WO2021072639A1 - CdS-ZnS/GO纳米纤维及其制备方法 - Google Patents

CdS-ZnS/GO纳米纤维及其制备方法 Download PDF

Info

Publication number
WO2021072639A1
WO2021072639A1 PCT/CN2019/111266 CN2019111266W WO2021072639A1 WO 2021072639 A1 WO2021072639 A1 WO 2021072639A1 CN 2019111266 W CN2019111266 W CN 2019111266W WO 2021072639 A1 WO2021072639 A1 WO 2021072639A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofibers
zns
cds
solution
blow
Prior art date
Application number
PCT/CN2019/111266
Other languages
English (en)
French (fr)
Inventor
何洪波
Original Assignee
诸暨易联众创企业管理服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诸暨易联众创企业管理服务有限公司 filed Critical 诸暨易联众创企业管理服务有限公司
Priority to PCT/CN2019/111266 priority Critical patent/WO2021072639A1/zh
Publication of WO2021072639A1 publication Critical patent/WO2021072639A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates

Definitions

  • the invention relates to a novel functional nano material-CdS-ZnS/GO nanofiber with excellent photoelectric properties, and a preparation method and application thereof.
  • One-dimensional nanomaterials are a new type of functional material developed in recent years, which have attracted more and more attention due to their unique electrical, optical, magnetic, mechanical and other properties.
  • There are many methods for preparing nanomaterials such as etching technology, hydrothermal method, template method, electrostatic spinning method and so on.
  • the electrospinning method is a spinning technology that is different from the conventional method. It is by adding a high-voltage electrostatic field of several thousand to several ten thousand volts to the polymer solution or melt to make the polymer solution or melt Taylor conical droplets are formed at the spray hole.
  • the fibers produced are generally between tens of nanometers to several microns and have a large surface area, so the fibers can be used to make materials with surface functions.
  • the purpose of the present invention is to provide a novel functional nano material-CdS-ZnS/GO nanofiber with excellent photoelectric properties and a preparation method and application method thereof.
  • the material is a visible light catalyst, has excellent photoelectrochemical properties, and its preparation method is fast and simple.
  • the GO nanofibers are immersed in Zn(NO 3 ) 2 , ZnSO 4 or Zn(Ac) 2 solution to rinse and blow dry; then immersed in Na 2 S solution, rinsed, and blow dried to prepare ZnS/GO nanofibers; Soak the ZnS/GO nanofibers in Cd(NO 3 ) 2 , CdSO 4 or Cd(Ac) 2 solution, rinse and blow dry; then soak in Na 2 S solution, rinse and blow dry.
  • This invention uses electrospinning technology and continuous ion layer adsorption (SILAR) for the first time to synthesize CdS-ZnS/GO nanofibers with a one-dimensional structure. Since CdS is a narrow-band semiconductor material, ZnS can improve the stability of CdS. GO nanofibers modified with CdS and ZnS can not only broaden its absorption range in the visible light region, but also can use continuous ion layer adsorption to obtain CdS- The ZnS/GO composite material makes better use of visible light sources, accelerates the effective separation of photo-generated carriers, and improves the efficiency of photoelectric conversion.
  • SILAR continuous ion layer adsorption
  • the method of the present invention is based on the CdS/GO system
  • ZnS is introduced to synthesize the CdS-ZnS/GO one-dimensional nanostructure, which is conducive to the transmission of electrons, greatly improves its photoelectric performance, and also discusses its Photoelectrochemical properties and practical applications under visible light.
  • the present invention adopts electrospinning and SILAR method without other extra reagents, and the reaction can be performed under normal temperature conditions.
  • the catalyst of the invention is convenient to prepare and low in price.
  • the catalyst of the present invention has a one-dimensional structure, the catalyst has a higher specific surface area than ordinary granular catalysts.
  • nanofibers prepared in 1 are immersed in a 0.2mol/LCd(NO 3 ) 2 solution for 1 min, rinsed with deionized water, and dried. Then soak in 0.2mol/L Na 2 S solution for 1 min, rinse with deionized water, and blow dry. Repeat this 5 times.
  • the photoelectrochemical performance test is carried out on a standard three-electrode system electrochemical workstation (CHI600D, Shanghai Chenhua), in which the Pt electrode is the counter electrode, the saturated calomel electrode (SCE) is the reference electrode, and CdS-ZnS/GO The nanofiber is the working electrode.
  • the electrolyte is 0.1mol/LKOH.
  • unmodified GO nanofibers, CdS/GO nanofibers, ZnS-CdS/GO nanofibers, CdS-ZnS/GO nanofibers can generate photocurrent, but CdS-ZnS/GO nanofibers show the best Strong photocurrent response.
  • the photocurrent response value of ZnS-CdS/GO nanofibers is significantly lower than that of CdS-ZnS/GO nanofibers, and the photoelectric properties of GO nanofibers that are not even modified with CdS are excellent.
  • CdS-ZnS/GO nanofibers still exhibit the strongest photocurrent, and their zero current voltage is also the most negative.
  • CdS-ZnS/GO nanofibers exhibit the most excellent photoelectrochemical properties, realize the photoelectrochemical response under visible light, accelerate the separation of photo-generated electrons and photo-generated holes, and improve the photoelectric conversion efficiency. , Which is conducive to the application in real life.
  • the invention adopts CdS/GO nanofibers and CdS-ZnS/GO nanofibers to respectively degrade 5 mg/L methylene blue wastewater.
  • CdS-ZnS/GO nanofibers degrade methylene blue faster than CdS/GO nanofibers.
  • the rate of degradation of methylene blue by CdS-ZnS/GO nanofibers remained basically unchanged, while that of CdS/GO nanofibers decreased significantly. From the above experimental results, it can be seen that under visible light, CdS-ZnS/GO nanofibers can achieve the catalytic degradation of the refractory organic pollutants methylene blue light. Compared with CdS/GO nanofibers, it has a higher degradation rate and good stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种光催化剂及其制备和应用方法,将氧化石墨烯溶液通过静电纺丝得到氧化石墨烯纤维;将纳米纤维浸入Zn(NO3)2溶液中冲洗、吹干;再在Na2S溶液中浸泡,冲洗,吹干,制得ZnS/GO纳米纤维;最后将ZnS/GO纳米纤维浸入Cd(NO3)2溶液中,冲洗、吹干;再在Na2S溶液中浸泡,冲洗,吹干,即可。本发明首次采用静电纺丝技术与连续离子层吸附法(SILAR)合成具有一维结构的CdS-ZnS/GO纳米纤维。由于CdS是窄带系的半导体材料,ZnS可以提高CdS的稳定性,在修饰CdS、ZnS后的GO纳米纤维既能拓宽其在可见光区的吸收范围,又能利用连续离子层吸附法得到的CdS-ZnS/GO复合材料,更好的利用可见光源,加快光生载流子的有效分离,提高光电转换的效率。

