WO2015045984A1 - 遠心鋳造製熱間圧延用複合ロール - Google Patents
遠心鋳造製熱間圧延用複合ロール Download PDFInfo
- Publication number
- WO2015045984A1 WO2015045984A1 PCT/JP2014/074564 JP2014074564W WO2015045984A1 WO 2015045984 A1 WO2015045984 A1 WO 2015045984A1 JP 2014074564 W JP2014074564 W JP 2014074564W WO 2015045984 A1 WO2015045984 A1 WO 2015045984A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- outer layer
- carbide
- composite roll
- area ratio
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
- B21B27/03—Sleeved rolls
- B21B27/032—Rolls for sheets or strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D13/00—Centrifugal casting; Casting by using centrifugal force
- B22D13/02—Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/011—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/06—Cast-iron alloys containing chromium
- C22C37/08—Cast-iron alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/56—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2204/00—End product comprising different layers, coatings or parts of cermet
Definitions
- the present invention relates to a composite roll for hot rolling with a composite structure having an outer layer excellent in wear resistance, seizure resistance (accident resistance) and rough skin resistance, and an inner layer excellent in toughness.
- a heated slab with a thickness of several hundred mm manufactured by continuous casting or the like is rolled into a steel sheet with a thickness of several to several tens of mm by a hot strip mill having a roughing mill and a finish rolling mill.
- a finishing mill is usually a series of 5 to 7 quadruple rolling mills arranged in series. In the case of a 7-stand finishing mill, the first stand to the third stand are referred to as the front stand, and the fourth stand to the seventh stand are referred to as the rear stand.
- the work roll used in such a hot strip mill is composed of an outer layer in contact with the hot thin plate and an inner layer welded and integrated with the inner surface of the outer layer. Since the outer layer in contact with the hot thin plate is subjected to a large thermal and mechanical rolling load by hot rolling for a certain period, it is inevitable that the surface is damaged such as wear, rough skin, and heat cracks. After grinding and removing these damages from the outer layer, the work roll is again subjected to rolling. Grinding and removing the damaged part from the outer layer of the roll is called “cutting”. The work roll is discarded after being cut from the initial diameter to the minimum diameter (disposal diameter) that can be used for rolling. The diameter from the initial diameter to the scrap diameter is called the effective rolling diameter.
- the outer layer within the effective rolling diameter desirably has excellent wear resistance, accident resistance, and rough skin resistance in order to prevent large damage such as heat cracks.
- the chemical components of the outer shell layer are in a mass ratio, C: 3.0 to 4.0%, Si: 0.8 to 2.5%, Mn: 0.2 to 1.2%, Ni: 3.0 to 5.0%, Cr : 0.5-2.5%, Mo: 0.1-3.0%, V: 1.0-5.0%, balance Fe and inevitable impurities, shaft core part made of plain cast iron or spheroidal graphite cast iron containing C: 2.5-4.0%
- a composite roll for hot rolling made by centrifugal casting that satisfies the relationship of 0.03 ⁇ T / R ⁇ 0.5 in the thickness (T) of the outer shell layer and the radius (R) of the shaft core is proposed.
- This composite roll has good seizure resistance and wear resistance. However, higher wear resistance has been required for the outer layer of the composite roll for hot rolling.
- a composite roll for hot rolling having an outer layer made of high-speed steel having high wear resistance has also been proposed.
- Japanese Patent Application Laid-Open No. 08-020837 describes, by weight ratio, C: 1.50 to 3.50%, Si: 1.50% or less, Mn: 1.20% or less, Cr: 5.50 ⁇ 12.00%, Mo: 2.00 ⁇ 8.00%, V: 3.00 ⁇ 10.00%, Nb: 0.60 ⁇ 7.00%, B: More than 0.01 ⁇ 0.200% or less, N: More than 0.08 ⁇ 0.300% or less, and the following formula ( 1) satisfying 1 and (2) ⁇ , V + 1.8 Nb ⁇ 7.5 C-6.0 ...
- a roll outer layer material for high-speed steel rolling with a small coefficient is disclosed. Although the seizure resistance of the outer layer material is improved by the addition of B, the wear resistance, accident resistance, and rough skin resistance required for the outer layer of the composite roll for hot rolling are still insufficient.
- JP-A-2005-264322 is a composite roll for hot rolling in which an outer layer and an inner layer are welded and integrated, and the outer layer has a mass ratio of C: 1.8 to 3.5%, Si: 0.2 to 2%, Mn: Contains 0.2-2%, Cr: 4-15%, Mo: 2-10%, V: 3-10%, P: 0.1-0.6%, and B: 0.05-0.5%, and Nb: 3% or less , W: 5% or less, Ni: 5% or less, and Co: 2% or less are disclosed, and a composite roll for hot rolling excellent in seizure resistance having a composition comprising the balance Fe and inevitable impurities is disclosed. is doing. JP 2005-264322 describes that 0.03% or less of S may be contained. However, the wear resistance, accident resistance and rough skin resistance of this outer layer were insufficient.
- At least the outer shell layer of the roll has a weight ratio of C: 1.5 to 3%, Cr: 0.5 to 5%, Mo: 0.5 to 8%, V: 1 to 8%, W: 1 MC type carbide consisting of high carbon high speed steel containing super ⁇ 8%, Nb: 0.1 ⁇ 5% and B: 0.01 ⁇ 1%, with grain size of 15 ⁇ m or less and major axis / minor axis ratio of 2 or less Discloses a roll for hot rolling having 5 to 20 area%. S is regarded as an inevitable impurity, and it is described that 0.08% or less may be contained.
- the outer shell layer of the roll disclosed in JP-A-10-008212 did not provide sufficient wear resistance, accident resistance, and rough skin resistance.
- Japanese Patent Application Laid-Open No. 61-26758 discloses that the chemical composition is by weight, C: 1.0 to 2.0%, Si: 0.2 to 2.0%, Mn: 0.5 to 1.5%, Ni: 3.0% or less, Cr: 2 to 5%, A composite roll outer layer containing Mo: 3 to 10%, V: 4.0% or less, and S: 0.1 to 0.6%, the balance being substantially made of Fe and having excellent seizure resistance is disclosed.
- this composite roll outer layer does not contain B at all, it does not have sufficient abrasion resistance, accident resistance, and rough skin resistance.
- an object of the present invention is to provide a composite roll for hot rolling made by centrifugal casting having an outer layer excellent in wear resistance, accident resistance and skin resistance and a tough inner layer.
- the outer layer preferably further contains 3% by mass or less of Nb and 4% by mass or less of W.
- the outer layer preferably further contains 0.05 to 0.3% by mass of S.
- the outer layer preferably further contains 0.01 to 0.07% by mass of N.
- the outer layer preferably further contains at least one selected from the group consisting of Co: 5% or less, Zr: 0.5% or less, Ti: 0.5% or less, and Al: 0.5% or less on a mass basis.
- the outer layer has the following formula (2): 30.23 + 2.74 ⁇ (MC carbide area ratio) + 4.01 ⁇ (Mo carbide area ratio) ⁇ 5.63 ⁇ (carbon boride area ratio) ⁇ 50 (2) It is preferable to satisfy this relationship.
- the outer layer preferably has a Vickers hardness Hv of 500 or more.
- the seizure resistance is improved by the generated carbon boride.
- the outer layer of the centrifugally cast composite roll for hot rolling of the present invention has higher wear resistance due to MC carbide.
- the roll of the present invention has excellent wear resistance, so there is little surface damage to the rolling load, and because it is also excellent in seizure resistance, the rolled material has excellent characteristics against the seizure and adhesion of rough skin. .
- the roll skin after rolling is smooth, and a product with good quality can be obtained.
