WO2021068909A1 - 美洲大蠊提取物、其制剂以及它们的制备方法和应用 - Google Patents

美洲大蠊提取物、其制剂以及它们的制备方法和应用 Download PDF

Info

Publication number
WO2021068909A1
WO2021068909A1 PCT/CN2020/120079 CN2020120079W WO2021068909A1 WO 2021068909 A1 WO2021068909 A1 WO 2021068909A1 CN 2020120079 W CN2020120079 W CN 2020120079W WO 2021068909 A1 WO2021068909 A1 WO 2021068909A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
add
american cockroach
extract
fresh
Prior art date
Application number
PCT/CN2020/120079
Other languages
English (en)
French (fr)
Inventor
耿越飞
Original Assignee
凉山佳能达生物原料养殖有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凉山佳能达生物原料养殖有限公司 filed Critical 凉山佳能达生物原料养殖有限公司
Priority to CN202080005893.2A priority Critical patent/CN113056279B/zh
Priority to CA3156271A priority patent/CA3156271A1/en
Priority to US17/762,951 priority patent/US20220339205A1/en
Priority to EP20875308.7A priority patent/EP4043020A4/en
Priority to JP2022521672A priority patent/JP7391204B2/ja
Publication of WO2021068909A1 publication Critical patent/WO2021068909A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/63Arthropods
    • A61K35/64Insects, e.g. bees, wasps or fleas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/39Complex extraction schemes, e.g. fractionation or repeated extraction steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to the technical field of medicine, in particular to an American cockroach extract, its preparation, and their preparation method and application.
  • Periplaneta americana L. also known as "cockroach” or “cockroach”
  • cockroach has always been regarded as a pest. Although it has been killed by humans by various means, it still survives stubbornly .
  • the American cockroach has survived on the earth for more than 300 million years. With the movement of the earth's crust and the change of the climate environment, many species have become extinct, but the survival adaptability of cockroaches is getting stronger and stronger, enough to see its vitality. tenacious.
  • Periplaneta americana was included in the earliest pharmaceutical monograph "Shen Nong's Materia Medica" in China. It has a history of more than 2,000 years.
  • Stasis syndrome is severe cold and heat, broken accumulation, closed throat and pharynx, internal cold, and childlessness.”
  • "Supplements to Compendium of Materia Medica” writes: In children, chancre, no matter how chancre, is effective for the dying. Take cockroaches on the stove and roast them for food, but the patients smell the smell and don’t know that there is a stench. If you have this disease, you can cure it without fail. You only need to eat once or twice to heal, and the body will become fatter and whiter after repeated trials.
  • cockroaches have been used for medicine and food for a long time, and it has been clinically proven that American cockroaches have the functions of dispelling blood stasis, reducing accumulation, detoxification, diuresis, and reducing swelling.
  • the fresh worms of the American cockroach are very easy to rot in 2-3 days, easy to deteriorate and smell, and cannot be used.
  • the manufacturer usually adopts freeze-drying, or Heating and drying, etc., process the insects into dry insects, whether it is freezing or high-temperature drying, wastes energy, wastes manpower and material resources, wastes time, and destroys many biologically active substances, which is not conducive to the effect of subsequent preparation of products.
  • the meaning of preservation mentioned in this article can preserve the fresh worms of American cockroach for a long time and increase the biologically active substances.
  • one aspect of the present invention provides a method for preparing an extract of Periplaneta americana.
  • the method includes the following steps:
  • the concentration of ethanol used for soaking in the step 1) is 20%-95%, preferably 25%-70%, more preferably 25%-45%, most preferably 25%.
  • the soaking time in step 1) is 10-60 days, preferably 20-60 days, and more preferably 20-40 days; as an exemplary illustration, it can be 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 days.
  • the soaking temperature in step 1) is 20°C-60°C, preferably 30°C-50°C, and most preferably 40°C.
  • the amount of ethanol in step 1) is 1.5-3.5 times the weight of the fresh American cockroach (ie, 1.5-3.5 BV).
  • the concentration of ethanol in the step 2) is 50% to 80%, preferably 80%.
  • the amount of ethanol added in the step 2) is 1.5-3.5 times the weight of the fresh American cockroach (ie 1.5-3.5 BV), preferably 1.5 times.
  • step 1) 1.5 times the weight of the fresh insects has been added in ethanol
  • step 2) 1.5 times the amount of ethanol is added for the first reflux.
  • the number of reflux in step 2) is 1 to 3 times.
  • step 2) 1.5 times the weight of the fresh American cockroach (1.5 BV) of ethanol is added for the first reflux; and in the step 2), the first reflux is performed.
  • the amount of ethanol added is 3 times the weight of the fresh American cockroach (3BV).
  • the reflux time in step 2) is 1 to 2 hours.
  • the concentration in the step 3) is concentration under reduced pressure.
  • the temperature of concentration under reduced pressure in the step 3) is 60°C to 90°C.
  • the relative density of the extract in the step 3) at 60° C. is 1.04 to 1.08.
  • Another aspect of the present invention provides an extract of American cockroach prepared by the above method.
  • the content of free amino acids in the extract is 30%-55%.
  • Another aspect of the present invention provides a preparation containing the American cockroach extract, which contains the American cockroach extract prepared by the method of the present invention and auxiliary materials.
  • the auxiliary material includes a clarifying agent.
  • the clarifying agent is a combination of chitosan and gelatin; as one of the embodiments, the chitosan is a 1% chitosan solution; as one of the embodiments, the gelatin is 1% gelatin solution.
  • the ratio of chitosan to gelatin is 1:1 to 1:4, preferably 1:3 to 1:4; most preferably, 1:3.
  • the crude drug concentration in the clarification step is 1/3 to 1/11 g/ml, preferably 1/3 to 1/7 g/ml; most preferably 1/3 g/ml.
  • the concentration of crude drug refers to the mass or weight of Periplaneta americana fresh per milliliter. As an exemplary description, if the concentration of crude drug is 1/3g/ml, it means that 1/3g of fresh Periplaneta americana is prepared into 1ml liquid medicine.
  • the amount of the clarifying agent in the preparation is 0.2-1.0 ml/g crude drug; preferably 0.2-0.6 ml/g crude drug.
  • the auxiliary material further includes a sweetener and a preservative.
  • the sweetener includes but is not limited to glycerin, cyclamate, aspartame or stevioside, etc., preferably glycerin.
  • the preservative is alkyl hydroxyphenyl esters (for example, parabens), benzoic acid, sodium benzoate, sorbic acid, or potassium sorbate; preferably potassium sorbate.
  • the amount of the sweetener ranges from 5 to 20%;
  • the amount of the preservative is 0.05-0.3%.
  • the preparation is a traditional Chinese medicine mixture.
  • a method for preparing a preparation including the following:
  • the method includes: weighing the fresh worms of American cockroach, adding 1.5 times the weight of the fresh worms (1.5 BV) of 25% ethanol, sealing, and placing it at 40°C for 20 days and then taking it out, Add 80% ethanol to extract 3 times, 1 hour each time, add 1.5BV for the first time, add 3.0BV for the second and third time, filter, combine the filtrate, recover the ethanol under reduced pressure at 65°C and concentrate to a relative density of 1.04 (60 °C), add water to 3 times the weight of the fresh insects, mix well, heat and boil for 10 minutes, slowly add the clarifying agent when the temperature drops to 70°C, stir, let cool, refrigerate overnight, and filter to obtain American cockroach. Fresh insect clarified liquid; then add potassium sorbate and glycerin, mix well, add water, mix well, filter, sterilize at 115°C for 40 minutes, and get it.
  • the invention also provides an application for preparing an anti-inflammatory drug containing the American cockroach extract prepared by the method of the invention or the preparation of the invention.
  • One of the objectives of the present invention is to provide a method for preserving fresh worms of American cockroaches for a long time.
  • environmentally friendly reagents such as ethanol saves time, manpower and material resources, saves energy, and reduces production costs.
  • it can increase the biologically active substances in the medicinal materials of Periplaneta americana.
  • One of the objectives of the present invention is to provide a fresh-keeping agent for American cockroach, which uses one or more of water, ethanol, glycerin, propylene glycol, water-soluble chitosan, and seaweed polysaccharide.
  • a fresh-keeping agent for American cockroach which uses one or more of water, ethanol, glycerin, propylene glycol, water-soluble chitosan, and seaweed polysaccharide.
  • the preservation solution of American cockroach is ethanol with a concentration of 10-90%.
  • One of the objectives of the present invention is to provide a fresh-keeping method for American cockroach, which is characterized in that the American cockroach is immersed in one or more substances including ethanol, propylene glycol, glycerol, water-soluble chitosan, and seaweed polysaccharide .
  • the soaking time of American cockroach is more than 10 days.
  • the temperature for soaking the American cockroach is 20-60°C.
  • the amount of soaking ethanol is 1.5-3.5 times the weight of the fresh worm (1.5-3.5 BV).
  • the invention does not require freeze drying or drying, preserves the fresh worms of the American cockroach for a long time, and can increase the biologically active substances in the medicinal material of the American cockroach at the same time.
  • environmentally friendly reagents such as ethanol saves time, manpower and material resources, saves energy, and reduces production costs.
  • the extract of Periplaneta americana obtained by adopting the invention has better anti-inflammatory activity and higher content of amino acids.
  • Figure 1 The effect of different ethanol concentrations and soaking time on total free amino acids in Experimental Example 1.
  • Figure 4 The effect of different ethanol concentrations and soaking time on free amino acids in Experimental Example 1.
  • Figure 5 The effect of different ethanol concentrations and soaking time on the total water-soluble solids in Experimental Example 1.
  • Figure 6 The effect of different ethanol concentrations and soaking time on free amino acids in Experimental Example 1.
  • Figure 7 The change trend of free amino acid yield in the normal temperature group and 40°C group in experimental example 1 over time.
  • Figure 8 The change trend of water-soluble total solids in the normal temperature group and the 40°C group in Experimental Example 1 over time.
  • Fig. 11 is a graph showing the change trend of water-soluble total solids in experimental example 1 in experimental example 1.
  • Fig. 12 Comparison diagram of the total amount of various substances in the three extracts in Experimental Example 1.
  • Fig. 13 is a pie chart of the amount of each substance in the total solids in the MLP, MLG, and MLX samples in Experimental Example 1.
  • L represents the low-dose group (the original drug solution is 160 times diluted)
  • M represents the middle-dose group (the original drug solution) 120-fold dilution)
  • H represents the high-dose group (the original drug solution is 80-fold dilution); because each drug is measured at the same time, the same index and each drug share the same blank, model, and positive drug group data (compared with the control group, #P ⁇ 0.01; Compared with the model group, *P ⁇ 0.05, **P ⁇ 0.01).
  • Fresh worms of American cockroach add 1.5BV of 25% ethanol, soak at 40°C ⁇ 2°C for 20-40 days, add 80% ethanol and reflux three times for 1 hour each time, add 1.5 times, 3.0 times, and 3.0 times respectively , Filter, recover ethanol at 60 ⁇ 90°C and concentrate to dilute extract with relative density of 1.04 ⁇ 1.08 (measured at 60°C).
  • 1% gelatin solution Weigh 3g of gelatin, add 150ml of purified water and soak for 30min, then add 150ml of hot water (>95°C), stir while adding, stir until all the gelatin is dissolved, let it cool, and get ready.
  • 1% chitosan solution Weigh 1g of chitosan, add 100ml of purified water, stir evenly, slowly add 1ml of glacial acetic acid, stir while adding, and stir until all the chitosan is dissolved.
  • Clarifying agent solution mix 1% gelatin solution and 1% chitosan solution in a ratio of 3:1 to obtain.
  • the immersion time is used as the abscissa and the amount of free amino acid is the ordinate to plot the change trend of free amino acids in fresh worms of Periplaneta americana immersed in 20% and 25% ethanol over time, as shown in Figure 6.
  • the soaking temperature has a greater impact on the yield of total free amino acids and total water-soluble solids.
  • the total free amino acids and total water-soluble solids of the 40°C group are the highest at all time points after soaking, which is combined with the production cost. Depending on the actual situation, it is more appropriate to control the immersion temperature at 40°C ( ⁇ 2°C).
  • the yields of total free amino acids and total water-soluble solids showed a rapid increase trend in the first 20 days, and then tended to be flat, and there was no obvious change after 40 days. Therefore, the soaking time of fresh insects was determined to be 20-40 days.
  • Nucleoside bases include uracil, hypoxanthine, xanthine, and inosine.
  • Peptides total amino acids-free amino acids.
  • the test results showed that, except for the nucleoside bases in the fresh worm soaking group of American cockroach, the rest of the substances were significantly higher than the fresh worm group and the dry worm group, and the total water-soluble solids were 4 times that of the fresh worm group.
  • the amount of free amino acids is 10 times that of the fresh insect group and 5 times that of the dry insect group; the amount of total amino acids is 7 times that of the fresh insect group and 3 times or more of the dry insect group; the amount of peptides It is 3 times of the fresh insect group and more than 2 times of the dry insect group.