Description

CdS-ZnS/GO纳米纤维及其制备方法 技术领域
本发明涉及一种新颖、具有出色光电性能的功能纳米材料-CdS-ZnS/GO纳米纤维及其制备方法及应用。
技术背景
一维纳米材料是近几年来发展起来的一种新型功能材料,因其独特的电学、光学、磁学、机械等性质而受到人们越来越多的重视。纳米材料的制备方法有许多种,如刻蚀技术、水热法、模板法、静电纺丝法等。其中,静电纺丝方法是一种不同于常规方法的纺丝技术,它是通过将几千至几万伏的高压静电场加到聚合物溶液或熔体内,使聚合物溶液或熔体首先在喷射孔处形成Taylor圆锥形液滴。当高压电场所产生的电场拉伸力克服了液滴的表面张力后,该带电液滴形成了喷射流,然后该喷射流在电场中得到进一步的拉伸,同时内含溶剂不断挥发,最后以螺旋状到达接收器,凝固而形成无纺布状的纤维毡或其它形状的结构物。由于静电纺丝技术系特殊的原理与工艺,所制得纤维一般在数十纳米到数微米之间,具有很大的表面积,因此纤维可以用来制成具有表面功能的材料。
发明内容
本发明的目的在于提供一种新颖、具有出色光电性能的功能纳米材料-CdS-ZnS/GO纳米纤维及其制备方法和应用方法。该材料为可见光催化剂,具有优异的光电化学性质,其制备方法快速,简便。
本发明的目的是通过以下方式实现的:
一种光催化剂的制备方法:
将GO纳米纤维浸入Zn(NO 3) 2、ZnSO 4或Zn(Ac) 2溶液中冲洗、吹干;再在Na 2S溶液中浸泡,冲洗,吹干,制得ZnS/GO纳米纤维; 最后将ZnS/GO纳米纤维浸入Cd(NO 3) 2、CdSO 4或Cd(Ac) 2溶液中,冲洗、吹干;再在Na 2S溶液中浸泡,冲洗,吹干,即可。
上述方法中ZnS/GO纳米纤维的制备过程具体如下:
将GO纳米纤维浸入0.2mol/LZn(NO 3) 2、ZnSO 4或Zn(Ac) 2溶液中1min,用去离子水冲洗、吹干;再在0.2mol/LNa 2S溶液中浸泡1min,用去离子水冲洗,吹干;整个过程循环5次。
上述方法中:将ZnS/GO纳米纤维浸入0.2mol/LCd(NO 3) 2、CdSO 4或Cd(Ac) 2溶液中1min,用去离子水冲洗、吹干;再在0.2mol/LNa 2S溶液中浸泡1min,用去离子水冲洗,吹干;整个过程循环5次;得到CdS-ZnS/GO纳米纤维。
本发明的优势如下:
1、本发明首次采用静电纺丝技术与连续离子层吸附法(SILAR)合成具有一维结构的CdS-ZnS/GO纳米纤维。由于CdS是窄带系的半导体材料,ZnS可以提高CdS的稳定性,在修饰CdS、ZnS后的GO纳米纤维既能拓宽其在可见光区的吸收范围,又能利用连续离子层吸附法得到的CdS-ZnS/GO复合材料,更好的利用可见光源,加快光生载流子的有效分离,提高光电转换的效率。
2、本发明的方法在以CdS/GO体系为基础时,引入了ZnS,合成了CdS-ZnS/GO一维纳米结构,有利于电子的传输,大大提高了其光电性能,并且还探讨了其光电化学性质并在可见光下进行了实际应用。另外,本发明采用静电纺丝和SILAR法并不需要其他多余的试剂,常温条件即可反应。本发明的催化剂制备方便,价格低廉。
3、由于本发明催化剂具有一维结构的性质,该催化剂相对于普通的颗粒状催化剂具有更高的比表面积。
具体实施方式
以下结合实施例旨在进一步说明本发明,而非限制本发明。
实施例1