- the composite roll for hot rolling made by centrifugal casting of the present invention having not only high wear resistance but also excellent seizure resistance and rough skin resistance is suitable for use in the finish rolling stage of a hot strip mill.
- FIG. 1 shows a composite roll 10 for hot rolling comprising an outer layer 1 formed by centrifugal casting and an inner layer 2 welded and integrated with the outer layer 1.
- the inner layer 2 made of ductile cast iron has a trunk core portion 21 welded to the outer layer 1 and shaft portions 22 and 23 extending integrally from both ends of the trunk core portion 21.
- the outer layer 1 is preferably made of high speed steel.
- the lower limit of the C content is preferably 1.4% by mass.
- the upper limit of the C content is preferably 2.9% by mass, more preferably 2.5% by mass, and most preferably 2.3% by mass.
- Si 0.4-3 mass% Si has the effect of reducing oxide defects by deoxidation of the molten metal. When Si is less than 0.4% by mass, the deoxidation effect is insufficient. Si is an element that preferentially dissolves in the base, but if it exceeds 3% by mass, the outer layer becomes brittle.
- the lower limit of the Si content is preferably 0.45% by mass, more preferably 0.5% by mass.
- the upper limit of the Si content is preferably 2.7% by mass, more preferably 2.5% by mass, and most preferably 2.0% by mass.
- Mn 0.3-3 mass%
- Mn combines with S to produce MnS having a lubricating action. If Mn is less than 0.3% by mass, those effects are insufficient. On the other hand, even if Mn exceeds 3% by mass, no further effect is obtained.
- the lower limit of the Mn content is preferably 0.35% by mass.
- the upper limit of the Mn content is preferably 2.5% by mass, more preferably 1.9% by mass, and most preferably 1.7% by mass.
- Ni 1-5% by mass Since Ni has the effect of improving the hardenability of the base, when Ni is added in the case of a large composite roll, the generation of pearlite during cooling can be prevented and the hardness of the outer layer can be improved. However, if Ni exceeds 5% by mass, austenite is excessively stabilized and hardness is hardly improved.
- the upper limit of the Ni content is preferably 4% by mass, more preferably 3.8% by mass, and most preferably 3.5% by mass.
- the lower limit of the Ni content at which the effect of addition is obtained is 1% by mass, preferably 1.2% by mass.
- (e) Cr 2-7% by mass Cr is an element effective for maintaining the hardness and maintaining the wear resistance by making the base a bainite or martensite. If Cr is less than 2% by mass, the effect is insufficient, and if it exceeds 7% by mass, the base structure becomes brittle.
- the lower limit of the Cr content is preferably 2.5% by mass, more preferably 3.0% by mass.
- the upper limit of the Cr content is preferably 6.8% by mass, more preferably 6.5% by mass.
- Mo 3-8% by mass Mo combines with C to form hard carbides (M 6 C, M 2 C), increasing the hardness of the outer layer. Mo also produces tough and hard MC carbide with V (and Nb), improving wear resistance. If Mo is less than 3% by mass, these effects are insufficient. On the other hand, if Mo exceeds 8% by mass, the toughness of the outer layer deteriorates.
- the lower limit of the Mo content is preferably 3.5% by mass, more preferably 4.0% by mass.
- the upper limit of the Mo content is preferably 7.8% by mass, more preferably 7.6% by mass, and most preferably 7.4% by mass.
- V 3-7% by mass
- V is an element that combines with C to form hard MC carbide.
- This MC carbide has a Vickers hardness Hv of 2500 to 3000, and is the hardest of the carbides.
- Hv Vickers hardness
- MC carbide with a light specific gravity is concentrated on the inner surface side due to centrifugal force during centrifugal casting, and not only the radial segregation of MC carbide becomes significant, but the outer layer is welded and integrated with the inner layer. It becomes difficult.
- the lower limit of the V content is preferably 3.2% by mass, and more preferably 3.5% by mass.
- the upper limit of the V content is preferably 6.9% by mass, more preferably 6.8% by mass, and most preferably 6.7% by mass.
- B forms a carbon boride having a lubricating action.
- Carbon boride is a phase containing metallic elements, carbon and boron, typically 50-80% Fe, 5-17% Cr, 0.5-2% V, 5-17% by weight.
- the main component is Mo + W, 3 to 9% by mass of C, and 1 to 2.5% by mass of B.
- the carbonized boride may contain Si, Mn, Ni and Nb as trace components.
- the lubricating action of the carbon boride is prominent particularly at high temperatures, it is effective in preventing seizure when the hot rolled material is bitten.
- the area ratio of the carbon boride is 1 to 20%.
- B is less than 0.01% by mass, the carbon boride in the above area ratio range is not formed.
- B exceeds 0.12% by mass, the outer layer becomes brittle.
- the lower limit of the B content is preferably 0.02% by mass, more preferably 0.03% by mass.
- the upper limit of the B content is preferably 0.1% by mass.
- Nb 3 mass% or less
- V combines with C to form hard MC carbide.
- NbC reduces the segregation of MC carbide because it has a smaller difference from the melt density than VC.
- Nb exceeds 3% by mass, MC carbides aggregate and it becomes difficult to obtain a healthy outer layer.
- the lower limit of the Nb content is preferably 0.1% by mass.
- the upper limit of the Nb content is preferably 2.8% by mass, more preferably 2.5% by mass, and most preferably 2.3% by mass.
- W 4% by mass or less W combines with C to form hard M 6 C and M 2 C carbides, and contributes to improving the wear resistance of the outer layer. It also has the effect of reducing the segregation by increasing the specific gravity by dissolving in MC carbide. However, when W exceeds 4% by mass, the specific gravity of the molten metal is increased, so that carbide segregation is likely to occur. Therefore, when adding W, the preferable content is 4 mass% or less.
- the upper limit of the W content is more preferably 3.5% by mass, and most preferably 3% by mass.
- the lower limit of the W content is more preferably 0.1% by mass, and most preferably 0.2% by mass.
- S 0.05-0.3% by mass S forms MnS having a lubricating action, but if it exceeds 0.3% by mass, the outer layer becomes brittle.
- the upper limit of the S content is preferably 0.2% by mass, more preferably 0.15% by mass.
- N 0.01 to 0.07 mass% N has the effect of refining carbide, but if it exceeds 0.07% by mass, the outer layer becomes brittle.
- the lower limit of the N content is preferably 0.01% by mass, more preferably 0.015% by mass.
- the upper limit of the N content is more preferably 0.06% by mass.
- Co 5% by mass or less Co is an element effective for strengthening the base structure, but if it exceeds 5% by mass, the toughness of the outer layer is lowered.
- the lower limit of the Co content is preferably 0.1% by mass.
- the upper limit of the Co content is more preferably 3% by mass.
- Zr 0.5% by mass or less Zr combines with C to form MC carbide, improving wear resistance. Further, Zr generates an oxide in the molten metal, and this oxide acts as a crystal nucleus, so that the solidification structure becomes fine. Furthermore, Zr increases the specific gravity of MC carbide and is effective in preventing segregation. However, when Zr exceeds 0.5% by mass, inclusions are not preferable.
- the upper limit of the Zr content is more preferably 0.3% by mass. In order to obtain a sufficient addition effect, the lower limit of the Zr content is more preferably 0.01% by mass.
- Ti 0.5% by mass or less Ti combines with N and O to form an oxynitride. These are suspended in the molten metal to become nuclei, and the MC carbides are refined and homogenized. However, when Ti exceeds 0.5 mass%, the viscosity of the molten metal increases and casting defects are likely to occur.
- the lower limit of the Ti content is preferably 0.005% by mass, and more preferably 0.01% by mass.
- the upper limit of the Ti content is more preferably 0.3% by mass, and most preferably 0.2% by mass.
