: 0.8%, Ni: 4.5%, Cr: 1.8%, Mo: 0.5%, It has a composition containing V: 2.5%, Nb: 0.9%, and B: 0.04%.
  • V / Nb is too large at 2.78, the distribution of MC carbide tends to be biased toward the inner circumference of the outer layer, and the soundness of the boundary between the outer layer and the inner layer is insufficient.
  • an object of the present invention is to provide a centrifugal casting composite roll for hot rolling, which has good wear resistance over the entire rolling use area, suppresses the occurrence of casting defects, and has a sound boundary between the outer layer and the inner layer. is there.
  • the present inventor has found that in the outer layer of a composite roll for hot rolling used in a hot strip mill, MC carbides that contribute to wear resistance are mainly used in the range from the initial diameter to the waste diameter.
  • MC carbides that contribute to wear resistance are mainly used in the range from the initial diameter to the waste diameter.
  • the outer layer preferably further contains B: 0.06% by mass or less.
  • the outer layer further has W: 0.01 to 3%, Ti: 0.01 to 0.5%, Al: 0.001 to 0.5%, Zr: 0.01 to 0.5%, and Co. : It is preferable to contain any one or more of 0.1 to 5%.
  • the V equivalent of the outer layer is preferably 3.8% by mass or less.
  • the outer layer preferably contains 0.3 to 5% graphite particles and 2 to 20% MC carbide on an area basis.
  • the centrifugal casting composite roll for hot rolling of the present invention is suitable for use as a work roll for a hot strip mill with severe rolling conditions, but of course, it can also be used as a hot rolling roll for wire rods, a hot rolling roll for shaped steel, and the like. Can be used.
  • FIG. 1 shows a composite roll 10 for hot rolling composed of an outer layer 1 formed by a centrifugal casting method and an inner layer 2 welded and integrated with the outer layer 1.
  • the inner layer 2 has a body core portion 21 welded to the outer layer 1 and shaft portions 22 and 23 integrally extending from both ends of the body core portion 21.
  • composition of the outer layer in the centrifugal casting composite roll for hot rolling of the present invention is represented by the composition of the molten iron-based alloy used to form the outer layer.
  • the composition of the molten iron-based alloy corresponds to the average composition of the entire outer layer.
  • the Fe-based alloy forming the outer layer basically falls into the category of "high alloy Glen cast iron".
  • C 2.6-3.6% by mass C combines with V, Nb, Cr and Mo to form hard carbides, which contributes to the improvement of wear resistance.
  • graphitization-promoting elements such as Si and Ni crystallize as graphite in the structure, thereby imparting seizure resistance to the outer layer and improving the toughness of the outer layer. If C is less than 2.6% by mass, not only the crystallization of graphite is insufficient, but also the amount of crystallization of hard carbide is too small to impart sufficient wear resistance to the outer layer.
  • the lower limit of the C content is preferably 2.7% by mass, more preferably 2.8% by mass.
  • the upper limit of the C content is preferably 3.5% by mass, more preferably 3.4% by mass.
  • An example of a preferable range of C content is 2.7 to 3.5% by mass, and an example of a more preferable range is 2.8 to 3.4% by mass.
  • Si 0.1 to 3% by mass Si reduces oxide defects by deoxidizing the molten metal and has the effect of promoting the crystallization of graphite, which contributes to seizure resistance and suppression of crack growth. If Si is less than 0.1% by mass, the deoxidizing action of the molten metal is insufficient, and the action of graphite crystallization is also small. On the other hand, when Si exceeds 3% by mass, the alloy matrix becomes brittle and the toughness of the outer layer decreases.
  • the lower limit of the Si content is preferably 0.5% by mass, more preferably 1% by mass.
  • the upper limit of the Si content is preferably 2.8% by mass, more preferably 2.5% by mass.
  • An example of a preferable range of Si content is 0.5 to 2.8% by mass, and an example of a more preferable range is 1 to 2.5% by mass.
  • Mn 0.3 to 2% by mass
  • Mn has the action of fixing the impurity S as MnS. If Mn is less than 0.3% by mass, their effects are insufficient. On the other hand, even if Mn exceeds 2% by mass, no further effect can be obtained.
  • the lower limit of the Mn content is preferably 0.4% by mass, more preferably 0.5% by mass.
  • the upper limit of the Mn content is preferably 1.5% by mass, more preferably 1% by mass.
  • An example of a preferable range of Mn content is 0.4 to 1.5% by mass, and an example of a more preferable range is 0.5 to 1% by mass.
  • Ni 2.3-5.5% by mass
  • Ni has the effect of crystallizing graphite and contributes to seizure resistance.
  • Ni also has the effect of improving the hardenability of the matrix structure. If Ni is less than 2.3% by mass, the effect cannot be sufficiently obtained.
  • the lower limit of the Ni content is preferably 2.5% by mass, more preferably 3% by mass, and even more preferably 3.5% by mass.
  • the upper limit of the Ni content is preferably 5% by mass, more preferably 4.8% by mass.
  • An example of a preferable range of Ni content is 2.5 to 5% by mass, an example of a more preferable range is 3 to 4.8% by mass, and an example of a further preferable range is 3.5 to 4.8% by mass.
  • Cr 0.5-3.2% by mass
  • Cr is an element that is effective in improving hardenability, making the base bainite or martensite to maintain hardness, and maintaining wear resistance. If Cr is less than 0.5% by mass, the effect of addition is insufficient. On the other hand, when Cr exceeds 3.2% by mass, it not only inhibits the crystallization of graphite but also forms coarse eutectic carbides, which lowers the toughness of the matrix structure.
  • the lower limit of the Cr content is preferably 0.7% by mass, more preferably 1% by mass.
  • the upper limit of the Cr content is preferably 2.8% by mass, more preferably 2.5% by mass, and even more preferably 2.3% by mass.
  • An example of a preferable range of Cr content is 0.7 to 2.8% by mass, an example of a more preferable range is 1 to 2.5% by mass, and an example of a further preferable range is 1 to 2.3% by mass.
  • Mo 0.3-1.6% by mass Mo combines with C to form hard Mo carbides, increasing the hardness of the outer layer and improving the hardenability of the matrix. If Mo is less than 0.3% by mass, those effects are insufficient. On the other hand, when Mo exceeds 1.6% by mass, the toughness of the outer layer deteriorates and the tendency toward white pig iron becomes stronger, which hinders the crystallization of graphite.
  • the lower limit of the Mo content is preferably 0.4% by mass.
  • the upper limit of the Mo content is preferably 1.3% by mass, more preferably 1% by mass.
  • An example of a preferable range of Mo content is 0.4 to 1.3% by mass, and an example of a more preferable range is 0.4 to 1% by mass.
  • V 1.8-3.4% by mass
  • V is an element that combines with C to form hard MC carbides. If V is less than 1.8% by mass, the amount of MC carbide crystallized is insufficient.
  • V exceeds 3.4% by mass (a) VC carbides with light specific gravity are concentrated inside the outer layer due to centrifugal force during centrifugal casting, and the range where the distribution of MC carbides is maximized is abolished from the initial diameter of the outer layer. Not only does it deviate from the region up to the rejection diameter, but (b) MC carbides become coarse and the alloy structure becomes rough, making it easy for the skin to become rough during rolling.
  • the lower limit of the V content is preferably 1.85% by mass, more preferably 1.9% by mass.
  • the upper limit of the V content is preferably 3% by mass, more preferably 2.7% by mass, and most preferably 2.5% by mass.
  • An example of a preferable range of V content is 1.85 to 3% by mass, an example of a more preferable range is 1.9 to 2.7% by mass, and an example of a further preferable range is 1.9 to 2.5% by mass.
  • Nb 0.7-2.4% by mass Nb combines with C to form MC carbides. By combining Nb with V, it not only (a) dissolves in MC carbide to strengthen MC carbide and improves the wear resistance of the outer layer, but also (b) increases the specific gravity of MC carbide and MC carbide. Prevents segregation on the inner peripheral side of the outer layer. If Nb is less than 0.7% by mass, these effects are insufficient. On the other hand, when Nb exceeds 2.4% by mass, the specific gravity of MC carbide becomes too large, and the distribution of MC carbide becomes too large in the deleted region from the outer circumference to the initial diameter.
  • the lower limit of the Nb content is preferably 0.8% by mass, more preferably 0.9% by mass.
  • the upper limit of the Nb content is preferably 2.2% by mass, more preferably 2.0% by mass.
  • An example of a preferable range of Nb content is 0.8 to 2.2% by mass, and an example of a more preferable range is 0.9 to 2.0% by mass.
  • V / Nb 1.4-2.7 MC carbides consisting of VC and NbC crystallize in the outer layer formed by centrifugal casting of an iron-based alloy containing V and Nb, but since VC has a specific gravity smaller than that of the outer layer molten metal, it tends to segregate on the inner peripheral side of the outer layer. Since NbC has a specific gravity higher than that of the outer layer molten metal, it tends to segregate on the outer peripheral side of the outer layer. By the way, as shown in FIG.
  • the centrifugally cast outer layer is removed by cutting the outer peripheral side to a depth of the initial diameter Di (generally 10 mm), and then the waste diameter Dd (generally 10 mm) from the initial diameter Di to a predetermined depth is removed.
  • the waste diameter Dd generally 10 mm
  • MC carbides are mainly distributed in the registered area (effective diameter area) from the initial diameter Di to the waste diameter Dd.
  • Figure 2 shows an example of such MC carbide distribution.
  • the peak is located approximately in the center of the registered area, and a sufficient amount of MC is present on both the outer peripheral side (surface layer portion) and the inner layer side (deep portion).
  • MC carbide distribution II the peak is located near the initial diameter Di, but the amount of MC on both the outer peripheral side (surface layer part) and the inner layer side (deep part) is sufficient. Both MC carbide distributions I and II are preferred.
  • MC carbide distribution III the peak located near the initial diameter Di is too high, and the amount of MC in the deep part is too low. Therefore, the wear resistance in the deep part of the outer layer is insufficient.
  • MC carbide distribution IV the peak is located near the inner layer side, and there is not enough MC carbide in the registered area. Therefore, the outer layer having the MC carbide distribution IV cannot exhibit sufficient wear resistance. Therefore, neither MC carbide distributions III and IV are preferable.
  • NbC not only crystallizes from the molten metal at high temperature, but also has a high affinity with oxides and antioxidant flux in the molten metal (good wettability). Therefore, oxides and fluxes tend to adhere to NbC. Since the oxide and flux adhering to NbC are trapped in the outer layer during solidification, they tend to remain as casting defects in the outer layer. Further, since NbC having a higher specific gravity than the molten metal tends to be unevenly distributed on the outer peripheral side (surface layer portion) due to centrifugation, casting defects due to oxides and flux adhering to NbC tend to appear more on the surface layer portion of the outer layer.
  • V and Nb In order to suppress such a tendency, V and Nb must satisfy the condition of 1.4 ⁇ V / Nb ⁇ 2.7.
  • V / Nb When V / Nb is less than 1.4, the amount of primary crystal NbC crystallized increases, and it becomes difficult to suppress casting defects due to oxides and flux adhering to NbC.
  • the lower limit of V / Nb is preferably 1.45, more preferably 1.5.
  • V / Nb is preferably 2.65, more preferably 2.6.
  • An example of a preferable range of V / Nb is 1.45 to 2.65, and an example of a more preferable range is 1.5 to 2.6.
  • V equivalent 2.60-4% by mass
  • Veq is 2.60-4% by weight. If Veq is less than 2.60% by weight, there are too few MC carbides that are effective for wear resistance.
  • the lower limit of Veq is preferably 2.65% by mass, more preferably 2.7% by mass, and most preferably 2.8% by mass. On the other hand, if Veq is too high, cementite and graphite other than MC carbide will be too low.
  • Veq is set to 4% by mass or less. Veq is preferably 3.8% by mass or less, more preferably 3.6% by mass or less, and most preferably 3.2% by mass or less.
  • An example of a preferable range of V equivalent is 2.65 to 3.8% by mass, an example of a more preferable range is 2.7 to 3.6% by mass, and an example of the most preferable range is 2.8 to 3.2% by mass.
  • the outer layer of the centrifugal casting composite roll for hot rolling of the present invention may contain the following elements in addition to the above essential elements.
