WO2015045720A1 - 遠心鋳造製複合ロール及びその製造方法 - Google Patents

遠心鋳造製複合ロール及びその製造方法 Download PDF

Info

Publication number
WO2015045720A1
WO2015045720A1 PCT/JP2014/072584 JP2014072584W WO2015045720A1 WO 2015045720 A1 WO2015045720 A1 WO 2015045720A1 JP 2014072584 W JP2014072584 W JP 2014072584W WO 2015045720 A1 WO2015045720 A1 WO 2015045720A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer layer
mass
side shaft
mold
shaft portion
Prior art date
Application number
PCT/JP2014/072584
Other languages
English (en)
French (fr)
Inventor
小田 望
尭之 瀬川
泰則 野崎
服部 敏幸
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to BR112016004076-7A priority Critical patent/BR112016004076B1/pt
Priority to EP14849491.7A priority patent/EP3050638B1/en
Priority to CN201480052105.XA priority patent/CN105579157B/zh
Priority to KR1020167008300A priority patent/KR102219332B1/ko
Priority to JP2015533342A priority patent/JP5843055B2/ja
Priority to US14/911,947 priority patent/US9724740B2/en
Publication of WO2015045720A1 publication Critical patent/WO2015045720A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/032Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • B22D13/026Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a centrifugal cast composite roll having a composite structure in which an outer layer excellent in wear resistance and accident resistance formed by a centrifugal casting method and a tough inner layer are welded and integrated, and a manufacturing method thereof.
  • a centrifugal cast composite roll in which an outer layer made of a wear-resistant iron-base alloy formed by a centrifugal casting method and an inner layer made of tough ductile iron is welded and integrated is widely used.
  • damage such as abrasion and roughening occurs in the outer layer of the roll due to thermal and mechanical loads due to contact with the rolled material, which causes deterioration of the surface quality of the rolled material. Therefore, when the damage of the outer layer proceeds to some extent, the roll is exchanged. The roll removed from the rolling mill is incorporated into the rolling mill again after grinding and removing the damaged portion from the outer layer.
  • cutting Grinding and removing the damaged part from the outer layer of the roll is called “cutting”.
  • the work roll is discarded after being cut from the initial diameter to the minimum diameter (disposal diameter) that can be used for rolling.
  • the diameter from the initial diameter to the scrap diameter is called the “rolling effective diameter”. If cutting is performed frequently, the productivity will drop due to the interruption of rolling, so the outer layer within the rolling effective diameter has excellent wear resistance, accident resistance and rough skin resistance to prevent major damage. Is desirable.
  • the composite roll 10 includes an outer layer 1 in contact with the rolled material and an inner layer 2 welded to the inner surface of the outer layer 1.
  • the inner layer 2 is made of a material different from that of the outer layer 1, and includes a body core portion 21 welded to the outer layer 1, and a driving side shaft portion 22 and a driven side shaft portion 23 that extend integrally from the body core portion 21 on both sides.
  • a clutch portion 24 used for driving torque transmission is integrally provided at the end of the driving side shaft portion 22.
  • a convex portion 25 necessary for handling the composite roll 10 and the like is integrally provided at the end of the driven side shaft portion 23.
  • the clutch portion 24 has an end surface 24a and a pair of flat cutout surfaces 24b, 24b that engage with driving means (not shown), and the convex portion 25 has an end surface 25a.
  • the driving side shaft portion 22 and the driven side shaft portion 23 need to be machined to form a bearing portion, a neck portion, and the like.
  • the outer layer 1 When using the composite roll 10 for hot rolling, in order to make the cutting interval as long as possible, the outer layer 1 is prevented from damage such as abrasion, seizure, and rough skin, and is driven to the coupling for torque transmission. It is also necessary to suppress wear of the clutch portion 24 of the shaft portion 22. Therefore, it is important to form the outer layer 1 from an iron-based alloy having excellent wear resistance and accident resistance and to improve the wear resistance of the ductile cast iron forming the inner layer 2.
  • JP-A-6-304612 describes an outer layer made of high-speed tool steel and C: 0.2 to 1.2% by weight of carbon steel or low alloy steel.
  • C 2.5 to 3.5%
  • Si 1.6 to 2.8%
  • Mn 0.3 to 0.6%
  • P ⁇ 0.05% S ⁇ 0.03%
  • a composite roll for hot rolling in which a clutch portion to be cast is joined to an end portion of a shaft portion is disclosed.
  • the wear resistance of the clutch portion is still insufficient.
  • the clutch portion since the clutch portion is cast at the end of the shaft portion, there is a problem that casting defects such as a foreign object bite are likely to occur at the boundary between the two.
  • Japanese Patent Laid-Open No. 2012-213780 has an outer layer, a body portion formed on the inner surface thereof, a drive shaft extending from one end of the body portion, and a driven shaft extending from the other end, and the tensile strength of the drive shaft is a driven shaft. It discloses a composite roll for rolling that is higher than 50 MPa. As an example of a method for making a difference in tensile strength between a drive shaft and a driven shaft, JP 2012-213780 describes a lower mold for a drive shaft in stationary casting with the drive shaft on the lower side and the driven shaft on the upper side.
  • the driving shaft can be made stronger than the driven shaft due to the difference in casting temperature, the wear resistance of the driving shaft cannot be made higher than that of the driven shaft.
  • the hardness of the entire inner layer 1 is increased in order to increase the wear resistance of the driving side shaft portion 22, the hardness of the driven side shaft portion 23 also increases, resulting in a problem that workability is lowered.
  • an object of the present invention is to provide a centrifugal cast composite roll in which the wear resistance of the driving side shaft portion is improved while maintaining the workability of the driven side shaft portion, and a manufacturing method thereof.
  • the present inventors after forming the outer layer by centrifugal casting method, appropriately controlling the rising rate of the molten metal surface for pouring into the casting mold for stationary casting, (a) Cr, Mo, V, Nb, and W in the outer layer can be mixed more than the driven side shaft portion than the driven side shaft portion, so that the drive side shaft portion can be harder than the driven side shaft portion.
  • (b) it was discovered that the high-hardness driving side shaft portion has excellent wear resistance and the driven side shaft portion has good workability, and the present invention has been conceived.
  • the composite roll made by centrifugal casting of the present invention is formed by welding and integrating an outer layer formed by a centrifugal casting method and an inner layer made of ductile cast iron,
  • the outer layer is 1.3 to 3.7% C, 0.3 to 3% Si, 0.1 to 3% Mn, 1 to 7% Cr, 1 to 8% Mo, 2.5 to 7 on a mass basis.
  • the inner layer includes a trunk core portion welded to the outer layer, and a driving side shaft portion and a driven side shaft portion that integrally extend from both ends of the trunk core portion,
  • the total amount of Cr, Mo, V, Nb and W at the end of the driving side shaft is 0.35 to 2% by mass, and the total amount of Cr, Mo, V, Nb and W at the end of the driven side shaft Is 0.15 to 1.8% by mass, and the former is 0.2% by mass or more than the latter.
  • the outer layer was further selected from the group consisting of 0.1 to 5% Ni, 0.1 to 10% Co, 0.01 to 0.5% Zr, 0.005 to 0.5% Ti, and 0.001 to 0.5% Al by weight. You may contain at least 1 type.
  • the method for producing a centrifugal cast composite roll comprises (1) centrifugal casting of the outer layer with a rotating centrifugal casting cylindrical mold, and (2) standing up the cylindrical mold having the outer layer, with upper and lower ends thereof.
  • the difference between the rising speed of the molten metal surface in the upper mold and the rising speed of the molten metal surface in the lower mold and the outer layer is preferably 50 to 150 mm / sec.
  • the centrifugally cast composite roll of the present invention has a significantly improved service life and good workability.
  • the centrifugal cast composite roll of the present invention having such characteristics is obtained by controlling the rising speed of the molten metal surface for the inner layer to be poured after the outer layer is formed, so that the production method is efficient, Contributes to a significant reduction in the manufacturing cost of centrifugal cast composite rolls.
  • FIG. 2 is a partial perspective view showing a clutch part side of the composite roll of FIG.
  • Centrifugal cast composite roll (A) Outer layer
  • the outer layer is 1.3 to 3.7% C, 0.3 to 3% Si, 0.1 to 3% Mn, 1 to 7% Cr, and 1 to 8% Mo on a mass basis.
  • the outer layer further contains at least one selected from the group consisting of 0.1-5% Ni, 0.1-10% Co, 0.01-0.5% Zr, 0.005-0.5% Ti, and 0.001-0.5% Al. You may do it.
  • C 1.3 to 3.7% by mass C combines with V, Nb, Cr, Mo and W to form hard carbides, contributing to the improvement of the wear resistance of the outer layer. If C is less than 1.3% by mass, the amount of hard carbide crystallized is too small to provide sufficient wear resistance to the outer layer. On the other hand, if C exceeds 3.7% by mass, the toughness of the outer layer decreases due to crystallization of excess carbide, and crack resistance decreases, so that cracks due to rolling become deeper and roll loss increases.
  • the lower limit of the C content is preferably 1.5% by mass.
  • the upper limit of the C content is preferably 3.4% by mass, more preferably 3% by mass.
  • Si 0.3-3 mass% Si has the effect of reducing oxide defects by deoxidation of the molten metal, improving the seizure resistance by solid solution in the base, and further improving the fluidity of the molten metal to prevent casting defects. If Si is less than 0.3% by mass, the deoxidation of the molten metal is insufficient, the fluidity of the molten metal is insufficient, and the defect rate is high. On the other hand, if Si exceeds 3% by mass, the alloy matrix becomes brittle and the toughness of the outer layer decreases.
  • the lower limit of the Si content is preferably 0.4% by mass, more preferably 0.5% by mass.
  • the upper limit of the Si content is preferably 2.7% by mass, more preferably 2.5% by mass.
  • Mn 0.1-3 mass%
  • MnS has an action of fixing S as an impurity as MnS. Since MnS has a lubricating action and is effective in preventing seizure of the rolled material, it preferably contains a desired amount of MnS. If Mn is less than 0.1% by mass, the effect of addition is insufficient. On the other hand, even if Mn exceeds 3% by mass, no further effect is obtained.
  • the lower limit of the Mn content is preferably 0.3% by mass.
  • the upper limit of the Mn content is preferably 2.4% by mass, more preferably 1.8% by mass.
  • (d) Cr 1-7% by mass Cr is an effective element for maintaining the hardness and maintaining the wear resistance by making the base a bainite or martensite. If Cr is less than 1% by mass, the amount that dissolves in the inner layer is insufficient, and the effect of improving the wear resistance of the clutch portion is insufficient. On the other hand, if the Cr content exceeds 7% by mass, the toughness of the base structure decreases.
  • the lower limit of the Cr content is preferably 1.5% by mass, more preferably 2.5% by mass.
  • the upper limit of the Cr content is preferably 6.8% by mass.