  • the extracts of the fresh insect group, the dry insect group and the fresh insect soaking group all contain free amino acids, peptides and nucleobases, the ratio and content of each component are significantly different, indicating that there are three types of MLX, MLG and MLP The material basis of the extracts is significantly different.
  • the extracts made from fresh worms of American cockroaches soaked in 25% ethanol for 20-40 days according to the same process have significantly higher content of water-soluble total solids, total free amino acids, total amino acids and peptide components than those of American cockroaches.
  • the extract made from fresh insects/dried insects, and the extracts after soaking the fresh insects have the strongest regulatory effect on LPS-induced inflammation of mouse macrophages (RAW264.7).
  • the administration group contained 500 ⁇ L of medium with different concentrations of medicinal solution (the content of the solvent in each group was kept the same).
  • test steps for each indicator are strictly performed in accordance with the instructions of each kit, and the absorbance value at each specific wavelength is finally detected by a microplate reader, and the content of each indicator of the sample is calculated according to the standard curve prepared by the same method. If the absorbance value is lower than the absorbance value of the sample at the lower limit of the standard curve, it is counted as lower than the relevant value, and the relevant statistics are calculated with 0 mean and 0 variance.
  • mice weighing 18-22 g were randomly divided into 5 groups according to their body weights. They were MLX, MLG and MLP test groups. The positive control drug dexamethasone was 0.2 mg/kg. The model control group was given an equal volume of NS. Each group was dosed once a day, 7 times in total. One hour after the last dose, each mouse was injected with a 0.5% Evans blue physiological saline solution 0.1ml/10g ⁇ bw into the tail vein, and then dripped on the skin of the abdomen that had been depilated 24 hours in advance. Xylene 30 ⁇ l/mouse, 20 minutes later, the mice were sacrificed by removing the cervical vertebrae.
  • mice The results showed that the skin capillary permeability of mice was significantly increased after the xylene model, and the degree of blue staining of the skin increased.
  • the administration of dexamethasone can inhibit the increase of skin capillary permeability caused by xylene and the degree of blue staining of the skin. Compared with the model group, it was significantly reduced (P ⁇ 0.01), and the inhibition rate exceeded 80%.
  • the degree of blue staining of the skin in each extract group was also significantly reduced compared with the model group (P ⁇ 0.05 or P ⁇ 0.01).
  • the reduction in the MLP group was the most obvious, and compared with the MLX group and MLG group. There are significant differences between the groups.
  • mice Take 50 mice weighing 18-22 g, 10 mice in each group, half male and half female. Fix the mice, sterilize the chest with iodine, 75% alcohol cotton ball is deiodized, make a small cut in the chest, use ophthalmic forceps to implant 20mg autoclaved cotton ball from the incision under the skin of the armpit, and then suture the skin . From the day of surgery, the administration group was given the three extracts of MLX, MLG and MLP (2ml/kg) and the positive control drug dexamethasone (0.2mg/kg). The model control group was given the same volume NS. The above groups were administered for 7 consecutive days.
  • the body weight was weighed before the end of the test, then the cervical vertebrae were removed and sacrificed.
  • the implanted cotton ball and the surrounding connective tissue were taken out, the fat tissue was removed, and the wet weight was placed in an oven for 60 Dry at °C for 24 hours and weigh on a precision balance.
  • the weight of the granuloma is obtained by subtracting the original weight of the cotton ball from the weighed weight, and the comparison and statistical analysis between groups are performed. The results are shown in Table 16.
  • the test results show that the concentration of ethanol has little effect on the total free amino acid extraction and the extraction rate.
  • the extraction rate of the 80% ethanol group is slightly lower, but the clarity is the highest, the filtration rate is the fastest, and it is convenient for production and operation; at the same time, 80% There are few macromolecular proteins in the ethanol extract, which is convenient for the subsequent purification process operation, so 80% ethanol is selected as the extraction solvent.
  • the fresh worms of American cockroaches are soft after being soaked in ethanol. If they are crushed, they will become homogenous, which makes it difficult to filter the extract; and the fresh worms of American cockroaches are 2.5 ⁇ 3.2cm long and 1 ⁇ 1.4cm wide, each is only 1.3 About g, the size is small, and the direct feeding of the whole insect will not affect the extraction effect.
  • the factor level table choose the orthogonal table of L 9 (3 4 ) for the experiment.
  • the table can be arranged with up to four three-level factors. There are only three factors in this experiment, which are randomly arranged on the table, and the remaining fourth column is empty. .
  • the factors and levels of the experimental items are entered into the table, the test results are filled in Table 19, the total free amino acid extraction and the amount of cream are used as evaluation indicators, and the test results are analyzed by variance.
  • results of the range analysis show that the extraction time and the ratio of material to liquid have almost no effect on the amount of free amino acids extracted and the amount of cream.
  • the number of extractions has a greater impact on the amount of free amino acids extracted and the amount of cream.
  • results of variance analysis also show that the extraction The F value of the number of times is large, and it has a significant effect on the amount of paste. The two factors of extraction time and material-to-liquid ratio have no significant effect on the extraction results.
  • a 3 B 1 C 1 which means adding 80% ethanol for reflux extraction three times, adding 1.5BV for the first time (to make up 3BV), and secondly, Add 3BV three times, and extract 1 hour each time.
  • test results showed that the fresh worms of American cockroaches were extracted three times with 80% ethanol after soaking, each time for 1 hour, and 3 times the volume of ethanol was added each time, the total free amino acid yield was 6.41%, and the cream extraction rate was 16.31%.
  • 1% gelatin solution Weigh 10g of gelatin, add 500ml purified water to soak for 30min, then add 500ml of hot water (>95°C), stir while adding, stir until all the gelatin is dissolved, let it cool, and get ready.
  • 1% chitosan solution Weigh 10g of chitosan, add 1000ml 1% glacial acetic acid solution, stir while adding, and let it stand until it is completely dissolved.
  • Chitosan Gelatin (1:3): Mix 1% chitosan solution and 1% gelatin solution in a ratio of 1:3 to get it.
  • chitosan/gelatin (1:3) has the best clarification effect, with the shortest filtration time, clarification of the filtrate and permeable filtrate.
  • the light rate is the highest, so chitosan: gelatin is selected as the clarifying agent for clarification process research.
  • suction flask, Buchner funnel and filter materials used for each set of sample filtration are of the same model and specifications.
  • the ratio of chitosan/gelatin has no significant effect on the yield of total solids and total free amino acids; when the ratio of chitosan/gelatin is 1:3, 1:4, the filtration time of the clarified liquid The shortest and the fastest filtration rate; when the ratio of chitosan/gelatin is 1:3, the light transmittance of the clear liquid is the highest, so the ratio of chitosan/gelatin is 1:3.
  • suction flask, Buchner funnel and filter materials used for each set of sample filtration are of the same model and specifications.
  • the concentration of crude drug between 1/3 and 1/7g/ml has no significant effect on the yield of total free amino acids and total solids; when the concentration of crude drug is less than 1/3g/ml, the clarification effect Both are better, the filtration rate is faster, and the light transmittance of the filtrate is above 80%, taking into account production efficiency and cost, the concentration of crude drug is selected to be 1/3g/ml.
  • suction flask, Buchner funnel and filter materials used for each set of sample filtration are of the same model and specifications.
  • the test results show that the filtrate is clarified when the clarifying agent dosage is 0.2 ⁇ 1.0ml/g crude drug, the filtration time is short, and the light transmittance is above 70%; when the dosage is 0.2 ⁇ 0.6ml/g crude drug, the total solids of the clarified liquid And the yield of total free amino acid is relatively high, so the dosage of clarifying agent is 0.2 ⁇ 0.6ml/g crude drug.
  • suction flask, Buchner funnel and filter materials used for each set of sample filtration are of the same model and specifications.
  • the test results show that the clarification temperature has no significant effect on the yield of water-soluble total solids and total free amino acids; clarification at a temperature of 60°C ⁇ 70°C, the sample filtration time is the shortest, and the light transmittance of the filtrate exceeds 80%, so The clarification temperature is 60°C ⁇ 70°C.
  • test results show that whether the heat treatment and refrigeration process has no significant effect on the yield of water-soluble total solids and total free amino acids; but the samples that use the heat treatment refrigeration process are easier to filter, so choose to increase the boiling step, and compare the boiling order to the filtration Impact.
  • the test results show that the boiling sequence has no significant effect on the yields of total water-soluble solids and total free amino acids; and the clarification of the filtrate is not much different.
  • the samples that are first boiled and then clarified have a faster filtration rate. Consider the actual production. Then the temperature is lowered to 60 ⁇ 70°C to clarify, and then the temperature is lowered and the refrigeration operation is more smooth, so choose to boil first and then lower the temperature to 60 ⁇ 70°C and then clarify.
  • test results show that the refrigeration time and temperature have no effect on the filtration time, clarity, total solids and total free amino acid yield of the samples; the light transmittance of the refrigerated samples in the 1°C group is slightly higher than that of the 8°C group, according to the actual production In case, choose the clear liquid to stand at 1 ⁇ 8°C for 16h ⁇ 48h.
  • Clarification effect clarification (***), more clarification (**), turbidity (*)
  • the mixture usually adopts the moist heat sterilization method.
  • the moist heat sterilization conditions under the 2015 edition of "Chinese Pharmacopoeia" 1421 sterilization method usually adopt the procedure of 121°C ⁇ 15min, 121°C ⁇ 30min or 116°C ⁇ 40min, combined with the actual production, choose this preparation
  • the sterilization conditions are 116°C ⁇ 2°C ⁇ 40min.
  • the differences in properties, pH value, relative density and total free amino acid content of the samples before and after sterilization were compared through experiments.
  • test results show that the sterilization process has no significant difference in the properties, pH value, relative density and total free amino acids of the samples before and after.
  • the left cheek pouch (irradiation area 1.82cm 2 ) of golden hamster was irradiated with a single 40Gy X-ray.
  • animal oral mucositis score auxiliary reference indicator: animal weight
  • the score was selected as 1. ⁇ 2 points 40 animals were randomly divided into 4 groups (1 model control group and 3 drug treatment groups), after which the corresponding drugs were given by intraperitoneal injection or infiltration of the affected area combined with gavage for 14 days (D12 ⁇ D25, Bid), the dosage is shown in Table 33.
  • modified sonis score modified sonis score
  • the therapeutic effect of the tested drugs on hamster radiation oral mucositis was evaluated. The results are shown in Table 34.
  • Infiltration combined with gavage of the affected area is to infiltrate 10% of the total volume of a given dose of an animal into the cheek pouch on the irradiated side of the animal, and the remaining 90% will be given by gavage; the day of modeling is defined as day 0 (day0, D0).
  • the 12th to 18th day after the model is the ulcer onset of golden hamster oral mucositis, the animal oral mucositis score rises rapidly, D18 reaches the peak (4 points); the 20th to 26th days after the model is made (D20 ⁇ D26) , Is the recovery period of the ulcer, the oral mucositis scores of each group of animals continued to decline steadily.
  • the oral mucositis scores of the model control group (Model) animals After drug intervention, from 2 days of administration to the end of the experiment (D14 ⁇ D26), the oral mucositis scores of the model control group (Model) animals have been at the highest state, and the oral mucositis scores of the Ordekin treatment group, the high-dose group and the low-dose group The mucositis score has been lower than the model control group, and the low-dose group has the lowest score during the entire recovery period and the best recovery.
  • the oral mucositis scores of the low and high dose groups were significantly lower than those of the model group and the model control group (P ⁇ 0.05). The test results show that: low and high dose samples can significantly promote the recovery of hamster oral mucositis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Insects & Arthropods (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明涉及医药技术领域,具体涉及一种美洲大蠊提取物、其制剂以及它们的制备方法和应用。本发明所述美洲大蠊提取物的制备方法包括如下步骤:1)采用新鲜美洲大蠊用乙醇浸泡2)再加入乙醇回流提取,然后过滤、合并滤液;3)滤液浓缩为浸膏,即得。本发明方法使用乙醇等环保试剂、增加了美洲大蠊提取物的生物活性物质含量,节约了时间,人力物力,节约能源,降低生产成本;同时本发明获得美洲大蠊提取物具有更好的抗炎活性,具有更高含量的氨基酸。

