WO2018147367A1 - 圧延用複合ロール及びその製造方法 - Google Patents

圧延用複合ロール及びその製造方法 Download PDF

Info

Publication number
WO2018147367A1
WO2018147367A1 PCT/JP2018/004390 JP2018004390W WO2018147367A1 WO 2018147367 A1 WO2018147367 A1 WO 2018147367A1 JP 2018004390 W JP2018004390 W JP 2018004390W WO 2018147367 A1 WO2018147367 A1 WO 2018147367A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
outer layer
inner layer
rolling
layer
Prior art date
Application number
PCT/JP2018/004390
Other languages
English (en)
French (fr)
Inventor
泰則 野崎
小田 望
服部 敏幸
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP18752070.5A priority Critical patent/EP3581288B1/en
Priority to KR1020197021631A priority patent/KR102378993B1/ko
Priority to BR112019014439-0A priority patent/BR112019014439B1/pt
Priority to CN201880009237.2A priority patent/CN110290880B/zh
Priority to JP2018567487A priority patent/JP6977738B2/ja
Priority to US16/479,814 priority patent/US11192156B2/en
Publication of WO2018147367A1 publication Critical patent/WO2018147367A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/008Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2203/00Auxiliary arrangements, devices or methods in combination with rolling mills or rolling methods
    • B21B2203/18Rolls or rollers

