WO2021070933A1 - 組電池用断熱シート及び組電池 - Google Patents
組電池用断熱シート及び組電池 Download PDFInfo
- Publication number
- WO2021070933A1 WO2021070933A1 PCT/JP2020/038290 JP2020038290W WO2021070933A1 WO 2021070933 A1 WO2021070933 A1 WO 2021070933A1 JP 2020038290 W JP2020038290 W JP 2020038290W WO 2021070933 A1 WO2021070933 A1 WO 2021070933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat insulating
- insulating sheet
- heat
- battery
- assembled battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/658—Means for temperature control structurally associated with the cells by thermal insulation or shielding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/653—Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
- H01M10/6555—Rods or plates arranged between the cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a heat insulating sheet for an assembled battery interposed between the battery cells of the assembled battery and an assembled battery in which a heat insulating sheet for the assembled battery is interposed between the battery cells.
- lithium-ion secondary batteries may generate heat due to chemical reactions during charging and discharging, which causes battery malfunction. For example, when a certain battery cell suddenly rises in temperature and causes thermal runaway, heat propagates to another adjacent battery cell, which may cause thermal runaway of another battery cell.
- Patent Document 1 describes a heat insulating material containing a composite layer containing fibers and silica airgel, and resin columns arranged in the thickness direction in the composite layer. According to such a heat insulating material, the compressive stress applied to the heat insulating material can be dispersed by the resin column, and the heat insulating property of the heat insulating material can be maintained. If the heat insulating material is used between the battery cells, the compressive stress applied to the silica airgel in the heat insulating material can be dispersed by the resin columns, and the heat insulating property between the battery cells can be maintained for a long period of time.
- the heat insulating sheet has high heat insulating properties, when it comes into close contact with the battery cell, heat may be trapped and the thermal runaway of the battery cell may be promoted. Further, since the heat insulating sheet has different heat insulating properties between the resin column in which airgel does not exist and the composite layer in which airgel exists, it is difficult for the heat insulating property and heat dissipation to become uniform in the sheet. Therefore, the heat transfer generated from the battery cell is also different, and when thermal runaway occurs, it may not be possible to suppress the heat transfer in the heat insulating sheet.
- the present invention has been made in view of the above-mentioned situation, and uniform heat insulating property and heat radiating property can be obtained in the heat insulating sheet for assembled batteries, and when the battery cells are thermally runaway, between adjacent battery cells. It is an object of the present invention to provide a heat insulating sheet for an assembled battery capable of blocking heat and quickly dissipating heat generated by the battery cell, and an assembled battery in which a heat insulating sheet for the assembled battery is interposed between the battery cells.
- a heat insulating sheet for an assembled battery interposed between the battery cells in an assembled battery in which a plurality of battery cells are connected in series or in parallel.
- a heat insulating sheet for an assembled battery which comprises a first particle composed of uniformly dispersed silica nanoparticles and an inorganic fiber uniformly dispersed and oriented in one direction parallel to the main surface of the heat insulating sheet.
- the heat insulating sheet of the present invention is preferably the following (2) to (10).
- thermoelectric sheet for assembled batteries according to any one of (1) to (8), wherein the heat insulating sheet for assembled batteries further includes a binder.
- (11) assembled battery according to the present invention (11) A plurality of battery cells are arranged via the heat insulating sheet for assembled batteries according to any one of (1) to (10), and the plurality of battery cells are connected in series or in parallel. ..
- the assembled battery of the present invention is preferably the following (12). (12) It has a heat sink that dissipates heat generated from the battery cell.
- the assembled battery according to (11), wherein the heat insulating sheet for an assembled battery has the inorganic fibers oriented toward the heat sink.
- the heat insulating property and heat dissipation property in the heat insulating sheet are excellent. It becomes uniform and the heat generated from the battery cell can be dissipated by the heat insulating sheet. Further, the heat insulating sheet for an assembled battery of the present invention can block heat from a battery to an adjacent battery even in the case of thermal runaway.
- FIG. 1 is a schematic view showing the configuration of a heat insulating sheet for an assembled battery according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing an embodiment of an assembled battery using the heat insulating sheet for assembled battery shown in FIG.
- FIG. 3 is a perspective view schematically showing a heat insulating sheet for an assembled battery produced by extrusion molding.
- FIG. 4 is a cross-sectional view schematically showing an embodiment of an assembled battery using a heat insulating sheet containing the second particles.
- the heat insulating sheet for an assembled battery includes first particles composed of uniformly dispersed silica nanoparticles, and inorganic fibers that are uniformly dispersed and oriented in one direction parallel to the main surface of the heat insulating sheet.
- the silica nanoparticles which are the first particles constituting the heat insulating sheet for an assembled battery of the present invention, are insulators, fine voids are likely to be formed between the particles due to the repulsive force due to static electricity, the bulk density is lowered, and the particles are inter-particles. It is considered that the voids of the particles become thermal resistance and high heat insulating properties can be ensured.
- silica nanoparticles are used in the heat insulating sheet for assembled batteries, they have high performance in heat insulation between battery cells, but when used in close contact with the battery cells, the silica nanoparticles in the heat insulating sheet for assembled batteries are used. It may hinder heat dissipation and promote thermal runaway.
- the material itself has high thermal conductivity and excellent heat dissipation along the orientation direction of the inorganic fiber, while the direction intersecting the orientation direction is Has excellent heat insulation.
- silica nanoparticles having such characteristics and inorganic fibers are appropriately combined to realize a heat insulating sheet for an assembled battery that easily dissipates heat from between the battery cells to the outside while ensuring heat insulating properties between the battery cells. ing.
- FIG. 1 is a schematic view showing a configuration of a heat insulating sheet 10 for an assembled battery according to an embodiment of the present invention
- FIG. 2 shows an embodiment of an assembled battery 100 using the heat insulating sheet 10 for an assembled battery shown in FIG. It is sectional drawing which shows typically.
- the heat insulating sheet 10 contains first particles 21 made of silica nanoparticles and inorganic fibers 23 made of glass fibers or the like.
- silica nanoparticles silica nanoparticles having an average particle diameter of 1 nm or more and 100 nm or less are used.
- the inorganic fiber 23 is mainly oriented in the lateral direction in a plan view.
- the heat insulating sheet 10 for assembled batteries As a specific usage pattern of the heat insulating sheet 10 for assembled batteries, as shown in FIG. 2, a plurality of battery cells 20 are arranged via the heat insulating sheet 10 for assembled batteries, and the plurality of battery cells 20 are connected in series.
- the assembled battery 100 is configured by being stored in the battery case 30 in a state of being connected in parallel (the connected state is not shown).
- the battery cell 20 for example, a lithium ion secondary battery is preferably used, but the battery cell 20 is not particularly limited to this, and can be applied to other secondary batteries.
- FIG. 1 is a schematic diagram, it is shown that the first particles 21 are not in contact with each other, but in reality, many first particles 21 are in point contact with each other. ), Conducted (solid conduction) toward the other surface 10b of the heat insulating sheet 10.
- silica nanoparticles having heat insulating properties are used as the first particles 21, the amount of heat transfer is reduced as the particles approach the other surface 10b of the heat insulating sheet 10 (see arrow 15b).
- the heat is diffused by the inorganic fiber 23 in the horizontal direction in the plan view as shown by the arrow 15c.
- the presence allows heat to be diffused to the sides of the heat insulating sheet while reducing heat transfer to the other surface 10b of the heat insulating sheet 10.
- the heat insulating sheet 10 for an assembled battery in which the inorganic fibers 23 are oriented may be manufactured by using the originally oriented inorganic fibers 23 as they are, or a raw material containing the randomly oriented inorganic fibers 23 may be used in the uniaxial direction. It can be obtained by stretching and orienting, or by making a paper while orienting a slurry in which inorganic fibers 23 are dispersed by a water stream.
- the inorganic fiber 23 is oriented in a specific direction, but when it is difficult to distinguish the fiber, the bending strength in that direction is measured and 20% or more from the other direction. It can be confirmed by the fact that it is getting larger.
- silica nanoparticles are used as the first particles 21, and the contact points between the particles are small. Therefore, the amount of heat conducted by the silica nanoparticles is compared with the case where silica particles having a large particle diameter are used. Becomes smaller. Further, since the generally available silica nanoparticles contain a large amount of voids and have a bulk density of about 0.5 g / cm 2, for example, the battery cells 20 arranged on both sides of the heat insulating sheet 10 thermally expand, and the bulk density thereof is about 0.5 g / cm 2.
- the voids formed between the particles of the silica nanoparticles remain at about several tens of nm, which hinders the movement of air and suppresses convection heat transfer. Therefore, when silica nanoparticles are used as the first particles 21, the heat insulating property of the heat insulating sheet 10 can be further improved.
- silica nanoparticles are used as the first particles 21.
- silica nanoparticles wet silica, dry silica, airgel and the like can be used.
- the silica nanoparticles are nanometer-order silica particles having a spherical or near-spherical average particle diameter of less than 1 ⁇ m.
