WO2021063219A1 - 信号的采样方法、装置及光接收机 - Google Patents

信号的采样方法、装置及光接收机 Download PDF

Info

Publication number
WO2021063219A1
WO2021063219A1 PCT/CN2020/116969 CN2020116969W WO2021063219A1 WO 2021063219 A1 WO2021063219 A1 WO 2021063219A1 CN 2020116969 W CN2020116969 W CN 2020116969W WO 2021063219 A1 WO2021063219 A1 WO 2021063219A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
signal
phase difference
burst
determining
Prior art date
Application number
PCT/CN2020/116969
Other languages
English (en)
French (fr)
Inventor
顾国华
姚扬中
曹南山
陶春贵
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Priority to JP2021566124A priority Critical patent/JP7297099B2/ja
Priority to US17/642,949 priority patent/US20220407678A1/en
Priority to KR1020217032012A priority patent/KR102636811B1/ko
Priority to EP20872563.0A priority patent/EP3937418A4/en
Publication of WO2021063219A1 publication Critical patent/WO2021063219A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/042Detectors therefor, e.g. correlators, state machines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/002Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
    • H04L7/0029Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of received data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/027Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit

Definitions

  • the present disclosure relates to the field of communications, for example, to a signal sampling method, device, and optical receiver.
  • the optical access network must meet a new round of challenges in terms of bandwidth service support capabilities and transmission performance.
  • High-speed optical transmission network applications based on Passive Optical Network (PON) are also growing rapidly. Therefore, high-speed optical transmission PON of 50GHz or even above 100GHz is a necessary choice, and its demand is very urgent, and its transmission performance is also More demanding.
  • burst PON technology allocates a corresponding transmission time slot to each Optical Network Unit (ONU).
  • the packet is sent and received by the optical receiver on the optical line terminal (OLT) side, which greatly increases the number of users, adapts well to the characteristics of burst traffic in the access network, and provides high bandwidth At the same time, it also improves the flexibility of the entire network, and realizes business integration and resource sharing.
  • OLT optical line terminal
  • the upstream PON transmission system is a burst transmission system with multiple ONUs, and the data of different ONUs are sent to the OLT in the form of burst packets.
  • the burst data packet from each ONU to the OLT can be considered to be instantaneously sent and randomly arrived. Therefore, the phase of the clock on the OLT side is asynchronous, and there is a phase difference.
  • the burst packet signals sent by different ONUs to the OLT have different distances of optical fiber transmission links and suffer different link damages, making each burst packet transmission The delay to the OLT side will also be different.
  • the receiver Analog-to-Digital Converter, ADC
  • ADC Analog-to-Digital Converter
  • the present disclosure provides a signal sampling method, device, and optical receiver, so as to at least solve the problem of a decrease in signal-to-noise ratio and an increase in code error caused by sampling phase deviation in related technologies.
  • a signal sampling method including:
  • the first sampling signal is interpolated according to the phase difference to obtain a target sampling signal.
  • a signal sampling device including:
  • the first sampling module is configured to sample the received burst signal according to the first sampling frequency to obtain the first sampling signal
  • the second sampling module is configured to sample the preamble signal in the first sampling signal according to a second sampling frequency to obtain a second sampling signal;
  • a first determining module configured to determine, according to the second sampling signal, the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency
  • the interpolation module is configured to interpolate the first sampling signal according to the phase difference to obtain a target sampling signal.
  • An optical receiver is also provided, including the signal sampling device as described in the present disclosure.
  • Fig. 1 is a flowchart of a signal sampling method according to an embodiment of the present invention
  • Fig. 2 is a structural block diagram of a signal sampling device according to an embodiment of the present invention.
  • Figure 3 is a block diagram of an implementation of a burst clock recovery scheme according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of an error signal phase estimation algorithm according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the performance of the phase estimation method in the roll-off factor according to an optional embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the performance of the phase estimation method when the roll-off factor is according to an optional embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the performance of the phase estimation method in the roll-off factor according to an optional embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the performance of the phase estimation method in the roll-off factor according to an optional embodiment of the present invention.
  • Fig. 1 is a flowchart of a signal sampling method according to an embodiment of the present invention. As shown in Fig. 1, the process includes the following steps:
  • Step S101 sampling the received burst signal according to the first sampling frequency to obtain the first sampling signal.
  • Step S103 sampling the preamble signal in the first sampling signal according to the second sampling frequency to obtain a second sampling signal.
  • Step S105 Determine the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency according to the second sampling signal.
  • Step S107 Interpolate the first sampling signal according to the phase difference to obtain the target sampling signal.
  • the sampling phase deviation in related technologies can be solved This leads to the problem of a decrease in the signal-to-noise ratio and an increase in the error code, and the effect of reducing the error between the received burst signal and the obtained target sampling signal is achieved.
  • determining the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency according to the second sampling signal includes: performing a symbol decision on the second sampling signal to obtain a decision signal; and determining the first sampling signal. Second, the error signal of the sampling signal and the decision signal; the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency is determined according to the error signal.
  • determining the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency according to the error signal includes: determining the discrete Fourier of the error signal at the symbol frequency corresponding to the burst signal Leaf transform result; Determine the phase difference according to the Fourier transform result.
  • determining the phase difference according to the Fourier transform result includes: extracting the sampling phase according to the Fourier transform result, and determining the phase difference according to the sampling phase.