  • Mo 1-8% by mass Mo combines with C to form hard carbides (M 6 C, M 2 C), increasing the hardness of the outer layer and improving the hardenability of the matrix. Mo also produces tough and hard MC carbides together with V and Nb to improve wear resistance. If Mo is less than 1% by mass, the amount that dissolves in the inner layer is insufficient, and the effect of improving the wear resistance of the clutch portion is insufficient. On the other hand, if Mo exceeds 8% by mass, the toughness of the outer layer decreases.
  • the lower limit of the Mo content is preferably 1.5% by mass, more preferably 2.5% by mass.
  • the upper limit of the Mo content is preferably 7.8% by mass, more preferably 7.6% by mass.
  • the outer layer contains at least one selected from the group consisting of 2.5 to 7% by mass of V, 0.1 to 3% by mass of Nb and 0.1 to 5% by mass of W as a carbide forming element.
  • V is an essential element.
  • V: 2.5-7% by mass V is an element that combines with C to form hard MC carbide.
  • MC carbide has a Vickers hardness Hv of 2500 to 3000, and is the hardest carbide. When V is less than 2.5% by mass, not only the amount of MC carbide precipitated is insufficient, but also the effect of improving the wear resistance of the clutch portion is insufficient due to the insufficient amount of the MC carbide.
  • V exceeds 7% by mass
  • MC carbide with a low specific gravity is concentrated inside the outer layer due to centrifugal force during centrifugal casting, and not only the MC carbide radial segregation becomes significant, but also MC carbide becomes coarse.
  • the alloy structure becomes rough, and the surface becomes rough during rolling.
  • the lower limit of the V content is preferably 2.7% by mass, more preferably 2.9% by mass.
  • the upper limit of the V content is preferably 6.9% by mass, more preferably 6.8% by mass.
  • Nb 0.1-3 mass% Like V, Nb combines with C to form hard MC carbide. Nb, combined with V and Mo, solidifies in MC carbide and strengthens MC carbide, improving the wear resistance of the outer layer.
  • the NbC-based MC carbide has a smaller difference from the molten metal density than the VC-based MC carbide, thereby reducing the segregation of the MC carbide.
  • the lower limit of the Nb content is preferably 0.2% by mass.
  • the upper limit of the Nb content is preferably 2.9% by mass, more preferably 2.8% by mass.
  • W 0.1-5% by mass W combines with C to produce hard carbides such as hard M 6 C and contributes to improving the wear resistance of the outer layer. It also has the effect of reducing the segregation by increasing the specific gravity by dissolving in MC carbide. However, when W exceeds 5% by mass, M 6 C carbides increase, the structure becomes inhomogeneous, and the skin becomes rough. Therefore, when W is added, the content is 5% by mass or less. On the other hand, when W is less than 0.1% by mass, the effect of addition is insufficient.
  • the upper limit of the W content is preferably 4% by mass, more preferably 3% by mass.
  • the outer layer further contains 0.01 to 0.2% by weight of B and / or 0.05 to 0.3% by weight of S. These elements improve the seizure resistance of the outer layer.
  • B and S produce a compound having a lubricating action in the outer layer and improve seizure resistance.
  • B 0.01-0.2% by mass B dissolves in the carbide and forms a carbon boride having a lubricating action to improve the seizure resistance. Since the lubricating action of the carbonized boride is remarkably exhibited particularly at high temperatures, it is effective for preventing seizure when the hot rolled material is bitten. If B is less than 0.01% by mass, sufficient lubricating action cannot be obtained. On the other hand, if B exceeds 0.2% by mass, the outer layer becomes brittle.
  • the lower limit of the B content is preferably 0.012% by mass, more preferably 0.015% by mass.
  • the upper limit of the B content is preferably 0.15% by mass, more preferably 0.1% by mass.
  • S 0.05-0.3% by mass
  • S is usually treated as a harmful element, but is added to make use of the lubricity of MnS. If S is less than 0.05% by mass, a sufficient lubricating effect of MnS cannot be obtained, and if it exceeds 0.3% by mass, the outer layer becomes brittle.
  • the upper limit of the S content is preferably 0.2% by mass, more preferably 0.15% by mass.
  • the outer layer further comprises a group consisting of 0.1 to 5% Ni, 0.1 to 10% Co, 0.01 to 0.5% Zr, 0.005 to 0.5% Ti, and 0.001 to 0.5% Al by mass. You may contain at least 1 type chosen from these.
  • Ni 0.1-5% by mass Since Ni has the effect of improving the hardenability of the base, when Ni is added in the case of a large composite roll, the generation of pearlite during cooling can be prevented and the hardness of the outer layer can be improved.
  • the effect of adding Ni is hardly less than 0.1% by mass, and if it exceeds 5% by mass, austenite is over-stabilized and hardness is hardly improved.
  • the upper limit of the Ni content is preferably 4% by mass, more preferably 3.5% by mass.
  • Co 0.1-10% by mass Co dissolves in the base, increases the hot hardness of the base, and has the effect of improving wear resistance and rough skin resistance. If Co is less than 0.1% by mass, there is almost no effect of addition, and if it exceeds 10% by mass, no further improvement is obtained.
  • the lower limit of the Co content is preferably 1% by mass.
  • the upper limit of the Co content is preferably 7% by mass.
  • Zr 0.01 to 0.5 mass%
  • Zr combines with C to form MC carbides, improving wear resistance. Further, Zr generates an oxide in the molten metal, and this oxide acts as a crystal nucleus, so that the solidification structure becomes fine. Furthermore, Zr increases the specific gravity of MC carbide and is effective in preventing segregation. However, when Zr exceeds 0.5% by mass, inclusions are not preferable.
  • the upper limit of the Zr content is more preferably 0.3% by mass. In order to obtain a sufficient addition effect, the lower limit of the Zr content is more preferably 0.02% by mass.
  • Ti 0.005 to 0.5 mass% Ti combines with C and N to form hard granular compounds such as TiC, TiN or TiCN. Since these are the cores of MC carbide, they have a homogeneous dispersion effect of MC carbide and contribute to the improvement of wear resistance and rough skin resistance. However, when the Ti content exceeds 0.5 mass%, the viscosity of the molten metal increases and casting defects are likely to occur.
  • the upper limit of the Ti content is more preferably 0.3% by mass, and most preferably 0.2% by mass. In order to obtain a sufficient addition effect, the lower limit of the Ti content is more preferably 0.01% by mass.
  • Al 0.001 to 0.5 mass% Since Al has a high affinity with oxygen, it acts as a deoxidizer. Further, Al combines with N and O, which are graphitization-inhibiting elements, and the formed oxynitride is suspended in the molten metal to become nuclei, and MC carbide is crystallized finely and uniformly. However, if Al exceeds 0.5% by mass, the outer layer becomes brittle. Moreover, the effect is not enough if Al is less than 0.001 mass%.
  • the upper limit of the Al content is more preferably 0.3% by mass, and most preferably 0.2% by mass. In order to obtain a sufficient addition effect, the lower limit of the Al content is more preferably 0.01% by mass.
  • the balance of the composition of the outer layer is substantially composed of Fe and inevitable impurities.
  • inevitable impurities P causes deterioration of mechanical properties, so it is preferable to reduce it as much as possible.
  • the P content is preferably 0.1% by mass or less.
  • elements such as Cu, Sb, Te, and Ce may be 0.7% by mass or less in total.
  • the outer layer structure consists of (a) MC carbide, (b) M 2 C and M 6 C Mo-based carbide (Mo-based carbide) or M 7 C 3 and M 23 C 6 Cr. It consists mainly of carbide (Cr-based carbide), (c) carboboride, and (d) base.
  • Carbon borides generally have a composition of M (C, B).
  • the metal M is mainly at least one of Fe, Cr, Mo, V, Nb, and W, and the ratio of the metals M, C, and B varies depending on the composition.
  • the structure of the outer layer of the present invention is characterized by not containing graphite.
  • the inner layer 2 welded and integrated with the outer layer 1 is made of ductile cast iron, and a trunk core portion 21 welded to the outer layer 1 and a driving side shaft portion integrally extending from both ends of the trunk core portion 21 22 and a driven side shaft portion 23.
  • the inner layer 2 has (a) the total amount of carbide forming elements (Cr, Mo, V, Nb and W) at the end of the driving side shaft portion 22 is 0.35 to 2% by mass, and (b) the driven side shaft portion 23.
  • the total amount of carbide-forming elements (Cr, Mo, V, Nb and W) at the end of the metal is 0.15 to 1.8% by mass, and (c) Cr, Mo, V, Nb and W of the drive side shaft 22
  • the total amount is 0.2 mass% or more larger than the total amount of Cr, Mo, V, Nb and W in the driven side shaft portion 23.
  • the total amount of Cr, Mo, V, Nb and W at the end of the driven side shaft portion 23 is 0.15 to 1.8% by mass, and the strength of the roll shaft portion is increased due to solid solution strengthening of the base structure and the formation of carbides. And increase the hardness.
  • the drive side shaft portion 22 is not sufficiently strong and hard, particularly the clutch portion. 24 wear resistance is insufficient.
  • the total amount of Cr, Mo, V, Nb, and W exceeds 2 mass%, the amount of carbide generated is too large, and the drive-side shaft portion 22 may be broken.
  • the total amount of Cr, Mo, V, Nb and W at the end of the drive side shaft portion 22 is preferably 0.6 to 1.8 mass%.
  • the total amount of Cr, Mo, V, Nb, and W at the end of the driven side shaft portion 23 is preferably 0.2 to 1.5 mass%.
  • the total amount of Cr, Mo, V, Nb, and W at the end is determined by chemical analysis of a sample collected from a range of 100 mm or less in the roll axis direction from the end surfaces of the drive side shaft 22 and the driven side shaft 23. Ask. If the total amount of Cr, Mo, V, Nb, and W in the range of 100 mm or less in the roll axis direction from the end surface of the drive side shaft portion 22 satisfies the above conditions, the clutch portion 24 has the necessary wear resistance. I can say that.
  • the driven side shaft portion 23 as a whole is sufficiently workable. It can be said that it has.
  • the total amount of Cr, Mo, V, Nb and W at the end of the drive side shaft portion 22 is 0.2 mass% or more than the total amount of Cr, Mo, V, Nb and W at the end of the driven side shaft portion 23. .
  • the difference in the total amount of Cr, Mo, V, Nb, and W at the end portions of both shaft portions 22 and 23 is preferably 0.25 mass% or more, and more preferably 0.3 mass% or more.
  • Composition of inner layer Ductile cast iron used to form inner layer 2 is C: 2.3 to 3.6%, Si: 1.5 to 3.5%, Mn: 0.2 to 2%, Cr: 0.05 to 1%, Mo on a mass basis. : 0.05-1%, V: 0.05-1%, Nb: 0-0.7%, W: 0-0.7%, Ni: 0.3-2.5%, and Mg: 0.01-0.08%, the balance being substantially Fe and inevitable impurities are preferred.
  • the total amount of Cr, Mo, V, Nb and W must satisfy the above requirements (a) and (b).
  • the inner layer 2 may further contain 0.1% or less of Al and 0.1 to 1% of Cu.
  • the total content of B, Ca, Na or Zr mixed from the flux or refractory material is preferably 0.2% or less. Further, as impurities, S, P, N and O may be contained in a total of about 0.1% or less.
  • FIGS. 3 (a) and 3 (b) show a stationary casting mold used for casting the inner layer 2 after centrifugal casting of the outer layer 1 with the cylindrical mold 30 for centrifugal casting.
  • the stationary casting mold 100 includes a cylindrical mold 30 having an outer layer 1 on the inner surface, and an upper mold 40 and a lower mold 50 provided at upper and lower ends thereof.
  • the inner surface of the outer layer 1 in the cylindrical mold 30 has a cavity 60a for forming the body core portion 21 of the inner layer 2, and the upper die 40 has a cavity 60b for forming the driven side shaft portion 23 of the inner layer 2.