(1)将上述GO溶胶加入注射器中,控制工作电压为10kV,调节接收器与纺丝针头距离为10cm,溶液的流出速度为0.5mL/h。管内的溶液稳定喷出,收集板选用的是铝箔。
(2)纺得的纤维在真空干燥箱(120℃)干燥12h后,在450℃煅烧3h。随后自然降至室温,得到GO纳米纤维。
(3)CdS-ZnS/GO纳米纤维的制备
①将GO纳米纤维浸入0.2mol/LZn(NO 3) 2溶液中1min,用去离子水冲洗、吹干。再在0.2mol/LNa 2S溶液中浸泡1min,用去离子水冲洗,吹干。如此循环5次。
②将①制得的纳米纤维浸入0.2mol/LCd(NO 3) 2溶液中1min,用去离子水冲洗、吹干。再在0.2mol/LNa 2S溶液中浸泡1min,用去离子水冲洗,吹干。如此循环5次。
实施例2
分别对GO纳米纤维、CdS/GO纳米纤维、ZnS-CdS/GO纳米纤维、CdS-ZnS/GO纳米纤维进行光电性能测试。
实施步骤:
(1)将固定在ITO玻璃上的CdS-ZnS/GO纳米纤维放在50mL浓度1mol/L的KOH溶液中;
(2)用光源为500W的Xe灯(100mW/cm2),可见光下对其进行光电化学测试;
(3)光电化学性能测试在一个标准三电极体系电化学工作站(CHI600D,上海辰华)上进行,其中Pt电极为对电极,饱和甘汞电极(SCE)为参比电极,CdS-ZnS/GO纳米纤维为工作电极。电解 液为0.1mol/LKOH.
(4)对照实验在GO纳米纤维、CdS/GO纳米纤维、ZnS-CdS/GO纳米纤维上进行,步骤同上。
在可见光照射下,未修饰的GO纳米纤维、CdS/GO纳米纤维、ZnS-CdS/GO纳米纤维、CdS-ZnS/GO纳米纤维都能产生光电流,但CdS-ZnS/GO纳米纤维表现出最强的光电流响应。ZnS-CdS/GO纳米纤维比CdS-ZnS/GO纳米纤维的光电流响应值要明显偏小,甚至还没有只修饰CdS的GO纳米纤维的光电性能优异。CdS-ZnS/GO纳米纤维依旧表现为最强的光电流,其零电流电压也最负。
从以上实验结果可见,可见光下,CdS-ZnS/GO纳米纤维表现出最优异的光电化学性质,实现了可见光下的光电化学响应,加快了光生电子和光生空穴的分离,提高了光电转化效率,有利于在实际生活中的应用。
实施例3
CdS-ZnS/GO纳米纤维光催化降解亚甲基蓝
本发明采用CdS/GO纳米纤维,CdS-ZnS/GO纳米纤维分别对5mg/L的亚甲基蓝废水进行降解。
实施步骤:
(1)将固定在ITO玻璃上的CdS-ZnS/GO纳米纤维(ITO玻璃的大小为1cm×4cm,有效面积为1cm×3cm,共3片)放入50mL浓度为5mg/L的亚甲基蓝废水中;
(2)用光源为500W的Xe灯(100mW/cm2),可见光下对其进行光催化降解;
(3)定时取样后应用紫外-可见分光光度计监测溶液中亚甲基蓝的变化;
(4)对照实验在CdS/GO纳米纤维上进行,步骤同上,循环3次。
CdS-ZnS/GO纳米纤维降解亚甲基蓝的速度要高于CdS/GO纳米纤维。同时,在循环3次后,CdS-ZnS/GO纳米纤维降解亚甲基蓝的速率基本不变,而CdS/GO纳米纤维却有明显下降。从以上实验结果可见,在可见光下,CdS-ZnS/GO纳米纤维实现了对难降解有机污染物亚甲基蓝光催化降解,相对于CdS/GO纳米纤维,有更高的降解速率和良好的稳定性。