Definitions

  • the present invention relates to a composite roll for rolling in which an outer layer excellent in wear resistance and accident resistance and an inner layer strong and excellent in wear resistance are welded and integrated, and a method for producing the same.
  • a centrifugal cast composite roll in which an outer layer made of a wear-resistant iron-base alloy formed by a centrifugal casting method and an inner layer made of tough ductile iron is welded and integrated is widely used.
  • damage such as abrasion and roughening occurs in the outer layer of the roll due to thermal and mechanical loads due to contact with the rolled material, which causes deterioration of the surface quality of the rolled material.
  • a so-called narrowing accident may occur where the rolled material overlaps between the upper and lower rolls when moving between the stands.
  • the rolled material is baked on the surface of the outer layer of the roll, so that excessive thermal and mechanical loads act and cracks may occur on the surface of the outer layer of the roll.
  • the roll is replaced.
  • the roll removed from the rolling mill is incorporated into the rolling mill again after grinding and removing the damaged portion from the outer layer. Grinding and removing the damaged part from the outer layer of the roll is called “cutting”.
  • the work roll is scraped from the initial diameter to the minimum diameter (discard diameter) that can be used for rolling, and then discarded.
  • the diameter from the initial diameter to the scrap diameter is called the “rolling effective diameter”. If cutting is performed frequently due to damage to the outer layer, the productivity will decrease due to interruption of rolling, or the effective rolling diameter will be reduced by cutting, so the outer layer within the rolling effective diameter will prevent large damage. It is desirable to have excellent wear resistance, accident resistance, and rough skin resistance.
  • the composite roll 10 includes an outer layer 1 in contact with the rolled material and an inner layer 2 welded to the inner surface of the outer layer 1.
  • the inner layer 2 is made of a material different from that of the outer layer 1, and includes a body core portion 21 welded to the outer layer 1, and a driving side shaft portion 22 and a driven side shaft portion 23 that extend integrally from the body core portion 21 on both sides.
  • a clutch portion 24 used for driving torque transmission is integrally provided at the end of the driving side shaft portion 22.
  • a convex portion 25 necessary for handling the composite roll 10 and the like is integrally provided at the end of the driven side shaft portion 23.
  • the clutch portion 24 has an end surface 24a and a pair of flat cutout surfaces 24b and 24b that engage with driving means (not shown), and the convex portion 25 has an end surface 25a.
  • the shafts 22 and 23 are used without undergoing repair work until the outer layer 1 is repeatedly scrapped and discarded.
  • the rolling work may be hindered, and the shaft part may be damaged, leading to a situation where it must be discarded at an early stage.
  • the drive-side shaft portion 22 having the clutch portion 24 to which the drive torque is transmitted from the motor side is subject to high stress due to sliding with the coupling and the drive torque from the motor, and therefore is easily damaged and durable. Is the most required part.
  • centrifugal casting in which the wear resistance of the drive side shaft portion is improved while maintaining the workability of the driven side shaft portion according to International Application No. 2015/045720.
  • Proposed composite roll The composite roll made by centrifugal casting is formed by welding and integrating an outer layer formed by a centrifugal casting method and an inner layer made of ductile cast iron.
  • the outer layer has 1.3 to 3.7% C and 0.3 to 3% by mass.
  • the inner layer is composed of a Fe-based alloy and does not contain graphite, and the inner layer is welded to the outer layer, and the driving side shaft portion and the driven side integrally extend from both ends of the trunk core portion.
  • the total amount of Cr, Mo, V, Nb and W at the end of the drive side shaft is 0.35 to 2% by mass, and Cr, Mo, V at the end of the driven side shaft , Nb and W
  • the amount is 0.15 to 1.8 wt%, the former often 0.2 wt% or more than the latter.
  • an object of the present invention is to provide a composite roll for rolling in which an outer layer excellent in wear resistance and accident resistance and an inner layer strong and excellent in wear resistance are welded and integrated, and a method for producing the same. .
  • the present inventors have found that the graphite cast iron shaft part is not added to the molten metal for the inner layer, except for adding carbide-forming elements such as V from scrap materials as raw materials. It was discovered that when at least one hard MC carbide is contained in an appropriate amount from the outer layer, the wear resistance can be remarkably improved without lowering the toughness of the shaft portion, and the present invention has been conceived.
  • the composite roll for rolling of the present invention is formed by welding and integrating the outer layer and the inner layer
  • the outer layer is 1 to 3% C, 0.3 to 3% Si, 0.1 to 3% Mn, 0.1 to 5% Ni, 1 to 7% Cr, and 1 to 8 on a mass basis.
  • the inner layer is 2.4 to 3.6% C, 1.5 to 3.5% Si, 0.1 to 2% Mn, 0.1 to 2% Ni, less than 0.7% Cr and less than 0.7% by mass.
  • a hard MC having a trunk core portion in which the inner layer is welded to the outer layer and a shaft portion that integrally extends from both ends of the trunk core portion, and at least one of the shaft portions has an equivalent circle diameter of 5 ⁇ m or more. It is characterized by containing 200 carbides / cm 2 or more.
  • the outer layer preferably further contains 0.1 to 3% by mass of Nb, and the inner layer preferably contains less than 0.5% by mass of Nb.
  • the outer layer preferably further contains 0.1 to 5% by mass of W, and the inner layer preferably contains less than 0.7% by mass of W.
  • the outer layer can further contain 0.3% by mass or less of S.
  • the outer layer may further contain at least one selected from the group consisting of 0.1 to 10% Co, 0.01 to 0.5% Zr, 0.005 to 0.5% Ti, and 0.001 to 0.5% Al on a mass basis. it can.
  • the method for producing a composite roll for rolling according to the present invention comprises: (1) After centrifugally casting the outer layer with a rotating cylindrical mold for centrifugal casting, (2) When the temperature of the inner surface of the outer layer is not lower than 950 ° C. and lower than 1000 ° C., the molten inner layer at 1330-1400 ° C. is cast into the cavity of the outer layer, and the inner surface of the outer layer is remelted by a thickness of 10-30 mm It is characterized by making it.
  • the inner surface temperature of the outer layer when casting the molten inner layer is preferably 960 to 990 ° C.
  • the inner layer melt is 2.5 to 3.6% C, 1.7 to 3.3% Si, 0.1 to 1.5% Mn, 0.1 to 2% Ni, 0 to 0.5% Cr, 0 to 0.5% Mo on a mass basis. And a composition containing 0.01 to 0.1% Mg, with the balance being substantially Fe and inevitable impurities.
  • the outer layer has excellent wear resistance and accident resistance
  • hard MC is added to at least one of the graphite cast iron shaft parts without adding a carbide-forming element such as V that inhibits graphitization to the inner layer molten metal. Since a large amount of carbide is contained, a rolling composite roll having significantly improved wear resistance can be obtained without reducing the toughness of the shaft portion. Since the wear resistance of the shaft portion has been remarkably improved, a longer life as a rolling roll is achieved, which contributes to cost reduction of the rolling operation.
  • FIG. 2 is a partial perspective view showing a clutch part side of the composite roll of FIG. It is a disassembled sectional view which shows an example of the casting_mold
  • 4 is a non-corrosive optical micrograph after polishing alumina abrasive grains of a shaft section of a composite roll for rolling of Example 3.
  • Rolling composite roll (A) Outer layer
  • the outer layer constituting the rolling composite roll of the present invention is 1 to 3% C, 0.3 to 3% Si, 0.1 to 3% Mn and 0.1 to 5% Ni on a mass basis. 1-7% Cr, 1-8% Mo, 4-7% V, 0.005-0.15% N, 0.05-0.2% B, the balance being substantially It consists of Fe-based alloy consisting of Fe and inevitable impurities.
  • the outer layer preferably further contains 0.1 to 3% by mass of Nb.
  • the outer layer preferably further contains 0.1 to 5% by mass of W.
  • the outer layer may also contain 0.3 mass% or less of S. Further, the outer layer may contain at least one selected from the group consisting of 0.1 to 10% Co, 0.01 to 0.5% Zr, 0.005 to 0.5% Ti, and 0.001 to 0.5% Al on a mass basis. .
  • C 1-3% by mass C combines with V, Cr and Mo (and also Nb and W when Nb and W are contained) to form a hard carbide, contributing to the improvement of the wear resistance of the outer layer. If C is less than 1% by mass, the amount of crystallization of the hard carbide is too small to provide sufficient wear resistance to the outer layer. On the other hand, if C exceeds 3% by mass, the toughness of the outer layer decreases due to crystallization of excess carbide, and crack resistance decreases, so the cracks due to rolling become deeper and the amount of roll loss during cutting increases.
  • the lower limit of the C content is preferably 1.2% by mass, more preferably 1.5% by mass.
  • the upper limit of the C content is preferably 2.9% by mass, more preferably 2.8% by mass.
  • Si 0.3-3 mass% Si has a function of reducing oxide defects by deoxidation of the molten metal, improving the seizure resistance by solid solution in the base, and further improving the fluidity of the molten metal to prevent casting defects. If Si is less than 0.3% by mass, the deoxidation of the molten metal is insufficient, the fluidity of the molten metal is insufficient, and the defect rate is high. On the other hand, if Si exceeds 3% by mass, the alloy matrix becomes brittle and the toughness of the outer layer decreases.
  • the lower limit of the Si content is preferably 0.4% by mass, more preferably 0.5% by mass.
  • the upper limit of the Si content is preferably 2.7% by mass, more preferably 2.5% by mass.
  • Mn 0.1-3 mass%
  • MnS has an action of fixing S as MnS. Since MnS has a lubricating action and is effective in preventing seizure of the rolled material, it preferably contains a desired amount of MnS. If Mn is less than 0.1% by mass, the effect of addition is insufficient. On the other hand, even if Mn exceeds 3% by mass, no further effect can be obtained.
  • the lower limit of the Mn content is preferably 0.3% by mass.
  • the upper limit of the Mn content is preferably 2.4% by mass, more preferably 1.8% by mass.
  • Ni 0.1-5% by mass Since Ni has the effect of improving the hardenability of the base of the outer layer, the inclusion of Ni in the case of a large composite roll can prevent the occurrence of pearlite during cooling and improve the hardness of the outer layer.
  • the effect of adding Ni is hardly less than 0.1% by mass, and if it exceeds 5% by mass, austenite is over-stabilized and hardness is hardly improved.
  • the lower limit of the Ni content is preferably 0.2% by mass, more preferably 0.3% by mass, and still more preferably 0.5% by mass.
  • the upper limit of the Ni content is preferably 4% by mass, more preferably 3.5% by mass.
  • (e) Cr 1-7% by mass Cr is an effective element for maintaining the hardness and maintaining the wear resistance of the outer layer by changing the base to bainite or martensite. If the Cr content is less than 1% by mass, the effect is insufficient. If the Cr content exceeds 7% by mass, the toughness of the base structure decreases.
  • the lower limit of the Cr content is preferably 1.5% by mass, more preferably 2.5% by mass.
  • the upper limit of the Cr content is preferably 6.8% by mass.
  • Mo 1-8% by mass Mo combines with C to form hard carbides (M 6 C, M 2 C), increasing the hardness of the outer layer and improving the hardenability of the matrix.
  • Mo produces tough and hard MC carbide together with V and / or Nb, and improves wear resistance. If Mo is less than 1% by mass, these effects are insufficient. On the other hand, if Mo exceeds 8% by mass, the toughness of the outer layer decreases.
  • the lower limit of the Mo content is preferably 1.5% by mass, more preferably 2.5% by mass.
  • the upper limit of the Mo content is preferably 7.8% by mass, more preferably 7.6% by mass.
  • V 4-7% by mass
  • V is an element that combines with C to form hard MC carbide.
  • MC carbide has a Vickers hardness HV of 2500-3000 and is the hardest carbide.
  • HV Vickers hardness
  • V exceeds 7% by mass
  • MC carbide lighter in specific gravity than molten iron is concentrated inside the outer layer due to centrifugal force during centrifugal casting, and not only the MC carbide radial segregation becomes significant, but also MC carbide
  • the alloy becomes coarser and the alloy structure becomes rough, and the surface becomes rough during rolling.
  • the lower limit of the V content is preferably 4.5% by mass, more preferably 5% by mass.
  • the upper limit of the V content is preferably 6.9% by mass, more preferably 6.8% by mass.
  • N 0.005 to 0.15 mass% N has the effect of making carbide finer, but if it exceeds 0.15% by mass, the outer layer becomes brittle.
  • the upper limit of the N content is preferably 0.1% by mass.
  • the lower limit of the N content is 0.005% by mass, preferably 0.01% by mass.
  • B 0.05-0.2% by mass B dissolves in the carbide and forms a carbon boride having a lubricating action to improve the seizure resistance (accident resistance) of the outer layer. Since the lubricating action of the carbonized boride is remarkably exhibited particularly at high temperatures, it is effective for preventing seizure of the outer layer when the hot rolled material is bitten. If B is less than 0.05% by mass, sufficient lubricating action cannot be obtained. On the other hand, if B exceeds 0.2% by mass, the outer layer becomes brittle.
  • the lower limit of the B content is preferably 0.06% by mass, more preferably 0.07% by mass.
  • the upper limit of the B content is preferably 0.15% by mass, more preferably 0.1% by mass.
  • the outer layer may further contain 0.1 to 3% by mass of Nb.
  • the outer layer may contain 0.1 to 5% by mass of W.
  • the outer layer may further contain 0.3% by mass or less of S.
  • the outer layer may further contain at least one selected from the group consisting of 0.1 to 10% Co, 0.01 to 0.5% Zr, 0.005 to 0.5% Ti, and 0.001 to 0.5% Al on a mass basis. .
  • Nb 0.1-3 mass% Like V, Nb combines with C to form hard MC carbide. Nb, combined with V and Mo, solidifies in MC carbide and strengthens MC carbide, improving the wear resistance of the outer layer. Since Nb has a larger atomic weight than V, it dissolves in MC carbide mainly composed of V, so that the specific gravity of V-based MC carbide, which has a lower specific gravity than the molten iron, becomes larger. Has the effect of reducing segregation. If Nb is less than 0.1% by mass, the contribution of crystallization of MC carbide is small and there is almost no effect of increasing the amount of MC carbide dissolved in the inner layer, and the contribution to the effect of improving the damage resistance of the clutch portion is small.
  • Nb exceeds 3% by mass, the amount of MC carbides mainly composed of Nb having a specific gravity heavier than that of the molten iron increases, and it tends to concentrate and segregate on the surface side due to centrifugal force.
  • the lower limit of the Nb content is preferably 0.2% by mass.
  • the upper limit of the Nb content is preferably 2.9% by mass, more preferably 2.8% by mass.
  • W 0.1-5% by mass W combines with C to produce hard carbides such as hard M 6 C and contributes to improving the wear resistance of the outer layer. It also has the effect of reducing the segregation by increasing the specific gravity by dissolving in MC carbide. However, when W exceeds 5% by mass, M 6 C carbides increase, the structure becomes inhomogeneous, and the skin becomes rough. Therefore, when it contains W, it is 5 mass% or less. On the other hand, when W is less than 0.1% by mass, the effect is insufficient.
  • the upper limit of the W content is preferably 4% by mass, more preferably 3% by mass.
  • S When utilizing the lubricity of MnS, 0.3 mass% or less of S may be contained. However, when S exceeds 0.3% by mass, the outer layer becomes brittle.
  • the upper limit of the S content is preferably 0.2% by mass, more preferably 0.15% by mass.
  • the lower limit of the S content is more preferably 0.05% by mass.
  • Co 0.1-10% by mass Co is dissolved in the base, increasing the hot hardness of the base, and improving the wear resistance and rough skin resistance of the outer layer. If Co is less than 0.1% by mass, there is almost no effect, and if it exceeds 10% by mass, no further improvement is obtained.
  • the lower limit of the Co content is preferably 1% by mass.
  • the upper limit of the Co content is preferably 7% by mass.
  • Zr 0.01 to 0.5 mass%
  • Zr combines with C to form MC carbides, improving the wear resistance of the outer layer.
  • Zr also produces oxides that act as crystal nuclei in the molten metal, and makes the solidification structure fine.
  • Zr increases the specific gravity of MC carbide and is effective in preventing segregation.
  • the upper limit of the Zr content is more preferably 0.3% by mass. In order to obtain a sufficient addition effect, the lower limit of the Zr content is more preferably 0.02% by mass.
  • Ti 0.005 to 0.5 mass% Ti combines with C and N to form hard granular compounds such as TiC, TiN or TiCN. Since these are the cores of MC carbide, they have a homogeneous dispersion effect of MC carbide and contribute to the improvement of wear resistance and rough skin resistance of the outer layer. However, when the Ti content exceeds 0.5 mass%, the viscosity of the molten metal increases and casting defects are likely to occur.
  • the upper limit of the Ti content is more preferably 0.3% by mass, and most preferably 0.2% by mass. In order to obtain a sufficient addition effect, the lower limit of the Ti content is more preferably 0.01% by mass.
  • Al has a high affinity with oxygen, it acts as a deoxidizer. Further, Al combines with N and O, and the formed oxynitride is suspended in the molten metal to become nuclei, and MC carbide is crystallized finely and uniformly. However, if Al exceeds 0.5% by mass, the outer layer becomes brittle. Moreover, the effect is not enough if Al is less than 0.001 mass%.
  • the upper limit of the Al content is more preferably 0.3% by mass, and most preferably 0.2% by mass. In order to obtain a sufficient addition effect, the lower limit of the Al content is more preferably 0.01% by mass.
  • the balance of the composition of the outer layer is substantially composed of Fe and inevitable impurities.
  • P causes deterioration of mechanical properties, so it is preferable to reduce it.
  • the P content is preferably 0.1% by mass or less.
  • elements such as Cu, Sb, Te, and Ce may be contained within a range that does not impair the characteristics of the outer layer.
  • the total amount of inevitable impurities is preferably 0.7% by mass or less.
  • the structure of the outer layer consists of (a) MC carbide, (b) carbide mainly composed of M 2 C and M 6 C Mo (Mo-based carbide), or M 7 C 3 and M 23 C 6 Cr. It consists mainly of carbide (Cr-based carbide), (c) carboboride, and (d) base.
  • Carbon boride has a composition such as M (C, B) or M 23 (C, B) 6 .
  • the metal M is mainly at least one of Fe, Cr, Mo, V, Nb, and W, and the ratio of the metals M, C, and B varies depending on the composition. It is preferable that graphite is not present in the outer layer structure of the present invention. Since the outer layer of the composite roll for rolling of the present invention has hard MC carbide, Mo-based carbide, or Cr-based carbide, it has excellent wear resistance and is excellent in accident resistance because it contains carbon boride.
  • the inner layer of the composite roll for rolling of the present invention comprises 2.4 to 3.6% C, 1.5 to 3.5% Si, 0.1 to 2% Mn, and 0.1 to 2% Ni on a mass basis. It consists of graphite cast iron containing less than 0.7% Cr, less than 0.7% Mo, 0.05 to 1% V and 0.01 to 0.1% Mg, the balance being substantially composed of Fe and inevitable impurities.
  • Essential elements (a) C: 2.4-3.6% by mass C dissolves in the base and crystallizes as graphite.
  • the C content needs to be 2.4% by mass or more for crystallization of graphite, but if it exceeds 3.6% by mass, the mechanical properties of the inner layer are deteriorated.
  • the lower limit of the C content is preferably 2.7% by mass.
  • the upper limit of the C content is preferably 3.5% by mass.
  • Si 1.5-3.5% by mass
  • Si is an element necessary for crystallizing graphite, and must be contained in an amount of 1.5% by mass or more. However, if it exceeds 3.5% by mass, the mechanical properties of the inner layer are deteriorated.
  • the lower limit of the Si content is preferably 1.7% by mass.