- Al 0.5% by mass or less Al combines with N and O, which are graphitization inhibiting elements, to form oxynitrides. These are suspended in the molten metal to become nuclei, and MC carbides are crystallized finely and uniformly. However, if Al exceeds 0.5% by mass, the outer layer becomes brittle and mechanical properties are deteriorated.
- the lower limit of the Al content is preferably 0.001% by mass, more preferably 0.01% by mass.
- the upper limit of the Al content is more preferably 0.3% by mass, and most preferably 0.2% by mass.
- the balance of the composition of the outer layer is substantially composed of Fe and inevitable impurities.
- inevitable impurities P causes deterioration of mechanical properties, so it is preferable to reduce it as much as possible.
- the P content is preferably 0.1% by mass or less.
- elements such as Cu, Sb, Te, and Ce may be 0.7% by mass or less in total.
- Equation (1) is obtained as a result of examining the structure of a steel material containing these components.
- Cr / (Mo + 0.5W) on the left side of Formula (1) represents the ratio of Cr-based carbide forming elements to Mo-based carbide forming elements, and [C ⁇ 0.2 (V + 1.19Nb)] on the right side represents C balance.
- the following formula (1 '): Cr / (Mo + 0.5W) -2/3 [C-0.2 (V + 1.19Nb)] + 11/6 (1 ') Is represented by a straight line A in FIG. 3, and a region below the straight line A (not including the line) is a region where eutectic carbide mainly composed of Mo-based carbide is generated, and a region above the straight line A (including the line).
- formula (1) represents a region where eutectic carbides mainly composed of Mo-based carbides below the straight line A in FIG.
- the region where the eutectic carbide mainly composed of Mo-based carbide below the straight line A is generally better in wear resistance than the region where the eutectic carbide mainly composed of Cr-based carbide above the straight line A is formed. It can be said.
- the structure of the outer layer contains MC carbides, carbides mainly composed of M 2 C and M 6 C Mo (Mo-based carbides), and carbon borides.
- the carbon boride has a composition of M 23 (C, B) 6 .
- the structure of the outer layer 1 contains a small amount of M 7 C 3 or M 23 C 6 Cr-based carbide (Cr-based carbide).
- the outer layer contains 1 to 15% MC carbide in area ratio.
- the outer layer 1 does not have sufficient wear resistance.
- the area ratio of MC carbide exceeds 15%, the outer layer 1 becomes brittle.
- the lower limit of the area ratio of MC carbide is preferably 4%, and the upper limit of the area ratio of MC carbide is preferably 12%.
- the outer layer contains 0.5-20% carbon boride in area ratio, and shows excellent seizure resistance due to its lubricating action.
- the lower limit of the area ratio of the carbonized boride is preferably 1%, more preferably 2%. Further, the upper limit of the area ratio of the carbonized boride is preferably 15%, more preferably 10%.
- the outer layer further contains 0.5 to 20% Mo-based carbide in area ratio, contributing to improved wear resistance.
- the lower limit of the area ratio of Mo-based carbide is preferably 1%, and the upper limit of the area ratio of Mo-based carbide is preferably 12%.
- the base is mainly composed of martensite and / or bainite, but sometimes there is a case where trustite is deposited.
- the outer layer has the following formula (2): 30.23 + 2.74 ⁇ (MC carbide area ratio) + 4.01 ⁇ (Mo carbide area ratio) ⁇ 5.63 ⁇ (carbon boride area ratio) ⁇ 50 (2) It is preferable to satisfy this relationship. Equation (2) is obtained experimentally from the effect of each structural element on the seizure resistance. When the area ratio of MC carbide, the area ratio of Mo carbide, and the area ratio of carboboride satisfy the relationship of the formula (2), the outer layer 1 having excellent seizure resistance can be obtained.
- the Vickers hardness Hv of the outer layer 1 is preferably 500 or more, more preferably 550 to 800.
- the inner layer 2 is made of high-strength ductile cast iron (also referred to as “spheroidal graphite cast iron”).
- ductile cast iron also referred to as “spheroidal graphite cast iron”.
- the outer layer 1 has high wear resistance. If the backlash between the bearings increases due to the wear of the journal part, the composite roll 10 must be discarded.
- the ductile cast iron of the inner layer 2 preferably has a ferrite area ratio of 35% or less.
- the ferrite area ratio of the ductile cast iron for the inner layer 2 is preferably 32% or less.
- the ferrite area ratio of ductile cast iron is affected by the amount of alloying elements.
- the composition of ductile cast iron with a ferrite area ratio of 35% or less is C: 2.3-3.6%, Si: 1.5-3.5%, Mn: 0.2-2.0%, Ni: 0.3-2.5%, Cr: 0.05- It contains 1.0%, Mo: 0.05-1.0%, Mg: 0.01-0.08%, and V: 0.05-1.0%, and the balance is Fe and inevitable impurities.
- Nb 0.7% or less and W: 0.7% or less may be contained.
- P is usually contained in the ductile cast iron as an impurity element of about 0.005 to 0.05%, but may be added up to 0.5% in order to decrease the ferrite area ratio.
- Ductile cast iron is mainly composed of ferrite and pearlite in the iron base, and also contains graphite and a small amount of cementite.
- FIG. 2 (a) and FIG. 2 (b) show how the inner layer 2 is cast after the outer layer 1 is centrifugally cast with the cylindrical mold 30 for centrifugal casting.
- the stationary casting mold 100 includes a cylindrical mold 30 having an outer layer 1 on the inner surface, and an upper mold 40 and a lower mold 50 provided at upper and lower ends thereof.
- the inner surface of the outer layer 1 in the cylindrical mold 30 has a cavity 60a for forming the trunk core portion 21 of the inner layer 2
- the upper die 40 has a cavity 60b for forming the shaft portion 23 of the inner layer 2
- the lower mold 50 has a cavity 60 c for forming the shaft portion 22 of the inner layer 2.
- the centrifugal casting method using the cylindrical mold 30 may be any of horizontal type, inclined type and vertical type.
- the cavity 60a in the outer layer 1 communicates with the cavity 60b of the upper mold 40 and the cavity 60c of the lower mold 50, and the entire inner layer 1 is integrally formed.
- a cavity 60 is configured.
- 32 and 33 in the cylindrical mold 30 are sand molds.
- 42 in the upper mold 40 and 52 in the lower mold 50 are each a sand mold.
- the lower mold 50 is provided with a bottom plate 53 for holding the inner layer molten metal.
- a cylindrical mold 30 obtained by centrifugally casting the outer layer 1 is placed upright on the lower mold 50 for forming the shaft part 22, and an upper mold 40 for forming the shaft part 23 is installed on the cylindrical mold 30.
- the stationary casting mold 100 for forming the inner layer 2 is configured.
- the stationary casting mold 100 as the outer layer formed by centrifugal casting is solidified during or after solidification, as the ductile cast iron melt for the inner layer 2 is injected into the cavity 60 from the upper opening 43 of the upper mold 40, the cavity 60 The surface of the molten metal gradually rises from the lower mold 50 to the upper mold 40, and the inner layer 2 including the shaft portion 22, the trunk core portion 21, and the shaft portion 23 is integrally cast.
- the temperature of the outer layer 1 rises due to the influence of the inner layer melt.
- the temperature in the use region of the outer layer 1 at that time is referred to as the reheating temperature of the outer layer 1.
- the outer layer 1 containing B has a relatively low melting point (about 1100 ° C) carbon boride, but if the reheating temperature is higher than 1100 ° C, the carbon boride melts and microcavity defects are formed. appear.
- the reheating temperature of the outer layer 1 is too low (the casting temperature of the inner layer 2 is too low)
- the welding of the outer layer 1 and the inner layer 2 becomes insufficient. Therefore, it is preferable to set the reheating temperature in the use region of the outer layer 1 to 500 ° C. to 1100 ° C. This condition only needs to satisfy at least the effective rolling diameter of the outer layer 1.
