WO2015045984A1 - 遠心鋳造製熱間圧延用複合ロール - Google Patents

遠心鋳造製熱間圧延用複合ロール Download PDF

Info

Publication number
WO2015045984A1
WO2015045984A1 PCT/JP2014/074564 JP2014074564W WO2015045984A1 WO 2015045984 A1 WO2015045984 A1 WO 2015045984A1 JP 2014074564 W JP2014074564 W JP 2014074564W WO 2015045984 A1 WO2015045984 A1 WO 2015045984A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
outer layer
carbide
composite roll
area ratio
Prior art date
Application number
PCT/JP2014/074564
Other languages
English (en)
French (fr)
Inventor
服部 敏幸
小田 望
泰則 野崎
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020167008302A priority Critical patent/KR102219333B1/ko
Priority to US14/912,511 priority patent/US9718106B2/en
Priority to JP2015533351A priority patent/JP5950048B2/ja
Priority to BR112016004075-9A priority patent/BR112016004075B1/pt
Priority to CN201480052102.6A priority patent/CN105579156B/zh
Priority to EP14847369.7A priority patent/EP3050636B1/en
Priority to SI201431240T priority patent/SI3050636T1/sl
Publication of WO2015045984A1 publication Critical patent/WO2015045984A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/032Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet

Definitions

  • the present invention relates to a composite roll for hot rolling with a composite structure having an outer layer excellent in wear resistance, seizure resistance (accident resistance) and rough skin resistance, and an inner layer excellent in toughness.
  • a heated slab with a thickness of several hundred mm manufactured by continuous casting or the like is rolled into a steel sheet with a thickness of several to several tens of mm by a hot strip mill having a roughing mill and a finish rolling mill.
  • a finishing mill is usually a series of 5 to 7 quadruple rolling mills arranged in series. In the case of a 7-stand finishing mill, the first stand to the third stand are referred to as the front stand, and the fourth stand to the seventh stand are referred to as the rear stand.
  • the work roll used in such a hot strip mill is composed of an outer layer in contact with the hot thin plate and an inner layer welded and integrated with the inner surface of the outer layer. Since the outer layer in contact with the hot thin plate is subjected to a large thermal and mechanical rolling load by hot rolling for a certain period, it is inevitable that the surface is damaged such as wear, rough skin, and heat cracks. After grinding and removing these damages from the outer layer, the work roll is again subjected to rolling. Grinding and removing the damaged part from the outer layer of the roll is called “cutting”. The work roll is discarded after being cut from the initial diameter to the minimum diameter (disposal diameter) that can be used for rolling. The diameter from the initial diameter to the scrap diameter is called the effective rolling diameter.
  • the outer layer within the effective rolling diameter desirably has excellent wear resistance, accident resistance, and rough skin resistance in order to prevent large damage such as heat cracks.
  • the chemical components of the outer shell layer are in a mass ratio, C: 3.0 to 4.0%, Si: 0.8 to 2.5%, Mn: 0.2 to 1.2%, Ni: 3.0 to 5.0%, Cr : 0.5-2.5%, Mo: 0.1-3.0%, V: 1.0-5.0%, balance Fe and inevitable impurities, shaft core part made of plain cast iron or spheroidal graphite cast iron containing C: 2.5-4.0%
  • a composite roll for hot rolling made by centrifugal casting that satisfies the relationship of 0.03 ⁇ T / R ⁇ 0.5 in the thickness (T) of the outer shell layer and the radius (R) of the shaft core is proposed.
  • This composite roll has good seizure resistance and wear resistance. However, higher wear resistance has been required for the outer layer of the composite roll for hot rolling.
  • a composite roll for hot rolling having an outer layer made of high-speed steel having high wear resistance has also been proposed.
  • Japanese Patent Application Laid-Open No. 08-020837 describes, by weight ratio, C: 1.50 to 3.50%, Si: 1.50% or less, Mn: 1.20% or less, Cr: 5.50 ⁇ 12.00%, Mo: 2.00 ⁇ 8.00%, V: 3.00 ⁇ 10.00%, Nb: 0.60 ⁇ 7.00%, B: More than 0.01 ⁇ 0.200% or less, N: More than 0.08 ⁇ 0.300% or less, and the following formula ( 1) satisfying 1 and (2) ⁇ , V + 1.8 Nb ⁇ 7.5 C-6.0 ...
  • a roll outer layer material for high-speed steel rolling with a small coefficient is disclosed. Although the seizure resistance of the outer layer material is improved by the addition of B, the wear resistance, accident resistance, and rough skin resistance required for the outer layer of the composite roll for hot rolling are still insufficient.
  • JP-A-2005-264322 is a composite roll for hot rolling in which an outer layer and an inner layer are welded and integrated, and the outer layer has a mass ratio of C: 1.8 to 3.5%, Si: 0.2 to 2%, Mn: Contains 0.2-2%, Cr: 4-15%, Mo: 2-10%, V: 3-10%, P: 0.1-0.6%, and B: 0.05-0.5%, and Nb: 3% or less , W: 5% or less, Ni: 5% or less, and Co: 2% or less are disclosed, and a composite roll for hot rolling excellent in seizure resistance having a composition comprising the balance Fe and inevitable impurities is disclosed. is doing. JP 2005-264322 describes that 0.03% or less of S may be contained. However, the wear resistance, accident resistance and rough skin resistance of this outer layer were insufficient.
  • At least the outer shell layer of the roll has a weight ratio of C: 1.5 to 3%, Cr: 0.5 to 5%, Mo: 0.5 to 8%, V: 1 to 8%, W: 1 MC type carbide consisting of high carbon high speed steel containing super ⁇ 8%, Nb: 0.1 ⁇ 5% and B: 0.01 ⁇ 1%, with grain size of 15 ⁇ m or less and major axis / minor axis ratio of 2 or less Discloses a roll for hot rolling having 5 to 20 area%. S is regarded as an inevitable impurity, and it is described that 0.08% or less may be contained.
  • the outer shell layer of the roll disclosed in JP-A-10-008212 did not provide sufficient wear resistance, accident resistance, and rough skin resistance.
  • Japanese Patent Application Laid-Open No. 61-26758 discloses that the chemical composition is by weight, C: 1.0 to 2.0%, Si: 0.2 to 2.0%, Mn: 0.5 to 1.5%, Ni: 3.0% or less, Cr: 2 to 5%, A composite roll outer layer containing Mo: 3 to 10%, V: 4.0% or less, and S: 0.1 to 0.6%, the balance being substantially made of Fe and having excellent seizure resistance is disclosed.
  • this composite roll outer layer does not contain B at all, it does not have sufficient abrasion resistance, accident resistance, and rough skin resistance.
  • an object of the present invention is to provide a composite roll for hot rolling made by centrifugal casting having an outer layer excellent in wear resistance, accident resistance and skin resistance and a tough inner layer.
  • the outer layer preferably further contains 3% by mass or less of Nb and 4% by mass or less of W.
  • the outer layer preferably further contains 0.05 to 0.3% by mass of S.
  • the outer layer preferably further contains 0.01 to 0.07% by mass of N.
  • the outer layer preferably further contains at least one selected from the group consisting of Co: 5% or less, Zr: 0.5% or less, Ti: 0.5% or less, and Al: 0.5% or less on a mass basis.
  • the outer layer has the following formula (2): 30.23 + 2.74 ⁇ (MC carbide area ratio) + 4.01 ⁇ (Mo carbide area ratio) ⁇ 5.63 ⁇ (carbon boride area ratio) ⁇ 50 (2) It is preferable to satisfy this relationship.
  • the outer layer preferably has a Vickers hardness Hv of 500 or more.
  • the seizure resistance is improved by the generated carbon boride.
  • the outer layer of the centrifugally cast composite roll for hot rolling of the present invention has higher wear resistance due to MC carbide.
  • the roll of the present invention has excellent wear resistance, so there is little surface damage to the rolling load, and because it is also excellent in seizure resistance, the rolled material has excellent characteristics against the seizure and adhesion of rough skin. .
  • the roll skin after rolling is smooth, and a product with good quality can be obtained.
  • the composite roll for hot rolling made by centrifugal casting of the present invention having not only high wear resistance but also excellent seizure resistance and rough skin resistance is suitable for use in the finish rolling stage of a hot strip mill.
  • FIG. 1 shows a composite roll 10 for hot rolling comprising an outer layer 1 formed by centrifugal casting and an inner layer 2 welded and integrated with the outer layer 1.
  • the inner layer 2 made of ductile cast iron has a trunk core portion 21 welded to the outer layer 1 and shaft portions 22 and 23 extending integrally from both ends of the trunk core portion 21.
  • the outer layer 1 is preferably made of high speed steel.
  • the lower limit of the C content is preferably 1.4% by mass.
  • the upper limit of the C content is preferably 2.9% by mass, more preferably 2.5% by mass, and most preferably 2.3% by mass.
  • Si 0.4-3 mass% Si has the effect of reducing oxide defects by deoxidation of the molten metal. When Si is less than 0.4% by mass, the deoxidation effect is insufficient. Si is an element that preferentially dissolves in the base, but if it exceeds 3% by mass, the outer layer becomes brittle.
  • the lower limit of the Si content is preferably 0.45% by mass, more preferably 0.5% by mass.
  • the upper limit of the Si content is preferably 2.7% by mass, more preferably 2.5% by mass, and most preferably 2.0% by mass.
  • Mn 0.3-3 mass%
  • Mn combines with S to produce MnS having a lubricating action. If Mn is less than 0.3% by mass, those effects are insufficient. On the other hand, even if Mn exceeds 3% by mass, no further effect is obtained.
  • the lower limit of the Mn content is preferably 0.35% by mass.
  • the upper limit of the Mn content is preferably 2.5% by mass, more preferably 1.9% by mass, and most preferably 1.7% by mass.