  • the upper limit of the Si content is preferably 3% by mass.
  • Mn 0.1-2% by mass
  • Mn also has an action to prevent embrittlement due to S by combining with S as an impurity to produce MnS.
  • the Mn content must be 0.1% by mass or more, but if it exceeds 2% by mass, the mechanical properties of the inner layer deteriorate.
  • the lower limit of the Mn content is preferably 0.15% by mass.
  • the upper limit of the Mn content is preferably 1.2% by mass.
  • Ni 0.1-2% by mass Ni is effective as an auxiliary element for graphitization. In order to obtain the effect of graphitization, 0.1% by mass or more is necessary, and 0.2% by mass or more is preferable. In addition, since the inner surface of the outer layer melts and mixes with the inner layer during welding with the outer layer during casting of the inner layer, the Ni content of the inner layer increases when the Ni content of the outer layer is higher than that of the inner layer.
  • the transformation temperature from the austenite phase at high temperature to the pearlite phase decreases, and axial cracking of the outer layer during cooling after casting tends to occur, so the upper limit of Ni is 2 It is necessary to set it as the mass%, and 1.8 mass% is preferable.
  • (e) Cr Less than 0.7% by mass Cr combines with C to form cementite and improves the wear resistance. However, if it is too much, the mechanical properties of the inner layer are deteriorated. When Cr is 0.7% by mass or more, the mechanical properties of the inner layer deteriorate.
  • the upper limit of the Cr content is preferably 0.5% by mass.
  • the lower limit of the Cr content may be 0.05% by mass.
  • the upper limit of the Cr content is preferably 0.5% by mass.
  • Mo is a whitening element and inhibits graphitization, so its content needs to be limited.
  • Mo mixed into the inner layer from the outer layer by fusion integration with the outer layer (melting of the inner surface of the outer layer) is contained in the MC carbide or in the state of M 2 C carbide.
  • the present invention is characterized in that Mo is intentionally mixed from the outer layer to the inner layer in the form of MC carbide, and the MC carbide is left in the inner layer as it is without remelting, thereby improving the wear resistance of the inner layer. It is said.
  • the lower limit of the Mo content is preferably 0.05% by mass.
  • the upper limit of the Mo content is preferably 0.5% by mass.
  • V 0.05-1% by mass Since V is a strong whitening element and inhibits graphitization, its content is limited. Most of the V mixed from the outer layer to the inner layer due to welding integration with the outer layer (melting of the inner surface of the outer layer) is in the state of MC carbide.
  • the present invention intentionally improves the wear resistance of the inner layer while suppressing the graphitization inhibiting action of V by intentionally mixing MC carbide from the outer layer into the inner layer and leaving it in the inner layer without remelting. It is characterized by that.
  • V In order to ensure sufficient wear resistance of the inner layer, V must be 0.05% by mass or more. However, when the content of V exceeds 1% by mass, the influence of the action of inhibiting graphitization of V becomes too great.
  • the lower limit of the V content is preferably 0.1% by mass.
  • the upper limit of the V content is preferably 0.7% by mass, and more preferably 0.5% by mass.
  • Mg 0.01-0.1% by mass Mg has the effect of spheroidizing graphite. Spheroidization greatly improves the toughness of the inner layer. Mg needs to be 0.01% by mass or more for spheroidization, but 0.1% by mass or less is sufficient.
  • the lower limit of the Mg content is preferably 0.015% by mass.
  • the upper limit of the Mg content is preferably 0.05% by mass.
  • Nb is a strong whitening element and inhibits graphitization, so its content is limited.
  • Nb is contained in the outer layer, most of Nb mixed into the inner layer from the outer layer by fusion integration with the outer layer (melting of the inner surface of the outer layer) is in the state of MC carbide. If the content of Nb exceeds 0.5% by mass, the effect of Nb graphitization inhibition is too great.
  • the upper limit of the Nb content is preferably 0.4% by mass.
  • the Nb content is preferably 0.02% by mass or more because the wear resistance of the inner layer due to MC carbide can be further improved.
  • W Less than 0.7% by mass W is a carbide forming element and inhibits graphitization of the inner layer.
  • W is a carbide forming element and inhibits graphitization of the inner layer.
  • W is contained in the outer layer, it is inevitable that W is mixed into the inner layer from the outer layer due to welding and integration with the outer layer containing W (melting of the inner surface of the outer layer), but 0.7 mass for preventing W from graphitization. It is necessary to suppress it to less than%.
  • the upper limit of the W content is preferably 0.6% by mass.
  • the balance of the composition of the inner layer is substantially composed of Fe and inevitable impurities.
  • inevitable impurities P, S and N cause deterioration of mechanical properties, so it is preferable to reduce them as much as possible.
  • the P content is preferably 0.1% by mass or less
  • the S content is preferably 0.05% by mass or less
  • N is preferably 0.07% by mass or less.
  • B inhibits graphitization of the inner layer, it is preferably less than 0.05% by mass.
  • the outer layer contains elements such as Zr, Co, Ti, Al, etc., elements such as Zr, Co, Ti, Al, etc. and Ba, Cu, Sb, Te, Ce, rare earth metal elements, etc.
  • the total content of these elements is preferably 0.7% by mass or less.
  • the inner layer of the rolling composite roll of the present invention is made of graphite cast iron crystallized from graphite.
  • Graphite cast iron is softer and more deformable than white cast iron containing no graphite.
  • Graphite cast iron is classified according to the shape of graphite such as spherical, flakes, and bowls.
  • spheroidal graphite cast iron from which spheroidal graphite is crystallized is preferable for the roll inner layer material because of its high toughness.
  • the area ratio of graphite in graphite cast iron is preferably 2 to 12%. If the area ratio of graphite is less than 2%, the amount of cementite is large and the elongation of the material is insufficient, so that it cannot withstand the thermal and mechanical loads during rolling, and there is a high risk of roll breakage. On the other hand, from the upper limit of 3.6% by mass of carbon, the upper limit of the area ratio of graphite is 12%.
  • Rolling composite roll of the present invention is characterized in that at least one axial portion of the inner layer contains a hard MC carbides having a circle equivalent diameter of more than 5 [mu] m 200 / cm 2 or more.
  • the hard MC carbide is an MC-based carbide mainly containing V and containing Mo or the like (when Nb and W are included, MC-based carbide mainly containing V and / or Nb and containing Mo and W or the like).
  • Hard MC carbide which is harder than alumina abrasive grains, remains in a convex shape without being polished with alumina abrasive grains when diamond polishing and alumina abrasive polishing are sequentially performed on the plane of a specimen taken from the inner layer material. It can be confirmed by observation.
  • the drive-side shaft portion 22 having a clutch unit 24 contains a hard MC carbides having a circle equivalent diameter of more than 5 [mu] m 200 / cm 2 or more, it is possible to prevent damage to the clutch unit 24.
  • the main cause of damage to the clutch portion 24 is wear due to scratching by particles such as scales contained in the grease when sliding with the coupling.
  • the equivalent circle diameter is 5 ⁇ m or less, the hard MC carbide tends to fall off with the surrounding structure, and the effect of improving the wear resistance of the shaft portion is small.
  • the more hard MC carbide with an equivalent circle diameter of 5 ⁇ m or more the more advantageous the wear resistance, and 200 pieces / cm 2 or more are necessary.
  • the hard MC carbide having an equivalent circle diameter of 5 ⁇ m or more is preferably 300 to 5000 pieces / cm 2 . If the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more exceeds 5000 / cm 2 , the inner layer becomes too hard and sufficient toughness cannot be secured.
  • the upper limit of the equivalent circle diameter of the hard MC carbide is preferably 20 ⁇ m.
  • the other shaft part that is, the driven side shaft part 23 without the clutch part 24, is integrally provided with a convex part 25 necessary for handling and the like, so that it does not slide with the coupling. High wear resistance is not required.
  • the number of hard MC carbide having an equivalent circle diameter of 5 ⁇ m or more in the other shaft portion is preferably 20 to 80% of the one shaft portion. This is because when the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more of the other shaft portion is 20% or more of the one shaft portion, the other shaft portion is also improved in wear resistance. This is because if the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more of the part is 80% or less of the one shaft part, the workability of the other shaft part is improved, which can contribute to the reduction of the production cost. .
  • the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more of the other shaft portion is preferably 30% or more, more preferably 40% or more of the one shaft portion.
  • the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more of the other shaft portion is preferably 70% or less, more preferably 60% or less of the one shaft portion.
  • an intermediate layer having an intermediate composition between the outer layer and the inner layer can be provided for the purpose of forming a buffer layer between the outer layer and the inner layer.
  • FIG. 3 (a) and FIG. 3 (b) are for stationary casting used for casting the inner layer 2 after centrifugal casting of the outer layer 1 with the cylindrical mold 30 for centrifugal casting.
  • An example of a mold is shown.
  • the stationary casting mold 100 includes a cylindrical mold 30 having an outer layer 1 on the inner surface, and an upper mold 40 and a lower mold 50 provided at upper and lower ends thereof.
  • the inner surface of the outer layer 1 in the cylindrical mold 30 has a cavity 60a for forming the body core portion 21 of the inner layer 2, and the upper die 40 has a cavity 60b for forming the driven side shaft portion 23 of the inner layer 2.
  • the lower mold 50 has a cavity 60c for forming the drive side shaft portion 22 of the inner layer 2.
  • the centrifugal casting method using the cylindrical mold 30 may be any of horizontal type, inclined type and vertical type.
  • a flux composed of an oxide mainly composed of Si or the like is added to the inner surface of the outer layer to a thickness of 0.5 to 30 It is preferable to form an mm flux layer to prevent oxidation of the inner peripheral surface of the outer layer after solidification of the outer layer.
  • the cylindrical mold 30 obtained by centrifugally casting the outer layer 1 is placed upright on the lower die 50 for forming the drive side shaft portion 22 to form a cylindrical shape.
  • An upper mold 40 for forming the driven shaft portion 23 is placed on the mold 30 to assemble a stationary casting mold 100 for forming the inner layer 2.
  • the cavity 60a in the outer layer 1 communicates with the cavity 60b of the upper die 40 and the cavity 60c of the lower die 50, and constitutes a cavity 60 that integrally forms the entire inner layer 1.
  • 32 and 33 in the cylindrical mold 30 are sand molds.
  • 42 in the upper mold 40 and 52 in the lower mold 50 are each a sand mold.
  • the lower mold 50 is provided with a bottom plate 53 for holding the inner layer molten metal.
  • the inner layer molten metal of 1330 to 1400 ° C. is Cast into the cavity 60 from the upper opening 43. While the molten metal surface in the cavity 60 gradually rises from the lower mold 50 to the upper mold 40, the flux layer is removed, and the inner layer 2 composed of the drive side shaft portion 22, the trunk core portion 21, and the driven side shaft portion 23 is formed as the outer layer. Casted integrally with 1.
  • the composition of the inner layer melt is 2.5-3.6% C, 1.7-3.3% Si, 0.1-1.5% Mn, 0.1-2% Ni, 0-0.5% Cr, 0-0.5% by mass.
  • it contains Mo and 0.01 to 0.1% Mg, with the balance being substantially Fe and inevitable impurities.
  • the inner layer molten metal may contain about 0 to 0.1% by mass of V mixed as an inevitable impurity from raw materials such as scrap materials.
  • Other inevitable impurities include P, S, N, B, Zr, Co, Ti, Al, Ba, Cu, Sb, Te, Ce, and rare earth metal elements.
  • the inner surface of the outer layer 1 is remelted by a thickness of 10 to 30 mm according to the heat of the cast inner layer melt. Due to remelting of the inner surface of the outer layer 1, Cr, Mo, and V in the outer layer 1 (and Cr, Mo, V, Nb, and W in the case of containing Cr, Mo, V, Nb, and W) also become the inner layer 2.
  • the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more is larger in the driving side shaft portion 22 formed by the lower die 50 than in the driven side shaft portion 23 formed by the upper die 40.
  • the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more in at least the drive side shaft portion 22 is 200 pieces / cm 2 or more.
  • the reason why the drive-side shaft portion 22 has more hard MC carbide than the driven-side shaft portion 23 is considered to be because the lower mold 50 and the upper mold 40 have different degrees of convection.
  • the outer layer of the hard MC carbide cannot be remelted sufficiently (up to a thickness of 10 to 30 mm) even if a molten inner layer of 1330 to 1400 ° C is cast. from contamination in the inner layer is not sufficient, with is likely to remain defect in the boundary portion, the circle-equivalent diameter in at least one of the shaft portion can not be a more hard MC carbides 5 [mu] m 200 / cm 2 or more.
  • the lower limit of the inner surface temperature of the outer layer is preferably 960 ° C. in order to ensure a sufficient amount of hard MC carbide.
  • the inner surface temperature of the outer layer is 1000 ° C.
  • the amount of melting of the inner surface of the outer layer is too large when the molten inner layer is cast, and the inner layer is inhibited from graphitization.
  • the upper limit of the inner surface temperature of the outer layer is preferably 990 ° C.
  • the casting temperature of the inner layer molten metal is less than 1330 ° C, the inner surface of the outer layer cannot be sufficiently remelted even if the inner surface temperature of the outer layer is between 950 ° C and less than 1000 ° C. contamination is not sufficient, the circle-equivalent diameter in at least one of the shaft portion can not be a more hard MC carbides 5 [mu] m 200 / cm 2 or more.
  • the casting temperature of the inner layer molten metal is preferably 1340 ° C. or higher, more preferably 1350 ° C. or higher.
  • the casting temperature of the inner layer molten metal is preferably 1390 ° C. or lower, more preferably 1380 ° C. or lower.
  • An intermediate layer as a buffer layer between the inner layer and the inner layer may be formed by centrifugal casting on the inner surface of the outer layer cast by centrifugal casting.
  • the intermediate layer has a smaller amount of hot water than the inner layer, so the amount of heat of remelting is small, and the MC carbide contained in the outer layer remains in the intermediate layer without being remelted.
  • MC carbide having a light specific gravity is concentrated on the inner surface of the intermediate layer by the action of centrifugal force.
  • the inner surface of the intermediate layer can be remelted and MC carbide in the intermediate layer can be mixed into the inner layer.
  • Examples 1 to 6 and Comparative Examples 1 to 4 A cylindrical mold 30 (with an inner diameter of 800 mm and a length of 2500 mm) having the structure shown in Fig. 3 (a) was installed in a horizontal centrifugal casting machine, and the outer layer composition shown in Table 3 (the balance was Fe and inevitable impurities).
  • the outer layer 1 was centrifugally cast using a molten metal obtained.
  • an oxide flux mainly composed of Si was added to form a 5 mm thick flux layer on the inner surface of the outer layer.
  • the cylindrical mold 30 having the outer layer 1 (thickness: 90 mm) formed on the inner surface of the mold and the flux layer (thickness: 5 mm) formed on the inner surface is erected to form a hollow shape for forming the drive side shaft portion 22.
  • a cylindrical mold 30 is erected on a lower mold 50 (inner diameter 600 mm and length 1500 mm), and a hollow upper mold 40 (inner diameter 600 mm) for forming a driven shaft 23 on the cylindrical mold 30. , And a length of 2000 mm), and a stationary casting mold 100 shown in FIG. 3 (b) was constructed.
  • the composition shown in Table 1 (the remainder is the balance) was placed in the cavity 60 of the stationary casting mold 100. Fe and inevitable impurities) were cast from the upper opening 43 at the temperatures shown in Table 2. The molten metal surface of the ductile cast iron rises in the order of the lower mold 50 for forming the driving shaft 22, the cylindrical mold 30 for forming the trunk core 21 (outer layer 1), and the upper mold 40 for forming the driven shaft 23.
  • the flux is removed, and a part of the inner surface of the outer layer is melted by the amount of heat of the inner layer molten metal, and includes the driving side shaft portion 22, the trunk core portion 21, and the driven side shaft portion 23 inside the outer layer 1.
  • An integral inner layer 2 was formed.
  • the stationary casting mold 100 was disassembled and the composite roll was taken out and tempered at 500 ° C. Thereafter, the outer layer 1, the driving side shaft portion 22, and the driven side shaft portion 23 were processed into predetermined shapes by machining, and the clutch portion 24 and the convex portion 25 were formed.
  • Table 3 shows the compositions of the outer layer 1 and the inner layer 2 in each composite roll thus obtained (the balance is Fe and inevitable impurities).
  • the composition of the inner layer 2 is an analysis value of a portion corresponding to the drive side shaft portion 22.
  • FIG. 4 shows an optical micrograph of the shaft portion of the rolling composite roll of Example 3.
  • the black portion indicated by circle 1 is graphite
  • the gray portion surrounded by a broken line indicated by circle 2 is hard MC carbide having an equivalent circle diameter of 5 ⁇ m or more.
  • the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more was counted in any 10 visual fields (1 visual field: 660 ⁇ m ⁇ 989 ⁇ m), and an average value was obtained and converted to the number per 1 cm 2 .
  • the remelted thickness of the inner surface of the outer layer 1 and the welding state at the boundary between the outer layer 1 and the inner layer 2 were observed by ultrasonic inspection.
  • the remelt thickness of the inner surface of the outer layer 1 was calculated by subtracting the outer layer thickness obtained by ultrasonic inspection from the outer layer thickness (90 mm) before casting the inner layer.
  • Table 4 shows the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more in both shaft portions 22 and 23, the remelting depth of the outer layer 1, and the welding state at the boundary between the outer layer 1 and the inner layer 2.
  • the inner surface temperature (flux surface temperature) of the outer layer before casting the inner layer molten metal is in the range of 950 ° C. or more and lower than 1000 ° C.
  • the casting temperature of the inner layer molten metal is in the range of 1330 to 1400 ° C. It was in. Therefore, the remelt thickness of the inner surface of the outer layer when the outer layer and the inner layer were integrated with each other was in the range of 10 to 30 mm, and the outer layer and the inner layer were soundly welded and there were no defects at the boundary.
  • At least one of the driving side shaft portion and the driven side shaft portion (clutch portion) of the inner layer contains 200 MC / cm 2 or more of hard MC carbide having an equivalent circle diameter of 5 ⁇ m or more, and has excellent wear resistance. And durability was improved.
  • Comparative Example 1 the inner surface temperature of the outer layer was too low at 735 ° C. and the casting temperature of the inner layer molten metal was too high at 1410 ° C., so the remelt thickness of the inner surface of the outer layer was small, and the boundary between the outer layer and the inner layer
  • the number of hard MC carbides having an equivalent circle diameter of 5 ⁇ m or more was less than 200 / cm 2 at any shaft portion.
  • the inner layer temperature of the outer layer was too low at 905 ° C, and the casting temperature of the inner layer molten metal was too low at 1315 ° C, so that the remelted thickness of the inner surface of the outer layer was not too thin at 5mm, The number of hard MC carbides mixed in the inner layer due to remelting of the inner surface was too small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