- Examples 1-7, Comparative Examples 1 and 2 A cylindrical mold 30 (with an inner diameter of 800 mm and a length of 2500 mm) having the structure shown in Fig. 2 (a) is placed in a horizontal centrifugal casting machine, and the outer layer 1 is centrifuged using each molten metal having the composition shown in Table 1. Casted. After the outer layer 1 is solidified, the cylindrical mold 30 with the outer layer 1 (thickness: 90 mm) formed on the inner surface is erected, and a hollow lower mold 50 (inner diameter 600 mm, length 1500 for forming the shaft portion 22) 2) and a hollow upper mold 40 (inner diameter: 600 mm and length: 2000 mm) for forming the shaft portion 23 is erected on the cylindrical mold 30 as shown in FIG. A stationary casting mold 100 shown in (b) was constructed.
- Step 1 Each specimen was mirror-polished so that carbides did not rise.
- Step 2 After each specimen was corroded with Murakami for about 30 seconds, an optical micrograph A of the structure of each specimen was taken.
- Step 3 Each test piece was buffed for 10 to 30 seconds using a paste of diamond fine particles having an average particle diameter of 3 ⁇ m.
- Step 4 An optical micrograph B of the structure of each specimen was taken with the same field of view as the photo in Step 2.
- Step 5 Each test piece was corroded by chromic acid electrolytic corrosion for about 1 minute, and then an optical micrograph C of the structure of each test piece was taken from the same field of view as the photo of Step 2.
- Step 6 Each test piece was corroded with an aqueous ammonium persulfate solution for about 1 minute.
- Step 7 An optical micrograph D of the structure of each test piece was taken with the same field of view as the photo in Step 2.
- an optical micrograph A is shown in FIG. 6
- an optical micrograph B is shown in FIG. 7
- an optical micrograph C is shown in FIG. 8
- an optical micrograph D is shown in FIG.
- Organizational elements that can be measured from Photos A to D are shown in Table 2 with circles.
- the area ratios of MC carbide, Mo-based carbide and carbonized boride were determined from each photograph by the following method. The results are shown in Table 3. (1) Since the black portions in optical micrograph A are Mo carbides and Cr carbides, the area ratio of Mo carbides + Cr carbides was determined from Photo A. (2) Since the black portion in optical micrograph B is Mo-based carbide, the area ratio of Mo-based carbide was determined from Photo B. The area ratio of the Cr-based carbide was determined by subtracting the area ratio of the Mo-based carbide determined from the photograph B from the area ratio of the Mo-based carbide + Cr-based carbide determined from the photograph A.
- the area ratio of MC carbide + Mo carbide was determined from Photo C.
- the area ratio of MC carbide was determined by subtracting the area ratio of Mo carbide determined from Photo B from the area ratio of MC carbide + Mo carbide determined from Photo C.
- the black part is the base, MC carbide and Mo carbide, and the white part is the carbon boride and Cr carbide, so the area ratio of carbon boride + Cr carbide obtained in Photo D From this, the area ratio of the carbonized boride was determined by subtracting the area ratio of the Cr-based carbide determined in (2) above.
- the carbon boride was 66.2 mass% Fe, 12.8 mass% Cr, 1.2 mass. % V, 13.3% by mass Mo + W, 3.6% by mass C, and 1.7% by mass B.
- a test roll having a sleeve structure with an outer diameter of 60 mm, an inner diameter of 40 mm, and a width of 40 mm was prepared using the melts for outer layers of Examples 1 to 7 and Comparative Examples 1 and 2.
- the rolling wear tester includes a rolling mill 11, test rolls 12 and 13 incorporated in the rolling mill 11, a heating furnace 14 for preheating the rolled material 18, a cooling water tank 15 for cooling the rolled material 18, and a rolling And a controller 17 for adjusting the tension.
- the rolling wear conditions were as follows. After rolling, the depth of wear generated on the surface of the test roll was measured with a stylus type surface roughness meter. The results are shown in Table 4.
- Rolled material SUS304 Rolling rate: 25% Rolling speed: 150 m / min Rolling material temperature: 900 ° C Rolling distance: 300 m / time
- Roll cooling Water cooling Number of rolls: Quadruple
- a seizure test was performed on each test roll using a frictional thermal shock tester shown in FIG.
- the frictional thermal shock tester rotates a pinion 73 by dropping a weight 72 on a rack 71 so that the biting material 75 is brought into strong contact with the test material 74.
- the degree of seizure was evaluated by the seizing area ratio as follows. The results are shown in Table 4. The less seizure, the better the accident resistance.