  • B 0.06% by mass or less B has the effect of refining carbides.
  • a small amount of B contributes to the crystallization of graphite.
  • the content of B is preferably 0.06% by mass or less.
  • the lower limit of the content of B is more preferably 0.001% by mass, and most preferably 0.002% by mass.
  • the upper limit of the B content is more preferably 0.04% by mass.
  • An example of a more preferable range of B content is 0.001 to 0.04% by mass, and an example of the most preferable range is 0.002 to 0.04% by mass.
  • W 0.01 to 3% by mass W combines with C to form hard M 2 C carbides, which contributes to improved wear resistance of the outer layer. It also has the effect of dissolving in MC carbide as a solid solution to increase its specific gravity and reduce segregation. However, when W exceeds 3% by mass, the specific gravity of the molten metal becomes heavy, so that carbide segregation is likely to occur. Therefore, when W is added, its preferable content is 3% by mass or less. On the other hand, if W is less than 0.01% by mass, the effect of addition is insufficient.
  • the lower limit of the W content is more preferably 0.02% by mass.
  • the upper limit of the W content is more preferably 2.9% by mass. An example of a more preferable range of W content is 0.02 to 2.9% by mass.
  • Zr 0.01-0.5% by mass
  • Zr combines with C to form MC carbides, improving the wear resistance of the outer layer. Further, since the Zr oxide generated in the molten metal acts as a crystal nucleus, the solidified structure becomes fine. It also increases the specific gravity of MC carbide to prevent segregation. However, if Zr exceeds 0.5% by mass, inclusions are formed, which is not preferable. Therefore, when Zr is added, its content is preferably 0.5% by mass or less. On the other hand, if Zr is less than 0.01% by mass, the effect of addition is insufficient.
  • the lower limit of the Zr content is more preferably 0.02% by mass.
  • the upper limit of the Zr content is more preferably 0.4% by mass. An example of a more preferable range of Zr content is 0.02 to 0.4% by mass.
  • Co 0.1-5% by mass
  • Co facilitates the crystallization of graphite.
  • the toughness of the outer layer decreases. Therefore, when Co is added, its content is preferably 5% by mass or less.
  • the lower limit of the Co content is more preferably 0.2% by mass.
  • the upper limit of the Co content is more preferably 4.9% by mass.
  • An example of a more preferable range of the Co content is 0.2 to 4.9% by mass.
  • Ti 0.01-0.5% by mass Ti combines with the graphitizing inhibitors N and O to form oxides or nitrides. Oxides or nitrides are suspended in the molten metal to form nuclei, which miniaturize and homogenize MC carbides. However, when Ti exceeds 0.5% by mass, the viscosity of the molten metal increases, and casting defects are likely to occur. Therefore, when Ti is added, its preferable content is 0.5% by mass or less. On the other hand, if Ti is less than 0.01% by mass, the effect of addition is insufficient. The lower limit of the Ti content is more preferably 0.02% by mass. The upper limit of the Ti content is more preferably 0.4% by mass. An example of a more preferable range of Ti content is 0.02 to 0.4% by mass.
  • Al 0.001 to 0.5% by mass
  • Al combines with the graphitizing inhibitors N and O to form oxides or nitrides, which are suspended in the molten metal to form nuclei and finely and uniformly crystallize MC carbides.
  • Al exceeds 0.5% by mass, the outer layer becomes brittle, leading to deterioration of mechanical properties. Therefore, when Al is added, its preferable content is 0.5% by mass or less.
  • the Al content is less than 0.001% by mass, the effect of addition is insufficient.
  • the lower limit of the Al content is more preferably 0.01% by mass, still more preferably 0.02% by mass.
  • the upper limit of the Al content is more preferably 0.4% by mass.
  • An example of a more preferable range of the Al content is 0.01 to 0.4% by mass, and more preferably 0.02 to 0.4% by mass.
  • Impurities The rest of the outer layer composition consists of Fe and impurities.
  • P, S, Cu, etc. are impurity elements and it is unavoidable to mix them in trace amounts, but they are known to affect graphite formation.
  • P and S are known to affect graphite even in trace amounts.
  • Even in the centrifugal casting composite roll of the present invention it is necessary to control the content of impurity elements in order to obtain graphite particles having a preferable area ratio.
  • P and S cause deterioration of mechanical properties, their contents must be suppressed to a predetermined level.
  • Cu also affects graphite, but the degree of influence in a small amount is small.
  • unavoidable impurities include elements such as Ca, Ba, Mg, Sb, Te and Ce.
  • the contents of P and S are 0.1% by mass or less, Cu is 0.5% by mass or less, Ca and Ba are 0.05% by mass or less, Mg is 0.07% by mass or less, Sb is 0.05% by mass or less, and Te.
  • Ce are acceptable as long as they are within the range of 0.03% by mass or less, respectively, because the effects of the present invention are hardly impaired.
  • the structure of the outer layer of the centrifugal casting composite roll for hot rolling of the present invention consists of matrix, graphite, MC carbide and cementite.
  • the structure of the outer layer in the centrifugal casting composite roll for hot rolling of the present invention preferably contains 0.3 to 5% graphite particles and 2 to 20% MC carbide on an area basis.
  • the outer base structure is preferably composed substantially of martensite, bainite or pearlite.
  • the outer matrix structure preferably has an additional 15-45 area% cementite phase.
  • the area ratio of the graphite particles crystallized in the outer layer structure is preferably 0.3 to 5%. If the area ratio of the graphite particles is less than 0.3%, the effect of improving the seizure resistance of the outer layer is insufficient. On the other hand, when the graphite particles exceed 5 area%, the mechanical properties of the outer layer deteriorate.
  • the lower limit of the area ratio of the graphite particles is more preferably 0.5% and most preferably 1%.
  • the upper limit of the area ratio of the graphite particles is more preferably 4% and most preferably 3%.
  • An example of a more preferable range of the area ratio of graphite particles is 0.5 to 4%, and an example of the most preferable range is 1 to 3%.
  • the area ratio of MC carbide is more preferably 2.2% or more, further preferably 2.5% or more. Further, in order to make the area ratio of the graphite particles 0.3 to 5%, the MC carbide is more preferably 17% or less, further preferably 15% or less, and most preferably 10% or less.
  • An example of a more preferable range of the area ratio of MC carbide is 2 to 17%, an example of a more preferable range is 2 to 15%, and an example of the most preferable range is 2 to 10%.
  • the iron-based alloy that forms the inner layer is preferably tough ductile cast iron (spheroidal graphite cast iron).
  • the composition of the inner layer is represented by the composition of the molten iron-based alloy used to form the inner layer.
  • the composition of the molten iron-based alloy corresponds to the average composition of the entire inner layer.
  • the composition of molten ductile cast iron is C: 2.3 to 3.6%, Si: 1.5 to 3.5%, Mn: 0.2 to 2%, Ni: 0.3 to 2%, Cr: 0.05 to 1%, Mo: 0.05 to 1 on a mass basis. % And Mg: 0.01 to 0.08%, preferably composed of the balance Fe and impurities.
  • Nb 0.7% or less and W: 0.7% or less may be contained.
  • the iron base is mainly ferrite and pearlite, and the others mainly contain graphite and a trace amount of cementite.
  • An intermediate layer may be interposed between the outer layer and the inner layer for the purpose of suppressing component mixing and buffering.
  • the outer layer can be manufactured by casting at a temperature of + (30 to 150) ° C, a centrifugal force in the range of 60 to 200 G in the gravity multiple, and an average stacking speed of 0.5 to 3 mm / s, and casting the outer layer. it can.
  • the lower limit of the average stacking speed is preferably 0.6 mm / s, and the upper limit is preferably 2.5 mm / s.
  • the "average laminating speed" of the outer layer is a value obtained by dividing the thickness of the outer layer laminated by casting by the casting time, that is, the rate of increase in the thickness of the outer layer per unit time.
  • FIGS. 3 (a) and 3 (b) show an example of a static casting mold used for casting the inner layer 2 after the outer layer 1 is centrifugally cast with the centrifugal casting cylindrical mold 30.
  • the static casting mold 100 includes a cylindrical mold 30 having an outer layer 1 on the inner surface, and an upper mold 40 and a lower mold 50 provided at the upper and lower ends thereof.
  • the cylindrical mold 30 includes a mold body 31, a mold release layer 32 formed inside the mold body 31, and mold end portions 33 provided at the upper and lower ends of the mold body 31 and the mold release layer 32.
  • the upper mold 40 is composed of a mold body 41 and a sand mold 42 formed inside the mold body 41.
  • the lower mold 50 is composed of a mold body 51 and a sand mold 52 formed inside the mold body 51.
  • the lower mold 50 is provided with a bottom plate 53 for holding the molten metal for the inner layer.
  • the inner surface of the outer layer 1 in the cylindrical mold 30 has a cavity 60a for forming the core portion 21 of the inner layer 2, and the upper mold 40 has a cavity 60b for forming the shaft portion 23 of the inner layer 2.
  • the lower mold 50 has a cavity 60c for forming the shaft portion 22 of the inner layer 2.
  • the centrifugal casting method using the cylindrical mold 30 may be a horizontal type, an inclined type or a vertical type.
  • a cylindrical mold 30 in which the outer layer 1 is centrifugally cast is erected and installed on the upper end portion 54 of the lower mold 50 for forming the shaft portion 22, and the upper mold 40 for forming the shaft portion 23 is placed on the cylindrical mold 30.
  • the static casting mold 100 is configured.
  • the cavity 60a in the outer layer 1 communicates with the cavity 60b of the upper mold 40 and the cavity 60c of the lower mold 50 to form a cavity 60 that integrally forms the entire inner layer 1.
  • the surface of the molten duct in the cavity 60 becomes the lower mold 50 as the ductile cast iron molten metal for the inner layer 2 is injected into the cavity 60 from the upper opening 43 of the upper mold 40.
  • the inner layer 2 including the shaft portion 22, the body core portion 21 and the shaft portion 23 is integrally cast.
  • Examples 1 to 4 and Comparative Examples 1 to 4 A cylindrical mold 30 (inner diameter 800 mm and length 2500 mm) having the structure shown in Fig. 3 (a) was installed in a horizontal centrifugal casting machine, and each molten metal having the composition shown in Table 1 was subjected to the temperature shown in Table 2. , Gravity multiple and average stacking speed, and the outer layer 1 was centrifugally cast. After the outer layer 1 has solidified, the cylindrical mold 30 having the outer layer 1 (thickness: 90 mm) formed on the inner surface is erected, and the hollow lower mold 50 (inner diameter 600 mm and length 1500) for forming the shaft portion 22 is erected.
  • a cylindrical mold 30 is erected on the cylindrical mold 30 (mm), and a hollow upper mold 40 (inner diameter 600 mm and length 2000 mm) for forming the shaft portion 23 is erected on the cylindrical mold 30.
  • the static casting mold 100 shown in (b) was constructed.
  • is the austenite precipitation start temperature
  • X When the lowest V equivalent in each of the surface layer and the deep part in the layer used is less than 60% of the average V equivalent of the outer layer molten metal.
  • When the lowest V equivalent in each of the surface layer portion and the deep portion in the used layer is 60 or more or less than 70% of the average V equivalent of the outer layer molten metal.
  • When the lowest V equivalent in each of the surface layer and the deep part in the layer used is 70% or more of the average V equivalent of the outer layer molten metal.
  • the centrifugal casting composite rolls of Examples 1 to 4 have all of the soundness of the boundary between the outer layer and the inner layer, the abrasion resistance of the surface layer and the deep part of the outer layer, and the casting defects in the outer layer. It was excellent.
  • one or more evaluation items among the above evaluation items were x. Specifically, since Veq is less than 2.60 in Comparative Examples 1 and 2, neither the surface layer portion nor the deep portion of the outer layer has sufficient wear resistance. Moreover, in Comparative Example 3, V / Nb was too high at 4.37, so that the boundary soundness was poor. Furthermore, in Comparative Example 4, since V / Nb was as low as 1.23, the distribution of MC carbides was type III, and not only the wear resistance in the deep part of the outer layer was insufficient, but also casting defects were confirmed in the outer layer. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