外層と内層とが溶着一体化してなり、外層が、質量基準で1~3%のCと、0.3~3%のSiと、0.1~3%のMnと、0.1~5%のNiと、1~7%のCrと、1~8%のMoと、4~7%のVと、0.005~0.15%のNと、0.05~0.2%のBとを含有するFe基合金からなり、内層が、質量基準で2.4~3.6%のCと、1.5~3.5%のSiと、0.1~2%のMnと、0.1~2%のNiと、0.7%未満のCrと、0.7%未満のMoと、0.05~1%のVと、0.01~0.1%のMgとを含有する黒鉛鋳鉄からなり、内層が外層に溶着した胴芯部と、胴芯部の両端から一体的に延出する軸部とを有し、軸部の少なくとも一方が5μm以上の円相当径を有する硬質MC炭化物を200個/cm2以上含有する圧延用複合ロール。

Description

圧延用複合ロール及びその製造方法
 本発明は、耐摩耗性及び耐事故性に優れた外層と、強靭で耐摩耗性に優れた内層とが溶着一体化した圧延用複合ロール、及びその製造方法に関する。
 熱間圧延用のワークロールとして、遠心鋳造法により形成した耐摩耗性鉄基合金からなる外層と、強靭なダクタイル鋳鉄からなる内層を溶着一体化した遠心鋳造製複合ロールが広く用いられている。遠心鋳造製複合ロールでは、圧延材との接触による熱的及び機械的負荷によりロール外層に摩耗及び肌荒れ等の損傷が起こり、圧延材の表面品質の劣化の原因となる。また、複合ロールが熱間仕上圧延機の後段で使用される場合、圧延材がスタンド間を移動するときに重なって上下ロール間に噛みこむいわゆる絞り込み事故に遭遇することがあり、このような絞り込み事故では圧延材がロール外層の表面に焼付くため、過大な熱的、機械的負荷が作用し、ロール外層表面にクラックが発生することがある。
 そのため、外層の損傷がある程度進行すると、ロールの交換が行われる。圧延機から取り外したロールは、外層から損傷部を研削除去した後、再び圧延機に組み込まれる。ロール外層から損傷部を研削除去することは「改削」と呼ばれる。ワークロールは、初径から圧延に使用可能な最小径(廃却径)まで改削された後、廃却される。初径から廃却径までを「圧延有効径」と呼ぶ。外層の損傷のために改削が頻繁に行われると圧延の中断により生産性が低下したり、改削により圧延有効径が小さくなるので、圧延有効径内の外層は、大きな損傷を防止するために優れた耐摩耗性、耐事故性及び耐肌荒れ性を有するのが望ましい。
 図1に示すように、複合ロール10は、圧延材と接する外層1と、外層1の内面に溶着した内層2とからなる。内層2は外層1と異なる材質からなり、外層1に溶着した胴芯部21と、胴芯部21から一体的に両側に延びる駆動側軸部22及び従動側軸部23とからなる。駆動側軸部22の端部には、駆動トルク伝達に用いるクラッチ部24が一体的に設けられている。また従動側軸部23の端部には、複合ロール10のハンドリング等に必要な凸状部25が一体的に設けられている。クラッチ部24は端面24aと、駆動手段(図示せず)と係合する一対の平坦な切欠き面24b,24bとを有し、凸状部25は端面25aを有する。
 通常、軸部22、23は、外層1が改削を繰り返して廃却に至るまでの間、補修作業を受けることなく使用されているが、近年の外層1の長寿命化に伴い、軸部の損傷が進行して、圧延作業に支障を来すこともあり、軸部の損傷を原因として、早期に廃却せざるを得ない状況に至ることもあった。特に、モーター側から駆動トルクが伝達されるクラッチ部24を有する駆動側軸部22は、カップリングとの摺動やモーターからの駆動トルクによる高い応力を受けるため、損傷が発生しやすく、耐久性が最も要求される部位である。
 上記した軸部の損傷の問題を解決するため、本出願人は国際出願第2015/045720号により、従動側軸部の加工性を維持したまま駆動側軸部の耐摩耗性を改善した遠心鋳造製複合ロールを提案した。この遠心鋳造製複合ロールは、遠心鋳造法により形成した外層とダクタイル鋳鉄からなる内層とが溶着一体化したもので、前記外層は、質量基準で1.3~3.7%のCと、0.3~3%のSiと、0.1~3%のMnと、1~7%のCrと、1~8%のMoと、2.5~7%のV、0.1~3%のNb及び0.1~5%のWからなる群から選ばれた少なくとも一種であって、Vが必須である元素と、0.01~0.2%のB及び/又は0.05~0.3%のSとを含有し、残部が実質的にFe及び不可避的不純物からなるFe基合金からなるとともに、黒鉛を含有しない組織を有し、前記内層は、前記外層に溶着した胴芯部と、前記胴芯部の両端から一体的に延出する駆動側軸部及び従動側軸部とを有し、前記駆動側軸部の端部におけるCr、Mo、V、Nb及びWの合計量は0.35~2質量%で、前記従動側軸部の端部におけるCr、Mo、V、Nb及びWの合計量は0.15~1.8質量%であり、前者は後者より0.2質量%以上多い。
 国際出願第2015/045720号の遠心鋳造製複合ロールでは、軸部の耐摩耗性が改善されているものの、近年の胴部の長寿命化に対応するために更なる改善が望まれる。内層を構成するダクタイル鋳鉄の耐摩耗性を向上するためには、通常ダクタイル鋳鉄にV、Nb等の炭化物形成元素を添加して、セメンタイトではない硬質炭化物(MC炭化物等)を晶出させるのが有効であるが、これらの炭化物形成元素は、ダクタイル鋳鉄の黒鉛化を阻害し、ダクタイル鋳鉄の伸びを低下させる。従って、軸部の長寿命化には限界があった。
 従って本発明の目的は、耐摩耗性及び耐事故性に優れた外層と、強靭で耐摩耗性に優れた内層とが溶着一体化した圧延用複合ロール、及びその製造方法を提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者等は、内層用の溶湯にV等の炭化物形成元素を原材料であるスクラップ材等から混入するもの以外に添加することなく、黒鉛鋳鉄製軸部の少なくとも一方に硬質MC炭化物を外層から適量含有させると、軸部の強靭性を低下させることなく耐摩耗性を著しく改善することができることを発見し、本発明に想到した。
 すなわち、本発明の圧延用複合ロールは外層と内層とが溶着一体化してなり、
 前記外層が、質量基準で1~3%のCと、0.3~3%のSiと、0.1~3%のMnと、0.1~5%のNiと、1~7%のCrと、1~8%のMoと、4~7%のVと、0.005~0.15%のNと、0.05~0.2%のBとを含有し、残部が実質的にFe及び不可避的不純物からなるFe基合金からなり、
 前記内層が、質量基準で2.4~3.6%のCと、1.5~3.5%のSiと、0.1~2%のMnと、0.1~2%のNiと、0.7%未満のCrと、0.7%未満のMoと、0.05~1%のVと、0.01~0.1%のMgとを含有し、残部が実質的にFe及び不可避的不純物からなる黒鉛鋳鉄からなり、
 前記内層が前記外層に溶着した胴芯部と、前記胴芯部の両端から一体的に延出する軸部とを有し、前記軸部の少なくとも一方が5μm以上の円相当径を有する硬質MC炭化物を200個/cm2以上含有することを特徴とする。
 前記外層は更に0.1~3質量%のNbを含有するとともに、前記内層は0.5質量%未満のNbを含有するのが好ましい。
 前記外層は更に0.1~5質量%のWを含有するとともに、前記内層は0.7質量%未満のWを含有するのが好ましい。
 前記外層は更に0.3質量%以下のSを含有することができる。
 前記外層は更に、質量基準で0.1~10%のCo、0.01~0.5%のZr、0.005~0.5%のTi、及び0.001~0.5%のAlからなる群から選ばれた少なくとも一種を含有することができる。
 本発明の圧延用複合ロールの製造方法は、
(1) 回転する遠心鋳造用円筒状鋳型で前記外層を遠心鋳造した後、
(2) 前記外層の内面の温度が950℃以上1000℃未満のときに前記外層のキャビティに1330~1400℃の前記内層用溶湯を鋳込み、前記外層の内面を厚さ10~30 mmだけ再溶融させることを特徴とする。
 前記内層用溶湯を鋳込むときの前記外層の内面温度は960~990℃であるのが好ましい。
 前記内層用溶湯は、質量基準で2.5~3.6%のC、1.7~3.3%のSi、0.1~1.5%のMn、0.1~2%のNi、0~0.5%のCr、0~0.5%のMo、及び0.01~0.1%のMgを含有し、残部が実質的にFe及び不可避的不純物である組成を有するのが好ましい。
 本発明により、外層が優れた耐摩耗性と耐事故性を有するとともに、内層溶湯にV等の黒鉛化を阻害する炭化物形成元素を添加することなく、黒鉛鋳鉄製軸部の少なくとも一方に硬質MC炭化物を多く含有させるので、軸部の強靭性を低下させることなく耐摩耗性を著しく改善した圧延用複合ロールを得ることができる。軸部の耐摩耗性が著しく改善されたため、圧延ロールとしての更なる長寿命化が達成され、圧延作業のコスト低減に貢献する。
複合ロールを示す概略断面図である。 図1の複合ロールのクラッチ部側を示す部分斜視図である。 本発明の圧延用複合ロールの製造に用いる鋳型の一例を示す分解断面図である。 本発明の圧延用複合ロールの製造に用いる鋳型の一例を示す断面図である。 実施例3の圧延用複合ロールの軸部断面のアルミナ砥粒研磨後無腐食の光学顕微鏡写真である。
 本発明の実施形態を以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の変更をしても良い。1つの実施形態の説明は、特に断りがなければ他の実施形態にも当てはまる。単に「%」と記載している場合、特に断りがなければ「質量%」を意味する。
[1] 圧延用複合ロール
(A) 外層
 本発明の圧延用複合ロールを構成する外層は、質量基準で1~3%のCと、0.3~3%のSiと、0.1~3%のMnと、0.1~5%のNiと、1~7%のCrと、1~8%のMoと、4~7%のVと、0.005~0.15%のNと、0.05~0.2%のBとを含有し、残部が実質的にFe及び不可避的不純物からなるFe基合金からなる。外層は更に0.1~3質量%のNbを含有するのが好ましい。また、外層は更に0.1~5質量%のWを含有するのが好ましい。外層はまた0.3質量%以下のSを含有しても良い。更に、外層は質量基準で0.1~10%のCo、0.01~0.5%のZr、0.005~0.5%のTi、及び0.001~0.5%のAlからなる群から選ばれた少なくとも一種を含有しても良い。
(1) 必須元素
(a) C:1~3質量%
 CはV、Cr及びMoと(更に、Nb及びWを含有する場合にはNb及びWとも)結合して硬質炭化物を生成し、外層の耐摩耗性の向上に寄与する。Cが1質量%未満では硬質炭化物の晶出量が少なすぎて外層に十分な耐摩耗性を付与することができない。一方、Cが3質量%を超えると過剰な炭化物の晶出により外層の靱性が低下し、耐クラック性が低下するため、圧延によるクラックが深くなり、改削時のロール損失量が増加する。Cの含有量の下限は好ましくは1.2質量%であり、より好ましくは1.5質量%である。またCの含有量の上限は好ましくは2.9質量%であり、より好ましくは2.8質量%である。
(b) Si:0.3~3質量%
 Siは溶湯の脱酸により酸化物の欠陥を減少させるとともに、基地に固溶して耐焼付き性を向上させ、更に溶湯の流動性を向上させて鋳造欠陥を防止する作用を有する。Siが0.3質量%未満では溶湯の脱酸作用が不十分であり、溶湯の流動性も不足し、欠陥発生率が高い。一方、Siが3質量%を超えると合金基地が脆化し、外層の靱性は低下する。Si含有量の下限は好ましくは0.4質量%であり、より好ましくは0.5質量%である。Si含有量の上限は好ましくは2.7質量%であり、より好ましくは2.5質量%である。
(c) Mn:0.1~3質量%
 Mnは溶湯の脱酸作用の他に、SをMnSとして固定する作用を有する。MnSは潤滑作用を有し、圧延材の焼き付き防止に効果があるので、所望量のMnSを含有するのが好ましい。Mnが0.1質量%未満ではその添加効果は不十分である。一方、Mnが3質量%を超えても更なる効果は得られない。Mnの含有量の下限は好ましくは0.3質量%である。Mnの含有量の上限は好ましくは2.4質量%であり、より好ましくは1.8質量%である。
(d) Ni:0.1~5質量%
 Niは外層の基地の焼き入れ性を向上させる作用を有するので、大型の複合ロールの場合にNiを含有すると、冷却中のパーライトの発生を防止し、外層の硬さを向上させることができる。Niの添加効果は0.1質量%未満ではほとんどなく、5質量%を超えるとオーステナイトが安定化しすぎ、硬さが向上しにくくなる。Ni含有量の下限は好ましくは0.2質量%であり、より好ましくは0.3質量%であり、更に好ましくは0.5質量%である。Ni含有量の上限は好ましくは4質量%であり、より好ましくは3.5質量%である。
(e) Cr:1~7質量%