  • the lower mold 50 has a cavity 60c for forming the drive side shaft portion 22 of the inner layer 2.
  • the centrifugal casting method using the cylindrical mold 30 may be any of horizontal type, inclined type and vertical type.
  • the cavity 60a in the outer layer 1 communicates with the cavity 60b of the upper mold 40 and the cavity 60c of the lower mold 50, and the entire inner layer 1 is integrally formed.
  • a cavity 60 is configured.
  • 32 and 33 in the cylindrical mold 30 are sand molds.
  • 42 in the upper mold 40 and 52 in the lower mold 50 are each a sand mold.
  • the lower mold 50 is provided with a bottom plate 53 for holding the inner layer molten metal.
  • the cylindrical mold 30 obtained by centrifugally casting the outer layer 1 is placed upright on the lower die 50 for forming the drive side shaft portion 22 to form a cylindrical shape.
  • An upper mold 40 for forming the driven side shaft portion 23 is installed on the mold 30 to constitute a stationary casting mold 100 for forming the inner layer 2.
  • the stationary casting mold 100 as the outer layer formed by centrifugal casting is solidified during or after solidification, as the ductile cast iron melt for the inner layer 2 is injected into the cavity 60 from the upper opening 43 of the upper mold 40, the cavity 60 The inner surface of the molten metal gradually rises from the lower mold 50 to the upper mold 40, and the inner layer 2 including the driving side shaft portion 22, the trunk core portion 21, and the driven side shaft portion 23 is integrally cast. At that time, the inner surface portion of the outer layer 1 is remelted by the heat quantity of the molten metal, and Cr, Mo, V, Nb, and W in the outer layer 1 are mixed into the inner layer 2.
  • the rising speed of the molten metal surface in the upper die 40 for forming the driven side shaft portion 23 is set to 100 mm / sec or less, and the lower die 50 for forming the driving side shaft portion 22 and the trunk core portion 21 are formed. It is made smaller than the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) for use.
  • the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) for use.
  • the rising speed of the molten metal surface in the upper mold 40 exceeds 100 mm / sec
  • the molten metal in the lower mold 50 and the cylindrical mold 30 and the molten metal in the upper mold 40 are mixed by the stirring of the molten metal by pouring, Cr, Mo, V, Nb, and W in the drive side shaft portion 22 and the trunk core portion 21 are mixed into the driven side shaft portion 23.
  • the total amount of Cr, Mo, V, Nb, and W in the driven side shaft portion 23 becomes too large, and the hardness of the driven side shaft portion 23 becomes too high.
  • the rising speed of the molten metal surface in the upper mold 40 is preferably 10 to 100 mm / sec, more preferably 20 to 90 mm / sec.
  • the rising speed of the molten metal surface in the upper mold 40 is preferably 50 to 150 mm / second smaller than the rising speed of the molten metal surface in the lower mold 50 and the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1). Further, the rising speed of the molten metal surface in the lower mold 50 and the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) are not particularly limited as long as there is no problem with pouring, but practically 100 to 200 mm. / Sec is preferred. The rising speed of the molten metal surface in the lower mold 50 and the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) may be the same, or the former may be larger.
  • the rising speed of the molten metal surface in the upper mold 40, the rising speed of the molten metal surface in the lower mold 50, and the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1) are average rising speeds respectively. .
  • the rising speed of the molten metal surface in the upper mold 40 As described above, not only the content of Cr, Mo, V, Nb and W contained in the outer layer 1, but also the rising speed of the molten metal surface in the upper mold 40, the rising speed of the molten metal surface in the lower mold 50, By adjusting the rising speed of the molten metal surface in the cylindrical mold 30 (outer layer 1), it is possible to control the amount of Cr, Mo, V, Nb and W mixed in the drive side shaft portion 22 and the driven side shaft portion 23. . Specifically, the total amount of Cr, Mo, V, Nb, and W at the end of the drive-side shaft portion 22 formed by the lower die 50 with a high rise speed of the molten metal surface is the follower formed by the upper die 40.
  • the wear resistance of the clutch portion 24 formed at the end of the drive side shaft portion 22 can be improved.
  • the driven-side shaft portion 23 has a smaller total amount of Cr, Mo, V, Nb, and W, and therefore can be processed more easily than the drive-side shaft portion 22.
  • FIG. 4 shows another example of a mold used in the method of the present invention.
  • the mold 110 includes a portion 71 corresponding to the cylindrical mold 30 for forming the outer layer 1 and the trunk core portion 21, a portion 72 corresponding to the upper die 40 for forming the driven side shaft portion 23, and a drive side shaft portion 22 formed.
  • This is a mold in which a portion 73 corresponding to the lower mold 50 for use is integrally formed.
  • Reference numerals 71a, 72a, and 73a denote sand molds.
  • the mold 110 serves as both a centrifugal casting mold and a stationary casting mold. After the outer layer 1 is centrifugally cast using the mold 110, the entire mold 110 having the outer layer 1 formed on the inner surface is erected, and the ductile cast iron melt for the inner layer 2 is poured from the upper opening 74.
  • the cylindrical mold 30 is erected in the case of the mold shown in FIG.
  • the mold 110 is erected and the ductile cast iron melt for the inner layer 2 is poured from the upper opening.
  • the inner surface of the outer layer 1 is remelted, and Cr, Mo, V, Nb, and W are mixed into the intermediate layer. Therefore, since the inner surface of the intermediate layer is redissolved when the inner layer 2 is cast, Cr, Mo, V, Nb and W are also mixed into the inner layer.
  • Examples 1 to 3 and Comparative Examples 1 and 2 A cylindrical mold 30 (with an inner diameter of 800 mm and a length of 2500 mm) having the structure shown in FIG. 3 (a) is installed in a horizontal centrifugal casting machine, and the composition shown in Table 1 (the balance is Fe and inevitable impurities) The outer layer 1 was centrifugally cast using the molten metal of. After the outer layer 1 is solidified, the cylindrical mold 30 with the outer layer 1 (thickness: 90 mm) formed on the inner surface is erected to form a hollow lower mold 50 (inner diameter 600 mm and longer) for forming the drive side shaft portion 22.
  • the cylindrical mold 30 is erected on the cylindrical mold 30 and the hollow upper mold 40 (inner diameter 600 mm and length 2000 mm) for forming the driven shaft portion 23 is erected on the cylindrical mold 30.
  • a stationary casting mold 100 shown in FIG. 3 (b) was constructed.
  • Ductile cast iron melt having the composition shown in Table 1 (the remainder being Fe and inevitable impurities) was poured into the cavity 60 of the stationary casting mold 100 from the upper opening 43.
  • the molten metal surface of the ductile cast iron rises in the order of the lower mold 50 for forming the driving shaft 22, the cylindrical mold 30 for forming the trunk core 21 (outer layer 1), and the upper mold 40 for forming the driven shaft 23. did.
  • an integral inner layer 2 including the driving side shaft portion 22, the trunk core portion 21, and the driven side shaft portion 23 was formed inside the outer layer 1.
  • the stationary casting mold 100 was disassembled and the composite roll was taken out and tempered at 500 ° C. Thereafter, the outer layer 1, the driving side shaft portion 22, and the driven side shaft portion 23 were processed into predetermined shapes by machining, and the clutch portion 24 and the convex portion 25 were formed. As a result of performing ultrasonic inspection on each composite roll thus obtained, it was confirmed that the outer layer 1 and the inner layer 2 were welded in a sound manner.
  • Example 4 Example 1 except that the cylindrical mold 30 was erected after an intermediate layer (thickness: 20 mm) having the composition shown in Table 1 (the balance being Fe and inevitable impurities) was formed on the inner surface of the outer layer 1. Similarly, a composite roll was formed. As a result of ultrasonic inspection, it was confirmed that the outer layer 1, the intermediate layer, and the inner layer 2 were welded in a sound manner.
  • an intermediate layer thickness: 20 mm
  • Table 1 the balance being Fe and inevitable impurities
  • the casting temperature of the outer layer, the inner layer and the intermediate layer, the lower die 50 for forming the driving side shaft portion 22, the cylindrical mold 30 for forming the trunk portion 21, and the driven side Table 2 shows the average rising speed of the inner layer molten metal surface in the upper mold 40 for forming the shaft portion 23.
  • the average rising speed of the inner layer molten metal surface was calculated from the weight change of the inner layer molten metal and the casting time. Further, the contents of Cr, Mo, V, Nb, and W were analyzed for the samples cut out from the end surface 24a of the driving side shaft portion 22 and the end surface 25a of the driven side shaft portion 23. The results are shown in Table 3. Further, as a result of observing the metal structures of the outer layers of Examples 1 to 4, it was confirmed that no graphite was contained.
  • the rising speed of the molten iron surface of the ductile cast iron in the upper mold 40 for forming the driven side shaft portion 23 is 100 mm / sec or less, and the lower mold 50 for forming the driving side shaft portion 22
  • the rise speed of the melt surface of the ductile cast iron and the rise speed of the melt surface of the ductile cast iron in the cylindrical mold 30 (outer layer 1) for forming the trunk portion 21 were smaller. Therefore, the total amount of Cr, Mo, V, Nb and W at the end of the driving side shaft portion 22 and the total amount of Cr, Mo, V, Nb and W at the end portion of the driven side shaft portion 23 are both 0.15 to The range was 2.0% by mass, and the former was more than 0.2% by mass than the latter.
  • the rising speed of the molten iron surface of the ductile iron in the upper mold 40 is the rising speed of the molten iron surface of the ductile iron in the lower mold 50 and the cylindrical mold 30 (outer layer 1).
  • the total amount of Cr, Mo, V, Nb and W at the end of the driving side shaft portion 22 and the total amount of Cr, Mo, V, Nb and W at the end portion of the driven side shaft portion 23 are both 0.15 to Although it was in the range of 2.0% by mass, the difference between the two was less than 0.2% by mass.
  • Example 2 is more in the driving side shaft portion 22 than Comparative Example 1.
  • the difference between the total amount of Cr, Mo, V, Nb and W at the end portion and the total amount of Cr, Mo, V, Nb and W at the end portion of the driven side shaft portion 23 was large. Therefore, both of the hardness of the clutch portion 24 of the drive side shaft portion 22 was sufficient, but the driven side shaft portion 23 of Example 2 is suppressed from mixing Cr, Mo, V, Nb and W.
  • the driven side shaft portion 23 of Comparative Example 1 was hard due to a large amount of Cr, Mo, V, Nb and W mixed therein, and the processing time was significantly long.
  • Example 3 and Comparative Example 2 in which the total amount of Cr, Mo, V, Nb and W at the end of the drive side shaft portion 22 is close are compared, both of the clutch portions 24 of the drive side shaft portion 22 are compared.
  • the hardness was sufficient, the driven side shaft portion 23 of Example 3 had good workability, whereas the driven side shaft portion 23 of Comparative Example 2 was hard and the processing time was significantly long. It was.