質量基準でC:2.6~3.6%、Si:0.1~3%、Mn:0.3~2%、Ni:2.3~5.5%、Cr:0.5~3.2%、Mo:0.3~1.6%、V:1.8~3.4%、及びNb:0.7~2.4%を含有し、1.4≦V/Nb≦2.7であり、V当量(Veq=V+0.55Nb)が2.60~4質量%であり、残部がFe及び不純物からなる化学組成を有するFe基合金からなる外層に、鉄系合金からなる内層が溶着一体化してなる熱間圧延用遠心鋳造複合ロール。

Description

熱間圧延用遠心鋳造複合ロール
 本発明は、鋼板の熱間圧延機の特に第五~第七スタンドに用いるのに好適な遠心鋳造複合ロールに関し、特に圧延使用域全体にわたって耐摩耗性が良好で、鋳造欠陥の発生が抑制され、かつ外層と内層との境界が健全な熱間圧延用遠心鋳造複合ロールに関する。
 ホットストリップミルは、連続鋳造等で製造した厚さ数十~300 mmのスラブを加熱した後、順に複数の粗圧延機及び複数の仕上げ圧延機のロール間に通し、1 mm程度~数十mmの厚さに圧延するものである。仕上げ圧延機は、通常5~7つの四重式圧延機スタンドを直列に配置したものであり、特に7つのスタンドからなる仕上げ圧延機が広く用いられている。7スタンドの仕上げ圧延機では、第一~第三スタンドを前段スタンドと呼び、第四~第七スタンドを後段スタンドと呼ぶ。
 仕上げ圧延機に用いられるロールは圧延による熱的及び機械的負荷に耐える必要があるため、耐摩耗性に優れた外層と靭性に優れた内層とを溶着一体化した複合構造の遠心鋳造複合ロール(単に「複合ロール」と呼ぶこともある。)が用いられている。しかし、圧延による熱的及び機械的負荷によっては外層表面に摩耗、肌荒れ、ヒートクラック等の損傷が発生するため、一定期間使用した後に複合ロールを圧延機から取り外し、損傷を研削除去(改削)する。改削により複合ロールの胴径は初径から圧延に使用可能な最小径(廃却径)まで徐々に小さくなる。本明細書では、初径から廃却径までのロール径を圧延使用有効径(単に「有効径」という)と呼び、初径から廃却径までの有効径領域を「使用域」と呼ぶ。
 仕上げ圧延機の特に後段スタンドには、従来から高合金グレン鋳鉄製の外層と強靭性に優れた鋳鉄製の内層とを冶金的に一体化した遠心鋳造複合ロールが使用されてきた。高合金グレン鋳鉄外層は黒鉛、炭化物及び基地組織からなり、特に耐焼付き性に優れているため、絞り事故に遭遇した際も、クラックの発生・進展が極めて少ない、つまり耐事故性に優れるという特徴がある。とりわけ後段スタンドでは、薄い鋼板が折り重なって圧延されることよる絞り事故が発生することが多いため、耐事故性の良好な高合金グレン鋳鉄を外層とする複合ロールが多く用いられている。高合金グレン鋳鉄には、M3C系(セメンタイト)のみを含有するタイプと、耐摩耗性を改善するためにM3C系(セメンタイト)及びバナジウム等の元素からなる比較的少量のMC炭化物を含有するタイプとがある。しかし、高合金グレン鋳鉄は高クロム鋳鉄材やハイス材に比較すると耐摩耗性が劣るので、種々の改善が行われてきた。
 特開2004-68142号は、熱間圧延用複合ロールの外層に用いる外層材として、質量基準でC:2.9~3.8%、Si:0.8~2.0%、Mn:0.2~1.5%、Cr:1.5~3.5%、Mo:0.8~3.5%、Ni:3.0~7.0%、V:1.0~3.5%、Nb:0.1~0.8%、B:0.020~0.2%、REM:0.002~0.030%を含み、かつ式(1):[2.5≦C-(0.236×V+0.129×Nb)≦3.2]、及び式(2):[0.5<Cr/C<1.0]を満足し、残部Fe及び不可避的不純物からなる組成を有する熱間圧延用ロール外層材を開示している。特開2004-68142号には、この外層材を有する複合ロールは優れた耐焼付き性及び耐摩耗性を兼備しており、鋼板の熱間圧延用の後段スタンド用ロールに好適であると記載されている。
 特開2004-68142号に記載の具体例のうち、(1) C:3.76%、Cr:1.67%、V:2.38%、Nb:0.92%、Ni:4.62%、Si:1.64%、Mn:0.54%、Mo:1.30%、B:0.054%、及びREM:0.011%を含有する試験材Lには、C含有量が3.76%と多いために黒鉛や炭化物が過剰となって強度や靱性が低下するという問題があり、(2) C:3.46%、Cr:2.27%、V:2.46%、Nb:0.83%、Ni:4.55%、Si:1.78%、Mn:0.61%、Mo:0.66%、B:0.042%、及びREM:0.019%を含有する試験材Tには、V/Nb比が2.96と大きすぎるためにMC炭化物の分布が外層内周側に偏っているという問題があり、(3) C:3.35%、Cr:1.97%、V:3.27%、Nb:1.57%、Ni:4.61%、Si:1.91%、Mn:0.5%、Mo:1.32%、及びB:0.074%を含有する試験材Wには、V当量(Veq=V+0.55Nb)が4.13質量%と多いためにMC炭化物量が多くなり、組織むらや組織粗大化が発生しやすいという問題がある。
 特開2001-279367号は、質量基準でC:2.7~4.0%、Si:0.5~2%、Mn:0.2~2%、Mo:0.2~0.8%、Ni:2.5~6.0%、Cr:1.0~2.0%、B:0.01~0.1%、を含有し、さらにNb:0.2~1.0%及びV:0.2~2.0%の1種又は2種を含有し、残部がFe及び不可避的不純物からなる高合金グレン鋳鉄製の外層と、高級鋳鉄又は球状黒鉛鋳鉄製の内層とからなる熱間圧延用遠心鋳造ロールを開示している。この遠心鋳造ロールの外層では、従来の高合金グレン鋳鉄材の基本組成に適量のNb及びVを添加するとともに、適量のB等を添加しているため、形成される炭化物はM3C型(セメンタイト)が主体であり、MC炭化物は慨ね3%以下と少なく、鋳造組織に微細な黒鉛粒子が均一に分布している。特開2001-279367号は、高価な合金を多量に含有させずに耐摩耗性及び耐クラック性に優れた熱間圧延用のロールを遠心鋳造法により安価に提供している。
 特開2001-279367号は、外層の具体例として、C:3.2%、Si:2.4%、Mn:0.8%、Mo:0.6%、Ni:4.2%、Cr:2.2%、Nb:1.5%、V:3.5%、及びB:0.04%を含有する試験材11を記載している。しかし、試験材11は、V含有量が3.5%と多すぎるためにMC炭化物が外層内周側に偏る傾向があるだけでなく、Veqが4.33質量%と多いためにMC炭化物量が多くなり、組織むらや組織粗大化が発生しやすくなる。
 特開2008-50681号は、質量基準でC:2.5~3.4%、Si:0.5~2.0%、Mn:0.5~1.0%、Ni:3.0~6.0%、Cr:1.0~2.0%、Mo:0.2~0.8%、V:1.0~4.0%、Nb:0.2~1.0%を含有するとともに、VとNbの質量%が式(1):1≦(V-1)/Nb≦4、及び式(2):0.7≦1.8(V-1)+Nb≦5.0を満たし、残部Fe及び不可避不純物からなる遠心鋳造製圧延用複合ロ-ルの外層材を開示している。特開2008-50681号は、この外層材は耐摩耗性に優れ、重力偏析及び粗大なMC炭化物の晶出による肌荒れがないと記載している。
 特開2008-50681号は、具体例として、(1) C:3.1%、Si:1.8%、Mn:0.8%、Ni:4.5%、Cr:1.1%、Mo:0.3%、V:3.0%、Nb:1.0%、B:0.03%を含有する外層用試験片、(2) C:3.2%、Si:1.8%、Mn:0.6%、Ni:4.1%、Cr:1.2%、Mo:0.8%、V:2.0%、及びNb:1.0%を含有する外層用試験片、及び(3) C:3.5%、Si:1.1%、Mn:0.4%、Ni:2.9%、Cr:1.9%、Mo:0.2%、V:2.0%、及びNb:1.2%を含有する外層用試験片を記載している。しかし、(1) の試験片はV/Nb比が3と大きすぎるために、MC炭化物の分布が外層内周側に偏っているという問題がある。また、(2) 及び(3) の試験片はBを含有していないだけでなく、(2) の試験片はVeqが2.55質量%と少なすぎるため耐摩耗性に劣り、また(3) の試験片はMo含有量が0.2%と少なすぎるため焼き入れ性が不足し、基地硬さが低く耐摩耗性や耐事故性に劣る。
 特開2017-185548号は、質量基準でC:2.6~3.8%、Si:0.1~3.0%、Mn:0.3~2.0%、Ni:2.3~5.5%、Cr:0.5~2.5%、Mo:0.2~3.0%、V:0.2~3.8%、Nb:0.4~6.8%を含有し、残部がFe及び不可避的不純物からなり、面積基準で0.3~10%の黒鉛粒子を含む組織を有する外層と、ダクタイル鋳鉄からなる軸芯部とを有し、前記外層の両端面から軸方向にそれぞれ100 mm離れた位置のC含有量が、前記外層の軸方向長さの中央のC含有量に対し、0.05~0.3質量%多く、前記外層の両端面から軸方向にそれぞれ100 mm離れた位置のNb含有量が、前記外層の軸方向長さの中央のNb含有量に対し、0.5~3.0質量%多い熱間圧延用遠心鋳造複合ロールを開示している。このロールは、圧延される鋼板の幅中央部に相対する外層中央部と、鋼板の両側の幅端部近傍に相対する外層端部とが平均的に摩耗が進行するように外層の局部摩耗を軽減できるとともに、耐摩耗性に優れた外層を有する。外層がロール軸方向で平均的に摩耗が進行することにより、ロールを再び圧延に供する場合、ロール研磨の際に局部摩耗した部分が消滅するまでの研磨が少ないロスで抑えられ、外層材の損失を小さくできる。
 特開2017-185548号における具体例として、実施例1の外層はC:3.34%、Si:1.3%、Mn:0.81%、Ni:4.12%、Cr:1.86%、Mo:0.82%、V:2.33%、及びNb:0.78%を含有する組成を有し、実施例2の外層はC:3.51%、Si:1.45%、Mn:0.65%、Ni:4.51%、Cr:1.58%、Mo:0.64%、V:2.55%、及びNb:0.92%を含有する組成を有する。しかし、いずれの実施例でもV/Nbが2.99及び2.77と大きすぎるために、MC炭化物の分布が外層内周側に偏る傾向があり、使用層内のMC炭化物の歩留まりが低下し、耐摩耗性が劣化する。