  • determining the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency according to the second sampling signal further includes: eliminating the inter-symbol interference of the second sampling signal; The second sampling signal after the interference determines the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency.
  • interpolating the first sampling signal according to the phase difference to obtain the target sampling signal includes: determining the sample point offset of the first sampling signal according to the phase difference; and performing the first sampling according to the sample point offset The signal is interpolated to obtain the target sampling signal.
  • FIG. 2 is a structural block diagram of a signal sampling device according to an embodiment of the present invention. As shown in FIG. 2, it includes: a first sampling module 22, It is set to sample the received burst signal according to the first sampling frequency to obtain the first sampling signal; the second sampling module 24 is set to sample the preamble signal in the first sampling signal according to the second sampling frequency to obtain The second sampling signal; the first determining module 26 is configured to determine the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency according to the second sampling signal; the interpolation module 28 is configured to perform the first sampling according to the phase difference The signal is interpolated to obtain the target sampling signal.
  • a first sampling module 22 It is set to sample the received burst signal according to the first sampling frequency to obtain the first sampling signal
  • the second sampling module 24 is set to sample the preamble signal in the first sampling signal according to the second sampling frequency to obtain The second sampling signal
  • the first determining module 26 is configured to determine the phase difference between the burst signal and the local sampling clock
  • the first sampling signal is obtained; the preamble signal in the first sampling signal is sampled according to the second sampling frequency to obtain the second sampling signal; Determine the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency according to the second sampling signal; interpolate the first sampling signal according to the phase difference to obtain the target sampling signal. Therefore, the sampling phase deviation in related technologies can be solved This leads to the problem of a decrease in the signal-to-noise ratio and an increase in the error code, and the effect of reducing the error between the received burst signal and the obtained target sampling signal is achieved.
  • the first determining module includes: a determining unit configured to perform symbol determination on the second sampling signal to obtain a determination signal; and the first determining unit configured to determine the second sampling signal and the determination signal Error signal; the second determining unit is configured to determine the phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency according to the error signal.
  • the second determining unit includes: a first determining subunit, configured to determine the discrete Fourier transform result of the error signal at the symbol frequency corresponding to the burst signal; the second determining subunit , Set to determine the phase difference based on the Fourier transform result.
  • the second determining subunit is configured to extract the sampling phase according to the Fourier transform result, and determine the phase difference according to the sampling phase.
  • the first determining module includes: an elimination unit, configured to eliminate inter-symbol interference of the second sampling signal; and a third determining unit, configured to determine according to the second sampling signal after eliminating the inter-symbol interference The phase difference between the burst signal and the local sampling clock corresponding to the first sampling frequency.
  • the interpolation module includes: a fourth determining unit, configured to determine the sample point offset of the first sampling signal according to the phase difference; and the first interpolation unit, configured to determine the sample point offset of the first sampling signal according to the sample point offset; The sampling signal is interpolated to obtain the target sampling signal.
  • the device in this embodiment is used to implement the above-mentioned embodiments and optional implementation manners, and those that have been described will not be repeated.
  • the above-mentioned multiple modules can be implemented by software or hardware. For the latter, it can be implemented in the following ways, but not limited to this: the above-mentioned modules are all located in the same processor; or, the above-mentioned multiple modules are respectively in the form of any combination. Located in different processors.
  • an optical receiver which includes a signal sampling device as described above.
  • the continuous transmission synchronous digital phase-locked loop technology in the related art is not suitable for the reception of the uplink burst system due to the long loop stable establishment time.
  • the downstream PON transmission system is a continuous transmission and reception system.
  • the reception of upstream burst mode transmission is different from the reception of continuous system transmission. Since different burst packets usually come from different user terminal ONUs, and the transmission requirements are generated at different times, the transmission channels of multiple burst packets from multiple ONUs to the OLT in the burst mode are different, and the delay is not the same. Similarly, the synchronization information obtained by one data packet cannot be used by the next data packet.
  • Each burst packet usually has a preamble, so the capture and phase synchronization of the burst packet are usually based on data assistance, and phase synchronization needs to be established before valid data. And because the system transmission also needs to have high efficiency, the preamble used for synchronization cannot be too long.
  • the length of the burst data packet can be long or short, and some short burst data may have only a few thousand, hundreds or even dozens of symbols.
  • the time for sending information each time is relatively short, and it must be effective in the burst packet. Synchronize before data. Therefore, the main difficulty of burst clock recovery is embodied in the limited preamble, and it needs to realize its fast estimation and fast acquisition of the phase in the shortest possible time.
  • the jitter of the phase estimation also needs to be as small as possible.
  • Most timing phase detection relies on the signal modulation bandwidth, and the timing error is closely related to the noise ratio, which affects the jitter of the phase estimation.
  • the smaller the signal modulation bandwidth and signal-to-noise ratio the greater the estimated phase jitter variance; for raised cosine modulated signals, such as Not Return to Zero (NRZ) signals, the performance of timing phase detection is severe Depends on the Nyquist roll-off factor.