Abstract

 遠心鋳造法により形成した外層(1)と、ダクタイル鋳鉄からなる内層(2)とが溶着一体化してなり、外層が質量基準で1.3~3.7%のC と、0.3~3%のSi と、0.1~3%のMn と、1~7%のCr と、1~8%のMo と、2.5~7%のV、0.1~3%のNb 及び0.1~5%のW の少なくとも一種(V が必須)と、0.01~0.2%のB 及び/又は0.05~0.3%のS とを含有し、残部が実質的にFe 及び不可避的不純物からなるFe 基合金からなるとともに、外層の組織が黒鉛を含有せず、内層が外層に溶着した胴芯部(21)並びに胴芯部の両端から一体的に延出する駆動側軸部(22)及び従動側軸部(23)を有し、駆動側軸部の端部におけるCr、Mo、V、Nb 及びW の合計量が0.35~2 質量%で、従動側軸部の端部におけるCr、Mo、V、Nb 及びW の合計量が0.15~1.8 質量%であって、前者が後者より0.2 質量%以上多い遠心鋳造製複合ロール。

Description

遠心鋳造製複合ロール及びその製造方法
 本発明は、遠心鋳造法により形成した耐摩耗及び耐事故性に優れた外層と、強靭な内層とが溶着一体化した複合構造を有する遠心鋳造製複合ロール、及びその製造方法に関する。
 熱間圧延用のワークロールとして、遠心鋳造法により形成した耐摩耗性鉄基合金からなる外層と、強靭なダクタイル鋳鉄からなる内層を溶着一体化した遠心鋳造製複合ロールが広く用いられている。遠心鋳造製複合ロールでは、圧延材との接触による熱的及び機械的負荷によりロール外層に摩耗及び肌荒れ等の損傷が起こり、圧延材の表面品質の劣化の原因となる。そのため、外層の損傷がある程度進行すると、ロールの交換が行われる。圧延機から取り外したロールは、外層から損傷部を研削除去した後、再び圧延機に組み込まれる。ロール外層から損傷部を研削除去することは「改削」と呼ばれる。ワークロールは、初径から圧延に使用可能な最小径(廃却径)まで改削された後、廃却される。初径から廃却径までを「圧延有効径」と呼ぶ。改削が頻繁に行われると圧延の中断により生産性が低下するので、圧延有効径内の外層は、大きな損傷を防止するために優れた耐摩耗性、耐事故性及び耐肌荒れ性を有するのが望ましい。
 図1に示すように、複合ロール10は、圧延材と接する外層1と、外層1の内面に溶着した内層2とからなる。内層2は外層1と異なる材質からなり、外層1に溶着した胴芯部21と、胴芯部21から一体的に両側に延びる駆動側軸部22及び従動側軸部23とからなる。駆動側軸部22の端部には、駆動トルク伝達に用いるクラッチ部24が一体的に設けられている。また従動側軸部23の端部には、複合ロール10のハンドリング等に必要な凸状部25が一体的に設けられている。クラッチ部24は端面24aと、駆動手段(図示せず)と係合する一対の平坦な切欠き面24b,24bとを有し、凸状部25は端面25aを有する。駆動側軸部22及び従動側軸部23には、軸受部、ネック部等を形成するために機械加工を施す必要がある。
 複合ロール10を熱間圧延に用いる場合、改削のインターバルをできるだけ長くするため、外層1の摩耗、焼付き、肌荒れ等の損傷を抑制するとともに、トルク伝達のためカップリングに締結される駆動側軸部22のクラッチ部24の損耗も抑制する必要がある。そのために、外層1を耐摩耗性及び耐事故性に優れた鉄基合金で形成するとともに、内層2を形成するダクタイル鋳鉄の耐摩耗性を向上することが重要である。
 クラッチ部の耐摩耗性を向上させた熱間圧延用複合ロールとして、特開平6-304612号は、高速度工具鋼からなる外層と、C:0.2~1.2重量%の炭素鋼又は低合金鋼からなる内層及び軸部とを有する熱間圧延用複合ロールにおいて、重量基準でC:2.5~3.5%、Si:1.6~2.8%、Mn:0.3~0.6%、P<0.05%、S<0.03%、Ni<0.5%、Cr<0.2%、Mo<0.5%、及びMg:0.02~0.05%を含有し、残部Fe及びその他の不可避的成分からなり、黒鉛面積率が5~15%の球状黒鉛鋳鉄からなるクラッチ部を軸部の端部に鋳継ぎした熱間圧延用複合ロールを開示している。しかし、このクラッチ部の耐摩耗性は未だ不十分である。また、軸部の端部にクラッチ部を鋳継ぐため、両者の接合境界に異物かみ等の鋳造欠陥が発生しやすいという問題もある。さらに、鋳継ぎされる部位を平削加工したり、鋳継ぎ部の周囲に鋳型をセットしたり、内層と異なるクラッチ部用球状黒鉛鋳鉄を溶解及び鋳造する工程が必要となったりするので、製造コストが嵩むという問題もある。
 特開2012-213780号は、外層と、その内面に形成された胴部と、胴部の一端から延びる駆動軸と、他端から延びる従動軸とを有し、駆動軸の引張強度が従動軸より50 MPa以上高い圧延用複合ロールを開示している。駆動軸と従動軸とで引張強度に差を付ける方法の例として、特開2012-213780号は、駆動軸を下側にし、従動軸を上側にした静置鋳造において、駆動軸用の下型に耐火材を塗布した金型を使用し、従動軸用の上型に砂型を用い、下側の鋳込み温度を上側の鋳込み温度より20℃以上低くする方法を記載している。しかし、鋳込み温度の差では従動軸より駆動軸を高強度にすることはできても、駆動軸の耐摩耗性を従動軸より高くすることはできない。
 また、駆動側軸部22の耐損耗性を高めるために内層1全体の硬度を高くすると、従動側軸部23の硬度も上がり、加工性が低下するという問題が生ずる。
 従って本発明の目的は、従動側軸部の加工性を維持したまま駆動側軸部の耐損耗性を改善した遠心鋳造製複合ロール、及びその製造方法を提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者等は、外層を遠心鋳造法により形成した後に、静置鋳造用鋳型内に注湯する内層用溶湯の湯面の上昇速度を適切に制御すると、(a) 外層中のCr、Mo、V、Nb及びWを駆動側軸部の方に従動側軸部より多く混入させることができ、もって駆動側軸部を従動側軸部より高硬度にでき、また(b) 高硬度の駆動側軸部は優れた耐損耗性を有し、従動側軸部は良好な加工性を有することを発見し、本発明に想到した。
 すなわち、本発明の遠心鋳造製複合ロールは、遠心鋳造法により形成した外層と、ダクタイル鋳鉄からなる内層とが溶着一体化してなり、
 前記外層が、質量基準で1.3~3.7%のCと、0.3~3%のSiと、0.1~3%のMnと、1~7%のCrと、1~8%のMoと、2.5~7%のV、0.1~3%のNb及び0.1~5%のWからなる群から選ばれた少なくとも一種であって、Vが必須である元素と、0.01~0.2%のB及び/又は0.05~0.3%のSとを含有し、残部が実質的にFe及び不可避的不純物からなるFe基合金からなるとともに、前記外層の組織が黒鉛を含有せず、
 前記内層が、前記外層に溶着した胴芯部と、前記胴芯部の両端から一体的に延出する駆動側軸部及び従動側軸部とを有し、
 前記駆動側軸部の端部におけるCr、Mo、V、Nb及びWの合計量が0.35~2質量%で、前記従動側軸部の端部におけるCr、Mo、V、Nb及びWの合計量が0.15~1.8質量%であって、前者が後者より0.2質量%以上多いことを特徴とする。
 前記外層はさらに、質量基準で0.1~5%のNi、0.1~10%のCo、0.01~0.5%のZr、0.005~0.5%のTi、及び0.001~0.5%のAlからなる群から選ばれた少なくとも一種を含有してもよい。
 本発明の遠心鋳造製複合ロールの製造方法は、(1) 回転する遠心鋳造用円筒状鋳型で前記外層を遠心鋳造し、(2) 前記外層を有する前記円筒状鋳型を起立させ、その上下端にそれぞれ前記外層に連通する前記駆動側軸部用の下型及び前記従動側軸部用の上型を設けて、静置鋳造用鋳型を構成し、(3) 前記上型、前記外層及び前記下型により構成されるキャビティに前記内層用の溶湯を鋳込む工程を有し、前記上型内における溶湯面の上昇速度が100 mm/秒以下で、前記下型及び前記外層内における溶湯面の上昇速度より小さいことを特徴とする。
 前記上型内における溶湯面の上昇速度と、前記下型及び前記外層内における溶湯面の上昇速度との差は50~150 mm/秒であるのが好ましい。
 本発明の遠心鋳造製複合ロールでは、外層中のCr、Mo、V、Nb及びWがクラッチ部を有する駆動側軸部の方に従動側軸部より多く混入しているので、駆動側軸部は十分に硬くて優れた耐損耗性を有し、従動側軸部は硬すぎず、機械加工が容易である。そのため、本発明の遠心鋳造製複合ロールは大幅に改善された耐用寿命と良好な加工性を併せ持つ。このような特徴を有する本発明の遠心鋳造製複合ロールは、外層の形成後に注湯する内層用溶湯の湯面の上昇速度を制御することにより得られるので、その製造方法は効率的であり、遠心鋳造製複合ロールの製造コストの大幅に低減に寄与する。
複合ロールを示す概略断面図である。 図1の複合ロールのクラッチ部側を示す部分斜視図である。 本発明の遠心鋳造製複合ロールの製造に用いる鋳型の一例を示す分解断面図である。 本発明の遠心鋳造製複合ロールの製造に用いる鋳型の一例を示す断面図である。 本発明の遠心鋳造製複合ロールの製造に用いる鋳型の別の例を示す断面図である。
 本発明の実施形態を以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の変更をしても良い。特に断りがなければ、単に「%」と記載しているときは「質量%」を意味する。
[1] 遠心鋳造製複合ロール
(A) 外層
 外層は、質量基準で1.3~3.7%のCと、0.3~3%のSiと、0.1~3%のMnと、1~7%のCrと、1~8%のMoと、2.5~7%のV、0.1~3%のNb及び0.1~5%のWからなる群から選ばれた少なくとも一種であって、Vが必須である元素と、0.01~0.2%のB及び/又は0.05~0.3%のSとを含有し、残部が実質的にFe及び不可避的不純物からなるFe基合金からなる。外層はさらに、0.1~5%のNi、0.1~10%のCo、0.01~0.5%のZr、0.005~0.5%のTi、及び0.001~0.5%のAlからなる群から選ばれた少なくとも一種を含有しても良い。
(1) 必須元素
(a) C:1.3~3.7質量%
CはV、Nb、Cr、Mo及びWと結合して硬質炭化物を生成し、外層の耐摩耗性の向上に寄与する。Cが1.3質量%未満では硬質炭化物の晶出量が少なすぎて外層に十分な耐摩耗性を付与することができない。一方、Cが3.7質量%を超えると過剰な炭化物の晶出により外層の靱性が低下し、耐クラック性が低下するため、圧延によるクラックが深くなり、ロール損失が増加する。Cの含有量の下限は好ましくは1.5質量%である。またCの含有量の上限は好ましくは3.4質量%であり、より好ましくは3質量%である。
(b) Si:0.3~3質量%