Claims (3)

  1. 一种光催化剂的制备方法,其特征在于,
    将氧化石墨烯溶液通过静电纺丝得到氧化石墨烯纤维;将GO纳米纤维浸入Zn(NO 3) 2、ZnSO 4或Zn(Ac) 2溶液中冲洗、吹干;再在Na 2S溶液中浸泡,冲洗,吹干,制得ZnS/GO纳米纤维;最后将ZnS/GO纳米纤维浸入Cd(NO 3) 2、CdSO 4或Cd(Ac) 2溶液中,冲洗、吹干;再在Na 2S溶液中浸泡,冲洗,吹干,即可。
  2. 根据权利要求1所述的制备方法,其特征在于,
    静电纺丝时,控制工作电压为10kV,调节接收器与纺丝针头距离为10cm,溶液的流出速度为0.5mL/h。
  3. 根据权利要求1所述的制备方法,其特征在于,
    纺得的GO纳米纤维在真空干燥箱80℃干燥1h后,在450℃煅烧2h;随后自然降至室温,得到GO纳米纤维。
PCT/CN2019/111266 2019-10-15 2019-10-15 CdS-ZnS/GO纳米纤维及其制备方法 WO2021072639A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111266 WO2021072639A1 (zh) 2019-10-15 2019-10-15 CdS-ZnS/GO纳米纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111266 WO2021072639A1 (zh) 2019-10-15 2019-10-15 CdS-ZnS/GO纳米纤维及其制备方法

Publications (1)

Publication Number Publication Date
WO2021072639A1 true WO2021072639A1 (zh) 2021-04-22

Family

ID=75538187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111266 WO2021072639A1 (zh) 2019-10-15 2019-10-15 CdS-ZnS/GO纳米纤维及其制备方法

Country Status (1)