  • the smaller the roll-off factor the smaller the signal modulation bandwidth, the larger the phase estimation variance, and the worse the synchronization performance.
  • the roll-off factor affects the spectrum efficiency.
  • the roll-off factor In actual engineering, based on spectrum efficiency, the roll-off factor generally ranges from 0.15 to 0.5. Therefore, PON upstream burst clock recovery requires that when the modulation bandwidth and signal-to-noise ratio are small, the jitter requirements for phase estimation and timing recovery are as small as possible, in order to better recover the optimal position of data sampling.
  • a fast phase estimation method and timing recovery device are proposed for the burst clock recovery of high-speed optical network transmission.
  • This method is not sensitive to the Nyquist roll-off factor.
  • the phase jitter estimated by general algorithms such as square law is much smaller.
  • the recovered data The best sampling position is more accurate, the hardware implementation is simple, and the phase can be captured quickly and the timing synchronization can be established in the preamble field before the effective data of the burst packet.
  • the data clock recovery (Clock and Data Recovery, CDR) is divided into two stages: phase estimation and data interpolation.
  • the clock recovery device for upstream burst reception on the OLT side of the TDM PON system of the present disclosure includes three main functional modules: filtering, phase estimation, and interpolation filtering. If you need to estimate the phase error correction and jitter tracking, you can replace the interpolation filter with a CDR module, such as the Gardner phase detection CDR with better tracking performance.
  • the ADC samples the received signal at the local fixed clock frequency 1/T s to obtain the sampling sequence x(n) of the burst packet signal.
  • the clock on the OLT side is synchronized with the clock frequency of the symbol sent by the remote ONU.
  • the local oscillator of the remote ONU uses a phase locked loop (Phase Locked Loop, PLL) to lock on the OLT clock (this clock It is high precision), so that it can ensure that the frequency of the burst transmission from the remote ONU to the central office OLT is synchronized with the OLT side clock.
  • PLL Phase Locked Loop
  • the partial sequence of the burst packet digital signal sampled by the ADC is first up-sampled by 2 times, and then sent to the equalization filter module for equalization to eliminate inter-symbol interference (ISI).
  • ISI inter-symbol interference
  • This part of the digital signal is the sample data corresponding to the known preamble of a burst packet composed of N (N can be tens to thousands) symbols.
  • the sampling phase is extracted to obtain the sampling phase offset ⁇ :
  • arg() means finding the argument of a complex number.
  • the phase ⁇ (-T/2,T/2] is estimated.
  • sampling phase offset ⁇ is normalized by the sampling period T s and then converted into the sample point offset under 2 times sampling:
  • the estimated sample offset ⁇ is sent to the interpolation filtering module.
  • the interpolator of the interpolation filtering module adopts Farrow structure to realize. Send ⁇ into the interpolation position register of the Farrow interpolator. In this way, the interpolator interpolates the twice-sampled signal of the burst packet, thereby recovering the best sampled data whose sampling phase is consistent with the phase of the burst signal.
  • FIG. 3 is a block diagram of the implementation of a burst clock recovery scheme according to an embodiment of the present invention. As shown in FIG. 3, it mainly consists of 5 modules, which are respectively a 2 times upsampling module and an equalization filter module. , Phase estimation module, data buffer module and interpolation filtering module.
  • the preamble sequence of sequence x(n) is sent to the 2 times upsampling module for sampling, and the sampled 4 times preamble sequence is sent to the Least Mean Square (LMS) equalizer for equalization to eliminate inter-symbol interference (inter-symbol interference, ISI), and then sent to the phase estimation module to estimate the phase difference between the burst packet signal and the local sampling clock to obtain the normalized phase offset ⁇ .
  • LMS Least Mean Square
  • the data during this period is buffered in the data buffer.
  • the estimated sample offset ⁇ is sent to the interpolation filtering module.
  • the interpolator of the interpolation filtering module adopts Farrow structure to realize. Send ⁇ into the interpolation position register of the Farrow interpolator. In this way, the interpolator sequentially interpolates the 2 times sampled data signal of the burst packet in the buffer, thereby recovering the best sampled data whose sampling phase is consistent with the phase of the burst signal.
  • FIG. 4 is a schematic flowchart of an error signal phase estimation algorithm according to an embodiment of the present invention.
  • the ADC on the OLT side only needs to sample the burst signal twice to obtain a digital signal sampled twice as much as the burst signal.
  • the burst packet preamble is 160 binary modulation ⁇ -1, +1 ⁇
  • , k 0,1,...639.
  • the discrete Fourier leaf module calculates the Fourier transform at the frequency of 1/T on the error signal sequence e(k):
  • Y A+jB
  • the phase extraction sub-module calculates the normalized sampling phase offset ⁇ ,
  • the normalized sampling phase offset ⁇ is sent to the interpolation filtering module.
  • the interpolator of the interpolation filtering module is implemented by a 4- or 6-tap Farrow structure polynomial interpolation filter. Send ⁇ to the interpolation fraction interval register of the Farrow interpolator. In this way, the interpolator interpolates the 2 times sampled signal of the burst packet from the buffered data, thereby recovering the best sampled data whose sampling phase is consistent with the phase of the burst signal.
  • SL Square Law
  • the SL estimator in the figure is a square-law phase estimator
  • the decision-directed (DD) estimator is the phase estimator of the present disclosure.
  • the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium (such as Read-Only Memory (ROM)/Random Access Memory (RAM)), magnetic disks, and optical disks. ) Includes multiple instructions to enable a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in any embodiment of the present disclosure.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • multiple modules or multiple steps of the present disclosure can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they can be implemented with program codes executable by a computing device, so that they can be stored in a storage device for execution by the computing device, and in some cases, they can be executed in a different order than here.
  • the steps shown or described can be implemented by making them into multiple integrated circuit modules respectively, or making multiple modules or steps of them into a single integrated circuit module.
  • the present disclosure is not limited to any specified combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本公开提供了一种信号的采样方法、装置及光接收机,方法包括按照第一采样频率对接收到的突发信号进行采样,得到第一采样信号;按照第二采样频率对第一采样信号中的前导码信号进行采样,得到第二采样信号;根据第二采样信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差;根据相位差对第一采样信号进行插值,得到目标采样信号。