Description

美洲大蠊提取物、其制剂以及它们的制备方法和应用 技术领域
本发明涉及医药技术领域,具体涉及一种美洲大蠊提取物、其制剂以及它们的制备方法和应用。
背景技术
蜚蠊科大蠊属昆虫美洲大蠊Periplaneta americana L.,也称“蜚蠊”,俗称“蟑螂”,一直被人们视为害虫,尽管被人类用各种手段进行灭杀,但仍顽强地生存至今。经考证美洲大蠊在地球上已经生存了3亿多年,随着地壳的运动变迁,气候环境的变化,许多物种已经灭绝了,但是蟑螂的生存适应性越来越强,足以见其生命力之顽强。作为药物应用,美洲大蠊被收载于我国最早的药学专著《神农本草经》中,至今已有2000多年的历史了,该书将其列为中品,谓“味咸、寒,治血瘀症坚寒热、破积聚、喉咽闭、内寒、无子”。《本草纲目拾遗》写到:小儿疳疾,不论何等疳,垂死者皆效,取灶上蟑螂,焙干予之食,患者但闻其香,不知有腥臭之气。有患此症,治之无不效,只须食一二次即愈,愈后体更肥白,且屡试屡验。由此可见,蜚蠊作药用和食用已有较长历史,临床证明美洲大蠊具有散瘀、消积、解毒、利水、消肿等功能。
由于近年来临床用量的增多,人工养殖美洲大蠊在我国南北方各地逐渐兴起,而且有了GAP标准饲养厂房,可生产出符合药品和食品标准的美洲大蠊药材、药品和绿色有机食品。
在实际生产和保存美洲大蠊的过程中,美洲大蠊的鲜虫在2-3天很容易腐烂,容易变质发臭,不能使用,为了保存美洲大蠊,生产厂家通常是采用冷冻干燥,或者加热烘干等方式,把虫体处理成干虫,无论是冷冻还是高温烘干都会浪费能源,浪费人力物力,浪费时间,并且会破坏很多 生物活性物质,不利于后续制备产品的效果。
有必要进一步研究改进美洲大蠊的提取制备方法,以更有效的利用美洲大蠊,获得更好的美洲大蠊提取物,而美洲大蠊鲜虫直接提取无疑是一种更好的方法,而目前还尚未发现对美洲大蠊鲜虫的如何更加有效提取的研究的相关报道。
发明内容
本发明人在大量实验中偶然获得一种很好的美洲大蠊鲜虫的保鲜方法,解决了现有技术中的难题。本文中所述的保鲜含义,可以长期保存美洲大蠊鲜虫并能提高生物活性物质。
因此,本发明一方面提供一种美洲大蠊提取物的制备方法,所述方法包括如下步骤:
1)取新鲜美洲大蠊用乙醇浸泡;
2)再加入乙醇回流提取,然后过滤、合并滤液;
3)滤液浓缩为浸膏即得。
本发明方法中,作为实施方案之一,所述步骤1)中浸泡所用的乙醇浓度为20%~95%,优选25%~70%,再优选25%~45%,最佳为25%。
本发明方法中,作为实施方案之一,所述步骤1)中浸泡的时间为10~60天,优选20~60天,进一步优选20~40天;作为示例性的说明,可以为20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40天。
本发明方法中,作为实施方案之一,所述步骤1)中浸泡的温度为20℃~60℃,优选30℃~50℃,最佳为40℃。
本发明方法中,作为实施方案之一,所述步骤1)中乙醇的用量为新鲜美洲大蠊重量的1.5~3.5倍(即1.5~3.5BV)。
本发明方法中,作为实施方案之一,所述步骤2)中乙醇的浓度为50%~80%,优选80%。
本发明方法中,作为实施方案之一,所述步骤2)中再加入乙醇的用量为新鲜美洲大蠊重量的1.5~3.5倍的量(即1.5~3.5BV),优选1.5倍。
作为示例性说明,步骤1)浸泡时已经加入了1.5倍鲜虫重量的乙醇,步骤2)中再加入1.5倍量的乙醇进行第一次回流。
本发明方法中,作为实施方案之一,所述步骤2)中回流的次数为1~3次。
本发明方法中,作为实施方案之一,所述步骤2)中再加入新鲜美洲大蠊重量的1.5倍量(1.5BV)的乙醇进行第一次回流;而所述步骤2)中在进行第2或3次回流时,加入乙醇的量为新鲜美洲大蠊重量的3倍(3BV)。
本发明方法中,作为实施方案之一,所述步骤2)中回流的时间为1~2小时。
本发明方法中,作为实施方案之一,所述步骤3)中浓缩为减压浓缩。
本发明方法中,作为实施方案之一,所述步骤3)中减压浓缩的温度60℃~90℃。
本发明方法中,作为实施方案之一,所述步骤3)中浸膏在60℃下的相对密度为1.04~1.08。
本发明另一方面提供一种上述方法所制备的美洲大蠊提取物。作为实施方案之一,所述提取物中游离氨基酸的含量为30%~55%。
本发明另一方面提供一种含有美洲大蠊提取物的制剂,所述制剂含有本发明所述方法制备的美洲大蠊提取物和辅料。本发明中,作为实施方案之一,所述辅料包括澄清剂。
本发明中,作为实施方案之一,所述澄清剂为壳聚糖和明胶的组合物;作为实施方案之一,壳聚糖为1%的壳聚糖溶液;作为实施方案之一,明胶为1%的明胶溶液。
本发明中,作为实施方案之一,所述壳聚糖和明胶的比例为1:1~1:4,优选1:3~1:4;最佳为1:3。
本发明中,作为实施方案之一,所述澄清步骤中生药浓度为1/3~1/11g/ml,优选1/3~1/7g/ml;最佳为1/3g/ml。
生药浓度是指每毫升中美洲大蠊鲜虫的质量或重量,作为是示例性的说明,如生药浓度为1/3g/ml即表示1/3g美洲大蠊鲜虫制备成1ml药液。
本发明中,作为实施方案之一,所述制剂中澄清剂的量为0.2~1.0ml/g生药;优选0.2~0.6ml/g生药。
本发明中,作为实施方案之一,所述辅料还包括甜味剂和防腐剂。
本发明中,作为实施方案之一,所述甜味剂包括但不限于甘油、甜蜜素、阿斯巴甜或甜菊苷等,优选甘油。
本发明中,作为实施方案之一,所述防腐剂为羟苯烷基酯类(例如尼泊金类)、苯甲酸、苯甲酸钠、山梨酸、或山梨酸钾;优选山梨酸钾。
本发明中,作为实施方案之一,所述甜味剂的用量范围为5~20%;
本发明中,作为实施方案之一,所述防腐剂的用量为0.05~0.3%。
本发明中,作为实施方案之一,所述制剂为中药合剂。
本发明更进一步方面还提供一种制备制剂的方法,所述方法包括如下:
取美洲大蠊提取物加入水稀释、然后加热至100℃降温至70℃加入澄清剂并搅拌,冷藏放置,滤过,滤液再加入甘油和山梨酸钾、最后加入余量的水,混匀,微孔滤膜过滤、灭菌即得。
本发明方法中,作为实施方案之一,所述方法包括:称取美洲大蠊鲜虫,加入鲜虫重量1.5倍量(1.5BV)的25%乙醇,密封,于40℃放置20天后取出,加入80%乙醇提取3次,每次1小时,第一次加入1.5BV,第二、三次加入3.0BV,滤过,合并滤液,于65℃减压回收乙醇并浓缩至相对密度为1.04(60℃测),加水至鲜虫重量的3倍量,混匀,加热煮沸10min,待温度降至70℃时缓缓加入澄清剂,搅拌,放冷,冷藏过夜,滤过,即得美洲大蠊鲜虫澄清液;然后加入山梨酸钾和甘油,混匀,加水,混匀,滤过,于115℃灭菌40min,即得。
本发明还提供一种含有本发明所述方法制备的美洲大蠊提取物或本发明所述的制剂制备抗炎药物的应用。
本发明的目的之一是提供一种可以长时间保存美洲大蠊鲜虫的方法,使用乙醇等环保试剂节约了时间,人力物力,节约能源,降低生产成本。同时可以增加美洲大蠊药材中的生物活性物质。
本发明的目的之一是提供一种美洲大蠊鲜虫的保鲜剂,采用了水、乙醇、甘油、丙二醇、水溶性壳聚糖、海藻多糖中的一种或者多种。大量 实验中发现保鲜剂处理过的鲜虫比未经处理的鲜虫或者干虫具有更多生物活性物质。
进一步,美洲大蠊的保鲜液是浓度10-90%的乙醇。
本发明的目的之一是提供一种美洲大蠊的保鲜方法,其特征在于美洲大蠊浸泡于包含乙醇、丙二醇、丙三醇、水溶性壳聚糖、海藻多糖中的一种或者多种物质。
进一步,其特征在于美洲大蠊浸泡在浓度10-90%的乙醇。
进一步,采用25-60%的乙醇浸泡美洲大蠊。
进一步,美洲大蠊浸泡的时间在10天以上。
进一步,采用浸泡美洲大蠊的温度为20-60℃。
进一步美洲大蠊的保鲜方法,浸泡乙醇用量为1.5-3.5倍鲜虫重量(1.5~3.5BV)。
该发明的有益效果:本发明不用冷冻干燥或者烘干,长时间保存美洲大蠊鲜虫,同时可以增加美洲大蠊药材中的生物活性物质。使用乙醇等环保试剂节约了时间,人力物力,节约能源,降低生产成本。采用本发明获得美洲大蠊提取物具有更好的抗炎活性,具有更高含量的氨基酸。
附图说明
图1:实验例1中不同乙醇浓度及浸泡时间对总游离氨基酸的影响。
图2:实验例1中不同乙醇浓度及浸泡时间对水溶性总固体收率的影响。
图3:实验例1中不同乙醇浓度及浸泡时间对总固体的影响。
图4:实验例1中不同乙醇浓度及浸泡时间对游离氨基酸的影响。
图5:实验例1中不同乙醇浓度及浸泡时间对水溶性总固体的影响。
图6:实验例1中不同乙醇浓度及浸泡时间对游离氨基酸的影响。
图7:实验例1中常温组、40℃组游离氨基酸得量随时间的变化趋势。
图8:实验例1中常温组、40℃组中水溶性总固体随时间的变化趋势。
图9:实验例1中不同乙醇浸泡倍数考察结果。
图10实验例1中总游离氨基酸的变化趋势图。
图11实验例1中实验例1水溶性总固体变化趋势图。
图12实验例1中三种提取物中各类物质总量对比图。
图13实验例1中MLP、MLG、MLX样品中各物质占总固体的量饼图。
图14实验例1中MLG、MLP、MLX对LPS致炎细胞的TNFa、IL-6和NO;的分泌量影响(
Figure PCTCN2020120079-appb-000001
n=3),其中con.代表空白组,model代表模型组,andro.代表阳性药物穿心莲内酯组,L代表低剂量组(原药液160倍稀释),M代表中剂量组(原药液120倍稀释),H代表高剂量组(原药液80倍稀释);因各药同时测定,故同一指标各药共用同一空白、模型、阳性药物组数据(与对照组相比,#P<0.01;与模型组相比,*P<0.05,**P<0.01)。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
美洲大蠊提取物的制备
实施例1
美洲大蠊鲜虫加入1.5BV的25%乙醇,于40℃±2℃浸泡20~40天,加入80%乙醇回流三次,每次1小时,分别加入1.5倍量、3.0倍量、3.0倍量,滤过,于60~90℃回收乙醇并浓缩至相对密度为1.04~1.08(60℃测)的稀浸膏。
实施例2
称取美洲大蠊鲜虫,1000g/份,置玻瓶中,加入25%乙醇1500ml,密封,于40℃放置20天后取出,加入80%乙醇提取3次,每次1小时,第一次加入1.5BV(1.5L),第二、三次加入3.0BV(3.0L),滤过,合并滤液,于65℃减压回收乙醇并浓缩至相对密度为1.06(60℃),即得。
实施例3
称1000g取美洲大蠊鲜虫,置玻瓶中,加入50%乙醇4500ml,密封,于40℃放置60天后取出,加入50%乙醇5000ml回流提取2小时,滤过,于90℃减压回收乙醇并浓缩至相对密度为1.08(60℃),即得。
实施例4
称取1000g美洲大蠊鲜虫,置玻瓶中,加入20%乙醇1500ml,密封,于20℃放置10天后取出,加入80%乙醇提取3次,每次1小时,第一次加入1.5BV(1.5L),第二、三次加入3.0BV(3.0L),滤过,合并滤液,于60℃减压回收乙醇并浓缩至相对密度为1.04(60℃),即得。
实施例5
称取1000g美洲大蠊鲜虫,置玻瓶中,加入90%乙醇2000ml,密封,于50℃放置60天后取出,加入70%乙醇提取3次,每次1.5小时,第一次加入2BV(2L),第二、三次加入4.0BV(4.0L),滤过,合并滤液,于70℃减压回收乙醇并浓缩至相对密度为1.07(60℃),即得。
实施例6
称取2000g美洲大蠊鲜虫,置玻瓶中,加入30%乙醇7000ml,密封,于30℃放置40天后取出,加入60%乙醇提取3次,每次1小时,第一次加入0.5BV(1.0L),第二、三次加入4.0BV(8.0L),滤过,合并滤液,于60℃减压回收乙醇并浓缩至相对密度为1.05(60℃),即得。
实施例7
称取1500g美洲大蠊鲜虫,置玻瓶中,加入25%乙醇3000ml,密封,于35℃放置45天后取出,加入80%乙醇提取3次,每次1.5小时,第一次加入2.0BV(3.0L),第二、三次加入4.0BV(6.0L),滤过,合并滤液,于80℃减压回收乙醇并浓缩至相对密度为1.07(60℃),即得。
美洲大蠊提取物合剂的制备
澄清剂的配制
1%明胶溶液:称取明胶3g,加入150ml纯化水浸泡30min,再加入150ml的热水(>95℃),边加边搅拌,搅拌至明胶全部溶解,放冷,即得。
1%壳聚糖溶液:称取壳聚糖1g,加入100ml纯化水,搅拌均匀,缓缓加入1ml冰醋酸,边加边搅拌,搅拌至壳聚糖全部溶解,即可。