  • Ni 1-5% by mass Since Ni has the effect of improving the hardenability of the base, when Ni is added in the case of a large composite roll, the generation of pearlite during cooling can be prevented and the hardness of the outer layer can be improved. However, if Ni exceeds 5% by mass, austenite is excessively stabilized and hardness is hardly improved.
  • the upper limit of the Ni content is preferably 4% by mass, more preferably 3.8% by mass, and most preferably 3.5% by mass.
  • the lower limit of the Ni content at which the effect of addition is obtained is 1% by mass, preferably 1.2% by mass.
  • (e) Cr 2-7% by mass Cr is an element effective for maintaining the hardness and maintaining the wear resistance by making the base a bainite or martensite. If Cr is less than 2% by mass, the effect is insufficient, and if it exceeds 7% by mass, the base structure becomes brittle.
  • the lower limit of the Cr content is preferably 2.5% by mass, more preferably 3.0% by mass.
  • the upper limit of the Cr content is preferably 6.8% by mass, more preferably 6.5% by mass.
  • Mo 3-8% by mass Mo combines with C to form hard carbides (M 6 C, M 2 C), increasing the hardness of the outer layer. Mo also produces tough and hard MC carbide with V (and Nb), improving wear resistance. If Mo is less than 3% by mass, these effects are insufficient. On the other hand, if Mo exceeds 8% by mass, the toughness of the outer layer deteriorates.
  • the lower limit of the Mo content is preferably 3.5% by mass, more preferably 4.0% by mass.
  • the upper limit of the Mo content is preferably 7.8% by mass, more preferably 7.6% by mass, and most preferably 7.4% by mass.
  • V 3-7% by mass
  • V is an element that combines with C to form hard MC carbide.
  • This MC carbide has a Vickers hardness Hv of 2500 to 3000, and is the hardest of the carbides.
  • Hv Vickers hardness
  • MC carbide with a light specific gravity is concentrated on the inner surface side due to centrifugal force during centrifugal casting, and not only the radial segregation of MC carbide becomes significant, but the outer layer is welded and integrated with the inner layer. It becomes difficult.
  • the lower limit of the V content is preferably 3.2% by mass, and more preferably 3.5% by mass.
  • the upper limit of the V content is preferably 6.9% by mass, more preferably 6.8% by mass, and most preferably 6.7% by mass.
  • B forms a carbon boride having a lubricating action.
  • Carbon boride is a phase containing metallic elements, carbon and boron, typically 50-80% Fe, 5-17% Cr, 0.5-2% V, 5-17% by weight.
  • the main component is Mo + W, 3 to 9% by mass of C, and 1 to 2.5% by mass of B.
  • the carbonized boride may contain Si, Mn, Ni and Nb as trace components.
  • the lubricating action of the carbon boride is prominent particularly at high temperatures, it is effective in preventing seizure when the hot rolled material is bitten.
  • the area ratio of the carbon boride is 1 to 20%.
  • B is less than 0.01% by mass, the carbon boride in the above area ratio range is not formed.
  • B exceeds 0.12% by mass, the outer layer becomes brittle.
  • the lower limit of the B content is preferably 0.02% by mass, more preferably 0.03% by mass.
  • the upper limit of the B content is preferably 0.1% by mass.
  • Nb 3 mass% or less
  • V combines with C to form hard MC carbide.
  • NbC reduces the segregation of MC carbide because it has a smaller difference from the melt density than VC.
  • Nb exceeds 3% by mass, MC carbides aggregate and it becomes difficult to obtain a healthy outer layer.
  • the lower limit of the Nb content is preferably 0.1% by mass.
  • the upper limit of the Nb content is preferably 2.8% by mass, more preferably 2.5% by mass, and most preferably 2.3% by mass.
  • W 4% by mass or less W combines with C to form hard M 6 C and M 2 C carbides, and contributes to improving the wear resistance of the outer layer. It also has the effect of reducing the segregation by increasing the specific gravity by dissolving in MC carbide. However, when W exceeds 4% by mass, the specific gravity of the molten metal is increased, so that carbide segregation is likely to occur. Therefore, when adding W, the preferable content is 4 mass% or less.
  • the upper limit of the W content is more preferably 3.5% by mass, and most preferably 3% by mass.
  • the lower limit of the W content is more preferably 0.1% by mass, and most preferably 0.2% by mass.
  • S 0.05-0.3% by mass S forms MnS having a lubricating action, but if it exceeds 0.3% by mass, the outer layer becomes brittle.
  • the upper limit of the S content is preferably 0.2% by mass, more preferably 0.15% by mass.
  • N 0.01 to 0.07 mass% N has the effect of refining carbide, but if it exceeds 0.07% by mass, the outer layer becomes brittle.
  • the lower limit of the N content is preferably 0.01% by mass, more preferably 0.015% by mass.
  • the upper limit of the N content is more preferably 0.06% by mass.
  • Co 5% by mass or less Co is an element effective for strengthening the base structure, but if it exceeds 5% by mass, the toughness of the outer layer is lowered.
  • the lower limit of the Co content is preferably 0.1% by mass.
  • the upper limit of the Co content is more preferably 3% by mass.
  • Zr 0.5% by mass or less Zr combines with C to form MC carbide, improving wear resistance. Further, Zr generates an oxide in the molten metal, and this oxide acts as a crystal nucleus, so that the solidification structure becomes fine. Furthermore, Zr increases the specific gravity of MC carbide and is effective in preventing segregation. However, when Zr exceeds 0.5% by mass, inclusions are not preferable.
  • the upper limit of the Zr content is more preferably 0.3% by mass. In order to obtain a sufficient addition effect, the lower limit of the Zr content is more preferably 0.01% by mass.
  • Ti 0.5% by mass or less Ti combines with N and O to form an oxynitride. These are suspended in the molten metal to become nuclei, and the MC carbides are refined and homogenized. However, when Ti exceeds 0.5 mass%, the viscosity of the molten metal increases and casting defects are likely to occur.
  • the lower limit of the Ti content is preferably 0.005% by mass, and more preferably 0.01% by mass.
  • the upper limit of the Ti content is more preferably 0.3% by mass, and most preferably 0.2% by mass.
  • Al 0.5% by mass or less Al combines with N and O, which are graphitization inhibiting elements, to form oxynitrides. These are suspended in the molten metal to become nuclei, and MC carbides are crystallized finely and uniformly. However, if Al exceeds 0.5% by mass, the outer layer becomes brittle and mechanical properties are deteriorated.
  • the lower limit of the Al content is preferably 0.001% by mass, more preferably 0.01% by mass.
  • the upper limit of the Al content is more preferably 0.3% by mass, and most preferably 0.2% by mass.
  • the balance of the composition of the outer layer is substantially composed of Fe and inevitable impurities.
  • inevitable impurities P causes deterioration of mechanical properties, so it is preferable to reduce it as much as possible.
  • the P content is preferably 0.1% by mass or less.
  • elements such as Cu, Sb, Te, and Ce may be 0.7% by mass or less in total.
  • Equation (1) is obtained as a result of examining the structure of a steel material containing these components.
  • Cr / (Mo + 0.5W) on the left side of Formula (1) represents the ratio of Cr-based carbide forming elements to Mo-based carbide forming elements, and [C ⁇ 0.2 (V + 1.19Nb)] on the right side represents C balance.
  • the following formula (1 '): Cr / (Mo + 0.5W) -2/3 [C-0.2 (V + 1.19Nb)] + 11/6 (1 ') Is represented by a straight line A in FIG. 3, and a region below the straight line A (not including the line) is a region where eutectic carbide mainly composed of Mo-based carbide is generated, and a region above the straight line A (including the line).
  • formula (1) represents a region where eutectic carbides mainly composed of Mo-based carbides below the straight line A in FIG.
  • the region where the eutectic carbide mainly composed of Mo-based carbide below the straight line A is generally better in wear resistance than the region where the eutectic carbide mainly composed of Cr-based carbide above the straight line A is formed. It can be said.
  • the structure of the outer layer contains MC carbides, carbides mainly composed of M 2 C and M 6 C Mo (Mo-based carbides), and carbon borides.
  • the carbon boride has a composition of M 23 (C, B) 6 .
  • the structure of the outer layer 1 contains a small amount of M 7 C 3 or M 23 C 6 Cr-based carbide (Cr-based carbide).
  • the outer layer contains 1 to 15% MC carbide in area ratio.
  • the outer layer 1 does not have sufficient wear resistance.
  • the area ratio of MC carbide exceeds 15%, the outer layer 1 becomes brittle.
  • the lower limit of the area ratio of MC carbide is preferably 4%, and the upper limit of the area ratio of MC carbide is preferably 12%.
  • the outer layer contains 0.5-20% carbon boride in area ratio, and shows excellent seizure resistance due to its lubricating action.
  • the lower limit of the area ratio of the carbonized boride is preferably 1%, more preferably 2%. Further, the upper limit of the area ratio of the carbonized boride is preferably 15%, more preferably 10%.
  • the outer layer further contains 0.5 to 20% Mo-based carbide in area ratio, contributing to improved wear resistance.
  • the lower limit of the area ratio of Mo-based carbide is preferably 1%, and the upper limit of the area ratio of Mo-based carbide is preferably 12%.
  • the base is mainly composed of martensite and / or bainite, but sometimes there is a case where trustite is deposited.
  • the outer layer has the following formula (2): 30.23 + 2.74 ⁇ (MC carbide area ratio) + 4.01 ⁇ (Mo carbide area ratio) ⁇ 5.63 ⁇ (carbon boride area ratio) ⁇ 50 (2) It is preferable to satisfy this relationship. Equation (2) is obtained experimentally from the effect of each structural element on the seizure resistance. When the area ratio of MC carbide, the area ratio of Mo carbide, and the area ratio of carboboride satisfy the relationship of the formula (2), the outer layer 1 having excellent seizure resistance can be obtained.
  • the Vickers hardness Hv of the outer layer 1 is preferably 500 or more, more preferably 550 to 800.
  • the inner layer 2 is made of high-strength ductile cast iron (also referred to as “spheroidal graphite cast iron”).
  • ductile cast iron also referred to as “spheroidal graphite cast iron”.
  • the outer layer 1 has high wear resistance. If the backlash between the bearings increases due to the wear of the journal part, the composite roll 10 must be discarded.
  • the ductile cast iron of the inner layer 2 preferably has a ferrite area ratio of 35% or less.
  • the ferrite area ratio of the ductile cast iron for the inner layer 2 is preferably 32% or less.
  • the ferrite area ratio of ductile cast iron is affected by the amount of alloying elements.
  • the composition of ductile cast iron with a ferrite area ratio of 35% or less is C: 2.3-3.6%, Si: 1.5-3.5%, Mn: 0.2-2.0%, Ni: 0.3-2.5%, Cr: 0.05- It contains 1.0%, Mo: 0.05-1.0%, Mg: 0.01-0.08%, and V: 0.05-1.0%, and the balance is Fe and inevitable impurities.
  • Nb 0.7% or less and W: 0.7% or less may be contained.
  • P is usually contained in the ductile cast iron as an impurity element of about 0.005 to 0.05%, but may be added up to 0.5% in order to decrease the ferrite area ratio.
  • Ductile cast iron is mainly composed of ferrite and pearlite in the iron base, and also contains graphite and a small amount of cementite.
  • FIG. 2 (a) and FIG. 2 (b) show how the inner layer 2 is cast after the outer layer 1 is centrifugally cast with the cylindrical mold 30 for centrifugal casting.
  • the stationary casting mold 100 includes a cylindrical mold 30 having an outer layer 1 on the inner surface, and an upper mold 40 and a lower mold 50 provided at upper and lower ends thereof.
  • the inner surface of the outer layer 1 in the cylindrical mold 30 has a cavity 60a for forming the trunk core portion 21 of the inner layer 2
  • the upper die 40 has a cavity 60b for forming the shaft portion 23 of the inner layer 2
  • the lower mold 50 has a cavity 60 c for forming the shaft portion 22 of the inner layer 2.
  • the centrifugal casting method using the cylindrical mold 30 may be any of horizontal type, inclined type and vertical type.
  • the cavity 60a in the outer layer 1 communicates with the cavity 60b of the upper mold 40 and the cavity 60c of the lower mold 50, and the entire inner layer 1 is integrally formed.
  • a cavity 60 is configured.
  • 32 and 33 in the cylindrical mold 30 are sand molds.
  • 42 in the upper mold 40 and 52 in the lower mold 50 are each a sand mold.
  • the lower mold 50 is provided with a bottom plate 53 for holding the inner layer molten metal.
  • a cylindrical mold 30 obtained by centrifugally casting the outer layer 1 is placed upright on the lower mold 50 for forming the shaft part 22, and an upper mold 40 for forming the shaft part 23 is installed on the cylindrical mold 30.
  • the stationary casting mold 100 for forming the inner layer 2 is configured.
  • the stationary casting mold 100 as the outer layer formed by centrifugal casting is solidified during or after solidification, as the ductile cast iron melt for the inner layer 2 is injected into the cavity 60 from the upper opening 43 of the upper mold 40, the cavity 60 The surface of the molten metal gradually rises from the lower mold 50 to the upper mold 40, and the inner layer 2 including the shaft portion 22, the trunk core portion 21, and the shaft portion 23 is integrally cast.
  • the temperature of the outer layer 1 rises due to the influence of the inner layer melt.
  • the temperature in the use region of the outer layer 1 at that time is referred to as the reheating temperature of the outer layer 1.
  • the outer layer 1 containing B has a relatively low melting point (about 1100 ° C) carbon boride, but if the reheating temperature is higher than 1100 ° C, the carbon boride melts and microcavity defects are formed. appear.
  • the reheating temperature of the outer layer 1 is too low (the casting temperature of the inner layer 2 is too low)
  • the welding of the outer layer 1 and the inner layer 2 becomes insufficient. Therefore, it is preferable to set the reheating temperature in the use region of the outer layer 1 to 500 ° C. to 1100 ° C. This condition only needs to satisfy at least the effective rolling diameter of the outer layer 1.
  • Examples 1-7, Comparative Examples 1 and 2 A cylindrical mold 30 (with an inner diameter of 800 mm and a length of 2500 mm) having the structure shown in Fig. 2 (a) is placed in a horizontal centrifugal casting machine, and the outer layer 1 is centrifuged using each molten metal having the composition shown in Table 1. Casted. After the outer layer 1 is solidified, the cylindrical mold 30 with the outer layer 1 (thickness: 90 mm) formed on the inner surface is erected, and a hollow lower mold 50 (inner diameter 600 mm, length 1500 for forming the shaft portion 22) 2) and a hollow upper mold 40 (inner diameter: 600 mm and length: 2000 mm) for forming the shaft portion 23 is erected on the cylindrical mold 30 as shown in FIG. A stationary casting mold 100 shown in (b) was constructed.
  • Step 1 Each specimen was mirror-polished so that carbides did not rise.
  • Step 2 After each specimen was corroded with Murakami for about 30 seconds, an optical micrograph A of the structure of each specimen was taken.
  • Step 3 Each test piece was buffed for 10 to 30 seconds using a paste of diamond fine particles having an average particle diameter of 3 ⁇ m.
  • Step 4 An optical micrograph B of the structure of each specimen was taken with the same field of view as the photo in Step 2.
  • Step 5 Each test piece was corroded by chromic acid electrolytic corrosion for about 1 minute, and then an optical micrograph C of the structure of each test piece was taken from the same field of view as the photo of Step 2.
  • Step 6 Each test piece was corroded with an aqueous ammonium persulfate solution for about 1 minute.
  • Step 7 An optical micrograph D of the structure of each test piece was taken with the same field of view as the photo in Step 2.
  • an optical micrograph A is shown in FIG. 6
  • an optical micrograph B is shown in FIG. 7
  • an optical micrograph C is shown in FIG. 8
  • an optical micrograph D is shown in FIG.
  • Organizational elements that can be measured from Photos A to D are shown in Table 2 with circles.
  • the area ratios of MC carbide, Mo-based carbide and carbonized boride were determined from each photograph by the following method. The results are shown in Table 3. (1) Since the black portions in optical micrograph A are Mo carbides and Cr carbides, the area ratio of Mo carbides + Cr carbides was determined from Photo A. (2) Since the black portion in optical micrograph B is Mo-based carbide, the area ratio of Mo-based carbide was determined from Photo B. The area ratio of the Cr-based carbide was determined by subtracting the area ratio of the Mo-based carbide determined from the photograph B from the area ratio of the Mo-based carbide + Cr-based carbide determined from the photograph A.
  • the area ratio of MC carbide + Mo carbide was determined from Photo C.
  • the area ratio of MC carbide was determined by subtracting the area ratio of Mo carbide determined from Photo B from the area ratio of MC carbide + Mo carbide determined from Photo C.
  • the black part is the base, MC carbide and Mo carbide, and the white part is the carbon boride and Cr carbide, so the area ratio of carbon boride + Cr carbide obtained in Photo D From this, the area ratio of the carbonized boride was determined by subtracting the area ratio of the Cr-based carbide determined in (2) above.
  • the carbon boride was 66.2 mass% Fe, 12.8 mass% Cr, 1.2 mass. % V, 13.3% by mass Mo + W, 3.6% by mass C, and 1.7% by mass B.
  • a test roll having a sleeve structure with an outer diameter of 60 mm, an inner diameter of 40 mm, and a width of 40 mm was prepared using the melts for outer layers of Examples 1 to 7 and Comparative Examples 1 and 2.
  • the rolling wear tester includes a rolling mill 11, test rolls 12 and 13 incorporated in the rolling mill 11, a heating furnace 14 for preheating the rolled material 18, a cooling water tank 15 for cooling the rolled material 18, and a rolling And a controller 17 for adjusting the tension.
  • the rolling wear conditions were as follows. After rolling, the depth of wear generated on the surface of the test roll was measured with a stylus type surface roughness meter. The results are shown in Table 4.
  • Rolled material SUS304 Rolling rate: 25% Rolling speed: 150 m / min Rolling material temperature: 900 ° C Rolling distance: 300 m / time
  • Roll cooling Water cooling Number of rolls: Quadruple
  • a seizure test was performed on each test roll using a frictional thermal shock tester shown in FIG.
  • the frictional thermal shock tester rotates a pinion 73 by dropping a weight 72 on a rack 71 so that the biting material 75 is brought into strong contact with the test material 74.
  • the degree of seizure was evaluated by the seizing area ratio as follows. The results are shown in Table 4. The less seizure, the better the accident resistance.
  • Slight seizure (seize area ratio is 40% or more and less than 60%).
  • X Significant seizure (seize area ratio is 60% or more).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

 遠心鋳造法により形成された外層(1)と、ダクタイル鋳鉄からなる内層(2)とが溶着一体化してなり、外層が質量基準で、C:1~3%、Si:0.4~3%、Mn:0.3~3%、Ni:1~5%、Cr:2~7%、Mo:3~8%、V:3~7%、及びB:0.01~0.12%を含有し、残部がFe 及び不可避的不純物からなる化学組成を有し、かつCr/(Mo+0.5W)<-2/3[C-0.2(V+1.19Nb)]+11/6 により表される関係(ただし、W 及びNb を含有しない場合、W=0 及びNb=0 である。)を満足し、面積率で1~15%のMC 炭化物、0.5~20%の炭ホウ化物、及び0.5~20%のMo 系炭化物を含有する遠心鋳造製熱間圧延用複合ロール。

Description

遠心鋳造製熱間圧延用複合ロール
 本発明は、耐摩耗性、耐焼付き性(耐事故性)及び耐肌荒れ性に優れた外層及び靭性に優れた内層を有する複合構造の遠心鋳造製熱間圧延用複合ロールに関する。
 連続鋳造等で製造した厚さ数百mmの加熱スラブは、粗圧延機及び仕上げ圧延機を有するホットストリップミルで数~数十mmの厚さの鋼板に圧延される。仕上げ圧延機は通常、5~7スタンドの四重式圧延機を直列に配置したものである。7スタンドの仕上げ圧延機の場合、第一スタンドから第三スタンドまでを前段スタンドと呼び、第四スタンドから第七スタンドまでを後段スタンドと呼ぶ。
 このようなホットストリップミルに用いられるワークロールは、熱間薄板と接する外層と、外層の内面に溶着一体化した内層とからなる。熱間薄板に接触する外層は、一定の期間の熱間圧延により大きな熱的及び機械的な圧延負荷を受けるので、表面に摩耗、肌荒れ、ヒートクラック等の損傷が生じるのは避けられない。外層からこれらの損傷を研削除去した後、ワークロールは再び圧延に供される。ロール外層から損傷部を研削除去することは「改削」と呼ばれる。ワークロールは、初径から圧延に使用可能な最小径(廃却径)まで改削された後、廃却される。初径から廃却径までを圧延有効径と呼ぶ。圧延有効径内の外層は、ヒートクラックのような大きな損傷を防止するために、優れた耐摩耗性、耐事故性及び耐肌荒れ性を有するのが望ましい。
 優れた耐摩耗性、耐事故性及び耐肌荒れ性が要求されるホットストリップミルの仕上げ後段スタンド用のワークロールとして、従来から耐事故性が良好な高合金グレン鋳鉄に耐摩耗性を向上させるためにMo、V等の硬質炭化物形成元素を添加した合金を外層材とした複合ロールが提案されている。例えば、特開2004-82209号は、外殻層の化学成分が質量比で、C:3.0~4.0%、Si:0.8~2.5%、Mn:0.2~1.2%、Ni:3.0~5.0%、Cr:0.5~2.5%、Mo:0.1~3.0%、V:1.0~5.0%、残部Fe及び不可避的不純物からなり、軸芯部がC:2.5~4.0%を含有する普通鋳鉄又は球状黒鉛鋳鉄で形成されており、外殻層の厚み(T)と軸芯部の半径(R)が0.03≦T/R≦0.5の関係を満足する遠心鋳造製熱間圧延用複合ロールを提案している。この複合ロールは良好な耐焼付性及び耐摩耗性を有する。しかし、熱間圧延用複合ロールの外層にはさらに高い耐摩耗性が要求されるようになってきた。
 高い耐摩耗性を有する高速度鋼からなる外層を有する熱間圧延用複合ロールも提案されている。例えば、熱間圧延仕上げ前段に用いられる複合ロールの外層材として、特開平08-020837号は、重量比でC:1.50~3.50%、Si:1.50%以下、Mn:1.20%以下、Cr:5.50~12.00%、Mo:2.00~8.00%、V:3.00~10.00%、Nb:0.60~7.00%、B:0.01超~0.200%以下、N:0.08超~0.300%以下を含有し、且つ下記式(1) 及び(2) を満足し、V+1.8 Nb≦7.5 C-6.0・・・(1)、及び0.20≦Nb/V≦0.80・・・(2)、残部Fe及び不可避的不純物よりなる摩擦係数の小さい高速度鋼系圧延用ロール外層材を開示している。Bの添加により外層材の耐焼付き性は向上しているが、熱間圧延用複合ロールの外層に要求される耐摩耗性、耐事故性及び耐肌荒れ性についてはまだ不十分である。
 特開2005-264322号は、外層と内層が溶着一体化してなる熱間圧延用複合ロールであって、前記外層が、質量比でC:1.8~3.5%、 Si:0.2~2%、Mn:0.2~2%、Cr:4~15%、Mo:2~10%、V:3~10%、P:0.1~0.6%、及びB:0.05~0.5%を含有し、さらにNb:3%以下、W:5%以下、Ni:5%以下、及びCo:2%以下を含有して良く、残部Fe及び不可避的不純物からなる組成を有する耐焼付き性に優れた熱間圧延用複合ロールを開示している。特開2005-264322号は、0.03%以下のSを含有しても良いと記載している。しかし、この外層の耐摩耗性、耐事故性及び耐肌荒れ性は不十分であった。
 特開平10-008212号は、少なくともロールの外殻層が、重量比でC:1.5~3%、Cr:0.5~5%、Mo:0.5~8%、V:1~8%、W:1超~8%、Nb:0.1~5%及びB:0.01~1%を含有する高炭素高速度鋼からなり、組織中に粒径が15μm以下で長径/短径比が2以下のMC型炭化物を5~20面積%有する熱間圧延用ロールを開示している。Sは不可避的不純物とみなされ、0.08%以下であれば含有しても良いと記載されている。しかし、特開平10-008212号のロールの外殻層では十分な耐摩耗性、耐事故性及び耐肌荒れ性が得られなかった。
 特開昭61-26758号は、化学組成が重量比で、C:1.0~2.0%、Si:0.2~2.0%、Mn:0.5~1.5%、Ni:3.0%以下、Cr:2~5%、Mo:3~10%、V:4.0%以下、及びS:0.1~0.6%を含有し、残部が実質的にFeからなる耐焼付き性に優れた複合ロール外層を開示している。しかし、この複合ロール外層はBを全く含有しないので、やはり十分な耐摩耗性、耐事故性及び耐肌荒れ性を有さない。
 従って本発明の目的は、耐摩耗性、耐事故性及び耐肌荒れ性に優れた外層と、強靱な内層とを有する遠心鋳造製熱間圧延用複合ロールを提供することである。
 本発明の遠心鋳造製熱間圧延用複合ロールは、遠心鋳造法により形成された外層と、ダクタイル鋳鉄からなる内層とが溶着一体化してなり、前記外層が質量基準で、C:1~3%、Si:0.4~3%、Mn:0.3~3%、Ni:1~5%、Cr:2~7%、Mo:3~8%、V:3~7%、及びB:0.01~0.12%を含有し、残部がFe及び不可避的不純物からなる化学組成を有し、かつ下記式(1): 
  Cr/(Mo+0.5W)<-2/3[C-0.2(V+1.19Nb)]+11/6 ・・・(1)
により表される関係(ただし、任意成分であるW及びNbを含有しない場合、W=0及びNb=0である。)を満足し、面積率で1~15%のMC炭化物、0.5~20%の炭ホウ化物、及び0.5~20%のMo系炭化物を含有することを特徴とする。
 前記外層はさらに3質量%以下のNb及び4質量%以下のWを含有するのが好ましい。
 前記外層はさらに0.05~0.3質量%のSを含有するのが好ましい。
 前記外層はさらに0.01~0.07質量%のNを含有するのが好ましい。
 前記外層はさらに質量基準で、Co:5%以下、Zr:0.5%以下、Ti:0.5%以下及びAl:0.5%以下からなる群から選ばれた少なくとも一種を含有するのが好ましい。
 前記外層は下記式(2): 
  30.23+2.74×(MC炭化物の面積率)+4.01×(Mo系炭化物の面積率)-5.63×(炭ホウ化物の面積率)≦50 ・・・(2)
の関係を満足するのが好ましい。
 前記外層は500以上のビッカース硬さHvを有するのが好ましい。
 本発明の遠心鋳造製熱間圧延用複合ロールの外層は、0.01~0.12%のBを含有するので、生成する炭ホウ化物により耐焼付き性が向上している。その上、本発明の遠心鋳造製熱間圧延用複合ロールの外層はMC炭化物により高い耐摩耗性を有する。また、本発明のロールは、耐摩耗性に優れるため圧延負荷に対する表面損傷が少なく、また耐焼付き性にも優れるため圧延材が焼付き、付着する肌荒れに対しても優れた特性を持っている。この結果、圧延後のロール肌がなめらかであり、これによって圧延される製品品質も良好なものが得られる。高い耐摩耗性だけでなく、優れた耐焼付き性及び耐肌荒れ性を有する本発明の遠心鋳造製熱間圧延用複合ロールは、ホットストリップミルの仕上げ圧延段に用いるのに好適である。
熱間圧延用複合ロールを示す概略断面図である。 本発明の遠心鋳造製複合ロールの製造に用いる鋳型の一例を示す分解断面図である。 本発明の遠心鋳造製複合ロールの製造に用いる鋳型の一例を示す断面図である。 Mo系炭化物を主体とする共晶炭化物が生成する領域を示すグラフである。 圧延摩耗試験機を示す概略図である。 摩擦熱衝撃試験機を示す概略図である。 実施例2の試験片の光学顕微鏡写真Aである。 実施例2の試験片の光学顕微鏡写真Bである。 実施例2の試験片の光学顕微鏡写真Cである。 実施例2の試験片の光学顕微鏡写真Dである。
 本発明の実施形態を以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の変更をしても良い。特に断りがなければ、単に「%」と記載しているときは「質量%」を意味する。
[1] 遠心鋳造製熱間圧延用複合ロール
 図1は遠心鋳造法により形成された外層1と、外層1に溶着一体化した内層2とからなる熱間圧延用複合ロール10を示す。ダクタイル鋳鉄からなる内層2は、外層1に溶着した胴芯部21と、胴芯部21の両端から一体的に延出する軸部22,23とを有する。外層1は高速度鋼からなるのが好ましい。
(A) 外層
(1) 必須元素
(a) C:1~3質量%
 CはV(Nb)、Cr及びMoと結合して硬質の炭化物を生成し、耐摩耗性の向上に寄与する。Cが1質量%未満では耐摩耗性に寄与するMC炭化物の晶出が不十分であり、また3質量%を超えると炭化物量が過剰となって靱性が低下する。C含有量の下限は好ましくは1.4質量%である。またC含有量の上限は好ましくは2.9質量%であり、より好ましくは2.5質量%であり、最も好ましくは2.3質量%である。
(b) Si:0.4~3質量%
 Siは溶湯の脱酸により酸化物の欠陥を減少させる効果を有する。Siが0.4質量%未満では脱酸効果が不十分である。Siは基地に優先的に固溶する元素であるが、3質量%を超えると外層は脆化する。Si含有量の下限は好ましくは0.45質量%であり、より好ましくは0.5質量%である。またSi含有量の上限は好ましくは2.7質量%であり、より好ましくは2.5質量%であり、最も好ましくは2.0質量%である。
(c) Mn:0.3~3質量%
 Mnは溶湯の脱酸作用を有する他に、Sと結合して潤滑作用を有するMnSを生成する。Mnが0.3質量%未満ではそれらの効果は不十分である。一方、Mnが3質量%を超えてもさらなる効果は得られない。Mn含有量の下限は好ましくは0.35質量%である。またMn含有量の上限は好ましくは2.5質量%であり、より好ましくは1.9質量%であり、最も好ましくは1.7質量%である。
(d) Ni:1~5質量%
 Niは基地の焼き入れ性を向上させる作用を有するので、大型の複合ロールの場合にNiを添加すると、冷却中のパーライトの発生を防止し、外層の硬さを向上させることができる。しかし、Niが5質量%を超えるとオーステナイトが安定化しすぎ、硬さが向上しにくくなる。Ni含有量の上限は好ましくは4質量%であり、より好ましくは3.8質量%であり、最も好ましくは3.5質量%である。添加効果が得られるNi含有量の下限は1質量%であり、好ましくは1.2質量%である。
(e) Cr:2~7質量%
 Crは基地をベーナイト又はマルテンサイトにして硬さを保持し、耐摩耗性を維持するのに有効な元素である。Crが2質量%未満ではその効果が不十分であり、また7質量%を超えると基地組織が脆化する。Crの含有量の下限は好ましくは2.5質量%であり、より好ましくは3.0質量%である。またCr含有量の上限は好ましくは6.8質量%であり、より好ましくは6.5質量%である。
(f) Mo:3~8質量%
 MoはCと結合して硬質炭化物(M6C、M2C)を形成し、外層の硬さを増加させる。また、MoはV(及びNb)とともに強靭かつ硬質なMC炭化物を生成し、耐摩耗性を向上させる。Moが3質量%未満ではそれらの効果は不十分である。一方、Moが8質量%を超えると外層の靭性が劣化する。Mo含有量の下限は好ましくは3.5質量%であり、より好ましくは4.0質量%である。またMo含有量の上限は好ましくは7.8質量%であり、より好ましくは7.6質量%であり、最も好ましくは7.4質量%である。
(g) V:3~7質量%
 VはCと結合して硬質のMC炭化物を生成する元素である。このMC炭化物は2500~3000のビッカース硬さHvを有し、炭化物の中で最も硬い。Vが3質量%未満ではMC炭化物の晶出量が不十分である。一方、Vが7質量%を超えると、比重の軽いMC炭化物が遠心鋳造中の遠心力により内面側に濃化し、MC炭化物の半径方向偏析が著しくなるだけでなく、外層が内層と溶着一体化しにくくなる。V含有量の下限は好ましくは3.2質量%であり、より好ましくは3.5質量%である。またV含有量の上限は好ましくは6.9質量%であり、より好ましくは6.8質量%であり、最も好ましくは6.7質量%である。
(h) B:0.01~0.12質量%
 Bは潤滑作用を有する炭ホウ化物を形成する。炭ホウ化物は金属元素、炭素及びホウ素を含む相であり、典型的には50~80質量%のFe、5~17質量%のCr、0.5~2質量%のV、5~17質量%のMo+W、3~9質量%のC、及び1~2.5質量%のBを主成分とする。炭ホウ化物は微量成分としてSi、Mn、Ni及びNbを含有しても良い。
 炭ホウ化物の潤滑作用は特に高温で顕著に発揮されるので、熱間圧延材のかみ込み時の焼き付き防止に効果的である。有効な潤滑作用を発揮させるためには、炭ホウ化物の面積率は1~20%である。Bが0.01質量%未満では上記面積率範囲の炭ホウ化物が形成されない。一方、Bが0.12質量%を超えると外層が脆化する。B含有量の下限は好ましくは0.02質量%であり、より好ましくは0.03質量%である。またB含有量の上限は好ましくは0.1質量%である。
(2) 任意元素
(a) Nb:3質量%以下
 Vと同様に、NbもCと結合して硬質MC炭化物を生成する。NbはV及びMoとの複合添加により、MC炭化物に固溶してMC炭化物を強化し、外層の耐摩耗性を向上させる。NbCはVCより溶湯密度との差が小さいので、MC炭化物の偏析を軽減させる。Nbが3質量%を超えるとMC炭化物が凝集し、健全な外層を得にくくなる。外層の耐摩耗性向上効果を得るには、Nb含有量の下限は0.1質量%が好ましい。Nb含有量の上限は好ましくは2.8質量%であり、より好ましくは2.5質量%であり、最も好ましくは2.3質量%である。
(b) W:4質量%以下
 WはCと結合して硬質のM6C及びM2Cの炭化物を生成し、外層の耐摩耗性向上に寄与する。またMC炭化物にも固溶してその比重を増加させ、偏析を軽減させる作用を有する。しかし、Wが4質量%を超えると、溶湯の比重を重くするため、炭化物偏析が発生しやすくなる。従って、Wを添加する場合には、その好ましい含有量は4質量%以下である。W含有量の上限はより好ましくは3.5質量%であり、最も好ましくは3質量%である。また上記添加効果を得るには、W含有量の下限はより好ましくは0.1質量%であり、最も好ましくは0.2質量%である。
(c) S:0.05~0.3質量%
 Sは潤滑作用を有するMnSを形成するが、0.3質量%を超えると外層の脆化が起こる。十分なMnSの潤滑作用を得るには、S含有量の上限は好ましくは0.2質量%であり、より好ましくは0.15質量%である。
(d) N:0.01~0.07質量%
 Nは炭化物を微細化する効果を有するが、0.07質量%を超えると外層が脆化する。十分な炭化物微細化効果を得るには、N含有量の下限は好ましくは0.01質量%であり、より好ましくは0.015質量%である。またN含有量の上限はより好ましくは0.06質量%である。
(e) Co:5質量%以下
 Coは基地組織の強化に有効な元素であるが、5質量%を超えると外層の靱性を低下させる。十分な基地組織強化効果を得るには、Co含有量の下限は0.1質量%が好ましい。Co含有量の上限はより好ましくは3質量%である。
(f) Zr:0.5質量%以下
 ZrはCと結合してMC炭化物を生成し、耐摩耗性を向上させる。また、Zrは溶湯中で酸化物を生成し、この酸化物が結晶核として作用するために、凝固組織が微細になる。さらに、ZrはMC炭化物の比重を増加させ、偏析防止に効果がある。しかし、Zrが0.5質量%を超えると、介在物となるので好ましくない。Zr含有量の上限はより好ましくは0.3質量%である。また、十分な添加効果を得るためには、Zrの含有量の下限はより好ましくは0.01質量%である。
(g) Ti:0.5質量%以下
 TiはN及びOと結合し酸窒化物を形成する。これらが溶湯中に懸濁されて核となり、MC炭化物を微細化及び均質化する。しかし、Tiが0.5質量%を超えると、溶湯の粘性が増加し、鋳造欠陥が発生しやすくなる。十分な添加効果を得るには、Ti含有量の下限は0.005質量%が好ましく、0.01質量%がより好ましい。またTi含有量の上限はより好ましくは0.3質量%であり、最も好ましくは0.2質量%である。
(h) Al:0.5質量%以下
 Alは、黒鉛化阻害元素であるN及びOと結合し酸窒化物を形成する。これらが溶湯中に懸濁されて核となり、MC炭化物を微細均一に晶出させる。しかし、Alが0.5質量%を超えると、外層が脆くなり機械的性質の劣化を招く。十分な添加効果を得るには、Al含有量の下限は好ましくは0.001質量%であり、より好ましくは0.01質量%である。また、Al含有量の上限はより好ましくは0.3質量%であり、最も好ましくは0.2質量%である。
(3) 不可避的不純物