- the content of the first particles 21 of the present invention is preferably 30% by mass or more and 80% by mass or less with respect to the total mass of the heat insulating sheet for assembled batteries. Since the silica nanoparticles contained as the first particles 21 in the heat insulating sheet 10 have a low density, the conduction heat transfer is suppressed, and since the voids are finely dispersed, the movement of air is less likely to occur and the convection heat transfer is suppressed. It has excellent heat insulation.
- the heat insulating sheet 10 for an assembled battery using silica nanoparticles when used in close contact with the battery cell 20, heat is trapped and thermal runaway is promoted.
- the content of the first particles 21 is 30% by mass or more with respect to the total mass of the heat insulating sheet for assembled batteries to ensure heat insulating properties, and the heat insulating properties of the first particles 21 are ensured.
- the content By setting the content to 80% by mass or less, a sufficient space for containing the inorganic fiber 23 can be secured, and heat dissipation can be ensured.
- the average particle size of the first particles 21 is more preferably 2 nm or more, and further preferably 3 nm or more.
- the average particle size of the first particles 21 is more preferably 50 nm or less, and even more preferably 10 nm or less.
- the content of the inorganic fiber 23 of the present invention is preferably 5% by mass or more and 30% by mass or less with respect to the total mass of the heat insulating sheet for assembled batteries.
- the content of the inorganic fiber 23 is 5% by mass or more, the effect of diffusing heat to the side of the heat insulating sheet can be sufficiently ensured.
- the content of the inorganic fiber 23 is 30% by mass or less, a sufficient space for filling the first particles having high heat insulating properties can be sufficiently secured, and the heat insulating properties can be ensured.
- the inorganic fiber 23 is a linear or needle-shaped large-diameter fiber, and contributes to improvement of mechanical strength and shape retention against pressure from the battery cell 20 of the heat insulating sheet 10.
- the average fiber diameter thereof is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more.
- the thickness is preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
- the fibers are suitably entangled with each other when molded as the heat insulating sheet 10, and a sufficient surface pressure can be obtained.
- the average fiber length thereof is preferably 0.1 mm or more, and more preferably 1 mm or more.
- the process of mixing the inorganic fibers 23 and the first particles 21 once and then orienting the inorganic fibers 23 is adopted, if the average fiber length of the inorganic fibers 23 is too long, the inorganic fibers 23 are mixed with each other at the time of preparing the raw materials.
- the average fiber length of the inorganic fiber 23 is preferably 300 mm or less, more preferably 20 mm or less.
- the fiber diameter and fiber length of the inorganic fiber 23 can be extracted from the tweezers without breaking and compared with the standard scale. If necessary, it can be measured by observing with an optical microscope.
- the heat insulating sheet 10 for an assembled battery contains second particles 22 made of a metal oxide as a component that further enhances the heat insulating effect in a high temperature region of 500 ° C. or higher. It may be contained, and may further contain components necessary for molding a heat insulating sheet, such as a binder and a colorant. Hereinafter, other components will be described in detail.
- a metal oxide as the second particle 22.
- titania zirconia, zircon, barium titanate, zinc oxide, alumina and the like can be used.
- titania is a component having a higher refractive index than other metal oxides, and has a high effect of diffusely reflecting heat in a high temperature region of 500 ° C. or higher. Therefore, it is most preferable to use titania.
- the particle size of the second particle 22 may affect the effect of reflecting heat, further higher heat insulating properties can be obtained by limiting the average particle size of the second particle 22 to a predetermined range. That is, when the average particle diameter of the second particle 22 is 1 ⁇ m or more, it is sufficiently larger than the wavelength of light that contributes to heating, and the light is efficiently diffusely reflected, and the existence range (mass ratio) of the second particle 22 in the present invention. ), The radiant heat transfer of heat in the heat insulating sheet 10 is suppressed in a high temperature region of 500 ° C. or higher, and the heat insulating property can be further improved.
- the average particle size of the second particles 22 is more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more. Further, the average particle size of the second particle 22 is more preferably 30 ⁇ m or less, and further preferably 10 ⁇ m or less. In the present invention, the average particle size can be obtained by observing the particles with a microscope, comparing them with a standard scale, and taking the average of 10 arbitrary particles.
- the heat insulating sheet 10 contains the second particles 22, but the amount of the second particles 22 added is small. However, the effect of suppressing the radiation conduction of heat can be obtained. Further, in order to obtain the effect of suppressing heat convection heat transfer and conduction heat transfer by the first particles 21, it is preferable to increase the amount of the first particles 21 added. As described above, since the mass ratio of the second particles 22 affects the heat insulating property in the region from the normal temperature to a high temperature of 500 ° C. or higher, in the present invention, the heat insulating sheet 10 is provided with a metal oxide as the second particles 22. When it is contained, it is preferable to appropriately adjust the mass ratio of the second particle 22.
- the desirable mass ratio of the second particles 22 is 5% by mass or more with respect to the total mass of the heat insulating sheet.
- the content of the second particle 22 is 5% by mass or more with respect to the total mass of the heat insulating sheet, radiant heat transfer can be suppressed especially in a temperature region where the influence of radiation of 500 ° C. or higher is large, and high heat insulating property is obtained. It is thought that it will be obtained.
- the desirable mass ratio of the second particles 22 of the heat insulating sheet 10 of the present invention is 40% by mass or less with respect to the total mass of the heat insulating sheet.
- the content of the second particles 22 exceeds 40% by mass with respect to the total mass of the heat insulating sheet, a sufficient effect of the first particles 21 may not be obtained, and the heat insulating sheet is in a temperature range of less than 500 ° C. It becomes difficult to suppress the convection conduction or the solid conduction of heat in 10, and the heat insulating property may be lowered.
- the inorganic fibers 23 can maintain the shape of the heat insulating sheet 10, but the content is appropriate in order to prevent the silica nanoparticles from falling off. It is preferable to add a binder in. Further, when the binder content is 3% by mass or more with respect to the total mass of the heat insulating sheet 10, it is possible to reduce the dropping of silica nanoparticles from the heat insulating sheet 10. Further, the content of the binder with respect to the total mass of the heat insulating sheet 10 is preferably 5% by mass or more.
- the content of the binder with respect to the total mass of the heat insulating sheet is preferably 30% by mass or less, and more preferably 20% by mass or less.
- the binder As described above, in the heat insulating sheet 10 for an assembled battery according to the present invention, it is preferable to appropriately select the type and content of the binder in order to adjust the compression characteristics to a desired value.
- the binder an organic binder, an inorganic binder, or the like can be used.
- the type of the inorganic binder is not particularly limited, but as the inorganic binder, for example, alumina sol, silica sol and the like can be used.
- the thickness of the heat insulating sheet 10 for an assembled battery according to the present invention is not particularly limited, but is preferably in the range of 0.1 mm or more and 30 mm or less. When the thickness of the heat insulating sheet 10 is within the above range, sufficient mechanical strength can be obtained and molding can be easily performed.
- the heat insulating sheet 10 according to the present embodiment can be manufactured by molding by an extrusion molding method, a wet papermaking method, a press molding method, or the like using a material for a heat insulating sheet containing the first particles 21 and the inorganic fibers 23. it can.
- the manufacturing method when the heat insulating sheet 10 is obtained by each molding method will be described below.
- FIG. 3 is a perspective view schematically showing a heat insulating sheet 40 for an assembled battery manufactured by extrusion molding.
- the first particle 21 is not shown.
- the inorganic fibers 23 and the like contained as the material of the heat insulating sheet 40 are parallel to the extrusion direction X, that is, the main surface of the heat insulating sheet. Oriented in one direction. Since the heat insulating sheet 40 is provided with anisotropy in thermal conductivity by the inorganic fibers 23 and the like oriented in this way, the heat incident from the main surface side of the heat insulating sheet 40 propagates in one direction parallel to the main surface. Will be done. Therefore, when the heat insulating sheet 40 manufactured by the extrusion molding method is used, heat propagation to the adjacent battery cells 20 can be suppressed more effectively and heat can be dissipated efficiently.
- the wet papermaking method First, the first particle 21 and the inorganic fiber 23, and if necessary, the second particle 22 and the binder are mixed in water and stirred with a stirrer to prepare a mixed solution. Then, the obtained mixed liquid is poured into a molding machine having a mesh for filtration formed on the bottom surface, and the mixed liquid is dehydrated through the mesh to prepare a wet sheet. At this time, by arranging the filtration mesh so as to be inclined instead of horizontally, the mixed liquid is made while flowing in one direction, so that a wet sheet in which the inorganic fibers 23 are oriented in the inclined direction can be obtained.
- the heat insulating sheet 40 can be obtained by heating and pressurizing the obtained wet sheet. Before the heating and pressurizing steps, hot air may be aerated through the wet sheet to dry the sheet, but this aeration drying process is not performed and the wet sheet is heated and dried. You may pressurize.
- the heat insulating sheet 40 for an assembled battery of the present invention can be obtained by drying the obtained impregnated body and then press-molding it.
- the sliver is a thick string-like aggregate in which fibers are oriented in one direction. By arranging a plurality of slivers as needed, a flat plate-shaped heat insulating sheet 40 can be obtained.
- the heat insulating sheet 40 for an assembled battery of the present invention is not limited to these manufacturing methods, and can be used by any manufacturing method.
- ⁇ Assembled battery> In the assembled battery 100 according to the present invention, as illustrated in FIG. 2, a plurality of battery cells 20 are arranged via the above-mentioned heat insulating sheet for assembled batteries 10, and the plurality of battery cells 20 are connected in series or in parallel. It is a thing.
- FIG. 4 is a cross-sectional view schematically showing an embodiment of the assembled battery 110 using the heat insulating sheet 40 shown in FIG.
- the same reference numerals as those in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.
- the assembled battery 110 according to the present embodiment is a metal that dissipates heat generated from the battery cell 20 on the outside where the plurality of battery cells 20 and the heat insulating sheet 40 for the assembled battery are arranged. It has a battery case 30 made of. Further, a heat sink 25 for releasing heat to the outside is arranged on the outside of the battery case 30.
- the heat generated from the battery cell 20 is transferred to the heat insulating sheet 40 and then diffused laterally and propagated to the battery case 30.
- the heat insulating sheet 40 for the assembled battery contains the inorganic fiber 23 and the inorganic fiber 23 is oriented in the vertical direction (that is, the direction perpendicular to the stacking direction of the battery cell 20), it propagates from the battery cell 20.
- the generated heat is easily propagated in the vertical direction through the oriented inorganic fibers 23, and is easily dissipated by the battery case 30 and the heat sink 25. Therefore, when the heat insulating sheet 40 is formed by, for example, extrusion molding and has the inorganic fibers 23 oriented in one direction parallel to the main surface thereof, the assembled battery takes the direction of orientation into consideration. It is preferable to incorporate it in 110.
- the battery case 30 is arranged so that the areas of the upper surface and the bottom surface are large. Therefore, the orientation direction of the heat insulating sheet 40 for the assembled battery is set in the vertical direction so as to easily dissipate heat from the upper surface and the bottom surface, but the orientation direction of the inorganic fiber 23 is not limited to the direction of the large surface, and the heat can be easily released. It is desirable to orient. For example, when the assembled battery is fixed by a metal fixture that functions as the heat sink 25, the orientation direction of the inorganic fibers 23 may be the direction in which the heat sink is located.
- the heat insulating sheet 40 when the heat insulating sheet 40 is arranged so that the inorganic fibers 23 in the heat insulating sheet 40 are oriented toward the heat sink 25, the heat insulating sheet 40 further improves the heat dissipation and heats the heat. Can be done. Further, the heat sink is not limited to 25, and heat may be dissipated to a heat storage material or the like.
- Insulation sheet Insulation sheet for assembled batteries
- 10a 10b surface
- Battery cell 10
- First particle 22
- Second particle 23
- Inorganic fiber 25
- Heat sink 30
- Battery case 100, 110 sets Battery
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Battery Mounting, Suspending (AREA)
- Secondary Cells (AREA)
- Thermal Insulation (AREA)
- Cell Separators (AREA)
Abstract
均一な断熱性や放熱性が得られ、電池セルが熱暴走した場合には、隣り合う電池セル間で熱を遮断するとともに、電池セルの発熱を速やかに放熱させることができる組電池用断熱シート、及び組電池用断熱シートを電池セル間に介在させた組電池を提供する。複数の電池セルを直列又は並列に接続した組電池における、電池セル間に介在される組電池用断熱シートであって、一様に分散したシリカナノ粒子からなる第1粒子(21)と、一様に分散するとともに断熱シート(10)の主面に対して平行な一方向に配向されている無機繊維(23)と、を含む組電池用断熱シート(10)。
Description
本発明は、組電池の電池セル間に介在させる組電池用断熱シート、及び組電池用断熱シートを電池セル間に介在させた組電池に関する。
従来より、発熱体から他の物体への熱伝達を抑制するために、発熱体に近接させ、又は少なくとも一部を発熱体に接触させて用いる組電池用断熱シートが用いられている。
また、近年では、鉛蓄電池やニッケル水素電池等に比べて、高容量かつ高出力が可能なリチウムイオン二次電池の需要が増加しており、携帯電話、パソコン、小型電子機器の小容量の二次電池だけでなく、自動車、バックアップ電源等の大容量の二次電池にも用いられている。特に、自動車の分野においては、環境保護の観点から電動モータで駆動する電気自動車又はハイブリッド車等の開発が盛んに進められている。この電気自動車又はハイブリッド車等には、駆動用電動モータの電源となるための、複数の電池セルが直列又は並列に接続された組電池が搭載されている。
しかし、リチウムイオン二次電池は、充放電時に化学反応を起因とする熱が発生することがあり、これにより、電池の不具合が発生する。例えば、ある電池セルが急激に昇温し、熱暴走を起こした場合、隣接する他の電池セルに熱が伝播することで、他の電池セルの熱暴走を引き起こすおそれがある。
上記のような組電池の分野において、熱暴走を起こした電池セルから隣接する電池セルへの熱の伝播を抑制し、熱暴走の連鎖による電池の類焼及び爆発の不具合を防ぐために、電池セル間に介在させる種々の断熱材が提案されている。
例えば、特許文献1では、繊維とシリカエアロゲルとを含む複合層と、前記複合層中で、厚み方向に配置された樹脂支柱と、を含む断熱材が記載されている。このような断熱材によれば、樹脂支柱により断熱材にかかる圧縮応力を分散することができ、断熱材の断熱特性を保持できる。電池セル間に上記断熱材を用いれば、この断熱材中のシリカエアロゲルに掛かる圧縮応力を樹脂支柱で分散でき、電池セル間の断熱性を長期間保つことができる。その結果、電池のセル間の熱暴走による類焼を抑制し、安全な車載用電池を提供でき、さらに、断熱性樹脂支柱を多孔質の樹脂にすれば、電池セルからの熱伝導を抑制できることが記載されている。
しかしながら、上記断熱シートは、断熱性が高いために、電池セルと密着すると、熱がこもって電池セルの熱暴走を促進することがある。
さらに、上記断熱シートは、エアロゲルが存在しない樹脂支柱とエアロゲルが存在する複合層とで断熱性が異なるため、シート内で断熱性や放熱性が均一となりにくい。そのため、電池セルから発生した熱の伝達も異なり、熱暴走が発生した場合、断熱シートでの熱伝達の抑制ができないことがある。
さらに、上記断熱シートは、エアロゲルが存在しない樹脂支柱とエアロゲルが存在する複合層とで断熱性が異なるため、シート内で断熱性や放熱性が均一となりにくい。そのため、電池セルから発生した熱の伝達も異なり、熱暴走が発生した場合、断熱シートでの熱伝達の抑制ができないことがある。
本発明は、上述した状況に鑑みてなされたものであり、組電池用断熱シートにおいて、均一な断熱性や放熱性が得られ、電池セルが熱暴走した場合には、隣り合う電池セル間で熱を遮断するとともに、電池セルの発熱を速やかに放熱させることができる組電池用断熱シート、及び組電池用断熱シートを電池セル間に介在させた組電池を提供することを目的とする。
上記の目的は、本発明に係る下記(1)の断熱シートにより達成される。
(1)複数の電池セルを直列又は並列に接続した組電池における、前記電池セル間に介在される組電池用断熱シートであって、
一様に分散したシリカナノ粒子からなる第1粒子と、一様に分散するとともに断熱シートの主面に対して平行な一方向に配向されている無機繊維と、を含む組電池用断熱シート。
(1)複数の電池セルを直列又は並列に接続した組電池における、前記電池セル間に介在される組電池用断熱シートであって、
一様に分散したシリカナノ粒子からなる第1粒子と、一様に分散するとともに断熱シートの主面に対して平行な一方向に配向されている無機繊維と、を含む組電池用断熱シート。
また、本発明の断熱シートは、下記(2)~(10)であることが好ましい。
(2)前記第1粒子の含有量は、組電池用断熱シート全質量に対して、30質量%以上80質量%以下である、(1)に記載の組電池用断熱シート。
(2)前記第1粒子の含有量は、組電池用断熱シート全質量に対して、30質量%以上80質量%以下である、(1)に記載の組電池用断熱シート。
(3)前記第1粒子は、平均粒子径が1nm以上100nm以下である、(1)又は(2)に記載の組電池用断熱シート。
(4)前記無機繊維の含有量は、組電池用断熱シート全質量に対して、5質量%以上30質量%以下である、(1)~(3)のいずれか1項に記載の組電池用断熱シート。
(5)前記組電池用断熱シートはさらに、金属酸化物からなる第2粒子を含む、(1)~(4)のいずれか1項に記載の組電池用断熱シート。
(6)前記第2粒子は、チタニア、ジルコニア、ジルコン、チタン酸バリウム、酸化亜鉛及びアルミナから選択された少なくとも1種である、(5)に記載の組電池用断熱シート。
(7)前記第2粒子はチタニアである、(6)に記載の組電池用断熱シート。
(8)前記第2粒子は、平均粒子径が1μm以上50μm以下である、(5)~(7)のいずれか1項に記載の組電池用断熱シート。
(9)前記組電池用断熱シートは、さらにバインダを含む、(1)~(8)のいずれか1項に記載の組電池用断熱シート。
(10)前記バインダは、メチルセルロース、水溶性セルロースエーテル、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース及びこれらの誘導体から選択された少なくとも1種である、(9)に記載の組電池用断熱シート。
上記の目的は、本発明に係る下記(11)の組電池により達成される。
(11)複数の電池セルが、(1)~(10)のいずれか1項に記載の組電池用断熱シートを介して配置され、該複数の電池セルが直列又は並列に接続された組電池。
(11)複数の電池セルが、(1)~(10)のいずれか1項に記載の組電池用断熱シートを介して配置され、該複数の電池セルが直列又は並列に接続された組電池。
また、本発明の組電池は、下記(12)であることが好ましい。
(12)前記電池セルから発生する熱を放熱させるヒートシンクを有し、
前記組電池用断熱シートは、前記ヒートシンクの方向に向かって前記無機繊維が配向している、(11)に記載の組電池。
(12)前記電池セルから発生する熱を放熱させるヒートシンクを有し、
前記組電池用断熱シートは、前記ヒートシンクの方向に向かって前記無機繊維が配向している、(11)に記載の組電池。
本発明によれば、組電池用断熱シートの内部で、無機繊維が主面に対して平行な一方向に配向しながら分散しているので、断熱シート内での断熱性や放熱性が優れるとともに均一となり、電池セルからの発熱を断熱シートで放熱できる。また、本発明の組電池用断熱シートは、熱暴走した場合でも、電池から隣り合う電池への熱を遮断することができる。
本願発明者らが、電池セルが熱暴走した場合には、隣り合う電池セル間で熱を遮断するとともに、電池セルの発熱を速やかに放熱させる断熱性と放熱性に優れた組電池用断熱シートを提供するため鋭意検討を行った結果、断熱シートに含まれる無機繊維の配向が重要であることを見出した。すなわち、組電池用断熱シートは、一様に分散したシリカナノ粒子からなる第1粒子と、一様に分散するとともに断熱シートの主面に対して平行な一方向に配向されている無機繊維と、を含むことにより、第1粒子の高い断熱性と、配向した無機繊維による熱の放熱性能が組み合わせられ、優れた断熱性と放熱性を兼ね備えることができる。
本発明の組電池用断熱シートを構成する第1粒子であるシリカナノ粒子は、絶縁体であるので静電気による反発力で粒子間に細かな空隙ができやすく、かさ密度が低くなるうえに、粒子間の空隙が熱抵抗となって、高い断熱性を確保できると考えられる。シリカナノ粒子を組電池用断熱シートに使用した場合、電池セル間の断熱には高い性能を有しているが、電池セルと密着して使用した場合には、組電池用断熱シートのシリカナノ粒子が放熱を阻害し、熱暴走を促進するおそれがある。
一方、本発明の組電池用断熱シートを構成する無機繊維は、素材自体は熱伝導率が高く、無機繊維の配向方向に沿って放熱性が優れている一方、配向方向と交わる方向には、断熱性に優れている。
本発明では、このような特徴を有するシリカナノ粒子と無機繊維とを適切に組み合わせ、電池セル間の断熱性を確保しつつ、電池セルの間から外部へ放熱しやすい組電池用断熱シートを実現している。
本発明はこのような知見に基づくものであるが、以下に本発明の実施形態(本実施形態)に係る組電池用断熱シート及び組電池について、図面を参照しつつ詳細に説明する。
<組電池用断熱シートの基本構成>
図1は、本発明の実施形態に係る組電池用断熱シート10の構成を示す模式図であり、図2は、図1に示す組電池用断熱シート10を用いた組電池100の実施形態を模式的に示す断面図である。断熱シート10には、シリカナノ粒子からなる第1粒子21と、ガラス繊維等からなる無機繊維23とが含まれている。なお、上記シリカナノ粒子として、平均粒子径が1nm以上100nm以下であるシリカナノ粒子を用いている。また、無機繊維23は、主に平面視横方向に配向している。
図1は、本発明の実施形態に係る組電池用断熱シート10の構成を示す模式図であり、図2は、図1に示す組電池用断熱シート10を用いた組電池100の実施形態を模式的に示す断面図である。断熱シート10には、シリカナノ粒子からなる第1粒子21と、ガラス繊維等からなる無機繊維23とが含まれている。なお、上記シリカナノ粒子として、平均粒子径が1nm以上100nm以下であるシリカナノ粒子を用いている。また、無機繊維23は、主に平面視横方向に配向している。
この組電池用断熱シート10の具体的な使用形態としては、図2に示すように、複数の電池セル20が、組電池用断熱シート10を介して配置され、複数の電池セル20同士が直列又は並列に接続された状態(接続された状態は図示を省略)で、電池ケース30に格納されて組電池100が構成される。なお、電池セル20は、例えば、リチウムイオン二次電池が好適に用いられるが、特にこれに限定されず、その他の二次電池にも適用され得る。
以下に示す説明では、断熱シート10の一方の面10a側に発熱した電池セル20が存在している場合を想定している。このように構成された断熱シート10において、電池セル20が発熱すると、断熱シート10の一方の面10a側から入射した熱の一部は、図1において矢印15aで示すように、互いに接触した第1粒子21を媒介して(図1は模式図のため、第1粒子21同士が互いに接触していないように示されているが、実際には多くの第1粒子21同士が互いに点接触している。)、断熱シート10の他方の面10bに向かって伝導(固体伝導)される。このとき、第1粒子21として、断熱性を有するシリカナノ粒子を用いているため、断熱シート10の他方の面10bに近づくに従って、伝熱量が低減される(矢印15bを参照)。
また、電池セル20が発熱して、熱の一部が断熱シート10に到達すると、矢印15cに示すように、無機繊維23により、熱が平面視横方向に拡散されるため、無機繊維23の存在により、断熱シート10の他方の面10bに熱が伝播されることを低減しつつ、断熱シートの側方に熱を拡散させることができる。
なお、本発明において、「一方向に配向している」とは、無機繊維23がすべてその方向に向いている必要はなく、特定の一方向に無機繊維23が並ぶ傾向が強ければよい。このような無機繊維23の配向した組電池用断熱シート10は、もともと配向している無機繊維23をそのまま用いて製造してもよいし、ランダムに配向した無機繊維23を含む原材料を一軸方向に延伸して配向させたり、無機繊維23を分散させたスラリーを水流で配向させながら抄造するなどの方法で得ることができる。
また、無機繊維23が特定の方向に配向していることは、目視による確認で判断できるが、繊維の判別が難しい場合には、当該方向の曲げ強度を測定し、他の方向より20%以上大きくなっていることで確認することができる。
以上より、本実施形態によれば、ある電池セル20に熱暴走が生じた場合、隣接する他の電池セル20へ熱の伝播を効果的に抑制することができるため、他の電池セル20の熱暴走が引き起こされるのを抑制することができる。また、電池セル20が熱膨張し、断熱シート10を押圧し密着した場合であっても、無機繊維23が熱を側方に拡散させ、優れた断熱性を維持しつつ放熱することができる。
なお、本実施形態においては、第1粒子21としてシリカナノ粒子を用いており、粒子同士の接点が小さいため、シリカナノ粒子により伝導される熱量は、粒子径が大きいシリカ粒子を使用した場合と比較して小さくなる。また、一般的に入手されるシリカナノ粒子は、空隙を多く含みかさ密度が0.5g/cm2程度であるため、例えば、断熱シート10の両側に配置された電池セル20が熱膨張し、その圧力によって断熱シート10が若干変形した場合であっても、粒子同士の反発力で空隙は残り、シリカ同士の接点の大きさ(面積)が著しく大きくなることはなく、断熱性を維持することができる。
さらに、本実施形態において、シリカナノ粒子の粒子間に形成される空隙部は、数10nm程度にとどまり、空気の移動を妨げ、対流伝熱を抑制することができる。したがって、第1粒子21としてシリカナノ粒子を用いると、断熱シート10の断熱性をより一層高めることができる。
<組電池用断熱シートの詳細>
次に、組電池用断熱シート10を構成する第1粒子21及び無機繊維23について詳細に説明する。
次に、組電池用断熱シート10を構成する第1粒子21及び無機繊維23について詳細に説明する。
(第1粒子の種類)
本発明において、第1粒子21としてはシリカナノ粒子を用いる。シリカナノ粒子としては、湿式シリカ、乾式シリカ及びエアロゲル等を使用することができる。
また、本発明においてシリカナノ粒子とは、球形あるいは球形に近い平均粒子径が1μm未満のナノメートルオーダーのシリカの粒子である。
本発明において、第1粒子21としてはシリカナノ粒子を用いる。シリカナノ粒子としては、湿式シリカ、乾式シリカ及びエアロゲル等を使用することができる。
また、本発明においてシリカナノ粒子とは、球形あるいは球形に近い平均粒子径が1μm未満のナノメートルオーダーのシリカの粒子である。
(第1粒子の含有量:断熱シート全質量に対して、30質量%以上80質量%以下)
本発明の第1粒子21の含有量は、組電池用断熱シート全質量に対して、30質量%以上80質量%以下であることが好ましい。
断熱シート10中に第1粒子21として含まれるシリカナノ粒子は低密度であるため伝導伝熱を抑制し、さらに空隙が細かく分散しているため、空気の移動を起こりにくくし対流伝熱を抑制する優れた断熱性を有している。このため、シリカナノ粒子を用いた組電池用断熱シート10を電池セル20に密着して使用すると、熱がこもりかえって熱暴走を促進する。
本発明の組電池用断熱シート10では、第1粒子21の含有量は、組電池用断熱シート全質量に対して、30質量%以上とすることにより断熱性を確保し、第1粒子21の含有量を80質量%以下とすることにより、無機繊維23含有させる空間を十分に確保でき、放熱性を確保することができる。
本発明の第1粒子21の含有量は、組電池用断熱シート全質量に対して、30質量%以上80質量%以下であることが好ましい。
断熱シート10中に第1粒子21として含まれるシリカナノ粒子は低密度であるため伝導伝熱を抑制し、さらに空隙が細かく分散しているため、空気の移動を起こりにくくし対流伝熱を抑制する優れた断熱性を有している。このため、シリカナノ粒子を用いた組電池用断熱シート10を電池セル20に密着して使用すると、熱がこもりかえって熱暴走を促進する。
本発明の組電池用断熱シート10では、第1粒子21の含有量は、組電池用断熱シート全質量に対して、30質量%以上とすることにより断熱性を確保し、第1粒子21の含有量を80質量%以下とすることにより、無機繊維23含有させる空間を十分に確保でき、放熱性を確保することができる。
(第1粒子の平均粒子径:1nm以上100nm以下)
上述の通り、第1粒子21の粒子径は、断熱シート10の断熱性に影響を与えることがあるため、第1粒子21の平均粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。
すなわち、第1粒子21の平均粒子径を1nm以上100nm以下とすると、特に500℃未満の温度領域において、断熱シート10内における熱の対流伝熱及び伝導伝熱を抑制することができ、断熱性をより一層向上させることができる。
なお、第1粒子21の平均粒子径は、2nm以上であることがより好ましく、3nm以上であることがさらに好ましい。また、第1粒子21の平均粒子径は、50nm以下であることがより好ましく、10nm以下であることがさらに好ましい。
上述の通り、第1粒子21の粒子径は、断熱シート10の断熱性に影響を与えることがあるため、第1粒子21の平均粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。
すなわち、第1粒子21の平均粒子径を1nm以上100nm以下とすると、特に500℃未満の温度領域において、断熱シート10内における熱の対流伝熱及び伝導伝熱を抑制することができ、断熱性をより一層向上させることができる。
なお、第1粒子21の平均粒子径は、2nm以上であることがより好ましく、3nm以上であることがさらに好ましい。また、第1粒子21の平均粒子径は、50nm以下であることがより好ましく、10nm以下であることがさらに好ましい。
(無機繊維の含有量:断熱シート全質量に対して、5質量%以上30質量%以下)
本発明の無機繊維23の含有量は、組電池用断熱シート全質量に対して、5質量%以上30質量%以下であることが好ましい。
無機繊維23の含有量が5質量%以上であると、断熱シートの側方に熱を拡散させる効果を十分に確保することができる。また、無機繊維23の含有量が30質量%以下であると、断熱性の高い第1粒子を充填する空間を十分に確保でき、断熱性を確保することができる。
本発明の無機繊維23の含有量は、組電池用断熱シート全質量に対して、5質量%以上30質量%以下であることが好ましい。
無機繊維23の含有量が5質量%以上であると、断熱シートの側方に熱を拡散させる効果を十分に確保することができる。また、無機繊維23の含有量が30質量%以下であると、断熱性の高い第1粒子を充填する空間を十分に確保でき、断熱性を確保することができる。
(無機繊維の平均繊維径:1μm以上20μm以下)
無機繊維23は、線状又は針状の太径の繊維であり、断熱シート10の電池セル20からの圧力に対する機械的強度及び保形性の向上に寄与する。このような効果を得るために、その平均繊維径が1μm以上であることが好ましく、2μm以上であることがより好ましい。ただし、無機繊維23が太すぎると、断熱シート10への成形性、加工性が低下するおそれがあるため、20μm以下とすることが好ましく、15μm以下とすることがより好ましい。
無機繊維23は、線状又は針状の太径の繊維であり、断熱シート10の電池セル20からの圧力に対する機械的強度及び保形性の向上に寄与する。このような効果を得るために、その平均繊維径が1μm以上であることが好ましく、2μm以上であることがより好ましい。ただし、無機繊維23が太すぎると、断熱シート10への成形性、加工性が低下するおそれがあるため、20μm以下とすることが好ましく、15μm以下とすることがより好ましい。
(無機繊維の平均繊維長:0.1mm以上300mm以下)
基材として無機繊維23を用いると、断熱シート10として成形したときに繊維同士が好適に絡み合い、充分な面圧を得ることができる。このような効果を得るために、無機繊維23を用いる場合には、その平均繊維長が0.1mm以上であることが好ましく、1mm以上であることがより好ましい。ただし、無機繊維23と第1粒子21をいったん混合し、後から無機繊維23を配向させるプロセスを採る場合、無機繊維23の平均繊維長が長すぎると、原材料の調製時に、無機繊維23同士の絡み合いが強くなりすぎることがあり、シート状に成形した後に無機繊維23が不均一に集積しやすくなることがある。したがって、無機繊維23の平均繊維長は300mm以下であることが好ましく、20mm以下であることがより好ましい。
なお、無機繊維23の繊維径及び繊維長は、組電池用断熱シート10にバインダ成分が含まれていれば、溶媒を用いてバインダ成分を除去したのち、ピンセットを使用して、成形後のシートから無機繊維23を破断しないように抜き取り、標準スケールと比較し得ることができる。必要に応じて光学顕微鏡で観察することにより測定することができる。
基材として無機繊維23を用いると、断熱シート10として成形したときに繊維同士が好適に絡み合い、充分な面圧を得ることができる。このような効果を得るために、無機繊維23を用いる場合には、その平均繊維長が0.1mm以上であることが好ましく、1mm以上であることがより好ましい。ただし、無機繊維23と第1粒子21をいったん混合し、後から無機繊維23を配向させるプロセスを採る場合、無機繊維23の平均繊維長が長すぎると、原材料の調製時に、無機繊維23同士の絡み合いが強くなりすぎることがあり、シート状に成形した後に無機繊維23が不均一に集積しやすくなることがある。したがって、無機繊維23の平均繊維長は300mm以下であることが好ましく、20mm以下であることがより好ましい。
なお、無機繊維23の繊維径及び繊維長は、組電池用断熱シート10にバインダ成分が含まれていれば、溶媒を用いてバインダ成分を除去したのち、ピンセットを使用して、成形後のシートから無機繊維23を破断しないように抜き取り、標準スケールと比較し得ることができる。必要に応じて光学顕微鏡で観察することにより測定することができる。
なお、組電池用断熱シート10は、上記第1粒子21及び無機繊維23の他に、500℃以上の高温度領域における断熱効果をより一層高める成分として、金属酸化物からなる第2粒子22を含んでいてもよく、さらに結合材、及び着色剤等のように、断熱シートを成形するために必要な成分を含んでいてもよい。以下、その他の成分についても詳細に説明する。
(第2粒子の種類)
本発明において、第2粒子22としては金属酸化物を用いることが好ましい。金属酸化物としては、チタニア、ジルコニア、ジルコン、チタン酸バリウム、酸化亜鉛、アルミナ等を使用することができる。特に、チタニアは他の金属酸化物と比較して屈折率が高い成分であり、500℃以上の高温度領域において熱を乱反射する効果が高いため、チタニアを用いることが最も好ましい。
本発明において、第2粒子22としては金属酸化物を用いることが好ましい。金属酸化物としては、チタニア、ジルコニア、ジルコン、チタン酸バリウム、酸化亜鉛、アルミナ等を使用することができる。特に、チタニアは他の金属酸化物と比較して屈折率が高い成分であり、500℃以上の高温度領域において熱を乱反射する効果が高いため、チタニアを用いることが最も好ましい。
(第2粒子の平均粒子径:1μm以上50μm以下)
第2粒子22の粒子径は、熱を反射する効果に影響を与えることがあるため、第2粒子22の平均粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。
すなわち、第2粒子22の平均粒子径が1μm以上であると、加熱に寄与する光の波長よりも十分に大きく、光を効率よく乱反射させ、本発明における第2粒子22の存在範囲(質量比)において、500℃以上の高温度領域において断熱シート10内における熱の輻射伝熱が抑制され、より一層断熱性を向上させることができる。第2粒子22の平均粒子径が50μm以下であると、圧縮されても粒子間の接点、数が増えず、伝導伝熱のパスを形成しにくく、特に伝導伝熱が支配的な通常温度域の断熱性への影響を小さくすることができる。
なお、第2粒子22の平均粒子径は、3μm以上であることがより好ましく、5μm以上であることがさらに好ましい。また、第2粒子22の平均粒子径は、30μm以下であることがより好ましく、10μm以下であることがさらに好ましい。
本発明において平均粒子径は、顕微鏡で粒子を観察し、標準スケールと比較し、任意の粒子10個の平均をとることから求めることができる。
第2粒子22の粒子径は、熱を反射する効果に影響を与えることがあるため、第2粒子22の平均粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。
すなわち、第2粒子22の平均粒子径が1μm以上であると、加熱に寄与する光の波長よりも十分に大きく、光を効率よく乱反射させ、本発明における第2粒子22の存在範囲(質量比)において、500℃以上の高温度領域において断熱シート10内における熱の輻射伝熱が抑制され、より一層断熱性を向上させることができる。第2粒子22の平均粒子径が50μm以下であると、圧縮されても粒子間の接点、数が増えず、伝導伝熱のパスを形成しにくく、特に伝導伝熱が支配的な通常温度域の断熱性への影響を小さくすることができる。
なお、第2粒子22の平均粒子径は、3μm以上であることがより好ましく、5μm以上であることがさらに好ましい。また、第2粒子22の平均粒子径は、30μm以下であることがより好ましく、10μm以下であることがさらに好ましい。
本発明において平均粒子径は、顕微鏡で粒子を観察し、標準スケールと比較し、任意の粒子10個の平均をとることから求めることができる。
(第2粒子22の含有量:断熱シートの全質量に対して5質量%以上40質量%以下)
本発明においては、500℃以上の高温度領域における断熱性を向上させるために、断熱シート10が第2粒子22を含むことが好ましいとしているが、第2粒子22の添加量は少量であっても、熱の放射伝導を抑制する効果を得ることができる。また、第1粒子21によって、熱の対流伝熱及び伝導伝熱を抑制する効果を得るためには、第1粒子21の添加量を増加させた方が好ましい。このように、第2粒子22の質量比は、通常温度から500℃以上の高温度までの領域における断熱性に影響するため、本発明において、断熱シート10に第2粒子22として金属酸化物を含む場合には、第2粒子22の質量比を適切に調整することが好ましい。
本発明においては、500℃以上の高温度領域における断熱性を向上させるために、断熱シート10が第2粒子22を含むことが好ましいとしているが、第2粒子22の添加量は少量であっても、熱の放射伝導を抑制する効果を得ることができる。また、第1粒子21によって、熱の対流伝熱及び伝導伝熱を抑制する効果を得るためには、第1粒子21の添加量を増加させた方が好ましい。このように、第2粒子22の質量比は、通常温度から500℃以上の高温度までの領域における断熱性に影響するため、本発明において、断熱シート10に第2粒子22として金属酸化物を含む場合には、第2粒子22の質量比を適切に調整することが好ましい。
本発明の断熱シート10において、望ましい第2粒子22の質量比は、断熱シート全質量に対して5質量%以上である。第2粒子22の含有量が、断熱シート全質量に対して、5質量%以上であると、特に500℃以上の輻射の影響が大きくなる温度領域で輻射伝熱を抑制でき、高い断熱性が得られると考えられる。
一方、本発明の断熱シート10の望ましい第2粒子22の質量比は、断熱シート全質量に対し、40質量%以下である。第2粒子22の含有量が、断熱シート全質量に対して、40質量%を超えると、第1粒子21による十分な効果が得られないことがあり、500℃未満の温度領域において、断熱シート10内における熱の対流伝導又は固体伝導を抑制することが困難となり、断熱性が低下することがある。
一方、本発明の断熱シート10の望ましい第2粒子22の質量比は、断熱シート全質量に対し、40質量%以下である。第2粒子22の含有量が、断熱シート全質量に対して、40質量%を超えると、第1粒子21による十分な効果が得られないことがあり、500℃未満の温度領域において、断熱シート10内における熱の対流伝導又は固体伝導を抑制することが困難となり、断熱性が低下することがある。
(バインダ:3質量%以上30質量%以下)
本発明において、第1粒子21としてシリカナノ粒子とともに無機繊維23を含むので、無機繊維23が断熱シート10としての形状を保持することができるが、シリカナノ粒子の脱落を防止するため、適切な含有量でバインダを添加することが好ましい。
また、断熱シート10の全質量に対して、バインダの含有量が3質量%以上であると、断熱シート10からのシリカナノ粒子の脱落を少なくすることができる。また、断熱シート10の全質量に対するバインダの含有量は、5質量%以上であることが好ましい。
本発明において、第1粒子21としてシリカナノ粒子とともに無機繊維23を含むので、無機繊維23が断熱シート10としての形状を保持することができるが、シリカナノ粒子の脱落を防止するため、適切な含有量でバインダを添加することが好ましい。
また、断熱シート10の全質量に対して、バインダの含有量が3質量%以上であると、断熱シート10からのシリカナノ粒子の脱落を少なくすることができる。また、断熱シート10の全質量に対するバインダの含有量は、5質量%以上であることが好ましい。
一方、バインダは第1粒子21の静電気による反発力に対抗して、第1粒子21を結合させる作用が働くので、固体伝導を抑制することが困難となり、断熱性が低下するおそれがある。したがって、断熱シート全質量に対するバインダの含有量は、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。
(バインダの種類)
上述の通り、本発明に係る組電池用断熱シート10は、圧縮特性を所望の値に調整するために、バインダの種類及び含有量を適切に選択することが好ましい。バインダとしては、有機バインダ及び無機バインダ等を用いることができる。本発明においては、特に、有機バインダとして、メチルセルロース、水溶性セルロースエーテル、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース及びこれらの誘導体等を使用することが好ましい。また、無機バインダの種類について特に制限しないが、無機バインダとしては、例えばアルミナゾル、シリカゾル等を使用することができる。
上述の通り、本発明に係る組電池用断熱シート10は、圧縮特性を所望の値に調整するために、バインダの種類及び含有量を適切に選択することが好ましい。バインダとしては、有機バインダ及び無機バインダ等を用いることができる。本発明においては、特に、有機バインダとして、メチルセルロース、水溶性セルロースエーテル、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース及びこれらの誘導体等を使用することが好ましい。また、無機バインダの種類について特に制限しないが、無機バインダとしては、例えばアルミナゾル、シリカゾル等を使用することができる。
(断熱シートの厚さ:0.1mm以上30mm以下)
本発明に係る組電池用断熱シート10の厚さは特に限定されないが、0.1mm以上30mm以下の範囲にあることが好ましい。断熱シート10の厚さが上記範囲内であると、充分な機械的強度を得ることができるとともに、容易に成形することができる。
本発明に係る組電池用断熱シート10の厚さは特に限定されないが、0.1mm以上30mm以下の範囲にあることが好ましい。断熱シート10の厚さが上記範囲内であると、充分な機械的強度を得ることができるとともに、容易に成形することができる。
(組電池用断熱シートの製造方法)
続いて、本発明に係る組電池用断熱シート10の製造方法について詳細に説明する。
続いて、本発明に係る組電池用断熱シート10の製造方法について詳細に説明する。
本実施形態に係る断熱シート10は、第1粒子21と無機繊維23とを含む断熱シート用材料を使用して、押出成形法、湿式抄造法、プレス成形法などにより成形して製造することができる。以下に、断熱シート10をそれぞれの成形法により得る場合の製造方法について説明する。
[押出成形法による断熱シートの製造方法]
押出成形法では、まず、第1粒子21及び無機繊維23、並びに必要に応じて第2粒子22、バインダに水などの溶媒を加え混練することにより、ペースト状の原料を調製する。その後、得られたペースト状の原料を、押出成形機のノズルから押し出すことによってグリーンシートを得ることができる。さらに得られたグリーンシートを乾燥させ、適当なサイズに裁断することによって本発明の組電池用断熱シート10を得ることができる。上述の通り、有機バインダとしては、メチルセルロース及び水溶性セルロースエーテル等を使用することが好ましいが、押出成形法を用いる場合に一般的に使用される有機バインダであれば、特に限定されずに使用することができる。
押出成形法では、まず、第1粒子21及び無機繊維23、並びに必要に応じて第2粒子22、バインダに水などの溶媒を加え混練することにより、ペースト状の原料を調製する。その後、得られたペースト状の原料を、押出成形機のノズルから押し出すことによってグリーンシートを得ることができる。さらに得られたグリーンシートを乾燥させ、適当なサイズに裁断することによって本発明の組電池用断熱シート10を得ることができる。上述の通り、有機バインダとしては、メチルセルロース及び水溶性セルロースエーテル等を使用することが好ましいが、押出成形法を用いる場合に一般的に使用される有機バインダであれば、特に限定されずに使用することができる。
図3は、押出成形により作製される組電池用断熱シート40を模式的に示す斜視図である。なお、図3中において、第1粒子21は図示を省略している。図3に示すように、押出成形法により断熱シート40を作製した場合には、断熱シート40の材料として含まれる無機繊維23等が、押出方向X、すなわち断熱シートの主面に対して平行な一方向に配向される。このように配向された無機繊維23等により、断熱シート40は熱伝導率に異方性が与えられるため、断熱シート40の主面側から入射した熱は、主面に平行な一方向に伝播される。したがって、押出成形法により製造された断熱シート40を用いると、隣り合う電池セル20への熱の伝播をより効果的に抑制するとともに、効率よく放熱することができる。
[湿式抄造法による断熱シートの製造方法]
湿式抄造法では、まず、第1粒子21及び無機繊維23、並びに必要に応じて第2粒子22、バインダを水中で混合し、撹拌機で撹拌することにより、混合液を調製する。その後、得られた混合液を、底面に濾過用のメッシュが形成された成形器に流し込み、メッシュを介して混合液を脱水することにより、湿潤シートを作製する。この時、濾過用のメッシュを水平でなく傾斜させて配置することにより、混合液が一方向に流れながら抄造されるので、傾斜した方向に無機繊維23が配向した湿潤シートを得ることができる。得られた湿潤シートを加熱するとともに加圧することにより、断熱シート40を得ることができる。なお、加熱及び加圧工程の前に、湿潤シートに熱風を通気させて、シートを乾燥する通気乾燥処理を実施してもよいが、この通気乾燥処理を実施せず、湿潤した状態で加熱及び加圧してもよい。
湿式抄造法では、まず、第1粒子21及び無機繊維23、並びに必要に応じて第2粒子22、バインダを水中で混合し、撹拌機で撹拌することにより、混合液を調製する。その後、得られた混合液を、底面に濾過用のメッシュが形成された成形器に流し込み、メッシュを介して混合液を脱水することにより、湿潤シートを作製する。この時、濾過用のメッシュを水平でなく傾斜させて配置することにより、混合液が一方向に流れながら抄造されるので、傾斜した方向に無機繊維23が配向した湿潤シートを得ることができる。得られた湿潤シートを加熱するとともに加圧することにより、断熱シート40を得ることができる。なお、加熱及び加圧工程の前に、湿潤シートに熱風を通気させて、シートを乾燥する通気乾燥処理を実施してもよいが、この通気乾燥処理を実施せず、湿潤した状態で加熱及び加圧してもよい。
[プレス成形法による断熱シートの製造方法]
プレス成形法では、まず、第1粒子21及び、並びに必要に応じて第2粒子22、バインダ、溶媒を、撹拌機で撹拌することにより、スラリー状の原料を調製する。また別途無機繊維のスライバを準備し、スライバの繊維間にスラリー状の原料を浸透させる。得られた含浸体を乾燥させたのち、プレス成形することによって本発明の組電池用断熱シート40を得ることができる。なお、スライバとは、繊維が一方向に配向した太いひも状の集合体である。必要に応じてスライバを複数本並べることにより、平板状の断熱シート40を得ることができる。
プレス成形法では、まず、第1粒子21及び、並びに必要に応じて第2粒子22、バインダ、溶媒を、撹拌機で撹拌することにより、スラリー状の原料を調製する。また別途無機繊維のスライバを準備し、スライバの繊維間にスラリー状の原料を浸透させる。得られた含浸体を乾燥させたのち、プレス成形することによって本発明の組電池用断熱シート40を得ることができる。なお、スライバとは、繊維が一方向に配向した太いひも状の集合体である。必要に応じてスライバを複数本並べることにより、平板状の断熱シート40を得ることができる。
本発明の組電池用断熱シート40は、これらの製造方法に限定されず、どのような製造方法を用いても利用することができる。
<組電池>
本発明に係る組電池100は、図2に例示したように、複数の電池セル20が、上記の組電池用断熱シート10を介して配置され、複数の電池セル20が直列又は並列に接続されたものである。
本発明に係る組電池100は、図2に例示したように、複数の電池セル20が、上記の組電池用断熱シート10を介して配置され、複数の電池セル20が直列又は並列に接続されたものである。
図4は、図3に示す断熱シート40を用いた組電池110の実施形態を模式的に示す断面図である。図4において、図2と同一のものには同一符号を付して、その詳細な説明は省略する。また、本実施形態に係る組電池110は、図4に示すように、複数の電池セル20と組電池用断熱シート40とが配列された外側に、電池セル20から発生する熱を放熱させる金属製の電池ケース30を有している。また、電池ケース30の外側には、熱を外に逃がすためのヒートシンク25が配置されている。
ここで、組電池110が金属製の電池ケース30を有すると、電池セル20から発生した熱は断熱シート40に伝わった後、側方に拡散されて電池ケース30に伝播される。このとき、組電池用断熱シート40が無機繊維23を含んでおり、無機繊維23が上下方向(すなわち、電池セル20の積層方向に垂直な方向)に配向されていると、電池セル20から伝播された熱は、配向された無機繊維23を介して上下方向に伝播されやすくなり、電池ケース30及びヒートシンク25によって放熱されやすくなる。したがって、断熱シート40が例えば押出成形により成形されており、その主面に対して平行な一方向に配向された無機繊維23を有している場合には、配向の方向を考慮して組電池110に組み込むことが好ましい。
ここで、組電池110が金属製の電池ケース30を有すると、電池セル20から発生した熱は断熱シート40に伝わった後、側方に拡散されて電池ケース30に伝播される。このとき、組電池用断熱シート40が無機繊維23を含んでおり、無機繊維23が上下方向(すなわち、電池セル20の積層方向に垂直な方向)に配向されていると、電池セル20から伝播された熱は、配向された無機繊維23を介して上下方向に伝播されやすくなり、電池ケース30及びヒートシンク25によって放熱されやすくなる。したがって、断熱シート40が例えば押出成形により成形されており、その主面に対して平行な一方向に配向された無機繊維23を有している場合には、配向の方向を考慮して組電池110に組み込むことが好ましい。
なお、図4では、電池ケース30は上面及び底面の面積が大きい配置となっている。このため、上面及び底面から放熱しやすいよう、組電池用断熱シート40の配向方向を上下方向としたが、無機繊維23の配向方向は大きな面の方向に限定されず、熱を逃がしやすい方向に配向させることが望ましい。例えば、ヒートシンク25として機能する金属製の取付具で組電池が固定されている場合には、無機繊維23の配向方向をヒートシンクのある方向にしてもよい。
すなわち、ヒートシンク25の方向に向かって、断熱シート40内の無機繊維23が配向されるように断熱シート40が配置されていると、より一層、断熱シート40による放熱性を向上させつつ断熱することができる。また、ヒートシンク25に限定されず、蓄熱材などに放熱させてもよい。
すなわち、ヒートシンク25の方向に向かって、断熱シート40内の無機繊維23が配向されるように断熱シート40が配置されていると、より一層、断熱シート40による放熱性を向上させつつ断熱することができる。また、ヒートシンク25に限定されず、蓄熱材などに放熱させてもよい。
以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
なお、本出願は、2019年10月11日出願の日本特許出願(特願2019-188199)に基づくものであり、その内容は本出願の中に参照として援用される。
10、40 断熱シート(組電池用断熱シート)
10a、10b 面
20 電池セル
21 第1粒子
22 第2粒子
23 無機繊維
25 ヒートシンク
30 電池ケース
100、110 組電池
10a、10b 面
20 電池セル
21 第1粒子
22 第2粒子
23 無機繊維
25 ヒートシンク
30 電池ケース
100、110 組電池
Claims (12)
- 複数の電池セルを直列又は並列に接続した組電池における、前記電池セル間に介在される組電池用断熱シートであって、
一様に分散したシリカナノ粒子からなる第1粒子と、一様に分散するとともに断熱シートの主面に対して平行な一方向に配向されている無機繊維と、を含む組電池用断熱シート。 - 前記第1粒子の含有量は、組電池用断熱シート全質量に対して、30質量%以上80質量%以下である、請求項1に記載の組電池用断熱シート。
- 前記第1粒子は、平均粒子径が1nm以上100nm以下である、請求項1又は2に記載の組電池用断熱シート。
- 前記無機繊維の含有量は、組電池用断熱シート全質量に対して、5質量%以上30質量%以下である、請求項1~3のいずれか1項に記載の組電池用断熱シート。
- 前記組電池用断熱シートはさらに、金属酸化物からなる第2粒子を含む、請求項1~4のいずれか1項に記載の組電池用断熱シート。
- 前記第2粒子は、チタニア、ジルコニア、ジルコン、チタン酸バリウム、酸化亜鉛及びアルミナから選択された少なくとも1種である、請求項5に記載の組電池用断熱シート。
- 前記第2粒子はチタニアである、請求項6に記載の組電池用断熱シート。
- 前記第2粒子は、平均粒子径が1μm以上50μm以下である、請求項5~7のいずれか1項に記載の組電池用断熱シート。
- 前記組電池用断熱シートは、さらにバインダを含む、請求項1~8のいずれか1項に記載の組電池用断熱シート。
- 前記バインダは、メチルセルロース、水溶性セルロースエーテル、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース及びこれらの誘導体から選択された少なくとも1種である、請求項9に記載の組電池用断熱シート。
- 複数の電池セルが、請求項1~10のいずれか1項に記載の組電池用断熱シートを介して配置され、該複数の電池セルが直列又は並列に接続された組電池。
- 前記電池セルから発生する熱を放熱させるヒートシンクを有し、
前記組電池用断熱シートは、前記ヒートシンクの方向に向かって前記無機繊維が配向している、請求項11に記載の組電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080070627.8A CN114556669A (zh) | 2019-10-11 | 2020-10-09 | 电池组用绝热片和电池组 |
US17/767,277 US20220367938A1 (en) | 2019-10-11 | 2020-10-09 | Heat insulation sheet for battery pack, and battery pack |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-188199 | 2019-10-11 | ||
JP2019188199A JP7088892B2 (ja) | 2019-10-11 | 2019-10-11 | 組電池用断熱シート及び組電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021070933A1 true WO2021070933A1 (ja) | 2021-04-15 |
Family
ID=75438204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/038290 WO2021070933A1 (ja) | 2019-10-11 | 2020-10-09 | 組電池用断熱シート及び組電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220367938A1 (ja) |
JP (1) | JP7088892B2 (ja) |
CN (1) | CN114556669A (ja) |
WO (1) | WO2021070933A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115612299A (zh) * | 2022-09-09 | 2023-01-17 | 东莞市零度导热材料有限公司 | 一种应用于新能源电池包上的防火隔热垫及其制备方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240041322A (ko) * | 2021-07-30 | 2024-03-29 | 이비덴 가부시키가이샤 | 단열시트, 단열시트의 제조방법 및 조전지 |
US20230198576A1 (en) * | 2021-12-16 | 2023-06-22 | Dell Products, Lp | System and method for a battery integrated antenna module with thermal cross spreading |
CN219066973U (zh) * | 2021-12-21 | 2023-05-23 | 揖斐电株式会社 | 绝热片和电池组 |
JP7082706B1 (ja) * | 2021-12-23 | 2022-06-08 | イビデン株式会社 | 熱伝達抑制シート及び組電池 |
JP7364739B2 (ja) * | 2021-12-28 | 2023-10-18 | イビデン株式会社 | 熱伝達抑制シート及び組電池 |
JP2023098612A (ja) * | 2021-12-28 | 2023-07-10 | イビデン株式会社 | 熱伝達抑制シート及び組電池 |
WO2024009905A1 (ja) * | 2022-07-05 | 2024-01-11 | 井前工業株式会社 | 断熱・遮炎シート並びにこれを用いた組電池及び電池モジュールパッケージ |
JP7474821B1 (ja) | 2022-10-17 | 2024-04-25 | 信越ポリマー株式会社 | 延焼防止シートおよびそれを備えるバッテリー |
CN115951242B (zh) * | 2022-12-21 | 2024-04-05 | 国广顺能(上海)能源科技有限公司 | 一种电池测试方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS549053A (en) * | 1977-05-09 | 1979-01-23 | Fiberglas Canada Ltd | Thermal insulator for one piece pipe |
JP2012514721A (ja) * | 2009-01-05 | 2012-06-28 | ユニフラックス ワン リミテッド ライアビリティ カンパニー | 高強度生体溶解性無機繊維断熱マット |
JP2013228016A (ja) * | 2012-04-25 | 2013-11-07 | Mitsubishi Electric Corp | 真空断熱材および真空断熱材の製造方法および被断熱装置 |
JP2015040232A (ja) * | 2013-08-20 | 2015-03-02 | 王子キノクロス株式会社 | 成形断熱材の製造方法および成形断熱材 |
JP2018141094A (ja) * | 2017-02-28 | 2018-09-13 | 国立大学法人 名古屋工業大学 | 断熱材およびその製造方法 |
JP2019046748A (ja) * | 2017-09-06 | 2019-03-22 | 三菱自動車工業株式会社 | 電池パック |
JP2019083150A (ja) * | 2017-10-31 | 2019-05-30 | イビデン株式会社 | 組電池用断熱シートおよび組電池 |
WO2019111754A1 (ja) * | 2017-12-05 | 2019-06-13 | イビデン株式会社 | マット材 |
JP2019147357A (ja) * | 2018-02-28 | 2019-09-05 | リンテック株式会社 | 難燃断熱シートおよび蓄電モジュール |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3191968B2 (ja) * | 1991-06-19 | 2001-07-23 | 松下電工株式会社 | 床暖房部材 |
JPH05118492A (ja) * | 1991-10-24 | 1993-05-14 | Matsushita Electric Works Ltd | 断熱材の製造方法 |
JPH07139691A (ja) * | 1993-11-19 | 1995-05-30 | Nippon Muki Co Ltd | 真空断熱材およびその製造方法 |
JP3578172B1 (ja) | 2003-12-19 | 2004-10-20 | 松下電器産業株式会社 | 真空断熱材、および、冷凍冷蔵庫および冷凍機器 |
AU2005318464B2 (en) | 2004-12-23 | 2012-02-23 | Csl Behring Gmbh | Prevention of thrombus formation and/or stabilization |
JP4663341B2 (ja) * | 2005-01-25 | 2011-04-06 | イビデン株式会社 | 排気ガス浄化装置のエンドコーン部用断熱材 |
JP5645584B2 (ja) | 2010-10-08 | 2014-12-24 | キヤノン株式会社 | 放射線センサー |
JP2012124319A (ja) | 2010-12-08 | 2012-06-28 | Jm Energy Corp | 蓄電デバイス |
JP5824298B2 (ja) * | 2011-08-31 | 2015-11-25 | 旭化成ケミカルズ株式会社 | 成形体、被包体、成形体の製造方法及び断熱方法 |
BR112018000703A2 (pt) * | 2015-07-15 | 2018-09-18 | International Advanced Res Centre For Powder Metallurgy And New Materials Arci | processo aprimorado para produzir produto de isolamento térmico de aerogel de sílica com eficiência aumentada |
JP2018017315A (ja) | 2016-07-28 | 2018-02-01 | 日立アプライアンス株式会社 | 真空断熱材及びそれを用いた冷蔵庫 |
JPWO2018211906A1 (ja) * | 2017-05-15 | 2020-05-14 | パナソニックIpマネジメント株式会社 | 断熱材とそれを用いた断熱構造体 |
CN107653518B (zh) * | 2017-09-27 | 2020-02-14 | 中南大学 | 一种高取向度连续超细/纳米氧化铝基陶瓷纤维束材料及其制备方法 |
-
2019
- 2019-10-11 JP JP2019188199A patent/JP7088892B2/ja active Active
-
2020
- 2020-10-09 US US17/767,277 patent/US20220367938A1/en active Pending
- 2020-10-09 CN CN202080070627.8A patent/CN114556669A/zh active Pending
- 2020-10-09 WO PCT/JP2020/038290 patent/WO2021070933A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS549053A (en) * | 1977-05-09 | 1979-01-23 | Fiberglas Canada Ltd | Thermal insulator for one piece pipe |
JP2012514721A (ja) * | 2009-01-05 | 2012-06-28 | ユニフラックス ワン リミテッド ライアビリティ カンパニー | 高強度生体溶解性無機繊維断熱マット |
JP2013228016A (ja) * | 2012-04-25 | 2013-11-07 | Mitsubishi Electric Corp | 真空断熱材および真空断熱材の製造方法および被断熱装置 |
JP2015040232A (ja) * | 2013-08-20 | 2015-03-02 | 王子キノクロス株式会社 | 成形断熱材の製造方法および成形断熱材 |
JP2018141094A (ja) * | 2017-02-28 | 2018-09-13 | 国立大学法人 名古屋工業大学 | 断熱材およびその製造方法 |
JP2019046748A (ja) * | 2017-09-06 | 2019-03-22 | 三菱自動車工業株式会社 | 電池パック |
JP2019083150A (ja) * | 2017-10-31 | 2019-05-30 | イビデン株式会社 | 組電池用断熱シートおよび組電池 |
WO2019111754A1 (ja) * | 2017-12-05 | 2019-06-13 | イビデン株式会社 | マット材 |
JP2019147357A (ja) * | 2018-02-28 | 2019-09-05 | リンテック株式会社 | 難燃断熱シートおよび蓄電モジュール |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115612299A (zh) * | 2022-09-09 | 2023-01-17 | 东莞市零度导热材料有限公司 | 一种应用于新能源电池包上的防火隔热垫及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021064510A (ja) | 2021-04-22 |
CN114556669A (zh) | 2022-05-27 |
US20220367938A1 (en) | 2022-11-17 |
JP7088892B2 (ja) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021070933A1 (ja) | 組電池用断熱シート及び組電池 | |
WO2021039844A1 (ja) | 組電池用断熱シート及び組電池 | |
US20230138031A1 (en) | Heat transfer suppression sheet and battery pack | |
JP2019083150A (ja) | 組電池用断熱シートおよび組電池 | |
US20230118928A1 (en) | Heat transfer suppression sheet and battery pack | |
US20220367937A1 (en) | Heat insulation sheet for battery pack, and battery pack | |
JP7299029B2 (ja) | 熱伝達抑制部材及びその使用方法 | |
JP7048834B1 (ja) | 組電池用断熱シートの製造方法及び組電池の製造方法 | |
JP7414928B2 (ja) | 組電池用断熱シートの製造方法及び組電池の製造方法 | |
WO2024117239A1 (ja) | 熱伝達抑制シート及び組電池 | |
CN219066973U (zh) | 绝热片和电池组 | |
WO2023229042A1 (ja) | 熱伝達抑制シート及び組電池 | |
WO2023171818A1 (ja) | 熱伝達抑制シートの製造方法、熱伝達抑制シート及び組電池 | |
JP2024027145A (ja) | 熱伝達抑制シート及び組電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20875517 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20875517 Country of ref document: EP Kind code of ref document: A1 |