澄清剂溶液:将1%的明胶溶液与1%的壳聚糖溶液按3:1的比例混合均匀,即得。
实施例8
取200g美洲大蠊鲜虫加入25%乙醇300ml,于40℃(±2℃)放置20~40天,加入80%乙醇回流提取三次,第一次加入300ml,第二、三次各加入600ml,每次提取1小时,滤过,于50~100℃回收乙醇并浓缩至相对密度为1.04~1.08(60℃测)的稀浸膏,加水至600ml,煮沸10~30分钟,冷却至60~70℃,加入40ml~120ml 1%的明胶溶液与1%的壳聚糖溶液按3:1的比例混合均匀的澄清剂,混匀,1~8℃静置16~48小时,滤过,加入150g甘油、1g山梨酸钾,加水至1000ml,混匀,滤过,灌封,116℃(±2℃)灭菌40分钟,即得。
实施例9
称取美洲大蠊鲜虫,1000g/份,置玻瓶中,加入25%乙醇1500ml,密封,于40℃放置20天后取出,加入80%乙醇提取3次,每次1小时,第一次加入1.5BV(1.5L),第二、三次加入3.0BV(3.0L),滤过,合并滤液,于65℃减压回收乙醇并浓缩至相对密度为1.06(60℃),放冷,加水至3000ml,混匀,加热煮沸10min,待温度降至70℃时缓缓加入600ml澄清剂,搅拌10min,放冷,冷藏过夜,滤过,即得美洲大蠊鲜虫澄清液。量取澄清液适量(相当于200g鲜虫),分别加入1.0g山梨酸钾、150g甘油,混匀,加水至1000ml,混匀,滤过,灌装成10ml/支,于115℃灭菌40min。
实验例1美洲大蠊鲜虫浸泡工艺条件考察
1)乙醇浓度及浸泡时间的考察
鲜虫20%、50%、70%、95%不同浓度乙醇浸泡考察
取美洲大蠊鲜虫100g若干份,分别加入150ml 20%、50%、70%、95%乙醇。常温放置,分别于0天(0月)、12天(0.5月)、31天(1.0月)、47天(1.5月)、61天(2.0月)加入4BV、3BV、3BV的70%乙醇回流提取,滤过,滤液于65℃减压回收乙醇,加水溶出至500ml,再采用高速冷冻离心机(10℃12000r/min)离心30min,取上清液,即得样品。测定样品中氨基酸含量及水溶性总固体收率。
(参照2015年版药典下的烘干法测定水溶性总固体收率,总氨基酸含量测定采用的是样品衍生化后HPLC法。)实验结果如下表1和表2。
表1样品中氨基酸含量
Figure PCTCN2020120079-appb-000002
表2样品中水溶性总固体的收率
Figure PCTCN2020120079-appb-000003
从图1和图2可以看出,美洲大蠊鲜虫在不同浓度乙醇浸泡保存下,随着浸泡时间的增长总氨基酸含量及水溶性总固体的收率均有不同程度的增长。随着乙醇浓度的增加增长速度变缓。其中20%乙醇浸泡的增长速度最快且、增长量最大。95%乙醇浸泡的增长速度最慢、增长量最小。
②25%、35%、45%乙醇浸泡考察
取美洲大蠊鲜虫,100g/份,置玻瓶中,分别加入25%、35%及45%乙醇各150ml,密封,于40℃放置。每5天取出部分25%、35%及45%乙醇浸泡的样品,分别加入70%乙醇回流提取三次,第一次加入250ml,第二、三次各加入300ml,每次提取1小时,滤过,合并滤液,于65℃减压回收乙醇至无醇味,放冷,加水至500ml,混匀,离心(12000转/分钟)30分钟,上清液滤过,取滤液测定游离氨基酸及水溶性总固体的含量。结果见表3、表4。
表3不同乙醇浓度及浸泡时间对水溶性总固体的影响(n=2)
Figure PCTCN2020120079-appb-000004
根据表3试验结果,以浸泡时间为横坐标,水溶性总固体量为纵坐标绘制25%、35%、45%乙醇浸泡美洲大蠊鲜虫中水溶性总固体随时间变化的趋势图,结果见图3。
表4不同乙醇浓度及浸泡时间对游离氨基酸的影响(n=2)
Figure PCTCN2020120079-appb-000005
根据表4试验结果,以浸泡时间为横坐标,游离氨基酸量为纵坐标绘制25%、35%及45%乙醇浸泡美洲大蠊鲜虫中游离氨基酸随时间的变化趋势,详见图4。
结果表明,水溶性总固体及游离氨基酸的量随着乙醇浓度的降低呈明显的上升趋势,且在每一个时间节点均是25%乙醇浸泡组最高,故选择25%乙醇浸泡美洲大蠊鲜虫。
25%乙醇浸泡组结果表明,水溶性总固体及游离氨基酸的量在前20天的增长幅度明显大于后期,20~38天增长趋势较为平缓,故浸泡时间初步确定为20天~38天。
从上述结果表明,乙醇浸泡浓度越低水溶性总固体及游离氨基酸得率越高,考虑进行低于25%乙醇浸泡的对比试验,兼顾浸泡过程中的防 腐问题,故再增加一组20%乙醇浸泡美洲大蠊鲜虫进行试验。
③20%乙醇浸泡考察。
取美洲大蠊鲜虫,100g/份,置玻瓶中,分别加入20%乙醇各150ml,密封,于40℃放置25天。每5天取出部分浸泡的样品,分别加入70%乙醇回流提取三次,第一次加入250ml,第二、三次各加入300ml,每次提取1小时,滤过,合并滤液,于65℃减压回收乙醇至无醇味,放冷,加水至500ml,混匀,离心(12000转/分钟)30分钟,上清液滤过,取滤液测定游离氨基酸及水溶性总固体的含量。结果见表5、6。
表5 20%乙醇浸泡对游离氨基酸及水溶性总固体的影响(n=2)
Figure PCTCN2020120079-appb-000006
表6 25%乙醇浸泡对游离氨基酸及水溶性总固体的影响(n=2)
Figure PCTCN2020120079-appb-000007
注:本表数据来源于表3、表4
根据表5、表6试验结果,以浸泡时间为横坐标,水溶性总固体量为纵坐标绘制20%及25%乙醇浸泡美洲大蠊鲜虫中水溶性总固体随时间的变化趋势,详见图5。
根据表5、表6试验结果,以浸泡时间为横坐标,游离氨基酸量为纵坐标绘制20%及25%乙醇浸泡美洲大蠊鲜虫中游离氨基酸随时间的变化趋势,详见图6。
上述试验结果表明,两组的水溶性总固体及游离氨基酸的得率增长趋势很接近,25%乙醇组略高;但20%乙醇组在美洲大蠊鲜虫浸泡20 天以后时发现样品有发臭、变质的现象,故初步选择25%乙醇浸泡美洲大蠊鲜虫20~38天。
2)浸泡温度的考察
取美洲大蠊鲜虫,100g/份,置玻瓶中,分别加入25%乙醇各150ml,密封,分别于常温及40℃放置。每5天取出浸泡的样品,分别加入70%乙醇回流提取三次,第一次加入250ml,第二、三次各加入300ml,每次提取1小时,滤过,合并滤液,于65℃减压回收乙醇至无醇味,放冷,加水至500ml,混匀,离心(12000转/分钟)30分钟,上清液滤过,取滤液检测游离氨基酸及水溶性总固体的含量。结果见表7、8。
表7 40℃浸泡鲜虫对游离氨基酸及水溶性总固体得量的影响(n=2)
Figure PCTCN2020120079-appb-000008
注:本表数据来源于表3、表4
表8常温浸泡鲜虫对游离氨基酸及水溶性总固体得量的影响(n=2)
Figure PCTCN2020120079-appb-000009
根据表7、8结果,以浸泡时间为横坐标,游离氨基酸得量为纵坐标绘制游离氨基酸得量随时间的变化趋势,详见图7。
根据表7、8结果,以浸泡时间为横坐标,水溶性总固体量为纵坐标绘制水溶性总固体得量随时间的变化趋势,详见图8。
从上述试验结果表明,常温组中水溶性总固体、游离氨基酸得量在浸泡后各个时间点均明显低于40℃组,故浸泡温度选择40℃。
3)乙醇用量的考察
前期试验发现,1.5BV的乙醇刚好能浸泡美洲大蠊鲜虫,故设定加入1.5BV、2.5BV及3.5BV 25%乙醇进行对比试验。
取美洲大蠊鲜虫,100g/份,置玻瓶中,分别加入25%乙醇各150ml、250ml、350ml,密封,于40℃放置10天,取出,分别加入70%乙醇回流提取三次,第一次加入250ml,第二、三次各加入300ml,每次提取1小时,合并提取液,放冷,混匀,滤过,取滤液测定游离氨基酸及总固体的含量。结果见表9。
表9不同乙醇浸泡倍数考察结果(n=2)
Figure PCTCN2020120079-appb-000010
根据表9的结果,以25%乙醇加入量为横坐标,以总固体及游离氨基酸为纵坐标绘制柱形图,详见图9。
上述试验结果表明,25%乙醇加入量对总固体及游离氨基酸影响不大,1.5倍量略高;可能是由于美洲大蠊鲜虫水分达到了50%以上,导致加入的乙醇浓度会略有降低,下降程度与乙醇的加入量成反比;实验结果与之前乙醇浸泡浓度与水溶性总固体及游离氨基酸得率成反比结果一致,故选择25%乙醇加入量为1.5BV。
4)浸泡温度及浸泡时间进一步考察
取美洲大蠊鲜虫,100g/份,置玻瓶中,分别加入25%乙醇各150ml,密封,分别于20、30、40、50及60℃放置60天。每10天取出浸泡的样品,分别加入70%乙醇回流提取三次,第一次加入250ml,第二、三次各加入300ml,每次提取1小时,滤过,于65℃减压回收乙醇至无醇味, 放冷,加水至500ml,混匀,离心(12000转/分钟)30分钟,上清液滤过,取滤液测定总游离氨基酸及水溶性总固体的含量。结果见表10。
表10总游离氨基酸及水溶性得率的变化情况(n=2)
Figure PCTCN2020120079-appb-000011
根据表10结果,以浸泡时间为横坐标,游离氨基酸及水溶性总固体得率为纵坐标绘制变化趋势图,详见图10,图11。
试验结果可以看出,浸泡温度对总游离氨基酸及水溶性总固体的得率影响较大,40℃组在浸泡后的各个时间点的总游离氨基酸及水溶性总固体均为最高,结合生产成本及实际情况,浸泡温度控制40℃(±2℃)较为合适。
同时,总游离氨基酸及水溶性总固体得率在前20天都呈现快速增长趋势,之后趋于平缓,40天以后无明显变化,故确定鲜虫浸泡时间为20~40天。
5)三种美洲大蠊提取物对比研究
前期试验表明,25%乙醇浸泡后的美洲大蠊鲜虫醇提物中总氨基酸、游离氨基酸、肽类及水溶性总固体的含量都明显增加,现设定试验比较美 洲大蠊鲜虫(MLX)、美洲大蠊干虫(MLG)以及25%乙醇浸泡后美洲大蠊鲜虫(MLP)按照相同制备工艺制成的提取物中相关物质及体外抑制炎症作用的差异。
①MLX、MLG、MLP三种提取物的制备工艺
称取同一批美洲大蠊鲜虫,1000g/份,分别按MLX、MLG及MLP的制备工艺制成相同型号规格的三种美洲大蠊提取物,具体见表11。
表11 MLX、MLG、MLP制备工艺表(n=1)
Figure PCTCN2020120079-appb-000012
②MLX、MLG、MLP三种提取物相关物质比较
取MLX、MLG、MLP检测总固体、核苷碱基、游离氨基酸、总氨基酸以及肽类含量。结果见表12。
表12样品中各物质含量测定结果
Figure PCTCN2020120079-appb-000013
注:1、核苷碱基包含尿嘧啶、次黄嘌呤、黄嘌呤、肌苷。
2、肽类=总氨基酸-游离氨基酸。
3、各种物质的结果均为1000g鲜虫中的总量。
根据表12的结果,以提取物中物质种类为横坐标,总量为纵坐标绘制柱形图。结果见图12。
根据表12的结果,计算总游离氨基酸、肽类、核苷碱基在总固体中的量,结果见表13。
表13样品中各物质占总固体的量
Figure PCTCN2020120079-appb-000014
根据表13结果绘制MLP、MLG、MLX样品中各物质占总固体的量饼图,见图13。
试验结果表明,美洲大蠊鲜虫浸泡组中除核苷碱基外,其余物质均显著高于鲜虫组及干虫组,其中水溶性总固体的量为鲜虫组的4倍、干虫组的2倍以上;游离氨基酸的量为鲜虫组的10倍、干虫组的5倍以上;总氨基酸的量为鲜虫组7倍、干虫组的3倍以上;肽类物质的量为鲜虫组的3倍、干虫组的2倍以上。
虽然鲜虫组、干虫组及鲜虫浸泡组的提取物均含有游离氨基酸、肽类及核苷碱基等物质,但各组份的比例和含量差异明显,说明MLX、MLG及MLP三种提取物的物质基础差异明显。
③体外抗炎作用对比研究结果
基于TNF-a-IL-6/iNOS-NO炎症信号通路,评价药物MLG、MLP及MLX对LPS诱发小鼠巨噬细胞(RAW264.7)炎症的调控作用。
分别将药物MLG、MLP、MLX原药液稀释80倍、120倍、160倍预先与细胞孵育12h,以终浓度为1μg/mL的LPS刺激细胞炎症,采用酶联免疫分析法(ELISA)和Griess法,分别检测LPS刺激50min时TNF-α、4h时IL-6,以及12h时NO的释放量。