- ⁇ Slight seizure (seize area ratio is 40% or more and less than 60%).
- X Significant seizure (seize area ratio is 60% or more).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
Cr/(Mo+0.5W)<-2/3[C-0.2(V+1.19Nb)]+11/6 ・・・(1)
により表される関係(ただし、任意成分であるW及びNbを含有しない場合、W=0及びNb=0である。)を満足し、面積率で1~15%のMC炭化物、0.5~20%の炭ホウ化物、及び0.5~20%のMo系炭化物を含有することを特徴とする。
30.23+2.74×(MC炭化物の面積率)+4.01×(Mo系炭化物の面積率)-5.63×(炭ホウ化物の面積率)≦50 ・・・(2)
の関係を満足するのが好ましい。
図1は遠心鋳造法により形成された外層1と、外層1に溶着一体化した内層2とからなる熱間圧延用複合ロール10を示す。ダクタイル鋳鉄からなる内層2は、外層1に溶着した胴芯部21と、胴芯部21の両端から一体的に延出する軸部22,23とを有する。外層1は高速度鋼からなるのが好ましい。
(1) 必須元素
(a) C:1~3質量%
CはV(Nb)、Cr及びMoと結合して硬質の炭化物を生成し、耐摩耗性の向上に寄与する。Cが1質量%未満では耐摩耗性に寄与するMC炭化物の晶出が不十分であり、また3質量%を超えると炭化物量が過剰となって靱性が低下する。C含有量の下限は好ましくは1.4質量%である。またC含有量の上限は好ましくは2.9質量%であり、より好ましくは2.5質量%であり、最も好ましくは2.3質量%である。
Siは溶湯の脱酸により酸化物の欠陥を減少させる効果を有する。Siが0.4質量%未満では脱酸効果が不十分である。Siは基地に優先的に固溶する元素であるが、3質量%を超えると外層は脆化する。Si含有量の下限は好ましくは0.45質量%であり、より好ましくは0.5質量%である。またSi含有量の上限は好ましくは2.7質量%であり、より好ましくは2.5質量%であり、最も好ましくは2.0質量%である。
Mnは溶湯の脱酸作用を有する他に、Sと結合して潤滑作用を有するMnSを生成する。Mnが0.3質量%未満ではそれらの効果は不十分である。一方、Mnが3質量%を超えてもさらなる効果は得られない。Mn含有量の下限は好ましくは0.35質量%である。またMn含有量の上限は好ましくは2.5質量%であり、より好ましくは1.9質量%であり、最も好ましくは1.7質量%である。
Niは基地の焼き入れ性を向上させる作用を有するので、大型の複合ロールの場合にNiを添加すると、冷却中のパーライトの発生を防止し、外層の硬さを向上させることができる。しかし、Niが5質量%を超えるとオーステナイトが安定化しすぎ、硬さが向上しにくくなる。Ni含有量の上限は好ましくは4質量%であり、より好ましくは3.8質量%であり、最も好ましくは3.5質量%である。添加効果が得られるNi含有量の下限は1質量%であり、好ましくは1.2質量%である。
Crは基地をベーナイト又はマルテンサイトにして硬さを保持し、耐摩耗性を維持するのに有効な元素である。Crが2質量%未満ではその効果が不十分であり、また7質量%を超えると基地組織が脆化する。Crの含有量の下限は好ましくは2.5質量%であり、より好ましくは3.0質量%である。またCr含有量の上限は好ましくは6.8質量%であり、より好ましくは6.5質量%である。
MoはCと結合して硬質炭化物(M6C、M2C)を形成し、外層の硬さを増加させる。また、MoはV(及びNb)とともに強靭かつ硬質なMC炭化物を生成し、耐摩耗性を向上させる。Moが3質量%未満ではそれらの効果は不十分である。一方、Moが8質量%を超えると外層の靭性が劣化する。Mo含有量の下限は好ましくは3.5質量%であり、より好ましくは4.0質量%である。またMo含有量の上限は好ましくは7.8質量%であり、より好ましくは7.6質量%であり、最も好ましくは7.4質量%である。
VはCと結合して硬質のMC炭化物を生成する元素である。このMC炭化物は2500~3000のビッカース硬さHvを有し、炭化物の中で最も硬い。Vが3質量%未満ではMC炭化物の晶出量が不十分である。一方、Vが7質量%を超えると、比重の軽いMC炭化物が遠心鋳造中の遠心力により内面側に濃化し、MC炭化物の半径方向偏析が著しくなるだけでなく、外層が内層と溶着一体化しにくくなる。V含有量の下限は好ましくは3.2質量%であり、より好ましくは3.5質量%である。またV含有量の上限は好ましくは6.9質量%であり、より好ましくは6.8質量%であり、最も好ましくは6.7質量%である。
Bは潤滑作用を有する炭ホウ化物を形成する。炭ホウ化物は金属元素、炭素及びホウ素を含む相であり、典型的には50~80質量%のFe、5~17質量%のCr、0.5~2質量%のV、5~17質量%のMo+W、3~9質量%のC、及び1~2.5質量%のBを主成分とする。炭ホウ化物は微量成分としてSi、Mn、Ni及びNbを含有しても良い。
(a) Nb:3質量%以下
Vと同様に、NbもCと結合して硬質MC炭化物を生成する。NbはV及びMoとの複合添加により、MC炭化物に固溶してMC炭化物を強化し、外層の耐摩耗性を向上させる。NbCはVCより溶湯密度との差が小さいので、MC炭化物の偏析を軽減させる。Nbが3質量%を超えるとMC炭化物が凝集し、健全な外層を得にくくなる。外層の耐摩耗性向上効果を得るには、Nb含有量の下限は0.1質量%が好ましい。Nb含有量の上限は好ましくは2.8質量%であり、より好ましくは2.5質量%であり、最も好ましくは2.3質量%である。
WはCと結合して硬質のM6C及びM2Cの炭化物を生成し、外層の耐摩耗性向上に寄与する。またMC炭化物にも固溶してその比重を増加させ、偏析を軽減させる作用を有する。しかし、Wが4質量%を超えると、溶湯の比重を重くするため、炭化物偏析が発生しやすくなる。従って、Wを添加する場合には、その好ましい含有量は4質量%以下である。W含有量の上限はより好ましくは3.5質量%であり、最も好ましくは3質量%である。また上記添加効果を得るには、W含有量の下限はより好ましくは0.1質量%であり、最も好ましくは0.2質量%である。
Sは潤滑作用を有するMnSを形成するが、0.3質量%を超えると外層の脆化が起こる。十分なMnSの潤滑作用を得るには、S含有量の上限は好ましくは0.2質量%であり、より好ましくは0.15質量%である。
Nは炭化物を微細化する効果を有するが、0.07質量%を超えると外層が脆化する。十分な炭化物微細化効果を得るには、N含有量の下限は好ましくは0.01質量%であり、より好ましくは0.015質量%である。またN含有量の上限はより好ましくは0.06質量%である。
Coは基地組織の強化に有効な元素であるが、5質量%を超えると外層の靱性を低下させる。十分な基地組織強化効果を得るには、Co含有量の下限は0.1質量%が好ましい。Co含有量の上限はより好ましくは3質量%である。
ZrはCと結合してMC炭化物を生成し、耐摩耗性を向上させる。また、Zrは溶湯中で酸化物を生成し、この酸化物が結晶核として作用するために、凝固組織が微細になる。さらに、ZrはMC炭化物の比重を増加させ、偏析防止に効果がある。しかし、Zrが0.5質量%を超えると、介在物となるので好ましくない。Zr含有量の上限はより好ましくは0.3質量%である。また、十分な添加効果を得るためには、Zrの含有量の下限はより好ましくは0.01質量%である。
TiはN及びOと結合し酸窒化物を形成する。これらが溶湯中に懸濁されて核となり、MC炭化物を微細化及び均質化する。しかし、Tiが0.5質量%を超えると、溶湯の粘性が増加し、鋳造欠陥が発生しやすくなる。十分な添加効果を得るには、Ti含有量の下限は0.005質量%が好ましく、0.01質量%がより好ましい。またTi含有量の上限はより好ましくは0.3質量%であり、最も好ましくは0.2質量%である。
Alは、黒鉛化阻害元素であるN及びOと結合し酸窒化物を形成する。これらが溶湯中に懸濁されて核となり、MC炭化物を微細均一に晶出させる。しかし、Alが0.5質量%を超えると、外層が脆くなり機械的性質の劣化を招く。十分な添加効果を得るには、Al含有量の下限は好ましくは0.001質量%であり、より好ましくは0.01質量%である。また、Al含有量の上限はより好ましくは0.3質量%であり、最も好ましくは0.2質量%である。
外層の組成の残部は実質的にFe及び不可避的不純物からなる。不可避的不純物のうち、Pは機械的性質の劣化を招くので、できるだけ少なくするのが好ましい。具体的には、Pの含有量は0.1質量%以下が好ましい。その他の不可避的不純物として、Cu、Sb、Te、Ce等の元素は合計で0.7質量%以下であれば良い。
外層は下記式(1):
Cr/(Mo+0.5W)<-2/3[C-0.2(V+1.19Nb)]+11/6 ・・・(1)
[ただし、C、Cr、Mo、V、Nb及びWの記号はそれらにより表される元素の含有量(質量%)を示し、任意成分であるNb及びWを含有しない場合Nb及びWは0である。]により表される関係を満足することを特徴とする。式(1) はこれらの成分を含有する鋼材の組織を調べた結果得られたものである。式(1) の左辺のCr/(Mo+0.5W)はCr系炭化物形成元素とMo系炭化物形成元素の比率を表し、右辺の[C-0.2(V+1.19Nb)]はCバランスを表す。下記式(1’):
Cr/(Mo+0.5W)=-2/3[C-0.2(V+1.19Nb)]+11/6 ・・・(1’)
は図3において直線Aにより表され、直線Aより下の領域(線上を含まない)はMo系炭化物を主体とする共晶炭化物が生成する領域であり、直線Aより上の領域(線上を含む)はCr系炭化物を主体とする共晶炭化物が生成する領域である。従って、式(1) は、図3において直線Aより下のMo系炭化物を主体とする共晶炭化物が生成する領域を表す。直線Aより下のMo系炭化物を主体とする共晶炭化物が生成する領域は、一般に直線Aより上のCr系炭化物を主体とする共晶炭化物が生成する領域に比べ耐摩耗性が良好であると言える。
外層の組織は、MC炭化物、M2CやM6CのMoを主体とする炭化物(Mo系炭化物)、及び炭ホウ化物を含有する。分析の結果、炭ホウ化物はM23(C, B)6の組成を有すると考えられる。外層1の組織はその他に、僅かな量のM7C3やM23C6のCrを主体とする炭化物(Cr系炭化物)を含有する。
30.23+2.74×(MC炭化物の面積率)+4.01×(Mo系炭化物の面積率)-5.63×(炭ホウ化物の面積率)≦50 ・・・(2)