 Crは基地をベイナイト又はマルテンサイトにして硬さを保持し、外層の耐摩耗性を維持するのに有効な元素である。Crが1質量%未満ではその効果が不十分であり、Crが7質量%を超えると、基地組織の靭性が低下する。Crの含有量の下限は好ましくは1.5質量%であり、より好ましくは2.5質量%である。Cr含有量の上限は好ましくは6.8質量%である。
(f) Mo:1~8質量%
 MoはCと結合して硬質炭化物(M6C、M2C)を形成し、外層の硬さを増加させるとともに、基地の焼入れ性を向上させる。また、MoはV及び/又はNbとともに強靭かつ硬質MC炭化物を生成し、耐摩耗性を向上させる。Moが1質量%未満ではそれらの効果が不十分である。一方、Moが8質量%を超えると、外層の靭性が低下する。Mo含有量の下限は好ましくは1.5質量%であり、より好ましくは2.5質量%である。Mo含有量の上限は好ましくは7.8質量%であり、より好ましくは7.6質量%である。
(g) V:4~7質量%
 VはCと結合して硬質のMC炭化物を生成する元素である。MC炭化物は2500~3000のビッカース硬さHVを有し、炭化物の中で最も硬い。Vが4質量%未満では、MC炭化物の析出量が不十分であるだけでなく、内層に溶け込むMC炭化物量が不足することにより、クラッチ部の耐損傷性の向上効果が不十分である。一方、Vが7質量%を超えると、鉄溶湯より比重の軽いMC炭化物が遠心鋳造中の遠心力により外層の内側に濃化し、MC炭化物の半径方向偏析が著しくなるだけでなく、MC炭化物が粗大化して合金組織が粗くなり、圧延時に肌荒れしやすくなる。V含有量の下限は好ましくは4.5質量%であり、より好ましくは5質量%である。V含有量の上限は好ましくは6.9質量%であり、より好ましくは6.8質量%である。
(h) N:0.005~0.15質量%
 Nは炭化物を微細化する効果を有するが、0.15質量%を超えると外層が脆化する。N含有量の上限は好ましくは0.1質量%である。十分な炭化物微細化効果を得るには、N含有量の下限は0.005質量%であり、好ましくは0.01質量%である。
(i) B:0.05~0.2質量%
 Bは炭化物に固溶するとともに、潤滑作用を有する炭ホウ化物を形成し、外層の耐焼付き性(耐事故性)を向上させる。炭ホウ化物の潤滑作用は特に高温で顕著に発揮されるので、熱間圧延材のかみ込み時の外層の焼き付き防止に効果的である。Bが0.05質量%未満では十分な潤滑作用が得られない。一方、Bが0.2質量%を超えると外層を脆化させる。B含有量の下限は好ましくは0.06質量%であり、より好ましくは0.07質量%である。またB含有量の上限は好ましくは0.15質量%であり、より好ましくは0.1質量%である。
(2) 任意元素
 外層は更に、0.1~3質量%のNbを含有しても良い。また、外層は0.1~5質量%のWを含有しても良い。外層は更に0.3質量%以下のSを含有しても良い。外層は更に、質量基準で0.1~10%のCo、0.01~0.5%のZr、0.005~0.5%のTi、及び0.001~0.5%のAlからなる群から選ばれた少なくとも一種を含有しても良い。
(a) Nb:0.1~3質量%
 Vと同様に、NbもCと結合して硬質MC炭化物を生成する。NbはV及びMoとの複合添加により、MC炭化物に固溶してMC炭化物を強化し、外層の耐摩耗性を向上させる。NbはVより原子量が大きいためVを主体としたMC炭化物に固溶することにより、鉄溶湯より比重の小さなV主体のMC炭化物の比重が大きくなるため、遠心鋳造中の遠心力によるMC炭化物の偏析を軽減させる作用を有する。Nbが0.1質量%未満では、MC炭化物の晶出量の寄与が少なく内層に溶け込むMC炭化物量を増加させる効果がほとんどなく、クラッチ部の耐損傷性の向上効果への寄与が少ない。一方、Nbが3質量%を超えると、鉄溶湯より比重の重いNbを主体とするMC炭化物の晶出量が増加し、遠心力により表面側に濃化及び偏析しやすくなる。Nb含有量の下限は好ましくは0.2質量%である。Nb含有量の上限は好ましくは2.9質量%であり、より好ましくは2.8質量%である。
(b) W:0.1~5質量%
 WはCと結合して硬質のM6C等の硬質炭化物を生成し、外層の耐摩耗性向上に寄与する。またMC炭化物にも固溶してその比重を増加させ、偏析を軽減させる作用を有する。しかし、Wが5質量%を超えると、M6C炭化物が多くなり、組織が不均質となり、肌荒れの原因となる。従って、Wを含有する場合、5質量%以下とする。一方、Wが0.1質量%未満ではその効果は不十分である。Wの含有量の上限は好ましくは4質量%であり、より好ましくは3質量%である。
(c) S:0.3質量%以下
 MnSの潤滑性を利用する場合、0.3質量%以下のSを含有しても良い。しかし、Sが0.3質量%を超えると外層の脆化が起こる。S含有量の上限は好ましくは0.2質量%であり、より好ましくは0.15質量%である。MnSの潤滑性を利用する場合、S含有量の下限は0.05質量%がより好ましい。
(d) Co:0.1~10質量%
 Coは基地中に固溶し、基地の熱間硬さを増加させ、外層の耐摩耗性及び耐肌荒れ性を改善する効果を有する。Coが0.1質量%未満では効果はほとんどなく、また10質量%を超えても更なる向上は得られない。Co含有量の下限は好ましくは1質量%である。またCo含有量の上限は好ましくは7質量%である。
(e) Zr:0.01~0.5質量%
 V及びNbと同様に、ZrはCと結合してMC炭化物を生成し、外層の耐摩耗性を向上させる。また、Zrは溶湯中で結晶核として作用する酸化物を生成し、凝固組織を微細にする。更に、ZrはMC炭化物の比重を増加させ、偏析防止に効果がある。しかし、Zrが0.5質量%を超えると、介在物となるので好ましくない。Zr含有量の上限はより好ましくは0.3質量%である。十分な添加効果を得るためには、Zrの含有量の下限はより好ましくは0.02質量%である。
(f) Ti:0.005~0.5質量%
 TiはC及びNと結合し、TiC、TiN又はTiCNのような硬質の粒状化合物を形成する。これらは、MC炭化物の核となるため、MC炭化物の均質分散効果があり、外層の耐摩耗性及び耐肌荒れ性の向上に寄与する。しかし、Ti含有量が0.5質量%を超えると、溶湯の粘性が増加し、鋳造欠陥が発生しやすくなる。Ti含有量の上限はより好ましくは0.3質量%であり、最も好ましくは0.2質量%である。十分な添加効果を得るために、Tiの含有量の下限はより好ましくは0.01質量%である。
(g) Al:0.001~0.5質量%
 Alは酸素との親和性が高いため、脱酸剤として作用する。また、AlはN及びOと結合し、形成された酸窒化物が溶湯中に懸濁されて核となり、MC炭化物を微細均一に晶出させる。しかし、Alが0.5質量%を超えると、外層が脆くなる。また、Alが0.001質量%未満ではその効果が十分でない。Al含有量の上限はより好ましくは0.3質量%であり、最も好ましくは0.2質量%である。十分な添加効果を得るために、Alの含有量の下限はより好ましくは0.01質量%である。
(3) 不可避的不純物
 外層の組成の残部は実質的にFe及び不可避的不純物からなる。不可避的不純物のうち、Pは機械的性質の劣化を招くので、少なくするのが好ましい。具体的には、Pの含有量は0.1質量%以下が好ましい。その他の不可避的不純物として、Cu、Sb、Te、Ce等の元素を外層の特性を損なわない範囲で含有しても良い。外層の優れた耐摩耗性及び耐事故性を確保するために、不可避的不純物の合計量は0.7質量%以下であるのが好ましい。
(4) 組織
 外層の組織は、(a) MC炭化物、(b) M2CやM6CのMoを主体とする炭化物(Mo系炭化物)又はM7C3やM23C6のCrを主体とする炭化物(Cr系炭化物)、(c) 炭ホウ化物、及び(d) 基地からなる。炭ホウ化物はM(C, B)やM23(C, B)6等の組成を有する。金属Mは主にFe、Cr、Mo、V、Nb及びWの少なくとも一種であり、金属M,C及びBの割合は組成により変化する。本発明の外層組織には黒鉛が存在しないのが好ましい。本発明の圧延用複合ロールの外層は、硬質のMC炭化物、Mo系炭化物又はCr系炭化物を有するので、耐摩耗性に優れ、かつ炭ホウ化物を含有するために耐事故性に優れている。
(B) 内層
 本発明の圧延用複合ロールの内層は、質量基準で2.4~3.6%のCと、1.5~3.5%のSiと、0.1~2%のMnと、0.1~2%のNiと、0.7%未満のCrと、0.7%未満のMoと、0.05~1%のVと、0.01~0.1%のMgとを含有し、残部が実質的にFe及び不可避的不純物からなる黒鉛鋳鉄からなる。
(1) 必須元素
(a) C:2.4~3.6質量%
 Cは基地に固溶するとともに、黒鉛として晶出する。黒鉛晶出のためにはCの含有量は2.4質量%以上である必要があるが、3.6質量%を超えると内層の機械的性質の劣化を招来する。Cの含有量の下限は2.7質量%が好ましい。またCの含有量の上限は3.5質量%が好ましい。
(b) Si:1.5~3.5質量%
 Siは黒鉛を晶出させるために必要な元素であり、1.5質量%以上含有する必要があるが、3.5質量%を超えると内層の機械的性質の劣化を来す。Siの含有量の下限は1.7質量%が好ましい。またSiの含有量の上限は3質量%が好ましい。
(c) Mn:0.1~2質量%
 Mnは、溶湯の脱酸作用の他に不純物であるSと結合してMnSを生成し、Sによる脆化を防ぐ作用も有している。Mnの含有量は0.1質量%以上である必要があるが、2質量%を超えると内層の機械的性質が劣化する。Mnの含有量の下限は0.15質量%が好ましい。またMnの含有量の上限は1.2質量%が好ましい。
(d) Ni:0.1~2質量%
 Niは黒鉛化の補助元素として有効である。黒鉛化の効果を得るためには0.1質量%以上が必要であり、0.2質量%以上が好ましい。これに加え、内層鋳込み時の外層との溶着時に外層内面が溶融し内層に混入するため、外層のNi含有量が内層より高い場合、内層のNi含有量が増加する。Ni含有量が増加すると、高温でのオーステナイト相から常温での主体となるパーライト相への変態温度が低下し、鋳造後冷却中の外層の軸方向割れが生じやすくなるため、Niの上限は2質量%とする必要があり、1.8質量%が好ましい。
(e) Cr:0.7質量%未満
 CrはCと結合してセメンタイトを形成し、耐摩耗性を改善するが、多すぎると内層の機械的性質の劣化を来す。Crが0.7質量%以上であると内層の機械的性質が劣化する。Crの含有量の上限は0.5質量%が好ましい。なお、Crの含有量の下限は0.05質量%で良い。またCrは溶着一体化する外層から内層に混入するので、外層からの混入量を見込んで、溶着一体化後の内層中のCrの含有量が0.7質量%未満となるように、内層用溶湯中のCrの含有量を設定する必要がある。Crの含有量の上限は0.5質量%が好ましい。
(f) Mo:0.7質量%未満
 Moは白銑化元素であり、黒鉛化を阻害するため、その含有量を制限する必要がある。外層との溶着一体化(外層内面の溶融)により外層から内層に混入するMoはMC炭化物に含まれ、あるいはM2C炭化物の状態にある。本発明は、意識的に外層から内層にMoをMC炭化物の状態で混入させ、MC炭化物を再溶融させずにそのまま内層内に残留させることにより、内層の耐摩耗性の向上を図ることを特徴としている。このため、Mo含有量の下限は0.05質量%が好ましい。一方、Moが0.7質量%以上になると黒鉛化が著しく阻害され、内層の靭性が劣化する。Moの含有量の上限は0.5質量%が好ましい。
(g) V:0.05~1質量%
 Vは強い白銑化元素であり黒鉛化を阻害するため、含有量は制限される。外層との溶着一体化(外層内面の溶融)により外層から内層に混入するVの多くはMC炭化物の状態にある。本発明は、意識的に外層から内層にMC炭化物を混入させ、再溶融せずにそのまま内層内に残留させることにより、Vの黒鉛化阻害作用を抑制しながら内層の耐摩耗性の向上を図ることを特徴とする。内層の耐摩耗性を十分に確保するために、Vは0.05質量%以上なければならない。しかし、Vの含有量が1質量%を超えると、Vの黒鉛化阻害の作用の影響が大きくなりすぎる。Vの含有量の下限は0.1質量%が好ましい。またVの含有量の上限は0.7質量%が好ましく、0.5質量%が更に好ましい。
(h) Mg:0.01~0.1質量%
 Mgは黒鉛を球状化する効果がある。球状化により内層の強靭性が大幅に向上する。球状化のためにMgは0.01質量%以上である必要があるが、0.1質量%以下で十分である。Mgの含有量の下限は0.015質量%が好ましい。またMgの含有量の上限は0.05質量%が好ましい。
(2)任意元素
(a) Nb:0.5質量%未満
 Vと同様に、Nbは強い白銑化元素であり黒鉛化を阻害するため、含有量は制限される。外層にNbが含まれる場合、外層との溶着一体化(外層内面の溶融)により外層から内層に混入するNbの多くはMC炭化物の状態にある。Nbの含有量が0.5質量%を超えると、Nbの黒鉛化阻害の作用の影響が大きくなりすぎる。Nbの含有量の上限は0.4質量%が好ましい。なお、Nbの含有量は、0.02質量%以上であると、MC炭化物による内層の耐摩耗性の更なる向上を図ることができるため、好ましい。
(b) W:0.7質量%未満
 Wは炭化物形成元素であり、内層の黒鉛化を阻害する。外層にWが含まれる場合、Wを含有する外層との溶着一体化(外層内面の溶融)により外層から内層にWが混入することは避けられないが、黒鉛化阻害防止のためWを0.7質量%未満に抑える必要がある。Wの含有量の上限は0.6質量%が好ましい。
(3) 不可避的不純物
 内層の組成の残部は実質的にFe及び不可避的不純物からなる。不可避的不純物のうち、P、S及びNは機械的性質の劣化を招くので、できるだけ少なくするのが好ましい。具体的には、Pの含有量は0.1質量%以下が好ましく、Sの含有量は 0.05質量%以下が好ましく、Nは0.07質量%以下が好ましい。また、Bは内層の黒鉛化を阻害するため、0.05質量%未満が好ましい。その他の不可避的不純物として、外層にZr、Co、Ti、Al等の元素が含まれる場合は、Zr、Co、Ti、Al等の元素及びBa、Cu、Sb、Te、Ce、希土類金属元素等の元素が挙げられるが、これらの元素の含有量は合計で0.7質量%以下とするのが好ましい。
(4) 組織
 本発明の圧延用複合ロールの内層は黒鉛が晶出した黒鉛鋳鉄からなる。黒鉛鋳鉄は黒鉛を含有しない白鋳鉄より軟らかく、変形能が大きい。黒鉛鋳鉄は、球状、片状、隗状等の黒鉛の形状に応じて分類される。特に、球状黒鉛が晶出した球状黒鉛鋳鉄は大きな強靭性を有するため、ロール内層材に好ましい。
 黒鉛鋳鉄中の黒鉛の面積率は2~12%が好ましい。黒鉛の面積率が2%未満であると、セメンタイト量が多く材質の伸びが不足し、圧延時の熱的、機械的負荷に耐えられず、ロールの折損を起こすおそれが大きい。一方、3.6質量%の炭素量上限から、黒鉛の面積率の上限は12%である。
 本発明の圧延用複合ロールは、内層の少なくとも一方の軸部が5μm以上の円相当径を有する硬質MC炭化物を200個/cm2以上含有することを特徴とする。硬質MC炭化物とは、Vを主体とし、Mo等を含むMC系炭化物(Nb、Wを含む場合は、V及び/又はNbを主体とし、Mo、W等を含むMC系炭化物)である。アルミナ砥粒より高硬度の硬質MC炭化物は、内層材から採取した試験片の平面にダイアモンド研磨及びアルミナ砥粒研磨を順次行うと、アルミナ砥粒で研磨されずに凸状に残るので、光学顕微鏡観察により確認できる。
 クラッチ部24を有する駆動側軸部22が5μm以上の円相当径を有する硬質MC炭化物を200個/cm2以上含有すると、クラッチ部24の損傷を防ぐことができる。クラッチ部24の損傷の主因は、カップリングとの摺動時にグリース中に含まれるスケール等の粒子により引っ掻かれることによる摩耗である。円相当径が5μm以下であると、硬質MC炭化物は周囲の組織とともに脱落しやすく、軸部の耐摩耗性を向上させる効果が小さい。円相当径が5μm以上の硬質MC炭化物が多い程耐摩耗性に有利であり、200個/cm2以上必要である。円相当径が5μm以上の硬質MC炭化物は300~5000個/cm2が好ましい。円相当径が5μm以上の硬質MC炭化物が5000個/cm2を超えると、内層が硬くなりすぎ、靱性が十分確保できなくなる。なお、硬質MC炭化物の円相当径の上限は20μmが好ましい。
 他方の軸部、すなわちクラッチ部24がない従動側軸部23では、ハンドリング等に必要な凸状部25が一体的に設けられており、カップリングとの摺動がないため、駆動部のような耐摩耗性は要求されない。
 他方の軸部の5μm以上の円相当径を有する硬質MC炭化物の個数は一方軸部の20~80%であるのが好ましい。他方の軸部の5μm以上の円相当径を有する硬質MC炭化物の個数は一方軸部の20%以上であると、他方の軸部も耐摩耗性の向上が図られるからであり、他方の軸部の5μm以上の円相当径を有する硬質MC炭化物の個数は一方軸部の80%以下であると、他方の軸部の加工性が改善されるため、生産コストの低減に寄与できるからである。他方の軸部の5μm以上の円相当径を有する硬質MC炭化物の個数は一方軸部の30%以上が好ましく、40%以上がより好ましい。他方の軸部の5μm以上の円相当径を有する硬質MC炭化物の個数は一方軸部の70%以下が好ましく、60%以下がより好ましい。
 本発明の圧延用複合ロールについて説明したが、外層と内層の間に緩衝層を形成する目的で、外層と内層の中間的組成の中間層を設けることができる。
[2] 圧延用複合ロールの製造方法
 図3(a) 及び図3(b) は、遠心鋳造用円筒状鋳型30で外層1を遠心鋳造した後に内層2を鋳造するのに用いる静置鋳造用鋳型の一例を示す。この静置鋳造用鋳型100は、内面に外層1を有する円筒状鋳型30と、その上下端に設けられた上型40及び下型50とからなる。円筒状鋳型30内の外層1の内面は内層2の胴芯部21を形成するためのキャビティ60aを有し、上型40は内層2の従動側軸部23を形成するためのキャビティ60bを有し、下型50は内層2の駆動側軸部22を形成するためのキャビティ60cを有する。円筒状鋳型30を用いる遠心鋳造法は水平型、傾斜型又は垂直型のいずれでも良い。
 回転中の遠心鋳造用円筒状鋳型30内に外層1の溶湯を鋳込んで遠心鋳造する際に、Si等を主体とする酸化物からなるフラックスを添加し、外層の内面に厚さ0.5~30 mmのフラックス層を形成し、外層凝固後の外層の内周面の酸化を防止するのが好ましい。
 図3(a) 及び図3(b) に示すように、駆動側軸部22形成用の下型50の上に、外層1を遠心鋳造した円筒状鋳型30を起立させて設置し、円筒状鋳型30の上に従動側軸部23形成用の上型40を設置して、内層2形成用の静置鋳造用鋳型100を組み立てる。これにより、外層1内のキャビティ60aは上型40のキャビティ60b及び下型50のキャビティ60cと連通し、内層1全体を一体的に形成するキャビティ60を構成する。円筒状鋳型30内の32及び33は砂型である。また、上型40内の42及び下型50内の52はそれぞれ砂型である。なお、下型50には内層用溶湯を保持するための底板53を設ける。
 静置鋳造用鋳型100内の外層の内面温度(フラックス層表面の温度)が950℃以上1000℃未満の範囲内であることを確認した後、1330~1400℃の内層用溶湯を上型40の上方開口部43からキャビティ60内に鋳込む。キャビティ60内の溶湯の湯面は下型50から上型40まで次第に上昇しつつ、フラックス層が除去され、駆動側軸部22、胴芯部21及び従動側軸部23からなる内層2が外層1と一体的に鋳造される。内層用溶湯の組成は、質量基準で2.5~3.6%のC、1.7~3.3%のSi、0.1~1.5%のMn、0.1~2%のNi、0~0.5%のCr、0~0.5%のMo、及び0.01~0.1%のMgを含有し、残部が実質的にFe及び不可避的不純物であるのが好ましい。なお内層用溶湯にはスクラップ材等の原材料から不可避的不純物として混入するVを0~0.1質量%程度含有してもよい。その他の不可避的不純物としては、P、S、N、B、Zr、Co、Ti、Al、Ba、Cu、Sb、Te、Ce及び希土類金属元素などがあげられる。
 鋳込まれた内層用溶湯の熱量により、外層1の内面を厚さ10~30 mmだけ再溶融させる。外層1の内面の再溶融により、外層1中のCr、Mo及びVは(更にCr、Mo、V、Nb及びWを含有する場合にはCr、Mo、V、Nb及びWも)内層2に混入する。なお、下型50で形成される駆動側軸部22の方が、上型40で形成される従動側軸部23より、円相当径が5μm以上の硬質MC炭化物の個数が多くなる。その結果、少なくとも駆動側軸部22における円相当径が5μm以上の硬質MC炭化物の個数は200個/cm2以上となる。駆動側軸部22の方が従動側軸部23より硬質MC炭化物が多くなる理由は、内層用溶湯の対流の程度が下型50と上型40で異なるためであると考えられる。
 外層の内面温度が950℃未満の場合、1330~1400℃の内層用溶湯を鋳込んでも外層内面を十分に(10~30 mmの厚さまで)再溶融することができないため、硬質MC炭化物の外層から内層への混入が十分でなく、境界部に欠陥が残りやすくなるとともに、少なくとも一方の軸部において円相当径が5μm以上の硬質MC炭化物を200個/cm2以上とすることができない。硬質MC炭化物の混入量を十分に確保するために、同様の観点から、外層の内面温度の下限は960℃が好ましい。また、外層の内面温度が1000℃以上の場合、内層用溶湯を鋳込んだときに外層内面の溶融量が多すぎ、内層の黒鉛化が阻害される。同様の観点から、外層の内面温度の上限は990℃が好ましい。
 内層用溶湯の鋳込み温度が1330℃未満の場合、外層の内面温度が950℃以上1000℃未満であっても外層内面を十分に再溶融することができないため、硬質MC炭化物の外層から内層への混入が十分でなく、少なくとも一方の軸部において円相当径が5μm以上の硬質MC炭化物を200個/cm2以上とすることができない。同様の観点から、内層用溶湯の鋳込み温度は1340℃以上が好ましく、1350℃以上が更に好ましい。また、1400℃を超える内層用溶湯を鋳込むと、外層内面が再溶融される際に外層中の硬質MC炭化物が内層溶湯中で消失してしまい、少なくとも一方の軸部において円相当径が5μm以上の硬質MC炭化物を200個/cm2以上とすることができない。同様の観点から、内層用溶湯の鋳込み温度は1390℃以下が好ましく、1380℃以下が更に好ましい。
 遠心鋳造により鋳込んだ外層の内面に、内層との間の緩衝層として中間層を遠心鋳造により形成しても良い。中間層の鋳込みにより外層の内面が再溶融するが、中間層は内層に比べ湯量が少ないため再溶融の熱量が少なく、外層に含まれるMC炭化物は再溶融せずに中間層に残留する。特に比重の軽いMC炭化物は遠心力の作用により中間層の内面に濃化する。本発明の条件において、外層内面温度を中間層内面温度と置き換えた上で、内層を鋳込むことにより、中間層の内面を再溶融させ、中間層中のMC炭化物を内層に混入させることができる。
 本発明を以下の実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1~6及び比較例1~4
 図3(a) に示す構造の円筒状鋳型30(内径800 mm、及び長さ2500 mm)を水平型の遠心鋳造機に設置し、表3に示す外層組成(残部はFe及び不可避的不純物である。)が得られる溶湯を用いて外層1を遠心鋳造した。遠心鋳造中にSiを主体とする酸化物系フラックスを添加し、外層の内面に厚さ5 mmのフラックス層を形成した。その後、鋳型の内面に外層1(厚さ:90 mm)及びその内面にフラックス層(厚さ:5 mm)が形成された円筒状鋳型30を起立させ、駆動側軸部22形成用の中空状下型50(内径600 mm、及び長さ1500 mm)の上に円筒状鋳型30を立設し、円筒状鋳型30の上に従動側軸部23形成用の中空状上型40(内径600 mm、及び長さ2000 mm)を立設し、図3(b) に示す静置鋳造用鋳型100を構成した。
 外層1の内面温度(フラックス層の表面温度)が放射温度計の測定により表2に示す温度となったと判断した後、静置鋳造用鋳型100のキャビティ60に、表1に示す組成(残部はFe及び不可避的不純物である。)のダクタイル鋳鉄溶湯を表2に示す温度で上方開口部43から注湯した。ダクタイル鋳鉄溶湯の湯面は、駆動側軸部22形成用の下型50、胴芯部21形成用の円筒状鋳型30(外層1)及び従動側軸部23形成用の上型40の順に上昇しつつ、フラックスが除去され、外層の内面の一部は、内層用溶湯の熱量により溶融して、外層1の内部に、駆動側軸部22、胴芯部21及び従動側軸部23からなる一体的な内層2を形成した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
注:(1) 残部は不可避的不純物を含む。
 内層2が完全に凝固した後、静置鋳造用鋳型100を解体して複合ロールを取り出し、500℃の焼戻し処理を行った。その後、機械加工により外層1、駆動側軸部22及び従動側軸部23を所定の形状に加工し、クラッチ部24及び凸状部25を形成した。このようにして得られた各複合ロールにおける外層1及び内層2の組成(残部はFe及び不可避的不純物である。)を表3に示す。内層2の組成は、駆動側軸部22の相当する部分の分析値である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
注:(1) 残部は不可避的不純物を含む。
 
