WO2021073062A1 - 一种虚拟立体存储系统及方法 - Google Patents
一种虚拟立体存储系统及方法 Download PDFInfo
- Publication number
- WO2021073062A1 WO2021073062A1 PCT/CN2020/085395 CN2020085395W WO2021073062A1 WO 2021073062 A1 WO2021073062 A1 WO 2021073062A1 CN 2020085395 W CN2020085395 W CN 2020085395W WO 2021073062 A1 WO2021073062 A1 WO 2021073062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- automatic
- dimensional
- warehouse
- virtual
- unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/0407—Storage devices mechanical using stacker cranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/137—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
- B65G1/1373—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
Definitions
- the invention relates to the technical field of transportation and storage control of automobile stamping material frames, in particular to a virtual three-dimensional storage system and method.
- the prior art adopts the form of three-dimensional shelves, which can realize the automatic picking and placing of goods.
- the warehouse needs to be equipped with physical three-dimensional shelves, stackers and transportation equipment at the same time, which results in high construction costs and long construction time; moreover, three-dimensional shelves
- the location is relatively fixed, and the storage space cannot be reasonably distributed according to the size of the goods or baskets.
- the running track of the Cartesian robot is set on the top of the supporting column, so that the supporting column and the running track form a storage space; the goods are stored and stored through the movement and expansion of the Cartesian coordinate robot;
- the virtual storage space is limited to the robot's orbit, and the entire storage space cannot be allocated arbitrarily according to the size of the goods or baskets.
- the available space of the virtual storage is limited to a certain extent; moreover, due to the need to build robots
- the dedicated running track also requires construction costs and time costs.
- the present invention provides a virtual three-dimensional storage system and method.
- the virtual three-dimensional library is used to replace the physical three-dimensional library, and the storage unit can be automatically planned according to the size of the basket, so as to realize the automatic storage of the basket in the unmanned state. Put it on the ground, pile it up and take it out.
- the present invention adopts the following technical solutions:
- a virtual three-dimensional storage system including:
- the automatic carrying unit is used to complete the corresponding pick-up, transportation or palletizing action for the basket at the set position according to the received control instruction;
- the visual control unit is configured to obtain image information of the actual position of the basket on the automatic carrying unit, as well as the position information of the basket at the position to be picked and placed, and the stacking situation of the basket;
- the warehouse management unit is configured to establish a three-dimensional data model of the warehouse, and according to the size and shape of the basket, the storage space in the warehouse is divided into a number of virtual storage units in a plane range and a three-dimensional range; the warehouse management unit is based on The received outbound and inbound task instructions control the automatic carrying unit to run to the corresponding position and execute the corresponding outbound and inbound actions.
- the material frame is modeled by size and imported into the storage unit set in the warehouse three-dimensional data model to generate an inventory layout drawing;
- the inventory layout drawing includes an inventory layout drawing used to display the planar position of the storage unit and An inventory three-dimensional layout drawing showing the three-dimensional position of the storage unit;
- the layout drawing is updated in real time and displays the location and quantity of the stored baskets.
- the position of the storage unit in the three-dimensional data model of the warehouse is displayed in the form of coordinates.
- a man-machine interaction AMS unit configured to query the current automatic carrier vehicle status and task execution through an information network, alarm the automatic carrier vehicle failure, and count inventory information.
- the storage unit reserves the running channel of the automatic carrying unit during division.
- the vision control unit includes at least two sets of binocular cameras, one of which is used to detect the actual position of the material basket on the automatic carrying unit, and calculate the deviation distance and angle between the actual position and the initial position; Group cameras are used to detect the position information of the baskets and the stacking status of the baskets.
- the automatic carrying unit is an automatic forklift;
- the automatic forklift includes: an automatic forklift body, an automatic forklift scheduling module, and an automatic forklift control module;
- the automatic forklift dispatching module receives the control instructions for executing outbound or inbound sent by the warehouse management unit, and controls the automatic forklift body to run to the target position according to the set path according to the control instructions; and controls the automatic forklift through the automatic forklift control module.
- the carrying body performs corresponding reclaiming, transportation or palletizing actions.
- the present invention adopts the following technical solutions:
- a virtual three-dimensional library comprising: the above-mentioned virtual three-dimensional storage system, an automatic carrying unit charging area, and an automatic carrying unit safe operation channel; the arrangement of the automatic carrying unit safe operation channel ensures that the automatic carrying body can run to any storage unit The plane position and can complete the action of picking and unloading the basket.
- the present invention adopts the following technical solutions:
- a virtual three-dimensional storage method including:
- the warehouse space is divided into several virtual storage units in the plane range and the three-dimensional range;
- the automatic carrying unit is controlled to perform corresponding outbound and inbound tasks; at the same time, the position and quantity of the stored baskets are updated and displayed in real time.
- the reclaiming and discharging mentioned in the present invention all refer to the reclaiming frame or the discharging basket.
- the material basket can also be replaced with a material frame or a material box.
- the instructions or tasks mentioned in the present invention for loading and unloading all include the complete process of reclaiming from a set location, transporting, unloading or stacking at the set location.
- the present invention can replace a real three-dimensional warehouse with a virtual three-dimensional warehouse, saving a large amount of three-dimensional warehouse construction and manufacturing costs.
- the position of the material frame is recognized by a 3D vision camera, the forklift is automatically controlled to adjust the left and right postures of the picking/unloading frame, and the fork is raised to the bottom of the material frame to realize the material frame and
- the separation between the ground or the two material boxes replaces the current manual operation mode, which can continuously complete the transportation of multiple material boxes, and the operation efficiency is greatly improved. Therefore, it can completely replace labor and realize the absence of stacking boxes in factories and logistics warehouses. Humanize, solve recruitment problems and reduce operating costs.
- the invention can realize the automatic placing, stacking and taking out of the multi-layer material basket in the open area under the unmanned state, the whole process does not require personnel to participate, and the personal safety of the workers is guaranteed.
- the size of the storage unit of the present invention can be arbitrarily planned and set according to the size of the basket, which solves the problem that the storage unit of the current three-dimensional library is fixed in size and cannot be adapted to the storage of baskets of different sizes.
- the invention can realize the statistics of inventory information, and can satisfy the remote network management of factory-level WMS information.
- the system and method of the present invention can be directly realized by using an automatic forklift in a press line production workshop, without adding and designing a new structure, saving costs, and facilitating the realization and popularization of the system and method.
- Figure 1 is a virtual stereo library management configuration diagram in an embodiment of the present invention
- Figure 2 is a structural body diagram of an automatic forklift in an embodiment of the present invention.
- Figure 3 is a schematic diagram of a forklift stacking two layers of material frames in an embodiment of the present invention
- Fig. 4 is a diagram of the architecture of a human-computer interaction network in an embodiment of the present invention.