 Siは溶湯の脱酸により酸化物の欠陥を減少させるとともに、基地に固溶して耐焼付き性を向上させ、さらに溶湯の流動性を向上させて鋳造欠陥を防止する作用を有する。Siが0.3質量%未満では溶湯の脱酸作用が不十分であり、溶湯の流動性も不足し、欠陥発生率が高い。一方、Siが3質量%を超えると合金基地が脆化し、外層の靱性は低下する。Si含有量の下限は好ましくは0.4質量%であり、より好ましくは0.5質量%である。Si含有量の上限は好ましくは2.7質量%であり、より好ましくは2.5質量%である。
(c) Mn:0.1~3質量%
 Mnは溶湯の脱酸作用の他に、不純物であるSをMnSとして固定する作用を有する。MnSは潤滑作用を有し、圧延材の焼き付き防止に効果があるので、所望量のMnSを含有するのが好ましい。Mnが0.1質量%未満ではその添加効果は不十分である。一方、Mnが3質量%を超えてもさらなる効果は得られない。Mnの含有量の下限は好ましくは0.3質量%である。Mnの含有量の上限は好ましくは2.4質量%であり、より好ましくは1.8質量%である。
(d) Cr:1~7質量%
 Crは基地をベイナイト又はマルテンサイトにして硬さを保持し、耐摩耗性を維持するのに有効な元素である。Crが1質量%未満では内層に溶け込む量が不足し、クラッチ部の耐損耗性の向上効果が不十分である。一方、Crが7質量%を超えると、基地組織の靭性が低下する。Crの含有量の下限は好ましくは1.5質量%であり、より好ましくは2.5質量%である。Cr含有量の上限は好ましくは6.8質量%である。
(e) Mo:1~8質量%
 MoはCと結合して硬質炭化物(M6C、M2C)を形成し、外層の硬さを増加させるとともに、基地の焼入れ性を向上させる。また、MoはV及びNbとともに強靭かつ硬質なMC炭化物を生成し、耐摩耗性を向上させる。Moが1質量%未満では内層に溶け込む量が不足し、クラッチ部の耐損耗性の向上効果が不十分である。一方、Moが8質量%を超えると、外層の靭性が低下する。Mo含有量の下限は好ましくは1.5質量%であり、より好ましくは2.5質量%である。Mo含有量の上限は好ましくは7.8質量%であり、より好ましくは7.6質量%である。
(f) 炭化物形成元素
 外層は、炭化物形成元素として、2.5~7質量%のV、0.1~3質量%のNb及び0.1~5質量%のWからなる群から選ばれた少なくとも一種を含有するが、Vは必須元素である。
(i) V:2.5~7質量%
 VはCと結合して硬質のMC炭化物を生成する元素である。MC炭化物は2500~3000のビッカース硬さHvを有し、炭化物の中で最も硬い。Vが2.5質量%未満では、MC炭化物の析出量が不十分であるだけでなく、内層に溶け込む量が不足することにより、クラッチ部の耐損耗性の向上効果が不十分である。一方、Vが7質量%を超えると、比重の軽いMC炭化物が遠心鋳造中の遠心力により外層の内側に濃化し、MC炭化物の半径方向偏析が著しくなるだけでなく、MC炭化物が粗大化して合金組織が粗くなり、圧延時に肌荒れしやすくなる。V含有量の下限は好ましくは2.7質量%であり、より好ましくは2.9質量%である。V含有量の上限は好ましくは6.9質量%であり、より好ましくは6.8質量%である。
(ii) Nb:0.1~3質量%
 Vと同様に、NbもCと結合して硬質MC炭化物を生成する。NbはV及びMoとの複合添加により、MC炭化物に固溶してMC炭化物を強化し、外層の耐摩耗性を向上させる。NbC系のMC炭化物は、VC系のMC炭化物より溶湯密度との差が小さいので、MC炭化物の偏析を軽減させる。Nb含有量の下限は好ましくは0.2質量%である。Nb含有量の上限は好ましくは2.9質量%であり、より好ましくは2.8質量%である。
(iii) W:0.1~5質量%
 WはCと結合して硬質のM6C等の硬質炭化物を生成し、外層の耐摩耗性向上に寄与する。またMC炭化物にも固溶してその比重を増加させ、偏析を軽減させる作用を有する。しかし、Wが5質量%を超えると、M6C炭化物が多くなり、組織が不均質となり、肌荒れの原因となる。従って、Wを添加する場合、5質量%以下とする。一方、Wが0.1質量%未満ではその添加効果は不十分である。Wの含有量の上限は好ましくは4質量%であり、より好ましくは3質量%である。
(g) B及び/又はS
 外層はさらに0.01~0.2質量%のB及び/又は0.05~0.3質量%のSを含有する。これらの元素により外層の耐焼き付き性が向上する。熱間圧延では、圧延鋼板が折り重なって圧延される事故(絞り込みと呼ばれる)により、高温の鋼板がロール表面に焼き付き、ロール表面に激しいヒートクラックが発生することがある。B及びSは潤滑作用を有する化合物を外層内に生成し、耐焼付き性を向上させる。
(i) B:0.01~0.2質量%
 Bは炭化物に固溶するとともに、潤滑作用を有する炭ホウ化物を形成し、耐焼付き性を向上させる。炭ホウ化物の潤滑作用は特に高温で顕著に発揮されるので、熱間圧延材のかみ込み時の焼き付き防止に効果的である。Bが0.01質量%未満では十分な潤滑作用が得られない。一方、Bが0.2質量%を超えると外層を脆化させる。B含有量の下限は好ましくは0.012質量%であり、より好ましくは0.015質量%である。またB含有量の上限は好ましくは0.15質量%であり、より好ましくは0.1質量%である。
(ii) S:0.05~0.3質量%
 Sは通常有害元素と扱われているが、MnSの潤滑性を利用するために添加する。Sが0.05質量%未満ではMnSの潤滑作用が十分に得られず、また0.3質量%を超えると外層の脆化が起こる。S含有量の上限は好ましくは0.2質量%であり、より好ましくは0.15質量%である。
(2) 任意元素
 外層はさらに、質量基準で0.1~5%のNi、0.1~10%のCo、0.01~0.5%のZr、0.005~0.5%のTi、及び0.001~0.5%のAl からなる群から選ばれた少なくとも一種を含有しても良い。
(a) Ni:0.1~5質量%
 Niは基地の焼き入れ性を向上させる作用を有するので、大型の複合ロールの場合にNiを添加すると、冷却中のパーライトの発生を防止し、外層の硬さを向上させることができる。Niの添加効果は0.1質量%未満ではほとんどなく、5質量%を超えるとオーステナイトが安定化しすぎ、硬さが向上しにくくなる。Ni含有量の上限は好ましくは4質量%であり、より好ましくは3.5質量%である。
(b) Co:0.1~10質量%
 Coは基地中に固溶し、基地の熱間硬さを増加させ、耐摩耗性及び耐肌荒れ性を改善する効果を有する。Coが0.1質量%未満では添加効果はほとんどなく、また10質量%を超えてもさらなる向上は得られない。Co含有量の下限は好ましくは1質量%である。またCo含有量の上限は好ましくは7質量%である。
(c) Zr:0.01~0.5質量%
 V及びNbと同様に、ZrはCと結合してMC炭化物を生成し、耐摩耗性を向上させる。また、Zrは溶湯中で酸化物を生成し、この酸化物が結晶核として作用するために、凝固組織が微細になる。さらに、ZrはMC炭化物の比重を増加させ、偏析防止に効果がある。しかし、Zrが0.5質量%を超えると、介在物となるので好ましくない。Zr含有量の上限はより好ましくは0.3質量%である。また、十分な添加効果を得るためには、Zrの含有量の下限はより好ましくは0.02質量%である。
(d) Ti:0.005~0.5質量%
 TiはC及びNと結合し、TiC、TiN又はTiCNのような硬質の粒状化合物を形成する。これらは、MC炭化物の核となるため、MC炭化物の均質分散効果があり、耐摩耗性及び耐肌荒れ性の向上に寄与する。しかし、Ti含有量が0.5質量%を超えると、溶湯の粘性が増加し、鋳造欠陥が発生しやすくなる。Ti含有量の上限はより好ましくは0.3質量%であり、最も好ましくは0.2質量%である。また、十分な添加効果を得るためには、Tiの含有量の下限はより好ましくは0.01質量%である。
(e) Al:0.001~0.5質量%
 Alは酸素との親和性が高いため、脱酸剤として作用する。また、Alは黒鉛化阻害元素であるN及びOと結合し、形成された酸窒化物が溶湯中に懸濁されて核となり、MC炭化物を微細均一に晶出させる。しかし、Alが0.5質量%を超えると、外層が脆くなる。また、Alが0.001質量%未満ではその効果が十分でない。Al含有量の上限はより好ましくは0.3質量%であり、最も好ましくは0.2質量%である。また、十分な添加効果を得るためには、Alの含有量の下限はより好ましくは0.01質量%である。
(3) 不可避的不純物
 外層の組成の残部は実質的にFe及び不可避的不純物からなる。不可避的不純物のうち、Pは機械的性質の劣化を招くので、できるだけ少なくするのが好ましい。具体的には、Pの含有量は0.1質量%以下が好ましい。その他の不可避的不純物として、Cu、Sb、Te、Ce等の元素は合計で0.7質量%以下であれば良い。
(4) 組織
 外層の組織は、(a) MC炭化物、(b) M2CやM6CのMoを主体とする炭化物(Mo系炭化物)又はM7C3やM23C6のCrを主体とする炭化物(Cr系炭化物)、(c) 炭ホウ化物、及び(d) 基地からなる。炭ホウ化物は一般にM(C, B)の組成を有する。ただし、金属Mは主にFe、Cr、Mo、V、Nb及びWの少なくとも一種であり、金属M,C及びBの割合は組成により変化する。本発明の外層の組織は黒鉛を含有しないことを特徴とする。
(B) 内層
(1) 炭化物形成元素
 前記外層1と溶着一体化した内層2はダクタイル鋳鉄からなり、外層1に溶着した胴芯部21と、胴芯部21の両端から一体的に延出する駆動側軸部22及び従動側軸部23とを有する。内層2は、(a) 駆動側軸部22の端部における炭化物形成元素(Cr、Mo、V、Nb及びW)の合計量が0.35~2質量%であり、(b) 従動側軸部23の端部における炭化物形成元素(Cr、Mo、V、Nb及びW)の合計量が0.15~1.8質量%であり、かつ(c) 駆動側軸部22におけるCr、Mo、V、Nb及びWの合計量が従動側軸部23におけるCr、Mo、V、Nb及びWの合計量より0.2質量%以上多いことを特徴とする。
要件(a) 及び(b) 
 外層1に1~7%のCr、1~8%のMo及び2.5~7%のVを添加し、さらに任意に0.1~3%のNb及び0.1~5%のWを添加すると、内層2の形成の際にCr、Mo、V、Nb及びWの一部が外層1から内層2に混入し、内層2の駆動側軸部22及び従動側軸部23ともCr、Mo、V、Nb及びWの濃度が上昇する。本発明の方法により得られる遠心鋳造製複合ロールでは、内層2の駆動側軸部22の端部における炭化物形成元素(Cr、Mo、V、Nb及びW)の合計量が0.35~2質量%となり、また従動側軸部23の端部におけるCr、Mo、V、Nb及びWの合計量が0.15~1.8質量%となり、ともに基地組織の固溶強化及び炭化物の形成によりロール軸部は高強度化及び高硬度化する。