の関係を満足するのが好ましい。式(2) は、各組織要素の耐焼付き性に対する影響から実験的求めたものである。MC炭化物の面積率、Mo系炭化物の面積率及び炭ホウ化物の面積率が式(2) の関係を満足することにより、耐焼付き性に優れた外層1が得られる。外層1のビッカース硬さHvは500以上が好ましく、550~800がより好ましい。
内層2は高強度のダクタイル鋳鉄(「球状黒鉛鋳鉄」とも呼ばれる。)からなる。外層1の長寿命化に応じて内層2のジャーナル部(軸部)22,23の寿命も長くするために、高い耐摩耗性を有するのが好ましい。ジャーナル部の摩耗により軸受との間のガタが大きくなると、複合ロール10を廃却せざるを得ない。高耐摩耗性のジャーナル部を提供するため、内層2のダクタイル鋳鉄は35%以下のフェライト面積率を有するのが好ましい。ダクタイル鋳鉄では、球状黒鉛の晶出によりその周囲の炭素量が低下し、低硬度のフェライト組織となりやすい。フェライト面積率が多くなるほど基地の硬さは低下し、よって耐摩耗性が低下する。内層2用のダクタイル鋳鉄のフェライト面積率は好ましくは32%以下である。
図2(a) 及び図2(b) は、遠心鋳造用円筒状鋳型30で外層1を遠心鋳造した後に内層2を鋳造するのに用いる静置鋳造用鋳型の一例を示す。静置鋳造用鋳型100は、内面に外層1を有する円筒状鋳型30と、その上下端に設けられた上型40及び下型50とからなる。円筒状鋳型30内の外層1の内面は内層2の胴芯部21を形成するためのキャビティ60aを有し、上型40は内層2の軸部23を形成するためのキャビティ60bを有し、下型50は内層2の軸部22を形成するためのキャビティ60cを有する。円筒状鋳型30を用いる遠心鋳造法は水平型、傾斜型又は垂直型のいずれでも良い。
図2(a) に示す構造の円筒状鋳型30(内径800 mm、及び長さ2500 mm)を水平型の遠心鋳造機に設置し、表1に示す組成の各溶湯を用いて外層1を遠心鋳造した。外層1が凝固した後、内面に外層1(厚さ:90 mm)が形成された円筒状鋳型30を起立させ、軸部22形成用の中空状下型50(内径600 mm、及び長さ1500 mm)の上に円筒状鋳型30を立設し、円筒状鋳型30の上に軸部23形成用の中空状上型40(内径600 mm、及び長さ2000 mm)を立設し、図2(b) に示す静置鋳造用鋳型100を構成した。
工程1:各試験片を炭化物が浮き立たないように鏡面研磨した。
工程2:各試験片を村上氏薬で約30秒間腐食した後、各試験片の組織の光学顕微鏡写真Aを撮影した。
工程3:各試験片を平均粒径3μmのダイヤモンド微粒子のペーストを用いて10~30秒間バフ研磨した。
工程4:工程2の写真と同じ視野で各試験片の組織の光学顕微鏡写真Bを撮影した。
工程5:各試験片をクロム酸電解腐食で約1分間腐食した後、工程2の写真と同じ視野で各試験片の組織の光学顕微鏡写真Cを撮影した。
工程6:各試験片を過硫酸アンモニウム水溶液で約1分間腐食した。
工程7:工程2の写真と同じ視野で各試験片の組織の光学顕微鏡写真Dを撮影した。
(1) 光学顕微鏡写真Aにおいて黒い部分はMo系炭化物及びCr系炭化物であるので、写真AからMo系炭化物+Cr系炭化物の面積率を求めた。
(2) 光学顕微鏡写真Bにおいて黒い部分はMo系炭化物であるので、写真BからMo系炭化物の面積率を求めた。写真Aから求めたMo系炭化物+Cr系炭化物の面積率から、写真Bから求めたMo系炭化物の面積率を差し引くことにより、Cr系炭化物の面積率を求めた。
(3) 光学顕微鏡写真Cにおいて黒い部分はMC炭化物及びMo系炭化物であるので、写真CからMC炭化物+Mo系炭化物の面積率を求めた。写真Cから求めたMC炭化物+Mo系炭化物の面積率から、写真Bから求めたMo系炭化物の面積率を差し引くことにより、MC炭化物の面積率を求めた。
(4) 光学顕微鏡写真Dにおいて黒い部分は基地、MC炭化物及びMo系炭化物であり、白い部分は炭ホウ化物及びCr系炭化物であるので、写真Dで求めた炭ホウ化物+Cr系炭化物の面積率から上記(2) で求めたCr系炭化物の面積率を差し引くことにより、炭ホウ化物の面積率を求めた。
圧延材:SUS304
圧下率:25%
圧延速度:150 m/分
圧延材温度:900℃
圧延距離:300 m/回
ロール冷却:水冷
ロール数:4重式
○:焼付き殆ど無し(焼付き面積率が40%未満)。
△:僅かな焼付き有り(焼付き面積率が40%以上60%未満)。
×:著しい焼付き有り(焼付き面積率が60%以上)。
1・・・外層
2・・・内層
21・・・胴芯部
22,23・・・軸部
11・・・圧延機
12,13・・・試験用ロール
14・・・加熱炉
15・・・冷却水槽
16・・・巻取機
17・・・コントローラ
18・・・圧延材
100・・・静置鋳造用鋳型
30・・・遠心鋳造用円筒状鋳型
32,33,42,52・・・砂型
40・・・静置鋳造用上型
50・・・静置鋳造用下型
60,60a,60b,60c・・・キャビティ
71・・・ラック
72・・・重り
73・・・ピニオン
74・・・試験材
75・・・噛み込み材
Claims (7)
- 遠心鋳造法により形成された外層と、ダクタイル鋳鉄からなる内層とが溶着一体化してなる遠心鋳造製熱間圧延用複合ロールであって、前記外層が質量基準で、C:1~3%、Si:0.4~3%、Mn:0.3~3%、Ni:1~5%、Cr:2~7%、Mo:3~8%、V:3~7%、及びB:0.01~0.12%を含有し、残部がFe及び不可避的不純物からなる化学組成を有し、かつ下記式(1):
Cr/(Mo+0.5W)<-2/3[C-0.2(V+1.19Nb)]+11/6 ・・・(1)
により表される関係(ただし、任意成分であるW及びNbを含有しない場合、W=0及びNb=0である。)を満足し、面積率で1~15%のMC炭化物、0.5~20%の炭ホウ化物、及び0.5~20%のMo系炭化物を含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。 - 請求項1に記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらに3質量%以下のNb及び4質量%以下のWを含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
- 請求項1又は2に記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらに0.05~0.3質量%のSを含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
- 請求項1~3のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらに0.01~0.07質量%のNを含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
- 請求項1~4のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらに質量基準で、Co:5%以下、Zr:0.5%以下、Ti:0.5%以下及びAl:0.5%以下からなる群から選ばれた少なくとも一種を含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
- 請求項1~5のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層が下記式(2):
30.23+2.74×(MC炭化物の面積率)+4.01×(Mo系炭化物の面積率)-5.63×(炭ホウ化物の面積率)≦50 ・・・(2)
の関係を満足することを特徴とする遠心鋳造製熱間圧延用複合ロール。 - 請求項1~6のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層が500以上のビッカース硬さHvを有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167008302A KR102219333B1 (ko) | 2013-09-25 | 2014-09-17 | 원심 주조제 열간 압연용 복합 롤 |
US14/912,511 US9718106B2 (en) | 2013-09-25 | 2014-09-17 | Centrifugally cast, hot-rolling composite roll |
JP2015533351A JP5950048B2 (ja) | 2013-09-25 | 2014-09-17 | 遠心鋳造製熱間圧延用複合ロール |
BR112016004075-9A BR112016004075B1 (pt) | 2013-09-25 | 2014-09-17 | Cilindro compósito de laminação a quente fundido por centrifugação |
CN201480052102.6A CN105579156B (zh) | 2013-09-25 | 2014-09-17 | 离心铸造制热轧用复合辊 |
EP14847369.7A EP3050636B1 (en) | 2013-09-25 | 2014-09-17 | Centrifugally cast, hot-rolling composite roll |
SI201431240T SI3050636T1 (sl) | 2013-09-25 | 2014-09-17 | Centrifugalno ulit kompozitni valj za toplo valjanje |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-198952 | 2013-09-25 | ||
JP2013198952 | 2013-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045984A1 true WO2015045984A1 (ja) | 2015-04-02 |
Family
ID=52743125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074564 WO2015045984A1 (ja) | 2013-09-25 | 2014-09-17 | 遠心鋳造製熱間圧延用複合ロール |
Country Status (9)
Country | Link |
---|---|
US (1) | US9718106B2 (ja) |
EP (1) | EP3050636B1 (ja) |
JP (1) | JP5950048B2 (ja) |
KR (1) | KR102219333B1 (ja) |
CN (1) | CN105579156B (ja) |
BR (1) | BR112016004075B1 (ja) |
SI (1) | SI3050636T1 (ja) |
TW (1) | TWI616243B (ja) |