Description

信号的采样方法、装置及光接收机
本申请要求在2019年09月30日提交中国专利局、申请号为201910944543.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如涉及一种信号的采样方法、装置及光接收机。
背景技术
随着云计算、物联网以及第五代移动通信技术(the 5th Generation mobile communication technology,5G)或未来可能的第六代移动通信技术(the 6th Generation mobile communication technology,6G)等高速传输的数据信息业务的日益发展,光接入网在带宽业务支撑能力以及传输性能等方面都必须迎接新一轮挑战。以无源光纤网络(Passive Optical Network,PON)为主的高速光传输网络应用也迅速增长,因而50GHz甚至100GHz以上的高速光传输PON已经是一种必要的选择,其需求十分迫切,传输性能也要求更高。
在基于时分复用(Time-Division Multiplexing,TDM)的PON系统中,突发PON技术通过对每个光网络单元(Optical Network Unit,ONU)分配相应的传输时隙,对于不同ONU产生的光突发包,在光线路终端(Optical Line Terminal,OLT)侧通过光接收机进行接收,极大地提高了用户的数量,很好地适应了接入网中突发流量业务的特点,在提供高带宽的同时,也提升了整个网络的灵活性,实现业务融合和资源共享。
上行PON传输系统就是多ONU的突发传输系统,不同ONU的数据以突发包形式发送到OLT。突发模式下每个ONU到OLT的突发数据包可以认为是瞬时发出随机到达的,因此,与OLT侧的时钟相位是不同步的,存在相位差。另外,在突发模式下的高速PON系统中,不同ONU发送到OLT的突发包信号,经过的光纤传输链路的距离不同,受到的链路损伤也不一样,使得每个突发包传输到达OLT侧的延时也会不一样。那么当OLT侧的接收机(Analog-to-Digital Converter,ADC)依据本地时钟进行采样时,由于突发包到达时突发包信号的相位和OLT侧本地采样时钟相位不一致,导致采样相位发生偏差,采样没有在符号的最佳位置,使得采样数据的信号能量减少,导致信噪比下降,误码增加。
发明内容
本公开提供了一种信号的采样方法、装置及光接收机,以至少解决相关技术中采样相位偏差导致信噪比下降、误码增加的问题。
提供了一种信号的采样方法,包括:
按照第一采样频率对接收到的突发信号进行采样,得到第一采样信号;
按照第二采样频率对所述第一采样信号中的前导码信号进行采样,得到第二采样信号;
根据所述第二采样信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的相位差;
根据所述相位差对所述第一采样信号进行插值,得到目标采样信号。
还提供了一种信号的采样装置,包括:
第一采样模块,用于按照第一采样频率对接收到的突发信号进行采样,得到第一采样信号;
第二采样模块,用于按照第二采样频率对所述第一采样信号中的前导码信号进行采样,得到第二采样信号;
第一确定模块,用于根据所述第二采样信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的相位差;
插值模块,用于根据所述相位差对所述第一采样信号进行插值,得到目标采样信号。
还提供了一种光接收机,包括如本公开所述的信号的采样装置。
附图说明
图1是根据本发明实施例的信号的采样方法的流程图;
图2是根据本发明实施例的信号的采样装置的结构框图;
图3是根据本发明实施例的突发时钟恢复方案的实现框图;
图4是根据本发明实施例误差信号相位估计算法的流程示意图;
图5是根据本发明可选实施例的滚降因子时的相位估计方法的性能示意图;
图6是根据本发明可选实施例的滚降因子时的相位估计方法的性能示意图;
图7是根据本发明可选实施例的滚降因子时的相位估计方法的性能示意图;
图8是根据本发明可选实施例的滚降因子时的相位估计方法的性能示意图。
具体实施方式
下文中将参考附图并结合实施例来说明本公开。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述指定的顺序或先后次序。
实施例1
图1是根据本发明实施例的信号的采样方法的流程图,如图1所示,该流程包括如下步骤:
步骤S101,按照第一采样频率对接收到的突发信号进行采样,得到第一采样信号。
步骤S103,按照第二采样频率对第一采样信号中的前导码信号进行采样,得到第二采样信号。
步骤S105,根据第二采样信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差。
步骤S107,根据相位差对第一采样信号进行插值,得到目标采样信号。
通过上述步骤,由于按照第一采样频率对接收到的突发信号进行采样,得到第一采样信号;按照第二采样频率对第一采样信号中的前导码信号进行采样,得到第二采样信号;根据第二采样信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差;根据相位差对第一采样信号进行插值,得到目标采样信号,因此,可以解决相关技术中采样相位偏差导致信噪比下降、误码增加的问题,达到减小接收到的突发信号与得到的目标采样信号之间的误差的效果。
在一个可选的实施方式中,根据第二采样信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差,包括:对第二采样信号进行符号判决,得到判决信号;确定第二采样信号与判决信号的误差信号;根据误差信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差。
在一个可选的实施方式中,根据误差信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差,包括:确定误差信号在突发信号所对应的符号频率处的离散傅里叶变换结果;根据傅里叶变换结果确定相位差。
在一个可选的实施方式中,根据傅里叶变换结果确定相位差,包括:根据傅里叶变换结果抽取采样相位,并根据采样相位确定相位差。