 特開2003-73767号は、質量%でC:2.5~4.0%、Si:0.8~2.5%、Mn:0.2~1.5%、Cr:1.0~3.5%、Mo:0.5~4.0%、Ni:3.0~7.0%、V:1.0~3.5%、Nb:0.2~1.0%、Al:0.02~0.2%、及びB:0.020~0.10%を含有し、Cr/Cが1以下であり、残部Fe及び不可避的不純物からなる組成を有し、かつ面積率で0.6~4%の黒鉛を含有する組織を有する熱間圧延用ロール用の外層材を開示している。特開2003-73767号に記載の具体例として、リング材Dは、C:2.6%、Si:1.7%、Mn:0.5%、Ni:4.9%、Cr:3.0%、Mo:1.2%、V:1.8%、Nb:1.3%、Al:0.081%、及びB:0.046%を含有する組成を有する。しかし、このリング材Dは、V/Nbが1.38と小さすぎ、かつVeqも2.52と小さすぎる。
 特開2015-193025号は、質量基準でC:3.0~4.5%、Si:0%を超えて2.0%以下、Mn:0%を超えて1.5%以下、Ni:3.0~5.0%、Cr:1.4~4.0%、Mo:0.1~3.0%、及びV:0%を超えて3.0%以下を含有し、残部Fe及び不可避的不純物であり、かつ4.0%≦C+Si/3+Cr/7.5≦5.5%の条件を満たす組成を有し、周面の金属組織におけるセメンタイトの面積率が40~60%である外層を有する圧延用複合ロールを開示している。特開2015-193025号に記載の具体例として、No. 1の外層は、C:3.7%、Si:1.3%、Mn:0.8%、Ni:4.0%、Cr:2.1%、Mo:0.2%、V:2.1%、Nb:1.2%、及びB:0.05%を含有する組成を有する。しかし、C含有量が3.7%と多すぎ、かつMo含有量が0.2%と少なすぎるために、炭化物量が過多となり耐クラック性が低下するとともに、焼き入れ性が不十分であり基地硬さが不足し、耐摩耗性や耐肌荒れ性に劣るという問題がある。
 特開2015-080813号は、外層及び内層を有する遠心鋳造製圧延用複合ロールであって、前記外層の化学成分が質量比でC:1.5~4.0%、Si:0.5~3.0%、Mn:0.1~1.5%、Ni:1.0~6.0%、Cr:0.1~3.0%、Mo:0.1~3.0%、及びV:1.0~6.0%からなり、残部がFe及び不可避的不純物であり、かつ4.0≦V+C≦8.0及び0.2≦Si/(Cr+2V)≦0.3を満足する遠心鋳造製圧延用複合ロールを開示している。特開2015-080813号に記載の具体例として、No. 8の外層は、C:3.4%、Si:1.6%、Mn:0.8%、Ni:4.5%、Cr:1.8%、Mo:0.5%、V:2.5%、Nb:0.9%、及びB:0.04%を含有する組成を有する。しかし、V/Nbが2.78と大きすぎるため、MC炭化物の分布が外層内周側に偏る傾向があり、外層と内層との境界の健全性が不十分である。
 従って本発明の目的は、圧延使用域全体にわたって耐摩耗性が良好で、鋳造欠陥の発生が抑制され、かつ外層と内層との境界が健全な熱間圧延用遠心鋳造複合ロールを提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者は、ホットストリップミルに用いる熱間圧延用複合ロールの外層において、耐摩耗性に寄与するMC炭化物が主に初径から廃却径までの使用域に分布するように、V及びNbを含む構成元素の組成を最適化するとともに、V/Nb比及びV当量(Veq=V+0.55Nb)を所定の範囲に限定することにより、使用域において比較的均一に優れた耐摩耗性を有し、鋳造欠陥の発生が抑制され、かつ内層との境界が健全な外層が得られることを発見し、本発明に想到した。
 すなわち、本発明の熱間圧延用遠心鋳造複合ロールは、質量基準でC:2.6~3.6%、Si:0.1~3%、Mn:0.3~2%、Ni:2.3~5.5%、Cr:0.5~3.2%、Mo:0.3~1.6%、V:1.8~3.4%、及びNb:0.7~2.4%を含有し、1.4≦V/Nb≦2.7であり、V当量(Veq=V+0.55Nb)が2.60~4質量%であり、残部がFe及び不純物からなる化学組成を有するFe基合金からなる外層に、鉄系合金からなる内層が溶着一体化していることを特徴とする。
 本発明の熱間圧延用遠心鋳造複合ロールにおいて、前記外層はさらにB:0.06質量%以下を含有するのが好ましい。
 本発明の熱間圧延用遠心鋳造複合ロールにおいて、前記外層はさらに質量基準でW:0.01~3%、Ti:0.01~0.5%、Al:0.001~0.5%、Zr:0.01~0.5%、及びCo:0.1~5%のうちいずれか1種以上を含有するのが好ましい。
 本発明の熱間圧延用遠心鋳造複合ロールにおいて、前記外層のV当量は3.8質量%以下であるのが好ましい。
 本発明の熱間圧延用遠心鋳造複合ロールにおいて、前記外層は面積基準で0.3~5%の黒鉛粒子、及び2~20%のMC炭化物を含有するのが好ましい。
 本発明の熱間圧延用遠心鋳造複合ロールの外層は1.8~3.4質量%のV及び0.7~2.4質量%のNbを含有するとともに、1.4≦V/Nb≦2.7、及びV当量(Veq=V+0.55Nb)が2.60~4質量%の条件を満たすので、表層部及び深部の両方で優れた耐摩耗性を有するとともに、鋳造欠陥の発生が抑制され、かつ内層(中間層を有する場合には中間層)との境界が健全である。そのため、本発明の熱間圧延用遠心鋳造複合ロールは、ホットストリップミルの仕上げ圧延機に用いるのに好適である。
 本発明の熱間圧延用遠心鋳造複合ロールは圧延条件の厳しいホットストリップミルのワークロールとして使用するのに好適であるが、勿論線材用熱間圧延ロール、形鋼用熱間圧延ロール等としても使用できる。
本発明の熱間圧延用遠心鋳造複合ロールを示す概略断面図である。 外層の使用域におけるMC炭化物の分布を概略的に示すグラフである。 本発明の熱間圧延用遠心鋳造複合ロールの製造に用いる鋳型の一例を示す分解断面図である。 本発明の熱間圧延用遠心鋳造複合ロールの製造に用いる鋳型の一例を示す断面図である。
 本発明の実施形態を以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の変更をしても良い。特に断りがなければ、単に「%」と記載しているときは「質量%」を意味する。
[1] 熱間圧延用遠心鋳造複合ロール
 図1は、遠心鋳造法により形成された外層1と、外層1に溶着一体化した内層2とからなる熱間圧延用複合ロール10を示す。内層2は、外層1に溶着した胴芯部21と、胴芯部21の両端から一体的に延出する軸部22、23とを有する。
(A) 外層
(i) 組成
 本発明の熱間圧延用遠心鋳造複合ロールにおける外層の組成は、外層を形成するのに用いた鉄基合金溶湯の組成により表す。鉄基合金溶湯の組成は外層全体の平均組成に相当する。外層を形成するFe基合金は、基本的に「高合金グレン鋳鉄」のカテゴリーに入るものである。
(a) 必須元素
(1) C:2.6~3.6質量%
 CはV、Nb、Cr及びMoと結合して硬質の炭化物を生成し、耐摩耗性の向上に寄与する。またSi及びNi等の黒鉛化促進元素により組織中に黒鉛として晶出し、もって外層に耐焼付性を付与するとともに、外層の靭性を向上させる。Cが2.6質量%未満では黒鉛の晶出が不十分であるだけでなく、硬質の炭化物の晶出量が少なすぎて外層に十分な耐摩耗性を付与することができない。
 一方、Cが3.6質量%を超えると黒鉛が過剰となるとともに、その形状も紐状となり、外層の強度が低下する。また炭化物の晶出量が過多となって外層の靱性が低下し、耐クラック性が低下するため、圧延によるクラックが深くなり、ロール損失が増加する。Cの含有量の下限は好ましくは2.7質量%であり、より好ましくは2.8質量%である。Cの含有量の上限は好ましくは3.5質量%であり、より好ましくは3.4質量%である。Cの含有量の好ましい範囲の一例は2.7~3.5質量%であり、より好ましい範囲の一例は2.8~3.4質量%である。
(2) Si:0.1~3質量%
 Siは溶湯の脱酸により酸化物欠陥を減少するとともに、黒鉛の晶出を助長する作用を有し、耐焼付き性及び亀裂の進展の抑制に寄与する。Siが0.1質量%未満では溶湯の脱酸作用が不十分であり、黒鉛晶出の作用も少ない。一方、Siが3質量%を超えると合金基地が脆化し、外層の靱性は低下する。Siの含有量の下限は好ましくは0.5質量%であり、より好ましくは1質量%である。Siの含有量の上限は好ましくは2.8質量%であり、より好ましくは2.5質量%である。Siの含有量の好ましい範囲の一例は0.5~2.8質量%であり、より好ましい範囲の一例は1~2.5質量%である。
(3) Mn:0.3~2質量%
 Mnは溶湯の脱酸作用の他に、不純物であるSをMnSとして固定する作用を有する。Mnが0.3質量%未満ではそれらの効果は不十分である。一方、Mnが2質量%を超えてもさらなる効果は得られない。Mnの含有量の下限は好ましくは0.4質量%であり、より好ましくは0.5質量%である。Mnの含有量の上限は好ましくは1.5質量%であり、より好ましくは1質量%である。Mnの含有量の好ましい範囲の一例は0.4~1.5質量%であり、より好ましい範囲の一例は0.5~1質量%である。
(4) Ni:2.3~5.5質量%
 Niは黒鉛を晶出させる作用があり、耐焼付き性に寄与する。Niはまた基地組織の焼入れ性を向上させる作用を有する。Niが2.3質量%未満ではその作用が十分に得られない。一方、Niが5.5質量%を超えるとオーステナイトが安定化しすぎ、ベイナイト又はマルテンサイトに変態しにくくなる。Niの含有量の下限は好ましくは2.5質量%であり、より好ましくは3質量%であり、更に好ましくは3.5質量%である。Niの含有量の上限は好ましくは5質量%であり、より好ましくは4.8質量%である。Niの含有量の好ましい範囲の一例は2.5~5質量%であり、より好ましい範囲の一例は3~4.8質量%であり、さらに好ましい範囲の一例は3.5~4.8質量%である。
