WO2019183820A1 - 一种氮掺杂多孔碳负载金属单原子材料的制备方法 - Google Patents

一种氮掺杂多孔碳负载金属单原子材料的制备方法 Download PDF

Info

Publication number
WO2019183820A1
WO2019183820A1 PCT/CN2018/080758 CN2018080758W WO2019183820A1 WO 2019183820 A1 WO2019183820 A1 WO 2019183820A1 CN 2018080758 W CN2018080758 W CN 2018080758W WO 2019183820 A1 WO2019183820 A1 WO 2019183820A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
porphyrin
reaction
nitrogen
porous carbon
Prior art date
Application number
PCT/CN2018/080758
Other languages
English (en)
French (fr)
Inventor
纪红兵
何晓辉
肖华健
何千
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to PCT/CN2018/080758 priority Critical patent/WO2019183820A1/zh
Publication of WO2019183820A1 publication Critical patent/WO2019183820A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Definitions

  • the invention relates to the field of materials science and engineering technology, in particular to a method for preparing a nitrogen-doped porous carbon-supported metal monoatomic material.
  • the monoatomic catalyst is to highly disperse the metal in a certain atomic form on a certain carrier, to reach the limit of metal dispersion, and to maximize the atom utilization rate.
  • the monoatomic catalyst has the advantages of “isolated sites” of homogeneous catalysts and heterogeneous catalysts with stable structure and easy separation. It can closely link heterogeneous catalysis with homogeneous catalysis. It is a bridge of heterogeneous catalysis and homogeneous catalysis. And tie.
  • the preparation of the monoatomic catalyst greatly reduces the amount of precious metal used and reduces the production cost. Under certain conditions, the catalytic activity, selectivity, stability and other catalytic properties are significantly better than the traditional supported catalyst; the single atom catalyst has a single dispersed active site.
  • Conventional metal monoatomic synthesis methods include wet chemical methods, deposition methods, and pyrolysis methods.
  • the wet chemical method is mainly composed of noble metal monoatoms. It is necessary to accurately configure the concentration of metal salts and select suitable carrier materials.
  • the four-stage rod or high-temperature metal source equipment is used in the deposition method, and the conditions such as deposition temperature-time need to be precisely controlled; First, a high temperature resistant catalytic precursor material is synthesized. These methods are suitable for low metal content and limited metal types.
  • Chinese patent CN 106914237 A prepared and synthesized including Pt, Ag, Au, Pd, Rh, Ir, Ru, Co, Ni and Cu, and supported on TiO 2 , zinc oxide, cerium oxide, aluminum oxide, silicon oxide, oxidation A metal mono atom such as iron, manganese oxide, C 3 N 4 , mesoporous carbon, ultra-thin carbon film, graphene, carbon nanotube or molecular sieve material.
  • this method requires a certain concentration of precursor solution, freeze-light-thaw, etc., and is easily agglomerated to form nanoparticles due to improper concentration control.
  • Chinese patent CN105170147 B prepared a Pd 1 /Al 2 O 3 monoatomic catalyst by atomic layer deposition, which has good hydrogenation activity of acetylene.
  • this method requires strict control of deposition temperature, carrier flow rate, deposition time, complicated operation, and expensive equipment.
  • the precursor of silica is formed by controlling the pH control of cobalt nitrate hexahydrate, and further pyrolysis at 500 ° C to form a Co 1 /SiO 2 single atom.
  • this method is complicated in operation, and it is necessary to precisely control the reaction ratio, the raw materials are expensive, the reaction concentration is low, and the product preparation amount is small.
  • the object of the present invention is to provide a controllable preparation method of nitrogen-doped porous carbon-supported metal monoatomic material to solve the existing
  • the technology has low metal content, few types, poor adjustability, and complicated operation.
  • a method for preparing a nitrogen-doped porous carbon-supported metal monoatomic material comprises the steps of: polymerizing a porphyrin with a metalloporphyrin by a polymerization reaction, and regulating a metal content by adjusting a ratio of a porphyrin to a metalloporphyrin (0.06-4.00) Wt%), the regulation of metal monoatomic species (type A, type AB, ABC type) by regulating different metalloporphyrin species.
  • the polymerization method is selected from the group consisting of a gram alkylation reaction, an amino Schiff base reaction, an aldehyde-based Schiff base reaction, and a double bond polymerization reaction.
  • a gram alkylation reaction uses porphyrin as tetraphenylporphyrin TPP
  • the solvent is selected from one or more of dichloromethane, 1,2-dichloroethane and 1,3-dichlorobutane.
  • Anhydrous aluminum chloride is used as a catalyst.
  • the amino Schiff base reaction uses porphyrin as tetrakis(4-aminophenyl)porphyrin TAPP, the solvent is selected from n-butanol-o-dichlorobenzene-acetic acid mixed solvent, and the auxiliary agent is selected from the group consisting of terephthalaldehyde and biphenyldialdehyde. One of them.
  • the aldehyde-based Schiff base reaction uses porphyrin as tetrakis(4-aldehyde-phenyl)porphyrin TFPP, the solvent is selected from n-butanol-o-dichlorobenzene-acetic acid mixed solvent, and the auxiliary agent is selected from p-phenylenediamine and biphenyl. One of the diamines.
  • the double bond polymerization reaction uses porphyrin as tetrakis(4-vinylphenyl)phenylporphyrin TVPP; the solvent is selected from one or more of N,N-dimethylformamide and N-methylpyrrolidone, even Nitrogen diisobutyronitrile is a catalyst.
  • the metal center M of the corresponding metal porphyrin is a noble metal or a non-precious metal
  • the noble metal is Ru, Rh. , Pd, Ag, Ir, Pt or Au
  • the non-noble metal is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Mo, Cd, Sn, Er, W or Bi.
  • the metal monoatomic species are a single-type metal single atom, a two-element AB-type metal single atom, a three-element ABC-type metal single atom or more Elemental metal monoatomic.
  • the mass ratio (wt%) of the porphyrin to the A metal porphyrin is selected from 80 to 100: 0. a ratio of ⁇ 20 (the ratio of total porphyrins is related, the sum is 100%), preferably (99: 1, 97: 3, 94: 6, 90 : 10).
  • the mass ratio (wt%) of the porphyrin to the A and B metalloporphyrin is selected from 80 ⁇ 100 : 0 ⁇ 20 : A ratio of 0 to 20 (the ratio of the total porphyrin is related, the sum is 100%), preferably (96 : 2 : 2, 94 : 3 : 3, 90 : 5 : 5).
  • the mass ratio (wt%) of the porphyrin to the A, B, and C metalloporphyrins is selected. From 80 ⁇ 100: 0 ⁇ 20: 0 ⁇ 20: A ratio of 0 ⁇ 20 (the ratio of total porphyrins is related, the sum is 100%), preferably (94: 2: 2: 2, 91: 3 : 3 : 3, 88 : 4 : 4 : 4).
  • the above preparation method of the nitrogen-doped porous carbon-supported metal monoatomic material comprises the following steps:
  • a type metal monoatomic precursor weigh a certain amount of porphyrin and metal porphyrin; add solvent, auxiliary or catalyst; magnetic stirring, reaction temperature 60-150 ° C, reaction time 12-48 h; polymerization reaction followed by THF , acetone, methanol Soxhlet extraction and purification, vacuum drying at 80 ° C overnight;
  • AB type metal monoatomic precursor weigh a certain amount of porphyrin and A, B metal porphyrin; add solvent, auxiliary or catalyst; magnetic stirring, reaction temperature 60-150 ° C, reaction time 12-48 h; after the polymerization, it is purified by Soxhlet extraction with THF, acetone and methanol, and dried under vacuum at 80 ° C overnight;
  • ABC type metal monoatomic precursor weigh porphyrin and A, B, C metal porphyrin polymerization; add solvent, auxiliary or catalyst; magnetic stirring, reaction temperature 60-150 ° C, reaction time 12-48 h; polymerization After that, it was purified by Soxhlet extraction with THF, acetone and methanol, and dried under vacuum at 80 ° C overnight;
  • the monoatomic precursor of the polymerization reaction is subjected to high-temperature carbonization at 500-1000 ° C in a tube furnace, and the carbonized gas stream is selected from one of nitrogen gas and argon gas, and the carbonization time is 1-5 h; after cooling to room temperature, the corresponding one can be obtained.
  • the controllable preparation method of the above metal single atom fully utilizes the coordination stability effect of the N atom and the metal M in the porphyrin, thereby realizing the characteristics of high monodispersion and high stability of the metal; and fully utilizing the cheap and easily available raw materials, and being simple Reaction: Firstly, the ratio of porphyrin to metal porphyrin is adjusted to carry out polymerization reaction, and then carbonization treatment is carried out to realize the adjustment of content, type and stability.
  • the controllable preparation method of the metal monoatomic catalyst reduces the reaction cost and the experimental requirements, and can expand a variety of metal porphyrins to meet the diversification requirements of the experiment and enrich the research in related fields.
  • the present invention has the following beneficial effects:
  • the obtained material is a microporous material having a large BET specific surface area.
  • Figure 1 is a schematic diagram of polymerization and carbonization
  • M Ru, Rh, Pd, Ag, Ir, Pt, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Mo, Cd, Sn, Er, W, Bi;