在一个可选的实施方式中,根据第二采样信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差,还包括:消除第二采样信号的符号间干扰; 根据消除符号间干扰之后的第二采样信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差。
在一个可选的实施方式中,根据相位差对第一采样信号进行插值,得到目标采样信号,包括:根据相位差确定第一采样信号的样点偏移;根据样点偏移对第一采样信号进行插值,得到目标采样信号。
根据本发明的另一个实施例,还提供了一种信号的采样装置,图2是根据本发明实施例的信号的采样装置的结构框图,如图2所示,包括:第一采样模块22,设置为按照第一采样频率对接收到的突发信号进行采样,得到第一采样信号;第二采样模块24,设置为按照第二采样频率对第一采样信号中的前导码信号进行采样,得到第二采样信号;第一确定模块26,设置为根据第二采样信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差;插值模块28,设置为根据相位差对第一采样信号进行插值,得到目标采样信号。
通过上述模块,由于按照第一采样频率对接收到的突发信号进行采样,得到第一采样信号;按照第二采样频率对第一采样信号中的前导码信号进行采样,得到第二采样信号;根据第二采样信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差;根据相位差对第一采样信号进行插值,得到目标采样信号,因此,可以解决相关技术中采样相位偏差导致信噪比下降、误码增加的问题,达到减小接收到的突发信号与得到的目标采样信号之间的误差的效果。
在一个可选的实施方式中,第一确定模块,包括:判决单元,设置为对第二采样信号进行符号判决,得到判决信号;第一确定单元,设置为确定第二采样信号与判决信号的误差信号;第二确定单元,设置为根据误差信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差。
在一个可选的实施方式中,第二确定单元,包括:第一确定子单元,设置为确定误差信号在突发信号所对应的符号频率处的离散傅里叶变换结果;第二确定子单元,设置为根据傅里叶变换结果确定相位差。
在一个可选的实施方式中,第二确定子单元,是设置为根据傅里叶变换结果抽取采样相位,并根据采样相位确定相位差。
在一个可选的实施方式中,第一确定模块,包括:消除单元,设置为消除第二采样信号的符号间干扰;第三确定单元,设置为根据消除符号间干扰之后的第二采样信号确定突发信号与第一采样频率所对应的本地采样时钟的相位差。
在一个可选的实施方式中,插值模块,包括:第四确定单元,设置为根据相位差确定第一采样信号的样点偏移;第一插值单元,设置为根据样点偏移对 第一采样信号进行插值,得到目标采样信号。
本实施例中的装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以上所使用的,术语“实施方可以实现预定功能的软件和/或硬件的组合。
上述多个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
根据本发明的另一个实施例,提供了一种光接收机,包括如上述任一项的信号的采样装置。
可选实施方式
以下结合应用场景对本发明实施例进行说明:
相关技术中的连续传输同步数字锁相环技术由于存在着较长的环路稳定建立时间,不适合用于上行突发系统的接收。下行PON传输系统是一个连续传输接收系统,有很多连续接收传输数据的定时或符号同步算法,而上行突发模式传输的接收与连续系统传输的接收有不同之处。由于不同的突发包通常来自不同的用户终端ONU,发送需求在不同的时间里产生,所以多个突发包在突发模式下的多个ONU到OLT的传输信道并不相同,延时不一样,一个数据包所得到的同步信息不能为下一个数据包所利用。每个突发包通常有前导字,所以对突发包的捕获与相位同步通常是基于数据辅助的,且需要在有效数据前建立相位同步。而由于系统传输还需要具备高效率,所以用于同步的前导字不能太长。另外,突发数据包的长度有长有短,有的短突发包数据可能只有几千、几百甚至几十个符号,有时每次发送信息时间比较短,必须要在突发包的有效数据前实现同步。因此,突发时钟恢复的主要难点体现在有限的前导字内,需要在尽可能短的时间里实现其对相位的快速估计和快速捕获。
除了相位同步时间需要尽可能短之外,相位估计的抖动也需要尽可能小。大多数定时相位检测依赖于信号调制带宽,且定时误差与噪比密切相关,从而影响相位估计的抖动。一般地,信号调制带宽和信噪比越小,估计的相位抖动方差就会越大;对于升余弦调制信号,例如不归零码(Not Return to Zero,NRZ)信号,定时相位检测的性能严重依赖于奈奎斯特滚降因子。滚降因子越小,信号调制带宽越小,相位估计方差也越大,同步性能越差。但滚降因子影响着频谱效率,滚降因子越小,频谱效率就越高。在实际工程中基于频谱效率,滚降因子的范围一般在0.15~0.5之间。所以,PON上行突发时钟恢复要求在调制带宽和信噪比较小的情况下,相位估计和定时恢复的抖动要求尽可能小,才能更 好地恢复出数据采样的最佳位置。
在本发明可选实施方式中,基于上述对PON上行突发接收系统的相位和时钟恢复要求,针对高速光网络传输的突发时钟恢复,提出了一种快速估计相位方法和定时恢复装置。此方法对奈奎斯特滚降因子不敏感,在低信噪比和滚降因子较小的情况下,相较于平方律等通用算法估计的相位抖动都要小得多,恢复出的数据最佳采样位置更准确,硬件实现简单,且能在突发包有效数据前的前导字段内快速捕获相位和建立定时同步。
在本发明可选实施方式中,数据时钟恢复(Clock and Data Recovery,CDR)分两个阶段:相位估计和数据内插。在利用突发包的前导字进行相位估计时,需要对突发包的数据进行缓存。本公开的TDM PON系统OLT侧上行突发接收的时钟恢复装置包括三个主要的功能模块:滤波、相位估计和插值滤波。如需估计相位误差修正和抖动跟踪,可以将插值滤波器更换为CDR模块,例如跟踪性能较好的反馈环路Gardner鉴相CDR。
OLT侧接收机检测到突发包到达后,ADC以本地固定时钟频率1/T s对接收信号进行采样,得到突发包信号的采样序列x(n)。采样满足T s=T/2,即2倍采样,T是符号周期,T s是OLT侧ADC的本地采样时钟的采样周期。本方案采用OLT侧的时钟和远端ONU发送符号的时钟频率是同步的。对于OLT和远端ONU节点间通信为连续的时分复用PON系统来说,远端ONU的本地振荡器是通过使用锁相环(Phase Locked Loop,PLL),锁定在OLT的时钟上(这个时钟是高精度的),这样就能够保证远端ONU至中心局OLT突发传输的频率和OLT侧时钟是同步的。