 各複合ロールの内層2の両軸部22,23に対してダイアモンド研磨及びアルミナ砥粒研磨を順次行った後、無腐食の状態で光学顕微鏡写真(倍率200倍)を撮り、円相当径が5μm以上の硬質MC炭化物の数をカウントした。図4は、実施例3の圧延用複合ロールの軸部の光学顕微鏡写真を示す。図4において、丸1で示す黒色部分は黒鉛であり、丸2で示す破線で囲んだ灰色部分は円相当径が5μm以上の硬質MC炭化物である。
円相当径が5μm以上の硬質MC炭化物の数のカウントは、任意の10視野(1視野:660μm×989μm)で行い平均値を求め、1 cm2当たりの個数に換算した。
 更に、外層1内面の再溶融厚さ、及び外層1と内層2の境界における溶着状態を超音波検査により観察した。外層1内面の再溶融厚さは、内層を鋳込む前の外層厚さ(90 mm)から、超音波検査で求めた外層厚さを差し引いて算出した。両軸部22,23における円相当径が5μm以上の硬質MC炭化物の数、外層1の再溶融深さ、及び外層1と内層2の境界における溶着状態を表4に示す。
Figure JPOXMLDOC01-appb-T000006
注:(1) 円相当径が5μm以上の硬質MC炭化物の個数(単位:個/cm2)。
 