 駆動側軸部22の端部におけるCr、Mo、V、Nb及びWの合計量が0.35質量%未満では、駆動側軸部22の高強度化及び高硬度化が不十分であり、特にクラッチ部24の耐損耗性が不十分となる。一方、Cr、Mo、V、Nb及びWの合計量が2質量%を超えると、炭化物の生成量が多すぎ、駆動側軸部22の折損のおそれが生じる。駆動側軸部22の端部におけるCr、Mo、V、Nb及びWの合計量は0.6~1.8質量%が好ましい。
 従動側軸部23の端部におけるCr、Mo、V、Nb及びWの合計量が0.15質量%未満では、従動側軸部23の高強度化が不十分である。一方、Cr、Mo、V、Nb及びWの合計量が1.8質量%を超えると、炭化物の生成量が多すぎ、加工性が低下しすぎる。従動側軸部23の端部におけるCr、Mo、V、Nb及びWの合計量は0.2~1.5質量%が好ましい。
 端部におけるCr、Mo、V、Nb及びWの合計量は、駆動側軸部22及び従動側軸部23の端面からロール軸方向に100 mm以内の範囲から採取した試料を化学分析することにより求める。なお、駆動側軸部22の端面からロール軸方向に100 mm以内の範囲におけるCr、Mo、V、Nb及びWの合計量が上記条件を満たせば、クラッチ部24は必要な耐損耗性を有すると言える。また、従動側軸部23の端面からロール軸方向に100 mm以内の範囲におけるCr、Mo、V、Nb及びWの合計量が上記条件を満たせば、従動側軸部23全体は十分な加工性を有すると言える。
要件(c)
 駆動側軸部22の端部におけるCr、Mo、V、Nb及びWの合計量は、従動側軸部23の端部におけるCr、Mo、V、Nb及びWの合計量より0.2質量%以上多い。これにより、駆動側軸部22のクラッチ部24の耐損耗性をいっそう高めるとともに、従動側軸部23の加工性を確保することができる。両軸部22,23の端部におけるCr、Mo、V、Nb及びWの合計量の差は0.25質量%以上が好ましく、0.3質量%以上がより好ましい。
(2) 内層の組成
 内層2を形成するのに用いるダクタイル鋳鉄は、質量基準でC:2.3~3.6%、Si:1.5~3.5%、Mn:0.2~2%、Cr:0.05~1%、Mo:0.05~1%、V:0.05~1%、Nb:0~0.7%、W:0~0.7%、Ni:0.3~2.5%、及びMg:0.01~0.08%を含有し、残部が実質的にFe及び不可避的不純物であるのが好ましい。勿論、Cr、Mo、V、Nb及びWの合計量は上記要件(a) 及び(b) を満たさなければならない。内層2はさらに、0.1%以下のAl及び0.1~1%のCuを含有しても良い。フラックス又は耐火材から混入するB、Ca、Na又はZrの含有量は合計で0.2%以下が好ましい。また不純物として、S、P、N及びOを合計で約0.1%以下含有しても良い。
[2] 複合ロールの製造方法
 図3(a) 及び図3(b) は、遠心鋳造用円筒状鋳型30で外層1を遠心鋳造した後に内層2を鋳造するのに用いる静置鋳造用鋳型の一例を示す。静置鋳造用鋳型100は、内面に外層1を有する円筒状鋳型30と、その上下端に設けられた上型40及び下型50とからなる。円筒状鋳型30内の外層1の内面は内層2の胴芯部21を形成するためのキャビティ60aを有し、上型40は内層2の従動側軸部23を形成するためのキャビティ60bを有し、下型50は内層2の駆動側軸部22を形成するためのキャビティ60cを有する。円筒状鋳型30を用いる遠心鋳造法は水平型、傾斜型又は垂直型のいずれでも良い。
 円筒状鋳型30の上下に上型40及び下型50を組み立てると、外層1内のキャビティ60aは上型40のキャビティ60b及び下型50のキャビティ60cと連通し、内層1全体を一体的に形成するキャビティ60を構成する。円筒状鋳型30内の32及び33は砂型である。また、上型40内の42及び下型50内の52はそれぞれ砂型である。なお、下型50には内層用溶湯を保持するための底板53が設けられている。
 図3(a) 及び図3(b) に示すように、駆動側軸部22形成用の下型50の上に、外層1を遠心鋳造した円筒状鋳型30を起立させて設置し、円筒状鋳型30の上に従動側軸部23形成用の上型40を設置して、内層2形成用の静置鋳造用鋳型100を構成する。
 静置鋳造用鋳型100において、遠心鋳造法により形成した外層の凝固途中又は凝固後に、内層2用のダクタイル鋳鉄溶湯が上型40の上方開口部43からキャビティ60内に注入されるに従い、キャビティ60内の溶湯の湯面は下型50から上型40まで次第に上昇し、駆動側軸部22、胴芯部21及び従動側軸部23からなる内層2が一体的に鋳造される。その際、溶湯の熱量により外層1の内面部は再溶解し、外層1中のCr、Mo、V、Nb及びWは内層2に混入する。
 本発明の方法では、従動側軸部23形成用の上型40内における溶湯面の上昇速度を100 mm/秒以下とし、かつ駆動側軸部22形成用の下型50及び胴芯部21形成用の円筒状鋳型30(外層1)内における溶湯面の上昇速度より小さくする。これにより、胴芯部21までの注湯で再溶解した外層1から出たCr、Mo、V、Nb及びWは駆動側軸部22及び胴芯部21に所定の程度とどまり、上型40で形成される従動側軸部23に混入することが抑制される。
 上型40内の溶湯面の上昇速度が100 mm/秒を超えると、注湯による溶湯の攪拌により、下型50及び円筒状鋳型30内の溶湯と上型40内の溶湯とが混じり合い、駆動側軸部22及び胴芯部21内のCr、Mo、V、Nb及びWが従動側軸部23に混入する。その結果、従動側軸部23内のCr、Mo、V、Nb及びWの合計量が多くなり過ぎ、従動側軸部23の硬度が高くなり過ぎる。上型40内の溶湯面の上昇速度は10~100 mm/秒が好ましく、20~90 mm/秒がより好ましい。
 上型40内の溶湯面の上昇速度を100 mm/秒以下にするだけでなく、下型50内の溶湯面の上昇速度及び円筒状鋳型30(外層1)内の溶湯面の上昇速度より小さくすることにより、外層1内のCr、Mo、V、Nb及びWを効率良く駆動側軸部22及び胴芯部21に混入させることができるとともに、駆動側軸部22及び胴芯部21に混入したCr、Mo、V、Nb及びWが溶湯の攪拌により従動側軸部23に再混入しすぎるのを効果的に抑制できる。上型40内の溶湯面の上昇速度は、下型50内の溶湯面の上昇速度及び円筒状鋳型30(外層1)内の溶湯面の上昇速度より50~150 mm/秒小さいのが好ましい。また、下型50内の溶湯面の上昇速度及び円筒状鋳型30(外層1)内の溶湯面の上昇速度は、注湯に支障がない限り特に制限されないが、実用的には100~200 mm/秒が好ましい。下型50内の溶湯面の上昇速度と、円筒状鋳型30(外層1)内の溶湯面の上昇速度とは同じでも良く、また前者の方が大きくても良い。ここで、上型40内の溶湯面の上昇速度、下型50内の溶湯面の上昇速度、及び円筒状鋳型30(外層1)内の溶湯面の上昇速度は、それぞれにおける平均上昇速度である。
 上記の通り、外層1に含まれるCr、Mo、V、Nb及びWの含有量を調整するだけでなく、上型40内の溶湯面の上昇速度、下型50内の溶湯面の上昇速度、及び円筒状鋳型30(外層1)内の溶湯面の上昇速度を調整することにより、駆動側軸部22及び従動側軸部23へのCr、Mo、V、Nb及びWの混入量を制御できる。具体的には、溶湯面の上昇速度が大きい下型50で形成される駆動側軸部22の端部におけるCr、Mo、V、Nb及びWの合計量は、上型40で形成される従動側軸部23の端部におけるCr、Mo、V、Nb及びWの合計量より0.2質量%以上多くなる。そのため、駆動側軸部22の端部に形成されるクラッチ部24の耐損耗性を高めることができる。一方、従動側軸部23は、Cr、Mo、V、Nb及びWの合計量が少ないので、駆動側軸部22より加工しやすくできる。
 図4は本発明の方法に用いる鋳型の他の例を示す。この鋳型110は、外層1及び胴芯部21形成用の円筒状鋳型30に相当する部分71と、従動側軸部23形成用の上型40に相当する部分72と、駆動側軸部22形成用の下型50に相当する部分73とが一体的に形成された鋳型である。なお、71a、72a、73aは砂型を示す。このように、鋳型110は遠心鋳造用鋳型と静置鋳造用鋳型とを兼ねたものである。鋳型110を用いて外層1を遠心鋳造した後、外層1を内面に形成した鋳型110全体を起立させ、上方開口部74から内層2用のダクタイル鋳鉄溶湯を注湯する。
 成分混入の抑制や緩衝層の形成等の目的で中間層を形成する場合、外層1の内面に中間層を形成した後、図3に示す鋳型の場合には円筒状鋳型30を起立させ、また図4に示す鋳型の場合には鋳型110を起立させ、上方開口部より内層2用のダクタイル鋳鉄溶湯を注湯する。中間層の溶湯を鋳込む際に外層1の内面が再溶解し、Cr、Mo、V、Nb及びWが中間層に混入する。そのため、内層2の鋳造の際に中間層の内面が再溶解するため、Cr、Mo、V、Nb及びWは内層にも混入する。
 以下、本発明の実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1~3、及び比較例1及び2
 図3(a) に示す構造の円筒状鋳型30(内径800 mm、及び長さ2500 mm)を水平型の遠心鋳造機に設置し、表1に示す組成(残部はFe及び不可避的不純物である。)の溶湯を用いて外層1を遠心鋳造した。外層1が凝固した後、内面に外層1(厚さ:90 mm)が形成された円筒状鋳型30を起立させ、駆動側軸部22形成用の中空状下型50(内径600 mm、及び長さ1500 mm)の上に円筒状鋳型30を立設し、円筒状鋳型30の上に従動側軸部23形成用の中空状上型40(内径600 mm、及び長さ2000 mm)を立設し、図3(b) に示す静置鋳造用鋳型100を構成した。
 静置鋳造用鋳型100のキャビティ60に、表1に示す組成(残部はFe及び不可避的不純物である。)のダクタイル鋳鉄溶湯を上方開口部43から注湯した。ダクタイル鋳鉄溶湯の湯面は、駆動側軸部22形成用の下型50、胴芯部21形成用の円筒状鋳型30(外層1)及び従動側軸部23形成用の上型40の順に上昇した。このようにして、外層1の内部に、駆動側軸部22、胴芯部21及び従動側軸部23からなる一体的な内層2を形成した。
 内層2が完全に凝固した後、静置鋳造用鋳型100を解体して複合ロールを取り出し、500℃の焼戻し処理を行った。その後、機械加工により外層1、駆動側軸部22及び従動側軸部23を所定の形状に加工し、クラッチ部24及び凸状部25を形成した。このようにして得られた各複合ロールに対して超音波検査を行った結果、外層1と内層2は健全に溶着していることが確認された。
実施例4
 外層1の内面に表1に示す組成(残部はFe及び不可避的不純物である。)の中間層(厚さ:20 mm)を形成した後、円筒状鋳型30を起立させた以外実施例1と同様にして、複合ロールを形成した。超音波検査を行った結果、外層1と中間層と内層2は健全に溶着していることが確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
注:(1) 各化学組成における残部はFe及び不可避的不純物である。
 