将ADC采样的突发包数字信号的部分序列先进行2倍上采样,然后送到均衡滤波模块进行均衡,消除符号间干扰(inter-symbol interference,ISI)。这部分数字信号为由N(N可以是几十到几千)个符号组成的突发包已知前导字对应的采样数据。
相位估计模块接收到均衡滤波模块均衡后输出的前导字数字信号,前导字数据信号为4倍采样信号y(k)(k=0,1,…,4N-1)。
然后,对y(k)进行判决,得到相应的判决序列a(k)(k=0,1,…,4N-1)。
由采样信号y(k)和其相应的判决序列a(k),得到由采样相位和信号相位偏移引起的采样误差信号y(k)-a(k),k=0,1,…,4N-1,然后得到采样误差信号的绝对值序列|y(k)-a(k)|,k=0,1,…,4N-1,也可以是采样误差信号的平方序列[y(k)-a(k)] 2,k=0,1,…,4N-1,以下举例说明方法,以下的计算方法也适用于采样误差信号的平方序列。
对绝对值序列|y(k)-a(k)|,k=0,1,…,4N-1,计算符号频率1/T处的离散傅里叶变换(Discrete Fourier Transform,DFT):
Figure PCTCN2020116969-appb-000001
根据1/T处的离散傅里叶变换Y,抽取采样相位,得到采样相位偏移τ:
Figure PCTCN2020116969-appb-000002
这里,arg()表示求复数的幅角。估计得到相位τ∈(-T/2,T/2]。
以采样周期T s归一化采样相位偏移τ后转化为2倍采样下的样点偏移:
Figure PCTCN2020116969-appb-000003
将估计得到的样点偏移μ送入插值滤波模块。插值滤波模块的插值器采用Farrow结构实现。将μ送入Farrow插值器的插值位置寄存器。这样,插值器就对突发包的2倍采样信号进行插值,从而恢复出采样相位与突发信号相位一致的最佳采样数据。
在一个可选实施方式中,图3是根据本发明实施例的突发时钟恢复方案的实现框图,如图3所示,主要有5个模块组成,分别是2倍上采样模块,均衡滤波模块,相位估计模块,数据缓存模块和插值滤波模块。
本方案实现见图3。OLT侧光接收机接收到的突发包模拟信号x(t),本地时钟以周期T s=T/2对突发信号进行2倍采样,得到采样序列x(n)。序列x(n)的前导码序列送入2倍上采样模块进行采样,采样后的4倍采样前导码序列,送入最小均方(Least Mean Square,LMS)均衡器进行均衡,消除符号间干扰(inter-symbol interference,ISI),然后送入相位估计模块进行突发包信号与本地采样时钟的的相位差估计,得到归一化的相位偏移τ。由于相位估计的时延,在此期间的数据缓存在数据缓存器中。将估计得到的样点偏移μ送入插值滤波模块。插值滤波模块的插值器采用Farrow结构实现。将μ送入Farrow插值器的插值位置寄存器。这样,插值器就对缓存器中的突发包的2倍采样数据信号依次进行插值,从而恢复出采样相位与突发信号相位一致的最佳采样数据。
本公开的相位估计模块的实现如图4所示,图4是根据本发明实施例误差信号相位估计算法的流程示意图。从实现资源考虑,OLT侧ADC只需对突发信号进行2倍采样,得到突发信号的2倍采样的数字信号,突发包前导字为160个二元调制{-1,+1}的NRZ信号,其相应的2倍采样信号序列为 x(n)(n=0,1,…,319)。
前导字2倍采样序列x(n)送入2倍上采样模块,进行2倍上采样得到4倍采样序列y(k)(k=0,1,…,639)。
将y(k),k=0,1,…,639,送入均衡滤波模块,进行LMS均衡,消除ISI后送入相位估计模块。
利用由符号采样相位偏移引起的误差信号估计相位偏移的实现方案见图4。相位估计模块的符号判决子模块先对y(k),k=0,1,…,639进行符号判决,得到相应的判决序列a(k)=sign(y(k)),k=0,1,…,639。
误差信号子模块计算由ADC采样相位偏移引起的信号误差,e(k)=|y(k)-a(k)|,k=0,1,…,639。
离散傅里叶子模块对误差信号序列e(k)计算在1/T频率处的傅里叶变换:
Figure PCTCN2020116969-appb-000004
一实施例中,Y=A+jB,
Figure PCTCN2020116969-appb-000005
Figure PCTCN2020116969-appb-000006
相位提取子模块计算归一化采样相位偏移μ,
Figure PCTCN2020116969-appb-000007
在进行2倍上采样、均衡滤波和相位估计时有一定的时延,在此过程的突发数字信号需要缓存,等待估计出归一化采样相位偏移μ后恢复出信号的最佳采样位置。
将归一化采样相位偏移μ,送入内插插值滤波模块。插值滤波模块的插值器采用4或6抽头的Farrow结构多项式插值滤波器实现。将μ送入Farrow插值器的插值分数间隔寄存器。这样,插值器就从缓存数据开始对突发包的2倍采样信号进行插值,从而恢复出采样相位与突发信号相位一致的最佳采样数据。
本公开的突发时钟相位估计方法在低信噪比和滚降因子较小的情况下,相较于平方律(Square Law,SL)等其他通用相位估计方法估计的相位抖动要小得多,恢复出的数据最佳采样位置更准确。图5、图6、图7和图8分别示意了滚降因子R=0.5、R=0.35、R=0.25和R=0.15四种情况下的平方律SL估计算法和本公开的相位估计算法估计的相位抖动性能,图中SL estimator是平方律相位 估计器,基于判决的(Decision-Directed,DD)estimator是本公开的相位估计器。
通过以上的实施方式的描述,本领域的技术人员可以了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,也可以通过硬件。本公开可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括多条指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开任意实施例所述的方法。
本领域的技术人员应该明白,上述的本公开的多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。本公开不限制于任何指定的硬件和软件结合。