- a virtual three-dimensional storage system including:
- the automatic carrying unit is used to complete the corresponding pick-up, transportation or palletizing action for the basket at the set position according to the received control instruction;
- the visual control unit is configured to obtain the actual position image information of the basket on the automatic carrying unit, as well as the position information of the basket at the position to be picked and placed, and the stacking situation of the basket;
- the warehouse management unit is configured to establish a three-dimensional data model of the warehouse, and according to the size and shape of the basket, the storage space in the warehouse is divided into a number of virtual storage units in the plane range and the three-dimensional range; the warehouse The management unit controls the automatic carrying unit to run to the corresponding position and executes the corresponding exit and warehousing actions according to the received instructions for the task of exiting and entering the warehouse.
- the automatic carrying unit is realized by using an intelligent unmanned forklift
- the intelligent unmanned forklift includes: a forklift body, a forklift dispatching module, and a forklift control module;
- the forklift dispatch module receives the warehouse management unit's outbound and inbound control instructions, selects the optimal route according to the control instructions, and controls the forklift body to run to the target position according to the set path; at the same time, according to the received inbound and outbound instructions, pass the forklift
- the control module controls the forklift body to perform corresponding reclaiming, transportation or palletizing actions.
- the automatic forklift body is an intelligent unmanned forklift, including a power unit, a hydraulic lifting device, a forklift chassis (including a transmission system, a steering system, a braking system, and a driving system) and electrical equipment.
- the main frame form of the automatic forklift body is shown in Figure 2. It adopts T-shaped or L-shaped, with a cubic control box at the front; two high-power DC drive motors are installed at the bottom of the automatic forklift body to perform its walking and steering functions.
- a large-capacity and high-performance lithium battery is built in the middle of the box.
- the battery is fixed on the roller support by a positioning pin, which is convenient for maintenance and replacement.
- the electrode column of the battery is connected to the charging pawl on the bottom of the car by a high-strength quick plug, which realizes automatic paw drop charging at the charging station.
- the on-board charging connector is automatically connected to the ground charging system and charging is performed. After the charging is completed, the automatic forklift will automatically leave the charging system and drive to the work area or standby area to start normal operation
- the upper part of the box is the electrical control part, which is equipped with special hardware such as power switch, relay, DC drive, single-chip controller, and cooling fan.
- a laser scanner is installed at the front end of the bottom of the car body to detect obstacles within 2 meters directly in front, so that the automatic forklift can send an evasive signal to stop or go around. And when cornering, anti-collision soft limit detection.
- the vision control unit is two sets of industrial-grade CCD binocular cameras installed on the top of the car body, one of which is set on the top of the automatic forklift to detect and recognize the position and contour of the material frame on the car body, and the other A visual camera that is set to obtain horizontal images and is used to detect image information for identifying the position to be picked and placed.
- the camera 1 When taking the material frame, the camera 1 records the actual position of the current material frame through visual photographing and scanning, and transmits the deviation distance and angle between the actual position and the initial position to the automatic forklift to ensure its picking accuracy.
- the camera 1 When unloading the material frame, the camera 1 sends the position of the material frame on the car body to the automatic forklift to ensure its accuracy, and the camera 2 scans whether there is a material frame directly in front of it and the information of the material frame; at the same time, the stacking position information of the material frame Save it to the 3D layout drawing for statistics and view of the virtual 3D library information.
- the camera on the automatic forklift will feedback the information to the production board for manual processing.
- the automatic forklift not only has the walking and turning lifting function of an ordinary forklift, but also has a visual assistance system to achieve greater autonomy and safety.
- the industrial-grade CCD binocular camera is installed on an automatic forklift, which can replace the human eye for measurement and judgment.
- the CCD camera is used to convert the captured target into an image signal, which is sent to a dedicated image processing system, according to the pixel distribution, brightness, and color
- the image system performs various operations on these signals to extract the characteristics of the target, such as: area, length, number, location, etc.; finally, output the result according to the preset tolerance and other conditions, such as: Size, angle, offset, number, pass/fail, yes/no, etc.
- the warehouse management unit adopts three-dimensional three-dimensional modeling (establishing a mathematical model), and divides the identified storage space into a number of virtual storage units in the plane range and the three-dimensional range.
- Each storage unit is embodied in the form of coordinates, and the coordinates are established.
- the map is like a row of virtual grid shelves; the size of each grid is set according to the size and shape of the basket.
- the material frame is modeled according to the size and imported into the map grid, and the inventory plan and three-dimensional layout can be generated in advance;
- the inventory layout includes the inventory layout for showing the location of the storage unit and the inventory for showing the three-dimensional location of the storage unit Three-dimensional layout drawing;
- the layout drawing is updated in real time and displays the position and quantity of the stored baskets.
- various parts can be partitioned or a non-partitioned mixed storage scheme can be formulated according to requirements; the warehouse management unit can be networked with the production management system or the logistics management system to realize fully automatic and unmanned management.
- the human-computer interaction AMS unit also includes a human-computer interaction AMS unit, which uses a multi-interface high-resolution touch screen and industrial computer.
- the human-computer interaction AMS unit is connected to the communication system of the automatic forklift via Ethernet to wireless AP, and can view the current vehicle status and task execution through the information network; manage the online and offline of the vehicle, and handle abnormal alarms and tasks. At the same time, it can meet the requirements of statistical inventory information and handling inbound and outbound; it can meet the remote network management of factory-level WMS information.
- the vehicle status includes online status and offline status.
- the online status refers to the operating status, working status, or charging status of the automatic forklift.
- the offline state refers to the state in which the automatic forklift is not in the system commanded by the ground control center due to a malfunction.
- the human-computer interaction AMS unit can also realize abnormal alarms, such as: the automatic forklift cannot move when the battery is dead, or communication failure, overweight and overload, obstacles, etc.
- the warehouse management unit After receiving the information, the warehouse management unit dispatches the task information to the automatic forklift system, controls the automatic forklift to perform the outbound task, and forks the raw materials or finished products to the corresponding outbound warehouse. target location.
- the warehouse management unit dispatches the information to the automatic forklift body, and controls the automatic forklift body to go to the corresponding target location to perform reclaiming
- the task is to transport materials to the preset storage location.
- a virtual three-dimensional library including: the virtual three-dimensional storage system based on machine vision and automatic forklifts in the first embodiment, the charging area of the automatic forklift body, and the safe operation channel of the automatic forklift body; Among them, the arrangement of the safe operation channel of the automatic forklift body ensures that the automatic forklift body can run to the plane position where any storage unit is located and can complete the action of picking and unloading the basket.
- the three-dimensional warehouse is equipped with an entrance and an exit to facilitate the unified planning of the movement of the automatic forklift body.
- the embodiment of the present invention uses a virtual three-dimensional warehouse instead of a physical three-dimensional warehouse, and is applicable to all warehouses that store parts through baskets, material frames, or bins.
- the material basket, material frame or material box in this embodiment are all standard structures with high precision requirements.
- Figure 3 shows a structural form of the material basket.