Country Link
WO (1) WO2021072639A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249667A (zh) * 2011-04-20 2011-11-23 东南大学 电纺-水热法制备石墨烯/陶瓷纳米晶颗粒复合材料的方法
CN102658108A (zh) * 2012-05-04 2012-09-12 东南大学 电纺法制备基于石墨烯/半导体光催化滤膜的方法
WO2015084945A1 (en) * 2013-12-04 2015-06-11 Cornell University Electrospun composite nanofiber comprising graphene nanoribbon or graphene oxide nanoribbon, methods for producing same, and applications of same
CN105297405A (zh) * 2015-10-25 2016-02-03 复旦大学 一种硫化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法
US9341590B2 (en) * 2014-08-06 2016-05-17 Korea Advanced Institute Of Science And Technology Composite metal oxide materials including polycrystalline nanofibers, microparticles, and nanoparticles, gas sensors using the same as a sensing material thereof, and manufacturing methods thereof
KR20160062617A (ko) * 2014-11-25 2016-06-02 울산과학기술원 삼차원구조 집전체, 이의 제조 방법, 이를 포함하는 전극, 상기 전극의 제조방법, 및 상기 집전체를 포함하는 전기 화학 소자
KR20160139264A (ko) * 2015-05-27 2016-12-07 국방과학연구소 3차원 나노섬유 멤브레인 및 액체 컬렉터를 이용한 이의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249667A (zh) * 2011-04-20 2011-11-23 东南大学 电纺-水热法制备石墨烯/陶瓷纳米晶颗粒复合材料的方法
CN102658108A (zh) * 2012-05-04 2012-09-12 东南大学 电纺法制备基于石墨烯/半导体光催化滤膜的方法
WO2015084945A1 (en) * 2013-12-04 2015-06-11 Cornell University Electrospun composite nanofiber comprising graphene nanoribbon or graphene oxide nanoribbon, methods for producing same, and applications of same
US9341590B2 (en) * 2014-08-06 2016-05-17 Korea Advanced Institute Of Science And Technology Composite metal oxide materials including polycrystalline nanofibers, microparticles, and nanoparticles, gas sensors using the same as a sensing material thereof, and manufacturing methods thereof
KR20160062617A (ko) * 2014-11-25 2016-06-02 울산과학기술원 삼차원구조 집전체, 이의 제조 방법, 이를 포함하는 전극, 상기 전극의 제조방법, 및 상기 집전체를 포함하는 전기 화학 소자
KR20160139264A (ko) * 2015-05-27 2016-12-07 국방과학연구소 3차원 나노섬유 멤브레인 및 액체 컬렉터를 이용한 이의 제조 방법
CN105297405A (zh) * 2015-10-25 2016-02-03 复旦大学 一种硫化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法

Similar Documents

Publication Publication Date Title
Jiao et al. Hybrid α-Fe2O3@ NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts
Qu et al. Coaxial electrospun nanostructures and their applications
CN103007966B (zh) 一种光催化剂及其制备和应用方法
Zhai et al. Synthesis of zinc sulfide/copper sulfide/porous carbonized cotton nanocomposites for flexible supercapacitor and recyclable photocatalysis with high performance
CN103882559B (zh) 高比表面多孔碳纤维及其制备方法与应用
CN106601803B (zh) 一种uv光前处理制备氧化铟/氧化铝纳米纤维场效应晶体管的方法
Zheng et al. 3D Co 3 O 4@ MnO 2 heterostructures grown on a flexible substrate and their applications in supercapacitor electrodes and photocatalysts
CN110136998B (zh) 一种金属有机骨架碳纤维复合薄膜的制备方法及其应用
CN104240973A (zh) 一种透明、柔性的超级电容器织物及其制备方法
CN106784856A (zh) 一种纳米碳纤维/金属箔双层复合材料及其制备方法
CN103198931A (zh) 一种石墨烯纳米纤维的制备方法及其超级电容器应用
CN102658108A (zh) 电纺法制备基于石墨烯/半导体光催化滤膜的方法
CN110359098A (zh) 一种介孔碳纤维电极材料及其制备方法
KR101488598B1 (ko) 이산화티타늄-그래핀 다공성 나노섬유 제조방법 및 이를 이용한 염료감응형 태양전지
CN112994523A (zh) 一种基于静电纺纳米纤维膜的湿气发电装置及其制备和应用
CN111705419A (zh) 一种负载金属掺杂氮化碳的石墨烯基柔性无纺布及其制备方法和应用
CN106887336A (zh) TiO2/BiVO4纳米阵列光电极的制备方法
CN114149024B (zh) 一种硼掺杂多孔二氧化钛/碳纤维负极材料及制备方法
JP2011073912A (ja) ナノ構造体形成方法
CN113101971B (zh) 一种PVDF/MoS2/AuNPS材料及其制备方法与应用
CN104894691B (zh) 一种静电纺丝法制备Fe2O3/V2O5复合纤维的方法
CN108755102A (zh) 一种毛刺状碳复合二氧化钛纳米纤维及其制备方法和用途
WO2021072639A1 (zh) CdS-ZnS/GO纳米纤维及其制备方法
CN102347140B (zh) 一种染料敏化太阳能电池对电极的制备方法
CN114369942B (zh) 一种碳纤维/二氧化钛光电型复合材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949159

Country of ref document: EP

Kind code of ref document: A1