  • Figure 2 is a AC HAADF-STEM image of a different concentration of Pt 1 /NC metal monoatomic spherical aberration corrected transmission electron microscopy in the alkylation reaction; the ring is marked with a single atomic metal, and the density is positively related to the number of rings;
  • Figure 3 is a AC HAADF-STEM image of a different type A metal monoatomic M 1 /NC spherical aberration corrected transmission electron microscope in the alkylation reaction; the ring is marked with a monoatomic metal;
  • Figure 4 is a diagram showing the AM HAADF-STEM and Mapping of the AB-type and ABC-type metal monoatomic spherical aberration-corrected transmission electron microscopy in the Alkyl reaction; the ring is marked with a monoatomic metal;
  • Figure 5 is an amino-Schiff base reaction, an aldehyde-based Schiff base reaction, a double bond polymerization reaction, a type A metal monoatomic Pt 1 /NC spherical aberration-corrected transmission electron microscope AC HAADF-STEM image; a ring marked with a single atom metal;
  • Figure 6 is a Pt 1 /NC metal monoatomic BET adsorption curve and pore size diagram of the Pike alkylation reaction, Pt - 0.73 wt%.
  • the tubular alkylation reaction product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from argon gas, and the carbonization time was 5 h. After cooling to room temperature, a Pt 1 /NC metal mono atom was obtained.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 2A.
  • the tubular alkylation reaction product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from argon gas, and the carbonization time was 5 h. After cooling to room temperature, a Pt 1 /NC metal mono atom was obtained.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 2B.
  • the tubular alkylation reaction product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from argon gas, and the carbonization time was 5 h. After cooling to room temperature, a Pt 1 /NC metal mono atom was obtained.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 2C.
  • the tubular alkylation reaction product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from argon gas, and the carbonization time was 5 h. After cooling to room temperature, a Pt 1 /NC metal mono atom was obtained.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 2D.
  • the tubular alkylation reaction product is carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • ICP quantification Ti - 0.12 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Ti 1 /NC.
  • the tubular alkylation reaction product is carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • ICP quantification V - 0.19 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 V 1 /NC.
  • the tubular alkylation reaction product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • a Cr 1 /NC metal mono atom was obtained.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Cr 1 /NC.
  • the carbonized reaction polymerization product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • the Mn 1 /NC metal single atom was obtained.
  • ICP quantification Mn - 0.07 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Figure 3 Mn 1 /NC.
  • the tubular alkylation reaction product was carbonized at 600 °C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • Fe 1 /NC metal monoatoms were obtained.
  • ICP quantification Fe - 0.18 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Fe 1 /NC.
  • the tubular alkylation reaction product is carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • ICP quantification Co - 0.20 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Figure 3 Co 1 /NC.
  • the tubular alkylation reaction product was carbonized at 700 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • ICP quantification Ni - 0.22 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Figure 3 Ni 1 /NC.
  • the tubular alkylation reaction product is carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • ICP quantification Cu - 4.00 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Cu 1 /NC.
  • the carbonized reaction polymerization product was carbonized at 800 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • ICP quantification Ga - 0.07 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Ga 1 /NC.
  • the tubular alkylation reaction product is carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • ICP quantification Zr - 0.06 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Zr 1 /NC.
  • the tubular alkylation reaction product was carbonized at 900 °C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • a Mo 1 /NC metal mono atom was obtained.
  • ICP quantification Mo - 0.15 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Mo 1 /NC.
  • the tubular alkylation reaction product is carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • a Ru 1 /NC metal mono atom is obtained.
  • ICP quantification Ru - 0.10 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Ru 1 /NC.
  • RhTPP 0.922 g: 0.014 g (98 wt%: 2 wt%), 30 ml of dichloromethane, 3.195 g of anhydrous aluminum chloride; magnetic stirring in stainless steel reactor the reaction temperature is 80 °C, reaction time 24 h; after the Friedel-Crafts alkylation of THF successively purified by, acetone, Soxhlet extraction with methanol, and dried in vacuo overnight at 80 o C standby.
  • the tubular alkylation reaction product is carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • ICP quantification Rh - 0.08 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Rh 1 /NC.
  • the tubular alkylation reaction product is carbonized at 1000 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • a Pd 1 /NC metal mono atom is obtained.
  • ICP quantification Pd - 0.38 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Pd 1 /NC.
  • the carbonized reaction polymerization product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • the Ag 1 /NC metal single atom was obtained.
  • ICP quantification Ag - 0.37 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Ag 1 /NC.
  • the tubular alkylation reaction product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • ICP quantification Cd - 0.32 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Figure 3 Cd 1 /NC.
  • the tubular alkylation reaction product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • ICP quantification Sn - 0.43 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Sn 1 /NC.
  • the tubular alkylation reaction product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • ICP quantification Er - 0.06 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Figure 3 Er 1 /NC.
  • the tubular alkylation reaction product is carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • ICP quantification W - 0.27 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 W 1 /NC.
  • the tubular alkylation reaction product was carbonized at 600 °C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.
  • ICP quantification Ir - 0.38 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Figure 3 Ir 1 /NC.
  • the tubular alkylation reaction product was carbonized at 600 °C in a tube furnace. The carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h. After cooling to room temperature, the Au 1 /NC metal single atom was obtained.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Au 1 /NC.
  • the tubular alkylation reaction product is carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream is selected from nitrogen gas, and the carbonization time is 3 h.
  • ICP quantification Bi - 0.08 wt%.
  • the spherical aberration corrected transmission electron microscope is shown in Figure 3 Bi 1 /NC.
  • the polyalkylation reaction polymerization product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from argon gas, and the carbonization time was 3 h. After cooling to room temperature, a Pt 1- Sn 1 /NC metal mono atom was obtained. ICP quantification: Pt - 0.48 wt%, Sn - 0.35 wt%. The spherical aberration corrected transmission electron microscope and Mapping are shown in Fig. 4 Pt 1 -Sn 1 /NC.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h. After cooling to room temperature, a Pt 1 -Sn 1 -Cu 1 /NC metal mono atom was obtained. ICP quantification: Pt - 0.45 wt%, Sn - 0.28 wt%, Cu - 0.18 wt%. The spherical aberration corrected transmission electron microscope and Mapping are shown in Fig. 4 Pt 1- Sn 1- Cu 1 /NC.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h. After cooling to room temperature, a Pt 1 /NC metal mono atom was obtained. ICP quantification: Pt - 0.32 wt%. The spherical aberration corrected transmission electron microscope is shown in Fig. 5A Pt 1 /NC.
  • TFPP 0.970 g: 0.030 g (97 wt%: 3 wt%), 50 ml of n-butanol-50 ml o-dichlorobenzene-10 ml acetic acid (6 mol/L) mixed solvent. 0.30 g p-phenylenediamine; magnetic stirring, the reaction temperature 100 °C, reaction time 24 h; aldehyde Schiff base after the polymerization reaction of THF successively extracted with, acetone, methanol Soxhlet purified, dried in vacuo overnight at 80 o C standby. The polymerization product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h. After cooling to room temperature, a Pt 1 /NC metal mono atom was obtained. ICP quantification: Pt - 0.37 wt%. The spherical aberration corrected transmission electron microscope is shown in Fig. 5B Pt 1 /NC.
  • PtTVPP 0.970 g: 0.030 g (97 wt%: 3 wt%), 100 ml of N,N-dimethylformamide, 0.20 g of azobisisobutyronitrile; magnetic stirring, reaction temperature 200 °C, reaction time 24 h; double bond after the polymerization of THF purified by extraction successively, acetone, methanol Soxhlet, dried in vacuo overnight at 80 o C standby.
  • the polymerization product was carbonized at 600 ° C in a tube furnace.
  • the carbonization gas stream was selected from nitrogen gas, and the carbonization time was 3 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