- the upper end of the column of the material basket is square or tapered.
- the lower end of the column has a bowl-shaped structure with a larger diameter than the upper end, which is beneficial to stacking.
- those skilled in the art can also choose other forms of basket structures according to actual needs.
- the virtual three-dimensional storage system and three-dimensional library based on machine vision and automatic forklifts in this embodiment can be based on the vision system, and the warehouse space can be arbitrarily distributed according to the warehouse digital model according to the size of the goods or baskets without being restricted by the fixed position of physical shelves. , To achieve virtual shelves in the entire storage space, without the need to build shelves or other facilities, eliminating construction costs and improving work efficiency.
- a virtual three-dimensional storage method based on machine vision and automatic forklifts including:
- the warehouse space is divided into a number of virtual storage units in the plane range and the three-dimensional range;
- the automatic carrying unit is controlled to perform corresponding outbound and inbound tasks; at the same time, the three-dimensional layout diagram is updated in real time and the position and quantity of the stored baskets are displayed.
- the material frame is sent to the human-computer interaction AMS unit to generate a new warehousing task by scanning the code or the factory-level WMS at the warehousing station.
- the human-computer interaction AMS unit will give priority to the task number, the warehousing station and the target destination.
- the class is assigned to the automatic forklift in the normal state.
- the automatic forklift body After the automatic forklift body receives the task, lift the charging claw to disconnect the charging signal. Drive to the storage platform according to the predetermined route.
- the horizontal vision camera on the forklift will take pictures and recognize the material frame. After the identification is correct, adjust the height of the fork so that the fork enters the bottom of the material frame. Then the top vision camera takes a picture of the material frame and records the position on the fork to prevent the material frame from shifting during the movement of the automatic forklift and causing the delivery failure.
- the automatic forklift body picks up the goods, leave the pick-up platform. First, lower the fork to a safe height, and send the pickup signal to the human-computer interaction AMS unit. The next step is to leave the pick-up location and go to the storage location.
- the vision camera on the forklift will take pictures of the placement position to identify whether there are foreign objects or the position of the bottom material frame. After confirming that it can be placed safely, the automatic forklift lifts the material frame to the required height and enters the placement position. Then descend from the material frame.
- the automatic forklift body After the automatic forklift body finishes unloading, it sends the task completion command to the human-computer interaction AMS unit, and the human-computer interaction AMS unit ends the executed tasks and refreshes the unexecuted tasks (the virtual three-dimensional library layout drawing adds the storage stack Bit information).
- the automatic forklift automatically returns to the idle charging station for charging standby when there is no task assigned. If there is a new task assigned, it will automatically carry out other warehouse-in or out-of-warehouse tasks after the discharge is completed.
- the man-machine interactive AMS unit assigns the task number, reclaiming location and target end point to the automatic forklift in the normal state.