Claims (13)

  1. 一种信号的采样方法,包括:
    按照第一采样频率对接收到的突发信号进行采样,得到第一采样信号;
    按照第二采样频率对所述第一采样信号中的前导码信号进行采样,得到第二采样信号;
    根据所述第二采样信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的相位差;
    根据所述相位差对所述第一采样信号进行插值,得到目标采样信号。
  2. 根据权利要求1所述的方法,其中,所述根据所述第二采样信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的相位差,包括:
    对所述第二采样信号进行符号判决,得到判决信号;
    确定所述第二采样信号与所述判决信号的误差信号;
    根据所述误差信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的相位差。
  3. 根据权利要求2所述的方法,其中,所述根据所述误差信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的相位差,包括:
    确定所述误差信号在所述突发信号所对应的符号频率处的离散傅里叶变换结果;
    根据所述傅里叶变换结果确定所述相位差。
  4. 根据权利要求3所述的方法,其中,所述根据所述傅里叶变换结果确定所述相位差,包括:
    根据所述傅里叶变换结果抽取采样相位,并根据所述采样相位确定所述相位差。
  5. 根据权利要求1所述的方法,其中,所述根据所述第二采样信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的相位差,包括:
    消除所述第二采样信号的符号间干扰;
    根据消除所述符号间干扰之后的所述第二采样信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的所述相位差。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述根据所述相位差对所述第一采样信号进行插值,得到目标采样信号,包括:
    根据所述相位差确定所述第一采样信号的样点偏移;
    根据所述样点偏移对所述第一采样信号进行插值,得到所述目标采样信号。
  7. 一种信号的采样装置,包括:
    第一采样模块,设置为按照第一采样频率对接收到的突发信号进行采样,得到第一采样信号;
    第二采样模块,设置为按照第二采样频率对所述第一采样信号中的前导码信号进行采样,得到第二采样信号;
    第一确定模块,设置为根据所述第二采样信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的相位差;
    插值模块,设置为根据所述相位差对所述第一采样信号进行插值,得到目标采样信号。
  8. 根据权利要求7所述的采样装置,其中,所述第一确定模块,包括:
    判决单元,设置为对所述第二采样信号进行符号判决,得到判决信号;
    第一确定单元,设置为确定所述第二采样信号与所述判决信号的误差信号;
    第二确定单元,设置为根据所述误差信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的相位差。
  9. 根据权利要求8所述的采样装置,其中,所述第二确定单元,包括:
    第一确定子单元,设置为确定所述误差信号在所述突发信号所对应的符号频率处的离散傅里叶变换结果;
    第二确定子单元,设置为根据所述傅里叶变换结果确定所述相位差。
  10. 根据权利要求9所述的采样装置,其中,所述第二确定子单元,是设置为根据所述傅里叶变换结果抽取采样相位,并根据所述采样相位确定所述相位差。
  11. 根据权利要求7所述的采样装置,其中,所述第一确定模块,包括:
    消除单元,设置为消除所述第二采样信号的符号间干扰;
    第三确定单元,设置为根据消除所述符号间干扰之后的所述第二采样信号确定所述突发信号与所述第一采样频率所对应的本地采样时钟的所述相位差。
  12. 根据权利要求7至11中任一项所述的采样装置,其中,所述插值模块,包括:
    第四确定单元,设置为根据所述相位差确定所述第一采样信号的样点偏移;
    第一插值单元,设置为根据所述样点偏移对所述第一采样信号进行插值, 得到所述目标采样信号。
  13. 一种光接收机,包括如权利要求7至12中任一项所述的信号的采样装置。
PCT/CN2020/116969 2019-09-30 2020-09-23 信号的采样方法、装置及光接收机 WO2021063219A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021566124A JP7297099B2 (ja) 2019-09-30 2020-09-23 信号サンプリング方法、装置及び光受信機
US17/642,949 US20220407678A1 (en) 2019-09-30 2020-09-23 Signal sampling method and apparatus, and optical receiver
KR1020217032012A KR102636811B1 (ko) 2019-09-30 2020-09-23 신호 샘플링 방법, 장치 및 광 수신기
EP20872563.0A EP3937418A4 (en) 2019-09-30 2020-09-23 METHOD AND DEVICE FOR SIGNAL SENSING AND OPTICAL RECEIVER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910944543.1 2019-09-30
CN201910944543.1A CN112583571A (zh) 2019-09-30 2019-09-30 一种信号的采样方法及装置

Publications (1)

Publication Number Publication Date
WO2021063219A1 true WO2021063219A1 (zh) 2021-04-08

Family

ID=75117320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116969 WO2021063219A1 (zh) 2019-09-30 2020-09-23 信号的采样方法、装置及光接收机

Country Status (6)