涉及一种氮掺杂多孔碳负载金属单原子材料的可控制备方法,属于材料科学与工程技术领域。通过聚合反应将卟啉-金属卟啉聚合,调控卟啉-金属卟啉比例调控金属含量(0.06-4.00wt%),调控不同金属卟啉种类调控金属单原子种类(A型、AB型、ABC型)。实现了金属单原子材料的可控制备,具有良好的拓展性和重现性,解决了现有技术中金属含量低、种类少等问题,丰富了金属单原子材料合成方法学等相关领域的研究。

Description

一种氮掺杂多孔碳负载金属单原子材料的制备方法 技术领域
本发明涉及属于材料科学与工程技术领域,具体地说,涉及一种氮掺杂多孔碳负载金属单原子材料的制备方法。
背景技术
单原子催化剂是将金属以原子形式高度分散在一定载体上,达到了金属分散的极限,实现原子利用率的最大化。单原子催化剂具有均相催化剂的“孤立位点”和多相催化剂的结构稳定且易分离的优点, 能将多相催化与均相催化紧密联系在一起,是多相催化与均相催化的桥梁和纽带。单原子催化剂的制备大大减少贵金属的使用量,降低了生产成本,一定条件下其催化活性、选择性、稳定性等催化性能明显优于传统负载型催化剂;单原子催化剂具有单一分散的活性位,避免了副反应的发生和分离提纯等后续处理过程,节省后期费用,更加经济环保,达到“绿色催化”的目的。故金属单原子的含量、种类的可控制备对单原子催化领域的研究具有重要意义。
常规金属单原子合成方法有湿化学法、沉积法、热解法。湿化学法以贵金属单原子为主,需精确配置金属盐浓度和选择合适载体材料;沉积法中采用四级杆或高温金属源设备,需精确控制沉积温度-时间等条件;而热解法需先合成耐高温的催化前驱体材料。且这些方法适用的金属含量较低,金属种类都较为有限。
中国专利CN 106914237 A,制备了合成了包括 Pt、Ag、Au、Pd、Rh、Ir、Ru、Co、Ni和Cu,和负载在TiO 2、氧化锌、氧化铈、氧化铝、氧化硅、氧化铁、氧化锰、C 3N 4、介孔碳、超溥碳膜、石墨烯、碳纳米管或分子筛材料等的金属单原子。但这种方法需要先配罝一定浓度的前驱体溶液,冷冻-光照-解冻等操作,容易因浓度控制不当而团聚形成纳米粒子。
中国专利CN105170147 B利用原子层沉积制备了Pd 1/Al 2O 3单原子催化剂,该催化剂具有良好乙炔的加氢活性。但该方法需要严格控制沉积温度、载体流速、沉积时间,操作复杂,设备昂贵。
美国专利US2014275686-A1,通过调节pH控制六水合硝酸钴在二氧化硅形成前驱体,进一步500℃热解形成Co 1/SiO 2单原子。但此方法操作复杂,需要精确调控反应比例,原料昂贵,反应浓度低,产品制备量较少。
技术问题
基于湿化学法、沉积法、热解法的金属单原子制备方法的特点和不足,本发明的目的在于提供一种氮掺杂多孔碳负载金属单原子材料的可控制备方法,以解决现有技术中金属含量低、种类少、可调性差、操作复杂等问题。
技术解决方案
为了实现上述目的,本发明采用如下技术方案:
一种氮掺杂多孔碳负载金属单原子材料的制备方法,包括如下步骤:利用聚合反应将卟啉与金属卟啉聚合,通过调控卟啉与金属卟啉的比例来调控金属含量(0.06-4.00 wt%)、通过调控不同金属卟啉种类调控金属单原子种类(A型、AB型、ABC型)。
在上述的氮掺杂多孔碳负载金属单原子材料的制备方法中,所述聚合方法选自付克烷基化反应、氨基席夫碱反应、醛基席夫碱反应、双键聚合反应中的一种。其中付克烷基化反应选用卟啉为四苯基卟啉TPP,溶剂选自二氯甲烷、1,2-二氯乙烷、1,3-二氯丁烷中的一种或多种,无水氯化铝为催化剂。氨基席夫碱反应选用卟啉为四(4-氨基苯基)卟啉TAPP,溶剂选自正丁醇-邻二氯苯-乙酸混合溶剂,助剂选自对苯二甲醛、联苯二甲醛中的一种。醛基席夫碱反应选用卟啉为四(4-醛基苯基)卟啉TFPP,溶剂选自正丁醇-邻二氯苯-乙酸混合溶剂,助剂选自对苯二胺、联苯二胺中的一种。双键聚合反应选用卟啉为四(4-乙烯基苯基)苯基卟啉TVPP;溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮中的一种或多种,偶氮二异丁腈为催化剂。
在上述的氮掺杂多孔碳负载金属单原子材料的制备方法中,所述对应金属卟啉(MTPP、MTAPP、MTFPP、MTVPP)的金属中心M为贵金属或非贵金属,所述贵金属为Ru、Rh、Pd、Ag、Ir、Pt或Au,所述非贵金属为Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Mo、Cd、Sn、Er、W或Bi。
在上述的氮掺杂多孔碳负载金属单原子材料的制备方法中,所述金属单原子种类有单元素A型金属单原子、双元素AB型金属单原子、三元素ABC型金属单原子或多元素金属单原子。
在上述的氮掺杂多孔碳负载金属单原子材料的制备方法中,所述A型金属单原子的制备中,卟啉与A金属卟啉的质量比例(wt%)选自80~100 : 0~20中的一种比例(总卟啉的比例内关联,加和为100%),优选(99 : 1、97 : 3、94 : 6、90 : 10)。
在上述的氮掺杂多孔碳负载金属单原子材料的制备方法中,所述双元素AB型金属单原子的制备中,卟啉与A、B金属卟啉的质量比例(wt%)选自80~100 : 0~20 : 0~20中的一种比例(总卟啉的比例内关联,加和为100%),优选(96 : 2 : 2、94 : 3 : 3、90 : 5 : 5)。
在上述的氮掺杂多孔碳负载金属单原子材料的制备方法中,所述三元素ABC型金属单原子的制备中,卟啉与A、B、C金属卟啉的质量比例(wt%)选自80~100 : 0~20 : 0~20 : 0~20中的一种比例(总卟啉的比例内关联,加和为100%),优选(94 : 2 : 2 : 2、91 : 3 : 3 : 3、88 : 4 : 4 : 4)。
上述的氮掺杂多孔碳负载金属单原子材料的制备方法,包括如下步骤:
第一步:聚合反应:
A型金属单原子前驱体:称取一定量卟啉与金属卟啉;加入溶剂、助剂或催化剂;磁力搅拌,反应温度60-150℃,反应时间12-48 h;聚合反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80℃干燥过夜备用;
AB型金属单原子前驱体:称取一定量卟啉与A、B金属卟啉;加入溶剂、助剂或催化剂;磁力搅拌,反应温度60-150℃,反应时间12-48 h;聚合反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80℃干燥过夜备用;
ABC型金属单原子前驱体:称取卟啉与A、B、C金属卟啉聚合;加入溶剂、助剂或催化剂;磁力搅拌,反应温度60-150℃,反应时间12-48 h;聚合反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80℃干燥过夜备用;
第二步:碳化:
用管式炉将聚合反应的单原子前驱体进行500-1000℃高温碳化,碳化的气流选自氮气、氩气中的一种,碳化时间1-5 h;冷却至室温后即可得对应的氮掺杂多孔碳负载金属单原子材料M 1/N-C。
 