WO (1) | WO2015045984A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170209906A1 (en) * | 2014-06-27 | 2017-07-27 | Jfe Steel Corporation | Centrifugal cast caliber roll for hot rolling mill (as amended) |
WO2018147367A1 (ja) * | 2017-02-08 | 2018-08-16 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
JPWO2018147370A1 (ja) * | 2017-02-08 | 2019-12-12 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
JP2020022989A (ja) * | 2018-08-08 | 2020-02-13 | 日立金属株式会社 | 圧延用遠心鋳造複合ロールの外層材、及び圧延用遠心鋳造複合ロール |
WO2020032144A1 (ja) | 2018-08-08 | 2020-02-13 | 日立金属株式会社 | 圧延用遠心鋳造複合ロール及びその製造方法 |
JPWO2019045068A1 (ja) * | 2017-08-31 | 2020-10-15 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
US11052440B2 (en) | 2016-03-31 | 2021-07-06 | Hitachi Metals, Ltd. | Outer layer of rolling roll and composite roll for rolling |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10428407B2 (en) * | 2016-09-05 | 2019-10-01 | Tpr Co., Ltd. | Cylindrical member made of flake graphite cast iron |
CN109641250B (zh) * | 2016-09-07 | 2020-11-03 | 杰富意钢铁株式会社 | 热轧用辊外层材料及热轧用复合辊 |
JP7545192B2 (ja) | 2016-10-03 | 2024-09-04 | 株式会社オハラ | 光学ガラス、プリフォーム及び光学素子 |
CN107365939B (zh) * | 2017-08-28 | 2019-08-02 | 广东荻赛尔机械铸造股份有限公司 | 发动机用铸铁及其制备方法 |
JP7227693B2 (ja) | 2017-08-31 | 2023-02-22 | 株式会社オハラ | 光学ガラス、プリフォーム及び光学素子 |
EP3859025B1 (en) * | 2018-11-28 | 2023-05-03 | JFE Steel Corporation | Outer layer material for hot-rolling roll, and composite hotrolling roll |
CN109502964B (zh) | 2018-12-07 | 2023-03-28 | 成都光明光电股份有限公司 | 重镧火石玻璃及其预制件、光学元件和光学仪器 |
CN109851217B (zh) * | 2018-12-07 | 2022-03-08 | 成都光明光电股份有限公司 | 重镧火石玻璃及其预制件、光学元件和光学仪器 |
KR20220084025A (ko) * | 2019-10-16 | 2022-06-21 | 히타치 긴조쿠 가부시키가이샤 | 열간 압연용 원심 주조 복합 롤 |
CN113265580B (zh) * | 2021-05-28 | 2023-02-14 | 河南科技大学 | 一种高氮高钒高铬耐磨合金及其制备方法 |
CN113249658B (zh) * | 2021-07-06 | 2021-09-24 | 常州凯达重工科技有限公司 | 高速钢立辊环及其制备方法 |
CN117769589A (zh) | 2021-08-12 | 2024-03-26 | 国际壳牌研究有限公司 | 汽油燃料组合物 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126758A (ja) | 1984-07-13 | 1986-02-06 | Kubota Ltd | 耐焼付性に優れる複合ロ−ル材 |
JPH0820837A (ja) | 1994-07-07 | 1996-01-23 | Kawasaki Steel Corp | 高速度鋼系圧延用ロール外層材 |
JPH108212A (ja) | 1996-06-26 | 1998-01-13 | Sumitomo Metal Ind Ltd | 熱間圧延用ロール |
JP2004082209A (ja) | 2002-06-24 | 2004-03-18 | Nippon Steel Corp | 遠心鋳造製熱間圧延用複合ロール |
JP2005264322A (ja) | 2004-02-16 | 2005-09-29 | Jfe Steel Kk | 熱間圧延用ロール外層材および熱間圧延用複合ロール |
JP2006281301A (ja) * | 2005-04-04 | 2006-10-19 | Nippon Steel Corp | 圧延用複合ロール |
JP2007245217A (ja) * | 2006-03-17 | 2007-09-27 | Kubota Corp | 圧延用複合ロール |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT208902B (de) * | 1957-08-02 | 1960-05-10 | Boehler & Co Ag Geb | Gegossene Schnellstahlwerkzeuge und Verfahren zu ihrer Herstellung |
JPS5568769A (en) | 1978-11-20 | 1980-05-23 | Reader Denshi Kk | Sweep marker oscillator |
US5225007A (en) * | 1990-02-28 | 1993-07-06 | Hitachi Metals Ltd. | Method for wear-resistant compound roll manufacture |
ZA934072B (en) * | 1992-06-19 | 1994-01-19 | Commw Scient Ind Res Org | Rolls for metal shaping |
WO1994022606A1 (en) * | 1993-03-31 | 1994-10-13 | Hitachi Metals, Ltd. | Wear- and seizure-resistant roll for hot rolling |
JP3257649B2 (ja) * | 1993-05-13 | 2002-02-18 | 日立金属株式会社 | 高靭性高速度鋼部材およびその製造方法 |
TW308557B (ja) * | 1994-06-29 | 1997-06-21 | Kawasaki Steel Co | |
JPH10273756A (ja) * | 1997-03-31 | 1998-10-13 | Daido Steel Co Ltd | 鋳物製冷間工具およびその製造方法 |
EP0911421B1 (en) * | 1997-04-08 | 2003-03-19 | Nippon Steel Corporation | Composite work roll for cold rolling |
JP3361990B2 (ja) * | 1998-04-24 | 2003-01-07 | 虹技株式会社 | 圧延ロール用外層材とそれを用いた圧延ロール |
JP3962838B2 (ja) * | 1998-08-03 | 2007-08-22 | 日立金属株式会社 | 熱間圧延用ロール |
US6579833B1 (en) * | 1999-09-01 | 2003-06-17 | The Board Of Trustees Of The University Of Illinois | Process for converting a metal carbide to carbon by etching in halogens |
JP3859958B2 (ja) * | 2000-11-20 | 2006-12-20 | 日鉄住金ロールズ株式会社 | 遠心鋳造製圧延用複合ロールの外層材 |
US6723182B1 (en) * | 2002-11-14 | 2004-04-20 | Arthur J. Bahmiller | Martensitic alloy steels having intermetallic compounds and precipitates as a substitute for cobalt |
US7685907B2 (en) * | 2004-08-13 | 2010-03-30 | Vip Tooling, Inc. | Method for manufacturing extrusion die tools |
CN101018880B (zh) * | 2004-09-13 | 2011-06-01 | 日立金属株式会社 | 轧辊用离心铸造外层及其制造方法 |
EP1975265B1 (en) * | 2005-12-28 | 2019-05-08 | Hitachi Metals, Ltd. | Centrifugally cast composite roll |
ES2572528T3 (es) * | 2011-10-19 | 2016-06-01 | Jfe Steel Corporation | Material de capa de superficie de rodillo para laminación en caliente con resistencia a la fatiga excelente producido mediante colada centrífuga, y rodillo de material compuesto para laminación en caliente producido a través de colada centrífuga |
ES2562625T3 (es) * | 2011-11-21 | 2016-03-07 | Hitachi Metals, Ltd. | Rodillo compuesto fundido centrífugamente y su método de producción |