研究结果显示,MLG、MLP、MLX抑制LPS诱导的TNF-α的释放作用不明显;但不同稀释倍数的MLG、MLP、MLX均可显著抑制LPS诱导的NO、IL-6的释放,其中在相同稀释倍数下MLP对NO和IL-6的抑制作用最显著。(详见附件1:MLG、MLP、MLX对LPS刺激小鼠巨噬细胞炎症模型的影响研究)
综上,美洲大蠊鲜虫经25%乙醇浸泡20~40天按相同工艺制成的提取物在水溶性总固体、总游离氨基酸、总氨基酸及肽类成分的含量均明显高于美洲大蠊鲜虫/干虫制成的提取物,且鲜虫浸泡后的提取物体外对LPS诱发小鼠巨噬细胞(RAW264.7)炎症的调控作用最强。
④MLG、MLP及MLX细胞试验结果
分别将药物MLG、MLP、MLX原药液稀释80倍、120倍、160倍预先与细胞孵育12h,再加入LPS 1μg/mL刺激细胞炎症,分别采用酶联免疫分析法(ELISA)和Griess法,分别检测LPS刺激50min时TNF-α、4h时IL-6、12h时NO的释放量,考察药物MLG、MLP、MLX对LPS诱导的细胞炎症的调控作用。
取对数生长期的细胞接种于24孔板中,使细胞密度为6×105个/mL,每孔500μL,孵育12h后,弃掉培养基,空白和模型组加入500μL DMEM高糖培养基,给药组含不同浓度药液的培养基500μL(各组溶媒含量保持一致)。置于37℃、5%CO 2细胞培养箱中继续培养12h后,各孔吸去20μL上清,空白组加入20μL DMEM培养基,其余组加入含LPS 0.025 μg/mL的培养基20μL,使LPS终浓度为1μg/mL,继续培养50min后,各孔吸取300μL上清于0.6mL规格EP管中,用于检测TNF-α。
平行板同等操作,加入LPS后培养4h,各孔吸取吸取300μl上清于0.6ml规格EP管中,用于对IL-6的测定。
平行板同等操作,加入LPS后培养12h,各孔吸取吸取300μL上清于0.6mL规格EP管中,用于对NO的测定。
各指标严格按照各试剂盒说明执行测试步骤,最终于酶标仪检测各特定波长下的吸光度值,按同法制备的标准曲线计算样本各指标含量。如吸收度值低于标准曲线下限样本的吸收度值,即计为低于相关值,相关统计以0均数0方差计算。
检测如上所述方法和时间点的样品,结果表明,与模型组相比,MLG、MLP、MLX对TNF-α未见抑制作用;各药对IL-6的产生均具有明显的抑制作用(P<0.05),并呈剂量依赖,其中MLP作用最强,MLG随剂量增加对IL-6的抑制作用减弱;MLG、MLP、MLX对NO的释放均具有明显抑制作用(P<0.05),并呈剂量依赖性,其中MLP作用最强。结果见下图14和下表14。
表14药物对细胞因子的影响(n=3)
Figure PCTCN2020120079-appb-000015
注:与Con组比较,*P<0.05;与model组比较,#P<0.05
⑤MLX、MLG及MLP三种提取物对二甲苯致小鼠皮肤毛细血管通 透性增高的影响
取体重18~22g小鼠50只,按体重随机分为5组,分别为MLX、MLG及MLP试验组,阳性对照药地塞米松0.2mg/kg,模型对照组灌服等体积的NS。各组每天给药1次,共7次,末次给药后1小时,各鼠尾静脉注射0.5%伊文思蓝生理盐水溶液0.1ml/10g·bw,随即在提前24小时脱毛的腹部皮肤上滴二甲苯30μl/只,20分钟后将小鼠脱颈椎处死,剪下腹部蓝染皮肤,用手术剪剪碎,于具塞试管内,加入丙酮-生理盐水(7:3)5ml浸泡,置暗处放置72h,3000r/min离心10min,取上清滤液,用光谱扫描式多功能读数仪在590nm波长处比色,测定吸光度(OD值)。以OD值代表通透性,将结果进行统计比较。结果见表15。
表15三种提取物对二甲苯致小鼠皮肤毛细血管通透性增高的影响
Figure PCTCN2020120079-appb-000016
Figure PCTCN2020120079-appb-000017
注:*P<0.05,**P<0.01与模型组比较;#P<0.05,##P<0.01与MLP组比较
结果显示,二甲苯造模后,小鼠皮肤毛细血管通透性明显增加,皮肤蓝染程度加重,地塞米松给药可以抑制由二甲苯引起的皮肤毛细血管通透性增加,皮肤蓝染程度比模型组明显减轻(P<0.01),抑制率超过80%。灌胃MLX、MLG及MLP提取物后,各提取物组皮肤蓝染程度与模型组比较也有明显的减轻(P<0.05或P<0.01),其中MLP组减轻最为明显,并与MLX组和MLG组有显著差异。
⑥MLX、MLG及MLP三种提取物对小鼠棉球肉芽肿的影响
取体重18~22g小鼠50只,每组10只,雌雄各半。固定小鼠,在每鼠胸部用碘酒消毒,75%酒精棉球脱碘后,在胸部切一小口,用眼科镊 将20mg高压灭菌棉球从切口处植入腋窝部皮下,随即缝合皮肤。从手术当日开始给药,给药组分别灌胃MLX、MLG及MLP三种提取物(2ml/kg)及阳性对照药用地塞米松(0.2mg/kg),模型对照组灌服等体积的NS。以上各组均连续给药7天,第8天试验结束前称体重,然后脱颈椎处死,将植入棉球连同周围结缔组织一并取出,剔除脂肪组织,称湿重后放入烘箱中60℃烘干24小时,在精密天平上称重。将称得重量减去棉球原重量即得肉芽肿重量,并进行组间比较和统计学分析。结果见表16。
表16三种提取物对小鼠棉球肉芽肿的影响
Figure PCTCN2020120079-appb-000018
Figure PCTCN2020120079-appb-000019
注:*P<0.05,**P<0.01与模型组比较;#P<0.05,##P<0.01与MLP组比较
结果显示,地塞米松给药对棉球肉芽肿的形成有明显抑制作用,肉芽肿湿重和干重比模型组明显减轻(P<0.01)。与模型组比较,MLG及MLP肉芽肿湿重和干重也有明显减轻(P<0.05或P<0.01),其中MLP组减轻最为明显,并与MLX组和MLG组有显著差异。
综上,细胞试验及动物试验表明MLX、MLG及MLP三种提取物均有抑制炎症的作用,其中MLP作用最强。
实验例2提取工艺条件考察
取美洲大蠊鲜虫,100g/份,置玻瓶中,分别加入25%乙醇各150ml,密封,于40℃放置20天,取出,分别用50%、60%、70%、80%乙醇回流提取3次,第一次提取加入2.5倍量(250ml)乙醇,第二、三次加入 3倍量(300ml)乙醇,每次提取1小时。10目滤网滤过,合并药液,放冷,滤纸滤过,即得。取上述滤液检测总游离氨基酸的量及出膏率。结果见表17。
表17提取溶剂考察结果(n=2)
Figure PCTCN2020120079-appb-000020
试验结果表明,乙醇浓度对总游离氨基酸提取量及出膏率影响均不大,80%乙醇组的出膏率略低,但澄清度最高,滤过速度最快,便于生产操作;同时80%乙醇提取液中大分子蛋白类成分较少,便于后序纯化工艺操作,故选用80%乙醇作为提取溶剂。
2)粒度的选择
美洲大蠊鲜虫乙醇浸泡后质地较软,若粉碎易成匀浆状,导致提取液滤过困难;且美洲大蠊鲜虫长2.5~3.2cm,宽1~1.4cm,每只仅为1.3g左右,个头较小,全虫直接投料也不会影响提取效果。
3)提取正交试验
影响浸泡后美洲大蠊鲜虫乙醇提取效果的因素较多,通过对所含物质理化性质的分析,决定以提取次数、提取时间、80%乙醇加入量作为考察因素,结合生产实际,每个因素设计三个水平,试验方案见表18。
表18因素水平表
Figure PCTCN2020120079-appb-000021
Figure PCTCN2020120079-appb-000022
根据因素水平表,选择L 9(3 4)的正交表进行试验,该表最多可安排四个三水平因素,本实验只有三个因素,随机安排于表上,余下第四列为空列。将实验项目的因素,水平对号入座,试验结果填入表19,以总游离氨基酸提取量及出膏量作为评价指标,并对试验结果进行方差分析。
表19正交试验结果(n=2)
Figure PCTCN2020120079-appb-000023
试验结果方差分析,查F检验的临界F P表为F 0.05(2,2)=19.0,F 0.01(2,2)=99.0。详细结果见表20。
表20方差分析结果
Figure PCTCN2020120079-appb-000024
极差分析结果可以看出,提取时间、料液比对游离氨基酸的提取量及出膏量几乎无影响,提取次数对游离氨基酸提取量及出膏量影响较大;同时方差分析结果也显示提取次数的F值较大,且对出膏量的影响有显著性,提取时间及料液比两个因素对提取结果的影响均不显著。
综上分析,兼顾提高生产效率及降低生产成本,确定最佳提取工艺为:A 3B 1C 1,即加入80%乙醇回流提取三次,第一次加入1.5BV(补足3BV),第二、三次各加入3BV,每次提取1小时。
4)按优选工艺(A 3B 1C 1)进行试验
根据正交试验确定的最佳工艺条件进行试验,考察总游离氨基酸得率及出膏率。
称取美洲大蠊鲜虫,1000g/份,置玻瓶中,分别加入25%乙醇1.5L,密封,于40℃放置20天,取出,分别加入80%乙醇提取3次,每次回流1小时,第一次加入1.5L,第二、三次分别加入3.0L,滤过,合并滤液,混匀,放冷,滤过,取滤液测定总游离氨基酸含量及出膏率。结果见表21。
表21工艺验证结果(n=2)
Figure PCTCN2020120079-appb-000025
试验结果表明,浸泡后美洲大蠊鲜虫采用80%乙醇提取三次,每次1h,每次加入3倍体积的乙醇,总游离氨基酸得率为6.41%,出膏率为 16.31%。
实验例3美洲大蠊鲜虫乙醇提物的合剂的制备工艺考察
1)澄清工艺用浸膏的制备及澄清剂的配制
①澄清工艺用稀浸膏的制备
称取美洲大蠊鲜虫,1000g/份,置玻瓶中,加入25%乙醇1500ml,密封,于40℃放置20天,取出,分别加入80%乙醇提取3次,每次1小时,第一次加入1.5BV(补足3.0BV,1.5L),第二、三次加入3.0BV(3.0L),滤过,滤液于60~90℃减压回收乙醇并浓缩至相对密度为1.04~1.08(60℃),加适量水制成1.0g生药/ml的稀浸膏,冷藏,备用。
②澄清剂的配制
1%明胶溶液:称取明胶10g,加入500ml纯化水浸泡30min,再加入500ml的热水(>95℃),边加边搅拌,搅拌至明胶全部溶解,放冷,即得。
1%壳聚糖溶液:称取壳聚糖10g,加入1000ml 1%冰醋酸溶液,边加边搅拌,静置至完全溶解,即得。
壳聚糖:明胶(1:3):将1%的壳聚糖溶液与1%的明胶溶液按1:3的比例混合均匀,即得。
2)澄清剂的选择
量取上述稀浸膏8份,30ml/份(相当于30g生药),分别加入180ml纯化水(即生药:药液=1:7),混匀,分别于60℃加入纯化水30ml、1%明胶溶液30ml、1%壳聚糖溶液30ml、壳聚糖/明胶(1:3)的混合溶液30ml,边加边搅拌,60℃下继续搅拌10min,放冷,冷藏过夜。取出,滤过,分别记录样品的滤过时间、观察滤液状况并取滤液检测总固体、总游离氨基酸的含量及透光率。结果见表22。
表22澄清剂选择结果(n=2)
Figure PCTCN2020120079-appb-000026
注:1.澄清效果表示方式为澄清(***),较澄清(**),浑浊(*);2.每组样品滤过使用的抽滤瓶、布氏漏斗及滤材均为相同型号规格。
从试验结果可以看出,四组试验总固体得率及总游离氨基酸得率无明显差异;壳聚糖/明胶(1:3)的澄清效果最好,滤过时间最短、滤液澄清、滤液透光率最高,故选择壳聚糖:明胶作为澄清工艺研究的澄清剂。
3)澄清剂比例的选择
量取稀浸膏10份,30ml/份(相当于30g生药),分别加入180ml纯化水(即生药:药液=1:7),混匀,分别于60℃加入30ml壳聚糖/明胶(2:1)、壳聚糖/明胶(1:1)、壳聚糖/明胶(1:2)、壳聚糖/明胶(1:3)、壳聚糖/明胶(1:4),澄清剂均为1%的混合溶液,边加边搅拌,60℃下继续搅拌10min,放冷,冷藏过夜。取出,滤过,分别记录样品的滤过时间、滤液澄清情况并取滤液检测总固体、总游离氨基酸的含量及透光率。结果见表23。
表23澄清剂比例考察结果(n=2)
Figure PCTCN2020120079-appb-000027
注:1.澄清效果表示方式为澄清(***),较澄清(**),浑浊(*);
2.每组样品滤过使用的抽滤瓶、布氏漏斗及滤材均为相同型号规格。