上述金属单原子的可控制备方法,充分利用了卟啉中N原子与金属M的配位稳定作用,实现金属单原子高分散、高稳定性的特性;充分利用便宜易得的原料,经简单反应:先调控卟啉与金属卟啉比例进行聚合反应,再碳化处理,实现了含量、种类、稳定性的调节。这种金属单原子催化剂的可控制备方法,降低了反应成本和实验要求,可以对多种金属卟啉进行拓展,满足实验多样化要求,丰富了相关领域的研究。
有益效果
与现有技术相比,本发明具有如下有益效果:
1.充分利用卟啉M-N配位作用锚定稳定金属原子,适用面广;
2.精确调控卟啉与金属卟啉的比例,实现金属含量的可控制备(0.06-4.00wt%);
3.合理设计卟啉与金属卟啉种类,实现A型、AB型、ABC型金属单原子的可控制备。
4.所得材料为微孔材料,BET比表面积大。
附图说明
图1为聚合反应及碳化示意图;R=H, NH 2, CHO, C=C; M=Ru, Rh, Pd, Ag, Ir, Pt, Au, Ti, V, Cr, Mn, Fe、Co, Ni, Cu, Ga, Zr, Mo, Cd, Sn, Er, W, Bi;
     图2为付克烷基化反应中不同浓度Pt 1/N-C金属单原子球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属,密度正相关于环数目;
     图3为付克烷基化反应中不同种类A型金属单原子M 1/N-C球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
     图4为付克烷基化反应中AB型、ABC型金属单原子球差校正透射电镜AC HAADF-STEM及Mapping图;圆环标出单原子金属;
     图5为氨基席夫碱反应、醛基席夫碱反应、双键聚合反应所得的A型金属单原子Pt 1/N-C球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
     图6为付克烷基化反应中Pt 1/N-C金属单原子BET吸附曲线及孔径图,Pt-0.73 wt%。
本发明的实施方式
下面结合实施例对本发明做进一步的说明,但本发明的保护范围并不局限于实施例表示的范围。
 