Country Link
US (1) US20220407678A1 (zh)
EP (1) EP3937418A4 (zh)
JP (1) JP7297099B2 (zh)
KR (1) KR102636811B1 (zh)
CN (1) CN112583571A (zh)
WO (1) WO2021063219A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116055928B (zh) * 2023-04-03 2023-06-02 深圳市紫光同创电子有限公司 一种数据采样方法、装置、电子设备以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126617A2 (en) * 2000-02-14 2001-08-22 STMicroelectronics, Inc. Circuit and method for determing the phase difference between a sample clock and a sampled signal by linear approximation
CN103973400A (zh) * 2013-02-04 2014-08-06 京信通信系统(中国)有限公司 一种数据交互方法及基站硬件平台
CN106572041A (zh) * 2015-10-08 2017-04-19 深圳市中兴微电子技术有限公司 采样频率偏差的计算方法及装置
US10277718B1 (en) * 2016-11-22 2019-04-30 Seagate Technology Llc Preamble defect detection and mitigation
CN110198567A (zh) * 2018-02-26 2019-09-03 深圳市中兴微电子技术有限公司 一种随机接入检测方法和装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355261B2 (ja) * 1995-07-20 2002-12-09 株式会社日立製作所 ビット同期回路及びビット同期方法
US5726818A (en) * 1995-12-05 1998-03-10 Cirrus Logic, Inc. Magnetic disk sampled amplitude read channel employing interpolated timing recovery for synchronous detection of embedded servo data
JPH09189731A (ja) * 1996-01-11 1997-07-22 Advantest Corp 変調精度測定方法
US5999355A (en) * 1996-04-30 1999-12-07 Cirrus Logic, Inc. Gain and phase constrained adaptive equalizing filter in a sampled amplitude read channel for magnetic recording
US6711221B1 (en) 2000-02-16 2004-03-23 Thomson Licensing S.A. Sampling offset correction in an orthogonal frequency division multiplexing system
JP2002009853A (ja) 2000-06-21 2002-01-11 Hitachi Ltd 受信装置
JP3949357B2 (ja) 2000-07-13 2007-07-25 富士通株式会社 復調装置
JP4109003B2 (ja) * 2002-01-21 2008-06-25 富士通株式会社 情報記録再生装置、信号復号回路及び方法
US7274762B2 (en) * 2002-03-22 2007-09-25 Infineon Technologies Ag Calculation circuit for calculating a sampling phase error
US20080212708A1 (en) 2004-02-19 2008-09-04 Thomson Licensing Method and Apparatus for Carrier Recovery in a Communications System
US7773324B2 (en) 2005-04-12 2010-08-10 Stmicroelectronics, Inc. Phase acquisition loop for a read channel and related read channel, system, and method
KR100973585B1 (ko) * 2005-12-10 2010-08-02 한국전자통신연구원 Mimo 이동 통신 시스템에서 타이밍 에러와 주파수오프셋을 추정하는 방법 및 그 장치
US8243869B2 (en) * 2006-11-28 2012-08-14 Broadlight Ltd. Burst mode clock and data recovery circuit and method
KR100820315B1 (ko) * 2006-12-19 2008-04-07 주식회사 칩스앤미디어 Ofdm 신호 복조방법 및 이를 위한 수신장치
KR101006395B1 (ko) * 2007-12-11 2011-01-10 한국전자통신연구원 다중 안테나 무선 통신시스템에서의 채널 추정을 위한 송신기와 수신기 및 이에 적용되는 통신 방법
KR20120065130A (ko) * 2010-12-10 2012-06-20 한국전자통신연구원 위성 시스템의 리턴 링크에서의 신호 복조방법 및 그 복조장치, 리턴 링크에서의 신호 변조방법 및 그 변조 장치
US20140211779A1 (en) * 2013-01-31 2014-07-31 University Of Southern California Scalable synchronization for distributed multiuser mimo
JP6060912B2 (ja) 2014-01-22 2017-01-18 ソニー株式会社 データ処理装置、データ処理方法、および再生装置
CN103873225B (zh) 2014-03-26 2015-10-28 清华大学 突发通信的定时估计方法
WO2015195031A1 (en) * 2014-06-17 2015-12-23 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for repeated radio block transmission
US9923749B2 (en) * 2015-02-02 2018-03-20 Sr Technologies, Inc. Adaptive frequency tracking mechanism for burst transmission reception
CN105245303B (zh) * 2015-08-28 2017-08-29 北京理工大学 一种高速突发解调同步系统
US10153844B2 (en) * 2017-04-03 2018-12-11 Futurewei Technologies, Inc. Channel recovery in burst-mode, time-division multiplexing (TDM) passive optical networks (PONs)
CN109379314B (zh) * 2018-12-10 2022-02-08 北京卫星信息工程研究所 高速突发数字解调方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126617A2 (en) * 2000-02-14 2001-08-22 STMicroelectronics, Inc. Circuit and method for determing the phase difference between a sample clock and a sampled signal by linear approximation
CN103973400A (zh) * 2013-02-04 2014-08-06 京信通信系统(中国)有限公司 一种数据交互方法及基站硬件平台
CN106572041A (zh) * 2015-10-08 2017-04-19 深圳市中兴微电子技术有限公司 采样频率偏差的计算方法及装置
US10277718B1 (en) * 2016-11-22 2019-04-30 Seagate Technology Llc Preamble defect detection and mitigation
CN110198567A (zh) * 2018-02-26 2019-09-03 深圳市中兴微电子技术有限公司 一种随机接入检测方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3937418A4

Also Published As

Publication number Publication date
EP3937418A1 (en) 2022-01-12
EP3937418A4 (en) 2022-07-13
JP2022531890A (ja) 2022-07-12
CN112583571A (zh) 2021-03-30
US20220407678A1 (en) 2022-12-22
JP7297099B2 (ja) 2023-06-23
KR102636811B1 (ko) 2024-02-15
KR20210134964A (ko) 2021-11-11

Similar Documents

Publication Publication Date Title
JP3013763B2 (ja) キャリア同期ユニット
JP2989742B2 (ja) ディジタル放送システムおよび該ディジタル放送用の送信システムならびに該ディジタル放送用の受信システム
JP2002518880A (ja) Ofdm用バスとキャリア周波数同期と反復周波数領域フレーム同期
US9036999B2 (en) Frame/symbol synchronization in coherent optical OFDM
JPH03113928A (ja) クロック同期ネットワーク及びデータ通信法
CN111600823B (zh) 一种并行oqpsk偏移四相相移键控解调器
CN110011779B (zh) 端口定时偏差补偿方法、系统和终端
CN111147123A (zh) 一种低轨卫星宽带ofdm通信系统的载波同步方法
US7953195B2 (en) System and method for digitizing bit synchronization in wireless communication
WO2021063219A1 (zh) 信号的采样方法、装置及光接收机
US8861648B2 (en) Receiving device and demodulation device
CN113115430A (zh) 一种高速突发数字解调系统
JP2003534713A (ja) デジタル受信器のサンプリングタイミングを制御する方法およびデバイス
US20060285616A1 (en) Method and apparatus for correcting symbol timing
KR100435494B1 (ko) 디지털 통신에서의 동기 수행 시스템 및 그 방법
US8903028B2 (en) Timing recovery for low roll-off factor signals
JP2000341236A (ja) Ofdm信号受信装置、ofdm信号通信システム及びその通信制御方法
US9906357B2 (en) OFDM frame synchronization for coherent and direct detection in an optical fiber telecommunication system
Preyss et al. Digital synchronization for symbol-spaced IEEE802. 11ad Gigabit mmWave systems
JP4588890B2 (ja) 通信方法および通信装置
Chen Carrier recovery in burst-mode 16-qam
Yu et al. An improved gardner feedback timing synchronization loop
EP1287635B1 (en) Method for estimating the symbol timing phase at the reception of data signals
WO2020186647A1 (en) Improved burst-mode clock-data-recovery (bm-cdr) for 10g-pon
Bazin et al. Burst transmission symbol synchronization in the presence of cycle slip arising from different clock frequencies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217032012

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020872563

Country of ref document: EP

Effective date: 20211004

ENP Entry into the national phase

Ref document number: 2021566124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE