WO2021073123A1 - 一种利用固相改性剂改性的加氢催化剂及其应用 - Google Patents

一种利用固相改性剂改性的加氢催化剂及其应用 Download PDF

Info

Publication number
WO2021073123A1
WO2021073123A1 PCT/CN2020/093830 CN2020093830W WO2021073123A1 WO 2021073123 A1 WO2021073123 A1 WO 2021073123A1 CN 2020093830 W CN2020093830 W CN 2020093830W WO 2021073123 A1 WO2021073123 A1 WO 2021073123A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
sulfide
reaction
substrate
selectivity
Prior art date
Application number
PCT/CN2020/093830
Other languages
English (en)
French (fr)
Inventor
叶志斌
黄凌琪
Original Assignee
浙江苏必略科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江苏必略科技有限公司 filed Critical 浙江苏必略科技有限公司
Publication of WO2021073123A1 publication Critical patent/WO2021073123A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds

Definitions

  • the invention relates to a hydrogenation catalyst modified by a solid phase modifier and its application.
  • the selective catalytic hydrogenation (or semi-hydrogenation) of alkynes to prepare corresponding olefins is an important chemical conversion reaction, which is widely used in the synthesis of olefins in fine chemicals and monomers in the petrochemical polymer industry ( For example, ethylene, propylene, styrene, etc.) deacetylene purification to remove trace alkyne impurities.
  • nanocatalysts based on different transition metals have been widely reported for the selective hydrogenation of alkynes.
  • the palladium nanoparticle (about 10 nm in size) catalyst supported on various supports is the most commonly used catalyst with high activity and good selectivity.
  • the classic Lindlar catalyst (a palladium nanocatalyst supported on a calcium carbonate carrier modified with lead or quinoline) developed in 1952 is the most typical palladium nanocatalyst in the industry and is still widely used in the industry.
  • High activity and high selectivity are important factors in the design of selective hydrogenation catalysts for alkynes. Under the condition of maintaining high catalyst activity, it is very important to suppress or avoid the excessive hydrogenation of olefin products to form alkanes or the isomerization of olefin products to form other isomers, so as to obtain high selectivity of desired olefin products.
  • avoiding excessive hydrogenation is extremely difficult, especially in the case of high conversion of alkyne reactants (e.g., >99%).
  • the conversion rate of alkynes approaches or reaches 100%, it is often observed that the selectivity of the target olefin product decreases significantly.
  • DMSO dimethyl sulfoxide
  • these soluble small molecule modifiers can effectively improve the selectivity of the catalyst, their use also brings serious problems to practical applications.
  • these toxic organic modifiers are often used in excess (for example, the molar amount of quinoline and pyridine is often tens to hundreds of times that of palladium), resulting in a large amount of residue in the reaction product, contaminating the product and reducing The quality of the product. To completely remove them from the reaction products (especially in the synthesis of nutritional products such as vitamins), will increase high additional costs.
  • their reversible combination with the active center of the palladium catalyst also brings difficulties to the recovery and reuse of the catalyst.
  • macromolecular modifiers containing coordination atoms are also used to improve the selective performance of palladium nanocatalysts.
  • Studer et al. prepared a palladium nanocatalyst coated with an acrylate polymer, in which the polymer contains thioether and dimethylamino functional groups as modifiers and stabilizers, respectively (Reference F.; Wang, X.; Nadore, H.; Klingauf, J.; Studer, A. Chem. Eur. J. 2017, 23, 6014-6018).
  • Amine dendrimers and polyethyleneimine (PEI) have also been used as macromolecular modifiers for palladium nanocatalysts for selective hydrogenation of alkynes in recent years (Reference Mizugaki, T.; Murata, M.; Fukubayashi, S. ; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. Chem. Commun. 2008, 241-243; Sajiki, H.; Mori, S.; Ohkubo, T.; Ikawa, T.; Kume, A.; Maegawa, T.; Monguchi, Y. Chem. Eur. J. 2008, 14, 5109-5111).
  • the PEI-silica composite supported palladium nanocatalyst was further designed for the selective hydrogenation of alkynes (References Kuwahara, Y.; Kango, H.; Yamashita, H. ACS Catal. 2019, 9,1993-2006).
  • PEI is covalently immobilized on silica to act as a macromolecular modifier, competing with olefins for palladium surface active sites to inhibit excessive hydrogenation of olefins.
  • the PEI-silica composite supported palladium nanocatalyst can significantly inhibit excessive hydrogenation in the semi-hydrogenation of internal alkynes represented by p-diphenylacetylene, it is the selective hydrogenation reaction of terminal alkynes, phenylacetylene The role of this is still quite limited. Before the complete conversion of phenylacetylene, severe over-hydrogenation can even be observed. In addition, the stability and reusability of this type of catalyst have not yet been proven, which is very important for commercial applications. In addition, the multi-step synthesis steps of this catalyst also complicate its potential commercial applications.
  • the new type of modifier needs to be insoluble or have very low solubility in the system of selective hydrogenation of alkynes to make The modifier and the supported catalyst are easily separated from the reaction system to avoid contamination of the reaction product.
  • the new modifier can better inhibit the occurrence of excessive hydrogenation reactions and other side reactions, and improve the production of target olefin products.
  • the modified catalyst also needs to be able to be repeatedly applied multiple times.
  • the purpose of the present invention is to provide a hydrogenation catalyst modified by a solid-phase modifier and its application.
  • the solid-phase modifier is basically used in the hydrogenation reaction system of alkynes. It is insoluble or has very low solubility, and it can effectively improve the catalytic performance of the palladium catalyst for the selective hydrogenation of alkynes, keep the catalyst high catalytic activity, and can effectively improve the selectivity of the catalyst to the target olefin product.
  • the hydrogenation catalyst modified by a solid-phase modifier is characterized in that: the hydrogenation catalyst is a mixture of a supported palladium catalyst and a solid-phase modifier, or is directly modified with a solid-phase modifier. It is a metal palladium material supported by a carrier; when the hydrogenation catalyst is a mixture of a supported palladium catalyst and a solid phase modifier, the mass ratio of the solid phase modifier to the supported palladium catalyst is 0.1-500:1 When the hydrogenation catalyst is a metallic palladium material supported by a solid phase modifier, the mass loading of metallic palladium is 0.1-20%.
  • the metal sulfide is silver sulfide (Ag 2 S), barium sulfide (BaS), cadmium sulfide (CdS), cerium sulfide (Ce 2 S 3 ), ferrous sulfide (FeS), ferrous disulfide (FeS 2 ) , Lithium sulfide (Li 2 S), sodium sulfide (Na 2 S), nickel sulfide (Ni 2 S 3 ), manganese sulfide (MnS), molybdenum sulfide (MoS 2 ), selenium sulfide (SeS 2 ), tungsten sulfide (WS 2 ) At least one of zinc sulfide (ZnS), copper sulfide (CuS), titanium sulfide (TiS 2 ), and the like.
  • ZnS zinc sulfide
  • CuS copper sulfide
  • TiS 2
  • the hydrogenation catalyst modified by a solid phase modifier is characterized in that: the supported palladium catalyst comprises a catalyst carrier and a metal active component palladium supported on the catalyst carrier, and the metal active component palladium is in The loading amount on the catalyst carrier is 0.1-30% by weight.
  • the hydrogenation catalyst modified by a solid-phase modifier is characterized in that the loading amount of the metal active component palladium on the catalyst carrier is 0.5-20 wt%.
  • the hydrogenation catalyst modified by a solid phase modifier is characterized in that: the catalyst carrier is an inorganic carrier or an organic carrier, and the inorganic carrier is CaCO 3 , BaSO 4 , activated carbon, diatomaceous earth And at least one of metal oxides; further, the inorganic carrier is at least one of CaCO 3 , BaSO 4 , activated carbon, SiO 2 , Al 2 O 3 , ZnO, TiO 2 , and diatomaceous earth.
  • the application of the hydrogenation catalyst in catalyzing the selective hydrogenation of alkynes to olefins is characterized in that the alkynes can be phenylacetylene, acetylene, propyne, methylbutynol, dehydrolinalool, Dehydroneryl alcohol, dehydroisophytoalcohol, 1-ethynylcyclohexene, 1-heptyne, 4-phenyl-1-butyne, diphenylacetylene, 1,4-butynediol, Any one of 1-phenyl-1-propyne and 4-octyne.
  • the alkynes can be phenylacetylene, acetylene, propyne, methylbutynol, dehydrolinalool, Dehydroneryl alcohol, dehydroisophytoalcohol, 1-ethynylcyclohexene, 1-heptyne, 4-phenyl-1-butyne, diphen
  • the alkyne selective hydrogenation catalyst modified with a solid phase modifier of the present invention is simple and easy to obtain, and no special method is required for preparation.
  • the solid-phase modifier is basically insoluble or has very low solubility in the system of alkyne hydrogenation reaction. After the reaction, the solid-phase modifier and the supported catalyst can be separated by simple filtration, precipitation or centrifugal separation. The separation from the reaction solution system not only avoids the toxic residues on the target olefin product, but also facilitates the repeated application of the catalyst and reduces the use cost.
  • the modified catalyst of the present invention when applied to a heterogeneous reaction system that catalyzes the selective hydrogenation of alkynes to olefins, it has always maintained excellent catalytic activity and high selectivity of target olefin products during multiple cycles of the catalyst. .
  • the modified catalyst of the present invention can adopt the conventional supported palladium catalyst prepared by the prior art and the solid phase modifier designed by the present invention for mixed use.
  • the solid phase modifier of the present invention is polyphenylene sulfide or metal sulfide, and the metal sulfide is silver sulfide (Ag 2 S), barium sulfide (BaS), cadmium sulfide (CdS), cerium sulfide (Ce 2 S 3 ) , Ferrous sulfide (FeS), ferrous disulfide (FeS 2 ), lithium sulfide (Li 2 S), sodium sulfide (Na 2 S), nickel sulfide (Ni 2 S 3 ), manganese sulfide (MnS), molybdenum sulfide (MoS 2 ), selenium sulfide (SeS 2 ), tungsten sulfide (WS 2 ), zinc sulfide
  • polyphenylene sulfide and these metal sulfides have solid-phase properties, they are the same as sulfur-containing small molecule ligands.
  • the sulfur atoms in the solid phase can still have an effect on the active center of palladium, thereby increasing the resistance by limiting excessive hydrogenation.
  • the selectivity of the target olefin product is not limited to polyphenylene sulfide and these metal sulfides.
  • polyphenylene sulfide and these metal sulfides are completely insoluble or have very low solubility in the reaction system under the usual liquid phase selective hydrogenation conditions of alkyne (the hydrogenation reaction temperature is often much lower than 200 °C), so hydrogenation After the reaction, they can be separated from the reaction solution system by simple filtration, precipitation or centrifugal separation, which is convenient for recovery and reuse, and at the same time does not pollute the target olefin product.
  • the modified catalyst of the present invention can also be an active metal palladium material supported by a solid-phase modifier (polyphenylene sulfide or the above-mentioned metal sulfide) as a carrier.
  • a solid-phase modifier polyphenylene sulfide or the above-mentioned metal sulfide
  • the present invention has been verified through experiments that the active metal palladium material supported by a solid phase modifier has high catalytic activity for the selective hydrogenation of alkynes to olefins, and it is insoluble in the reaction solution system. After the reaction is completed Facilitate separation from the reaction solution system.
  • the S element in the solid-phase modifier of the present invention exists in the form of covalent bonds or preferential ionic bonds, when the catalytic and selective hydrogenation reaction is carried out in a hydrogen environment, basically no ions are generated to enter the reaction solution system Therefore, it basically does not remain in the reaction solution system.
  • the modified catalyst of the present invention adopts the conventional palladium catalyst prepared by the prior art and the solid-phase modifier designed in the present invention for mixed use, and is applied to the liquid phase selective hydrogenation of alkynes (alkynes substrate dissolves Use liquid alkyne substrate directly in liquid solvent or without solvent, react under hydrogen pressure), these solid phase modifiers can be mixed with palladium catalyst in advance in powder form, and then added to the reactor to catalyze Hydrogenation reaction; these solid-phase modifier powders and palladium catalysts can also be added to the reactor separately and mixed temporarily in the reactor for reaction.
  • the alkyne substrate can be a terminal alkyne (such as phenylacetylene, acetylene, propyne, methylbutynol, dehydroneryl alcohol, dehydroisophytol, dehydrolinalool, 1-ethynylcyclohexyl) Ene, 1-heptyne, 4-phenyl-1-butyne, etc.) and internal alkynes (diphenylacetylene, 1,4-butynediol, 1-phenyl-1-propyne, 4- Octyne, etc.).
  • a terminal alkyne such as phenylacetylene, acetylene, propyne, methylbutynol, dehydroneryl alcohol, dehydroisophytol, dehydrolinalool, 1-ethynylcyclohexyl) Ene, 1-heptyne, 4-phenyl-1-butyne, etc.
  • internal alkynes diphen
  • the palladium catalyst may be palladium nanoparticles supported on an inorganic or organic insoluble carrier (such as At least one of CaCO 3 , BaSO 4 , SiO 2 , Al 2 O 3 , ZnO, activated carbon, TiO 2 , and diatomaceous earth) on heterogeneous catalysts, or palladium nanoparticles stabilized by micelles or soluble polymers
  • an inorganic or organic insoluble carrier such as At least one of CaCO 3 , BaSO 4 , SiO 2 , Al 2 O 3 , ZnO, activated carbon, TiO 2 , and diatomaceous earth
  • the homogeneous catalysts such as palladium nano-catalysts stabilized by hyperbranched polyethylene ion polymers containing quaternary ammonium ions, refer to Xiang, P. for the preparation method; PhD Thesis, Synthesis and characterization of novel ethylene copolymers by palladium-diimine catalysts
  • the hydrogenation catalyst of the present invention can also be used for the selective hydrogenation of alkyne in the gas phase.
  • the substrate is gas-phase alkynes, such as acetylene and propyne.
  • Fig. 1 is the reaction kinetic curve of Example 1 and the comparison diagram with Comparative Example 1
  • Fig. 2 is the reaction kinetic curve of Example 2 and the comparison diagram with Comparative Example 1
  • Fig. 3 is the reaction kinetics of Example 3 Curve and comparison with Comparative Example 1
  • Figure 4 is the reaction kinetic curve of Example 4 and the comparison with Comparative Example 1
  • Figure 5 is the reaction kinetic curve of Example 5 and the comparison with Comparative Example 1
  • Fig. 6 is the reaction kinetic curve of Example 6 and the comparison graph with Comparative Example 1
  • Fig. 7 is the reaction kinetic curve of Example 7 and the comparison graph with Comparative Example 1
  • FIG. 8 is the reaction kinetics of Example 8 Curve and comparison with Comparative Example 1;
  • Figure 9 is the reaction kinetic curve of Example 9 and the comparison with Comparative Example 1;
  • Figure 10 is the reaction kinetic curve of Example 10 and the comparison with Comparative Example 1;
  • Figure 11 is the reaction kinetics curve of Example 11 and the comparison with Comparative Example 1;
  • Figure 12 is the reaction kinetics curve of Example 12 and the comparison with Comparative Example 2;
  • Figure 13 is the reaction kinetics of Example 13 Curve and comparison with Comparative Example 3;
  • Figure 14 is the reaction kinetic curve of Example 14 and the comparison with Comparative Example 4;
  • Figure 15 is the reaction kinetic curve of Example 15 and the comparison with Comparative Example 5;
  • Fig. 16 is the reaction kinetic curve of Example 16 and the comparison graph with Comparative Example 6;
  • FIG. 17 is the reaction kinetic curve of Example 17 and the comparison graph with Comparative Example 7;
  • Fig. 18 is the reaction kinetics of Example 18 Curve and comparison chart with Comparative Example 8;
  • FIG. 19 is the reaction kinetic curve of Example 19 and the comparison chart with Comparative Example 9;
  • PPS Polyphenylene sulfide
  • Pd@PPS catalyst palladium loading is 2.2 wt%).
  • the preparation method is as follows: in a 25mL dry glass bottle, add 100mg PPS powder, after the air in the dry glass bottle is replaced and exhausted with nitrogen, add 14mL anhydrous tetrahydrofuran (THF), at room temperature at a rate of 500rpm After stirring for 10 min, 1 mL of a THF solution containing 0.0245 mmol of palladium acetate was added under a nitrogen atmosphere, and after stirring uniformly, 1 mL of a THF solution containing 0.25 mmol of triethylsilane was added to perform a reduction reaction of palladium. After stirring for 10 hours, the supernatant was separated by standing, and the lower precipitate was washed 3 times with clean THF, filtered, and vacuum dried to obtain the Pd@PPS catalyst.
  • THF anhydrous tetrahydrofuran
  • ZnS is a carrier-supported palladium nano-metal catalyst, referred to as Pd@ZnS catalyst (the palladium loading is 3.2wt%).
  • the preparation method is as follows: In a 100 mL dry glass flask, add 50 mL of anhydrous methanol and 92 mg of ZnS powder. While stirring, 10 mL of methanol solution containing 0.1 mmol Na 2 PdCl 4 was added. After reacting overnight, the supernatant was separated by standing, the lower layer was washed with methanol 4 times repeatedly, the methanol was removed by filtration, and the Pd@ZnS catalyst was obtained by vacuum drying.
  • Pd@CaCO 3 catalyst was used for selective hydrogenation of phenylacetylene.
  • the reaction conditions are as follows: a n-hexane solution of phenylacetylene with a concentration of 0.5mol/L is used as the reaction solution, and the molar ratio of Pd to phenylacetylene in the catalyst is 4:10000.
  • the reaction solution and the Pd@CaCO 3 catalyst were put into the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a reaction temperature of 25° C. and a hydrogen pressure of 1 atm. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 95%
  • the target product styrene selectivity (Y) is 97%
  • the target product styrene selectivity decreases significantly; after the substrate alkyne is completely converted, the reaction time is continued to be extended, and the styrene selectivity drops sharply, indicating severe over-hydrogenation.
  • the Pd@CaCO 3 catalyst cannot suppress excessive hydrogenation.
  • the selective hydrogenation of diphenylacetylene was carried out with Pd@CaCO 3 catalyst.
  • the reaction conditions are as follows: a n-hexane solution of diphenylacetylene with a concentration of 0.5 mol/L is used as the reaction solution, and the molar ratio of Pd to diphenylacetylene in the catalyst is 4:10000.
  • the reaction solution and the Pd@CaCO 3 catalyst were added to the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a temperature of 25° C. and a hydrogen pressure of 1 atmosphere. Under different reaction times, the sampling and analysis results are:
  • the selective hydrogenation of 2-methyl-3-butyn-2-ol was carried out with Pd@CaCO 3 catalyst.
  • the reaction conditions are as follows: no solvent, the molar ratio of Pd to 2-methyl-3-butyn-2-ol in the catalyst is 2:1000.
  • the reaction solution and the Pd@CaCO 3 catalyst were put into the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a reaction temperature of 25° C. and a hydrogen pressure of 1 atm. Under different reaction times, the sampling and analysis results are:
  • the conversion rate (x) of the substrate 2-methyl-3-butyn-2-ol is 90%, and the olefin product 2-methyl-3-butyn-2-ol is selected
  • the rate (Y) is 86%
  • the selective hydrogenation of 1,4-butyn-2-ol was carried out with Pd@CaCO 3 catalyst.
  • the reaction conditions are as follows: an ethanol solution of 1,4-butyn-2-ol with a concentration of 0.5 mol/L is used as the reaction solution, and the molar ratio of Pd to 1,4-butyn-2-ol in the catalyst is 4:10000 .
  • the reaction solution and the Pd@CaCO 3 catalyst were added to the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a temperature of 70° C. and a hydrogen pressure of 1 atmosphere. Under different reaction times, the sampling and analysis results are:
  • the selectivity of the enol product begins to decrease, and the decline rate is obvious; for example, 5 hours after the complete conversion, the selectivity of the enol product decreases by 85%, and the fraction of trans-enol in the enol product The rapid rise indicates that the Pd@CaCO 3 catalyst has excessive hydrogenation of the substrate.
  • the selective hydrogenation of 1-heptyne was carried out with Pd@CaCO 3 catalyst.
  • the reaction conditions are as follows: a tetrahydrofuran solution of 1-heptyne with a concentration of 0.5 mol/L is used as the reaction solution, and the molar ratio of Pd to 1-heptyne in the catalyst is 4:10000.
  • the reaction solution and the Pd@CaCO 3 catalyst were put into the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a reaction temperature of 25° C. and a hydrogen pressure of 1 atm. Under different reaction times, the sampling and analysis results are:
  • the substrate 1-heptyne conversion rate (x) is 86%
  • the target olefin product 1-heptene selectivity (Y) is 99%
  • the target olefin product selectivity is difficult to control.
  • the target olefin product selectivity has a significant downward trend, indicating that the Pd@CaCO 3 catalyst has serious over-hydrogenation of the substrate.
  • Pd@C catalyst is used for selective hydrogenation of phenylacetylene.
  • the reaction conditions are as follows: The reaction conditions are as follows: a n-hexane solution of phenylacetylene with a concentration of 0.5 mol/L is used as the reaction solution, and the molar ratio of Pd to phenylacetylene in the catalyst is 4:10000.
  • the reaction solution and the Pd@C catalyst were added to the autoclave together, and after the air in the autoclave was replaced and exhausted with hydrogen, the reaction was carried out at a reaction temperature of 25° C. and a hydrogen pressure of 1 atmosphere.
  • the sampling and analysis results for different reaction times are:
  • the substrate phenylacetylene conversion rate (x) is 56%
  • the target product styrene selectivity (Y) is 91%
  • the target product styrene selectivity is not high; when the target product is almost completely converted, the target product styrene selectivity is less than 90%; after the complete conversion, the time continues to be extended, and the target product styrene selectivity continues to decrease.
  • Pd@C catalyst is used for selective hydrogenation of diphenylacetylene.
  • the reaction conditions are as follows: a n-hexane solution of diphenylacetylene with a concentration of 0.5 mol/L is used as the reaction solution, and the molar ratio of Pd to diphenylacetylene in the catalyst is 4:10000.
  • the reaction solution and the Pd@C catalyst were put into the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a reaction temperature of 25° C. and a hydrogen pressure of 1 atmosphere. Under different reaction times, the sampling and analysis results are:
  • Pd@C catalyst is used for selective hydrogenation of propynol.
  • the reaction conditions are as follows: an ethanol solution of propynol with a concentration of 0.5 mol/L is used as the reaction solution, and the molar ratio of Pd to propynol in the catalyst is 4:10000.
  • the reaction solution and the Pd@C catalyst were added to the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a reaction temperature of 70° C. and a hydrogen pressure of 1 atmosphere. Under different reaction times, the sampling and analysis results are:
  • the selective hydrogenation of phenylacetylene was carried out with Lindlar catalyst.
  • the reaction conditions are as follows: The reaction conditions are as follows: a n-hexane solution of phenylacetylene with a concentration of 0.5 mol/L is used as the reaction solution, and the molar ratio of Pd to phenylacetylene in the catalyst is 4:10000.
  • the reaction solution and the Lindlar catalyst were put into the reactor together, and after replacing and exhausting the air in the reactor with hydrogen, the reaction was carried out at a reaction temperature of 25° C. and a hydrogen pressure of 1 atmosphere. Under different reaction times, the sampling and analysis results are:
  • the selective hydrogenation of phenylacetylene was carried out with the I1 catalyst.
  • the reaction conditions are as follows: a n-hexane solution of phenylacetylene with a concentration of 0.1 mol/L is used as the reaction solution, and the molar ratio of Pd to phenylacetylene in the catalyst is 4:10000.
  • the reaction solution and the I1 catalyst were put into the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a reaction temperature of 25° C. and a hydrogen pressure of 1 atmosphere. Under different reaction times, the sampling and analysis results are:
  • the styrene selectivity of the target product begins to decrease; if the reaction time is continued to be extended, the styrene selectivity drops sharply, indicating a serious excessive hydrogenation.
  • the I1 catalyst cannot simulate an over-hydrogenation reaction.
  • the selective hydrogenation of diphenylacetylene was carried out with the I1 catalyst.
  • the reaction conditions are as follows: a n-hexane solution of diphenylacetylene with a concentration of 0.1 mol/L is used as the reaction solution, and the molar ratio of Pd to diphenylacetylene in the catalyst is 4:10000.
  • the reaction solution and the I1 catalyst were put into the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a reaction temperature of 25° C. and a hydrogen pressure of 1 atmosphere. Under different reaction times, the sampling and analysis results are:
  • the selectivity of olefin product Y 14%
  • the fraction of trans olefin in the olefin product (E/Z+E) 2 %.
  • the selective hydrogenation of 1-heptyne was carried out with I1 catalyst.
  • the reaction conditions are as follows: a tetrahydrofuran solution of 1-heptyne with a concentration of 0.1 mol/L is used as the reaction solution, and the molar ratio of Pd to 1-heptyne in the catalyst is 4:10000.
  • the reaction solution and the I1 catalyst were put into the reactor together, and after the air in the reactor was replaced and exhausted with hydrogen, the reaction was carried out at a reaction temperature of 25° C. and a hydrogen pressure of 1 atmosphere. Under different reaction times, the sampling and analysis results are:
  • the substrate 1-heptyne conversion rate (x) is 85%
  • the target product 1-heptene selectivity (Y) is 99%
  • the olefin selectivity of the target product has a relatively obvious downward trend, indicating that the I1 catalyst cannot well control the hydrogenation of the substrate.
  • PPS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of PPS and Pd@CaCO 3 catalyst is 200:1, and the other reaction conditions are the same as Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 95%
  • the target product styrene selectivity (Y) is 99%
  • Figure 1 is a comparison diagram of reaction kinetics curves. It can be seen from the figure that, compared with Comparative Example 1, the catalyst activity is somewhat reduced, but excessive hydrogenation is greatly reduced. After the substrate is completely converted, the downward trend of the target product styrene selectivity slows down significantly.
  • CdS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of CdS and Pd@CaCO 3 catalyst is 40:1, and other reaction conditions are the same as Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 76%
  • the target product styrene selectivity (Y) is 99.4%
  • Figure 2 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 1, the catalyst activity changes little, but the excessive hydrogenation is greatly reduced. Even within 3 hours after the substrate is completely converted, the target product styrene selectivity can be stabilized at 87%.
  • ZnS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of ZnS and Pd@CaCO 3 catalyst is 100:1, and the other reaction conditions are the same as Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 72%
  • the target product styrene selectivity (Y) is 99.9%
  • Figure 3 is a comparison diagram of reaction kinetics curves. It can be seen from the figure that compared with Comparative Example 1, the catalyst activity is somewhat decreased, but excessive hydrogenation is greatly reduced. Within 3 hours after the substrate is completely converted, the styrene selectivity of the target product stabilizes at 96%.
  • BaS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of BaS and Pd@CaCO 3 catalyst is 40:1, and the other reaction conditions are the same as those of Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 78%
  • the target product styrene selectivity (Y) is 99%
  • Figure 4 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that, compared with Comparative Example 1, the catalyst activity is somewhat reduced, but excessive hydrogenation is greatly reduced. Within 1.1h after the substrate was completely converted, the styrene selectivity of the target product stabilized at 89%.
  • Ag 2 S is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of Ag 2 S and Pd@CaCO 3 catalyst is 80:1, and other reaction conditions are the same as Comparative Example 1.
  • Figure 5 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that, compared with Comparative Example 1, the catalyst activity remains unchanged and the over-hydrogenation is improved.
  • Ce 2 S 3 is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of Ce 2 S 3 and Pd@CaCO 3 catalyst is 22:1, and other reaction conditions are the same as Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 96%
  • the target product styrene selectivity (Y) is 96%
  • Figure 6 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 1, the catalyst activity is somewhat reduced, but excessive hydrogenation is greatly reduced. After the substrate was completely converted, the reaction was continued for 1.2 hours, and the styrene selectivity of the target product decreased only by 5%; and the reaction continued for 2.3 hours, the styrene selectivity of the target product did not decrease and remained stable at 87%.
  • MnS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of MnS and Pd@CaCO 3 catalyst is 15:1, and other reaction conditions are the same as those of Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 72%
  • the target product styrene selectivity (Y) is 99%
  • Figure 7 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that, compared with Comparative Example 1, the catalyst activity is significantly reduced, and the phenomenon of excessive hydrogenation is significantly reduced.
  • Ni 2 S 3 is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of Ni 2 S 3 and Pd@CaCO 3 catalyst is 170:1, and other reaction conditions are the same as Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 74%
  • the target product styrene selectivity (Y) is 99%
  • Figure 8 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 1, the catalyst activity is basically unchanged, and the phenomenon of excessive hydrogenation still exists, but compared with Comparative Example 1, it is improved.
  • WS 2 is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of WS 2 and Pd@CaCO 3 catalyst is 190:1, and other reaction conditions are the same as those of Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • Figure 9 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that, compared with Comparative Example 1, the catalyst activity is slightly decreased, but the phenomenon of excessive hydrogenation is significantly improved.
  • FeS 2 is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of FeS 2 and Pd@CaCO 3 catalyst is 152:1, and other reaction conditions are the same as those of Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • reaction time (t) is 5h
  • substrate phenylacetylene conversion rate (x) is 69%
  • target product styrene selectivity (Y) is 99%
  • Figure 10 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 1, the catalyst activity is somewhat decreased, but the phenomenon of excessive hydrogenation has been improved significantly. Within 6.5 hours after the complete conversion of the alkyne substrate, the target product The styrene selectivity is still stable at 92-93%.
  • MoS 2 is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of MoS 2 and Pd@CaCO 3 catalyst is 215:1, and other reaction conditions are the same as those of Comparative Example 1. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 67%
  • the target product styrene selectivity (Y) is 99%
  • Figure 11 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 1, the catalyst activity is slightly decreased, but the phenomenon of excessive hydrogenation is improved significantly. Within 3.5h after the complete conversion of alkyne, the product styrene is selected The sex is still stable at 88-89%.
  • PPS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of diphenyl acetylene.
  • the mass ratio of PPS and Pd@CaCO 3 catalyst is 0.6:1, and other reaction conditions are the same as Comparative Example 2. Under different reaction times, the sampling and analysis results are:
  • Figure 12 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 2, the catalyst activity is slightly decreased, but the phenomenon of excessive hydrogenation and isomerization are improved.
  • BaS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of 2-methyl-3-butyn-2-ol.
  • the mass ratio of BaS and Pd@CaCO 3 catalyst is 8:1, and other reaction conditions are the same as Comparative Example 3. Under different reaction times, the sampling and analysis results are:
  • the conversion rate (x) of the substrate 2-methyl-3-butyn-2-ol is 95%, and the target product 2-methyl-3-buten-2-ol is selected
  • the rate (Y) is 91%;
  • Figure 13 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 3, the catalyst activity is slightly decreased, but the excessive hydrogenation is greatly reduced; even if the alkynol is completely converted and the reaction continues for 2.5h, the enol is selected The rate is stable at 70-71%.
  • PPS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of 1,4-butyn-2-ol.
  • the mass ratio of PPS and Pd@CaCO 3 catalyst is 37:1, and other conditions are the same as Comparative Example 4.
  • the results of sampling and analysis at different reaction times are:
  • the substrate 1,4-butyn-2-ol conversion rate (x) is 87%
  • the enol product selectivity (Y) is 99%
  • the trans-enol content in the enol product is The rate (E/Z+E) is 4%;
  • Figure 14 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with the catalyst in Comparative Example 4, the catalyst activity is slightly decreased, but there is almost no over-hydrogenation. The selectivity of the enol product is completely in the acetylenic alcohol substrate. 7h after conversion, it is still higher than 95%, and the formation of trans-enol is also significantly inhibited.
  • PPS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of 1-heptyne.
  • the mass ratio of PPS and Pd@CaCO 3 catalyst is 40:1, and other reaction conditions are the same as Comparative Example 5. Under different reaction times, the sampling and analysis results are:
  • reaction time (t) is 5h
  • substrate 1-heptyne conversion rate (x) is 91%
  • target product 1-heptene selectivity (Y) is 98%
  • Figure 15 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 5, the catalyst activity is slightly decreased, but the excessive hydrogenation is greatly reduced. After the complete conversion of 1-heptyne, the reaction continues for 4 hours. The ene selectivity remained stable at 87%.
  • PPS is used as the solid phase modifier of Pd@C catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of PPS and Pd@C catalyst is 25:1, and other reaction conditions are the same as those in Comparative Example 6. Under different reaction times, the sampling and analysis results are:
  • reaction time (t) is 5h
  • substrate phenylacetylene conversion rate (x) is 92%
  • target product styrene selectivity (Y) is 97%
  • Figure 16 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that, compared with Comparative Example 6, the catalyst activity is reduced, but the over-hydrogenation is greatly reduced, and the olefin selectivity declines more moderately.
  • PPS is used as the solid phase modifier of Pd@C catalyst for the selective hydrogenation of diphenylacetylene.
  • the mass ratio of PPS and Pd@CaCO 3 catalyst is 25:1, and other conditions are the same as Comparative Example 7.
  • the sampling and analysis results for different reaction times are:
  • Figure 17 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 7, the catalyst activity is slightly decreased, but the phenomenon of excessive hydrogenation and isomerization are effectively improved.
  • PPS is used as the solid phase modifier of Pd@CaCO 3 catalyst for the selective hydrogenation of propynyl alcohol.
  • the mass ratio of PPS and Pd@CaCO 3 catalyst is 115:1, and other reaction conditions are the same as Comparative Example 8. Under different reaction times, the sampling and analysis results are:
  • Figure 18 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 8, the catalyst activity is slightly decreased, but there is almost no over-hydrogenation. The selectivity of the target product propenol is still 6h after the reaction is completely converted. Higher than 95%.
  • PPS is used as the solid phase modifier of Lindlar catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of PPS and Lindlar catalyst is 80:1, and other reaction conditions are the same as Comparative Example 9. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 77%
  • the target product styrene selectivity (Y) is 99%
  • Figure 19 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 9, the catalyst activity is slightly decreased, but the over-hydrogenation is improved, and the target product styrene selectivity decreases more moderately.
  • PPS is used as the solid phase modifier of the I1 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of PPS and I1 catalyst is 9:1, and other reaction conditions are the same as those of Comparative Example 10. Under different reaction times, the sampling and analysis results are:
  • reaction time (t) is 1h
  • substrate phenylacetylene conversion rate (x) is 92%
  • target product styrene selectivity (Y) is 98%
  • Figure 20 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that, compared with Comparative Example 10, the catalyst activity remains unchanged, but the over-hydrogenation is significantly improved, and the target product styrene selectivity decreases slowly.
  • ZnS is used as the solid phase modifier of the I1 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of ZnS to I1 catalyst is 1:1, and other reaction conditions are the same as those of Comparative Example 10. Under different reaction times, the sampling and analysis results are:
  • the substrate phenylacetylene conversion rate (x) is 85%
  • the target product styrene selectivity (Y) is 97%
  • Figure 21 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 10, the catalyst activity is almost unchanged, but the excessive hydrogenation is significantly improved. After the alkyne is completely converted, the reaction is continued for 2 hours, and the styrene selectivity is Still stable at 92%.
  • BaS is used as the solid phase modifier of the I1 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of BaS and I1 catalyst is 2.4:1, and other reaction conditions are the same as Comparative Example 10. Under different reaction times, the sampling and analysis results are:
  • reaction time (t) is 1h
  • substrate phenylacetylene conversion rate (x) is 89%
  • target product styrene selectivity (Y) is 97%
  • Figure 22 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 10, the catalyst activity is almost unchanged, but the over-hydrogenation is significantly improved. After the substrate alkyne is completely converted, the reaction continues for 3.5 hours. The product styrene selectivity remained stable at 89%.
  • MoS 2 is used as the solid phase modifier of the I1 catalyst for the selective hydrogenation of phenylacetylene.
  • the mass ratio of MoS 2 and I1 catalyst is 21:1, and other reaction conditions are the same as those of Comparative Example 10. Under different reaction times, the sampling and analysis results are:
  • reaction time (t) is 2h
  • substrate phenylacetylene conversion rate (x) is 93%
  • target product styrene selectivity (Y) is 98%
  • Figure 23 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 10, the catalyst activity is somewhat decreased, but excessive hydrogenation is greatly reduced, and the reaction is stable at 99% phenylacetylene conversion rate and target product styrene selection The rate is 86%.
  • PPS is used as the solid phase modifier of the I1 catalyst for the selective hydrogenation of diphenyl acetylene.
  • the mass ratio of PPS and I1 catalyst is 2:1, and other reaction conditions are the same as those of Comparative Example 11. Under different reaction times, the sampling and analysis results are:
  • Figure 24 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 11, the catalyst activity is slightly decreased, but the phenomenon of excessive hydrogenation and isomerization are greatly improved.
  • the target product olefin is selected The rate is stable at 93%, and the selectivity for trans olefin is stable at 2%.
  • ZnS is used as the solid phase modifier of the I1 catalyst for the selective hydrogenation of diphenylacetylene.
  • the mass ratio of ZnS to I1 catalyst is 4:1, and other reaction conditions are the same as those of Comparative Example 11. Under different reaction times, the sampling and analysis results are:
  • Figure 25 is a comparison diagram of reaction kinetics curves. It can be seen from the figure that compared with Comparative Example 11, the catalyst activity is basically the same in the early stage of the reaction, but the system is in equilibrium when the system reaches a high conversion rate. The substrate conversion rate and olefins The selectivity was stable at 96% and 91%, respectively.
  • MoS 2 is used as the solid phase modifier of the I1 catalyst for the selective hydrogenation of diphenyl acetylene.
  • the mass ratio of MoS 2 to I1 catalyst is 0.4:1, and other reaction conditions are the same as those of Comparative Example 11. Under different reaction times, the sampling and analysis results are:
  • Figure 26 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 11, the catalyst activity is basically the same, but excessive hydrogenation is greatly reduced. After the substrate diphenyl acetylene is completely converted, the decreasing trend of olefin selectivity slows down significantly.
  • PPS is used as the solid phase modifier of the I1 catalyst for the selective hydrogenation of 1-heptyne.
  • the mass ratio of PPS and I1 catalyst is 9:1, and other reaction conditions are the same as those of Comparative Example 12. Under different reaction times, the sampling and analysis results are:
  • the substrate 1-heptyne conversion rate (x) is 72%
  • the target olefin product 1-heptene selectivity (Y) is 99%
  • Figure 27 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that compared with Comparative Example 12, the catalyst activity did not decrease, and the target product 1-heptene selectivity declined very slowly, and the conversion of the substrate 1-heptyne was complete. After continuing the reaction for 6 hours, it only dropped by 5%.
  • reaction time (t) 3h
  • substrate phenylacetylene conversion rate (x) 72%
  • target product styrene selectivity (Y) 98%
  • Figure 28 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that the reaction results are not significantly different in catalyst activity compared with Comparative Examples 1 and 9, but the target product styrene selectivity declines very slowly; the reaction results are the same as Comparative Examples In comparison, the catalyst activity is similar, and the target product styrene selectivity is higher overall.
  • Figure 29 is a comparison diagram of reaction kinetic curves. It can be seen from the figure that the reaction results are compared with Comparative Examples 1 and 9, the catalyst activity is decreased, but the target product styrene selectivity is stable at 98%.
  • PPS is used as the solid phase modifier of the Pd@CaCO 3 catalyst for the selective hydrogenation of phenylacetylene for catalyst and solid phase modification Recycling and repeated application of the agent.
  • the mass ratio of PPS and Pd@CaCO 3 catalyst is 200:1, and the other reaction conditions are the same as Comparative Example 1.
  • the first catalyst reaction when the reaction time (t) is 3.9h, the substrate phenylacetylene conversion rate (x) is 95%, and the target product styrene selectivity (Y) is 99%;
  • the second catalyst reaction reaction time When (t) is 3.4h, the substrate phenylacetylene conversion (x) is 98%, and the target product styrene selectivity (Y) is 96%;
  • the third catalyst reaction when the reaction time (t) is 3h, the bottom The conversion rate of phenylacetylene (x) is 99%, and the selectivity of target styrene (Y) is 95%;
  • the fourth catalyst reaction when the reaction time (t) is 3h, the conversion rate of substrate phenylacetylene (x) is 99%, the target product styrene selectivity (Y) is 90%;
  • the fifth catalyst reaction the reaction time (t) is 4h, the substrate phenylacetylene conversion (x) is 98%, the target product st
  • the sixth catalyst reaction when the reaction time (t) is 4h, the substrate phenylacetylene conversion rate (x) is 99%, the target product styrene selectivity (Y) is 91%;
  • the seventh catalyst reaction the reaction time ( When t) is 3.8h, the substrate phenylacetylene conversion (x) is 99%, and the target product styrene selectivity (Y) is 90%;
  • the 8th catalyst reaction when the reaction time (t) is 4.1h, the bottom The conversion rate (x) of the substrate phenylacetylene is 99%, and the selectivity (Y) of the target product styrene is 91%;
  • the reaction time (t) is 4h for the 9th catalyst reaction, the conversion rate (x) of the substrate phenylacetylene is 97%, the target product styrene selectivity (Y) is 92%;
  • the 10th catalyst reaction the reaction time (t) is 4h, the substrate phenylacetylene conversion rate (x)
  • Figure 30 is a comparison diagram of repeated reaction kinetic curves. From the figure, the results show that the catalyst and solid phase modifier of the present invention can be repeatedly applied multiple times, and the substrate phenylacetylene conversion rate (x) is reached in each reaction.
  • the reaction time required for higher than 95% is basically unchanged, indicating that the catalyst activity has not been reduced, and the loss rate of palladium active components is extremely low.
  • the styrene selectivity is maintained above 90%, indicating that PPS as a solid phase modifier, its effect remains very good in repeated application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种利用固相改性剂改性的加氢催化剂及其应用,加氢催化剂为负载化钯催化剂和固相改性剂的混合物,或为以固相改性剂为载体负载的金属钯材料;当加氢催化剂为负载化钯催化剂和固相改性剂的混合物时,固相改性剂与负载化钯催化剂的质量比为0.1~500:1;当加氢催化剂为以固相改性剂为载体负载的金属钯材料时,金属钯的负载量为0.1~20wt%;固相改性剂为聚苯硫醚或金属硫化物,金属硫化物为硫化银、硫化钡、硫化镉、硫化铈、硫化亚铁、二硫化亚铁、硫化锂、硫化钠、硫化镍、硫化锰、硫化钼、硫化硒、硫化钨、硫化锌、硫化铜、硫化钛中的至少一种。本发明的加氢催化剂在炔烃选择性加氢反应中有高催化活性,能够有效提高对目标烯烃产物的催化选择性。

Description

一种利用固相改性剂改性的加氢催化剂及其应用 技术领域
本发明涉及一种利用固相改性剂改性的加氢催化剂及其应用。
背景技术
炔烃的选择催化加氢(或称为半加氢)制备相应烯烃是一种重要的化学转化反应,广泛地应用于精细化工中烯烃的合成,以及用于石油化工聚合物工业中单体(例如乙烯、丙烯、苯乙烯等)的脱炔精制以除去痕量的炔烃杂质。目前,基于不同过渡金属的纳米催化剂已被广泛报道用于炔烃的选择加氢。其中,负载在各种载体上的钯纳米颗粒(尺寸大约10nm)催化剂,是最常用的催化剂,具有很高的活性和良好的选择性。1952年开发的经典Lindlar催化剂(用铅或喹啉改性的负载在碳酸钙载体上的钯纳米催化剂)是行业中最典型的钯纳米催化剂,至今在工业上仍被广泛地使用。
高活性和高选择性是炔烃选择加氢催化剂设计中的重要的因素。在保持高催化剂活性的条件下,抑制或避免烯烃产物的过度加氢生成烷烃或烯烃产物的异构化生成其他异构体,从而得到期望烯烃产物的高选择性至关重要。然而,避免过度氢化是极有困难的,尤其是在很高炔烃反应物转化率(例如,>99%)的情况下。当炔烃转化率接近或达到100%后,时常可以观察到目标烯烃产物的选择性显著下降,这在末端炔烃的选择加氢反应中尤为严重,因为末端炔烃往往比内部炔烃具有更高的反应活性。目前,为了提高催化剂的选择性,最常用的策略有两种。一种策略是用另一种合金金属(例如在Lindlar催化剂中用的是Pb;以及用于制备合金催化剂的许多其它金属)来改性Pd纳米催化剂。另一种策略是采用含有配位杂原子(如N、S、P)的可溶有机小分子改性剂(或称为配体)来修饰Pd纳米催化剂。这些含有配位杂原子的改性剂可以同Pd纳米颗粒表面的活性中心进行可逆配位结合。由于其配位能力通常介于炔烃和烯烃之间(低于炔烃但高于烯烃的配位能力),它们的表面结合能够有效地抑制或者阻止烯烃吸附,降低/避免过度加氢,从而显著地提高催化剂对目标烯烃的选择性。
迄今为止,许多小分子有机改性剂已被报道,用于改善钯纳米催化剂在炔烃选择加氢中选择性。其中,在Lindlar催化剂中用的喹啉是最典型的例子。其他的含氮改性物还包括吡啶衍生物和联吡啶衍生物。除了这些之外,一些含硫有机物也被用做非均相Pd纳米催化剂的有效改性剂。含硫化合物往往是钯催化活性中心的很强的毒化剂,可以极大地影响催化活性中心的电子性质,从而改变加氢行为。反应中用少量含硫化合物往往会极大地改变催化剂的性能,甚至抑制催化活性中心的活性。Mori等发现,即使在极高的钯用量下,加相对于炔烃底物0.01当量的Ph 2S 2或PhSH也会使反应终止(参考文献Mori,A.;Miyakawa,Y.;Ohashi,E.;Haga,T.;Maegawa,T.;Sajik,H.Org. Lett.2006,8,3279-3281)。Yusuke等使用二甲基亚砜(DMSO)作为Pd/SiO 2催化剂体系的有机改性剂,大大提高了几种内部和末端炔烃的加氢选择性(参考文献Yusuke,T.;Norifumi,H.;Takayoshi,H.;Shogo,S.;Takato,M.;Tomoo,M.;Koichiro,J.;Kiyotomi,K.Chem.Lett.2011,40,405-407)。Shen等使用3,6-二硫杂-1,8-辛二醇作为有机改性剂,用于提高PdZn/CN@ZnO催化剂对2-甲基-3-丁炔-2-醇的半加氢选择性,结果发现在99%的转化率下实现了96%的选择性(Shen,L.;Mao,S.;Li,J.;Li,M.;Chen,P.;Li,H.;Chen,Z.;Wang,Y.J Catal.2017,350,13-20)。他们还认为用极少量的含硫改性剂就可以提高钯催化剂的选择性。
虽然这些可溶性小分子改性剂能有效地提高催化剂的选择性,但是它们的使用也对实际应用带来了严重的问题。首先,这些有毒性的有机改性剂经常是过量使用的(例如,喹啉和吡啶的摩尔用量往往是钯的几十到几百倍),导致其在反应产物中大量残留,污染产品,降低产品的品质。要把它们从反应产物中彻底清除(在维生素等营养产品的合成中尤其如此),会增加高昂的额外成本。其次,它们与钯催化剂活性中心的可逆结合也给催化剂回收和再利用带来了困难。因为很容易从非均相催化剂表面解吸,这些可溶性改性剂对钯纳米催化剂的永久性改性是不可能的,这对实际应用中所需要的催化剂回收和再利用是不理想的。因此,为实现对回收的催化剂再利用,必须加入新剂量的改性剂对催化剂进行重新改性,这在实际应用中是不便利的。
除小分子改性剂外,含有配位原子(S和N)的大分子改性剂也有被用来改善钯纳米催化剂的选择性能。Studer等制备了包覆有丙烯酸酯聚合物的钯纳米催化剂,其中该聚合物含有分别作为改性剂和稳定剂的硫醚和二甲氨基官能团(参考文献
Figure PCTCN2020093830-appb-000001
F.;Wang,X.;Nüsse,H.;Klingauf,J.;Studer,A.Chem.Eur.J.2017,23,6014-6018)。胺类树枝状大分子和聚乙烯亚胺(PEI)近年也被用做炔烃选择加氢钯纳米催化剂的大分子改性剂(参考文献Mizugaki,T.;Murata,M.;Fukubayashi,S.;Mitsudome,T.;Jitsukawa,K.;Kaneda,K.Chem.Commun.2008,241-243;Sajiki,H.;Mori,S.;Ohkubo,T.;Ikawa,T.;Kume,A.;Maegawa,T.;Monguchi,Y.Chem.Eur.J.2008,14,5109-5111)。然而,这样的大分子改性剂也会溶解和浸出到反应溶液中。针对这一问题,PEI-二氧化硅复合负载型钯纳米催化剂被进一步设计用于炔烃的选择性加氢(参考文献Kuwahara,Y.;Kango,H.;Yamashita,H.ACS Catal.2019,9,1993-2006)。其中,PEI被共价健固定在二氧化硅上来充当大分子改性剂,与烯烃竞争钯表面活性位点,以抑制烯烃的过度加氢。尽管PEI-二氧化硅复合负载型钯纳米催化剂在对二苯乙炔作为代表的内部炔烃的半加氢反应中能够显著地抑制过度加氢,但它在末端炔烃苯乙炔的选择加氢反应中的作用仍然相当受限。在苯乙炔完全转化之前,甚至可观察到严重的过度加氢发生。此外,这类催化剂的稳定性和可重复利用性能方面也尚未得到证实,而这恰恰对商业应用是至关重要的。另外,这种催化剂的多步合成步骤也使得它在潜在商业应用中变得复杂化。
因此亟需设计出一种用新型改性剂改性的炔烃选择性加氢催化剂,该新型改性剂需在炔烃选择性加氢反应的体系中不溶或只有极低的溶解度,以使该改性剂及负载化催化剂易于从反应体系中分离出来,以避免污染反应产物,其次该新型改性剂能较好地抑制过度加氢反应和其他副反应的发生,提高目标烯烃产物的产率,特别是在炔烃底物的转化率接近或达到100%后;为了降低该新型的改性催化剂的成本,该改性催化剂也需要能够多次重复套用。
发明内容
针对现有技术存在的上述技术问题,本发明的目的在于提供一种利用固相改性剂改性的加氢催化剂及其应用,该固相改性剂在炔烃加氢反应的体系中基本不溶或仅有极低的溶解度,且其能非常有效地改善钯催化剂对炔烃的选择加氢的催化性能,使催化剂保持高催化活性的同时,能够有效提高催化剂对目标烯烃产物的选择性。
所述的一种利用固相改性剂改性的加氢催化剂,其特征在于:所述加氢催化剂为负载化钯催化剂和固相改性剂的混合物,或者为直接以固相改性剂为载体负载的金属钯材料;当所述加氢催化剂为负载化钯催化剂和固相改性剂的混合物时,所述固相改性剂与负载化钯催化剂的质量比为0.1~500:1;当所述加氢催化剂为以固相改性剂为载体负载的金属钯材料时,金属钯的质量负载量为0.1~20%。
所述金属硫化物为硫化银(Ag 2S)、硫化钡(BaS)、硫化镉(CdS)、硫化铈(Ce 2S 3)、硫化亚铁(FeS)、二硫化亚铁(FeS 2)、硫化锂(Li 2S)、硫化钠(Na 2S)、硫化镍(Ni 2S 3)、硫化锰(MnS)、硫化钼(MoS 2)、硫化硒(SeS 2)、硫化钨(WS 2)、硫化锌(ZnS)、硫化铜(CuS)、硫化钛(TiS 2)等中的至少一种。
所述的一种利用固相改性剂改性的加氢催化剂,其特征在于:所述负载化钯催化剂包括催化剂载体和负载于催化剂载体上的金属活性组分钯,金属活性组分钯在催化剂载体上的负载量为0.1~30wt%。
所述的一种利用固相改性剂改性的加氢催化剂,其特征在于:所述金属活性组分钯在催化剂载体上的负载量为0.5~20wt%。
所述的一种利用固相改性剂改性的加氢催化剂,其特征在于:所述催化剂载体为无机载体或有机载体,所述无机载体为CaCO 3、BaSO 4、活性碳、硅藻土和金属氧化物中的至少一种;进一步地,所述无机载体为CaCO 3、BaSO 4、活性碳、SiO 2、Al 2O 3、ZnO、TiO 2、硅藻土中至少一种。
所述的加氢催化剂在催化炔烃选择性加氢制烯烃反应中的应用。
所述的加氢催化剂在催化炔烃选择性加氢制烯烃反应中的应用,其特征在于所述炔烃可以是苯乙炔、乙炔、丙炔、甲基丁炔醇、去氢芳樟醇、去氢橙花叔醇、去氢异植物醇、1-乙炔基环己烯、1-庚炔、4-苯基-1-丁炔、二苯基乙炔、1,4-丁炔二醇、1-苯基-1-丙炔、4-辛炔中的任意一种。
相对于现有技术,本发明取得的有益效果是:
本发明的用固相改性剂改性的炔烃选择性加氢催化剂简单易得,无需特殊的方法进行制备。该固相改性剂在炔烃加氢反应的体系中基本不溶或仅有极低的溶解度,反应结束后,可仅仅通过简单的过滤、沉淀或离心分离把该固相改性剂连同负载催化剂从反应溶液体系中分离出来,不但避免造成对目标烯烃产物的毒性残留,还有利于催化剂的重复套用,降低使用成本。其次,本发明的改性催化剂应用于催化炔烃选择性加氢制烯烃的非均相反应体系中时,在催化剂的多次循环套用中一直保持优异的催化活性和目标烯烃产物的高选择性。
本发明的改性催化剂可采用现有技术制备的常规的负载化钯催化剂和本发明设计的固相改性剂,进行混合使用。本发明的固相改性剂为聚苯硫醚或金属硫化物,金属硫化物为硫化银(Ag 2S)、硫化钡(BaS)、硫化镉(CdS)、硫化铈(Ce 2S 3)、硫化亚铁(FeS)、二硫化亚铁(FeS 2)、硫化锂(Li 2S)、硫化钠(Na 2S)、硫化镍(Ni 2S 3)、硫化锰(MnS)、硫化钼(MoS 2)、硫化硒(SeS 2)、硫化钨(WS 2)、硫化锌(ZnS)、硫化铜(CuS)、硫化钛(TiS 2)等等。聚苯硫醚和这些金属硫化物尽管具有固相性质,但是它们与含硫小分子配体一样,固相中的硫原子仍可以对钯活性中心产生作用,从而通过限制过度加氢来提高对目标烯烃产物的选择性。同时,由于聚苯硫醚和这些金属硫化物在通常的液相炔烃选择加氢条件下(加氢反应温度往往远低于200℃)在反应体系中完全不溶或溶解度极低,因此加氢反应结束后,它们可仅仅通过简单的过滤、沉淀或离心分离的方式从反应溶液体系中分离出来,便于回收和再利用,同时不会污染目标烯烃产品。
本发明的改性催化剂也可采用:固相改性剂(聚苯硫醚或上述金属硫化物)为载体负载的活性金属钯材料。本发明通过实验验证了:用固相改性剂负载的活性金属钯材料,对催化炔烃选择性加氢制烯烃的反应有较高的催化活性,而且其不溶于反应溶液体系,反应结束后有利于从反应溶液体系中分离出来。由于本发明的固相改性剂中的S元素是以共价键或偏向于离子键的形式存在,在氢气环境中进行催化选择性加氢反应时,基本不会生成离子进入到反应溶液体系中去,因此基本不会残留在反应溶液体系中。
当本发明的改性催化剂,采用现有技术制备的常规钯催化剂和本发明设计的固相改性剂进行混合使用时,并应用于炔烃的液相选择加氢时(炔烃底物溶解于液态溶剂中或不加溶剂直接用液态炔烃底物,在氢气压力下反应),这些固相改性剂以粉末的方式可以先同钯催化剂预先按比例混合后,然后加入反应器中催化加氢反应;这些固相改性剂粉末与钯催化剂也可以分别加入到反应器中,在反应器中临时混合进行反应。炔烃底物可以是末端炔烃(如苯乙炔、乙炔、丙炔、甲基丁炔醇、去氢橙花叔醇、去氢异植物醇、去氢芳樟醇、1-乙炔基环己烯、1-庚炔、4-苯基-1-丁炔等等)和内部炔烃(二苯基乙炔、1,4-丁炔二醇、1-苯基-1-丙炔、4-辛炔等等)。
当本发明的改性催化剂,采用现有技术制备的常规钯催化剂和本发明设计的固相改性剂进行混合使用时,所述钯催化剂可以是钯纳米颗粒负载在无机或有机不溶载体(如CaCO 3、BaSO 4、SiO 2、Al 2O 3、ZnO、活性炭、TiO 2、硅藻土中至少一种)上的异相催化剂,也可是用胶束或可溶聚合物稳定的钯纳米颗粒的类均相催化剂(譬如含季铵根离子的超支化聚乙烯离子聚合物稳定的钯纳米催化剂,其制备方法参考文献Xiang,P.;PhD Thesis,Synthesis and characterization of novel ethylene copolymers by palladium-diimine catalysts)。
本发明的加氢催化剂,也可用于气相炔烃选择加氢反应。当用于气相炔烃选择加氢时,底物为气相炔烃,如乙炔和丙炔。
附图说明
图1为实施例1的反应动力学曲线及与对比例1的比较图;图2为实施例2的反应动力学曲线及同对比例1的比较图;图3为实施例3的反应动力学曲线及与对比例1的比较图;图4为实施例4的反应动力学曲线及同对比例1的比较图;图5为实施例5的反应动力学曲线及与对比例1的比较图;图6为实施例6的反应动力学曲线及同对比例1的比较图;图7为实施例7的反应动力学曲线及与对比例1的比较图;图8为实施例8的反应动力学曲线及同对比例1的比较图;图9为实施例9的反应动力学曲线及与对比例1的比较图;图10为实施例10的反应动力学曲线及同对比例1的比较图;图11为实施例11的反应动力学曲线及与对比例1的比较图;图12为实施例12的反应动力学曲线及同对比例2的比较图;图13为实施例13的反应动力学曲线及与对比例3的比较图;图14为实施例14的反应动力学曲线及同对比例4的比较图;图15为实施例15的反应动力学曲线及与对比例5的比较图;图16为实施例16的反应动力学曲线及同对比例6的比较图;图17为实施例17的反应动力学曲线及与对比例7的比较图;图18为实施例18的反应动力学曲线及与对比例8的比较图;图19为实施例19的反应动力学曲线及同对比例9的比较图;图20为实施例20的反应动力学曲线及与对比例10的比较图;图21为实施例21的反应动力学曲线及与对比例10的比较图;图22为实施例22的反应动力学曲线及与对比例10的比较图;图23为实施例23的反应动力学曲线及与对比例10的比较图;图24为实施例24的反应动力学曲线及与对比例11的比较图;图25为实施例25的反应动力学曲线及与对比例11的比较图;图26为实施例26的反应动力学曲线及与对比例11的比较图;图27为实施例27的反应动力学曲线及与对比例12的比较图;图28为实施例28的反应动力学曲线及与对比例1和9的比较图;图29为实施例29的反应动力学曲线及与对比例1和9的比较图;图30为实施例30重复反应动力学曲线及同对比例1的比较图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
催化剂的预先制备:
商业化的碳酸钙负载的金属钯催化剂,简称为Pd@CaCO 3催化剂(钯负载量为5wt%);购自于西格玛奥德里奇(Sigma Aldrich)试剂网。商业化的活性碳负载的金属钯催化剂,简称为Pd@C催化剂(钯负载量为10wt%);购自于西格玛奥德里奇(Sigma Aldrich)试剂网。商业化的碳酸钙负载的用醋酸铅毒化的Lindlar金属钯催化剂,简称为Lindlar催化剂(钯负载量为5wt%);购自于西格玛奥德里奇(Sigma Aldrich)试剂网。用含季铵根离子的超支化聚乙烯离子聚合物稳定的钯纳米金属催化剂(其制备方法参考文献Xiang,P.;PhD Thesis,Synthesis and characterization of novel ethylene copolymers by palladium-diimine catalysts),简称为I1催化剂(钯负载量为0.94wt%)。
以下为其制备的具体步骤:在50mL的干燥过的反应瓶中,通入乙烯气体,保持1atm压力的持续供气,再依次注入离子液体共聚单体(CH 2=CHC(O)O-CH 2CH 2N(CH 3) 3BF 4)的丙酮溶液(0.74g/5mL)和二亚胺钯催化剂{[(ArN=C(Me)-(Me)C=NAr)Pd(CH 3)(N°CMe)] +SbF 6 -,Ar=2,6-(iPr) 2C 6H 3}d的丙酮溶液(0.08g/5mL),开始聚合反应。常温反应24小时后,停止供乙烯,并注入少量的三乙基硅烷的四氢呋喃溶液(0.1mL/15mL),继续搅拌1小时。产物浓缩后,用甲醇沉淀;继续用少量四氢呋喃溶解,再次用甲醇沉淀,重复4次;经过60℃真空干燥得到最终的超支化聚乙烯离子聚合物稳定的钯纳米金属催化剂(I1)。
聚苯硫醚(PPS)为载体负载的钯纳米金属催化剂,简称为Pd@PPS催化剂(钯负载量为2.2wt%)。其制备方法按以下步骤进行:在一个25mL的干燥玻璃瓶中,加入100mg PPS粉末,干燥玻璃瓶内的空气用氮气置换排尽后,加入14mL无水四氢呋喃(THF),常温下以500rpm的速率搅拌10min后,在氮气保护气氛下加入含0.0245mmol醋酸钯的THF溶液1mL,搅拌均匀后,加入1mL含0.25mmol三乙基硅烷的THF溶液,进行钯的还原反应。继续搅拌10h后,静置分离出上清液,下层沉淀物用干净的THF洗涤3次后,过滤,并真空干燥得到Pd@PPS催化剂。
ZnS为载体负载的钯纳米金属催化剂,简称为Pd@ZnS催化剂(钯负载量为3.2wt%)。其制备方法如下:在一个100mL的干燥玻璃烧瓶中,加入50mL无水甲醇及92mgZnS粉末。搅拌中,加入含0.1mmolNa 2PdCl 4的甲醇溶液10mL。反应过夜后,静置分离出上清液,下层沉淀物用甲醇重复洗涤4次,过滤除甲醇,真空干燥得到Pd@ZnS催化剂。
上述的Pd@CaCO 3催化剂、Pd@C催化剂、Lindlar催化剂、I1催化剂、Pd@PPS催化剂和Pd@ZnS催化剂,分别用于以下对比例和实施例的炔烃选择性加氢制烯烃的反应中。
对比例1:
用Pd@CaCO 3催化剂进行苯乙炔的选择加氢。反应条件如下:浓度为0.5mol/L的苯乙炔的正己烷溶液作为反应溶液,催化剂中的Pd与苯乙炔的摩尔比为4:10000。将反应溶液和Pd@CaCO 3催化 剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在反应温度为25℃且1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间t=1.7h时,底物苯乙炔转化率(x)为95%,目标产物苯乙烯选择率(Y)为97%;
反应时间t=2h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=88%;
反应时间t=3.2h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=47%;
反应时间t=4.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=27%;
炔烃接近完全转化时,目标产物苯乙烯选择率明显下降;底物炔烃完全转化后,继续延长反应时间,苯乙烯选择率急剧下降,说明严重过度加氢。Pd@CaCO 3催化剂无法抑制过度加氢。
对比例2:
用Pd@CaCO 3催化剂进行二苯基乙炔的选择加氢。反应条件如下:浓度为0.5mol/L的二苯基乙炔的正己烷溶液作为反应溶液,催化剂中的Pd与二苯基乙炔的摩尔比为4:10000。将反应溶液和Pd@CaCO 3催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在温度为25℃且1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间(t)为0.82h时,底物二苯基乙炔转化率(x)为81%,烯烃产物选择率(Y)为91%,烯烃产物中反式烯烃分率(E/Z+E)为2%;
反应时间t=1h时,底物二苯基乙炔转化率x=96%,烯烃产物选择率Y=88%,烯烃产物中反式烯烃分率(E/Z+E)=2%;
反应时间t=1.35h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=80%,烯烃产物中反式烯烃分率(E/Z+E)=3%;
反应时间t=2h,底物二苯基乙炔转化率x>99.9%,烯烃产物选择率Y=63%,烯烃产物中反式烯烃分率(E/Z+E)=5%;
反应时间t=4h时,底物二苯基乙炔转化率x>99.9%,烯烃产物选择率Y=40%,烯烃产物中反式烯烃分率(E/Z+E)=5%。
底物炔烃完全转化后,继续延长反应时间,烯烃产物选择率急剧下降,同时反式烯烃分率略微增加,说明存在严重过度加氢生成烷烃。
对比例3
用Pd@CaCO 3催化剂进行2-甲基-3-丁炔-2-醇的选择加氢。反应条件如下:无溶剂,催化剂中的Pd与2-甲基-3-丁炔-2-醇的摩尔比为2:1000。将反应溶液和Pd@CaCO 3催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在反应温度为25℃且1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间(t)为2.5h时,底物2-甲基-3-丁炔-2-醇转化率(x)为90%,烯烃产物2-甲基-3-丁烯-2-醇选择率(Y)为86%;
反应时间t=3h时,底物2-甲基-3-丁炔-2-醇转化率x>99.9%(完全转化),烯烃产物2-甲基-3-丁烯-2-醇选择率Y=67%;
反应时间t=3.5h时,底物2-甲基-3-丁炔-2-醇转化率x>99.9%(完全转化),烯烃产物2-甲基-3-丁烯-2-醇选择率Y=46%;
反应时间t=4.5h时,底物2-甲基-3-丁炔-2-醇转化率x>99.9%(完全转化),烯烃产物2-甲基-3-丁烯-2-醇选择率Y<1%;
炔醇接近完全转化时,烯烃产物选择率明显下降;炔醇底物完全转化后,继续延长反应时间1.5小时,几乎得不到目标产物烯醇,说明Pd@CaCO 3催化剂对该底物有严重过度加氢现象。
对比例4
用Pd@CaCO 3催化剂进行1,4-丁炔-2-醇的选择加氢。反应条件如下:浓度为0.5mol/L的1,4-丁炔-2-醇的乙醇溶液作为反应溶液,催化剂中的Pd与1,4-丁炔-2-醇的摩尔比为4:10000。将反应溶液和Pd@CaCO 3催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在温度为70℃,1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间(t)为8.5h时,底物1,4-丁炔-2-醇转化率x为75%,烯醇产物选择率(Y)为99.9%,烯醇产物中反式烯醇分率(E/Z+E)为4%;
反应时间t=10h时,底物转化率x>99.9%(完全转化),烯醇产物选择率Y=99.9%,烯醇产物中反式烯醇分率(E/Z+E)=3%;
反应时间t=12h时,底物转化率x>99.9%,烯醇产物选择率Y=93%,烯醇产物中反式烯醇分率(E/Z+E)=42%;
反应时间t=15h时,底物转化率x>99.9%,烯醇产物选择率Y=15%,烯醇产物中反式烯醇分率(E/Z+E)=97%;
底物炔醇达到完全转化后,烯醇产物选择率开始下降,并且下降速度明显;比如完全转化后5小时,烯醇产物选择率减少了85%,同时烯醇产物中反式烯醇分率上升很快,说明Pd@CaCO 3催化剂对该底物有过度加氢现象。
对比例5
用Pd@CaCO 3催化剂进行1-庚炔的选择加氢。反应条件如下:浓度为0.5mol/L的1-庚炔的四氢呋喃溶液作为反应溶液,催化剂中的Pd与1-庚炔的摩尔比为4:10000。将反应溶液和Pd@CaCO 3催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在反应温度为25℃且1个大气 压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间t=3h时,底物1-庚炔转化率(x)为86%,目标烯烃产物1-庚烯选择率(Y)为99%;
反应时间t=4h时,底物1-庚炔转化率x>99.9%(完全转化),烯烃产物1-庚烯选择率Y=22%;
反应时间t=5h时,底物1-庚炔转化率x>99.9%(完全转化),烯烃产物1-庚烯选择率Y=10%。
炔烃即将达到完全转化后,目标烯烃产物选择率难以控制,在底物完全转化后目标烯烃产物选择率有明显的下降趋势,说明Pd@CaCO 3催化剂对该底物有严重过度加氢现象。
对比例6
用Pd@C催化剂进行苯乙炔的选择加氢。反应条件如下:反应条件如下:浓度为0.5mol/L的苯乙炔的正己烷溶液作为反应溶液,催化剂中的Pd与苯乙炔的摩尔比为4:10000。将反应溶液和Pd@C催化剂一并加入到高压反应釜中,用氢气将高压反应釜内的空气置换排尽后,在反应温度为25℃且1个大气压的氢气压力下进行反应。不同反应时间的取样分析结果为:
反应时间t=1.5h时,底物苯乙炔转化率(x)为56%,目标产物苯乙烯选择率(Y)为91%;
反应时间t=3h时,底物苯乙炔转化率x=95%,目标产物苯乙烯选择率Y=89%;
反应时间t=4h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=79%;
反应时间t=5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=72%。
底物炔烃反应中期,目标产物苯乙烯选择性不高;接近完全转化时,目标产物苯乙烯选择率不到90%;完全转化后,继续延长时间,目标产物苯乙烯选择率持续下降。
对比例7
用Pd@C催化剂进行二苯基乙炔的选择加氢。反应条件如下:浓度为0.5mol/L的二苯基乙炔的正己烷溶液作为反应溶液,催化剂中的Pd与二苯基乙炔的摩尔比为4:10000。将反应溶液和Pd@C催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在反应温度为25℃且1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间t=1h时,底物二苯基乙炔转化率(x)为75%,烯烃产物选择率(Y)为93%,烯烃产物中反式烯烃分率(E/Z+E)为3%;
反应时间t=1.5h时,底物二苯基乙炔转化率x=96%,烯烃产物选择率Y=87%,烯烃产物中反式烯烃分率(E/Z+E)=3%;
反应时间t=2h时,底物二苯基乙炔转化率x>99.9%,烯烃产物选择率Y=66%,烯烃产物中反式烯烃分率(E/Z+E)=8%;
反应时间t=4.5h时,底物二苯基乙炔转化率x>99.9%,烯烃产物选择率Y=12%,烯烃产物中反式烯烃分率(E/Z+E)=27%。
炔烃在接近完全转化时,过度加氢情况非常明显,仅半小时,烯烃产物选择性下降约20%;继续延长时间,烯烃产物选择率急剧下降,同时烯烃产物中反式烯烃分率增加快速。
对比例8
用Pd@C催化剂进行丙炔醇的选择加氢。反应条件如下:浓度为0.5mol/L的丙炔醇的乙醇溶液作为反应溶液,催化剂中的Pd与丙炔醇的摩尔比为4:10000。将反应溶液和Pd@C催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在反应温度为70℃且1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间(t)为2h时,底物丙炔醇转化率(x)为33%,目标产物丙烯醇选择率(Y)为84%;
反应时间t=4h时,底物丙炔醇转化率x>99.9%(完全转化),目标产物丙烯醇选择率Y=70%;
反应时间t=4.5h时,底物丙炔醇转化率x>99.9%(完全转化),目标产物丙烯醇选择率Y=10%。
底物丙炔醇在完全转化前以及完全转化后,目标产物丙烯醇选择率下降明显,说明严重过度加氢。Pd@C催化剂无法抑制过度加氢。
对比例9
用Lindlar催化剂进行苯乙炔的选择加氢。反应条件如下:反应条件如下:浓度为0.5mol/L的苯乙炔的正己烷溶液作为反应溶液,催化剂中的Pd与苯乙炔的摩尔比为4:10000。将反应溶液和Lindlar催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在反应温度为25℃且1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间t=1.5h时,底物苯乙炔转化率(x)为64%,目标产物苯乙烯选择率(Y)为98%;
反应时间t=2.5h时,底物苯乙炔转化率x=95%,目标产物苯乙烯选择率Y=97%;
反应时间t=3h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=90%;
反应时间t=5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=64%。
炔烃转化率95%之前,产物苯乙烯选择性>95%;但达到完全转化时,产物苯乙烯选择率开始下降;之后,产物苯乙烯选择持续下降。Lindlar催化剂也不能有效地抑制过度加氢。
对比例10
用I1催化剂进行苯乙炔的选择加氢。反应条件如下:浓度为0.1mol/L的苯乙炔的正己烷溶液作为反应溶液,催化剂中的Pd与苯乙炔的摩尔比为4:10000。将反应溶液和I1催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在反应温度为25℃且1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间t=1h时,底物苯乙炔转化率(x)为66%,目标产物苯乙烯选择率(Y)为98%
反应时间t=1.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=97%;
反应时间t=2h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=74%;
反应时间t=3.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=42%。
直至底物炔烃完全转化后,目标产物苯乙烯选择率开始下降;继续延长反应时间,苯乙烯选择率急剧下降,说明严重过度加氢。I1催化剂无法拟制过度加氢反应。
对比例11
用I1催化剂进行二苯基乙炔的选择加氢。反应条件如下:浓度为0.1mol/L的二苯基乙炔的正己烷溶液作为反应溶液,催化剂中的Pd与二苯基乙炔的摩尔比为4:10000。将反应溶液和I1催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在反应温度为25℃且1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间t=0.33h时,底物二苯基乙炔转化率(x)为30%,烯烃产物选择率(Y)为95%,烯烃产物中反式烯烃分率(E/Z+E)为3%;
反应时间t=0.83h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=87%,烯烃产物中反式烯烃分率(E/Z+E)=3%;
反应时间t=2h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=56%,烯烃产物中反式烯烃分率(E/Z+E)=2%;
反应时间t=5h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=14%,烯烃产物中反式烯烃分率(E/Z+E)=2%。
炔烃完全转化后,继续延长时间,烯烃产物选择率急剧下降,说明过度加氢显著。
对比例12
用I1催化剂进行1-庚炔的选择加氢。反应条件如下:浓度为0.1mol/L的1-庚炔的四氢呋喃溶液作为反应溶液,催化剂中的Pd与1-庚炔的摩尔比为4:10000。将反应溶液和I1催化剂一并加入到反应器中,用氢气将反应器内的空气置换排尽后,在反应温度为25℃且1个大气压的氢气压力下进行反应。不同反应时间下,取样分析结果为:
反应时间t=1.5h时,底物1-庚炔转化率(x)为85%,目标产物1-庚烯选择率(Y)为99%;
反应时间t=2.5h时,1-庚炔转化率x>99.9%(完全转化),目标产物1-庚烯选择率Y=88%;
反应时间t=4h时,底物1-庚炔转化率x>99.9%(完全转化),目标产物1-庚烯选择率Y=73%。
底物炔烃完全转化后,目标产物烯烃选择率有较明显的下降趋势,说明I1催化剂对该底物加氢不能有很好的控制。
实施例1
以PPS做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中PPS和Pd@CaCO 3催 化剂的质量比为200:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间t=3.9h时,底物苯乙炔转化率(x)为95%,目标产物苯乙烯选择率(Y)为99%;
反应时间t=4.3h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=98%;
反应时间t=5.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=87%;
反应时间t=7h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=79%。
图1为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性有些下降,但过度加氢大大降低。底物完全转化后,目标产物苯乙烯选择率下降趋势显著变缓。
实施例2
以CdS做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中CdS和Pd@CaCO 3催化剂的质量比为40:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间t=1.5h时,底物苯乙炔转化率(x)为76%,目标产物苯乙烯选择率(Y)为99.4%;
反应时间t=2h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=98%;
反应时间t=3.6h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=87%;
反应时间t=5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=87%;
图2为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性变化很少,但过度加氢大大降低。即使在底物完全转化后的3h内,目标产物苯乙烯选择率能稳定在87%。
实施例3
以ZnS做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中ZnS和Pd@CaCO 3催化剂的质量比为100:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间t=3.5h时,底物苯乙炔转化率(x)为72%,目标产物苯乙烯选择率(Y)为99.9%;
反应时间t=5.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=96%;
反应时间t=7h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=96%;
反应时间t=8.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=96%。
图3为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性有些下降,但过度加氢大大降低。底物完全转化后3h内,目标产物苯乙烯选择率稳定在96%。
实施例4
以BaS做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中BaS和Pd@CaCO 3催化剂的质量比为40:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间t=2.3h时,底物苯乙炔转化率(x)为78%,目标产物苯乙烯选择率(Y)为99%;
反应时间t=3h时,底物苯乙炔转化率x>99.3%,目标产物苯乙烯选择率Y=98%;
反应时间t=5.4h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=89%;
反应时间t=6.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=89%。
图4为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性有些下降,但过度加氢大大降低。底物完全转化后1.1h内,目标产物苯乙烯选择率稳定在89%。
实施例5
以Ag 2S做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中Ag 2S和Pd@CaCO 3催化剂的质量比为80:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:反应时间t=1.5h时,底物苯乙炔转化率(x)为97%,目标产物苯乙烯选择率(Y)为98%;
反应时间t=2h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=82%;
反应时间t=3h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=64%;
反应时间t=4h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=55%。
图5为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性保持不变,过度加氢有改善。
实施例6
以Ce 2S 3做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中Ce 2S 3和Pd@CaCO 3催化剂的质量比为22:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间t=5.5h时,底物苯乙炔转化率(x)为96%,目标产物苯乙烯选择率(Y)为96%;
反应时间t=6h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=92%;
反应时间t=7.2h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=87%;
反应时间t=9.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=87%。
图6为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性有些下降,但过度加氢大大降低。底物完全转化后继续反应1.2h,目标产物苯乙烯选择率仅下降5%;再继续反应2.3h,目标产物苯乙烯选择率不下降,一直稳定在87%。
实施例7
以MnS做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中MnS和Pd@CaCO 3催化剂的质量比为15:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间t=9.8h时,底物苯乙炔转化率(x)为72%,目标产物苯乙烯选择率(Y)为99%;
反应时间t=10.5h时,苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=97%;
反应时间t=12h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=82%;
反应时间t=14h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=77%。
图7为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性下降明显,同时过度加氢现象减缓明显。
实施例8
以Ni 2S 3做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中Ni 2S 3和Pd@CaCO 3催化剂的质量比为170:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间t=1h时,底物苯乙炔转化率(x)为74%,目标产物苯乙烯选择率(Y)为99%;
反应时间t=1.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=97%;
反应时间t=2h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=63%;
反应时间t=3h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=30%。
图8为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性基本不变,过度加氢现象依然存在,但相比对比例1,有改善。
实施例9
以WS 2做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中WS 2和Pd@CaCO 3催化剂的质量比为190:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间(t)为3h时,底物苯乙炔转化率(x)为92%,目标产物苯乙烯选择率(Y)为94%;
反应时间t=3.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=90%;
反应时间t=4h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=83%;
反应时间t=6.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=77%。
图9为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性稍有下降,但过度加氢现象改善明显。
实施例10
以FeS 2做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中FeS 2和Pd@CaCO 3催化剂的质量比为152:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间(t)为5h时,底物苯乙炔转化率(x)为69%,目标产物苯乙烯选择率(Y)为99%;
反应时间t=6.2h时,底物苯乙炔转化率x=95%(完全转化),目标产物苯乙烯选择率Y=99%;
反应时间t=6.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=97%;
反应时间t=7.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=95%;
反应时间t=13h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=92%。
图10为反应动力学曲线对比图,从图中看出,同对比例1相比,催化剂活性有些下降,但过度加氢现象改善明显,炔烃底物完全转化后的6.5h内,目标产物苯乙烯选择性仍稳定在92-93%。
实施例11
以MoS 2做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢。其中MoS 2和Pd@CaCO 3催化剂的质量比为215:1,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间t=2.5h时,底物苯乙炔转化率(x)为67%,目标产物苯乙烯选择率(Y)为99%;
反应时间t=3.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=97%;
反应时间t=5.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=89%;
反应时间t=7h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=88%。
图11为反应动力学曲线对比图,从图中看出,相比对比例1,催化剂活性稍有下降,但过度加氢现象改善明显,炔烃完全转化后的3.5h内,产物苯乙烯选择性仍稳定在88-89%。
实施例12
以PPS做为Pd@CaCO 3催化剂的固相改性剂,用于二苯基乙炔的选择加氢。其中PPS和Pd@CaCO 3催化剂的质量比为0.6:1,其他反应条件与对比例2相同。不同反应时间下,取样分析结果为:
反应时间t=2.5h时,底物二苯基乙炔转化率(x)为90%,烯烃产物选择率(Y)为97%,烯烃产物中反式烯烃分率(E/Z+E)为2%;
反应时间t=3h时,底物二苯基乙炔转化率x=98%,烯烃产物选择率Y=95%,烯烃产物中反式烯烃分率(E/Z+E)=2%;
反应时间t=4h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=86%,烯烃产物中反式烯烃分率(E/Z+E)=4%;
反应时间t=6.2h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=77%,烯烃产物中反式烯烃分率(E/Z+E)=5%;
反应时间t=7.5h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=74%,烯烃产物中反式烯烃分率(E/Z+E)=5%;
图12为反应动力学曲线对比图,从图中看出,同对比例2相比,催化剂活性稍有下降,但过度加氢以及异构化现象均有所改善。
实施例13
以BaS做Pd@CaCO 3催化剂的固相改性剂,用于2-甲基-3-丁炔-2-醇的选择加氢。其中BaS和Pd@CaCO 3催化剂的质量比为8:1,其他反应条件与对比例3相同。不同反应时间下,取样分析结果为:
反应时间(t)为3.5h时,底物2-甲基-3-丁炔-2-醇转化率(x)为95%,目标产物2-甲基-3-丁烯-2-醇选择率(Y)为91%;
反应时间t=4h时,底物2-甲基-3-丁炔-2-醇转化率x>99.9%(完全转化),目标产物2-甲基-3-丁烯-2-醇选择率Y=74%;
反应时间t=5h时,底物2-甲基-3-丁炔-2-醇转化率x>99.9%(完全转化),目标产物2-甲基-3-丁烯-2-醇选择率Y=70%;
反应时间t=6.5h时,底物2-甲基-3-丁炔-2-醇转化率x>99.9%(完全转化),目标产物2-甲基-3-丁烯-2-醇选择率Y=71%。
图13为反应动力学曲线对比图,从图中看出,相比对比例3,催化剂活性略有下降,但过度加氢大大降低;即使在炔醇完全转化后继续反应2.5h,烯醇选择率稳定在70-71%。
实施例14
以PPS做Pd@CaCO 3催化剂的固相改性剂,用于1,4-丁炔-2-醇的选择加氢。其中PPS和Pd@CaCO 3催化剂的质量比为37:1,其他条件同对比例4。不同反应时间取样分析结果为:
反应时间t=10.5h时,底物1,4-丁炔-2-醇转化率(x)为87%,烯醇产物选择率(Y)为99%,烯醇产物中反式烯醇分率(E/Z+E)为4%;
反应时间t=13h时,底物1,4-丁炔-2-醇转化率x>99.9%(完全转化),烯醇产物选择率Y=99%,烯醇产物中反式烯醇分率(E/Z+E)=13%;
反应时间t=17h时,底物1,4-丁炔-2-醇转化率x>99.9%(完全转化),烯醇产物选择率Y=97%,烯醇产物中反式烯醇分率(E/Z+E)=21%;
反应时间t=20h时,底物1,4-丁炔-2-醇转化率x>99.9%(完全转化),烯醇产物选择率Y=95%,烯醇产物中反式烯醇分率(E/Z+E)=30%;
图14为反应动力学曲线对比图,从图中看出,同对比例4中的催化剂相比,催化剂活性略有下降,但过度加氢基本没有,烯醇产物选择率在炔醇底物完全转化后7h,仍然高于95%,并且反式烯醇的生成也有明显抑制。
实施例15
以PPS做Pd@CaCO 3催化剂的固相改性剂,用于1-庚炔的选择加氢。其中PPS和Pd@CaCO 3催化剂的质量比为40:1,其他反应条件与对比例5相同。不同反应时间下,取样分析结果为:
反应时间(t)为5h时,底物1-庚炔转化率(x)为91%,目标产物1-庚烯选择率(Y)为98%;
反应时间t=6h时,底物1-庚炔转化率x>99.9%(完全转化),目标产物1-庚烯选择率Y=93%;
反应时间t=8h时,底物1-庚炔转化率x>99.9%(完全转化),目标产物1-庚烯选择率Y=87%;
反应时间t=10h时,底物1-庚炔转化率x>99.9%(完全转化),目标产物1-庚烯选择率Y=87%。
图15为反应动力学曲线对比图,从图中看出,同对比例5相比,催化剂活性略有下降,但 过度加氢大大降低,1-庚炔完全转化后继续反应4h,1-庚烯选择率仍稳定在87%。
实施例16
以PPS做Pd@C催化剂的固相改性剂,用于苯乙炔的选择加氢。其中PPS和Pd@C催化剂的质量比为25:1,其他反应条件与对比例6相同。不同反应时间下,取样分析结果为:
反应时间(t)为5h时,底物苯乙炔转化率(x)为92%,目标产物苯乙烯选择率(Y)为97%;
反应时间t=7h时,底物苯乙炔转化率x=99%,目标产物苯乙烯选择率Y=96%;
反应时间t=9h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=91%;
反应时间t=10h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=88%;
图16为反应动力学曲线对比图,从图中看出,同对比例6相比,催化剂活性下降,但过度加氢大大降低,烯烃选择率下降较缓和。
实施例17
以PPS为Pd@C催化剂的固相改性剂,用于二苯基乙炔的选择加氢。其中PPS和Pd@CaCO 3催化剂的质量比为25:1,其他条件同对比例7。不同反应时间的取样分析结果为:
反应时间(t)为2.5h时,底物二苯基乙炔转化率(x)为98%,烯烃产物选择率(Y)为94%,烯烃产物中反式烯烃分率(E/Z+E)为3%;
反应时间t=4h时,底物二苯基乙炔转化率x>99%(完全转化),烯烃产物选择率Y=92%,烯烃产物中反式烯烃分率(E/Z+E)=3%;
反应时间t=6h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=91%,烯烃产物中反式烯烃分率(E/Z+E)=3%。
图17为反应动力学曲线对比图,从图中看出,同对比例7相比,催化剂活性稍有下降,但过度加氢以及异构化现象均得到很有效的改善。
实施例18
以PPS做Pd@CaCO 3催化剂的固相改性剂,用于丙炔醇的选择加氢。其中PPS和Pd@CaCO 3催化剂的质量比为115:1,其他反应条件与对比例8相同。不同反应时间下,取样分析结果为:
反应时间t=6.5h时,底物丙炔醇转化率(x)为87%,目标产物丙烯醇选择率(Y)为99%;
反应时间t=7.5h时,底物丙炔醇转化率x>99.9%(完全转化),目标产物丙烯醇选择率Y=99%;
反应时间t=10h时,底物丙炔醇转化率x>99.9%(完全转化),目标产物丙烯醇选择率Y=97%;
反应时间t=13.5h时,丙炔醇转化率x>99.9%(完全转化),目标产物丙烯醇选择率Y=95%。
图18为反应动力学曲线对比图,从图中看出,相比对比例8,催化剂活性稍微有所下降,但过度加氢基本没有,目标产物丙烯醇选择率在反应完全转化后6h,仍然高于95%。
实施例19
以PPS做Lindlar催化剂的固相改性剂,用于苯乙炔的选择加氢。其中PPS和Lindlar催化剂的质量比为80:1,其他反应条件与对比例9相同。不同反应时间下,取样分析结果为:
反应时间t=4.5h时,底物苯乙炔转化率(x)为77%,目标产物苯乙烯选择率(Y)为99%;
反应时间t=5.7h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=94%;
反应时间t=6.5h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=90%;
反应时间t=9.5h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=80%。
图19为反应动力学曲线对比图,从图中看出,同对比例9相比,催化剂活性略有下降,但过度加氢得到改善,目标产物苯乙烯选择率下降较缓和。
实施例20
以PPS做为I1催化剂的固相改性剂,用于苯乙炔的选择加氢。其中PPS和I1催化剂的质量比为9:1,其他反应条件与对比例10相同。不同反应时间下,取样分析结果为:
反应时间(t)为1h时,底物苯乙炔转化率(x)为92%,目标产物苯乙烯选择率(Y)为98%;
反应时间t=1.5h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=91%;
反应时间t=2h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=90%;
反应时间t=3.5h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=87%。
图20为反应动力学曲线对比图,从图中看出,同对比例10相比,催化剂活性不变,但过度加氢得到显著改善,目标产物苯乙烯选择率下降缓慢。
实施例21
以ZnS做为I1催化剂的固相改性剂,用于苯乙炔的选择加氢。其中ZnS和I1催化剂的质量比为1:1,其他反应条件与对比例10相同。不同反应时间下,取样分析结果为:
反应时间t=1.5h时,底物苯乙炔转化率(x)为85%,目标产物苯乙烯选择率(Y)为97%;
反应时间t=2h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=95%;
反应时间t=3h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=92%;
反应时间t=4h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=92%;
图21为反应动力学曲线对比图,从图中看出,同对比例10相比,催化剂活性几乎不变,但过度加氢得到显著改善,炔烃完全转化后继续反应2h,苯乙烯选择率仍稳定在92%。
实施例22
以BaS做为I1催化剂的固相改性剂,用于苯乙炔的选择加氢。其中BaS和I1催化剂的质量比为2.4:1,其他反应条件与对比例10相同。不同反应时间下,取样分析结果为:
反应时间(t)为1h时,底物苯乙炔转化率(x)为89%,目标产物苯乙烯选择率(Y)为97%;
反应时间t=1.5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=91%;
反应时间t=3.1h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=88%;
反应时间t=5h时,底物苯乙炔转化率x>99.9%(完全转化),目标产物苯乙烯选择率Y=89%。
图22为反应动力学曲线对比图,从图中看出,同对比例10相比,催化剂活性几乎不变,但过度加氢得到显著改善,底物炔烃完全转化后继续反应3.5h,目标产物苯乙烯选择率仍稳定在89%。
实施例23
以MoS 2做为I1催化剂的固相改性剂,用于苯乙炔的选择加氢。其中MoS 2和I1催化剂的质量比为21:1,其他反应条件与对比例10相同。不同反应时间下,取样分析结果为:
反应时间(t)为2h时,底物苯乙炔转化率(x)为93%,目标产物苯乙烯选择率(Y)为98%;
反应时间t=2.5h时,底物苯乙炔转化率x=98%,目标产物苯乙烯选择率Y=91%;
反应时间t=4h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=87%;
反应时间t=5h时,底物苯乙炔转化率x>99%(完全转化),目标产物苯乙烯选择率Y=86%。
图23为反应动力学曲线对比图,从图中看出,同对比例10相比,催化剂活性有些下降,但过度加氢大大降低,反应稳定在苯乙炔转化率99%和目标产物苯乙烯选择率86%。
实施例24
以PPS做为I1催化剂的固相改性剂,用于二苯基乙炔的选择加氢。其中PPS和I1催化剂的质量比为2:1,其他反应条件与对比例11相同。不同反应时间下,取样分析结果为:
反应时间(t)为1.5h时,底物二苯基乙炔转化率(x)为97%,烯烃产物选择率(Y)为93%,烯烃产物中反式烯烃分率(E/Z+E)为2%;
反应时间t=2h时,底物二苯基乙炔转化率x>99%(完全转化),烯烃产物选择率Y=93%,烯烃产物中反式烯烃分率(E/Z+E)=2%;
反应时间t=4h时,底物二苯基乙炔转化率x>99%(完全转化),烯烃产物选择率Y=93%,烯烃产物中反式烯烃分率(E/Z+E)=2%。
图24为反应动力学曲线对比图,从图中看出,同对比例11相比,催化剂活性稍有下降,但过度加氢以及异构化现象均有很大程度的改善,目标产物烯烃选择率稳定在93%,反式烯烃选择率稳定在2%。
实施例25
以ZnS做为I1催化剂的固相改性剂,用于二苯基乙炔的选择加氢。其中ZnS和I1催化剂的质量比 为4:1,其他反应条件与对比例11相同。不同反应时间下,取样分析结果为:
反应时间(t)为1.5h时,底物二苯基乙炔转化率(x)为94%,烯烃产物选择率(Y)为93%,烯烃产物中反式烯烃分率(E/Z+E)为2%;
反应时间t=2h时,底物二苯基乙炔转化率x=95%,烯烃产物选择率Y=91%,烯烃产物中反式烯烃分率(E/Z+E)=3%;
反应时间t=4.5h时,底物二苯基乙炔转化率x=95%,烯烃产物选择率Y=91%,烯烃产物中反式烯烃分率(E/Z+E)=4%。
图25为反应动力学曲线对比图,从图中看出,同对比例11相比,催化剂活性在反应前期基本相差无异,但是体系在达到高转化率时出现平衡,底物转化率和烯烃选择率分别稳定在96%和91%。
实施例26
以MoS 2做为I1催化剂的固相改性剂,用于二苯基乙炔的选择加氢。其中MoS 2和I1催化剂的质量比为0.4:1,其他反应条件与对比例11相同。不同反应时间下,取样分析结果为:
反应时间(t)为1h时,底物二苯基乙炔转化率(x)为92%,烯烃产物选择率(Y)为94%,烯烃产物中反式烯烃分率(E/Z+E)为3%;
反应时间t=1.5h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=89%,烯烃产物中反式烯烃分率(E/Z+E)=3%;
反应时间t=3h时,底物二苯基乙炔底物转化率x>99.9%(完全转化),烯烃产物选择率Y=79%,烯烃产物中反式烯烃分率(E/Z+E)=5%;
反应时间t=4.7h时,底物二苯基乙炔转化率x>99.9%(完全转化),烯烃产物选择率Y=73%,烯烃产物中反式烯烃分率(E/Z+E)=6%。
图26为反应动力学曲线对比图,从图中看出,同对比例11相比,催化剂活性基本相差无异,但过度加氢大大降低。底物二苯基乙炔完全转化后,烯烃选择率下降趋势显著变缓。
实施例27
以PPS做为I1催化剂的固相改性剂,用于1-庚炔的选择加氢。其中PPS和I1催化剂的质量比为9:1,其他反应条件与对比例12相同。不同反应时间下,取样分析结果为:
反应时间t=1h时,底物1-庚炔转化率(x)为72%,目标烯烃产物1-庚烯选择率(Y)为99%;
反应时间t=1.5h时,底物1-庚炔转化率x>99%(完全转化),目标产物1-庚烯选择率Y=97%;
反应时间t=2.5h时,底物1-庚炔转化率x>99%(完全转化),目标产物1-庚烯选择率Y=95%;
反应时间t=7.5h时,底物1-庚炔转化率x>99%(完全转化),目标产物1-庚烯选择率Y=92%。
图27为反应动力学曲线对比图,从图中看出,同对比例12相比,催化剂活性没有下降,目标产物1-庚烯选择率下降趋势非常缓慢,在底物1-庚炔转化完全后继续反应6h后,仅下降了5%。
实施例28
以Pd@PPS为催化剂用于苯乙炔的选择加氢,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:
反应时间(t)为3h时,底物苯乙炔转化率(x)为72%,目标产物苯乙烯选择率(Y)为98%;
反应时间t=4h时,底物苯乙炔转化率x=99%(完全转化),目标产物苯乙烯选择率Y=92%;
反应时间t=5h时,底物苯乙炔转化率x=99%(完全转化),目标产物苯乙烯选择率Y=82%;
反应时间t=7h时,底物苯乙炔转化率x=99%(完全转化),目标产物苯乙烯选择率Y=67%。
图28为反应动力学曲线对比图,从图中看出,反应结果同对比例1,9相比,催化剂活性相差不明显,但目标产物苯乙烯选择率下降趋势非常缓慢;反应结果同对比例6相比,催化剂活性类似,目标产物苯乙烯选择率整体较高。
实施例29
以Pd@ZnS为催化剂用于苯乙炔的选择加氢,其他反应条件与对比例1相同。不同反应时间下,取样分析结果为:反应时间(t)为12h时,底物苯乙炔转化率(x)为95%,目标产物苯乙烯选择率(Y)为98%;反应时间t=15.5h时,底物苯乙炔转化率x=96%,目标产物苯乙烯选择率Y=98%;反应时间t=17.5h时,苯乙炔转化率x=98%,产物苯乙烯选择率Y=98%。
图29为反应动力学曲线对比图,从图中看出,反应结果同对比例1,9相比,催化剂活性下降,但目标产物苯乙烯选择率稳定在98%。
实施例30
为证实本发明的改性催化剂的可回收性和可重复利用性,以PPS做为Pd@CaCO 3催化剂的固相改性剂,用于苯乙炔的选择加氢,进行催化剂和固相改性剂的回收和重复套用。其中PPS和Pd@CaCO 3催化剂的质量比为200:1,其他反应条件与对比例1相同。一次反应完成后,过滤回收催化剂和固相改性剂的混合物,并经正己烷简单洗涤后,直接用于下一次反应;进行了连续10次的催化剂和固相改性剂重复套用,分析结果为:
第1次催化剂反应,反应时间(t)为3.9h时,底物苯乙炔转化率(x)为95%,目标产物苯乙烯选择率(Y)为99%;第2次催化剂反应,反应时间(t)为3.4h时,底物苯乙炔转化率(x)为98%,目标产物苯乙烯选择率(Y)为96%;第3次催化剂反应,反应时间(t)为3h时,底物苯乙炔转化率(x)为99%,目标产物苯乙烯选择率(Y)为95%;第4次催化剂反应,反应时间(t)为3h时,底物苯乙炔转化率(x)为99%,目标产物苯乙烯选择率(Y)为90%;第5次催化剂反应,反应时 间(t)为4h时,底物苯乙炔转化率(x)为98%,目标产物苯乙烯选择率(Y)为95%;
第6次催化剂反应,反应时间(t)为4h时,底物苯乙炔转化率(x)为99%,目标产物苯乙烯选择率(Y)为91%;第7次催化剂反应,反应时间(t)为3.8h时,底物苯乙炔转化率(x)为99%,目标产物苯乙烯选择率(Y)为90%;第8次催化剂反应,反应时间(t)为4.1h时,底物苯乙炔转化率(x)为99%,目标产物苯乙烯选择率(Y)为91%;第9次催化剂反应,反应时间(t)为4h时,底物苯乙炔转化率(x)为97%,目标产物苯乙烯选择率(Y)为92%;第10次催化剂反应,反应时间(t)为4h时,底物苯乙炔转化率(x)为97%,目标产物苯乙烯选择率(Y)为94%;
图30为重复反应动力学曲线对比图,从图中看出,结果显示,本发明的催化剂及固相改性剂可多次重复套用,每次反应中达到底物苯乙炔转化率(x)高于95%所需的反应时间基本不变,说明催化剂活性没有降低,钯活性成分流失率极低。并且苯乙烯选择率都维持在90%以上,说明PPS作为固相改性剂,其效果在重复套用中保持很好。

Claims (7)

  1. 一种利用固相改性剂改性的加氢催化剂,其特征在于:所述加氢催化剂为负载化钯催化剂和固相改性剂的混合物,或者为直接以固相改性剂为载体负载的金属钯材料;
    当所述加氢催化剂为负载化钯催化剂和固相改性剂的混合物时,所述固相改性剂与负载化钯催化剂的质量比为0.1~500:1;
    当所述加氢催化剂为以固相改性剂为载体负载的金属钯材料时,金属钯的质量负载量为0.1~20%;
    所述固相改性剂为聚苯硫醚或金属硫化物,所述金属硫化物为硫化银、硫化钡、硫化镉、硫化铈、硫化亚铁、二硫化亚铁、硫化锂、硫化钠、硫化镍、硫化锰、硫化钼、硫化硒、硫化钨、硫化锌、硫化铜、硫化钛中的至少一种。
  2. 如权利要求1所述的一种利用固相改性剂改性的加氢催化剂,其特征在于:所述负载化钯催化剂包括催化剂载体和负载于催化剂载体上的金属活性组分钯,金属活性组分钯在催化剂载体上的负载量为0.1~30wt%。
  3. 如权利要求2所述的一种利用固相改性剂改性的加氢催化剂,其特征在于:所述金属活性组分钯在催化剂载体上的负载量为0.5~20wt%。
  4. 如权利要求2所述的一种利用固相改性剂改性的加氢催化剂,其特征在于:所述催化剂载体为无机载体或有机载体,所述无机载体为CaCO 3、BaSO 4、活性碳、硅藻土和金属氧化物中的至少一种。
  5. 如权利要求4所述的一种利用固相改性剂改性的加氢催化剂,其特征在于:所述无机载体为CaCO 3、BaSO 4、活性碳、SiO 2、Al 2O 3、ZnO、TiO 2、硅藻土中至少一种。
  6. 如权利要求1~4任意一项所述的加氢催化剂在催化炔烃选择性加氢制烯烃反应中的应用。
  7. 如权利要求6所述的应用,其特征在于所述炔烃为苯乙炔、乙炔、丙炔、甲基丁炔醇、去氢芳樟醇、去氢橙花叔醇、去氢异植物醇、1-乙炔基环己烯、1-庚炔、4-苯基-1-丁炔、二苯基乙炔、1,4-丁炔二醇、1-苯基-1-丙炔、4-辛炔中的任意一种。
PCT/CN2020/093830 2019-10-16 2020-06-02 一种利用固相改性剂改性的加氢催化剂及其应用 WO2021073123A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910983739.1 2019-10-16
CN201910983739.1A CN110639613B (zh) 2019-10-16 2019-10-16 一种利用固相改性剂改性的加氢催化剂及其应用

Publications (1)

Publication Number Publication Date
WO2021073123A1 true WO2021073123A1 (zh) 2021-04-22

Family

ID=68994220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093830 WO2021073123A1 (zh) 2019-10-16 2020-06-02 一种利用固相改性剂改性的加氢催化剂及其应用

Country Status (2)

Country Link
CN (1) CN110639613B (zh)
WO (1) WO2021073123A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113636940A (zh) * 2021-08-13 2021-11-12 北京单原子催化科技有限公司 一种硝基苯乙炔选择性催化加氢制备硝基苯乙烯的方法
CN115353461A (zh) * 2022-07-19 2022-11-18 曲阜师范大学 核壳结构聚合离子液体催化加氢反应

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639613B (zh) * 2019-10-16 2021-03-16 浙江苏必略科技有限公司 一种利用固相改性剂改性的加氢催化剂及其应用
CN111185237B (zh) * 2020-02-19 2020-11-06 浙江大学 一种选择性加氢催化剂及其制备方法和应用
CN111905723A (zh) * 2020-07-14 2020-11-10 厦门大学 一种钯催化剂的制备方法、催化剂及应用
CN116033965B (zh) * 2021-07-19 2024-06-14 株式会社Lg化学 用于加氢反应的催化剂及其制备方法
CN114160196B (zh) * 2021-12-24 2023-09-08 兰州大学 一种钯团簇催化剂的制备方法及其应用
CN116496494A (zh) * 2023-04-25 2023-07-28 山东新和成维生素有限公司 一种钯系均相催化剂的制备方法及其在异植物醇合成中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106453A2 (en) * 2011-02-01 2012-08-09 The Regents Of The University Of Colorado, A Body Corporate Materials and methods for improving selectivity in heterogeneous catalysts and products thereof
CN102718925A (zh) * 2012-06-27 2012-10-10 浙江恒河石油化工股份有限公司 一种c5/c9加氢石油树脂的制备方法
CN102718926A (zh) * 2012-06-27 2012-10-10 浙江恒河石油化工股份有限公司 一种加氢石油树脂的制备方法
EP2778154A1 (de) * 2013-03-13 2014-09-17 Evonik Industries AG In situ Generierung von Ruthenium-Katalysatoren zur Olefin-Metathese
CN109759091A (zh) * 2018-12-20 2019-05-17 昆明理工大学 一种纳米二硫化钼载钯催化剂的制备方法
CN110639613A (zh) * 2019-10-16 2020-01-03 浙江苏必略科技有限公司 一种利用固相改性剂改性的加氢催化剂及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074128A1 (en) * 2010-11-29 2012-06-07 Takasago International Corporation Catalyst for asymmetric hydrogenation and method for manufacturing optically active carbonyl compound using the same
CN102247870A (zh) * 2011-05-25 2011-11-23 上海电力学院 一种有贵金属和Cr2O3复合负载的CdS光催化剂的制备方法和应用
CN103331174A (zh) * 2013-07-02 2013-10-02 上海电力学院 一种负载钯的硫化镉可见光催化剂及其制备方法
CN106905113B (zh) * 2017-04-11 2019-11-22 中国科学技术大学 一种氢转移制备烯烃的方法
CN108554422A (zh) * 2018-04-13 2018-09-21 西北师范大学 碘化物还原制备Pd-CdS光催化剂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106453A2 (en) * 2011-02-01 2012-08-09 The Regents Of The University Of Colorado, A Body Corporate Materials and methods for improving selectivity in heterogeneous catalysts and products thereof
CN102718925A (zh) * 2012-06-27 2012-10-10 浙江恒河石油化工股份有限公司 一种c5/c9加氢石油树脂的制备方法
CN102718926A (zh) * 2012-06-27 2012-10-10 浙江恒河石油化工股份有限公司 一种加氢石油树脂的制备方法
EP2778154A1 (de) * 2013-03-13 2014-09-17 Evonik Industries AG In situ Generierung von Ruthenium-Katalysatoren zur Olefin-Metathese
CN109759091A (zh) * 2018-12-20 2019-05-17 昆明理工大学 一种纳米二硫化钼载钯催化剂的制备方法
CN110639613A (zh) * 2019-10-16 2020-01-03 浙江苏必略科技有限公司 一种利用固相改性剂改性的加氢催化剂及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113636940A (zh) * 2021-08-13 2021-11-12 北京单原子催化科技有限公司 一种硝基苯乙炔选择性催化加氢制备硝基苯乙烯的方法
CN115353461A (zh) * 2022-07-19 2022-11-18 曲阜师范大学 核壳结构聚合离子液体催化加氢反应
CN115353461B (zh) * 2022-07-19 2023-05-26 曲阜师范大学 核壳结构聚合离子液体催化加氢反应

Also Published As

Publication number Publication date
CN110639613A (zh) 2020-01-03
CN110639613B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2021073123A1 (zh) 一种利用固相改性剂改性的加氢催化剂及其应用
CN106914255B (zh) 一种非合金金属复合物及其制备方法和应用
CN108393092B (zh) 用于腈类化合物加氢制仲胺的催化剂的制备方法及其产品和应用
US4918218A (en) Preparation of acetic acid and methyl acetate
CN109999820B (zh) 一种用于氢化石油树脂制备的镍基催化剂及其制备方法与应用
WO2017201644A1 (zh) 一种钯系负载型加氢催化剂及其制备方法与应用
JP2021526458A (ja) 貴金属担持触媒及びその製造方法、並びに応用
CN109759133B (zh) 原子分散的复合材料、其制备方法及其应用
CN113145130B (zh) 一种用于乙炔氢氯化反应的负载含铜高熵合金活性炭催化剂及其制备方法和应用
CN114939438B (zh) 一种烯属不饱和羰基化合物选择性加氢的方法及其催化剂
Bulut et al. Aqueous-phase hydrogenation of alkenes and arenes: The growing role of nanoscale catalysts
WO2019183820A1 (zh) 一种氮掺杂多孔碳负载金属单原子材料的制备方法
Anand et al. Recent advances in hydrogenation reactions using bimetallic nanocatalysts: a review
CN111215080A (zh) 用于调控co2加氢目标产物为c2-4烯烃的催化剂及制备方法
CN112547093A (zh) 一种加氢脱氯催化剂及其制备方法和应用
Bedenko et al. Modern Processes for Petrochemistry Based on Acetylene (A Review)
JP4597024B2 (ja) シクロオレフィン製造触媒およびシクロオレフィン製造方法
CN109759085B (zh) 一种活性炭负载的硫化铁基催化剂及其制备与应用
KR20120077634A (ko) 산화탈수소촉매 및 이를 이용한 프로판으로부터 프로필렌의 제조방법
JP3897830B2 (ja) シクロオレフインの製造方法
KR101678225B1 (ko) 백금계 촉매의 제조 방법
CN114539056B (zh) 一种甲醇羰基化制备乙酸甲酯的方法
JPS6245544A (ja) シクロオレフインの製造方法
CN113368870B (zh) 一种硫配体修饰的单原子催化剂及其制备方法和应用
JP4033976B2 (ja) シクロオレフィンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877177

Country of ref document: EP

Kind code of ref document: A1