实施例1
100 ml聚四氟乙烯内衬中加入TPP : PtTPP = 0.922 g : 0.008 g (99 wt% : 1 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度60 ℃,反应时间48 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氩气,碳化时间5 h,冷却至室温后即得Pt 1/N-C金属单原子。ICP定量:Pt—0.06 wt%。球差校正透射电镜如图2 A所示。
实施例2
100 ml聚四氟乙烯内衬中加入TPP : PtTPP = 0.922 g : 0.015 g (98 wt% : 2 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度60 ℃,反应时间48 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氩气,碳化时间5 h,冷却至室温后即得Pt 1/N-C金属单原子。ICP定量:Pt—0.21 wt%。球差校正透射电镜如图2 B所示。
实施例3
100 ml聚四氟乙烯内衬中加入TPP : PtTPP = 0.922 g : 0.030 g (97 wt% : 3 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度60 ℃,反应时间48 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氩气,碳化时间5 h,冷却至室温后即得Pt 1/N-C金属单原子。ICP定量:Pt—0.58 wt%。球差校正透射电镜如图2 C所示。
实施例4
100 ml聚四氟乙烯内衬中加入TPP : PtTPP = 0.922 g : 0.060 g (94 wt% : 6 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度60 ℃,反应时间48 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氩气,碳化时间5 h,冷却至室温后即得Pt 1/N-C金属单原子。ICP定量:Pt—0.73 wt%。球差校正透射电镜如图2 D所示。
实施例5
100 ml聚四氟乙烯内衬中加入TPP : TiTPP = 0.922 g : 0.025 g (97 wt% : 3 wt%),30 ml 1,2-二氯乙烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Ti 1/N-C金属单原子。ICP定量:Ti—0.12 wt%。球差校正透射电镜如图3 Ti 1/N-C所示。
实施例6
100 ml聚四氟乙烯内衬中加入TPP : VTPP = 0.922 g : 0.025 g (97 wt% : 3 wt%),30 ml 1,2-二氯乙烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得V 1/N-C金属单原子。ICP定量:V—0.19 wt%。球差校正透射电镜如图3 V 1/N-C所示。
实施例7
100 ml聚四氟乙烯内衬中加入TPP : CrTPP = 0.922 g : 0.026 g (97 wt% : 3 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Cr 1/N-C金属单原子。ICP定量:Cr—0.10 wt%。球差校正透射电镜如图3 Cr 1/N-C所示。
实施例8
100 ml聚四氟乙烯内衬中加入TPP : MnTPP = 0.922 g : 0.100 g (90 wt% : 10 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Mn 1/N-C金属单原子。ICP定量:Mn—0.07 wt%。球差校正透射电镜如图3 Mn 1/N-C所示。
实施例9
100 ml聚四氟乙烯内衬中加入TPP : FeTPP = 0.922 g : 0.100 g (90 wt% : 10 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Fe 1/N-C金属单原子。ICP定量:Fe—0.18 wt%。球差校正透射电镜如图3 Fe 1/N-C所示。
实施例10
100 ml聚四氟乙烯内衬中加入TPP : CoTPP = 0.922 g : 0.100 g (90 wt% : 10 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Co 1/N-C金属单原子。ICP定量:Co—0.20 wt%。球差校正透射电镜如图3 Co 1/N-C所示。
实施例11
100 ml聚四氟乙烯内衬中加入TPP : NiTPP = 0.922 g : 0.100 g (90 wt% : 10 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行700 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Ni 1/N-C金属单原子。ICP定量:Ni—0.22 wt%。球差校正透射电镜如图3 Ni 1/N-C所示。
实施例12
100 ml聚四氟乙烯内衬中加入TPP : CuTPP = 0.922 g : 0.100 g (90 wt% : 10 wt%),30 ml 1,2-二氯乙烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Cu 1/N-C金属单原子。ICP定量:Cu—4.00 wt%。球差校正透射电镜如图3 Cu 1/N-C所示。
实施例13
100 ml聚四氟乙烯内衬中加入TPP : GaTPP = 0.922 g : 0.107 g (90 wt% : 10 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行800 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Ga 1/N-C金属单原子。ICP定量:Ga—0.07 wt%。球差校正透射电镜如图3 Ga 1/N-C所示。
实施例14
100 ml聚四氟乙烯内衬中加入TPP : ZrTPP = 0.922 g : 0.116 g (89 wt% : 11 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Zr 1/N-C金属单原子。ICP定量:Zr—0.06 wt%。球差校正透射电镜如图3 Zr 1/N-C所示。
实施例15
100 ml聚四氟乙烯内衬中加入TPP : MoTPP = 0.922 g : 0.028 g (97 wt% : 3 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行900 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Mo 1/N-C金属单原子。ICP定量:Mo—0.15 wt%。球差校正透射电镜如图3 Mo 1/N-C所示。
实施例16
100 ml聚四氟乙烯内衬中加入TPP : RuTPP = 0.922 g : 0.028 g (97 wt% : 3 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Ru 1/N-C金属单原子。ICP定量:Ru—0.10 wt%。球差校正透射电镜如图3 Ru 1/N-C所示。
实施例17
100 ml聚四氟乙烯内衬中加入TPP : RhTPP = 0.922 g : 0.014 g (98 wt% : 2 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Rh 1/N-C金属单原子。ICP定量:Rh—0.08 wt%。球差校正透射电镜如图3 Rh 1/N-C所示。
实施例18
100 ml聚四氟乙烯内衬中加入TPP : PdTPP = 0.922 g : 0.027 g (97 wt% : 3 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行1000 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Pd 1/N-C金属单原子。ICP定量:Pd—0.38 wt%。球差校正透射电镜如图3 Pd 1/N-C所示。
实施例19
100 ml聚四氟乙烯内衬中加入TPP : AgTPP = 0.955 g : 0.054 g (94 wt% : 6 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Ag 1/N-C金属单原子。ICP定量:Ag—0.37 wt%。球差校正透射电镜如图3 Ag 1/N-C所示。
实施例20
100 ml聚四氟乙烯内衬中加入TPP : CdTPP = 0.922 g : 0.027 g (97 wt% : 3 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Cd 1/N-C金属单原子。ICP定量:Cd—0.32 wt%。球差校正透射电镜如图3 Cd 1/N-C所示。
实施例21
100 ml聚四氟乙烯内衬中加入TPP : SnTPP = 0.922 g : 0.030 g (97 wt% : 3 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Sn 1/N-C金属单原子。ICP定量:Sn—0.43 wt%。球差校正透射电镜如图3 Sn 1/N-C所示。
实施例22
100 ml聚四氟乙烯内衬中加入TPP : ErTPP = 0.922 g : 0.100 g (90 wt% : 10 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Er 1/N-C金属单原子。ICP定量:Er—0.06 wt%。球差校正透射电镜如图3 Er 1/N-C所示。
实施例23
100 ml聚四氟乙烯内衬中加入TPP : WTPP = 0.922 g : 0.031 g (97 wt% : 3 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得W 1/N-C金属单原子。ICP定量:W—0.27 wt%。球差校正透射电镜如图3 W 1/N-C所示。
实施例24
100 ml聚四氟乙烯内衬中加入TPP : IrTPP = 0.922 g : 0.033 g (97 wt% : 3 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Ir 1/N-C金属单原子。ICP定量:Ir—0.38 wt%。球差校正透射电镜如图3 Ir 1/N-C所示。
实施例25
100 ml聚四氟乙烯内衬中加入TPP : AuTPP = 0.922 g : 0.008 g (99 wt% : 1 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Au 1/N-C金属单原子。ICP定量:Au—0.19 wt%。球差校正透射电镜如图3 Au 1/N-C所示。
实施例26
100 ml聚四氟乙烯内衬中加入TPP : BiTPP = 0.922 g : 0.066 g (93 wt% : 7 wt%),30 ml 二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度80 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Bi 1/N-C金属单原子。ICP定量:Bi—0.08 wt%。球差校正透射电镜如图3 Bi 1/N-C所示。
实施例27
100 ml聚四氟乙烯内衬中加入TPP : PtTPP : SnTPP = 0.922 g : 0.030 g : 0.030 g (94 wt% : 3 wt% : 3 wt%),30 ml 1,3-二氯丁烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600℃高温碳化,碳化气流选自氩气,碳化时间3 h,冷却至室温后即得Pt 1-Sn 1/N-C金属单原子。ICP定量:Pt—0.48 wt%、Sn—0.35 wt%。球差校正透射电镜和Mapping如图4 Pt 1-Sn 1/N-C所示。
实施例28
100 ml聚四氟乙烯内衬中加入TPP : PtTPP  : SnTPP : CuTPP = 0.922 g : 0.030 g : 0.030 g : 0.030 g (91 wt% : 3 wt% : 3 wt% : 3 wt%),30 ml二氯甲烷,3.195 g 无水氯化铝;不锈钢反应釜中磁力搅拌,反应温度100 ℃,反应时间24 h;付克烷基化反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将付克烷基化反应聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Pt 1-Sn 1-Cu 1/N-C金属单原子。ICP定量:Pt—0.45 wt%、Sn—0.28 wt%、Cu—0.18 wt%。球差校正透射电镜和Mapping如图4 Pt 1-Sn 1-Cu 1/N-C所示。
实施例29
250 ml三口烧瓶中加入TAPP : PtTAPP = 0.970 g : 0.030 g (97 wt% : 3 wt% ),50 ml正丁醇-50 ml邻二氯苯-10 ml乙酸(6 mol/L)混合溶剂,0.40 g 对苯二甲醛;磁力搅拌,反应温度100 ℃,反应时间24 h;氨基席夫碱聚合反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Pt 1/N-C金属单原子。ICP定量:Pt—0.32 wt%。球差校正透射电镜如图5A Pt 1/N-C所示。
实施例30
250 ml三口烧瓶中加入TFPP : PtTFPP = 0.970 g : 0.030 g (97 wt% : 3 wt% ),50 ml正丁醇-50 ml邻二氯苯-10 ml乙酸(6 mol/L)混合溶剂,0.30 g 对苯二胺;磁力搅拌,反应温度100 ℃,反应时间24 h;醛基席夫碱聚合反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Pt 1/N-C金属单原子。ICP定量:Pt—0.37 wt%。球差校正透射电镜如图5B Pt 1/N-C所示。
实施例31
250 ml三口烧瓶中加入TVPP : PtTVPP = 0.970 g : 0.030 g (97 wt% : 3 wt% ),100 ml N,N-二甲基甲酰胺,0.20 g 偶氮二异丁腈;磁力搅拌,反应温度200 ℃,反应时间24 h;双键聚合反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80 oC干燥过夜备用。用管式炉将聚合产物进行600 ℃高温碳化,碳化气流选自氮气,碳化时间3 h,冷却至室温后即得Pt 1/N-C金属单原子。ICP定量:Pt—0.41 wt%。球差校正透射电镜如图5C Pt 1/N-C所示。

Claims (10)

  1. 一种氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于包括如下步骤:利用聚合反应将卟啉与金属卟啉聚合,通过调控卟啉与金属卟啉的比例来调控金属含量、通过调控不同金属卟啉种类调控金属单原子种类。
  2. 根据权利要求1所述的氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于所述聚合方法选自付克烷基化反应、氨基席夫碱反应、醛基席夫碱反应、双键聚合反应中的一种。
  3. 根据权利要求2所述的氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于所述付克烷基化反应选用卟啉为四苯基卟啉TPP,溶剂选自二氯甲烷、1,2-二氯乙烷、1,3-二氯丁烷中的一种或多种,无水氯化铝为催化剂。
  4. 根据权利要求2所述的氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于所述氨基席夫碱反应选用卟啉为四(4-氨基苯基)卟啉,溶剂选自正丁醇-邻二氯苯-乙酸混合溶剂,助剂选自对苯二甲醛、联苯二甲醛中的一种。
  5. 根据权利要求2所述的氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于所述醛基席夫碱反应选用卟啉为四(4-醛基苯基)卟啉,溶剂选自正丁醇-邻二氯苯-乙酸混合溶剂,助剂选自对苯二胺、联苯二胺中的一种。
  6. 根据权利要求2所述的氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于所述双键聚合反应选用卟啉为四(4-乙烯基苯基)苯基卟啉,溶剂选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮中的一种或多种,偶氮二异丁腈为催化剂。
  7. 根据权利要求1所述的氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于所述金属卟啉的金属中心M为贵金属或非贵金属,所述贵金属为Ru、Rh、Pd、Ag、Ir、Pt或Au,所述非贵金属为Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Mo、Cd、Sn、Er、W或Bi。
  8. 根据权利要求1所述的氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于所述金属单原子种类有单元素A型金属单原子、双元素AB型金属单原子、三元素ABC型金属单原子或多元素金属单原子。
  9. 根据权利要求8所述的氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于,所述A型金属单原子的制备中,卟啉与A金属卟啉的质量比例选自80~100 : 0~20中的一种比例,两者的和为100%;所述双元素AB型金属单原子的制备中,卟啉与A、B金属卟啉的质量比例选自80~100 : 0~20 : 0~20中的一种比例,两者的和为100%;所述三元素ABC型金属单原子的制备中,卟啉与A、B、C金属卟啉的质量比例选自80~100 : 0~20 : 0~20 : 0~20中的一种比例,两者的和为100%。
  10. 根据权利要求1所述的氮掺杂多孔碳负载金属单原子材料的制备方法,其特征在于,包括如下步骤:
    第一步:聚合反应:
    A型金属单原子前驱体:称取卟啉与金属卟啉;加入溶剂、助剂或催化剂,磁力搅拌,反应温度60-150℃,反应时间12-48 h;聚合反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80℃干燥过夜备用;
    AB型金属单原子前驱体:称取卟啉与A、B金属卟啉;加入溶剂、助剂或催化剂,磁力搅拌,反应温度60-150℃,反应时间12-48 h;聚合反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80℃干燥过夜备用;
    ABC型金属单原子前驱体:称取卟啉与A、B、C金属卟啉聚合;加入溶剂、助剂或催化剂,磁力搅拌,反应温度60-150℃,反应时间12-48 h;聚合反应后依次用THF、丙酮、甲醇索氏提取提纯,真空80℃干燥过夜备用;
    第二步:碳化:
    用管式炉将聚合反应的单原子前驱体进行500-1000℃高温碳化,碳化的气流选自氮气、氩气中的一种,碳化时间1-5h;冷却至室温后即可得对应的氮掺杂多孔碳负载金属单原子材料M 1/N-C。
     
PCT/CN2018/080758 2018-03-28 2018-03-28 一种氮掺杂多孔碳负载金属单原子材料的制备方法 WO2019183820A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080758 WO2019183820A1 (zh) 2018-03-28 2018-03-28 一种氮掺杂多孔碳负载金属单原子材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080758 WO2019183820A1 (zh) 2018-03-28 2018-03-28 一种氮掺杂多孔碳负载金属单原子材料的制备方法

Publications (1)

Publication Number Publication Date
WO2019183820A1 true WO2019183820A1 (zh) 2019-10-03

Family

ID=68059181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080758 WO2019183820A1 (zh) 2018-03-28 2018-03-28 一种氮掺杂多孔碳负载金属单原子材料的制备方法

Country Status (1)

