WO2021070591A1 - 積層体、成形品、プリント配線板及び電磁波シールド - Google Patents

積層体、成形品、プリント配線板及び電磁波シールド Download PDF

Info

Publication number
WO2021070591A1
WO2021070591A1 PCT/JP2020/035181 JP2020035181W WO2021070591A1 WO 2021070591 A1 WO2021070591 A1 WO 2021070591A1 JP 2020035181 W JP2020035181 W JP 2020035181W WO 2021070591 A1 WO2021070591 A1 WO 2021070591A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
resin
plating
primer
Prior art date
Application number
PCT/JP2020/035181
Other languages
English (en)
French (fr)
Inventor
亘 冨士川
岩本 明洋
白髪 潤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US17/767,168 priority Critical patent/US20220363852A1/en
Priority to JP2021506342A priority patent/JP7044203B2/ja
Priority to CN202080068007.0A priority patent/CN114450157A/zh
Priority to EP20875261.8A priority patent/EP4043205A4/en
Publication of WO2021070591A1 publication Critical patent/WO2021070591A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/10Homopolymers or copolymers of propene
    • C09D123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • C09D123/28Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/06Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/28Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Definitions

  • the present invention relates to a laminate, a molded product, a printed wiring board, and an electromagnetic wave shield using a base material made of a polyolefin resin.
  • the technique of forming a metal plating film on the surface of an insulating base material made of resin or the like has been well known from the past, and circuit parts, electromagnetic wave shielding members, decorative parts for automobiles, etc. on which a metal layer made of copper or the like is formed. Ornaments are known. Further, as a method of forming a metal layer (metal film) on the surface of an insulating base material, a method using an electrolytic plating method or an electroless plating method is known.
  • the insulating base material is relatively polar, such as a polyester resin such as a polycarbonate resin, ABS resin, polyamide, polystyrene, polyphenylene sulfide, or polyalkylene terephthalate.
  • a polyester resin such as a polycarbonate resin, ABS resin, polyamide, polystyrene, polyphenylene sulfide, or polyalkylene terephthalate.
  • a metal plating layer is formed on a non-polar base material such as a polyolefin resin as an insulating base material, it is difficult to obtain sufficient adhesion.
  • Non-Patent Document 1 As a method for forming a metal plating layer on a polyolefin-based resin base material, a roughening method for imparting an anchor effect by roughening the surface of the polyolefin-based resin base material with a strong oxidizing agent is known (for example,). See Non-Patent Document 1). Another method is to apply a conductive paste, which is a mixture of a metal component that serves as a catalyst for electroless plating or a conductive polymer and a resin component, to the surface of a polyolefin-based resin base material to form a plating base layer with adhesiveness. It is being studied (see, for example, Patent Documents 2 and 3).
  • the resin component that improves the adhesion and the metal component that lowers the adhesion coexist in the paste, so that the adhesion and the plating precipitation property are traded off, and the polyolefin
  • the adhesion between the based resin base material and the metal plating film becomes insufficient.
  • the types and ratios of resin components and inorganic fillers change when the manufacturer and product number of the polyolefin-based resin base material change. There was also the problem that optimization was necessary and it took time and effort.
  • the problem to be solved by the present invention is a laminate having excellent adhesion between the support and the metal plating layer by a simple method without roughening the surface of the support with respect to the support made of a polyolefin resin. It is to provide a molded product, a printed wiring board, and an electromagnetic wave shield using the above.
  • the present inventors have provided a primer layer containing a polyolefin-based resin soluble or water-dispersible in an organic solvent on a support made of a polyolefin-based resin, and provided the primer layer.
  • the present invention has been completed by finding that a laminate in which a metal particle layer and a metal plating layer are sequentially laminated on the metal particle layer can solve the above-mentioned problems.
  • a laminate characterized in that (C) and a metal plating layer (D) are sequentially laminated, and a printed wiring board and an electromagnetic wave shield using the laminate.
  • the laminate of the present invention is metal-plated on a support made of a polyolefin resin. It has the advantage of being extremely excellent in layer adhesion. Therefore, the laminate of the present invention is, for example, a conductive film for a touch panel, a metal mesh for a touch panel, an electronic circuit, an organic solar cell, an electronic terminal, an organic EL element, an organic transistor, a rigid printed wiring board, a flexible printed wiring board, and an electromagnetic wave. It can be suitably used as a shield, RFID such as a non-contact IC card, and a wiring member such as an electromagnetic wave shield. It can also be used for decorative plating on molded products. In particular, it is most suitable for electromagnetic wave shielding applications such as automobiles, which require both weight reduction and electromagnetic wave shielding properties.
  • the laminate of the present invention has a primer layer (B) containing a polyolefin resin (b) soluble in an organic solvent or water dispersibility on a support (A) made of a polyolefin resin (a), and metal particles.
  • the layer (C) and the metal plating layer (D) are sequentially laminated.
  • the laminate of the present invention may be a laminate in which a primer layer (B) or the like is sequentially laminated on one side of a support (A) made of the polyolefin resin, and primers are applied to both surfaces of the support (A). It may be a laminated body in which layers (B) and the like are sequentially laminated.
  • polystyrene resin (a) examples include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, polybutylene, polybutadiene, polyvinyl chloride, chlorinated polypropylene and the like. Further, the polyolefin resin (a) preferably contains an elastomer. Examples of the elastomer include ethylene-butene copolymers and ethylene-octene copolymers.
  • the shape of the support (A) is not particularly limited, and a thickness of about 0.5 to 100 mm is preferable, and a thickness of about 0.5 to 10 mm is more preferable. Further, the laminated body of the present invention is preferably relatively flexible, and preferably has a thickness of about 1 to 200 ⁇ m.
  • the thickness of the film-like or sheet-like support is usually preferably in the range of 1 to 5,000 ⁇ m, more preferably in the range of 1 to 300 ⁇ m. The range of 1 to 200 ⁇ m is more preferable.
  • a functional group such as a hydroxyl group, a carbonyl group, or a carboxyl group
  • plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment, wet treatment using water, an aqueous solution of acid / alkali or the like, a wet treatment using an organic solvent, or the like may be performed.
  • the primer layer (B) is coated with a primer resin composition on a part or all of the surface of the support (A) to remove solvents such as an organic solvent and an aqueous medium contained in the primer resin composition.
  • solvents such as an organic solvent and an aqueous medium contained in the primer resin composition.
  • Examples of the method of applying the primer resin composition to the surface of the support (A) include a gravure method, a coating method, a screen method, a roller method, a rotary method, and a spray method.
  • the surface of the primer layer (B) is subjected to, for example, a plasma discharge treatment method such as a corona discharge treatment method or a dry treatment method such as an ultraviolet treatment method for the purpose of further improving the adhesion to the metal layer (C). It is preferable that the surface is treated by a method, a wet treatment method using water, an acidic or alkaline chemical solution, an organic solvent, or the like.
  • the primer resin composition As a method of applying the primer resin composition to the surface of the support (A) and then removing the solvent contained in the coating layer, for example, it is dried using a dryer to volatilize the solvent.
  • the method is common.
  • the drying temperature may be set to a temperature within a range in which the solvent can be volatilized and the support (A) is not adversely affected by thermal deformation or the like.
  • the film thickness of the primer layer (B) formed by using the primer resin composition varies depending on the use of the laminate of the present invention, but the adhesion between the support (A) and the metal layer (C) is determined. Since it can be further improved, the range of 10 nm to 30 ⁇ m is preferable, the range of 10 nm to 1 ⁇ m is more preferable, and the range of 10 nm to 500 nm is further preferable.
  • primer resin composition one containing a polyolefin resin (b) having organic solvent solubility or water dispersibility is used.
  • polyolefin resin (b) examples include polypropylene, chlorinated polypropylene, chlorinated polypropylene-modified acrylic resin, and aqueous chlorinated polypropylene.
  • chlorinated polypropylene and chlorinated polypropylene-modified acrylic resin are preferable because the adhesion to the support (A) is improved.
  • these polyolefin-based resins (b) can be used alone or in combination of two or more.
  • a resin having a carboxyl group is preferable as the polyolefin-based resin (b).
  • the carboxyl group in the resin may be present in either the main chain, the terminal chain or the side chain of the polymer.
  • the method for introducing a carboxyl group include a method of copolymerizing an unsaturated monomer having a carboxyl group such as (meth) acrylic acid, maleic acid, and maleic anhydride during polyolefin polymerization, and a method of copolymerizing (meth) acrylic acid with a polyolefin resin.
  • Examples thereof include a method of graft-polymerizing an unsaturated monomer having a carboxyl group such as maleic acid and maleic anhydride.
  • (meth) acrylic refers to one or both of "acrylic" and "methacryl”.
  • the content of the carboxyl group in the polyolefin resin (b) is preferably in the range of 0.1 to 5% by mass, more preferably in the range of 1 to 5% by mass, because the adhesion between layers can be improved.
  • the melting point of the polyolefin resin (b) is preferably in the range of 65 to 120 ° C., more preferably in the range of 75 to 85 ° C., because the adhesion between layers can be improved.
  • the degree of chlorination is preferably in the range of 15 to 30% by mass, preferably in the range of 15 to 26% by mass, because the adhesion between layers can be improved. Those in the range of 21 to 26% by mass are more preferable, and those in the range of 21 to 26% by mass are further preferable.
  • the chlorinated polypropylene-modified acrylic resin is obtained by grafting an acrylic resin onto chlorinated polypropylene by polymerizing a (meth) acrylic monomer in chlorinated polypropylene dissolved in an organic solvent. It is preferable to use a chlorinated polypropylene-modified acrylic resin because the adhesion between layers can be improved by adjusting the composition of the (meth) acrylic monomer.
  • the adhesion between layers can be improved by using a cross-linking agent in combination.
  • a cross-linking agent having a functional group that reacts with the carboxyl group of the polyolefin resin (b) is preferable.
  • examples of such a cross-linking agent include a cross-linking agent having an epoxy group, an amino group, a carbodiimide group, an oxazoline group, an isocyanate group, a blocked isocyanate group, a polyvalent metal and the like.
  • these cross-linking agents it is preferable to use a cross-linking agent having an epoxy group. Further, these cross-linking agents may be used alone or in combination of two or more.
  • the amount of the cross-linking agent used is preferably in the range of 0.1 to 100 parts by mass with respect to 100 parts by mass of the polyolefin resin (b), and is in the range of 1 to 10 parts by mass. Is more preferable.
  • the polyolefin-based resin (b) can be used in combination with other resins.
  • other resins include blocked isocyanates using urethane resin, vinyl resin, urethane-vinyl composite resin, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, urea formaldehyde resin, phenol and the like as blocking agents.