从试验结果可以看出,壳聚糖/明胶的比例变化对总固体及总游离氨基酸的得率均没有明显影响;壳聚糖/明胶比例为1:3、1:4时澄清液滤过时间最短,滤过速度最快;壳聚糖/明胶比例为1:3时澄清液透光率最高,故选择壳聚糖/明胶比例为1:3。
4)加水量的考察
量取12份稀浸膏,分别加适量水制成生药浓度为1、1/3、1/5、1/7、1/9及1/11g/ml的溶液,于60℃分别缓缓加入澄清剂,搅拌10min,放冷,冷藏过夜,取出,滤过,记录样品滤过时间、滤液澄清情况并取滤液检测总固体、总游离氨基酸的含量及透光率。结果见表24。
表24加水量的考察结果(n=2)
Figure PCTCN2020120079-appb-000028
注:1.澄清效果表示方式为澄清(***),较澄清(**),浑浊(*);
2.每组样品滤过使用的抽滤瓶、布氏漏斗及滤材均为相同型号规格。
从试验结果可以看出,生药浓度在1/3~1/7g/ml之间变化对总游离氨基酸及总固体的得率均没有明显影响;当生药浓度低于1/3g/ml时澄清效果均较好,滤过速度均较快,且滤液透光率均在80%以上,兼顾生产效率及成本,选择生药浓度为1/3g/ml。
5)澄清剂用量考察
量取12份稀浸膏,分别加水制成生药浓度为1/3g/ml的溶液,混匀,分别于60℃缓缓加入0.1~1.2ml/g生药量的澄清剂,搅拌10min,放冷,冷藏过夜,取出,滤过,记录样品的滤过时间、滤液澄清情况并取滤液检测总固体、总游离氨基酸的含量及透光率。结果见表25。
表25澄清剂用量考察结果(n=2)
Figure PCTCN2020120079-appb-000029
注:1.澄清效果表示方式为澄清(***),较澄清(**),浑浊(*);
2.每组样品滤过使用的抽滤瓶、布氏漏斗及滤材均为相同型号规格。
试验结果表明,澄清剂用量为0.2~1.0ml/g生药时滤液澄清,滤过时间短,透光率均在70%以上;当加入量为0.2~0.6ml/g生药时澄清液的总固体及总游离氨基酸得率均较高,故选择澄清剂用量为0.2~0.6ml/g生药。
6)澄清温度考察
量取8份稀浸膏,分别加水制成生药浓度为1/3g/ml的溶液,混匀,分别于50℃、60℃、70℃、80℃温度下缓缓加入0.6ml/g生药的澄清剂,在以上温度下搅拌10min,放冷,冷藏过夜,取出,滤过,分别记录样品的滤过时间、滤液澄清情况并取滤液检测总固体、总游离氨基酸的含量及透光率。结果见表26。
表26澄清温度考察结果(n=2)
Figure PCTCN2020120079-appb-000030
注:1.澄清效果表示方式为澄清(***),较澄清(**),浑浊(*);
2.每组样品滤过使用的抽滤瓶、布氏漏斗及滤材均为相同型号规格。
试验结果表明,澄清温度对水溶性总固体及总游离氨基酸的得率均没有明显影响;在60℃~70℃温度下澄清,样品滤过时间最短,且滤液透光率均超过80%,故澄清温度选择60℃~70℃。
7)热处理冷藏工艺考察
①热处理工艺考察
量取稀浸膏4份,分别加水制成生药浓度为1/3g/ml的溶液,混匀,取2份加热煮沸10min,分别于70℃缓缓加入0.6ml/g生药的澄清剂,搅拌10min,放冷,冷藏过夜,取出,滤过,记录样品的滤过时间、滤液澄清情况并取滤液检测总固体及总游离氨基酸的含量。结果见表27。
表27工艺考察结果(n=2)
Figure PCTCN2020120079-appb-000031
注:1.澄清效果表示方式为澄清(***),较澄清(**),浑浊(*);2.每组样品滤过使用的抽滤瓶、布氏漏斗及滤材均为相同型号规格。
试验结果表明,是否采用热处理冷藏工艺对水溶性总固体及总游离氨基酸的得率均无明显影响;但采用热处理冷藏工艺的样品更易滤过,故 选择增加煮沸步骤,同时比较煮沸顺序对滤过的影响。
②煮沸顺序考察
量取稀浸膏2份,分别加水制成生药浓度为1/3g/ml的溶液,混匀,取1份加热煮沸10min,待温度降至60℃时缓缓加入0.6ml/g生药的澄清剂,搅拌10min;另取1份于60℃缓缓加入0.6ml/g生药的澄清剂,搅拌10min,加热煮沸10min,放冷,冷藏过夜,分别取出,滤过,记录滤过时间、滤液澄清情况并取滤液检测水溶性总固体、总游离氨基酸的含量及透光率。结果见表28。
表28热处理顺序考察结果(n=1)
Figure PCTCN2020120079-appb-000032
注:1.澄清效果表示方式为澄清(***),较澄清(**),浑浊(*);2.每组样品滤过使用的抽滤瓶、布氏漏斗及滤材均为相同型号规格。
试验结果表明,煮沸顺序对水溶性总固体及总游离氨基酸的得率均无明显影响;且滤液澄清情况相差不大,先煮沸再澄清的样品滤过速度较快,考虑生产实际中先升温煮沸然后降温至60~70℃澄清,再降温冷藏操作更为流畅,故选择先煮沸再降温至60~70℃再澄清。
③煮沸时间考察
量取稀浸膏适量,加水制成生药浓度为1/3g/ml的溶液,混匀,均分为6份,分别煮沸10、30、60min,待温度降至70℃时,缓缓加入0.6ml/g生药量的澄清剂,搅拌10min,放冷,冷藏过夜,取出,滤过,记录样品滤过时间、滤液澄清情况。结果见表29。
表29煮沸时间考察结果(n=2)
Figure PCTCN2020120079-appb-000033
注:1.澄清效果表示方式为澄清(***),较澄清(**),浑浊(*);2.每组样品滤过使用的抽滤瓶、布氏漏斗及滤材均为相同型号规格。
结果表明,随着煮沸时间的增加,滤过时间反而略有延长,故煮沸时间控制在10~30min较为合适。
8)澄清冷藏温度及冷藏时间确定
称取美洲大蠊鲜虫2000g,置玻璃瓶中,分别加入1.5BV 25%乙醇,密封,于40℃放置36天,取出,分别加入80%乙醇提取3次,每次1小时,第一次加入1.5BV,第二、三次加入3.0BV,滤过,合并滤液,放冷,于65℃减压回收乙醇并浓缩至相对密度为1.06(60℃),放冷,加水至6000ml,加热煮沸10min,待温度降至70℃时缓缓加入600ml澄清剂,搅拌10min,放冷,分成16份,分别于1℃和8℃冷藏,分别于16h、24h、40h、48h取出,滤过,记录样品滤过时间、滤液澄清情况并取滤液检测总固体、总游离氨基酸含量及透光率。结果见表30。
表30澄清液冷藏时间及冷藏温度考察结果(n=2)
Figure PCTCN2020120079-appb-000034
注:1.澄清效果表示方式为澄清(***),较澄清(**),浑浊(*);2.每组样品滤过使用的抽滤瓶、布氏漏斗及滤材均为相同型号规格。
试验结果表明,冷藏时间及温度对样品的滤过时间、澄清度、总固体及总游离氨基酸得率均无影响;其1℃组冷藏样品的透光率略高于8℃组,根据生产实际情况,选择澄清液在1~8℃静置16h~48h。
9)澄清工艺重复试验
称取美洲大蠊鲜虫,1000g/份,置玻瓶中,加入25%乙醇1500ml,密封,于40℃放置20天,取出,加入80%乙醇提取3次,每次1小时,第一次加入1.5BV(1.5L),第二、三次加入3.0BV(3.0L),滤过,合并滤液,放冷,于65℃减压回收乙醇并浓缩至相对密度为1.05(60℃),加水至3000ml,加热煮沸10min,待温度降至70℃时缓缓加入600ml澄清剂,搅拌10min,放冷,冷藏过夜,取出,滤过,记录样品滤过时间、滤液澄清情况并取滤液检测总固体量、总游离氨基酸量、总氨基酸及透光率。结果见表31。
表31澄清工艺验证结果(n=2)
Figure PCTCN2020120079-appb-000035
澄清效果:澄清(***),较澄清(**),浑浊(*)
重复试验结果表明,澄清效果较好,滤过顺利;且水溶性总固体、总游离氨基酸及总氨基酸的转移率均在90%以上。
10)制剂成型工艺
(1)制剂成型工艺描述
量取美洲大蠊鲜虫澄清液适量(相当于200g生药),加入150g甘油和1g山梨酸钾,加水至1000ml,混匀,滤过(0.22μm~0.45μm微孔滤膜),灌封,116℃±2℃灭菌40分钟,放冷,检查,贴签,外包,检 验,即得成品。
(2)灭菌方法的选择
合剂通常采用湿热灭菌法,2015版《中国药典》1421灭菌法项下湿热灭菌条件通常采用121℃×15min、121℃×30min或116℃×40min的程序,结合生产实际,选择本制剂的灭菌条件为116℃±2℃×40min。同时通过试验比较灭菌前后样品的性状、pH值、相对密度及总游离氨基酸含量的差异。
量取澄清液适量(相当于80生药),分别加入60g甘油、0.4g山梨酸钾,加纯水至400ml,混匀,滤过,灌封,取一半样品于116℃灭菌40min,取出,放冷,分别取样观察性状并测定pH值、相对密度及总游离氨基酸含量。结果见表32。
表32样品灭菌前后考察结果(n=2)
Figure PCTCN2020120079-appb-000036
备注:灭菌组样品的颜色略深未灭菌组。
试验结果表明,灭菌工艺对前后样品的性状、pH值、相对密度及总游离氨基酸均无明显差异。
(3)成型工艺重复试验
称取美洲大蠊鲜虫,1000g/份,置玻瓶中,加入25%乙醇1500ml,密封,于40℃放置20天后取出,加入80%乙醇提取3次,每次1小时,第一次加入1.5BV(1.5L),第二、三次加入3.0BV(3.0L),滤过,合并滤液,于65℃减压回收乙醇并浓缩至相对密度为1.06(60℃),放冷,加水至3000ml,混匀,加热煮沸10min,待温度降至70℃时缓缓加入600ml澄清剂,搅拌10min,放冷,冷藏过夜,滤过,即得美洲大蠊鲜虫澄清液。量取澄清液适量(相当于200g鲜虫),分别加入1.0g山梨酸钾、150g甘油,混匀,加水至1000ml,混匀,滤过,灌装成10ml/支,于115℃灭菌40min。
(4)小试样品药效学试验结果
1)药效样品制备
称取美洲大蠊鲜虫,1000g/份,置玻瓶中,加入25%乙醇1500ml,密封,于40℃放置20天后取出,加入80%乙醇提取3次,每次1小时,第一次加入1.5BV(1.5L),第二、三次加入3.0BV(3.0L),滤过,合并滤液,于65℃减压回收乙醇并浓缩至相对密度为1.04(60℃测),加水至3000ml,混匀,加热煮沸10min,待温度降至70℃时缓缓加入600ml澄清剂,搅拌10min,放冷,冷藏过夜,滤过,即得美洲大蠊鲜虫澄清液。量取澄清液610ml(相当于200g鲜虫),分别加入1.0g山梨酸钾、150g甘油,混匀,加水至1000ml,混匀,滤过,灌装成10ml/支,于115℃灭菌40min,即得。该小试样品名称/代号为GD-N1901,批号为190801。
2)药效试验结果
采用40Gy的X射线单次照射金黄地鼠左侧颊囊(辐照面积1.82cm 2),动物口腔黏膜炎发病后,根据动物口腔黏膜炎评分(辅助参考指标:动物体重),选取分数在1~2分40只动物随机分为4组(1组模型对照组及3组药物治疗组),之后采取腹腔注射或者患处浸润联合灌胃的方式给予相应药物,连续给药14d(D12~D25,Bid),给药剂量见表33。通过对动物口腔黏膜炎评分(改良sonis评分)的检测,评价受试药物对地鼠放射性口腔黏膜炎的治疗效果。结果见表34。
表33剂量设计表
Figure PCTCN2020120079-appb-000037
注:患处浸润联合灌胃是将某只动物某次给药总体积的10%浸润至动物受照射侧颊囊处,剩余90%灌胃给药;造模当天定义为第0天(day0,D0)。
表34地鼠Sonis评分情况(分)
Figure PCTCN2020120079-appb-000038
注:*代表p<0.05,与模型对照组比较;各组所有数据均来自10只动物(n=10);造模当天为D0,D12代表造模后第12天(给药第1天),其余类同。
造模后第12~18天为金黄地鼠口腔黏膜炎的溃疡发病期,动物口腔黏炎评分迅速升高,D18达到峰值(4分);造模后第20~26天(D20~D26),是溃疡恢复期,各组动物口腔黏膜炎评分均持续稳定下降。药物干预后,从给药2天至试验结束(D14~D26),模型对照组(Model)动物的口腔黏膜炎评分一直处于最高状态,奥德金治疗组、高剂量组以及低剂量组动物口腔黏膜炎评分则一直低于模型对照组,其中低剂量组在整个恢复期间评分分数最低,恢复最好。在D20~24,低、高剂量组的动物口腔黏膜炎评分明显低于模型组模型对照组(P<0.05)。该试验结果表明:低、高剂量的样品有显著促进地鼠口腔黏膜炎恢复的作用。

Claims (26)

  1. 一种美洲大蠊提取物的制备方法,其特征在于,所述方法包括如下步骤:
    1)取新鲜美洲大蠊用乙醇浸泡;
    2)再加入乙醇回流提取,然后过滤、合并滤液;
    3)滤液浓缩为浸膏即得。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤1)中浸泡的乙醇的浓度为20%~95%,优选25%~70%,再优选25%~45%,最佳为25%。
  3. 根据权利要求1所述的方法,其特征在于,所述步骤1)中浸泡的时间为10~60天,优选20~60天,进一步优选20~40天。
  4. 根据权利要求1所述的方法,其特征在于,所述步骤1)中浸泡的温度为20℃~60℃,优选30℃~50℃,最佳为40℃。
  5. 根据权利要求1所述的方法,其特征在于,所述步骤1)中乙醇的用量为新鲜美洲大蠊重量的1.5~3.5倍。
  6. 根据权利要求1所述的方法,其特征在于,所述步骤2)中再加入的乙醇的浓度为50%~80%,优选80%。
  7. 根据权利要求1所述的方法,其特征在于,所述步骤2)中再加入的乙醇的用量为新鲜美洲大蠊重量的1.5~3.5倍,优选1.5倍。
  8. 根据权利要求1所述的方法,其特征在于,所述步骤2)中回流的次数为1~3次;优选第一次回流再加入乙醇的用量为新鲜美洲大蠊重量的1.5倍;而第2或3次回流加入乙醇的量为新鲜美洲大蠊重量的3倍。
  9. 根据权利要求1所述的方法,其特征在于,所述步骤2)中回流的时间为1~2小时。
  10. 根据权利要求1所述的方法,其特征在于,所述步骤3)中浓缩为减压浓缩。
  11. 根据权利要求1所述的方法,其特征在于,所述步骤3)中减压浓缩的温度为60℃~90℃。
  12. 根据权利要求1所述的方法,其特征在于,所述步骤3)中浸膏 在60℃下的相对密度为1.04~1.08。
  13. 一种权利要求1~12任一所述方法制备的美洲大蠊提取物。
  14. 根据权利要求13所述的美洲大蠊提取物,其特征在于,所述提取物中游离氨基酸的含量为30~55%。
  15. 一种含有美洲大蠊提取物的制剂,其特征在于,所述制剂含有1~12任一所述方法制备的或权利要求13~14任一所述的美洲大蠊提取物和辅料。
  16. 根据权利要求15所述的制剂,其特征在于,所述辅料包括澄清剂。
  17. 根据权利要求16所述的制剂,其特征在于,所述澄清剂为壳聚糖和明胶的组合物;优选壳聚糖为1%的壳聚糖溶液;明胶为1%的明胶溶液。
  18. 根据权利要求16所述的制剂,其特征在于,所述壳聚糖和明胶的比例为1:1~1:4,优选1:3~1:4;最佳为1:3。
  19. 根据权利要求16所述的制剂,其特征在于,所述澄清步骤中生药浓度为1/3~1/11g/ml,优选1/3~1/7g/ml;最佳为1/3g/ml。
  20. 根据权利要求16所述的制剂,其特征在于,所述制剂中澄清剂的量为0.2~1.0ml/g生药;优选0.2~0.6ml/g生药。
  21. 根据权利要求16所述的制剂,其特征在于,所述辅料还包括甜味剂和防腐剂;优选所述甜味剂的量为5~20%;防腐剂的量为0.05~0.3%。
  22. 根据权利要求21所述的制剂,其特征在于,所述甜味剂为甘油、甜蜜素、阿斯巴甜或甜菊苷,优选甘油;所述防腐剂为羟苯烷基酯类、苯甲酸、苯甲酸钠、山梨酸、山梨酸钾,优选山梨酸钾。
  23. 根据权利要求15所述的制剂,其特征在于,所述制剂为中药合剂。
  24. 一种制备权利要求15~23任一所述制剂的方法,其特征在于所述方法包括如下:
    取美洲大蠊提取物加入水稀释、然后加热至100℃降温至70℃加入澄清剂并搅拌,冷藏放置,滤过,滤液再加入甘油和山梨酸钾、最后加入余 量的水,混匀,微孔滤膜过滤、灭菌即得。
  25. 根据权利要求24所述的方法,其特征在于,所述方法包括:称取美洲大蠊鲜虫,加入鲜虫重量1.5倍量的25%乙醇,密封,于40℃放置20天后取出,加入80%乙醇提取3次,每次1小时,第一次加入1.5BV,第二、三次加入3.0BV,滤过,合并滤液,于65℃减压回收乙醇并浓缩至相对密度为1.04(60℃测),加水至鲜虫重量的3倍量,混匀,加热煮沸10min,待温度降至70℃时缓缓加入澄清剂,搅拌,放冷,冷藏过夜,滤过,即得美洲大蠊鲜虫澄清液;然后加入山梨酸钾和甘油,混匀,加水,混匀,滤过,于115℃灭菌40min,即得。
  26. 含有1~12任一所述方法制备的或权利要求13~14任一所述的美洲大蠊提取物,或权利要求15~23任一所述的制剂制备抗炎药物的应用。
PCT/CN2020/120079 2019-10-11 2020-10-10 美洲大蠊提取物、其制剂以及它们的制备方法和应用 WO2021068909A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080005893.2A CN113056279B (zh) 2019-10-11 2020-10-10 美洲大蠊提取物、其制剂以及它们的制备方法和应用
CA3156271A CA3156271A1 (en) 2019-10-11 2020-10-10 AMERICAN COCKROCH EXTRACT, ASSOCIATED PREPARATION, METHODS FOR THE PREPARATION AND CORRESPONDING APPLICATIONS
US17/762,951 US20220339205A1 (en) 2019-10-11 2020-10-10 American cockroach extract, preparation thereof, preparation methods therefor and applications thereof
EP20875308.7A EP4043020A4 (en) 2019-10-11 2020-10-10 AMERICAN COCKROACH EXTRACT, ASSOCIATED PREPARATION, ITS PREPARATION PROCESSES AND CORRESPONDING APPLICATIONS
JP2022521672A JP7391204B2 (ja) 2019-10-11 2020-10-10 ワモンゴキブリの抽出物、製剤、調製方法およびその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910961501 2019-10-11
CN201910961501.9 2019-10-11

Publications (1)

Publication Number Publication Date
WO2021068909A1 true WO2021068909A1 (zh) 2021-04-15

Family

ID=75437751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120079 WO2021068909A1 (zh) 2019-10-11 2020-10-10 美洲大蠊提取物、其制剂以及它们的制备方法和应用

Country Status (6)

Country Link
US (1) US20220339205A1 (zh)
EP (1) EP4043020A4 (zh)
JP (1) JP7391204B2 (zh)
CN (1) CN113056279B (zh)
CA (1) CA3156271A1 (zh)
WO (1) WO2021068909A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015126A (zh) * 2021-10-28 2022-02-08 南开大学 一种食品包装膜材料制备及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87100537A (zh) * 1987-01-27 1988-08-31 大理医学院 一种治疗外伤创面药物的制备方法
CN1548058A (zh) * 2003-05-22 2004-11-24 福州金象中药制药有限公司 蜚蠊活成虫提取物的制备方法
CN1943600A (zh) * 2006-10-17 2007-04-11 耿福能 含有美洲大蠊及其乙醇提取物的药物组合物及新用途
CN101502534A (zh) * 2009-03-11 2009-08-12 黄少鉴 美洲大蠊药用物质的提取方法
US20130052273A1 (en) * 2008-12-17 2013-02-28 Funeng GENG Pharmaceutical composition comprising periplaneta americana or its ethanol extract and a method of using the same for treating inflammations
CN105878292A (zh) * 2015-09-24 2016-08-24 陈光健 一种美洲大蠊提取物及其制备工艺
CN106074614A (zh) * 2016-06-21 2016-11-09 四川好医生攀西药业有限责任公司 美洲大蠊在制备治疗前列腺炎药物中的应用
CN107753535A (zh) * 2017-02-21 2018-03-06 四川好医生攀西药业有限责任公司 一种治疗心脑血管疾病的药物组合物及其应用
CN109966319A (zh) * 2017-12-22 2019-07-05 四川好医生攀西药业有限责任公司 一种康复新液的原料及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255117C (zh) 2003-04-30 2006-05-10 严少宏 美洲大蠊药用浸膏提取工艺
CN1961893A (zh) 2005-11-08 2007-05-16 肖小芹 美洲大蠊成虫提取物的制备方法
CN101077355A (zh) * 2006-05-22 2007-11-28 贵州联盛药业有限公司 双效天然澄清剂及其应用技术
CN100525781C (zh) 2006-09-30 2009-08-12 耿福能 美洲大蠊提取物、含该提取物的药物组合物及其制备方法
CN103446187B (zh) 2013-09-05 2015-08-26 陈光健 一种抗炎消肿的药物组合物及其制备方法和用途
CN104622910A (zh) 2013-11-08 2015-05-20 成都百草和济科技有限公司 美洲大蠊提取物的低温制备方法
CN109718252A (zh) * 2017-10-25 2019-05-07 浙江京新药业股份有限公司 美洲大蠊提取物在制备治疗和预防化疗致肠道黏膜炎药物中的应用
CN109700832A (zh) 2017-10-25 2019-05-03 浙江京新药业股份有限公司 包含地衣芽孢杆菌和美洲大蠊提取物的药物组合物
CN107929325B (zh) * 2017-11-29 2023-03-24 四川好医生攀西药业有限责任公司 一种含美洲大蠊的栓剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87100537A (zh) * 1987-01-27 1988-08-31 大理医学院 一种治疗外伤创面药物的制备方法
CN1548058A (zh) * 2003-05-22 2004-11-24 福州金象中药制药有限公司 蜚蠊活成虫提取物的制备方法
CN1943600A (zh) * 2006-10-17 2007-04-11 耿福能 含有美洲大蠊及其乙醇提取物的药物组合物及新用途
US20130052273A1 (en) * 2008-12-17 2013-02-28 Funeng GENG Pharmaceutical composition comprising periplaneta americana or its ethanol extract and a method of using the same for treating inflammations
CN101502534A (zh) * 2009-03-11 2009-08-12 黄少鉴 美洲大蠊药用物质的提取方法
CN105878292A (zh) * 2015-09-24 2016-08-24 陈光健 一种美洲大蠊提取物及其制备工艺
CN106074614A (zh) * 2016-06-21 2016-11-09 四川好医生攀西药业有限责任公司 美洲大蠊在制备治疗前列腺炎药物中的应用
CN107753535A (zh) * 2017-02-21 2018-03-06 四川好医生攀西药业有限责任公司 一种治疗心脑血管疾病的药物组合物及其应用
CN109966319A (zh) * 2017-12-22 2019-07-05 四川好医生攀西药业有限责任公司 一种康复新液的原料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Pharmacopoeia", 2015
See also references of EP4043020A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015126A (zh) * 2021-10-28 2022-02-08 南开大学 一种食品包装膜材料制备及应用
CN114015126B (zh) * 2021-10-28 2022-08-30 南开大学 一种食品包装膜材料制备及应用

Also Published As

Publication number Publication date
EP4043020A4 (en) 2023-11-22
EP4043020A1 (en) 2022-08-17
CA3156271A1 (en) 2021-04-15
JP7391204B2 (ja) 2023-12-04
JP2022551319A (ja) 2022-12-08
CN113056279B (zh) 2023-04-28
US20220339205A1 (en) 2022-10-27
CN113056279A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
ES2543708T3 (es) Composiciones que comprenden galactomanano y un proceso de las mismas
US20090285913A1 (en) Trachelospermi Caulis Extract Composition for the Treatment and Prevention of Inflammatory Diseases
WO2021068909A1 (zh) 美洲大蠊提取物、其制剂以及它们的制备方法和应用
CN109674823A (zh) 一种蜂蛹提取物及在保护顺铂诱导肾损伤中的应用
CN105617316A (zh) 一种检验科用抑菌消毒液及制备方法
CN1686185A (zh) 治疗口腔、咽喉疾病的中药制剂及其制备方法
CN105030952B (zh) 一种组合物在制备预防尿结石药物中的应用
CN107158026A (zh) 低酯果胶在防治或辅助治疗糖尿病中的应用
CN104688769B (zh) 复方蒙脱石聚维酮碘软膏及其制备方法和应用
CN107260802A (zh) 冠心丹参滴丸用于防治糖尿病并发症的新用途
TWI846046B (zh) 毛木耳多醣體萃取物及其用於製備促進傷口癒合之醫藥組成物的用途
JPH05506847A (ja) ククイナット外皮由来の抗ウイルス剤
JP2004099613A (ja) 自己免疫疾患治療用ガノデルマルシダム胞子
CN103041368A (zh) 藻蓝蛋白在制备防治有机磷农药所致胚胎毒性的药物中的应用
CN108524555A (zh) 一种改善多囊卵巢综合征内分泌和氧化应激水平的方法
CN115887484B (zh) 牛蒡多糖在制备预防或治疗急性肺损伤的药物中的应用
CN116687994B (zh) 一种金银花在制备降低川乌毒性药物方面的用途
CN108904562A (zh) 一种眼用凝胶剂及其制备方法和应用
KR102415950B1 (ko) 백국화 추출물, 모과 추출물 및 용안육 추출물의 혼합물을 유효성분으로 포함하는 눈 건강 기능 식품 및 이의 제조방법
CN103040797A (zh) 虾青素在制备防治有机磷农药所致胚胎毒性的药物中的应用
RU2098108C1 (ru) Апитерапевтическое средство
CN115554306B (zh) 哈巴俄苷在制备治疗神经病理性疼痛药物中的用途
CN110693897B (zh) 油茶肉质果多糖在制备防治ⅱ型糖尿病药物或保健品中的应用
CN107050359A (zh) 治疗慢性盆腔炎性疾病后遗症的壮药制剂及其制备方法
KR100302308B1 (ko) 에스큐로스히포카스타늄 엽 건조추출물을 고농도로 함유하는

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3156271

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022521672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020875308

Country of ref document: EP

Effective date: 20220511