(5) Cr:0.5~3.2質量%
 Crは焼き入れ性を向上させるとともに、基地をベイナイト又はマルテンサイトにして硬さを保持し、耐摩耗性を維持するのに有効な元素である。Crが0.5質量%未満ではその添加効果は不十分である。一方、Crが3.2質量%を超えると、黒鉛の晶出を阻害するだけでなく、粗大な共晶炭化物を形成し、基地組織の靭性を低下させる。Crの含有量の下限は好ましくは0.7質量%であり、より好ましくは1質量%である。Crの含有量の上限は好ましくは2.8質量%であり、より好ましくは2.5質量%であり、更に好ましくは2.3質量%である。Crの含有量の好ましい範囲の一例は0.7~2.8質量%であり、より好ましい範囲の一例は1~2.5質量%であり、さらに好ましい範囲の一例は1~2.3質量%である。
(6) Mo:0.3~1.6質量%
 MoはCと結合して硬質のMo炭化物を形成し、外層の硬さを増加させるとともに、基地の焼入れ性を向上させる。Moが0.3質量%未満ではそれらの効果は不十分である。一方、Moが1.6質量%を超えると、外層の靭性が劣化し、白銑化傾向が強くなるので黒鉛の晶出を阻害する。Moの含有量の下限は好ましくは0.4質量%である。Moの含有量の上限は好ましくは1.3質量%であり、より好ましくは1質量%である。Moの含有量の好ましい範囲の一例は0.4~1.3質量%であり、より好ましい範囲の一例は0.4~1質量%である。
(7) V:1.8~3.4質量%
 VはCと結合して硬質のMC炭化物を生成する元素である。Vが1.8質量%未満では、MC炭化物の晶出量は不十分である。一方、Vが3.4質量%を超えると、(a) 比重の軽いVC炭化物が遠心鋳造中の遠心力により外層の内側に濃化し、MC炭化物の分布が最大になる範囲が外層の初径から廃却径までの領域からずれてしまうだけでなく、(b) MC炭化物が粗大化して合金組織が粗くなり、圧延時に肌荒れしやすくなる。Vの含有量の下限は好ましくは1.85質量%であり、より好ましくは1.9質量%である。Vの含有量の上限は好ましくは3質量%であり、より好ましくは2.7質量%であり、最も好ましくは2.5質量%である。Vの含有量の好ましい範囲の一例は1.85~3質量%であり、より好ましい範囲の一例は1.9~2.7質量%であり、さらに好ましい範囲の一例は1.9~2.5質量%である。
(8) Nb:0.7~2.4質量%
 NbはCと結合してMC炭化物を生成する。NbをVに組合せることにより、(a) MC炭化物に固溶してMC炭化物を強化し、外層の耐摩耗性を向上させるだけでなく、(b) MC炭化物の比重を増大させ、MC炭化物が外層内周側に偏析するのを防止する。Nbが0.7質量%未満ではこれらの効果は不十分である。一方、Nbが2.4質量%を超えると、MC炭化物の比重が大きくなりすぎ、MC炭化物の分布が外周から初径までの削除領域に多くなりすぎる。また、溶湯中の酸化物やフラックスはNbCに付着する傾向があるので、NbCに付着した酸化物及びフラックスは凝固中の外層にトラップされやすい。従って、Nbの含有量が多すぎると、付着した酸化物及びフラックスによる鋳造欠陥の発生のおそれが大きくなる。Nbの含有量の下限は好ましくは0.8質量%であり、より好ましくは0.9質量%である。Nbの含有量の上限は好ましくは2.2質量%であり、より好ましくは2.0質量%である。Nbの含有量の好ましい範囲の一例は0.8~2.2質量%であり、より好ましい範囲の一例は0.9~2.0質量%である。
(9) V/Nb:1.4~2.7
 V及びNbを含有する鉄基合金を遠心鋳造してなる外層ではVC及びNbCからなるMC炭化物が晶出するが、VCは外層溶湯より小さい比重を有するので外層の内周側に偏析する傾向があり、NbCは外層溶湯より大きい比重を有するので外層の外周側に偏析する傾向がある。ところで、遠心鋳造された外層は、図2に示すように、外周側を初径Diの深さ(一般に10 mm)まで切削除去した後、初径Diから所定の深さの廃却径Dd(例えば、初径Diから50 mmの深さ)まで使用するので、初径Diから廃却径Ddまでの使用域(有効径域)にMC炭化物が主として分布するのが好ましい。
 このようなMC炭化物分布の例を図2に示す。MC炭化物分布Iでは、ピークは使用域のほぼ中央に位置し、かつ外周側(表層部)及び内層側(深部)の両方に十分なMC量が存在する。MC炭化物分布IIでは、ピークは初径Di付近に位置するが、外周側(表層部)及び内層側(深部)の両方におけるMC量は十分である。MC炭化物分布I及びIIはいずれも好ましい。これに対して、MC炭化物分布IIIでは、初径Di付近に位置するピークが高すぎ、深部でのMC量が低すぎる。そのため、外層深部での耐摩耗性が不十分である。また、MC炭化物分布IVでは、ピークが内層側付近に位置し、使用域で十分なMC炭化物が存在しない。そのため、MC炭化物分布IVを有する外層は十分な耐摩耗性を発揮できない。従って、MC炭化物分布III及びIVはいずれも好ましくない。
 NbCは溶湯中から高温で晶出するだけでなく、溶湯中の酸化物や酸化防止用フラックスとの親和性が高い(濡れ性が良い)。そのため、NbCに酸化物やフラックスが付着しやすい。NbCに付着した酸化物及びフラックスは凝固中の外層にトラップされるので、外層内に鋳造欠陥として残存しやすい。また、溶湯より比重が高いNbCは遠心分離により外周側(表層部)に偏在する傾向があるため、NbCに付着した酸化物及びフラックスによる鋳造欠陥は外層の表層部に多く現れる傾向がある。
 このような傾向を抑制するために、V及びNbは1.4≦V/Nb≦2.7の条件を満たす必要がある。V/Nbが1.4未満になると、初晶NbCの晶出量が増加し、NbCに付着した酸化物及びフラックスによる鋳造欠陥を抑制するのが困難になる。1.4≦V/Nbの条件を満たすことにより、特にV当量(Veq)が2.60質量%以上の溶湯でも、NbCの晶出量を適度に抑え、外層内の鋳造欠陥を防止することが可能となる。V/Nbの下限は1.45が好ましく、1.5がより好ましい。
 一方、V/Nbが2.7を超えると、比重の小さいVCの割合が増えて、MC炭化物は遠心鋳造外層の内周側に多く偏析するようになり、使用域におけるMC炭化物の分布が少なくなるとともに、外層の内周側(深部)に濃化する。高融点のMC炭化物は内層(中間層がある場合には中間層)の鋳造時に再溶融しにくいので、Veqが2.6を超えると深部へのMC炭化物の濃化が顕著になり、外層と内層(中間層がある場合には中間層)との溶着を阻害し、両層境界の健全性を損なう。V/Nbの上限は2.65が好ましく、2.6がより好ましい。V/Nbの好ましい範囲の一例は1.45~2.65であり、より好ましい範囲の一例は1.5~2.6である。
(10) V当量:2.60~4質量%
 外層に形成されるMC炭化物の量はV当量(Veq=V+0.55Nb)により表すことができる。Veqが大きいほど、MC炭化物が多く晶出される。Veqは2.60~4質量%である。Veqが2.60質量%未満であると、耐摩耗性に効果のあるMC炭化物が少なすぎる。Veqの下限は2.65質量%が好ましく、2.7質量%がより好ましく、2.8質量%が最も好ましい。一方、Veqが多くなりすぎるとMC炭化物以外のセメンタイトや黒鉛が少なくなりすぎる。必要量のセメンタイト及び黒鉛を確保するためにはMC炭化物に応じたCを添加すれば良いが、C及びVeqを多く添加しすぎると鉄基地より早く凝固するMC炭化物の量が多くなりすぎる。凝固時に液相中にMC炭化物が多いと、MC炭化物の偏析が起こりやすい。このため、Veqを4質量%以下とする。Veqは3.8質量%以下が好ましく、3.6質量%以下がより好ましく、3.2質量%以下が最も好ましい。V当量の好ましい範囲の一例は2.65~3.8質量%であり、より好ましい範囲の一例は2.7~3.6質量%であり、最も好ましい範囲の一例は2.8~3.2質量%である。
(b) 任意組成
 本発明の熱間圧延用遠心鋳造複合ロールの外層は、上記必須元素の他に下記元素を含有しても良い。
(1) B:0.06質量%以下
 Bは炭化物を微細化する作用を有する。また微量のBは黒鉛の晶出に寄与する。しかしBが0.06質量%を超えると、白銑化効果が強くなり黒鉛が晶出しにくくなる。従って、Bの含有量は0.06質量%以下であるのが好ましい。Bの添加効果を得るために、Bの含有量の下限はより好ましくは0.001質量%であり、最も好ましくは0.002質量%である。Bの含有量の上限はより好ましくは0.04質量%である。Bの含有量のより好ましい範囲の一例は0.001~0.04質量%であり、最も好ましい範囲の一例は0.002~0.04質量%である。
(2) W:0.01~3質量%
 WはCと結合して硬質のM2Cの炭化物を生成し、外層の耐摩耗性向上に寄与する。またMC炭化物にも固溶してその比重を増加させ、偏析を軽減させる作用を有する。しかし、Wが3質量%を超えると、溶湯の比重を重くするため、炭化物偏析が発生しやすくなる。従って、Wを添加する場合、その好ましい含有量は3質量%以下である。一方、Wが0.01質量%未満であると、その添加効果は不十分である。Wの含有量の下限はより好ましくは0.02質量%である。Wの含有量の上限はより好ましくは2.9質量%である。Wの含有量のより好ましい範囲の一例は0.02~2.9質量%である。
(3) Zr:0.01~0.5質量%
 ZrはCと結合してMC炭化物を生成し、外層の耐摩耗性を向上させる。また溶湯中で生成したZr酸化物は結晶核として作用するために、凝固組織が微細になる。またMC炭化物の比重を増加させ偏析を防止する。しかし、Zrが0.5質量%を超えると、介在物を生成し好ましくない。従って、Zrを添加する場合、その含有量は0.5質量%以下が好ましい。一方、Zrが0.01質量%未満では、その添加効果は不十分である。Zrの含有量の下限はより好ましくは0.02質量%である。Zrの含有量の上限はより好ましくは0.4質量%である。Zrの含有量のより好ましい範囲の一例は0.02~0.4質量%である。