Country Link
WO (1) WO2019183820A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111715263A (zh) * 2020-07-03 2020-09-29 广州志成新材料有限公司 一种氮掺杂碳负载单原子催化剂的制备方法
CN113571714A (zh) * 2021-07-26 2021-10-29 山东能源集团有限公司 一种碳基铂铁合金材料及其应用
CN115025799A (zh) * 2022-05-23 2022-09-09 天津大学 一种活性碳负载的金属-氮-碳催化剂的制备方法
CN115805091A (zh) * 2022-10-19 2023-03-17 重庆大学 一种铜-银双单原子对光催化剂的制备方法
CN116078432A (zh) * 2022-11-29 2023-05-09 广东宜纳新材料科技有限公司 一种单原子基催化剂及其制备方法
CN118325393A (zh) * 2024-03-19 2024-07-12 江苏佳饰家新材料集团股份有限公司 一种水性纳米防伪喷墨及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159210A (zh) * 2013-04-10 2013-06-19 北京化工大学 一种制备氮掺杂石墨烯的新方法
CN103855367A (zh) * 2012-11-28 2014-06-11 中国科学院大连化学物理研究所 锂-空气电池正极用氮掺杂的多孔碳材料
CN104645989A (zh) * 2015-01-30 2015-05-27 武汉理工大学 一种杂原子掺杂多孔炭材料及其制备方法
CN106477551A (zh) * 2016-10-13 2017-03-08 南京航空航天大学 一种金属有机框架衍生富氮多孔碳材料及其制备方法
CN106744786A (zh) * 2016-11-10 2017-05-31 上海应用技术大学 一种金属‑氮掺杂多孔碳微球的制备方法
CN108579783A (zh) * 2018-03-28 2018-09-28 中山大学 一种氮掺杂多孔碳负载金属单原子材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855367A (zh) * 2012-11-28 2014-06-11 中国科学院大连化学物理研究所 锂-空气电池正极用氮掺杂的多孔碳材料
CN103159210A (zh) * 2013-04-10 2013-06-19 北京化工大学 一种制备氮掺杂石墨烯的新方法
CN104645989A (zh) * 2015-01-30 2015-05-27 武汉理工大学 一种杂原子掺杂多孔炭材料及其制备方法
CN106477551A (zh) * 2016-10-13 2017-03-08 南京航空航天大学 一种金属有机框架衍生富氮多孔碳材料及其制备方法
CN106744786A (zh) * 2016-11-10 2017-05-31 上海应用技术大学 一种金属‑氮掺杂多孔碳微球的制备方法
CN108579783A (zh) * 2018-03-28 2018-09-28 中山大学 一种氮掺杂多孔碳负载金属单原子材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRULLER, S. ET AL.: "Bimetallic porous porphyrin polymer-derived nonprecious metal electrocatalysts for oxygen reduction reactions", J. MATER. CHEM. A, vol. 3, no. 47, 30 November 2015 (2015-11-30), pages 23799 - 23808, XP055640441, ISSN: 2050-7488 *
LIN, QIPU ET AL.: "Heterometal-Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts", ADV. MATER., vol. 27, no. 22, 27 April 2015 (2015-04-27), pages 3431 - 3436, XP055640424, ISSN: 1521-4095 *
WU, ZHONGSHUAI ET AL.: "High-Performance Electrocatalysts for Oxygen Reduction Derived from Cobalt Porphyrin-Based Conjugated Mesoporous Polymers", ADV. MATER., vol. 26, no. 9, 5 March 2014 (2014-03-05), pages 1450 - 1455, XP055640438, ISSN: 1521-4095 *
XIANG, ZHONGHUA ET AL.: "Highly Efficient Electrocatalysts for Oxygen Reduction Based on 2D Covalent Organic Polymers Complexed with Non-precious Metals", ANGEW. CHEM. INT. ED., vol. 53, 24 February 2014 (2014-02-24), pages 2433 - 2437, XP055640416, ISSN: 0570-0833 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111715263A (zh) * 2020-07-03 2020-09-29 广州志成新材料有限公司 一种氮掺杂碳负载单原子催化剂的制备方法
CN113571714A (zh) * 2021-07-26 2021-10-29 山东能源集团有限公司 一种碳基铂铁合金材料及其应用
CN115025799A (zh) * 2022-05-23 2022-09-09 天津大学 一种活性碳负载的金属-氮-碳催化剂的制备方法
CN115025799B (zh) * 2022-05-23 2023-08-18 天津大学 一种活性碳负载的金属-氮-碳催化剂的制备方法
CN115805091A (zh) * 2022-10-19 2023-03-17 重庆大学 一种铜-银双单原子对光催化剂的制备方法
CN115805091B (zh) * 2022-10-19 2024-05-03 重庆大学 一种铜-银双单原子对光催化剂的制备方法
CN116078432A (zh) * 2022-11-29 2023-05-09 广东宜纳新材料科技有限公司 一种单原子基催化剂及其制备方法
CN118325393A (zh) * 2024-03-19 2024-07-12 江苏佳饰家新材料集团股份有限公司 一种水性纳米防伪喷墨及其制备方法

Similar Documents

Publication Publication Date Title
CN108579783B (zh) 一种氮掺杂多孔碳负载金属单原子材料的制备方法
WO2019183820A1 (zh) 一种氮掺杂多孔碳负载金属单原子材料的制备方法
Wu et al. Formation of PdO on Au–Pd bimetallic catalysts and the effect on benzyl alcohol oxidation
Li et al. Carbon-supported metal single atom catalysts
KR101303061B1 (ko) 다중벽 탄소나노튜브 제조용 촉매조성물
CN105597739B (zh) 一种Pt@CNTs催化剂及其制备和应用
WO2019137020A1 (zh) 一种用于甲醛净化的过渡金属和氮共掺杂碳复合材料及其制备方法
Yang et al. High-performance Pd–Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation
KR100976174B1 (ko) 얇은 다중벽 탄소나노튜브 제조용 촉매조성물 및 이의 제조방법
Yu et al. Ultrasmall silver nanoparticles supported on silica and their catalytic performances for carbon monoxide oxidation
EP3092072B1 (en) A process for vapor-phase methanol carbonylation to methyl formate
WO2018192559A1 (zh) 负载型高选择性核壳结构双金属催化剂及其制备方法和应用
CN110404573A (zh) 一种超小钯基合金材料的制备方法及应用
CN110013854B (zh) 一种负载型镍系催化剂的制备及在c5/c9石油树脂催化加氢中的应用
Yan et al. Gold on carbon and titanium oxides composites: Highly efficient and stable acetylene hydrogenation in large excess of ethylene
CN109622000A (zh) 一种非贵金属乙炔选择性加氢催化剂及其制备方法和应用
Ye et al. Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon
CN111013603B (zh) 用于乙炔选择性加氢反应的负载型PdCu双金属催化剂及其制备方法
CN109999820A (zh) 一种用于氢化石油树脂制备的镍基催化剂及其制备方法与应用
Abd El Rahman et al. Pd nanoparticles supported on iron oxide nanorods for CO oxidation: Effect of preparation method
CN111715263A (zh) 一种氮掺杂碳负载单原子催化剂的制备方法
WO2017181514A1 (zh) 采用负载型双金属纳米催化剂的2,2'-联吡啶的合成方法
Yang et al. AgAuPd/meso-Co3O4: High-performance catalysts for methanol oxidation
KR100962171B1 (ko) 탄소나노튜브 합성용 금속나노촉매 및 이를 이용한탄소나노튜브의 제조방법
CN110732335B (zh) 一种用于甲烷干气重整反应的过渡金属@BOx核-壳结构纳米催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912174

Country of ref document: EP

Kind code of ref document: A1