 実施例1~4、及び比較例1及び2について、外層、内層及び中間層の鋳込温度、及び駆動側軸部22形成用下型50、胴芯部21形成用円筒状鋳型30及び従動側軸部23形成用上型40における内層溶湯面の平均上昇速度を表2に示す。内層溶湯面の平均上昇速度は、内層溶湯の重量変化と鋳込時間から算出した。また、駆動側軸部22の端面24a及び従動側軸部23の端面25aから切り出した試料に対して、Cr、Mo、V、Nb及びWの含有量を分析した。結果を表3に示す。また、実施例1~4の外層の金属組織を観察した結果、黒鉛を含有しないことが確認された。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
注:(1) 各化学組成における残部はFe及び不可避的不純物である。
  (2) 下型の駆動側軸部の分析値から上型の従動側軸部の分析値を引いた値。
  (3) Cr、Mo、V、Nb及びWの合計量。
 
 実施例1~4では、従動側軸部23形成用の上型40内のダクタイル鋳鉄の溶湯面の上昇速度は100 mm/秒以下であり、かつ駆動側軸部22形成用の下型50内のダクタイル鋳鉄の溶湯面の上昇速度及び胴芯部21形成用の円筒状鋳型30(外層1)内のダクタイル鋳鉄の溶湯面の上昇速度より小さかった。そのため、駆動側軸部22の端部におけるCr、Mo、V、Nb及びWの合計量、及び従動側軸部23の端部におけるCr、Mo、V、Nb及びWの合計量はともに0.15~2.0質量%の範囲内であり、かつ前者は後者より0.2質量%以上多かった。
 これに対して、比較例1及び2では、上型40内のダクタイル鋳鉄の溶湯面の上昇速度は下型50内のダクタイル鋳鉄の溶湯面の上昇速度及び円筒状鋳型30(外層1)内のダクタイル鋳鉄の溶湯面の上昇速度より小さいが、100 mm/秒超であった。そのため、駆動側軸部22の端部におけるCr、Mo、V、Nb及びWの合計量、及び従動側軸部23の端部におけるCr、Mo、V、Nb及びWの合計量はともに0.15~2.0質量%の範囲内であったが、両者の差は0.2質量%未満であった。
 駆動側軸部22の端部におけるCr、Mo、V、Nb及びWの合計量が近い実施例2と比較例1を比較すると、実施例2の方が比較例1より駆動側軸部22の端部におけるCr、Mo、V、Nb及びWの合計量と従動側軸部23の端部におけるCr、Mo、V、Nb及びWの合計量との差が大きかった。そのため、両者とも駆動側軸部22のクラッチ部24の硬度は十分であったが、実施例2の従動側軸部23は、Cr、Mo、V、Nb及びWの混入が抑制されているために良好な加工性を有していたのに対して、比較例1の従動側軸部23はCr、Mo、V、Nb及びWの混入が多いために硬く、加工時間が大幅に長かった。
 同様に、駆動側軸部22の端部におけるCr、Mo、V、Nb及びWの合計量が近い実施例3と比較例2とを比較すると、両者とも駆動側軸部22のクラッチ部24の硬度は十分であったが、実施例3の従動側軸部23は良好な加工性を有していたのに対して、比較例2の従動側軸部23は硬く、加工時間が大幅に長かった。
10・・・遠心鋳造製複合ロール
1・・・外層
2・・・内層
21・・・胴芯部
 22・・・駆動側軸部
 23・・・従動側軸部
 24・・・駆動側軸部のクラッチ部
 24a・・・クラッチ部の端面
 24b・・・クラッチ部の切欠き面
 25・・・従動側軸部の凸状部
 25a・・・凸状部の端面
100・・・静置鋳造用鋳型
30・・・遠心鋳造用円筒状鋳型
32,33,42,52・・・砂型
40・・・静置鋳造用上型
50・・・静置鋳造用下型
60,60a,60b,60c・・・キャビティ

Claims (4)

  1. 遠心鋳造法により形成した外層と、ダクタイル鋳鉄からなる内層とが溶着一体化した遠心鋳造製複合ロールであって、
     前記外層が、質量基準で1.3~3.7%のCと、0.3~3%のSiと、0.1~3%のMnと、1~7%のCrと、1~8%のMoと、2.5~7%のV、0.1~3%のNb及び0.1~5%のWからなる群から選ばれた少なくとも一種であって、Vが必須である元素と、0.01~0.2%のB及び/又は0.05~0.3%のSとを含有し、残部が実質的にFe及び不可避的不純物からなるFe基合金からなるとともに、前記外層の組織が黒鉛を含有せず、
     前記内層が、前記外層に溶着した胴芯部と、前記胴芯部の両端から一体的に延出する駆動側軸部及び従動側軸部とを有し、
     前記駆動側軸部の端部におけるCr、Mo、V、Nb及びWの合計量が0.35~2質量%で、前記従動側軸部の端部におけるCr、Mo、V、Nb及びWの合計量が0.15~1.8質量%であって、前者が後者より0.2質量%以上多いことを特徴とする遠心鋳造製複合ロール。
  2. 請求項1に記載の遠心鋳造製複合ロールにおいて、前記外層がさらに、質量基準で0.1~5%のNi、0.1~10%のCo、0.01~0.5%のZr、0.005~0.5%のTi、及び0.001~0.5%のAlからなる群から選ばれた少なくとも一種を含有することを特徴とする遠心鋳造製複合ロール。
  3. 請求項1又は2に記載の遠心鋳造製複合ロールを製造する方法において、(1) 回転する遠心鋳造用円筒状鋳型で前記外層を遠心鋳造し、(2) 前記外層を有する前記円筒状鋳型を起立させ、その上下端にそれぞれ前記外層に連通する前記駆動側軸部用の下型及び前記従動側軸部用の上型を設けて、静置鋳造用鋳型を構成し、(3) 前記上型、前記外層及び前記下型により構成されるキャビティに前記内層用の溶湯を鋳込む工程を有し、前記上型内における溶湯面の上昇速度が100 mm/秒以下で、前記下型及び前記外層内における溶湯面の上昇速度より小さいことを特徴とする方法。
  4. 請求項3に記載の遠心鋳造製複合ロールの製造方法において、前記上型内における溶湯面の上昇速度と、前記下型及び前記外層内における溶湯面の上昇速度との差が50~150 mm/秒であることを特徴とする方法。
PCT/JP2014/072584 2013-09-25 2014-08-28 遠心鋳造製複合ロール及びその製造方法 WO2015045720A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112016004076-7A BR112016004076B1 (pt) 2013-09-25 2014-08-28 Cilindro compósito centrifugamente fundido e método para produção do mesmo
EP14849491.7A EP3050638B1 (en) 2013-09-25 2014-08-28 Centrifugally cast composite roll and its production method
CN201480052105.XA CN105579157B (zh) 2013-09-25 2014-08-28 离心铸造制复合辊及其制造方法
KR1020167008300A KR102219332B1 (ko) 2013-09-25 2014-08-28 원심 주조제 복합 롤 및 그 제조 방법
JP2015533342A JP5843055B2 (ja) 2013-09-25 2014-08-28 遠心鋳造製複合ロール及びその製造方法
US14/911,947 US9724740B2 (en) 2013-09-25 2014-08-28 Centrifugally cast composite roll and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198950 2013-09-25
JP2013-198950 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015045720A1 true WO2015045720A1 (ja) 2015-04-02

Family

ID=52742871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072584 WO2015045720A1 (ja) 2013-09-25 2014-08-28 遠心鋳造製複合ロール及びその製造方法

Country Status (8)