(4) Co:0.1~5質量%
 Coは基地組織の強化に有効な元素である。また、Coは黒鉛を晶出し易くする。しかし、Coが5質量%を超えると外層の靱性は低下する。従って、Coを添加する場合、その含有量は5質量%以下が好ましい。一方、Coが0.1質量%未満では、その添加効果は不十分である。Coの含有量の下限はより好ましくは0.2質量%である。Coの含有量の上限はより好ましくは4.9質量%である。Coの含有量のより好ましい範囲の一例は0.2~4.9質量%である。
(5) Ti:0.01~0.5質量%
 Tiは黒鉛化阻害元素であるN及びOと結合し、酸化物又は窒化物を形成する。酸化物又は窒化物は溶湯中に懸濁されて核となり、MC炭化物を微細化及び均質化する。しかし、Tiが0.5質量%を超えると、溶湯の粘性が増加し、鋳造欠陥が発生しやすくなる。従って、Tiを添加する場合、その好ましい含有量は0.5質量%以下である。一方、Tiが0.01質量%未満ではその添加効果は不十分である。Tiの含有量の下限はより好ましくは0.02質量%である。Tiの含有量の上限はより好ましくは0.4質量%である。Tiの含有量のより好ましい範囲の一例は0.02~0.4質量%である。
(6) Al:0.001~0.5質量%
 Alは黒鉛化阻害元素であるN及びOと結合して、酸化物又は窒化物を形成し、それが溶湯中に懸濁されて核となり、MC炭化物を微細均一に晶出させる。しかし、Alが0.5質量%を超えると、外層が脆くなり、機械的性質の劣化を招く。従って、Alを添加する場合、その好ましい含有量は0.5質量%以下である。一方、Alの含有量が0.001質量%未満では、その添加効果は不十分である。Alの含有量の下限はより好ましくは0.01質量%、更に好ましくは0.02質量%である。Alの含有量の上限はより好ましくは0.4質量%である。Alの含有量のより好ましい範囲の一例は0.01~0.4質量%であり、さらに好ましくは0.02~0.4質量%である。
(c) 不純物
 外層組成の残部はFe及び不純物からなる。P、S、Cu等は不純物元素で微量の混入が避けられないが、黒鉛形成に影響することが知られている。特にP及びSは微量でも黒鉛に影響することが知られている。本発明の遠心鋳造複合ロールにおいても好ましい面積率の黒鉛粒子を得るために、不純物元素の含有量を制御する必要がある。また、P及びSは機械的性質の劣化を招くので、その含有量は所定のレベルに抑制しなければならない。Cuも黒鉛に影響するが、微量な範囲での影響度は小さい。その他の不可避的不純物としてCa、Ba、Mg、Sb、Te、Ce等の元素が挙げられる。具体的には、P及びSの含有量はそれぞれ0.1質量%以下、Cuは0.5質量%以下、Ca及びBaはそれぞれ0.05質量%以下、Mgは0.07質量%以下、Sbは0.05質量%以下、Te及びCeはそれぞれ0.03質量%以下の範囲内であれば、本発明の効果をほとんど損なわないため許容できる。
(ii) 組織
 本発明の熱間圧延用遠心鋳造複合ロールの外層の組織は、基地、黒鉛、MC炭化物及びセメンタイトからなる。本発明の熱間圧延用遠心鋳造複合ロールにおける外層の組織は、面積基準で0.3~5%の黒鉛粒子、及び2~20%のMC炭化物を含有するのが好ましい。外層の基地組織は実質的にマルテンサイト、ベイナイト又はパーライトからなるのが好ましい。外層の基地組織はさらに15~45面積%のセメンタイト相を有するのが好ましい。
(a) 黒鉛粒子の面積率:0.3~5%
 外層組織に晶出する黒鉛粒子の面積率は0.3~5%であるのが好ましい。黒鉛粒子の面積率が0.3%未満では、外層の耐焼付性向上の効果が不十分である。一方、黒鉛粒子が5面積%を超えると、外層の機械的性質は低下する。黒鉛粒子の面積率の下限は0.5%がより好ましく、1%が最も好ましい。一方、黒鉛粒子の面積率の上限は、4%がより好ましく、3%が最も好ましい。黒鉛粒子の面積率のより好ましい範囲の一例は0.5~4%であり、最も好ましい範囲の一例は1~3%である。
(b) MC炭化物の面積率:2~20%
 外層組織に晶出するMC炭化物の面積率が2%未満であると、外層は十分な耐摩耗性を有さないことがある。また黒鉛との共存関係によりMC炭化物の面積率を20%超にするのは困難である。MC炭化物の面積率は、2.2%以上がより好ましく、2.5%以上が更に好ましい。また黒鉛粒子の面積率を0.3~5%とするために、MC炭化物は17%以下がより好ましく、15%以下がさらに好ましく、10%以下が最も好ましい。MC炭化物の面積率のより好ましい範囲の一例は2~17%であり、さらに好ましい範囲の一例は2~15%であり、最も好ましい範囲の一例は2~10%である。
(B) 内層
 内層を形成する鉄系合金としては、強靭なダクタイル鋳鉄(球状黒鉛鋳鉄)であるのが好ましい。内層の組成は、内層を形成するのに用いた鉄基合金溶湯の組成により表す。鉄基合金溶湯の組成は内層全体の平均組成に相当する。ダクタイル鋳鉄の溶湯組成は、質量基準でC:2.3~3.6%、Si:1.5~3.5%、Mn:0.2~2%、Ni:0.3~2%、Cr:0.05~1%、Mo:0.05~1%、及びMg:0.01~0.08%を含有し、残部Fe及び不純物からなるのが好ましい。上記必須元素の他に、Nb:0.7%以下、及びW:0.7%以下を含有しても良い。ダクタイル鋳鉄は、鉄基地がフェライト及びパーライトを主体とし、その他は黒鉛及び微量のセメンタイトを主に含む。外層と内層との間に、成分混入の抑制や緩衝等の目的で中間層を介在させても良い。
[2] 熱間圧延用遠心鋳造複合ロールの製造方法
 本発明の熱間圧延用遠心鋳造複合ロールは、遠心鋳造用金型内に、質量基準でC:2.6~3.6%、Si:0.1~3%、Mn:0.3~2%、Ni:2.3~5.5%、Cr:0.5~3.2%、Mo:0.3~1.6%、V:1.8~3.4%、及びNb:0.7~2.4%を含有し、1.4≦V/Nb≦2.7であり、V当量(Veq=V+0.55Nb)が2.60~4質量%であり、残部がFe及び不純物からなるFe基合金からなる化学組成を有する外層用溶湯を、オーステナイト析出開始温度+(30~150)℃の温度、重力倍数で60~200 Gの範囲内の遠心力、かつ0.5~3 mm/sの平均積層速度で鋳込み、前記外層を鋳造することにより製造することができる。平均積層速度の下限は0.6 mm/sが好ましく、上限は2.5 mm/sが好ましい。ここで、外層の「平均積層速度」は、鋳造により積層される外層の厚さを鋳込み時間で割った値、すなわち単位時間当たりの外層の厚さ増加速度である。
 図3(a) 及び図3(b) は、遠心鋳造用円筒状鋳型30で外層1を遠心鋳造した後に内層2を鋳造するのに用いる静置鋳造用鋳型の一例を示す。静置鋳造用鋳型100は、内面に外層1を有する円筒状鋳型30と、その上下端に設けられた上型40及び下型50とからなる。円筒状鋳型30は鋳型本体31と、その内側に形成された離型層32と、鋳型本体31及び離型層32の上下端部に設けられた鋳型端部33とからなる。上型40は鋳型本体41と、その内側に形成された砂型42とからなる。下型50は鋳型本体51と、その内側に形成された砂型52とからなる。下型50には内層用溶湯を保持するための底板53が設けられている。円筒状鋳型30内の外層1の内面は内層2の胴芯部21を形成するためのキャビティ60aを有し、上型40は内層2の軸部23を形成するためのキャビティ60bを有し、下型50は内層2の軸部22を形成するためのキャビティ60cを有する。円筒状鋳型30を用いる遠心鋳造法は水平型、傾斜型又は垂直型のいずれでも良い。
 軸部22形成用の下型50の上端部54上に、外層1を遠心鋳造した円筒状鋳型30を起立させて設置し、円筒状鋳型30の上に軸部23形成用の上型40を設置すると、静置鋳造用鋳型100が構成される。静置鋳造用鋳型100において、外層1内のキャビティ60aは上型40のキャビティ60b及び下型50のキャビティ60cと連通し、内層1全体を一体的に形成するキャビティ60が構成される。
 遠心鋳造法により形成した外層1の凝固後に、内層2用のダクタイル鋳鉄溶湯が上型40の上方開口部43からキャビティ60内に注入されるに従い、キャビティ60内の溶湯の湯面は下型50から上型40まで次第に上昇し、軸部22、胴芯部21及び軸部23からなる内層2が一体的に鋳造される。
 本発明を実施例により更に詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1~4及び比較例1~4
 図3(a) に示す構造の円筒状鋳型30(内径800 mm、及び長さ2500 mm)を水平型の遠心鋳造機に設置し、表1に示す組成の各溶湯を、表2に示す温度、重力倍数及び平均積層速度で鋳込み、外層1を遠心鋳造した。外層1が凝固した後、内面に外層1(厚さ:90 mm)が形成された円筒状鋳型30を起立させ、軸部22形成用の中空状下型50(内径600 mm、及び長さ1500 mm)の上に円筒状鋳型30を立設し、円筒状鋳型30の上に軸部23形成用の中空状上型40(内径600 mm、及び長さ2000 mm)を立設し、図3(b) に示す静置鋳造用鋳型100を構成した。
 静置鋳造用鋳型100のキャビティ60に、質量基準でC:3.0%、Si:2.6%、Mn:0.3%、Ni:1.4%、Cr:0.1%、Mo:0.2%、Mg:0.05%、P:0.03%、及びS:0.03%を含有し、残部がFe及び不純物である化学組成を有するダクタイル鋳鉄溶湯を上方開口部43から注湯し、途中でSiを含む黒鉛化接種材を接種して、外層1の内面に内層2が一体的に溶着した複合ロールを製造した。
Figure JPOXMLDOC01-appb-T000001
注:(1) 外層の平均組成に相当する。
 