- the material baskets or racks stacked by the virtual rack are all standard material frames and the same parts.
- the upper material baskets are preferentially taken.
- the automatic forklift body After picking up the goods, the automatic forklift body will leave the picking position. First, lower the fork to a safe height, and then send the pickup signal to the human-computer interaction AMS unit. The next step is to leave the pickup location and go to the outbound platform.
- the vision camera on the forklift will take pictures of the outbound platform to identify whether there are foreign objects or material frames. After confirming that it can be placed safely, the automatic forklift lifts the material frame to the height of the outbound platform and enters the placement position. Then descend from the material frame.
- the automatic forklift body After the automatic forklift body finishes unloading, it sends the task completion command to the human-computer interaction AMS unit, and the human-computer interaction AMS unit ends the executed tasks and refreshes the unexecuted tasks (the virtual stereo library layout minus the outbound Stacking information).
- the automatic forklift automatically returns to the idle charging station for charging standby when there is no task assigned. If there is a new task assigned, it will automatically carry out other warehouse-in or out-of-warehouse tasks after the discharge is completed.
- the network structure of the present invention is modular, easy to expand, easy to maintain, and beneficial to improving the handling and stacking efficiency of the virtual three-dimensional library, and improving the safety of manual operations.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Warehouses Or Storage Devices (AREA)
Abstract
一种虚拟立体存储系统及方法,包括:自动运载单元,用于根据接收的控制指令对设定位置的料筐完成相应的取货、运输或者码垛动作;视觉控制单元,被配置为获取料筐在自动运载单元上的实际位置图像信息,以及待取放货位置的料筐位置信息以及料筐堆垛情况;仓库管理单元,被配置为建立仓库三维数据模型,根据料筐的尺寸和形状,将仓库中可进行仓储的空间在平面范围和立体范围内分别划分为若干虚拟仓储单元;仓库管理单元根据接收到的出、入库任务指令,控制自动运载单元运行至相应的位置并执行相应的出、入库动作。该存储系统能够实现无人状态下自动进行多层料筐在空地放置、堆高和取出,整个过程无需人员参与,保证工作人员的人身安全。
Description
本发明涉及汽车冲压料框的搬运与存放控制技术领域,特别涉及一种虚拟立体存储系统及方法。
随着视觉科技逐步被应用到仓库的实际操作过程中,智能仓储更是成为未来发展的区域。其中,随着3D视觉技术的成熟,可以帮助人类解决诸多问题。目前汽车行业的冲压零件都是装在一个个料框里,料筐可逐层堆高到多层,目前仍为人工开叉车运送料筐到存放区或坯料立体库中罗列进行堆垛作业;由于是自动化生产线,对于工人操作熟练度要求较高,存在个体劳动强度大、易疲劳、安全隐患大等弊端。
现有技术采用立体货架的形式,能够实现货物的自动化取放,但是,需要在仓库中同时配备实体的立体货架、堆垛机以及运输设备等,建设成本高,建设时间长;并且,立体货架的位置是相对固定的,无法根据货物或料筐的尺寸任意合理分布仓储空间。
现有技术公开的实现虚拟立体仓储的方法,通过在支撑立柱顶部设置直角坐标机器人的运行轨道,使得支撑立柱和运行轨道形成仓储空间;通过直角坐标机器人的移动和伸缩实现存取货物;这种方式下,虚拟仓储空间被限制在机器人的运行轨道内,无法实现根据货物或筐的尺寸任意合理分配整个仓储空间,同时在一定程度上限制了虚拟仓储的可利用空间;并且,由于需要建设机器人专用运行轨道,同样需要建设成本和时间成本。
发明内容
为了解决上述问题,本发明提供了一种虚拟立体存储系统及方法,利用虚拟立体库取代实体的立体库,能够根据料筐的尺寸自动规划仓储单元,实现无人状态下自动进行料筐在空地上放置、堆高和取出。
为了实现上述目的,在一些实施方式中,本发明采用如下技术方案:
一种虚拟立体存储系统,包括:
自动运载单元,用于根据接收的控制指令对设定位置的料筐完成相应的取货、运输或者码垛动作;
视觉控制单元,被配置为获取料筐在自动运载单元上的实际位置图像信息,以及待取放货位置的料筐位置信息以及料筐堆垛情况;
仓库管理单元,被配置为建立仓库三维数据模型,根据料筐的尺寸和形状,将仓库中可进行仓储的空间在平面范围和立体范围内分别划分为若干虚拟仓储单元;所述仓库管理单元根据接收到的出、入库任务指令,控制自动运载单元运行至相应的位置并执行相应的出、入库动作。
进一步地,将料框按尺寸建模并导入仓库三维数据模型中设定的仓储单元中,生成库存布置图;所述库存布置图包括用于显示仓储单元平面位置的库存平面布置图以及用于显示仓储单元立体位置的库存立体布置图;所述布置图中实时更新并显示已存储料筐的位置和数量。
进一步地,所述仓库三维数据模型中仓储单元的位置以坐标形式展现。
进一步地,还包括:人机交互AMS单元,所述人机交互AMS单元被配置为:通过信息网络查询当前自动运载车辆状态和任务执行情况,对自动运载车辆故障进行报警以及统计库存信息。
进一步地,所述仓储单元在划分时预留自动运载单元的运行通道。
进一步地,所述视觉控制单元包括至少两组双目相机,其中一组相机用于检测料筐在自动运载单元上的实际位置,计算实际位置与初始位置之间的偏差距离和角度;另外一组相机用于检测待取放货位置的料筐位置信息以及料筐堆垛情况。
进一步地,所述自动运载单元为自动叉车;所述自动叉车包括:自动叉车本体、自动叉车调度模块和自动叉车控制模块;
所述自动叉车调度模块接收仓库管理单元发送的执行出库或入库的控制指令,并根据所述控制指令控制自动叉车本体按照设定的路径运行至目标位置;并通过自动叉车控制模块控制自动运载本体执行相应的取料、运输或者码垛动作。
在另一些实施方式中,本发明采用如下技术方案:
一种虚拟立体库,包括:上述的虚拟立体存储系统、自动运载单元充电区域以及自动运载单元安全运行通道;所述自动运载单元安全运行通道的布置保证自动运载本体能够运行至任一仓储单元所在的平面位置并能够完成取放料筐动作。
在另一些实施方式中,本发明采用如下技术方案:
一种虚拟立体存储方法,包括:
获取料筐尺寸、形状信息以及仓库空间布置信息;
根据仓库空间布置信息建立仓库三维数据模型;
根据料筐的尺寸、形状信息,将仓库空间在平面范围和立体范围内分别划分为若干虚拟的仓储单元;