 外層の組成の残部は実質的にFe及び不可避的不純物からなる。不可避的不純物のうち、Pは機械的性質の劣化を招くので、できるだけ少なくするのが好ましい。具体的には、Pの含有量は0.1質量%以下が好ましい。その他の不可避的不純物として、Cu、Sb、Te、Ce等の元素は合計で0.7質量%以下であれば良い。
(4) 関係式
 外層は下記式(1): 
  Cr/(Mo+0.5W)<-2/3[C-0.2(V+1.19Nb)]+11/6 ・・・(1)
[ただし、C、Cr、Mo、V、Nb及びWの記号はそれらにより表される元素の含有量(質量%)を示し、任意成分であるNb及びWを含有しない場合Nb及びWは0である。]により表される関係を満足することを特徴とする。式(1) はこれらの成分を含有する鋼材の組織を調べた結果得られたものである。式(1) の左辺のCr/(Mo+0.5W)はCr系炭化物形成元素とMo系炭化物形成元素の比率を表し、右辺の[C-0.2(V+1.19Nb)]はCバランスを表す。下記式(1’):
  Cr/(Mo+0.5W)=-2/3[C-0.2(V+1.19Nb)]+11/6 ・・・(1’)
は図3において直線Aにより表され、直線Aより下の領域(線上を含まない)はMo系炭化物を主体とする共晶炭化物が生成する領域であり、直線Aより上の領域(線上を含む)はCr系炭化物を主体とする共晶炭化物が生成する領域である。従って、式(1) は、図3において直線Aより下のMo系炭化物を主体とする共晶炭化物が生成する領域を表す。直線Aより下のMo系炭化物を主体とする共晶炭化物が生成する領域は、一般に直線Aより上のCr系炭化物を主体とする共晶炭化物が生成する領域に比べ耐摩耗性が良好であると言える。
(5) 組織
 外層の組織は、MC炭化物、M2CやM6CのMoを主体とする炭化物(Mo系炭化物)、及び炭ホウ化物を含有する。分析の結果、炭ホウ化物はM23(C, B)6の組成を有すると考えられる。外層1の組織はその他に、僅かな量のM7C3やM23C6のCrを主体とする炭化物(Cr系炭化物)を含有する。
 外層は面積率で1~15%のMC炭化物を含有する。耐摩耗性に寄与するMC炭化物の面積率が1%未満では外層1は十分な耐摩耗性を有さない。一方、MC炭化物の面積率が15%を超えると、外層1は脆化する。MC炭化物の面積率の下限は好ましくは4%であり、MC炭化物の面積率の上限は好ましくは12%である。
 外層は面積率で0.5~20%の炭ホウ化物を含有し、その潤滑作用により優れた耐焼き付き性を示す。炭ホウ化物の面積率の下限は好ましくは1%であり、より好ましくは2%である。また、炭ホウ化物の面積率の上限は好ましくは15%であり、より好ましくは10%である。
 外層はさらに面積率で0.5~20%のMo系炭化物を含有し、耐摩耗性の向上に寄与する。Mo系炭化物の面積率の下限は好ましくは1%であり、Mo系炭化物の面積率の上限は好ましくは12%である。基地はマルテンサイト及び/又はベーナイトが主体であるが、トゥルースタイトが析出する場合もある。
 外層は下記式(2): 
  30.23+2.74×(MC炭化物の面積率)+4.01×(Mo系炭化物の面積率)-5.63×(炭ホウ化物の面積率)≦50 ・・・(2)
の関係を満足するのが好ましい。式(2) は、各組織要素の耐焼付き性に対する影響から実験的求めたものである。MC炭化物の面積率、Mo系炭化物の面積率及び炭ホウ化物の面積率が式(2) の関係を満足することにより、耐焼付き性に優れた外層1が得られる。外層1のビッカース硬さHvは500以上が好ましく、550~800がより好ましい。
(B) 内層
 内層2は高強度のダクタイル鋳鉄(「球状黒鉛鋳鉄」とも呼ばれる。)からなる。外層1の長寿命化に応じて内層2のジャーナル部(軸部)22,23の寿命も長くするために、高い耐摩耗性を有するのが好ましい。ジャーナル部の摩耗により軸受との間のガタが大きくなると、複合ロール10を廃却せざるを得ない。高耐摩耗性のジャーナル部を提供するため、内層2のダクタイル鋳鉄は35%以下のフェライト面積率を有するのが好ましい。ダクタイル鋳鉄では、球状黒鉛の晶出によりその周囲の炭素量が低下し、低硬度のフェライト組織となりやすい。フェライト面積率が多くなるほど基地の硬さは低下し、よって耐摩耗性が低下する。内層2用のダクタイル鋳鉄のフェライト面積率は好ましくは32%以下である。
 ダクタイル鋳鉄のフェライト面積率は、合金元素の量に影響される。フェライト面積率が35%以下となるダクタイル鋳鉄の組成は、質量基準でC:2.3~3.6%、Si:1.5~3.5%、Mn:0.2~2.0%、Ni:0.3~2.5%、Cr:0.05~1.0%、Mo:0.05~1.0%、Mg:0.01~0.08%、及びV:0.05~1.0%を含有し、残部Fe及び不可避的不純物である。上記必須元素の他に、Nb:0.7%以下、及びW:0.7%以下を含有しても良い。さらに、フェライト面積率を低下させるために、Pは通常不純物元素として0.005~0.05%程度ダクタイル鋳鉄に入っているが、フェライト面積率を低下させるために0.5%まで添加しても良い。ダクタイル鋳鉄は、鉄基地がフェライト及びパーライトを主体とし、その他に黒鉛及び微量のセメンタイトを含む。
[2] 遠心鋳造製熱間圧延用複合ロールの製造方法
 図2(a) 及び図2(b) は、遠心鋳造用円筒状鋳型30で外層1を遠心鋳造した後に内層2を鋳造するのに用いる静置鋳造用鋳型の一例を示す。静置鋳造用鋳型100は、内面に外層1を有する円筒状鋳型30と、その上下端に設けられた上型40及び下型50とからなる。円筒状鋳型30内の外層1の内面は内層2の胴芯部21を形成するためのキャビティ60aを有し、上型40は内層2の軸部23を形成するためのキャビティ60bを有し、下型50は内層2の軸部22を形成するためのキャビティ60cを有する。円筒状鋳型30を用いる遠心鋳造法は水平型、傾斜型又は垂直型のいずれでも良い。
 円筒状鋳型30の上下に上型40及び下型50を組み立てると、外層1内のキャビティ60aは上型40のキャビティ60b及び下型50のキャビティ60cと連通し、内層1全体を一体的に形成するキャビティ60を構成する。円筒状鋳型30内の32及び33は砂型である。また、上型40内の42及び下型50内の52はそれぞれ砂型である。なお、下型50には内層用溶湯を保持するための底板53が設けられている。軸部22形成用の下型50の上に、外層1を遠心鋳造した円筒状鋳型30を起立させて設置し、円筒状鋳型30の上に軸部23形成用の上型40を設置して、内層2形成用の静置鋳造用鋳型100を構成する。
 静置鋳造用鋳型100において、遠心鋳造法により形成した外層の凝固途中又は凝固後に、内層2用のダクタイル鋳鉄溶湯が上型40の上方開口部43からキャビティ60内に注入されるに従い、キャビティ60内の溶湯の湯面は下型50から上型40まで次第に上昇し、軸部22、胴芯部21及び軸部23からなる内層2が一体的に鋳造される。
 遠心鋳造法で外層を形成した後に内層用の溶湯を鋳込むと、内層用溶湯の影響で外層1の温度が上昇する。そのときの外層1の使用域の温度を外層1の再加熱温度と呼ぶ。Bを含有する外層1には比較的低融点(約1100℃)の炭ホウ化物が生成しているが、再加熱温度が1100℃を超えるほど高いと、炭ホウ化物が溶けてミクロキャビティ欠陥が発生する。逆に、外層1の再加熱温度が低過ぎる(内層2の鋳込み温度が低過ぎる)と、外層1と内層2の溶着が不十分となる。従って、外層1の使用域の再加熱温度を500℃~1100℃にするのが好ましい。この条件は少なくとも外層1の圧延有効径内で満たしていれば良い。
 本発明を以下の実施例により詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1~7、比較例1及び2
 図2(a) に示す構造の円筒状鋳型30(内径800 mm、及び長さ2500 mm)を水平型の遠心鋳造機に設置し、表1に示す組成の各溶湯を用いて外層1を遠心鋳造した。外層1が凝固した後、内面に外層1(厚さ:90 mm)が形成された円筒状鋳型30を起立させ、軸部22形成用の中空状下型50(内径600 mm、及び長さ1500 mm)の上に円筒状鋳型30を立設し、円筒状鋳型30の上に軸部23形成用の中空状上型40(内径600 mm、及び長さ2000 mm)を立設し、図2(b) に示す静置鋳造用鋳型100を構成した。
 静置鋳造用鋳型100のキャビティ60に、質量基準でC:3.0%、Si:2.6%、Mn:0.3%、Ni:1.4%、Cr:0.1%、Mo:0.2%、Mg:0.05%、P:0.03%、及びS:0.03%を含有し、残部が実質的にFe及び不可避不純物である化学組成を有するダクタイル鋳鉄溶湯を上方開口部43から注湯し、途中でSiを含む黒鉛化接種材を接種して、外層1の内面に内層2が一体的に溶着した複合ロールを製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
注:「-」は「添加せず」を意味する。
 