Figure JPOXMLDOC01-appb-T000002
注:(1) Veq=V+0.55Nb(単位:質量%)。
 
Figure JPOXMLDOC01-appb-T000003
注:(1) γはオーステナイト析出開始温度。
 
 実施例1~4及び比較例1~4の各複合ロールについて、外層と内層との境界の健全性、外層内におけるMC炭化物の分布、外層の表層部及び深部の耐摩耗性、及び外層内の鋳造欠陥を以下の方法により測定した。
(1) 外層と内層との境界の健全性
 超音波探触子を用いて外層の表面全体を走査する超音波探傷検査法により外層内の欠陥を探査し、以下の基準で評価した。
 〇:外層と内層の境界に直径10 mm以上の欠陥が存在しなかった。
 ×:外層と内層の境界に直径10 mm以上の欠陥が存在した。
(2) 外層内におけるMC炭化物の分布
 各外層の長手方向端部において、初径Diの位置(黒皮から約10 mmの深さの位置)、及び初径Diからそれぞれ10 mm、20 mm、30 mm、40 mm及び50 mmの深さの位置での外層組織を顕微鏡観察し、MC炭化物の分布を図2に示すI~IVのパターンに分類した。
(3) 外層の使用層の平均的な耐摩耗性
 外層の使用層の平均的な耐摩耗性をV当量(Veq=V+0.55Nb)分布に基づき以下の基準で判定した。
 ○:外層材として使用した溶湯組成におけるV当量が2.6以上の場合。
 ×:外層材として使用した溶湯組成におけるV当量が2.6未満の場合。
(3) 外層の使用層の表層部及び深部における耐摩耗性
 外層の使用層の表層部及び深部における耐摩耗性をV当量(Veq=V+0.55Nb)分布に基づき以下の基準で判定した。
 ×:使用層内の表層部及び深部の各部で最も低いV当量が外層溶湯の平均V当量の60%未満である場合。
 △:使用層内の表層部及び深部の各部で最も低いV当量が外層溶湯の平均V当量の60以上乃至70%未満である場合。
 ○:使用層内の表層部及び深部の各部で最も低いV当量が外層溶湯の平均V当量の70%以上である場合。
(4) 外層内の鋳造欠陥
 超音波探触子を用いて外層の表面全体を走査する超音波探傷検査法により外層内の欠陥の有無を探査し、以下の基準で評価した。
 〇:外層内に直径1 mm以上の鋳造欠陥が存在しなかった。
 ×:外層内に直径1 mm以上の鋳造欠陥が存在した。
 外層と内層との境界の健全性、外層の使用層の平均的な耐摩耗性、及び表層部及び深部の耐摩耗性、及び外層内の鋳造欠陥の評価結果に基づいて、以下の基準で総合評価を行った。
 〇:全ての評価項目が○であった。
 △:×ないし△の評価項目が合計で1ないし2つであった。
 ×:×ないし△の評価項目が合計で3つ以上であった。
Figure JPOXMLDOC01-appb-T000004
注:(1) 外層の使用層全体における平均の耐摩耗性。
注:(2) 外層の使用層の表層部における耐摩耗性。
注:(3) 外層の使用層の深部における耐摩耗性。
 