将料框按尺寸建模并导入仓库三维数据模型中设定的仓储单元中,生成用于显示仓储单元平面位置的库存平面布置图以及用于显示仓储单元立体位置的库存立体布置图;
根据接收到的出、入库指令,控制自动运载单元执行相应的出、入库任务;同时实时更新并显示已存储料筐的位置和数量。
需要说明的是,本发明中所提到的取料和放料,均是指的取料框或者放料筐,当然,料筐也可以替换为料框或者料箱。
本发明中所提到的出、入库指令或者任务,均包括了从设定位置取料—运输—设定位置放料或者码垛的完整过程。
本发明有益效果:
与现有技术相比,本发明可以用虚拟的立体仓库取代现实的立体仓库,节约大量立体仓库建设、制造成本。在复杂的虚拟立体库环境中,不用任何标识,通过3D视觉相机识别料框的位置,自动控制叉车调整取/放料框的左右姿势,并且将货叉提高到料框底部,实现料框与地面或两料框间的分离,替代现在人工作业模式,可以持续完成多件物料箱的运输,作业效率得到极大提升,因此,能够完全替代人工,实现工厂和物流仓储堆料框的无人化,解决招工难题,降低作业成本。
本发明能够实现无人状态下自动进行多层料筐在空地放置、堆高和取出,整个过程无需人员参与,保证工作人员的人身安全。
本发明仓储单元的尺寸可以根据料筐的大小任意规划设置,解决了目前的立体库的存储单元尺寸固定而无法适应不同大小的料筐存放的问题。
本发明能够实现库存信息的统计,并能够满足工厂级WMS信息的远程网络管 理。
本发明系统及方法可以直接利用冲压线生产车间中的自动叉车来实现,无需增加和设计新的结构,能够节约成本,利于系统及方法的实现与普及。
图1是本发明实施例中是虚拟立体库管理配置图;
图2是本发明实施例中自动叉车结构本体图;
图3是本发明实施例中叉车堆垛2层料框示意图;
图4是本发明实施例中是人机交互网络架构图。
下面结合附图与具体实施方式对本发明作进一步的说明。
在一个或多个实施方式中,公开了一种虚拟立体存储系统,包括:
(1)自动运载单元,用于根据接收的控制指令对设定位置的料筐完成相应的取货、运输或者码垛动作;
(2)视觉控制单元,被配置为获取料筐在自动运载单元上的实际位置图像信息,以及待取放货位置的料筐位置信息以及料筐堆垛情况;
(3)仓库管理单元,被配置为建立仓库三维数据模型,根据料筐的尺寸和形状,将仓库中可进行仓储的空间在平面范围和立体范围内分别划分为若干虚拟仓储单元;所述仓库管理单元根据接收到的出、入库任务指令,控制自动运载单元运行至相应的位置并执行相应的出、入库动作。
本实施例中,自动运载单元选用智能无人叉车来实现,智能无人叉车包括:叉车本体,叉车调度模块和叉车控制模块;
叉车调度模块接收仓库管理单元的出、入库控制指令,根据控制指令自行选 择最优的路线,控制叉车本体按照设定的路径运行至目标位置;同时,根据接收到的出入库指令,通过叉车控制模块控制叉车本体执行相应的取料、运输或者码垛动作。
在叉车调度模块中可以设置执行任务的优先级,比如:可以设置产品入库的任务优先级高于产品出库任务的优先级,保证现场运输工作的条理性和可控性。
自动叉车本体为智能无人叉车,包括动力装置、液压起重工作装置、叉车底盘(包括传动系统、转向系统、制动系统、行驶系统)和电器设备组成。
自动叉车本体的主框架形式如图2所示,采用T型或L型,前端设置立方体控制箱;自动叉车本体底部安装两部大功率直流驱动电机,执行其行走与转向功能。在箱体中间内置大容量高性能的锂电池,电池靠定位销固定在滚轮支撑上,便于维护与更换。电池的电极柱由高强度快插头联结到车底的充电爪上,在充电站时实现自动落爪充电。当自动叉车需要补充电力时,会自动报告并请求充电,由地面控制中心指挥,驶向指定充电区或台位,车载充电连接器与地面充电系统自动连接并实施充电。充电完成后自动叉车自动脱离充电系统,驶向工作区或待命区投入正常运行
箱体上部为电气控制部分,安装有电源开关、继电器、直流驱动器、单片机控制器、散热扇等专用硬件。
在车体底部前端安装激光扫描器检测正前方2米以内的障碍物,以便自动叉车发出规避信号停止或绕行。以及拐弯时,防碰撞软限位检测。
本实施例中,视觉控制单元为安装在车体顶部的两组工业级CCD双目相机,其中一组设置在自动叉车顶部,用于检测识别料框在车体上的位置轮廓,另一组设置为获取水平向图像的视觉相机,用于检测识别待取放位置的图像信息。
在取料框时由相机1通过视觉拍照扫描记录当前料框的实际位置,把实际位置与初始位置的偏差距离与角度传送给自动叉车,保证其取货精度。
在放料框时相机1将车体上的料框位置发给自动叉车保证其放货精度,由相机2扫描其正前方是否有料框以及料框的罗列情况;同时将料框的垛位信息保存到立体布置图中,以便统计与查看虚拟立体库信息。
如果目标位置有异物或者料框,自动叉车上的相机会将信息反馈至生产看板,进行人工处理。
通过增加视觉控制单元,使得自动叉车除了具有普通叉车的行走转弯提升功能外,还具有视觉辅助系统,做到动作自动性、安全性更高。
工业级CCD双目相机安装于自动叉车上,能够代替人眼来做测量和判断,首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等;最后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。
本实施例中,仓库管理单元采用立体三维建模(建立数学模型),将识别的仓储空间在平面范围和立体范围划分为若干虚拟的存储单元,每一个存储单元以坐标的形式体现,建立坐标地图,如同一排排虚拟的方格货架;每个方格的大小根据料筐的尺寸和形状不同进行设置。
将料框按尺寸建模如实导入地图方格中,可以提前生成库存平面与立体布置图;库存布置图包括用于显示仓储单元平面位置的库存平面布置图以及用于显示仓储单元立体位置的库存立体布置图;布置图中实时更新并显示已存储料 筐的位置和数量。
把库存布置图中的料框数量、占地面积、罗列情况等信息统计到仓库管理单元中,该信息可以提供给自动叉车规划料框放置与调整取放的姿态。
本实施例中,可根据需求制定各种零件的分区或实行不分区混和存储方案;仓库管理单元可以与生产管理系统或者物流管理系统联网,实现全自动、无人化管理。
在另外一些实施方式中,还包括人机交互AMS单元,人机交互AMS单元采用多接口的高分辨率触摸屏与工业电脑。参照图4,人机交互AMS单元通过以太网转无线AP联结到自动叉车的通信系统,通过信息网络查看、当前车辆状态和任务执行情况;管理车辆的在线与离线,处理异常报警与任务。同时可以满足统计库存信息与办理出入库;满足工厂级WMS信息的远程网络管理。
其中,车辆状态包括在线状态和离线状态,在线状态指的是自动叉车在运行状态、工作状态或者充电状态。离线状态是指自动叉车因为故障,不在地面控制中心指挥的系统内,进行维修的状态。
人机交互AMS单元还可以实现异常报警,比如:电池没电自动叉车无法移动,或者通讯故障、超重超载、障碍物等。
在人机交互AMS单元输入生产工位需要的原材料种类,仓库管理单元接收到信息后派发任务信息至自动叉车系统,控制自动叉车执行出库任务,将原材料或成品依次叉取至对应的出库目标位置。
在人机交互AMS单元输入需要入库的物料信息,并确定在立库中的存储位置,仓库管理单元接收到信息后将信息派发给自动叉车本体,控制自动叉车本体前往对应目标位置执行取料任务,将物料运送至预设的入库位置。
实施例二
参照图1,在一些实施方式中,公开了一种虚拟立体库,包括:实施例一中的基于机器视觉与自动叉车的虚拟立体存储系统、自动叉车本体充电区域以及自动叉车本体安全运行通道;其中,自动叉车本体安全运行通道的布置保证自动叉车本体能够运行至任一仓储单元所在的平面位置并能够完成取放料筐动作。
立体库设置入库口和出库口,以方便统一规划自动叉车本体的移动。
需要说明的是,本发明实施方式利用虚拟立体仓库代替实物的立体仓库,适用于所有通过料筐、料框或者料箱进行零件存放的仓库。
本实施方式中的料筐、料框或者料箱,都是标准的结构,精度要求较高,图3给出了一种料筐的结构形式,料筐的立柱上端为方形或者锥面的,立柱的下端为口径大于上端的碗状结构,这样的结构有利于堆垛的进行。当然,本领域技术人员也可以根据实际需要选择其他形式的料筐结构。
本实施方式的基于机器视觉与自动叉车的虚拟立体存储系统以及立体库,能够基于视觉系统,按照仓库数模根据货物或筐的尺寸任意合理分布仓储空间不会受到实体货架摆放位置固定的限制,实现在整个仓储空间内虚拟货架,无需建设货架或者其他设施,免去了建设成本,提高了工作效率。
实施例三
在一个或多个实施方式中,公开了一种基于机器视觉与自动叉车的虚拟立体存储方法,包括:
获取料筐尺寸、形状信息以及仓库空间布置信息;
根据仓库空间布置信息建立仓库三维数据模型;
根据料筐的尺寸、形状信息,将仓库空间在平面范围和立体范围内分别划分 为若干虚拟的仓储单元;
将料框按尺寸建模并导入仓库三维数据模型中设定的仓储单元中,生成用于显示仓储单元平面位置的库存平面布置图以及用于显示仓储单元立体位置的库存立体布置图;
根据接收到的出、入库指令,控制自动运载单元执行相应的出、入库任务;同时实时更新立体布置图并显示已存储料筐的位置和数量。