Figure JPOXMLDOC01-appb-T000003
注:(1) Cr/(Mo+0.5W)の値。
  (2) -2/3[C-0.2(V+1.19Nb)]+11/6の値。
 
 各実施例及び各比較例の外層から切り出した各試料のビッカース硬さHvを測定した。結果を表3に示す。
 各実施例及び各比較例の外層から切り出した試験片について、下記の手順により光学顕微鏡により組織観察を行った。
工程1:各試験片を炭化物が浮き立たないように鏡面研磨した。
工程2:各試験片を村上氏薬で約30秒間腐食した後、各試験片の組織の光学顕微鏡写真Aを撮影した。
工程3:各試験片を平均粒径3μmのダイヤモンド微粒子のペーストを用いて10~30秒間バフ研磨した。
工程4:工程2の写真と同じ視野で各試験片の組織の光学顕微鏡写真Bを撮影した。
工程5:各試験片をクロム酸電解腐食で約1分間腐食した後、工程2の写真と同じ視野で各試験片の組織の光学顕微鏡写真Cを撮影した。
工程6:各試験片を過硫酸アンモニウム水溶液で約1分間腐食した。
工程7:工程2の写真と同じ視野で各試験片の組織の光学顕微鏡写真Dを撮影した。
 実施例2の試験片について、光学顕微鏡写真Aを図6に示し、光学顕微鏡写真Bを図7に示し、光学顕微鏡写真Cを図8に示し、光学顕微鏡写真Dを図9に示す。写真A~Dから測定可能な組織要素を表2に○印で示す。
Figure JPOXMLDOC01-appb-T000004
 画像解析ソフトを用いて、それぞれの写真から下記の方法によりMC炭化物、Mo系炭化物及び炭ホウ化物の面積率を求めた。結果を表3に示す。
(1) 光学顕微鏡写真Aにおいて黒い部分はMo系炭化物及びCr系炭化物であるので、写真AからMo系炭化物+Cr系炭化物の面積率を求めた。
(2) 光学顕微鏡写真Bにおいて黒い部分はMo系炭化物であるので、写真BからMo系炭化物の面積率を求めた。写真Aから求めたMo系炭化物+Cr系炭化物の面積率から、写真Bから求めたMo系炭化物の面積率を差し引くことにより、Cr系炭化物の面積率を求めた。
(3) 光学顕微鏡写真Cにおいて黒い部分はMC炭化物及びMo系炭化物であるので、写真CからMC炭化物+Mo系炭化物の面積率を求めた。写真Cから求めたMC炭化物+Mo系炭化物の面積率から、写真Bから求めたMo系炭化物の面積率を差し引くことにより、MC炭化物の面積率を求めた。
(4) 光学顕微鏡写真Dにおいて黒い部分は基地、MC炭化物及びMo系炭化物であり、白い部分は炭ホウ化物及びCr系炭化物であるので、写真Dで求めた炭ホウ化物+Cr系炭化物の面積率から上記(2) で求めたCr系炭化物の面積率を差し引くことにより、炭ホウ化物の面積率を求めた。
Figure JPOXMLDOC01-appb-T000005
注:式(2)の左辺=30.23+2.74×(MC炭化物の面積率)+4.01×(Mo系炭化物の面積率)-5.63×(炭ホウ化物の面積率)。
 
 実施例1~7の外層組織を観察した結果、圧延有効径内にミクロキャビティは認められなかった。内層の鋳込みにより外層が1100℃超に再加熱されると低融点の炭ホウ化物の溶融によりミクロキャビティが発生するので、以上の観察結果から、圧延有効径内での外層の再加熱温度が1100℃以下であったと推定できる。
 実施例2の外層組織中に存在する炭ホウ化物を、電界放出型電子線マイクロアナライザー(FE-EPMA)で分析の結果、炭ホウ化物は66.2質量%のFe、12.8質量%のCr、1.2質量%のV、13.3質量%のMo+W、3.6質量%のC、及び1.7質量%のBを主成分とする組成を有することが分った。
 実施例1~7及び比較例1及び2の各外層用溶湯を用いて、外径60 mm、内径40 mm及び幅40 mmのスリーブ構造の試験用ロールを作製した。耐摩耗性を評価するため、図4に示す圧延摩耗試験機を用いて、各試験用ロールに対して摩耗試験を行った。圧延摩耗試験機は、圧延機11と、圧延機11に組み込まれた試験用ロール12,13と、圧延材18を予熱する加熱炉14と、圧延材18を冷却する冷却水槽15と、圧延中に一定の張力を与える巻取機16と、張力を調節するコントローラ17とを具備する。圧延摩耗条件は以下の通りであった。圧延後、試験用ロールの表面に生じた摩耗の深さを触針式表面粗さ計により測定した。結果を表4に示す。
 圧延材:SUS304
 圧下率:25%
 圧延速度:150 m/分
 圧延材温度:900℃
 圧延距離:300 m/回
 ロール冷却:水冷
 ロール数:4重式
 耐事故性を評価するため、図5に示す摩擦熱衝撃試験機を用いて、各試験用ロールに対して焼付試験を行った。摩擦熱衝撃試験機は、ラック71に重り72を落下させることによりピニオン73を回動させ、試験材74に噛み込み材75を強く接触させるものである。焼付きの程度を焼付き面積率により以下の通り評価した。結果を表4に示す。焼付きが少ないほど耐事故性が良い。
 ○:焼付き殆ど無し(焼付き面積率が40%未満)。
 △:僅かな焼付き有り(焼付き面積率が40%以上60%未満)。
 ×:著しい焼付き有り(焼付き面積率が60%以上)。
Figure JPOXMLDOC01-appb-T000006
10・・・遠心鋳造製熱間圧延用複合ロール
1・・・外層
2・・・内層
 21・・・胴芯部
 22,23・・・軸部
11・・・圧延機
12,13・・・試験用ロール
14・・・加熱炉
15・・・冷却水槽
16・・・巻取機
17・・・コントローラ
18・・・圧延材
100・・・静置鋳造用鋳型
30・・・遠心鋳造用円筒状鋳型
32,33,42,52・・・砂型
40・・・静置鋳造用上型
50・・・静置鋳造用下型
60,60a,60b,60c・・・キャビティ
71・・・ラック
72・・・重り
73・・・ピニオン
74・・・試験材
75・・・噛み込み材

Claims (7)

  1. 遠心鋳造法により形成された外層と、ダクタイル鋳鉄からなる内層とが溶着一体化してなる遠心鋳造製熱間圧延用複合ロールであって、前記外層が質量基準で、C:1~3%、Si:0.4~3%、Mn:0.3~3%、Ni:1~5%、Cr:2~7%、Mo:3~8%、V:3~7%、及びB:0.01~0.12%を含有し、残部がFe及び不可避的不純物からなる化学組成を有し、かつ下記式(1): 
    Cr/(Mo+0.5W)<-2/3[C-0.2(V+1.19Nb)]+11/6 ・・・(1)
    により表される関係(ただし、任意成分であるW及びNbを含有しない場合、W=0及びNb=0である。)を満足し、面積率で1~15%のMC炭化物、0.5~20%の炭ホウ化物、及び0.5~20%のMo系炭化物を含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
  2. 請求項1に記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらに3質量%以下のNb及び4質量%以下のWを含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
  3. 請求項1又は2に記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらに0.05~0.3質量%のSを含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
  4. 請求項1~3のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらに0.01~0.07質量%のNを含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
  5. 請求項1~4のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらに質量基準で、Co:5%以下、Zr:0.5%以下、Ti:0.5%以下及びAl:0.5%以下からなる群から選ばれた少なくとも一種を含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
  6. 請求項1~5のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層が下記式(2):
    30.23+2.74×(MC炭化物の面積率)+4.01×(Mo系炭化物の面積率)-5.63×(炭ホウ化物の面積率)≦50 ・・・(2)
    の関係を満足することを特徴とする遠心鋳造製熱間圧延用複合ロール。
  7. 請求項1~6のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層が500以上のビッカース硬さHvを有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
PCT/JP2014/074564 2013-09-25 2014-09-17 遠心鋳造製熱間圧延用複合ロール WO2015045984A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167008302A KR102219333B1 (ko) 2013-09-25 2014-09-17 원심 주조제 열간 압연용 복합 롤
US14/912,511 US9718106B2 (en) 2013-09-25 2014-09-17 Centrifugally cast, hot-rolling composite roll
JP2015533351A JP5950048B2 (ja) 2013-09-25 2014-09-17 遠心鋳造製熱間圧延用複合ロール
BR112016004075-9A BR112016004075B1 (pt) 2013-09-25 2014-09-17 Cilindro compósito de laminação a quente fundido por centrifugação
CN201480052102.6A CN105579156B (zh) 2013-09-25 2014-09-17 离心铸造制热轧用复合辊
EP14847369.7A EP3050636B1 (en) 2013-09-25 2014-09-17 Centrifugally cast, hot-rolling composite roll
SI201431240T SI3050636T1 (sl) 2013-09-25 2014-09-17 Centrifugalno ulit kompozitni valj za toplo valjanje

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-198952 2013-09-25
JP2013198952 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015045984A1 true WO2015045984A1 (ja) 2015-04-02

Family

ID=52743125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074564 WO2015045984A1 (ja) 2013-09-25 2014-09-17 遠心鋳造製熱間圧延用複合ロール

Country Status (9)

Country Link
US (1) US9718106B2 (ja)
EP (1) EP3050636B1 (ja)
JP (1) JP5950048B2 (ja)
KR (1) KR102219333B1 (ja)
CN (1) CN105579156B (ja)
BR (1) BR112016004075B1 (ja)
SI (1) SI3050636T1 (ja)
TW (1) TWI616243B (ja)
WO (1) WO2015045984A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170209906A1 (en) * 2014-06-27 2017-07-27 Jfe Steel Corporation Centrifugal cast caliber roll for hot rolling mill (as amended)
WO2018147367A1 (ja) * 2017-02-08 2018-08-16 日立金属株式会社 圧延用複合ロール及びその製造方法
JPWO2018147370A1 (ja) * 2017-02-08 2019-12-12 日立金属株式会社 圧延用複合ロール及びその製造方法
JP2020022989A (ja) * 2018-08-08 2020-02-13 日立金属株式会社 圧延用遠心鋳造複合ロールの外層材、及び圧延用遠心鋳造複合ロール
WO2020032144A1 (ja) 2018-08-08 2020-02-13 日立金属株式会社 圧延用遠心鋳造複合ロール及びその製造方法
JPWO2019045068A1 (ja) * 2017-08-31 2020-10-15 日立金属株式会社 圧延用複合ロール及びその製造方法
US11052440B2 (en) 2016-03-31 2021-07-06 Hitachi Metals, Ltd. Outer layer of rolling roll and composite roll for rolling