Country Link
US (1) US9724740B2 (ja)
EP (1) EP3050638B1 (ja)
JP (1) JP5843055B2 (ja)
KR (1) KR102219332B1 (ja)
CN (1) CN105579157B (ja)
BR (1) BR112016004076B1 (ja)
TW (1) TWI619567B (ja)
WO (1) WO2015045720A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580777B1 (en) * 2016-02-08 2017-02-28 Roman Radon Hypereutectic white iron alloys comprising chromium, boron and nitrogen and articles made therefrom
WO2017170570A1 (ja) * 2016-03-31 2017-10-05 日立金属株式会社 圧延ロール用外層及び圧延用複合ロール
WO2018147367A1 (ja) 2017-02-08 2018-08-16 日立金属株式会社 圧延用複合ロール及びその製造方法
WO2019045068A1 (ja) * 2017-08-31 2019-03-07 日立金属株式会社 圧延用複合ロール及びその製造方法
WO2020032144A1 (ja) 2018-08-08 2020-02-13 日立金属株式会社 圧延用遠心鋳造複合ロール及びその製造方法
WO2020203571A1 (ja) * 2019-04-03 2020-10-08 日鉄ロールズ株式会社 遠心鋳造製圧延用複合ロール及びその製造方法
JP2020530876A (ja) * 2017-06-21 2020-10-29 ヘガネス アクチボラゲット 高硬度および耐摩耗性を有する被覆の基材上への形成に適した鉄基合金、高硬度および耐摩耗性を有する被覆を施された物品、並びにその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315624B1 (en) * 2016-09-05 2020-06-10 Tpr Co., Ltd. Cylindrical member made from lamellar graphite cast iron
JP6313844B1 (ja) * 2016-12-28 2018-04-18 株式会社クボタ 圧延用複合ロール
CN109702175B (zh) * 2018-12-17 2021-01-29 邢台德龙机械轧辊有限公司 轧辊的制备方法及轧辊
CN109732063B (zh) * 2018-12-28 2020-10-30 河南科技大学 一种包含假合金过渡层的Zn-Al-Fe合金复合轴套的制备方法
WO2021075561A1 (ja) * 2019-10-16 2021-04-22 日立金属株式会社 熱間圧延用遠心鋳造複合ロール
RU2750257C2 (ru) * 2019-11-29 2021-06-24 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" Способ получения быстрорежущей стали для изготовления композитных валков
CN111101062A (zh) * 2019-12-31 2020-05-05 江苏共昌轧辊股份有限公司 一种热轧改良的离心复合铸造的高Nb高速钢轧辊及其制备方法
CN112475268A (zh) * 2020-11-25 2021-03-12 铜陵市大成轧辊有限责任公司 一种新能源汽车型材用双基复合镍铬钼无限冷硬铸铁轧辊
CN113058694B (zh) * 2021-03-19 2022-10-14 河北津西钢铁集团重工科技有限公司 一种半钢复合辊套及其制备方法
TWI763428B (zh) * 2021-04-15 2022-05-01 光隆精密工業股份有限公司 應用於諧波減速器之剛輪、其製造方法及諧波減速器
CN115491578B (zh) * 2022-08-30 2023-06-20 西安理工大学 高性能铝合金切削加工刃具用材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304612A (ja) 1993-04-21 1994-11-01 Nippon Steel Corp 熱間圧延用ロール
JPH08117965A (ja) * 1994-10-21 1996-05-14 Nippon Steel Corp 遠心鋳造製複合ロールの製造方法
JP2006281301A (ja) * 2005-04-04 2006-10-19 Nippon Steel Corp 圧延用複合ロール
JP2007245217A (ja) * 2006-03-17 2007-09-27 Kubota Corp 圧延用複合ロール
JP2012213780A (ja) 2011-03-31 2012-11-08 Kubota Corp 圧延用複合ロール及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659323A (en) * 1968-07-26 1972-05-02 Hitachi Ltd A method of producing compound cast rolls
US3754593A (en) * 1971-12-06 1973-08-28 Wean United Inc Centrifugal casting of bi-metal rolls
JP2898749B2 (ja) * 1990-07-04 1999-06-02 株式会社クボタ 高耐摩耗ロール材およびその製造法
JP2974822B2 (ja) * 1991-06-26 1999-11-10 株式会社クボタ 遠心力鋳造複合ロール
EP0525932B1 (en) * 1991-07-09 1996-09-11 Hitachi Metals, Ltd. Compound roll and method of producing same
US5355932A (en) * 1992-03-06 1994-10-18 Hitachi Metals, Ltd. Method of producing a compound roll
JP3206093B2 (ja) * 1992-03-06 2001-09-04 日立金属株式会社 圧延用ロールおよびその製造方法
JP2000178675A (ja) * 2000-01-01 2000-06-27 Kubota Corp 複合ロール
JP2000160277A (ja) 2000-01-01 2000-06-13 Kubota Corp 複合ロール
US8156651B2 (en) * 2004-09-13 2012-04-17 Hitachi Metals, Ltd. Centrifugally cast external layer for rolling roll and method for manufacture thereof
CN100467151C (zh) 2007-04-03 2009-03-11 西安交通大学 一种低偏析高速钢轧辊及其制备方法
CN101386026A (zh) * 2007-09-14 2009-03-18 日立金属株式会社 离心铸造制轧辊
CN101386961A (zh) * 2007-09-14 2009-03-18 日立金属株式会社 离心铸造制轧辊
CN101121996B (zh) * 2007-09-21 2010-12-01 武汉钢铁(集团)公司 用于离心轧辊的外层材料
CN100574910C (zh) 2008-11-28 2009-12-30 北京工业大学 离心铸造半钢/石墨钢复合辊环及其制备方法
IN2014DN08041A (ja) 2012-04-02 2015-05-01 Hitachi Metals Ltd

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304612A (ja) 1993-04-21 1994-11-01 Nippon Steel Corp 熱間圧延用ロール
JPH08117965A (ja) * 1994-10-21 1996-05-14 Nippon Steel Corp 遠心鋳造製複合ロールの製造方法
JP2006281301A (ja) * 2005-04-04 2006-10-19 Nippon Steel Corp 圧延用複合ロール
JP2007245217A (ja) * 2006-03-17 2007-09-27 Kubota Corp 圧延用複合ロール
JP2012213780A (ja) 2011-03-31 2012-11-08 Kubota Corp 圧延用複合ロール及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3050638A4

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580777B1 (en) * 2016-02-08 2017-02-28 Roman Radon Hypereutectic white iron alloys comprising chromium, boron and nitrogen and articles made therefrom
WO2017170570A1 (ja) * 2016-03-31 2017-10-05 日立金属株式会社 圧延ロール用外層及び圧延用複合ロール
CN109070160A (zh) * 2016-03-31 2018-12-21 日立金属株式会社 轧辊用外层和轧制用复合辊
JPWO2017170570A1 (ja) * 2016-03-31 2019-02-07 日立金属株式会社 圧延ロール用外層及び圧延用複合ロール
CN109070160B (zh) * 2016-03-31 2019-12-06 日立金属株式会社 轧辊用外层和轧制用复合辊
US11052440B2 (en) 2016-03-31 2021-07-06 Hitachi Metals, Ltd. Outer layer of rolling roll and composite roll for rolling
WO2018147367A1 (ja) 2017-02-08 2018-08-16 日立金属株式会社 圧延用複合ロール及びその製造方法
US11192156B2 (en) 2017-02-08 2021-12-07 Hitachi Metals, Ltd. Composite roll for rolling and its production method
CN110290880A (zh) * 2017-02-08 2019-09-27 日立金属株式会社 轧制用复合辊及其制造方法
JPWO2018147367A1 (ja) * 2017-02-08 2019-12-12 日立金属株式会社 圧延用複合ロール及びその製造方法
JP2020530876A (ja) * 2017-06-21 2020-10-29 ヘガネス アクチボラゲット 高硬度および耐摩耗性を有する被覆の基材上への形成に適した鉄基合金、高硬度および耐摩耗性を有する被覆を施された物品、並びにその製造方法
US11359268B2 (en) 2017-06-21 2022-06-14 Höganäs Germany GmbH Iron based alloy suitable for providing a hard and wear resistant coating on a substrate, article having a hard and wear resistant coating, and method for its manufacture
JP7155171B2 (ja) 2017-06-21 2022-10-18 ヘガネス アクチボラゲット 高硬度および耐摩耗性を有する被覆の基材上への形成に適した鉄基合金、高硬度および耐摩耗性を有する被覆を施された物品、並びにその製造方法
JPWO2019045068A1 (ja) * 2017-08-31 2020-10-15 日立金属株式会社 圧延用複合ロール及びその製造方法
WO2019045068A1 (ja) * 2017-08-31 2019-03-07 日立金属株式会社 圧延用複合ロール及びその製造方法
JP7036119B2 (ja) 2017-08-31 2022-03-15 日立金属株式会社 圧延用複合ロール及びその製造方法
JP7400718B2 (ja) 2018-08-08 2023-12-19 株式会社プロテリアル 圧延用遠心鋳造複合ロール及びその製造方法
WO2020032144A1 (ja) 2018-08-08 2020-02-13 日立金属株式会社 圧延用遠心鋳造複合ロール及びその製造方法
US11389847B2 (en) 2018-08-08 2022-07-19 Hitachi Metals, Ltd. Centrifugally cast composite roll for rolling and its production method
KR20210134010A (ko) * 2019-04-03 2021-11-08 닛테츠 롤즈 가부시키가이샤 원심 주조제 압연용 복합 롤 및 그 제조 방법
JP7092943B2 (ja) 2019-04-03 2022-06-28 日鉄ロールズ株式会社 遠心鋳造製圧延用複合ロール及びその製造方法
JPWO2020203571A1 (ja) * 2019-04-03 2021-12-02 日鉄ロールズ株式会社 遠心鋳造製圧延用複合ロール及びその製造方法
CN113710385A (zh) * 2019-04-03 2021-11-26 日铁轧辊株式会社 通过离心铸造法制造的轧制用复合辊及其制造方法
CN113710385B (zh) * 2019-04-03 2023-07-14 日铁轧辊株式会社 通过离心铸造法制造的轧制用复合辊及其制造方法
WO2020203571A1 (ja) * 2019-04-03 2020-10-08 日鉄ロールズ株式会社 遠心鋳造製圧延用複合ロール及びその製造方法
KR102647292B1 (ko) 2019-04-03 2024-03-13 닛테츠 롤즈 가부시키가이샤 원심 주조제 압연용 복합 롤 및 그 제조 방법

Also Published As

Publication number Publication date
KR20160060061A (ko) 2016-05-27
CN105579157A (zh) 2016-05-11
KR102219332B1 (ko) 2021-02-22
EP3050638A1 (en) 2016-08-03
CN105579157B (zh) 2018-08-28
TWI619567B (zh) 2018-04-01
BR112016004076B1 (pt) 2020-03-24
US9724740B2 (en) 2017-08-08
TW201515737A (zh) 2015-05-01
EP3050638A4 (en) 2017-05-17
JPWO2015045720A1 (ja) 2017-03-09
EP3050638B1 (en) 2020-02-05
JP5843055B2 (ja) 2016-01-13
US20160193637A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP5843055B2 (ja) 遠心鋳造製複合ロール及びその製造方法
JP5477522B1 (ja) 遠心鋳造製複合ロール及びその製造方法
JP5950048B2 (ja) 遠心鋳造製熱間圧延用複合ロール
WO2015045985A1 (ja) 遠心鋳造製熱間圧延用複合ロール
WO2018147370A1 (ja) 圧延用複合ロール及びその製造方法
JP6191913B2 (ja) 遠心鋳造製複合ロール及びその製造方法
KR102378993B1 (ko) 압연용 복합 롤 및 그의 제조 방법
EP3677353B1 (en) Rolling composite roll and its production method
TWI469835B (zh) Centrifugal casting legal compound roll and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052105.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533342

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911947

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016004076

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167008300

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014849491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849491

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016004076

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160225