本实施方式虚拟立体库的具体工作过程如下:
1、入库动作(增加库存):
(1)自动叉车本体无任务时在充电站待机等待任务分配。
(2)料框在入库站台通过扫码或厂级WMS发送给人机交互AMS单元产生一条新的入库任务,人机交互AMS单元将任务号、入库站台与目标终点按一定的优先级分配给正常状态的自动叉车。
(3)自动叉车本体接受到任务后提起充电爪,断开充电信号。按预定的路线行驶到入库站台。由叉车上的水平向的视觉相机对料框进行拍照识别。识别正确后调整货叉高度,让货叉进入料框底部。然后由顶部视觉相机对料框进行拍照记录在货叉上的位置,防止料框在自动叉车行进中产生了位移导致放货失败。自动叉车本体取到货后,离开取货站台。先将货叉下降到安全高度,给人机交互AMS单元发出已取货信号。下一步执行离开取货位前往放置地点。
(4)自动叉车本体到达目标终点,由叉车上的视觉相机对放置位置进行拍照,识别是否有异物或底层料框的位置。在确认安全可以放置后,自动叉车将料框提升到所需高度进入放置位置。然后下降脱离料框。
(5)自动叉车本体执行完放料后给人机交互AMS单元发送任务做完命令, 人机交互AMS单元结束已执行完任务重新刷新未执行的任务(虚拟立体库布置图增加入库的垛位信息)。自动叉车在无任务分配状态下,自动回空闲充电站进行充电待机。如果分配的有新任务,在执行完放料后自动其他入库或出库任务。
2、出库动作(减库存):
(1)自动叉车本体无任务时在充电站待机等待任务分配。
(2)通过人工要料系统或厂级WMS发送给人机交互AMS单元产生一条新的出库任务,人机交互AMS单元将任务号、取料位置与目标终点分配给正常状态的自动叉车。
(3)自动叉车本体接受到任务后提起充电爪,断开充电信号。按预定的路线行驶到取料位置。由叉车上的水平向的视觉相机对料框进行拍照识别。识别正确后调整货叉高度,让货叉进入料框底部。然后由顶部视觉相机对料框进行拍照记录在货叉上的位置,防止料框在视觉叉车行进中产生了位移导致放货失败。
本实施例中,虚拟货架堆垛的料筐或者料架上下都是标准的料框和同样的零件,自动叉车取件时,优先取上面的料筐。
自动叉车本体取到货后,离开取货位置。先将货叉下降到安全高度,然后给人机交互AMS单元发出已取货信号。下一步执行离开取货位前往出库站台。
(4)自动叉车本体到达出库站台,由叉车上的视觉相机对出库站台进行拍照,识别是否有异物或料框。在确认安全可以放置后,自动叉车将料框提升到出库站台高度进入放置位置。然后下降脱离料框。
(5)自动叉车本体执行完放料后给人机交互AMS单元发送任务做完命令,人机交互AMS单元结束已执行完任务重新刷新未执行的任务(虚拟立体库布置 图减去出库的垛位信息)。自动叉车在无任务分配状态下,自动回空闲充电站进行充电待机。如果分配的有新任务,在执行完放料后自动其他入库或出库任务。
本发明网络结构模块化,易于扩展、便于维护,有利于提高虚拟立体库的搬运堆垛效率,提高人工作业的安全性。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。
Claims (9)
- 一种虚拟立体存储系统,其特征在于,包括:自动运载单元,用于根据接收的控制指令对设定位置的料筐完成相应的取货、运输或者码垛动作;视觉控制单元,被配置为获取料筐在自动运载单元上的实际位置图像信息,以及待取放货位置的料筐位置信息以及料筐堆垛情况;仓库管理单元,被配置为建立仓库三维数据模型,根据料筐的尺寸和形状,将仓库中可进行仓储的空间在平面范围和立体范围内分别划分为若干虚拟仓储单元;所述仓库管理单元根据接收到的出、入库任务指令,控制自动运载单元运行至相应的位置并执行相应的出、入库动作。
- 如权利要求1所述的一种虚拟立体存储系统,其特征在于,将料框按尺寸建模并导入仓库三维数据模型中设定的仓储单元中,生成库存布置图;所述库存布置图包括用于显示仓储单元平面位置的库存平面布置图以及用于显示仓储单元立体位置的库存立体布置图;所述布置图中实时更新并显示已存储料筐的位置和数量。
- 如权利要求1所述的一种虚拟立体存储系统,其特征在于,所述仓库三维数据模型中仓储单元的位置以坐标形式展现。
- 如权利要求1所述的一种虚拟立体存储系统,其特征在于,还包括:人机交互AMS单元,所述人机交互AMS单元被配置为:通过信息网络查询当前自动运载车辆状态和任务执行情况,对自动运载车辆故障进行报警以及统计库存信息。
- 如权利要求1所述的一种虚拟立体存储系统,其特征在于,所述仓储单元在划分时预留自动运载单元的运行通道。
- 如权利要求1所述的一种虚拟立体存储系统,其特征在于,所述视觉控制单元包括至少两组双目相机,其中一组相机用于检测料筐在自动运载单元上的实际位置,计算实际位置与初始位置之间的偏差距离和角度;另外一组相机用于检测待取放货位置的料筐位置信息以及料筐堆垛情况。
- 如权利要求1所述的一种虚拟立体存储系统,其特征在于,所述自动运载单元为自动叉车;所述自动叉车包括:自动叉车本体、自动叉车调度模块和自动叉车控制模块;所述自动叉车调度模块接收仓库管理单元发送的执行出库或入库的控制指令,并根据所述控制指令控制自动叉车本体按照设定的路径运行至目标位置;并通过自动叉车控制模块控制自动运载本体执行相应的取料、运输或者码垛动作。
- 一种虚拟立体库,其特征在于,包括:权利要求1-7任一项所述的虚拟立体存储系统、自动运载单元充电区域以及自动运载单元安全运行通道;所述自动运载单元安全运行通道的布置保证自动运载本体能够运行至任一仓储单元所在的平面位置并能够完成取放料筐动作。
- 一种虚拟立体存储方法,其特征在于,包括:获取料筐尺寸、形状信息以及仓库空间布置信息;根据仓库空间布置信息建立仓库三维数据模型;根据料筐的尺寸、形状信息,将仓库空间在平面范围和立体范围内分别划分为若干虚拟的仓储单元;将料框按尺寸建模并导入仓库三维数据模型中设定的仓储单元中,生成用于显示仓储单元平面位置的库存平面布置图以及用于显示仓储单元立体位置的库 存立体布置图;根据接收到的出、入库指令,控制自动运载单元执行相应的出、入库任务;同时实时更新并显示已存储料筐的位置和数量。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910989978.8 | 2019-10-17 | ||
CN201910989978 | 2019-10-17 | ||
CN201911228175.7 | 2019-12-04 | ||
CN201911228175.7A CN110902246A (zh) | 2019-10-17 | 2019-12-04 | 一种虚拟立体存储系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021073062A1 true WO2021073062A1 (zh) | 2021-04-22 |
Family
ID=69821931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/085395 WO2021073062A1 (zh) | 2019-10-17 | 2020-04-17 | 一种虚拟立体存储系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110902246A (zh) |
WO (1) | WO2021073062A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113435821A (zh) * | 2021-07-19 | 2021-09-24 | 因格(苏州)智能技术有限公司 | 物料入库管理方法、装置及存储介质 |
CN113479541A (zh) * | 2021-07-20 | 2021-10-08 | 永山窍档案管理有限公司 | 一种分布式自动化设备任务调度系统 |
CN114291464A (zh) * | 2021-12-03 | 2022-04-08 | 中车唐山机车车辆有限公司 | 一种轨道车辆的仓储管理方法及系统 |
CN114435827A (zh) * | 2021-12-24 | 2022-05-06 | 北京无线电测量研究所 | 一种智慧仓储系统 |
CN114524209A (zh) * | 2021-12-21 | 2022-05-24 | 杭叉集团股份有限公司 | 一种基于双tof相机的agv高位堆叠方法及检测装置 |
CN114648276A (zh) * | 2022-04-27 | 2022-06-21 | 广东龙眼数字科技有限公司 | 一种虚拟化仓位管理方法 |
CN115108498A (zh) * | 2022-05-13 | 2022-09-27 | 浙江中力机械股份有限公司 | 一种自动堆垛的仓储叉车机器人系统的控制方法及系统 |