  • examples thereof include polyvinyl alcohol and polyvinyl pyrrolidone.
  • the primer resin composition since the coatability is improved, the primer resin composition contains the resin containing the polyolefin resin (b) in the range of 0.1 to 70% by mass. It is preferable that the content is preferably in the range of 1 to 20% by mass.
  • a resin such as the polyolefin resin (b) dissolved or dispersed in an organic solvent or an aqueous medium can be used.
  • Examples of the organic solvent include toluene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexane, methanol, ethanol and the like.
  • Examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
  • organic solvent to be mixed with water examples include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene.
  • alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve
  • ketone solvents such as acetone and methyl ethyl ketone
  • ethylene glycol diethylene glycol and propylene.
  • alkylene glycol solvents such as glycol
  • polyalkylene glycol solvents such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol
  • lactam solvents such as N-methyl-2-pyr
  • the polyolefin resin (b) and other resins may have a crosslinkable functional group such as an alkoxysilyl group, a silanol group, a hydroxyl group, or an amino group, if necessary.
  • the crosslinked structure formed by these crosslinkable functional groups may already form a crosslinked structure before the primer resin composition is applied, or after the fluid is applied, for example.
  • the crosslinked structure may be formed by heating in a firing step or the like.
  • additives such as a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent, and an antifoaming agent may be appropriately added to the primer resin composition.
  • the metal particle layer (C) is formed on the primer layer (B).
  • the metal constituting the metal particle layer (C) include a transition metal or a compound thereof, and among them, an ionic transition metal is preferable.
  • this ionic transition metal include copper, silver, gold, nickel, palladium, platinum, cobalt and the like.
  • copper, silver, and gold are preferable because they have low electrical resistance and can obtain a conductive pattern resistant to corrosion.
  • the metal particle layer (C) is preferably porous, and in this case, the metal particle layer (C) has voids in the layer.
  • Examples of the metal constituting the metal plating layer (D) include copper, nickel, chromium, cobalt, tin and the like. Among these, copper is preferable because it has a low electrical resistance and a conductive pattern resistant to corrosion can be obtained.
  • the voids existing in the metal particle layer (C) are filled with the metal constituting the metal plating layer (D), and the support (A) and the metal particles.
  • the metal particle layer (C) is filled with the metal constituting the metal plating layer (D) up to the voids in the metal particle layer (C) existing near the interface with the layer (C). This is preferable because the adhesion to the metal plating layer (D) is further improved.
  • the primer layer (B) is formed on the support (A), and then a fluid containing the metal particles (c) is coated.
  • a method in which a metal layer (C) is formed by removing an organic solvent or the like contained in a fluid by drying, electroless plating is performed, and then the metal plating layer (D) is formed by electrolytic plating. Can be mentioned.
  • a fluid containing the metal particles (c) is coated on the primer layer (B) and dried to form the metal particle layer (C'), and then.
  • the metal plating layer (C) is formed by firing to remove organic compounds containing a dispersant present in the metal particle layer (C') to form voids to form a porous metal particle layer (C). It is preferable because the adhesion with D) is improved.
  • the shape of the metal particles (c) used for forming the metal particle layer (C) is preferably particulate or fibrous.
  • the size of the metal particles (c) is preferably nano-sized. Specifically, when the shape of the metal particles (c) is particulate, a fine mesh-like conductive pattern can be formed and the resistance value can be further reduced, so that the average particle diameter is in the range of 1 to 100 nm. Preferably, the range of 1 to 50 nm is more preferable.
  • the "average particle size” is a volume average value measured by a dynamic light scattering method after diluting the metal particles (c) with a good dispersion solvent. "Nanotrack UPA-150" manufactured by Microtrack Co., Ltd. can be used for this measurement.
  • the diameter of the fibers is preferably in the range of 5 to 100 nm and 5 to 50 nm. The range is more preferred.
  • the fiber length is preferably in the range of 0.1 to 100 ⁇ m, more preferably in the range of 0.1 to 30 ⁇ m.
  • the content of the metal particles (c) in the fluid is preferably in the range of 1 to 90% by mass, more preferably in the range of 1 to 60% by mass, and even more preferably in the range of 1 to 10% by mass.
  • the components that may be blended in the fluid include a dispersant and a solvent for dispersing the metal particles (c) in a solvent, and if necessary, a surfactant, a leveling agent, and a viscosity modifier described later. , Film forming aids, antifoaming agents, preservatives and the like.
  • a dispersant In order to disperse the metal particles (c) in a solvent, it is preferable to use a dispersant.
  • the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and avietic acid.
  • the polymer dispersant is preferable because the adhesion between the metal particle layer (C) and the metal plating layer (D) described later can be improved by making the metal particle layer (C) porous.
  • the polymer dispersant polyalkyleneimine such as polyethyleneimine and polypropyleneimine, a compound in which polyoxyalkylene is added to the polyalkyleneimine, a urethane resin, an acrylic resin, a urethane resin, and a phosphoric acid group on the acrylic resin. Examples thereof include compounds containing.
  • the dispersant in the metal particle layer (C) is removed to make it porous as compared with the low molecular weight dispersant, and the void size thereof is obtained. Can be increased, and voids having a size of nano-order to sub-micron order can be formed.
  • the gap is easily filled with the metal constituting the metal plating layer (D) described later, and the filled metal serves as an anchor to improve the adhesion between the metal particle layer (C) and the metal plating layer (D) described later. It can be greatly improved.
  • the amount of the dispersant used to disperse the metal particles (c) is preferably in the range of 0.01 to 50 parts by mass, preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the metal particles (c). The range of parts is more preferable.
  • the dispersant is removed by firing to form the porous metal layer (C).
  • the range of 0.1 to 10 parts by mass is preferable, and the range of 0.1 to 5 parts by mass is more preferable with respect to the range of 100 parts by mass of the metal particles (c).
  • an aqueous medium or an organic solvent can be used as the solvent used for the fluid.
  • the aqueous medium include distilled water, ion-exchanged water, pure water, ultrapure water, and the like.
  • the organic solvent include alcohol compounds, ether compounds, ester compounds, ketone compounds and the like.
  • Examples of the alcohol include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetra.
  • ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used as the fluid, if necessary.
  • a general surfactant can be used, for example, di-2-ethylhexyl sulfosuccinate, dodecylbenzene sulfonate, alkyldiphenyl ether disulfonate, alkylnaphthalene sulfonate, hexamethaphosphate.
  • Examples include salt.
  • leveling agent a general leveling agent can be used, and examples thereof include silicone-based compounds, acetylenediol-based compounds, and fluorine-based compounds.
  • a general thickener can be used as the viscosity modifier.
  • an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to alkaline, or a urethane that can be thickened by associating molecules.
  • examples thereof include resins, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amido wax, polyethylene oxide, metal soap, dibenzylidene sorbitol and the like.
  • a general film-forming auxiliary can be used, for example, an anionic surfactant (such as dioctylsulfosuccinate sodium salt) and a hydrophobic nonionic surfactant (sorbitan monooleate). Etc.), polyether-modified siloxane, silicone oil, etc.
  • anionic surfactant such as dioctylsulfosuccinate sodium salt
  • hydrophobic nonionic surfactant sorbitan monooleate
  • Etc. polyether-modified siloxane
  • silicone oil etc.
  • a general defoaming agent can be used, and examples thereof include silicone-based defoaming agents, nonionic-based surfactants, polyethers, higher alcohols, and polymer-based surfactants.
  • preservative general preservatives can be used, and examples thereof include isothiazoline-based preservatives, triazine-based preservatives, imidazole-based preservatives, pyridine-based preservatives, azole-based preservatives, and pyrithion-based preservatives. Can be mentioned.
  • the viscosity of the fluid (value measured using a B-type viscometer at 25 ° C.) is preferably in the range of 0.1 to 500,000 mPa ⁇ s, more preferably in the range of 0.5 to 10,000 mPa ⁇ s. .. Further, when the fluid is coated (printed) by a method such as an inkjet printing method or letterpress reverse printing described later, its viscosity is preferably in the range of 5 to 20 mPa ⁇ s.
  • Examples of the method of coating or printing the fluid on the primer layer (B) include an inkjet printing method, a reverse printing method, a screen printing method, an offset printing method, a gravure printing method, a flexo printing method, and pad printing. Examples thereof include a method, a spin coating method, a spray coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method, a dip coating method, a rotary coating method, and a capillary coating method.
  • Mass per unit area of the metal particle layer (C) is preferably in the range of 1 ⁇ 30,000mg / m 2, the range of 1 ⁇ 5,000mg / m 2 is preferred.
  • the thickness of the metal particle layer (C) can be adjusted by controlling the treatment time, the current density, the amount of the plating additive used, and the like in the plating treatment step when the metal plating layer (D) is formed.
  • the metal plating layer (D) is a layer formed on the metal particle layer (C), and as a method for forming the metal particle layer (C), a method of forming by a plating treatment is preferable. Examples of this plating treatment include a wet plating method such as an electrolytic plating method and an electroless plating method, and a dry plating method such as a sputtering method and a vacuum vapor deposition method. Further, the metal plating layer (D) may be formed by combining two or more of these plating methods.
  • Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
  • reducing agent examples include dimethylaminoborane, hypophosphoric acid, sodium hypophosphate, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
  • the electroless plating solution includes, if necessary, monocarboxylic acids such as acetic acid and formic acid; dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid; malic acid, lactic acid and glycol.
  • monocarboxylic acids such as acetic acid and formic acid
  • dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid
  • malic acid lactic acid and glycol.
  • Hydroxycarboxylic acid compounds such as acid, gluconic acid and citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamate; Contains an organic acid such as an aminopolycarboxylic acid compound, or a complexing agent such as a soluble salt of these organic acids (sodium salt, potassium salt, ammonium salt, etc.), an amine compound such as ethylenediamine, diethylenetriamine, triethylenetetramine, etc. Can be used.
  • the metal constituting the metal layer (C) or the surface of the electroless plating layer (film) formed by the electroless treatment is energized in a state where the electroless plating solution is in contact with the metal.
  • the metal such as copper contained in the electroless plating solution is placed on the cathode of the metal particles (c) constituting the metal layer (C) or the electroless plating layer (film) formed by the electroless treatment.
  • Examples of the electrolytic plating solution include those containing a sulfide of a metal such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specific examples thereof include those containing copper sulfate, sulfuric acid, and an aqueous medium.
  • the electroless plating solution and the electrolytic plating solution are preferably used in the range of 20 to 98 ° C.
  • the support (A) made of the polyolefin resin (a) has low heat resistance of the support itself, it is difficult to give a heat history at a high temperature sufficient to impart conductivity to the metal particle layer (C). There is. In that case, as a method of forming the metal plating layer (C) on the metal particle layer (C), it is preferable to perform electroless plating and then electrolytic plating.
  • a sputtering method As the dry plating process, a sputtering method, a vacuum vapor deposition method, or the like can be used.
  • an inert gas mainly argon
  • a negative ion is applied to a metal plating layer (D) as a forming material to generate a glow discharge, and then the inert gas is generated.
  • the atoms are ionized, gas ions are violently struck on the surface of the metal plating layer (D) forming material at high speed, and the atoms and molecules constituting the metal plating layer (D) forming material are ejected vigorously.
  • Examples of the material for forming the metal plating layer (D) by the sputtering method include chromium, copper, titanium, silver, platinum, gold, nickel-chromium alloy, stainless steel, copper-zinc alloy, indium tin oxide (ITO), and dioxide.
  • Examples include silicon, titanium dioxide, niobium oxide, zinc oxide and the like.
  • a magnetron sputtering apparatus or the like can be used.
  • the thickness of the metal plating layer (D) is preferably in the range of 0.1 to 50 ⁇ m.
  • the thickness of the metal plating layer (D) is adjusted by controlling the treatment time, the current density, the amount of the plating additive used, etc. in the plating treatment step when the metal plating layer (D) is formed. Can be done.
  • the laminate of the present invention obtained by the above method can be used as a printed wiring board.
  • a fluid containing the metal particles (c) is formed in order to form the metal layer (C) at a position corresponding to a desired pattern shape to be formed.
  • a printed wiring board having a desired pattern can be manufactured.
  • the printed wiring board can be manufactured by, for example, a photolithography etching method such as a subtractive method or a semi-additive method, or a method of plating on a printed pattern of a metal particle layer (C).
  • a photolithography etching method such as a subtractive method or a semi-additive method
  • an etching resist layer having a shape corresponding to a desired pattern shape is formed on a metal plating layer (D) constituting the laminate of the present invention manufactured in advance, and the subsequent development process is performed to obtain the etching resist layer.
  • This is a method of forming a desired pattern by dissolving and removing the metal particle layer (C), the metal plating layer (D), and the like in the portion from which the resist has been removed with a chemical solution.
  • a chemical solution a chemical solution containing copper chloride, iron chloride or the like can be used.
  • the primer layer (B) and the metal particle layer (C) are formed on both sides or one side of the support (A) made of the polyolefin resin, and the surface of the metal particle layer (C) is formed.
  • a plating resist layer having a shape corresponding to a desired pattern is formed, and then a metal plating layer (D) is formed by an electroless plating method, an electrolytic plating method, or a combination thereof, and then the plating resist layer and contact with the plating resist layer are formed.
  • the metal particle layer (C) is formed as a plating base layer, but instead of the plating base layer of only the metal particle layer (C), an electroless plating method or electrolysis is performed on the metal particle layer (C).
  • a metal layer formed by a plating method or a combination thereof may be used as a plating base layer.
  • the method of plating on the printing pattern of the metal layer (C) is as described above by an inkjet method, an inversion printing method or the like on the primer layer (B) formed on both sides or one side of the support (A).
  • the pattern of the metal layer (C) is printed, and the metal plating layer (D) is formed on the surface of the metal layer (C) by an electroless plating method, an electrolytic plating method, or a combination thereof, and a desired pattern is formed. It is a method of forming.
  • the laminate of the present invention obtained by the above method is made of a polyolefin resin as compared with the conventional method of roughening a support, a method of using a conductive paste as a plating base, and a method of pretreating a base material. It has a feature that the adhesion of the metal plating layer to the support is extremely excellent. Therefore, the laminate of the present invention is, for example, a conductive film for a touch panel, a metal mesh for a touch panel, an electronic circuit, an organic solar cell, an electronic terminal, an organic EL element, an organic transistor, a rigid printed wiring board, a flexible printed wiring board, and an electromagnetic wave.
  • RFID such as a non-contact IC card
  • wiring member such as an electromagnetic wave shield
  • electromagnetic wave shield it can also be used for decorative plating on molded products.
  • electromagnetic wave shielding applications such as automobiles, which require both weight reduction and electromagnetic wave shielding properties.
  • Preparation Example 1 Preparation of Primer Resin Composition (1)
  • a primer resin composition (1) having a content of 2% by mass was obtained.
  • Preparation Example 2 Preparation of Primer Resin Composition (2)
  • a polypropylene resin (“Aurolen 150S” manufactured by Nippon Paper Industries, Ltd., melting point 120 ° C.) was used instead of the polypropylene resin used in Preparation Example 1, and a primer having a non-volatile content of 2% by mass was used.
  • the resin composition (2) was obtained.
  • Preparation Example 3 Preparation of Primer Resin Composition (3)
  • Toluene is added to a chlorinated polypropylene resin (“Supercron 422S” manufactured by Nippon Paper Industries, Ltd., maleic acid-modified type, melting point 75 ° C.) and mixed uniformly to obtain a primer resin composition (3) having a non-volatile content of 2% by mass. Obtained.
  • Preparation Example 4 Preparation of Primer Resin Composition (4)
  • 5 parts by mass of a toluene solution having a non-volatile content of 2% by mass was uniformly mixed to obtain a primer resin composition (4) having a non-volatile content of 2% by mass.
  • Preparation Example 5 Preparation of Primer Resin Composition (5)
  • a chlorinated polypropylene resin (“Supercron 930S” manufactured by Nippon Paper Industries, Ltd., maleic acid-modified type, melting point 65 ° C.) was used instead of the chlorinated polypropylene resin used in Preparation Example 3.
  • a primer resin composition (5) having a non-volatile content of 2% by mass.
  • Preparation Example 6 Preparation of Primer Resin Composition (6)
  • a chlorinated polypropylene resin (“Supercron 415S” manufactured by Nippon Paper Industries, Ltd., maleic acid-modified type, melting point 85 ° C.) was used instead of the chlorinated polypropylene resin used in Preparation Example 3.
  • a primer resin composition (6) having a non-volatile content of 2% by mass.
  • Preparation Example 7 Preparation of Primer Resin Composition (7)
  • a chlorinated polypropylene resin (“Hardlen DX526P” manufactured by Toyobo Co., Ltd., maleic acid unmodified type, melting point 81 ° C.) was used instead of the chlorinated polypropylene resin used in Preparation Example 3. This was carried out to obtain a primer resin composition (7) having a non-volatile content of 2% by mass.
  • Preparation Example 8 Preparation of Primer Resin Composition (8)
  • a chlorinated polypropylene-modified acrylic resin (“Acrydic WML-350” manufactured by DIC Corporation) was used instead of the chlorinated polypropylene resin used in Preparation Example 3, and the non-volatile content 2 was obtained.
  • a mass% primer resin composition (8) was obtained.
  • Preparation Example 9 Preparation of Primer Resin Composition (9)
  • Ion-exchanged water is added to a chlorinated polypropylene resin aqueous dispersion ("Supercron E-415" manufactured by Nippon Paper Industries, Ltd., maleic acid-modified type) and mixed uniformly to form a primer resin composition having a non-volatile content of 2% by mass (2% by mass). 9) was obtained.
  • Example 10 Preparation of fluid (1)
  • the cationic silver nano composed of a grayish green metallic luster flake-like mass which is a composite of silver nanoparticles and an organic compound having a cationic group (amino group). Obtained particles.
  • the powder of the silver nanoparticles was dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water to prepare a fluid (1) containing 5% by mass of cationic silver nanoparticles. ..
  • Example 1 On the surface of a polypropylene base material (manufactured by Engineering Test Service Co., Ltd .; 150 mm ⁇ 70 mm ⁇ thickness 1 mm), the primer resin composition (1) obtained in Preparation Example 1 was applied to a dry film thickness using a spin coater. After coating to a thickness of 0.1 ⁇ m, a primer layer was formed on the polypropylene substrate by drying at 80 ° C. for 5 minutes using a hot air dryer.
  • the fluid (1) obtained in Preparation Example 10 was coated on the surface of the primer layer formed above using a spin coater so that the dry film thickness was 0.1 ⁇ m.
  • a silver particle layer was formed on the primer by drying at 80 ° C. for 5 minutes using a hot air dryer.
  • the polypropylene base material on which the primer layer and the silver particle layer were formed above was immersed in an electroless copper plating solution (“OIC Copper” manufactured by Okuno Pharmaceutical Co., Ltd., pH 12.5) at 55 ° C. for 20 minutes. Electroless copper plating was performed to form an electroless copper plating layer on the metal particle layer.
  • an electroless copper plating solution (“OIC Copper” manufactured by Okuno Pharmaceutical Co., Ltd., pH 12.5) at 55 ° C. for 20 minutes.
  • Electroless copper plating was performed to form an electroless copper plating layer on the metal particle layer.
  • the electroless copper plating layer formed above is set on the cathode side, phosphorus-containing copper is set on the anode side, and an electrolytic plating solution containing copper sulfate is used at a current density of 2.5 A / dm 2 for 30 minutes.
  • an electrolytic copper plating layer was further formed on the electroless copper plating layer.
  • the total thickness of the electroless copper plating layer and the electrolytic copper plating layer was 3 ⁇ m.
  • the electrolytic plating solution 70 g / L of copper sulfate, 200 g / L of sulfuric acid, 50 mg / L of chlorine ions, and 5 mL / L of an additive (“Top Lucina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used.
  • a laminate (1) in which a polyolefin base material (A), a primer layer (B), a metal layer (C) and a metal plating layer (D) were sequentially laminated was obtained.
  • Examples 2 to 9 The same procedure as in Example 1 was carried out except that the primer resin compositions (2) to (9) obtained in Preparation Examples 2 to 9 were used instead of the primer resin composition (1) used in Example 1. Laminates (2) to (9) were obtained.
  • Example 1 The same procedure as in Example 1 was carried out except that the primer layer was not formed, to obtain a laminate (R1) in which the support (A), the metal layer (C) and the metal plating layer (D) were sequentially laminated.
  • the peel strength of the laminate obtained above was measured by a method based on IPC-TM-650 and NUMBER 2.4.9.
  • the lead width used for the measurement was 5 mm, and the peel angle was 90 °.
  • the peel strength tends to show a higher value as the thickness of the plating layer becomes thicker, but the measurement of the peel strength in the present invention was carried out based on the measured value in the currently widely used plating layer of 15 ⁇ m.
  • the retention rate before and after heating was calculated, and the heat resistance was evaluated according to the following criteria.
  • Table 1 shows a summary of the measurements and evaluation results obtained above.
  • Comparative Example 1 was a laminate (R1) having no primer layer, but it was confirmed that the peel strength before heating was low and it was not at a practical level. Further, it was confirmed that the peel strength after heating at 80 ° C. for 168 hours was further reduced and could not be put into practical use at all.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)

Abstract

ポリオレフィン系樹脂からなる支持体に対し、支持体表面を粗化することなく、簡便な方法で支持体と金属めっき層の密着性に優れた積層体を提供する。また、それを用いた前記積層体を用いた成形品、プリント配線板及び電磁波シールドを提供する。 ポリオレフィン系樹脂(a)からなる支持体(A)の上に、有機溶剤可溶性又は水分散性を有するポリオレフィン系樹脂(b)を含有するプライマー層(B)、金属粒子層(C)及び金属めっき層(D)が順次積層された積層体を用いる。

Description

積層体、成形品、プリント配線板及び電磁波シールド
 本発明は、ポリオレフィン系樹脂からなる基材を用いた積層体、成形品、プリント配線板及び電磁波シールドに関する。
 樹脂等からなる絶縁性基材の表面に金属めっき膜を形成する技術は従来からよく知られており、銅等からなる金属層が形成された回路部品や電磁波シールド部材、自動車用の装飾部品等の装飾品が知られている。また、絶縁性基材の表面に金属層(金属被膜)を形成する方法としては、電解めっき法や無電解めっき法を用いた方法が知られている。
 ここで、絶縁性基材の表面に金属めっき層を形成する場合、絶縁性基材としては、ポリカーボネート樹脂、ABS樹脂、ポリアミド、ポリスチレン、ポリフェニレンスルフィド、ポリアルキレンテレフタレート等のポリエステル樹脂などの比較的極性の高い樹脂を用いることで、絶縁性基材と金属層との密着性を確保していた。しかしながら、絶縁性基材として、ポリオレフィン系樹脂等の無極性の基材へ金属めっき層を形成した場合、十分な密着性を得ることは困難であった。
 ポリオレフィン系樹脂基材に金属めっき層を形成する方法としては、ポリオレフィン系樹脂基材の表面を強力な酸化剤で粗化することによりアンカー効果を付与する粗化法が知られている(例えば、非特許文献1参照。)。また、ポリオレフィン系樹脂基材の表面に無電解めっきの触媒となる金属成分や導電性ポリマーと樹脂成分を混合した導電性ペーストを塗工し、密着性を付与しためっき下地層を形成する方法が検討されている(例えば、特許文献2~3参照。)。さらに、めっきの前処理として、ポリオレフィン系樹脂基材の表面を有機溶剤で膨潤させ、紫外線照射により改質した後、ポリオレフィン系樹脂基材の表面へ無電解ニッケルめっきを施す方法も提案されている(例えば、特許文献4参照。)。
 しかし、粗化法では、六価クロムなどの強力な酸化剤を使用する必要があり、環境負荷への懸念があった。また、導電性ペーストをめっき下地とした方法は、ペースト内に密着性を向上させる樹脂成分と、密着性を低下させる金属成分とが共存するため、密着性とめっき析出性がトレードオフとなり、ポリオレフィン系樹脂基材と金属めっき膜の密着性が不十分になるという問題があった。さらに、めっきの前処理の工夫による金属めっき膜形成では、ポリオレフィン系樹脂基材のメーカーや品番が変わると、樹脂成分や無機フィラーの種類や比率が変わるため、基材ごとにめっき前処理条件の最適化が必要であり、手間がかかるという問題もあった。
特開2015-67624号公報 国際公開第2014/132794号 特開2016-160506号公報
実務表面技術27巻(1980)11号,p.561~565
 本発明が解決しようとする課題は、ポリオレフィン系樹脂からなる支持体に対し、支持体表面を粗化することなく、簡便な方法で支持体と金属めっき層の密着性に優れた積層体、それを用いた成形品、プリント配線板及び電磁波シールドを提供することである。
 本発明者らは、上記の課題を解決するため鋭意研究した結果、ポリオレフィン系樹脂からなる支持体の上に、有機溶剤可溶性又は水分散性を有するポリオレフィン系樹脂を含有するプライマー層を設け、その上に金属粒子層及び金属めっき層を順次積層した積層体が上記課題を解決できることを見いだし、本発明を完成させた。
 すなわち、本発明は、ポリオレフィン系樹脂(a)からなる支持体(A)の上に、有機溶剤可溶性又は水分散性を有するポリオレフィン系樹脂(b)を含有するプライマー層(B)、金属粒子層(C)及び金属めっき層(D)が順次積層されたことを特徴とする積層体、及び、それを用いたプリント配線板及び電磁波シールドを提供するものである。
 本発明の積層体は、従来の支持体を粗化する方法、導電性ペーストをめっき下地とした方法、及び、基材を前処理する方法に比べ、ポリオレフィン系樹脂からなる支持体への金属めっき層の密着性にきわめて優れるという特長がある。したがって、本発明の積層体は、例えば、タッチパネル向け導電性フィルム、タッチパネル用メタルメッシュ、電子回路、有機太陽電池、電子端末、有機EL素子、有機トランジスタ、リジットプリント配線板、フレキシブルプリント配線板、電磁波シールド、非接触ICカード等のRFID、電磁波シールドなどの配線部材として好適に用いることができる。また、成形品への装飾めっき用途に用いることができる。特に、軽量化と電磁波シールド性の両立が要求される自動車等の電磁波シールド用途に最適である。
 本発明の積層体は、ポリオレフィン系樹脂(a)からなる支持体(A)の上に、有機溶剤可溶性又は水分散性を有するポリオレフィン系樹脂(b)を含有するプライマー層(B)、金属粒子層(C)及び金属めっき層(D)が順次積層されたものである。
 本発明の積層体は、前記ポリオレフィン系樹脂からなる支持体(A)の片面に、プライマー層(B)等を順次積層した積層体であってもよく、前記支持体(A)の両面にプライマー層(B)等を順次積層した積層体であってもよい。
 前記ポリオレフィン系樹脂(a)としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、ポリブチレン、ポリブタジエン、ポリ塩化ビニル、塩素化ポリプロピレン等が挙げられる。また、前記ポリオレフィン系樹脂(a)は、エラストマーを含有するものが好ましい。前記エラストマーとしては、例えば、エチレン-ブテン共重合体、エチレン-オクテン共重合体等が挙げられる。
 前記支持体(A)の形状は、特に限定されるものではなく、厚さ0.5~100mm程度のものが好ましく、厚さ0.5~10mm程度のものがより好ましい。さらに、本発明の積層体として比較的柔軟なものが好ましく、1~200μm程度のものが好ましい。
 前記支持体(A)の形状がフィルム状又はシート状の場合、フィルム状又はシート状の支持体の厚さは、通常、1~5,000μmの範囲が好ましく、1~300μmの範囲がより好ましく、1~200μmの範囲がさらに好ましい。
 また、前記支持体(A)と後述するプライマー層(B)との密着性を向上できることから、前記支持体(A)の表面に、微細な凹凸の形成、その表面に付着した汚れの洗浄、ヒドロキシル基、カルボニル基、カルボキシル基等の官能基の導入のための表面処理等が施されていてもよい。具体的には、コロナ放電処理等のプラズマ放電処理、紫外線処理等の乾式処理、水、酸・アルカリ等の水溶液又は有機溶剤等を用いる湿式処理等が施されていてもよい。
 前記プライマー層(B)は、前記支持体(A)の表面の一部又は全部にプライマー樹脂組成物を塗工し、前記プライマー樹脂組成物中に含まれる有機溶剤、水性媒体等の溶媒を除去することによって形成できる。
 前記プライマー樹脂組成物を前記支持体(A)の表面に塗工する方法としては、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式等の方法が挙げられる。
 前記プライマー層(B)の表面は、前記金属層(C)との密着性をより一層向上することを目的として、例えば、コロナ放電処理法等のプラズマ放電処理法、紫外線処理法等の乾式処理法、水や酸性又はアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理されていることが好ましい。
 前記プライマー樹脂組成物を前記支持体(A)の表面に塗工した後、その塗工層に含まれる溶媒を除去する方法としては、例えば、乾燥機を用いて乾燥させ、前記溶媒を揮発させる方法が一般的である。乾燥温度としては、前記溶媒を揮発させることが可能で、かつ前記支持体(A)に熱変形等の悪影響を与えない範囲の温度に設定すればよい。
 前記プライマー樹脂組成物を用いて形成するプライマー層(B)の膜厚は、本発明の積層体を用いる用途によって異なるが、前記支持体(A)と前記金属層(C)との密着性をより向上できることから、10nm~30μmの範囲が好ましく、10nm~1μmの範囲がより好ましく、10nm~500nmの範囲がさらに好ましい。
 前記プライマー樹脂組成物としては、有機溶剤可溶性又は水分散性を有するポリオレフィン系樹脂(b)を含有するものを用いる。
 前記ポリオレフィン系樹脂(b)としては、ポリプロピレン、塩素化ポリプロピレン、塩素化ポリプロピレン変性アクリル樹脂、水性塩素化ポリプロピレン等が挙げられる。これらの中でも、前記支持体(A)との密着性が向上することから、塩素化ポリプロピレン、塩素化ポリプロピレン変性アクリル樹脂が好ましい。また、これらのポリオレフィン系樹脂(b)は、1種で用いることも2種以上併用することもできる。
 また、前記ポリオレフィン系樹脂(b)としては、カルボキシル基を有する樹脂が好ましい。樹脂中のカルボキシル基は、ポリマーの主鎖、末端又は側鎖のいずれに存在してもよい。カルボキシル基の導入方法としては、ポリオレフィン重合時に(メタ)アクリル酸、マレイン酸、マレイン酸無水物等のカルボキシル基を有する不飽和単量体を共重合する方法、ポリオレフィン樹脂に(メタ)アクリル酸、マレイン酸、マレイン酸無水物等のカルボキシル基を有する不飽和単量体をグラフト重合する方法などが挙げられる。なお、本発明において、「(メタ)アクリル」は、「アクリル」及び「メタクリル」の一方又は両方をいう。
 前記ポリオレフィン系樹脂(b)中のカルボキシル基の含有率は、層間の密着性を向上できることから、0.1~5質量%の範囲が好ましく、1~5質量%の範囲がより好ましい。
 前記ポリオレフィン系樹脂(b)の融点は、層間の密着性を向上できることから、65~120℃の範囲が好ましく、75~85℃の範囲がより好ましい。
 前記ポリオレフィン系樹脂(b)として、塩化ポリプロピレンを用いる場合は、層間の密着性を向上できることから、塩素化度が15~30質量%の範囲であるものが好ましく、15~26質量%の範囲のものがより好ましく、さらに、21~26質量%の範囲のものがさらに好ましい。
 前記塩素化ポリプロピレン変性アクリル樹脂は、有機溶剤に溶解した塩素化ポリプロピレン中で、(メタ)アクリル単量体を重合することにより、塩素化ポリプロピレンにアクリル樹脂をグラフト化したものである。(メタ)アクリル単量体の組成の調整により層間の密着性を向上できることから、塩素化ポリプロピレン変性アクリル樹脂を用いることが好ましい。
 前記ポリオレフィン系樹脂(b)として、カルボキシル基を有する樹脂を用いる場合は、架橋剤を併用することにより、層間の密着性を向上できる。前記架橋剤としては、前記ポリオレフィン系樹脂(b)が有するカルボキシル基と反応する官能基を有する架橋剤が好ましい。このような架橋剤としては、例えば、エポキシ基、アミノ基、カルボジイミド基、オキサゾリン基、イソシアネート基、ブロックイソシアネート基、多価金属等を有する架橋剤が挙げられる。これらの架橋剤の中でも、エポキシ基を有する架橋剤を用いることが好ましい。また、これらの架橋剤は、1種で用いることも2種以上併用することもできる。
 層間の密着性を向上できることから、架橋剤の使用量としては、前記ポリオレフィン系樹脂(b)100質量部に対して、0.1~100質量部の範囲が好ましく、1~10質量部の範囲がより好ましい。
 また、前記ポリオレフィン系樹脂(b)は、その他樹脂を併用することもできる。その他樹脂としては、例えば、ウレタン樹脂、ビニル樹脂、ウレタン-ビニル複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、フェノール等をブロック化剤として用いたブロックイソシアネート、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。
 前記プライマー樹脂組成物としては、塗工性が良好になることから、前記プライマー樹脂組成物中に前記ポリオレフィン系樹脂(b)を含む樹脂を0.1~70質量%の範囲で含有するものが好ましく、1~20質量%の範囲で含有するものがより好ましい。
 前記プライマー樹脂組成物としては、前記ポリオレフィン系樹脂(b)等の樹脂を、有機溶剤又は水性媒体に、溶解又は分散させたものを用いることができる。
 前記有機溶剤としては、例えば、トルエン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサン、メタノール、エタノール等が挙げられる。また、前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。
 前記の水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール溶剤;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール溶剤;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。
 また、前記ポリオレフィン系樹脂(b)及びその他の樹脂は、必要に応じて、例えば、アルコキシシリル基、シラノール基、水酸基、アミノ基等の架橋性官能基を有していてもよい。これらの架橋性官能基により形成される架橋構造は、前記プライマー樹脂組成物を塗工する前に、すでに架橋構造を形成していてもよく、また、前記流動体が塗工された後、例えば、焼成工程等における加熱によって架橋構造を形成していてもよい。
 前記プライマー樹脂組成物には、必要に応じて、pH調整剤、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等の公知の添加剤を適宜添加してもよい。
 前記金属粒子層(C)は、前記プライマー層(B)上に形成されたものである。前記金属粒子層(C)を構成する金属としては、遷移金属又はその化合物が挙げられ、中でもイオン性の遷移金属が好ましい。このイオン性の遷移金属としては、銅、銀、金、ニッケル、パラジウム、白金、コバルト等が挙げられる。これらのイオン性の遷移金属の中でも、銅、銀、金は、電気抵抗が低く、腐食に強い導電性パターンが得られることから好ましい。また、前記金属粒子層(C)は多孔質状のものが好ましく、この場合、その層中に空隙を有する。
 また、前記金属めっき層(D)を構成する金属としては、銅、ニッケル、クロム、コバルト、スズ等が挙げられる。これらの中でも、電気抵抗が低く、腐食に強い導電性パターンが得られることから銅が好ましい。
 本発明の積層体においては、前記金属粒子層(C)中に存在する空隙に金属めっき層(D)を構成する金属が充填されていることが好ましく、前記支持体(A)と前記金属粒子層(C)との界面近傍に存在する前記金属粒子層(C)中の空隙まで、前記金属めっき層(D)を構成する金属が充填されているものが、前記金属粒子層(C)と前記金属めっき層(D)との密着性がより向上するため好ましい。
 本発明の積層体の製造方法としては、まず、前記支持体(A)の上に、前記プライマー層(B)を形成し、その後、金属粒子(c)を含有する流動体を塗工し、流動体中に含まれる有機溶剤等を乾燥により除去することによって、金属層(C)を形成した後、無電解めっきを行い、その後、電解めっきにより前記金属めっき層(D)を形成する方法が挙げられる。この金属粒子層(C)の形成の際、金属粒子(c)を含有する流動体をプライマー層(B)の上に塗工、乾燥して、金属粒子層(C’)を形成した後、焼成して前記金属粒子層(C’)中に存在する分散剤を含む有機化合物を除去して空隙を形成して多孔質状の金属粒子層(C)とすることで、前記金属めっき層(D)との密着性が向上することから好ましい。
 前記金属粒子層(C)の形成に用いる前記金属粒子(c)の形状は、粒子状又は繊維状のものが好ましい。また、前記金属粒子(c)の大きさは、ナノサイズのものが好ましい。具体的には、前記金属粒子(c)の形状が粒子状の場合は、微細なメッシュ状の導電性パターンを形成でき、抵抗値をより低減できるため、平均粒子径が1~100nmの範囲が好ましく、1~50nmの範囲がより好ましい。なお、前記「平均粒子径」は、前記金属粒子(c)を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。
 一方、前記金属粒子(c)の形状が繊維状の場合は、微細な導電性パターンを形成でき、抵抗値をより低減できることから、繊維の直径が5~100nmの範囲が好ましく、5~50nmの範囲がより好ましい。また、繊維の長さは、0.1~100μmの範囲が好ましく、0.1~30μmの範囲がより好ましい。
 前記流動体中の前記金属粒子(c)の含有率は、1~90質量%の範囲が好ましく、1~60質量%の範囲がより好ましく、1~10質量%の範囲がさらに好ましい。
 前記流動体に配合してもよい成分としては、前記金属粒子(c)を溶媒中に分散させるための分散剤や溶媒、また必要に応じて、後述する界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤等が挙げられる。
 前記金属粒子(c)を溶媒中に分散させるため、分散剤を用いることが好ましい。前記分散剤としては、例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルリジン酸、アビエチン酸等のカルボキシル基を有する多環式炭化水素化合物などが挙げられる。これらの中でも、前記金属粒子層(C)を多孔質状とすることで前記金属粒子層(C)と後述する金属めっき層(D)との密着性を向上できることから、高分子分散剤が好ましく、この高分子分散剤としては、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物、ウレタン樹脂、アクリル樹脂、前記ウレタン樹脂や前記アクリル樹脂にリン酸基を含有する化合物等が挙げられる。
 上記のように、前記分散剤に高分子分散剤を用いることで、低分子分散剤と比較して、前記金属粒子層(C)中の分散剤を除去して多孔質状とし、その空隙サイズを大きくすることができ、ナノオーダーからサブミクロンオーダーの大きさの空隙を形成することができる。この空隙に後述する金属めっき層(D)を構成する金属が充填されやすくなり、充填された金属がアンカーとなり、前記金属粒子層(C)と後述する金属めっき層(D)との密着性を大幅に向上することができる。
 前記金属粒子(c)を分散させるために用いる前記分散剤の使用量は、前記金属粒子(c)100質量部に対し、0.01~50質量部の範囲が好ましく、0.01~10質量部の範囲がより好ましい。
 また、前記金属粒子層(C)と後述する金属めっき層(D)との密着性をより向上する目的で、焼成により分散剤を除去して多孔質状の前記金属層(C)を形成する場合は、前記金属粒子(c)100質量部の範囲に対し、0.1~10質量部の範囲が好ましく、0.1~5質量部の範囲がより好ましい。
 前記流動体に用いる溶媒としては、水性媒体や有機溶剤を用いることができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水等が挙げられる。また、前記有機溶剤としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。
 前記アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。
 また、前記流動体には、上記の金属粒子(c)、溶媒の他に、必要に応じてエチレングリコール、ジエチレングリコール、1,3-ブタンジオール、イソプレングリコール等を用いることができる。
 前記界面活性剤としては、一般的な界面活性剤を用いることができ、例えば、ジ-2-エチルヘキシルスルホコハク酸塩、ドデシルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ヘキサメタリン酸塩等が挙げられる。
 前記レベリング剤としては、一般的なレベリング剤を用いることができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物等が挙げられる。
 前記粘度調整剤としては、一般的な増粘剤を用いることができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体や合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトールなどが挙げられる。
 前記成膜助剤としては、一般的な成膜助剤を用いることができ、例えば、アニオン系界面活性剤(ジオクチルスルホコハク酸エステルソーダ塩など)、疎水性ノニオン系界面活性剤(ソルビタンモノオレエートなど)、ポリエーテル変性シロキサン、シリコーンオイル等が挙げられる。
 前記消泡剤としては、一般的な消泡剤を用いることができ、例えばシリコーン系消泡剤や、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。
 前記防腐剤としては、一般的な防腐剤を用いることができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ピリチオン系防腐剤等が挙げられる。
 前記流動体の粘度(25℃でB型粘度計を用いて測定した値)は、0.1~500,000mPa・sの範囲が好ましく、0.5~10,000mPa・sの範囲がより好ましい。また、前記流動体を、後述するインクジェット印刷法、凸版反転印刷等の方法によって塗工(印刷)する場合には、その粘度は5~20mPa・sの範囲が好ましい。
 前記プライマー層(B)の上に前記流動体を塗工や印刷する方法としては、例えば、インクジェット印刷法、反転印刷法、スクリーン印刷法、オフセット印刷法、グラビア印刷法、フレキソ印刷法、パッド印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法、ロータリーコート法、キャピラリーコート法等が挙げられる。
 前記金属粒子層(C)の単位面積当たりの質量は、1~30,000mg/mの範囲が好ましく、1~5,000mg/mの範囲が好ましい。前記金属粒子層(C)の厚さは、前記金属めっき層(D)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整できる。
 前記金属めっき層(D)は、前記金属粒子層(C)の上に形成される層であるが、その形成方法としては、めっき処理によって形成する方法が好ましい。このめっき処理としては、例えば、電解めっき法、無電解めっき法等の湿式めっき法、スパッタリング法、真空蒸着法等の乾式めっき法などが挙げられる。また、これらのめっき法を2つ以上組み合わせて、前記金属めっき層(D)を形成しても構わない。
 上記の無電解めっき法は、例えば、前記金属層(C)を構成する金属に、無電解めっき液を接触させることで、無電解めっき液中に含まれる銅等の金属を析出させ金属皮膜からなる無電解めっき層(皮膜)を形成する方法である。
 前記無電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。
 前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。
 また、前記無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、又はこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものを用いることができる。
 前記電解めっき法は、例えば、前記金属層(C)を構成する金属、又は、前記無電解処理によって形成された無電解めっき層(皮膜)の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、カソードに設置した前記金属層(C)を構成する金属粒子(c)又は前記無電解処理によって形成された無電解めっき層(皮膜)の表面に析出させ、電解めっき層(金属皮膜)を形成する方法である。
 前記電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属の硫化物と、硫酸と、水性媒体とを含有するもの等が挙げられる。具体的には、硫酸銅と硫酸と水性媒体とを含有するものが挙げられる。
 前記無電解めっき液及び電解めっき液は、20~98℃の範囲で用いることが好ましい。
 前記ポリオレフィン系樹脂(a)からなる支持体(A)は、支持体自身の耐熱性が低いため、金属粒子層(C)に導電性を付与するだけの高温による熱履歴を与えることが難しい場合がある。その場合は、金属粒子層(C)上に金属めっき層(C)を形成する方法としては、無電解めっきを実施した後、電解めっきを実施することが好ましい。
 また、前記乾式めっき処理工程としては、スパッタリング法、真空蒸着法等を用いることができる。前記スパッタリング法は、真空中で不活性ガス(主にアルゴン)を導入し、金属めっき層(D)を形成材料に対してマイナスイオンを印加してグロー放電を発生させ、次いで、前記不活性ガス原子をイオン化し、高速で前記金属めっき層(D)の形成材料の表面にガスイオンを激しく叩きつけ、金属めっき層(D)の形成材料を構成する原子及び分子を弾き出し勢いよく前記金属層(C)の表面に付着させることにより金属めっき層(D)を形成する方法である。
 スパッタリング法による前記金属めっき層(D)の形成材料としては、例えば、クロム、銅、チタン、銀、白金、金、ニッケル-クロム合金、ステンレス、銅-亜鉛合金、インジウムチンオキサイド(ITO)、二酸化ケイ素、二酸化チタン、酸化ニオブ、酸化亜鉛等が挙げられる。
 前記スパッタリング法によりめっき処理する際には、例えば、マグネトロンスパッタ装置等を用いることができる。
 前記金属めっき層(D)の厚さは、0.1~50μmの範囲が好ましい。前記金属めっき層(D)の厚さは、前記金属めっき層(D)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。
 上記の方法により得られた本発明の積層体は、プリント配線板として用いることが可能である。本発明の積層体をプリント配線板に用いる場合、形成しようとする所望のパターン形状に対応した位置に、前記金属層(C)を形成するため、前記金属粒子(c)を含有する流動体を塗工することによって、所望のパターンを有するプリント配線板を製造することができる。
 また、前記プリント配線板は、例えば、サブトラクティブ法、セミアディティブ法等のフォトリソ-エッチング法、又は金属粒子層(C)の印刷パターン上にめっきする方法によって製造することができる。
 前記サブトラクティブ法は、予め製造した本発明の積層体を構成する金属めっき層(D)の上に、所望のパターン形状に対応した形状のエッチングレジスト層を形成し、その後の現像処理によって、前記レジストの除去された部分の前記金属粒子層(C)、前記金属めっき層(D)等を薬液で溶解し除去することによって、所望のパターンを形成する方法である。前記薬液としては、塩化銅、塩化鉄等を含有する薬液を用いることができる。
 前記セミアディティブ法は、前記ポリオレフィン系樹脂からなる支持体(A)の両面又は片面に前記プライマー層(B)及び前記金属粒子層(C)を形成し、前記金属粒子層(C)の表面に、所望のパターンに対応した形状のめっきレジスト層を形成し、次いで、無電解めっき法若しくは電解めっき法、又はこれらの組み合わせによって金属めっき層(D)を形成した後、前記めっきレジスト層とそれに接触した前記金属層(C)とを薬液等に溶解し除去し、所望のパターンを形成する方法である。また、前記金属粒子層(C)は、めっき下地層として形成するが、前記金属粒子層(C)のみのめっき下地層に代えて、前記金属粒子層(C)上に無電解めっき法若しくは電解めっき法、又はこれらの組み合わせによって形成した金属層をめっき下地層としてもよい。
 また、前記金属層(C)の印刷パターン上にめっきする方法は、前記支持体(A)の両面又は片面に形成した前記プライマー層(B)の上に、インクジェット法、反転印刷法等で前記金属層(C)のパターンを印刷し、前記金属層(C)の表面に、無電解めっき法若しくは電解めっき法、又はこれらの組み合わせによって前記金属めっき層(D)を形成し、所望のパターンを形成する方法である。
 上記の方法で得られた本発明の積層体は、従来の支持体を粗化する方法、導電性ペーストをめっき下地とした方法、及び、基材を前処理する方法に比べ、ポリオレフィン系樹脂からなる支持体への金属めっき層の密着性にきわめて優れるという特長がある。したがって、本発明の積層体は、例えば、タッチパネル向け導電性フィルム、タッチパネル用メタルメッシュ、電子回路、有機太陽電池、電子端末、有機EL素子、有機トランジスタ、リジットプリント配線板、フレキシブルプリント配線板、電磁波シールド、非接触ICカード等のRFID、電磁波シールドなどの配線部材として好適に用いることができる。また、成形品への装飾めっき用途に用いることができる。特に、軽量化と電磁波シールド性の両立が要求される自動車等の電磁波シールド用途に最適である。
 以下、実施例により本発明を詳細に説明する。なお、本発明は、以下の実施例によりなんら制限されるものではない。
[調製例1:プライマー樹脂組成物(1)の調製]
 ポリプロピレン樹脂(日本製紙株式会社製「アウローレン500S」、融点75℃)にメチルシクロヘキサンとメチルエチルケトンの混合溶媒(メチルシクロヘキサンとメチルエチルケトン=80/20(質量比))を加えて均一に混合して、不揮発分2質量%のプライマー樹脂組成物(1)を得た。
[調製例2:プライマー樹脂組成物(2)の調製]
 調製例1で用いたポリプロピレン樹脂に代えて、ポリプロピレン樹脂(日本製紙株式会社製「アウローレン150S」、融点120℃)を用いた以外は調整例1と同様に行い、不揮発分2質量%のプライマー樹脂組成物(2)を得た。
[調製例3:プライマー樹脂組成物(3)の調製]
 塩素化ポリプロピレン樹脂(日本製紙株式会社製「スーパークロン422S」、マレイン酸変性タイプ、融点75℃)にトルエンを加えて均一に混合して、不揮発分2質量%のプライマー樹脂組成物(3)を得た。
[調製例4:プライマー樹脂組成物(4)の調製]
 塩素化ポリプロピレン樹脂(日本製紙株式会社製「スーパークロン422S」、マレイン酸変性タイプ、融点75℃)の不揮発分2質量%トルエン溶液95質量部と、エポキシ架橋剤(ナガセケムテック製デナコールEX-201)の不揮発分2質量%のトルエン溶液5質量部を均一に混合して、不揮発分2質量%のプライマー樹脂組成物(4)を得た。
[調製例5:プライマー樹脂組成物(5)の調製]
 調製例3で用いた塩素化ポリプロピレン樹脂に代えて、塩素化ポリプロピレン樹脂(日本製紙株式会社製「スーパークロン930S」、マレイン酸変性タイプ、融点65℃)を用いた以外は、調製例3と同様に行い、不揮発分2質量%のプライマー樹脂組成物(5)を得た。
[調製例6:プライマー樹脂組成物(6)の調製]
 調製例3で用いた塩素化ポリプロピレン樹脂に代えて、塩素化ポリプロピレン樹脂(日本製紙株式会社製「スーパークロン415S」、マレイン酸変性タイプ、融点85℃)を用いた以外は、調製例3と同様に行い、不揮発分2質量%のプライマー樹脂組成物(6)を得た。
[調製例7:プライマー樹脂組成物(7)の調製]
 調製例3で用いた塩素化ポリプロピレン樹脂に代えて、塩素化ポリプロピレン樹脂(東洋紡株式会社製「ハードレンDX526P」、マレイン酸未変性タイプ、融点81℃)を用いた以外は、調製例3と同様に行い、不揮発分2質量%のプライマー樹脂組成物(7)を得た。
[調製例8:プライマー樹脂組成物(8)の調製]
 調製例3で用いた塩素化ポリプロピレン樹脂に代えて、塩素化ポリプロピレン変性アクリル樹脂(DIC株式会社製「アクリディックWML-350」)を用いた以外は、調製例3と同様に行い、不揮発分2質量%のプライマー樹脂組成物(8)を得た。
[調製例9:プライマー樹脂組成物(9)の調製]
 塩素化ポリプロピレン樹脂水分散体(日本製紙株式会社製「スーパークロンE-415」、マレイン酸変性タイプ)にイオン交換水を加えて均一に混合して、不揮発分2質量%のプライマー樹脂組成物(9)を得た。
[調製例10:流動体(1)の調製]
 特許第4573138号公報記載の実施例1にしたがって、銀ナノ粒子とカチオン性基(アミノ基)を有する有機化合物の複合体である灰緑色の金属光沢があるフレーク状の塊からなるカチオン性銀ナノ粒子を得た。その後、この銀ナノ粒子の粉末を、エチレングリコール45質量部と、イオン交換水55質量部との混合溶媒に分散させて、カチオン性銀ナノ粒子が5質量%の流動体(1)を調製した。
[実施例1]
 ポリプロピレン基材(株式会社エンジニアリングテストサービス製;150mm×70mm×厚さ1mm)の表面に、調製例1で得られたプライマー樹脂組成物(1)を、スピンコーターを用いて、その乾燥膜厚が0.1μmとなるように塗工した後、熱風乾燥機を用いて80℃で5分間乾燥することによって、ポリプロピレン基材上にプライマー層を形成した。
 次に、上記で形成したプライマー層の表面に、調製例10で得られた流動体(1)を、スピンコーターを用いて、その乾燥膜厚が0.1μmとなるように塗工した後、熱風乾燥機を用いて80℃で5分間乾燥することによって、プライマー上に銀粒子層を形成した。
 次に、上記でプライマー層及び銀粒子層を形成したポリプロピレン基材を、無電解銅めっき液(奥野製薬工業株式会社製「OICカッパー」、pH12.5)中に55℃で20分間浸漬し、無電解銅めっきを行い、金属粒子層上に無電解銅めっき層を形成した。
 次いで、上記で形成した無電解銅めっき層をカソード側に設定し、含リン銅をアノード側に設定し、硫酸銅を含有する電解めっき液を用いて電流密度2.5A/dmで30分間電解めっきを行うことによって、無電解銅めっき層上に、さらに電解銅めっき層を形成した。無電解銅めっき層及び電解銅めっき層の合計の厚さは3μmであった。なお、前記電解めっき液としては、硫酸銅70g/L、硫酸200g/L、塩素イオン50mg/L、添加剤(奥野製薬工業(株)製「トップルチナSF-M」)5mL/Lを用いた。
 上記の方法によって、ポリオレフィン基材(A)、プライマー層(B)、金属層(C)及び金属めっき層(D)を順次積層した積層体(1)を得た。
[実施例2~9]
 実施例1で用いたプライマー樹脂組成物(1)に代えて、調製例2~9で得られたプライマー樹脂組成物(2)~(9)を用いた以外は実施例1と同様に行い、積層体(2)~(9)を得た。
[比較例1]
 プライマー層を形成しなかった以外は実施例1と同様に行い、支持体(A)、金属層(C)、金属めっき層(D)を順次積層した積層体(R1)を得た。
<常態強度;ピール試験による評価>
 前記で得た積層体のピール強度測定は、IPC-TM-650、NUMBER2.4.9に準拠した方法により行った。測定に用いるリード幅は5mm、そのピールの角度は90°とした。なお、ピール強度は、前記めっき層の厚みが厚くなるほど高い値を示す傾向にあるが、本発明でのピール強度の測定は、現在汎用されているめっき層15μmにおける測定値を基準として実施した。
<耐熱性;耐熱試験後のピール試験による評価(温度80℃)>
 前記で得た積層体を80℃に設定した乾燥機を用いて168時間促進試験を行った。前記乾燥後の積層体を用いること以外は、前記<ピール試験による評価>に記載した方法と同様の方法でピール強度を測定した。
[耐熱性の評価]
 上記で測定した加熱前後のピール強度値を用いて、加熱前後での保持率を算出し、下記の基準にしたがって耐熱性を評価した。
 A:保持率が85%以上である。
 B:保持率が70%以上85%未満である。
 C:保持率が55%以上70%未満である。
 D:保持率が55%未満である。
 上記で得られた測定、評価結果をまとめたものを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の積層体である実施例1~9で得られた積層体(1)~(9)は、実用上、加熱前に高いピール強度を有することが確認できた。また、80℃で168時間加熱後のピール強度についても保持率が高いことが確認できた。
 一方、比較例1は、プライマー層を有していない積層体(R1)であるが、加熱前のピール強度が低く、実用レベルではないことが確認できた。また、80℃で168時間加熱後のピール強度についてもさらにピール強度が低下し、全く実用に供し得ないことが確認できた。

Claims (7)

  1.  ポリオレフィン系樹脂(a)からなる支持体(A)の上に、有機溶剤可溶性又は水分散性を有するポリオレフィン系樹脂(b)を含有するプライマー層(B)、金属粒子層(C)及び金属めっき層(D)が順次積層されたことを特徴とする積層体。
  2.  前記溶剤可溶性ポリオレフィン系樹脂(b)が、ポリプロピレン、塩素化ポリプロピレン、塩素化ポリプロピレン変成アクリル樹脂及び水性塩素化ポリプロピレン樹脂からなる群から選ばれる少なくとも1種である請求項1記載の積層体。
  3.  前記プライマー層(B)が、さらに架橋剤を含有する層である請求項1又は2記載の積層体。
  4.  前記金属めっき層(D)が、前記金属粒子層(C)の上に、無電解金属めっき層及び電解金属めっき層が順次積層されたものである請求項1~3のいずれか1項記載の積層体。
  5.  請求項1~4のいずれか1項記載の積層体を有することを特徴とする成形品。
  6.  請求項1~4のいずれか1項記載の積層体を有することを特徴とするプリント配線板。
  7.  請求項1~4のいずれか1項記載の積層体を有することを特徴とする電磁波シールド。
PCT/JP2020/035181 2019-10-10 2020-09-17 積層体、成形品、プリント配線板及び電磁波シールド WO2021070591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/767,168 US20220363852A1 (en) 2019-10-10 2020-09-17 Layered body, molded article, printed-wiring board and electromagnetic wave shield
JP2021506342A JP7044203B2 (ja) 2019-10-10 2020-09-17 積層体、成形品、プリント配線板及び電磁波シールド
CN202080068007.0A CN114450157A (zh) 2019-10-10 2020-09-17 层叠体、成形品、印刷配线板和电磁波屏蔽体
EP20875261.8A EP4043205A4 (en) 2019-10-10 2020-09-17 LAMINATED BODY, SHAPED ARTICLE, PRINTED CIRCUIT BOARD AND SHIELDING AGAINST ELECTROMAGNETIC WAVES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-186813 2019-10-10
JP2019186813 2019-10-10

Publications (1)

Publication Number Publication Date
WO2021070591A1 true WO2021070591A1 (ja) 2021-04-15

Family

ID=75437162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035181 WO2021070591A1 (ja) 2019-10-10 2020-09-17 積層体、成形品、プリント配線板及び電磁波シールド

Country Status (5)

Country Link
US (1) US20220363852A1 (ja)
EP (1) EP4043205A4 (ja)
JP (1) JP7044203B2 (ja)
CN (1) CN114450157A (ja)
WO (1) WO2021070591A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573138B2 (ja) 2008-06-26 2010-11-04 Dic株式会社 銀含有粉体の製造方法、銀含有粉体及びその分散液
WO2014132794A1 (ja) * 2013-02-28 2014-09-04 ナガセケムテックス株式会社 めっき用プライマー組成物、めっき物の製造方法及びめっき物
WO2016147481A1 (ja) * 2015-03-13 2016-09-22 コニカミノルタ株式会社 透明電極、透明電極の製造方法及び有機エレクトロルミネッセンス素子
WO2017195621A1 (ja) * 2016-05-09 2017-11-16 Dic株式会社 フレキソ印刷用金属ナノ粒子インク及びそれを用いた積層体の製造方法
WO2018030202A1 (ja) * 2016-08-08 2018-02-15 Dic株式会社 積層体、メタルメッシュ及びタッチパネル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099138A (ja) * 1983-11-02 1985-06-03 Mitsui Petrochem Ind Ltd ポリオレフイン成形品の塗装用下塗剤
JP5029609B2 (ja) * 2007-05-09 2012-09-19 東レ株式会社 導電性基板、プラズマディスプレイ用電磁波シールド基板および導電性基板の製造方法
WO2016208672A1 (ja) * 2015-06-26 2016-12-29 Dic株式会社 積層体、成形品、導電性パターン、電子回路及び電磁波シールド
KR20180111890A (ko) * 2016-03-11 2018-10-11 디아이씨 가부시끼가이샤 적층체의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573138B2 (ja) 2008-06-26 2010-11-04 Dic株式会社 銀含有粉体の製造方法、銀含有粉体及びその分散液
WO2014132794A1 (ja) * 2013-02-28 2014-09-04 ナガセケムテックス株式会社 めっき用プライマー組成物、めっき物の製造方法及びめっき物
WO2016147481A1 (ja) * 2015-03-13 2016-09-22 コニカミノルタ株式会社 透明電極、透明電極の製造方法及び有機エレクトロルミネッセンス素子
WO2017195621A1 (ja) * 2016-05-09 2017-11-16 Dic株式会社 フレキソ印刷用金属ナノ粒子インク及びそれを用いた積層体の製造方法
WO2018030202A1 (ja) * 2016-08-08 2018-02-15 Dic株式会社 積層体、メタルメッシュ及びタッチパネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PRACTICAL SURFACE TECHNOLOGY, vol. 27, no. 11, 1980, pages 561 - 565

Also Published As

Publication number Publication date
JP7044203B2 (ja) 2022-03-30
CN114450157A (zh) 2022-05-06
EP4043205A1 (en) 2022-08-17
EP4043205A4 (en) 2023-10-25
JPWO2021070591A1 (ja) 2021-10-21
US20220363852A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
JP5843123B2 (ja) 導電性パターン、電子回路及び積層体の製造方法
CN109563625B (zh) 层叠体、金属网和触控面板
Park et al. Copper circuit patterning on polymer using selective surface modification and electroless plating
WO2007116649A1 (ja) ニッケルインク
KR20150083934A (ko) 무전해 도금용 촉매, 이것을 사용한 금속 피막 및 그 제조 방법
TWI808198B (zh) 印刷配線板之製造方法
KR102035115B1 (ko) 도전성 피막 복합체 및 그 제조방법
JP6886629B2 (ja) 金属パターンを有する成形体の製造方法
JP6667119B1 (ja) プリント配線板用積層体及びそれを用いたプリント配線板
JPWO2020003878A1 (ja) プリント配線板の製造方法
JP6579295B2 (ja) 積層体、それを用いたプリント配線板、フレキシブルプリント配線板及び成形品
JP7044203B2 (ja) 積層体、成形品、プリント配線板及び電磁波シールド
Malki et al. Thin electroless Co (W, P) film growth on titanium–nitride layer modified by self-assembled monolayer
JP6432761B2 (ja) 積層体、導電性パターン、電子回路及び積層体の製造方法
JP7371778B2 (ja) セミアディティブ工法用積層体及びそれを用いたプリント配線板
WO2022097481A1 (ja) セミアディティブ工法用積層体及びそれを用いたプリント配線板
JP7288230B2 (ja) セミアディティブ工法用積層体及びそれを用いたプリント配線板
JP7201130B2 (ja) セミアディティブ工法用積層体及びそれを用いたプリント配線板
JP2014192014A (ja) 導電膜形成用組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021506342

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020875261

Country of ref document: EP

Effective date: 20220510