 実施例1~6では、内層用溶湯を鋳込む前の外層の内面温度(フラックス表面温度)は950℃以上1000℃未満の範囲内であり、内層用溶湯の鋳込み温度は1330~1400℃の範囲内であった。そのため、外層と内層の溶着一体化時の外層内面の再溶融厚さは10~30 mmの範囲内であり、外層と内層は健全に溶着され、境界に欠陥がなかった。また、内層の駆動側軸部及び従動側軸部の少なくとも一方(クラッチ部)は、円相当径が5μm以上の硬質MC炭化物を200個/cm2以上含有しており、優れた耐摩耗性を有し、耐久性が改善されていた。
 これに対して、比較例1では外層の内面温度が735℃と低すぎ、かつ内層用溶湯の鋳込み温度が1410℃と高すぎたので、外層内面の再溶融厚さも小さく、外層と内層の境界に欠陥が生じ、いずれの軸部でも円相当径が5μm以上の硬質MC炭化物の数が200個/cm2未満であった。
 比較例2では外層の内面温度が1067℃と高すぎ、かつ内層用溶湯の鋳込み温度も1465℃と高すぎたので、外層内面の再溶融厚さが40 mmと大きすぎるだけでなく、内面からフラックスが剥がれて外層と内層の境界に欠陥が生じた。また、内層用溶湯の鋳込み温度が高すぎたので、硬質MC炭化物が消失し、いずれの軸部でも円相当径が5μm以上の硬質MC炭化物の数は200個/cm2未満であった。
 比較例3では外層の内面温度が900℃と低すぎ、かつ内層用溶湯の鋳込み温度が1498℃と高すぎたので、外層と内層の境界は良好であったが、硬質MC炭化物が消失し、いずれの軸部でも円相当径が5μm以上の硬質MC炭化物の数が200個/cm2未満であった。
 比較例4では外層の内面温度が905℃と低すぎ、かつ内層用溶湯の鋳込み温度も1315℃と低すぎたので、外層内面の再溶融厚さが5 mmと薄すぎるだけでなく、外層の内面の再溶融により内層に混入する硬質MC炭化物の数が少なすぎた。

Claims (8)

  1.  外層と内層とが溶着一体化してなる圧延用複合ロールであって、
     前記外層が、質量基準で1~3%のCと、0.3~3%のSiと、0.1~3%のMnと、0.1~5%のNiと、1~7%のCrと、1~8%のMoと、4~7%のVと、0.005~0.15%のNと、0.05~0.2%のBとを含有し、残部が実質的にFe及び不可避的不純物からなるFe基合金からなり、
     前記内層が、質量基準で2.4~3.6%のCと、1.5~3.5%のSiと、0.1~2%のMnと、0.1~2%のNiと、0.7%未満のCrと、0.7%未満のMoと、0.05~1%のVと、0.01~0.1%のMgとを含有し、残部が実質的にFe及び不可避的不純物からなる黒鉛鋳鉄からなり、
     前記内層が前記外層に溶着した胴芯部と、前記胴芯部の両端から一体的に延出する軸部とを有し、前記軸部の少なくとも一方が5μm以上の円相当径を有する硬質MC炭化物を200個/cm2以上含有することを特徴とする圧延用複合ロール。
  2.  請求項1に記載の圧延用複合ロールにおいて、前記外層が更に0.1~3質量%のNbを含有するとともに、前記内層が0.5質量%未満のNbを含有することを特徴とする圧延用複合ロール。
  3.  請求項1又は2に記載の圧延用複合ロールにおいて、前記外層が更に0.1~5質量%のWを含有するとともに、前記内層が0.7質量%未満のWを含有することを特徴とする圧延用複合ロール。
  4.  請求項1~3のいずれかに記載の圧延用複合ロールにおいて、前記外層が更に0.3質量%以下のSを含有することを特徴とする圧延用複合ロール。
  5.  請求項1~4のいずれかに記載の圧延用複合ロールにおいて、前記外層が更に、質量基準で0.1~10%のCo、0.01~0.5%のZr、0.005~0.5%のTi、及び0.001~0.5%のAlからなる群から選ばれた少なくとも一種を含有することを特徴とする圧延用複合ロール。
  6.  請求項1~5のいずれかに記載の圧延用複合ロールを製造する方法において、
    (1) 回転する遠心鋳造用円筒状鋳型で前記外層を遠心鋳造した後、
    (2) 前記外層の内面の温度が950℃以上1000℃未満のときに前記外層のキャビティに1330~1400℃の前記内層用溶湯を鋳込み、前記外層の内面を厚さ10~30 mmだけ再溶融させることを特徴とする圧延用複合ロールの製造方法。
  7.  請求項6に記載の圧延用複合ロールの製造方法において、前記内層用溶湯を鋳込むときの前記外層の内面温度が960~990℃であることを特徴とする圧延用複合ロールの製造方法。
  8.  請求項6又は7に記載の圧延用複合ロールの製造方法において、前記内層用溶湯が、質量基準で2.5~3.6%のC、1.7~3.3%のSi、0.1~1.5%のMn、0.1~2%のNi、0~0.5%のCr、0~0.5%のMo、及び0.01~0.1%のMgを含有し、残部が実質的にFe及び不可避的不純物である組成を有することを特徴とする圧延用複合ロールの製造方法。
PCT/JP2018/004390 2017-02-08 2018-02-08 圧延用複合ロール及びその製造方法 WO2018147367A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18752070.5A EP3581288B1 (en) 2017-02-08 2018-02-08 Composite roll for rolling and method for producing same
KR1020197021631A KR102378993B1 (ko) 2017-02-08 2018-02-08 압연용 복합 롤 및 그의 제조 방법
BR112019014439-0A BR112019014439B1 (pt) 2017-02-08 2018-02-08 Rolo compósito para laminação e seu método de produção
CN201880009237.2A CN110290880B (zh) 2017-02-08 2018-02-08 轧制用复合辊及其制造方法
JP2018567487A JP6977738B2 (ja) 2017-02-08 2018-02-08 圧延用複合ロール及びその製造方法
US16/479,814 US11192156B2 (en) 2017-02-08 2018-02-08 Composite roll for rolling and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017021117 2017-02-08
JP2017-021117 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018147367A1 true WO2018147367A1 (ja) 2018-08-16

Family

ID=63108272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004390 WO2018147367A1 (ja) 2017-02-08 2018-02-08 圧延用複合ロール及びその製造方法

Country Status (8)

Country Link
US (1) US11192156B2 (ja)
EP (1) EP3581288B1 (ja)
JP (1) JP6977738B2 (ja)
KR (1) KR102378993B1 (ja)
CN (1) CN110290880B (ja)
BR (1) BR112019014439B1 (ja)
TW (1) TWI744476B (ja)
WO (1) WO2018147367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3677353A4 (en) * 2017-08-31 2021-01-13 Hitachi Metals, Ltd. COMPOSITE CYLINDER FOR LAMINATION AND ITS PRODUCTION PROCESS

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203571A1 (ja) * 2019-04-03 2020-10-08 日鉄ロールズ株式会社 遠心鋳造製圧延用複合ロール及びその製造方法
CN114555252A (zh) * 2019-10-16 2022-05-27 日立金属株式会社 热轧用离心铸造复合辊

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124407A (ja) * 1983-12-06 1985-07-03 Kubota Ltd 高バナジウム複合鋳鉄ロ−ル
JP2012213780A (ja) * 2011-03-31 2012-11-08 Kubota Corp 圧延用複合ロール及びその製造方法
WO2015045984A1 (ja) * 2013-09-25 2015-04-02 日立金属株式会社 遠心鋳造製熱間圧延用複合ロール
WO2015045720A1 (ja) 2013-09-25 2015-04-02 日立金属株式会社 遠心鋳造製複合ロール及びその製造方法
JP2015062936A (ja) * 2013-09-26 2015-04-09 日立金属株式会社 遠心鋳造製複合ロール及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0430241B1 (en) * 1989-11-30 1996-01-10 Hitachi Metals, Ltd. Wear-resistant compound roll
JP2974822B2 (ja) * 1991-06-26 1999-11-10 株式会社クボタ 遠心力鋳造複合ロール
JP3358664B2 (ja) * 1991-12-27 2002-12-24 株式会社クボタ 複合ロール
JP2000160277A (ja) * 2000-01-01 2000-06-13 Kubota Corp 複合ロール
JP2002088445A (ja) * 2001-07-12 2002-03-27 Kubota Corp 複合ロール
WO2006030795A1 (ja) * 2004-09-13 2006-03-23 Hitachi Metals, Ltd. 圧延ロール用遠心鋳造外層及びその製造方法
US8308622B2 (en) * 2005-12-28 2012-11-13 Hitachi Metals, Ltd. Centrifugally cast composit roll
IN2014MN00580A (ja) * 2011-10-19 2015-07-03 Jfe Steel Corp
WO2013150950A1 (ja) * 2012-04-02 2013-10-10 日立金属株式会社 遠心鋳造製複合ロール及びその製造方法
JP5862526B2 (ja) * 2012-09-13 2016-02-16 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
US9815098B2 (en) * 2013-09-25 2017-11-14 Hitachi Metals, Ltd. Centrifugally cast, hot-rolling composite roll
JP6331128B2 (ja) * 2014-03-31 2018-05-30 日立金属株式会社 圧延用複合ロール及びその製造方法
JP6391043B2 (ja) * 2014-04-11 2018-09-19 日立金属株式会社 遠心鋳造製熱間圧延用複合ロール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124407A (ja) * 1983-12-06 1985-07-03 Kubota Ltd 高バナジウム複合鋳鉄ロ−ル
JP2012213780A (ja) * 2011-03-31 2012-11-08 Kubota Corp 圧延用複合ロール及びその製造方法
WO2015045984A1 (ja) * 2013-09-25 2015-04-02 日立金属株式会社 遠心鋳造製熱間圧延用複合ロール
WO2015045720A1 (ja) 2013-09-25 2015-04-02 日立金属株式会社 遠心鋳造製複合ロール及びその製造方法
JP2015062936A (ja) * 2013-09-26 2015-04-09 日立金属株式会社 遠心鋳造製複合ロール及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3581288A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3677353A4 (en) * 2017-08-31 2021-01-13 Hitachi Metals, Ltd. COMPOSITE CYLINDER FOR LAMINATION AND ITS PRODUCTION PROCESS

Also Published As

Publication number Publication date
TW201840399A (zh) 2018-11-16
JP6977738B2 (ja) 2021-12-08
BR112019014439B1 (pt) 2023-10-03
KR20190116274A (ko) 2019-10-14
EP3581288A1 (en) 2019-12-18
KR102378993B1 (ko) 2022-03-24
EP3581288A4 (en) 2020-11-25
EP3581288B1 (en) 2023-12-27
CN110290880A (zh) 2019-09-27
BR112019014439A2 (pt) 2020-04-14
US20210237134A1 (en) 2021-08-05
JPWO2018147367A1 (ja) 2019-12-12
TWI744476B (zh) 2021-11-01
CN110290880B (zh) 2021-03-30
US11192156B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
JP5843055B2 (ja) 遠心鋳造製複合ロール及びその製造方法
JP5477522B1 (ja) 遠心鋳造製複合ロール及びその製造方法
JP5950048B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP5950047B2 (ja) 遠心鋳造製熱間圧延用複合ロール
TWI712697B (zh) 軋輥用外層及輥軋用複合輥
JP5862526B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP6474038B2 (ja) 連続鋳掛け肉盛鋳造製圧延用複合ロール
WO2018147370A1 (ja) 圧延用複合ロール及びその製造方法
WO2020032144A1 (ja) 圧延用遠心鋳造複合ロール及びその製造方法
WO2018147367A1 (ja) 圧延用複合ロール及びその製造方法
JP7036119B2 (ja) 圧延用複合ロール及びその製造方法
JP6515957B2 (ja) 耐摩耗性に優れた圧延用ロール外層材および圧延用複合ロール
JP6191913B2 (ja) 遠心鋳造製複合ロール及びその製造方法
JP2012117083A (ja) 熱間圧延用遠心鋳造製ロール外層材および複合ロール
JP2016180167A (ja) 連続鋳掛け肉盛鋳造製圧延用複合ロール
JP7136037B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
TWI469835B (zh) Centrifugal casting legal compound roll and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567487

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021631

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019014439

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018752070

Country of ref document: EP

Effective date: 20190909

ENP Entry into the national phase

Ref document number: 112019014439

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190712