CN115180334A (zh) * | 2022-06-02 | 2022-10-14 | 云南昆船设计研究院有限公司 | 一种智能烟笼补货调度输送方法及系统 |
CN115258492A (zh) * | 2022-08-05 | 2022-11-01 | 东方电气集团科学技术研究院有限公司 | 一种用于核电设备存取的智能化立体库 |
CN115331173A (zh) * | 2022-08-19 | 2022-11-11 | 江苏中博通信有限公司 | 一种全透明实景云仓储管理方法及其管理系统 |
CN116553058A (zh) * | 2023-06-07 | 2023-08-08 | 广州中联环宇现代物流有限公司 | 三维智能仓储系统及其控制方法 |
CN116946610A (zh) * | 2023-09-21 | 2023-10-27 | 中科源码(成都)服务机器人研究院有限公司 | 一种智能仓储系统货物拾取方法及装置 |
CN117237616A (zh) * | 2023-11-14 | 2023-12-15 | 大连九州创智科技有限公司 | 一种钢板堆场的物料调运扫描识别系统及方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110902246A (zh) * | 2019-10-17 | 2020-03-24 | 广州达宝文机电设备有限公司 | 一种虚拟立体存储系统及方法 |
CN111815227A (zh) * | 2020-06-11 | 2020-10-23 | 金沙县远大新型环保建材有限责任公司 | 一种环保建材堆料场的综合管理系统 |
CN112184104A (zh) * | 2020-09-18 | 2021-01-05 | 安徽三禾一信息科技有限公司 | 一种用于仓储的物料码放方法 |
CN112487002A (zh) * | 2020-10-28 | 2021-03-12 | 意欧斯智能科技股份有限公司 | 一种用于防止堆垛机定位数据丢失的方法 |
CN112407728A (zh) * | 2020-11-20 | 2021-02-26 | 深圳市海柔创新科技有限公司 | 空间分配方法、货物存放方法、装置、机器人及仓储系统 |
AT524700A1 (de) * | 2021-01-29 | 2022-08-15 | Tgw Mechanics Gmbh | Verfahren zum Einlagern mehrerer Lagerobjekte unterschiedlicher Lagerobjekttype in ein Lagerregal und ein Regallagersystem hierfür |
CN114056828B (zh) * | 2021-11-22 | 2024-01-23 | 一汽物流(天津)有限公司 | 一种自动化仓储倒运方法 |
CN114212428A (zh) * | 2021-12-09 | 2022-03-22 | 湖南瀚能科技有限公司 | 一种仓储综合管理方法及系统 |
CN114194692B (zh) * | 2021-12-30 | 2023-12-29 | 杭州海康机器人股份有限公司 | 在巷道中存取货物的方法、装置、系统、设备及存储介质 |
CN114529155A (zh) * | 2022-01-17 | 2022-05-24 | 湖南视比特机器人有限公司 | 工件动态码垛装框方法及系统 |
TWI820684B (zh) * | 2022-04-21 | 2023-11-01 | 騰升科技股份有限公司 | 開放式倉儲生產系統及方法 |
CN115115302B (zh) * | 2022-05-30 | 2024-01-26 | 浙江中力机械股份有限公司 | 基于仓储搬运机器人为主体的企业物流实现方法 |
CN115328038A (zh) * | 2022-07-27 | 2022-11-11 | 广州达宝文汽车设备集团有限公司 | 一种基于无人叉车的冲压车间调度系统及方法 |
CN115285710B (zh) * | 2022-07-27 | 2023-05-23 | 广州达宝文汽车设备集团有限公司 | 一种料筐自动化切换设备及方法 |
CN116382222B (zh) * | 2023-06-01 | 2023-12-01 | 广州达宝文汽车设备集团有限公司 | 一种无人智能化冲压系统及冲压方法 |
CN116767740B (zh) * | 2023-08-18 | 2024-04-30 | 天津万事达物流装备有限公司 | 一种用于四向穿梭车的立体库存储方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101414169A (zh) * | 2007-10-16 | 2009-04-22 | 上海华虹Nec电子有限公司 | 制品库存监控调度系统及方法 |
CN102376039A (zh) * | 2011-12-08 | 2012-03-14 | 重庆市电力公司 | 实现电力物资立体化实时调度指挥的方法 |
US20160236865A1 (en) * | 2015-02-16 | 2016-08-18 | David Altemir | Automated Warehouse Storage and Retrieval System |
CN108298243A (zh) * | 2018-01-18 | 2018-07-20 | 水岩智能科技(宁波)有限公司 | 智能仓储拣货方法及系统 |
CN108510828A (zh) * | 2018-05-23 | 2018-09-07 | 清华大学 | 一种仓储和库存管理的实验系统及其构建方法 |
CN109377127A (zh) * | 2018-10-11 | 2019-02-22 | 泉州市联控自动化科技有限公司 | 一种三维立体无人仓库 |
CN110902246A (zh) * | 2019-10-17 | 2020-03-24 | 广州达宝文机电设备有限公司 | 一种虚拟立体存储系统及方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008057504A2 (en) * | 2006-11-06 | 2008-05-15 | Aman James A | Load tracking system based on self- tracking forklift |
CN103010648B (zh) * | 2012-12-25 | 2015-05-20 | 云南财经大学 | 一种自动化虚拟仓位立体仓储的方法及仓储系统 |
CN103426072B (zh) * | 2013-07-16 | 2016-02-17 | 无限极(中国)有限公司 | 一种高并发竞争库存的订单处理系统及其处理方法 |
CN104777835A (zh) * | 2015-03-11 | 2015-07-15 | 武汉汉迪机器人科技有限公司 | 一种全向自动叉车及3d立体视觉导航定位方法 |
CN105160508A (zh) * | 2015-08-15 | 2015-12-16 | 国家电网公司 | 一种电力物资仓储管理方法 |
JP6779485B2 (ja) * | 2016-10-07 | 2020-11-04 | ビューテック株式会社 | 在庫管理システム |
CN207909186U (zh) * | 2017-08-30 | 2018-09-25 | 云南电网有限责任公司物流服务中心 | 一种基于虚拟化与物联网技术的仓储管理系统 |
CN108529111A (zh) * | 2018-04-19 | 2018-09-14 | 白冰 | 一种智能仓库仿真模拟方法 |
CN109081272B (zh) * | 2018-10-23 | 2023-09-29 | 西安中科光电精密工程有限公司 | 一种基于激光与视觉混合引导的无人转运叉车及方法 |
CN109677824B (zh) * | 2019-01-15 | 2020-10-09 | 江苏智库智能科技有限公司 | 全自动无人行车线缆盘仓储管理方法 |
CN109697594B (zh) * | 2019-01-15 | 2021-05-11 | 江苏智库智能科技有限公司 | 全自动无人行车线缆盘仓储系统 |
CN110097322A (zh) * | 2019-05-14 | 2019-08-06 | 吉林大学 | 一种虚拟场景中零件库存节点选址方法 |
-
2019
- 2019-12-04 CN CN201911228175.7A patent/CN110902246A/zh active Pending
-
2020