-
2014
- 2014-09-17 KR KR1020167008302A patent/KR102219333B1/ko active IP Right Grant
- 2014-09-17 BR BR112016004075-9A patent/BR112016004075B1/pt active IP Right Grant
- 2014-09-17 WO PCT/JP2014/074564 patent/WO2015045984A1/ja active Application Filing
- 2014-09-17 US US14/912,511 patent/US9718106B2/en active Active
- 2014-09-17 JP JP2015533351A patent/JP5950048B2/ja active Active
- 2014-09-17 SI SI201431240T patent/SI3050636T1/sl unknown
- 2014-09-17 CN CN201480052102.6A patent/CN105579156B/zh active Active
- 2014-09-17 EP EP14847369.7A patent/EP3050636B1/en active Active
- 2014-09-22 TW TW103132568A patent/TWI616243B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126758A (ja) | 1984-07-13 | 1986-02-06 | Kubota Ltd | 耐焼付性に優れる複合ロ−ル材 |
JPH0820837A (ja) | 1994-07-07 | 1996-01-23 | Kawasaki Steel Corp | 高速度鋼系圧延用ロール外層材 |
JPH108212A (ja) | 1996-06-26 | 1998-01-13 | Sumitomo Metal Ind Ltd | 熱間圧延用ロール |
JP2004082209A (ja) | 2002-06-24 | 2004-03-18 | Nippon Steel Corp | 遠心鋳造製熱間圧延用複合ロール |
JP2005264322A (ja) | 2004-02-16 | 2005-09-29 | Jfe Steel Kk | 熱間圧延用ロール外層材および熱間圧延用複合ロール |
JP2006281301A (ja) * | 2005-04-04 | 2006-10-19 | Nippon Steel Corp | 圧延用複合ロール |
JP2007245217A (ja) * | 2006-03-17 | 2007-09-27 | Kubota Corp | 圧延用複合ロール |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170209906A1 (en) * | 2014-06-27 | 2017-07-27 | Jfe Steel Corporation | Centrifugal cast caliber roll for hot rolling mill (as amended) |
US11052440B2 (en) | 2016-03-31 | 2021-07-06 | Hitachi Metals, Ltd. | Outer layer of rolling roll and composite roll for rolling |
WO2018147367A1 (ja) * | 2017-02-08 | 2018-08-16 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
CN110290880A (zh) * | 2017-02-08 | 2019-09-27 | 日立金属株式会社 | 轧制用复合辊及其制造方法 |
JPWO2018147367A1 (ja) * | 2017-02-08 | 2019-12-12 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
JPWO2018147370A1 (ja) * | 2017-02-08 | 2019-12-12 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
US11192156B2 (en) | 2017-02-08 | 2021-12-07 | Hitachi Metals, Ltd. | Composite roll for rolling and its production method |
JP7036119B2 (ja) | 2017-08-31 | 2022-03-15 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
JPWO2019045068A1 (ja) * | 2017-08-31 | 2020-10-15 | 日立金属株式会社 | 圧延用複合ロール及びその製造方法 |
KR20210040940A (ko) * | 2018-08-08 | 2021-04-14 | 히타치 긴조쿠 가부시키가이샤 | 압연용 원심 주조 복합 롤 및 그의 제조 방법 |
JPWO2020032144A1 (ja) * | 2018-08-08 | 2021-08-10 | 日立金属株式会社 | 圧延用遠心鋳造複合ロール及びその製造方法 |
WO2020032144A1 (ja) | 2018-08-08 | 2020-02-13 | 日立金属株式会社 | 圧延用遠心鋳造複合ロール及びその製造方法 |
JP2020022989A (ja) * | 2018-08-08 | 2020-02-13 | 日立金属株式会社 | 圧延用遠心鋳造複合ロールの外層材、及び圧延用遠心鋳造複合ロール |
JP7063180B2 (ja) | 2018-08-08 | 2022-05-09 | 日立金属株式会社 | 圧延用遠心鋳造複合ロールの外層材、及び圧延用遠心鋳造複合ロール |
US11389847B2 (en) | 2018-08-08 | 2022-07-19 | Hitachi Metals, Ltd. | Centrifugally cast composite roll for rolling and its production method |
JP7400718B2 (ja) | 2018-08-08 | 2023-12-19 | 株式会社プロテリアル | 圧延用遠心鋳造複合ロール及びその製造方法 |
KR102687061B1 (ko) * | 2018-08-08 | 2024-07-22 | 가부시키가이샤 프로테리아루 | 압연용 원심 주조 복합 롤 및 그의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP3050636A1 (en) | 2016-08-03 |
CN105579156A (zh) | 2016-05-11 |
EP3050636A4 (en) | 2017-05-10 |
JPWO2015045984A1 (ja) | 2017-03-09 |
TW201521895A (zh) | 2015-06-16 |
KR102219333B1 (ko) | 2021-02-22 |
KR20160060062A (ko) | 2016-05-27 |
US20160193638A1 (en) | 2016-07-07 |
BR112016004075B1 (pt) | 2020-03-24 |
TWI616243B (zh) | 2018-03-01 |
CN105579156B (zh) | 2018-02-27 |
US9718106B2 (en) | 2017-08-01 |
SI3050636T1 (sl) | 2019-07-31 |
JP5950048B2 (ja) | 2016-07-13 |
EP3050636B1 (en) | 2019-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5950048B2 (ja) | 遠心鋳造製熱間圧延用複合ロール | |
JP5950047B2 (ja) | 遠心鋳造製熱間圧延用複合ロール | |
JP5423930B2 (ja) | 遠心鋳造製複合圧延ロール及びその製造方法 | |
JP5768947B2 (ja) | 遠心鋳造製熱間圧延用複合ロール | |
JP6908021B2 (ja) | 圧延ロール用外層及び圧延用複合ロール | |
JP6474038B2 (ja) | 連続鋳掛け肉盛鋳造製圧延用複合ロール | |
WO2018147370A1 (ja) | 圧延用複合ロール及びその製造方法 | |
JP2016180167A (ja) | 連続鋳掛け肉盛鋳造製圧延用複合ロール | |
JP2020022989A (ja) | 圧延用遠心鋳造複合ロールの外層材、及び圧延用遠心鋳造複合ロール | |
JPWO2018147367A1 (ja) | 圧延用複合ロール及びその製造方法 | |
JP4123903B2 (ja) | 熱間圧延用ロール外層材および熱間圧延用複合ロール | |
JP7136037B2 (ja) | 熱間圧延用ロール外層材および熱間圧延用複合ロール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480052102.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847369 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015533351 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14912511 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016004075 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20167008302 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014847369 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014847369 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112016004075 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160225 |