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428407B2 (en) * 2016-09-05 2019-10-01 Tpr Co., Ltd. Cylindrical member made of flake graphite cast iron
CN109641250B (zh) * 2016-09-07 2020-11-03 杰富意钢铁株式会社 热轧用辊外层材料及热轧用复合辊
JP7545192B2 (ja) 2016-10-03 2024-09-04 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN107365939B (zh) * 2017-08-28 2019-08-02 广东荻赛尔机械铸造股份有限公司 发动机用铸铁及其制备方法
JP7227693B2 (ja) 2017-08-31 2023-02-22 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
EP3859025B1 (en) * 2018-11-28 2023-05-03 JFE Steel Corporation Outer layer material for hot-rolling roll, and composite hotrolling roll
CN109502964B (zh) 2018-12-07 2023-03-28 成都光明光电股份有限公司 重镧火石玻璃及其预制件、光学元件和光学仪器
CN109851217B (zh) * 2018-12-07 2022-03-08 成都光明光电股份有限公司 重镧火石玻璃及其预制件、光学元件和光学仪器
KR20220084025A (ko) * 2019-10-16 2022-06-21 히타치 긴조쿠 가부시키가이샤 열간 압연용 원심 주조 복합 롤
CN113265580B (zh) * 2021-05-28 2023-02-14 河南科技大学 一种高氮高钒高铬耐磨合金及其制备方法
CN113249658B (zh) * 2021-07-06 2021-09-24 常州凯达重工科技有限公司 高速钢立辊环及其制备方法
CN117769589A (zh) 2021-08-12 2024-03-26 国际壳牌研究有限公司 汽油燃料组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126758A (ja) 1984-07-13 1986-02-06 Kubota Ltd 耐焼付性に優れる複合ロ−ル材
JPH0820837A (ja) 1994-07-07 1996-01-23 Kawasaki Steel Corp 高速度鋼系圧延用ロール外層材
JPH108212A (ja) 1996-06-26 1998-01-13 Sumitomo Metal Ind Ltd 熱間圧延用ロール
JP2004082209A (ja) 2002-06-24 2004-03-18 Nippon Steel Corp 遠心鋳造製熱間圧延用複合ロール
JP2005264322A (ja) 2004-02-16 2005-09-29 Jfe Steel Kk 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2006281301A (ja) * 2005-04-04 2006-10-19 Nippon Steel Corp 圧延用複合ロール
JP2007245217A (ja) * 2006-03-17 2007-09-27 Kubota Corp 圧延用複合ロール

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT208902B (de) * 1957-08-02 1960-05-10 Boehler & Co Ag Geb Gegossene Schnellstahlwerkzeuge und Verfahren zu ihrer Herstellung
JPS5568769A (en) 1978-11-20 1980-05-23 Reader Denshi Kk Sweep marker oscillator
US5225007A (en) * 1990-02-28 1993-07-06 Hitachi Metals Ltd. Method for wear-resistant compound roll manufacture
ZA934072B (en) * 1992-06-19 1994-01-19 Commw Scient Ind Res Org Rolls for metal shaping
WO1994022606A1 (en) * 1993-03-31 1994-10-13 Hitachi Metals, Ltd. Wear- and seizure-resistant roll for hot rolling
JP3257649B2 (ja) * 1993-05-13 2002-02-18 日立金属株式会社 高靭性高速度鋼部材およびその製造方法
TW308557B (ja) * 1994-06-29 1997-06-21 Kawasaki Steel Co
JPH10273756A (ja) * 1997-03-31 1998-10-13 Daido Steel Co Ltd 鋳物製冷間工具およびその製造方法
EP0911421B1 (en) * 1997-04-08 2003-03-19 Nippon Steel Corporation Composite work roll for cold rolling
JP3361990B2 (ja) * 1998-04-24 2003-01-07 虹技株式会社 圧延ロール用外層材とそれを用いた圧延ロール
JP3962838B2 (ja) * 1998-08-03 2007-08-22 日立金属株式会社 熱間圧延用ロール
US6579833B1 (en) * 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens
JP3859958B2 (ja) * 2000-11-20 2006-12-20 日鉄住金ロールズ株式会社 遠心鋳造製圧延用複合ロールの外層材
US6723182B1 (en) * 2002-11-14 2004-04-20 Arthur J. Bahmiller Martensitic alloy steels having intermetallic compounds and precipitates as a substitute for cobalt
US7685907B2 (en) * 2004-08-13 2010-03-30 Vip Tooling, Inc. Method for manufacturing extrusion die tools
CN101018880B (zh) * 2004-09-13 2011-06-01 日立金属株式会社 轧辊用离心铸造外层及其制造方法
EP1975265B1 (en) * 2005-12-28 2019-05-08 Hitachi Metals, Ltd. Centrifugally cast composite roll
ES2572528T3 (es) * 2011-10-19 2016-06-01 Jfe Steel Corporation Material de capa de superficie de rodillo para laminación en caliente con resistencia a la fatiga excelente producido mediante colada centrífuga, y rodillo de material compuesto para laminación en caliente producido a través de colada centrífuga
ES2562625T3 (es) * 2011-11-21 2016-03-07 Hitachi Metals, Ltd. Rodillo compuesto fundido centrífugamente y su método de producción

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126758A (ja) 1984-07-13 1986-02-06 Kubota Ltd 耐焼付性に優れる複合ロ−ル材
JPH0820837A (ja) 1994-07-07 1996-01-23 Kawasaki Steel Corp 高速度鋼系圧延用ロール外層材
JPH108212A (ja) 1996-06-26 1998-01-13 Sumitomo Metal Ind Ltd 熱間圧延用ロール
JP2004082209A (ja) 2002-06-24 2004-03-18 Nippon Steel Corp 遠心鋳造製熱間圧延用複合ロール
JP2005264322A (ja) 2004-02-16 2005-09-29 Jfe Steel Kk 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2006281301A (ja) * 2005-04-04 2006-10-19 Nippon Steel Corp 圧延用複合ロール
JP2007245217A (ja) * 2006-03-17 2007-09-27 Kubota Corp 圧延用複合ロール

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170209906A1 (en) * 2014-06-27 2017-07-27 Jfe Steel Corporation Centrifugal cast caliber roll for hot rolling mill (as amended)
US11052440B2 (en) 2016-03-31 2021-07-06 Hitachi Metals, Ltd. Outer layer of rolling roll and composite roll for rolling
WO2018147367A1 (ja) * 2017-02-08 2018-08-16 日立金属株式会社 圧延用複合ロール及びその製造方法
CN110290880A (zh) * 2017-02-08 2019-09-27 日立金属株式会社 轧制用复合辊及其制造方法
JPWO2018147367A1 (ja) * 2017-02-08 2019-12-12 日立金属株式会社 圧延用複合ロール及びその製造方法
JPWO2018147370A1 (ja) * 2017-02-08 2019-12-12 日立金属株式会社 圧延用複合ロール及びその製造方法
US11192156B2 (en) 2017-02-08 2021-12-07 Hitachi Metals, Ltd. Composite roll for rolling and its production method
JP7036119B2 (ja) 2017-08-31 2022-03-15 日立金属株式会社 圧延用複合ロール及びその製造方法
JPWO2019045068A1 (ja) * 2017-08-31 2020-10-15 日立金属株式会社 圧延用複合ロール及びその製造方法
KR20210040940A (ko) * 2018-08-08 2021-04-14 히타치 긴조쿠 가부시키가이샤 압연용 원심 주조 복합 롤 및 그의 제조 방법
JPWO2020032144A1 (ja) * 2018-08-08 2021-08-10 日立金属株式会社 圧延用遠心鋳造複合ロール及びその製造方法
WO2020032144A1 (ja) 2018-08-08 2020-02-13 日立金属株式会社 圧延用遠心鋳造複合ロール及びその製造方法
JP2020022989A (ja) * 2018-08-08 2020-02-13 日立金属株式会社 圧延用遠心鋳造複合ロールの外層材、及び圧延用遠心鋳造複合ロール
JP7063180B2 (ja) 2018-08-08 2022-05-09 日立金属株式会社 圧延用遠心鋳造複合ロールの外層材、及び圧延用遠心鋳造複合ロール
US11389847B2 (en) 2018-08-08 2022-07-19 Hitachi Metals, Ltd. Centrifugally cast composite roll for rolling and its production method
JP7400718B2 (ja) 2018-08-08 2023-12-19 株式会社プロテリアル 圧延用遠心鋳造複合ロール及びその製造方法
KR102687061B1 (ko) * 2018-08-08 2024-07-22 가부시키가이샤 프로테리아루 압연용 원심 주조 복합 롤 및 그의 제조 방법

Also Published As

Publication number Publication date
EP3050636A1 (en) 2016-08-03
CN105579156A (zh) 2016-05-11
EP3050636A4 (en) 2017-05-10
JPWO2015045984A1 (ja) 2017-03-09
TW201521895A (zh) 2015-06-16
KR102219333B1 (ko) 2021-02-22
KR20160060062A (ko) 2016-05-27
US20160193638A1 (en) 2016-07-07
BR112016004075B1 (pt) 2020-03-24
TWI616243B (zh) 2018-03-01
CN105579156B (zh) 2018-02-27
US9718106B2 (en) 2017-08-01
SI3050636T1 (sl) 2019-07-31
JP5950048B2 (ja) 2016-07-13
EP3050636B1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP5950048B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP5950047B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP5423930B2 (ja) 遠心鋳造製複合圧延ロール及びその製造方法
JP5768947B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP6908021B2 (ja) 圧延ロール用外層及び圧延用複合ロール
JP6474038B2 (ja) 連続鋳掛け肉盛鋳造製圧延用複合ロール
WO2018147370A1 (ja) 圧延用複合ロール及びその製造方法
JP2016180167A (ja) 連続鋳掛け肉盛鋳造製圧延用複合ロール
JP2020022989A (ja) 圧延用遠心鋳造複合ロールの外層材、及び圧延用遠心鋳造複合ロール
JPWO2018147367A1 (ja) 圧延用複合ロール及びその製造方法
JP4123903B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP7136037B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052102.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533351

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14912511

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016004075

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167008302

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014847369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847369

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016004075

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160225