- 2020-04-17 WO PCT/CN2020/085395 patent/WO2021073062A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101414169A (zh) * | 2007-10-16 | 2009-04-22 | 上海华虹Nec电子有限公司 | 制品库存监控调度系统及方法 |
CN102376039A (zh) * | 2011-12-08 | 2012-03-14 | 重庆市电力公司 | 实现电力物资立体化实时调度指挥的方法 |
US20160236865A1 (en) * | 2015-02-16 | 2016-08-18 | David Altemir | Automated Warehouse Storage and Retrieval System |
CN108298243A (zh) * | 2018-01-18 | 2018-07-20 | 水岩智能科技(宁波)有限公司 | 智能仓储拣货方法及系统 |
CN108510828A (zh) * | 2018-05-23 | 2018-09-07 | 清华大学 | 一种仓储和库存管理的实验系统及其构建方法 |
CN109377127A (zh) * | 2018-10-11 | 2019-02-22 | 泉州市联控自动化科技有限公司 | 一种三维立体无人仓库 |
CN110902246A (zh) * | 2019-10-17 | 2020-03-24 | 广州达宝文机电设备有限公司 | 一种虚拟立体存储系统及方法 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113435821A (zh) * | 2021-07-19 | 2021-09-24 | 因格(苏州)智能技术有限公司 | 物料入库管理方法、装置及存储介质 |
CN113479541A (zh) * | 2021-07-20 | 2021-10-08 | 永山窍档案管理有限公司 | 一种分布式自动化设备任务调度系统 |
CN114291464B (zh) * | 2021-12-03 | 2024-04-26 | 中车唐山机车车辆有限公司 | 一种轨道车辆的仓储管理方法及系统 |
CN114291464A (zh) * | 2021-12-03 | 2022-04-08 | 中车唐山机车车辆有限公司 | 一种轨道车辆的仓储管理方法及系统 |
CN114524209A (zh) * | 2021-12-21 | 2022-05-24 | 杭叉集团股份有限公司 | 一种基于双tof相机的agv高位堆叠方法及检测装置 |
CN114435827A (zh) * | 2021-12-24 | 2022-05-06 | 北京无线电测量研究所 | 一种智慧仓储系统 |
CN114648276A (zh) * | 2022-04-27 | 2022-06-21 | 广东龙眼数字科技有限公司 | 一种虚拟化仓位管理方法 |
CN115108498A (zh) * | 2022-05-13 | 2022-09-27 | 浙江中力机械股份有限公司 | 一种自动堆垛的仓储叉车机器人系统的控制方法及系统 |
CN115180334A (zh) * | 2022-06-02 | 2022-10-14 | 云南昆船设计研究院有限公司 | 一种智能烟笼补货调度输送方法及系统 |
CN115258492A (zh) * | 2022-08-05 | 2022-11-01 | 东方电气集团科学技术研究院有限公司 | 一种用于核电设备存取的智能化立体库 |
CN115331173B (zh) * | 2022-08-19 | 2023-10-31 | 江苏中博通信有限公司 | 一种全透明实景云仓储管理方法及其管理系统 |
CN115331173A (zh) * | 2022-08-19 | 2022-11-11 | 江苏中博通信有限公司 | 一种全透明实景云仓储管理方法及其管理系统 |
CN116553058A (zh) * | 2023-06-07 | 2023-08-08 | 广州中联环宇现代物流有限公司 | 三维智能仓储系统及其控制方法 |
CN116553058B (zh) * | 2023-06-07 | 2023-11-21 | 广州中联环宇现代物流有限公司 | 三维智能仓储系统及其控制方法 |
CN116946610A (zh) * | 2023-09-21 | 2023-10-27 | 中科源码(成都)服务机器人研究院有限公司 | 一种智能仓储系统货物拾取方法及装置 |
CN116946610B (zh) * | 2023-09-21 | 2023-12-12 | 中科源码(成都)服务机器人研究院有限公司 | 一种智能仓储系统货物拾取方法及装置 |
CN117237616A (zh) * | 2023-11-14 | 2023-12-15 | 大连九州创智科技有限公司 | 一种钢板堆场的物料调运扫描识别系统及方法 |
CN117237616B (zh) * | 2023-11-14 | 2024-02-06 | 大连九州创智科技有限公司 | 一种钢板堆场的物料调运扫描识别系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110902246A (zh) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021073062A1 (zh) | 一种虚拟立体存储系统及方法 | |
CN109095059B (zh) | 无人装车系统及其装车方法 | |
US10259649B2 (en) | Automatic warehouse system | |
CN108427423B (zh) | 一种无人仓储智能综合监控调度系统及其控制方法 | |
CN108455156B (zh) | 一种无人仓库智能装卸货物系统及其控制方法 | |
CN105593143B (zh) | 搬运机器人系统及搬运装置 | |
JP2024032981A (ja) | インテリジェント倉庫保管システム及びインテリジェント倉庫保管方法 | |
CN110363478B (zh) | 一种室外堆场数字化系统 | |
US20200039747A1 (en) | Automated warehouse fulfillment system and method of operation | |
DE112020000009T5 (de) | Robotersystem mit Koordinationsmechanismus und Verfahren zum Betreiben dieses Systems | |
WO2019011276A1 (zh) | 一种订单完成系统和方法 | |
US20150360865A1 (en) | Robotic manipulator for warehouses | |
TW202415604A (zh) | 改進式儲存和取回系統以及在其中定位儲存/取回車輛的方法 | |
JP2020536819A (ja) | 倉庫管理収容・取出システムおよび方法 | |
CN109649913A (zh) | 一种智能仓储系统 | |
EP4365109A1 (en) | Fleet control method and apparatus, electronic device, and storage medium | |
CN111661546A (zh) | 一种智能机器人仓储分拣单元 | |
US20210101790A1 (en) | Assembly Material Logistics System and Methods | |
KR20230047489A (ko) | 보관 시스템, 방법 및 디바이스 | |
CN115278179A (zh) | 生产线安全监控方法、系统、设备及介质 | |
CN111361911A (zh) | 一种可自动存储及分拣的货架 | |
CN114187564A (zh) | 智能仓库中跨设备联动方法及视觉辅助联动系统 | |
CN114092001A (zh) | 用于智慧物流无人配送系统的agv运载车及其使用的包装盒 | |
CN114092000A (zh) | 基于自然导航的智慧物流无人配送系统 | |
CN115311441A (zh) | 自动仓储系统、货物盘点方法及服务器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20876288 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20876288 Country of ref document: EP Kind code of ref document: A1 |