 表3から明らかなように、実施例1~4の遠心鋳造複合ロールは、外層と内層との境界の健全性、外層の表層部及び深部の耐摩耗性、及び外層内の鋳造欠陥の全てにおいて優れていた。これに対して、比較例1~4の遠心鋳造複合ロールは、上記評価項目のうち1つ以上の評価項目が×であった。具体的には、比較例1及び2ではVeqが2.60未満であるので、外層の表層部及び深部のいずれも十分な耐摩耗性を有さない。また、比較例3ではV/Nbが4.37と高すぎるので、境界の健全性が悪かった。さらに、比較例4ではV/Nbが1.23と低かったので、MC炭化物の分布がIII型であり、外層深部の耐摩耗性が不十分であるのみならず、外層内に鋳造欠陥が確認された。
1・・・外層
2・・・内層
10・・・熱間圧延用遠心鋳造複合ロール
21・・・胴芯部
22,23・・・軸部
30・・・遠心鋳造用円筒状鋳型
31,41,51・・・鋳型本体
32・・・離型層
33・・・鋳型端部
42,52・・・砂型
40・・・静置鋳造用上型
50・・・静置鋳造用下型
60,60a,60b,60c・・・キャビティ
100・・・静置鋳造用鋳型

Claims (5)

  1.  質量基準でC:2.6~3.6%、Si:0.1~3%、Mn:0.3~2%、Ni:2.3~5.5%、Cr:0.5~3.2%、Mo:0.3~1.6%、V:1.8~3.4%、及びNb:0.7~2.4%を含有し、1.4≦V/Nb≦2.7であり、V当量(Veq=V+0.55Nb)が2.60~4質量%であり、残部がFe及び不純物からなる化学組成を有するFe基合金からなる外層に、鉄系合金からなる内層が溶着一体化したことを特徴とする熱間圧延用遠心鋳造複合ロール。
  2.  請求項1に記載の熱間圧延用遠心鋳造複合ロールにおいて、前記外層がさらにB:0.06質量%以下を含有することを特徴とする熱間圧延用遠心鋳造複合ロール。
  3.  請求項1又は2に記載の熱間圧延用遠心鋳造複合ロールにおいて、前記外層がさらに質量基準でW:0.01~3%、Ti:0.01~0.5%、Al:0.001~0.5%、Zr:0.01~0.5%、及びCo:0.1~5%のうちいずれか1種以上を含有することを特徴とする熱間圧延用遠心鋳造複合ロール。
  4.  請求項1~3のいずれかに記載の熱間圧延用遠心鋳造複合ロールにおいて、前記外層のV当量が3.8質量%以下であることを特徴とする熱間圧延用遠心鋳造複合ロール。
  5.  請求項1~4のいずれかに記載の熱間圧延用遠心鋳造複合ロールにおいて、前記外層が面積基準で0.3~5%の黒鉛粒子、及び2~20%のMC炭化物を含有することを特徴とする熱間圧延用遠心鋳造複合ロール。
PCT/JP2020/039148 2019-10-16 2020-10-16 熱間圧延用遠心鋳造複合ロール WO2021075561A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/762,548 US11712723B2 (en) 2019-10-16 2020-10-16 Centrifugally cast composite roll for hot rolling
EP20876091.8A EP4019155A4 (en) 2019-10-16 2020-10-16 CENTRIFUGAL CAST COMPOSITE ROLLER FOR USE IN HOT ROLLING
KR1020227009876A KR20220084025A (ko) 2019-10-16 2020-10-16 열간 압연용 원심 주조 복합 롤
CN202080071546.XA CN114555252B (zh) 2019-10-16 2020-10-16 热轧用离心铸造复合辊
JP2021552475A JPWO2021075561A1 (ja) 2019-10-16 2020-10-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019189441 2019-10-16
JP2019-189441 2019-10-16

Publications (1)

Publication Number Publication Date
WO2021075561A1 true WO2021075561A1 (ja) 2021-04-22

Family

ID=75538102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039148 WO2021075561A1 (ja) 2019-10-16 2020-10-16 熱間圧延用遠心鋳造複合ロール

Country Status (6)

Country Link
US (1) US11712723B2 (ja)
EP (1) EP4019155A4 (ja)
JP (1) JPWO2021075561A1 (ja)
KR (1) KR20220084025A (ja)
CN (1) CN114555252B (ja)
WO (1) WO2021075561A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209073A (ja) * 1996-01-31 1997-08-12 Kubota Corp H型鋼圧延ロール用複合スリーブ
JP2001279367A (ja) 2000-03-29 2001-10-10 Nippon Steel Corp 遠心鋳造製熱間圧延用ロール
JP2003073767A (ja) 2001-08-31 2003-03-12 Kawasaki Steel Corp 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2004068142A (ja) 2001-11-28 2004-03-04 Jfe Steel Kk 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2008050681A (ja) 2006-08-28 2008-03-06 Nittetsu Sumikin Rolls Kk 遠心鋳造製圧延用複合ロ−ルの外層材
JP2015080813A (ja) 2013-10-24 2015-04-27 日鉄住金ロールズ株式会社 遠心鋳造製圧延用複合ロール
JP2015193025A (ja) 2014-03-31 2015-11-05 株式会社クボタ 圧延用複合ロール
JP2016093839A (ja) * 2014-10-31 2016-05-26 日立金属株式会社 熱間圧延用複合ロールの製造方法
JP2017185548A (ja) 2016-03-31 2017-10-12 日立金属株式会社 遠心鋳造製熱間圧延用複合ロール
JP2019183276A (ja) * 2018-03-30 2019-10-24 日立金属株式会社 熱間圧延用遠心鋳造複合ロール及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813864B (zh) * 2011-09-21 2016-04-13 日立金属株式会社 热轧用离心铸造复合辊及其制造方法
ES2562625T3 (es) * 2011-11-21 2016-03-07 Hitachi Metals, Ltd. Rodillo compuesto fundido centrífugamente y su método de producción
JP5862526B2 (ja) * 2012-09-13 2016-02-16 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP5768947B2 (ja) * 2013-05-02 2015-08-26 日立金属株式会社 遠心鋳造製熱間圧延用複合ロール
EP3050638B1 (en) * 2013-09-25 2020-02-05 Hitachi Metals, Ltd. Centrifugally cast composite roll and its production method
JP5950047B2 (ja) * 2013-09-25 2016-07-13 日立金属株式会社 遠心鋳造製熱間圧延用複合ロール
KR102219333B1 (ko) * 2013-09-25 2021-02-22 히타치 긴조쿠 가부시키가이샤 원심 주조제 열간 압연용 복합 롤
WO2018147367A1 (ja) * 2017-02-08 2018-08-16 日立金属株式会社 圧延用複合ロール及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209073A (ja) * 1996-01-31 1997-08-12 Kubota Corp H型鋼圧延ロール用複合スリーブ
JP2001279367A (ja) 2000-03-29 2001-10-10 Nippon Steel Corp 遠心鋳造製熱間圧延用ロール
JP2003073767A (ja) 2001-08-31 2003-03-12 Kawasaki Steel Corp 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2004068142A (ja) 2001-11-28 2004-03-04 Jfe Steel Kk 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2008050681A (ja) 2006-08-28 2008-03-06 Nittetsu Sumikin Rolls Kk 遠心鋳造製圧延用複合ロ−ルの外層材
JP2015080813A (ja) 2013-10-24 2015-04-27 日鉄住金ロールズ株式会社 遠心鋳造製圧延用複合ロール
JP2015193025A (ja) 2014-03-31 2015-11-05 株式会社クボタ 圧延用複合ロール
JP2016093839A (ja) * 2014-10-31 2016-05-26 日立金属株式会社 熱間圧延用複合ロールの製造方法
JP2017185548A (ja) 2016-03-31 2017-10-12 日立金属株式会社 遠心鋳造製熱間圧延用複合ロール
JP2019183276A (ja) * 2018-03-30 2019-10-24 日立金属株式会社 熱間圧延用遠心鋳造複合ロール及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4019155A4

Also Published As

Publication number Publication date
US11712723B2 (en) 2023-08-01
US20220339685A1 (en) 2022-10-27
KR20220084025A (ko) 2022-06-21
EP4019155A1 (en) 2022-06-29
CN114555252B (zh) 2024-07-16
EP4019155A4 (en) 2023-08-16
CN114555252A (zh) 2022-05-27
JPWO2021075561A1 (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
RU2610645C2 (ru) Центробежнолитой составной валок и способ его изготовления
US9718106B2 (en) Centrifugally cast, hot-rolling composite roll
US9815098B2 (en) Centrifugally cast, hot-rolling composite roll
JP6908021B2 (ja) 圧延ロール用外層及び圧延用複合ロール
US11224907B2 (en) Composite roll for rolling and its production method
WO2014178437A1 (ja) 遠心鋳造製熱間圧延用複合ロール
KR102228851B1 (ko) 압연용 롤 외층재 및 압연용 복합 롤
JP2017185548A (ja) 遠心鋳造製熱間圧延用複合ロール
KR20210040940A (ko) 압연용 원심 주조 복합 롤 및 그의 제조 방법
JP7302232B2 (ja) 熱間圧延用遠心鋳造複合ロール及びその製造方法
JP7048820B2 (ja) 遠心鋳造製圧延用複合ロール及びその製造方法
JP7063180B2 (ja) 圧延用遠心鋳造複合ロールの外層材、及び圧延用遠心鋳造複合ロール
JP6515957B2 (ja) 耐摩耗性に優れた圧延用ロール外層材および圧延用複合ロール
JP7092943B2 (ja) 遠心鋳造製圧延用複合ロール及びその製造方法
JP2016180167A (ja) 連続鋳掛け肉盛鋳造製圧延用複合ロール
WO2021075561A1 (ja) 熱間圧延用遠心鋳造複合ロール
JP6518314B2 (ja) 圧延用複合ロール
JP7136037B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552475

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020876091

Country of ref document: EP

Effective date: 20220324

NENP Non-entry into the national phase

Ref country code: DE