WO2021060367A1 - SiC基板の製造方法 - Google Patents

SiC基板の製造方法 Download PDF

Info

Publication number
WO2021060367A1
WO2021060367A1 PCT/JP2020/036002 JP2020036002W WO2021060367A1 WO 2021060367 A1 WO2021060367 A1 WO 2021060367A1 JP 2020036002 W JP2020036002 W JP 2020036002W WO 2021060367 A1 WO2021060367 A1 WO 2021060367A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic substrate
strain layer
sic
manufacturing
etching
Prior art date
Application number
PCT/JP2020/036002
Other languages
English (en)
French (fr)
Inventor
忠昭 金子
Original Assignee
学校法人関西学院
豊田通商株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, 豊田通商株式会社 filed Critical 学校法人関西学院
Priority to US17/761,086 priority Critical patent/US20220344152A1/en
Priority to JP2021548981A priority patent/JPWO2021060367A1/ja
Priority to CN202080066201.5A priority patent/CN114424322A/zh
Priority to EP20868266.6A priority patent/EP4036283A4/en
Publication of WO2021060367A1 publication Critical patent/WO2021060367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/30Reducing waste in manufacturing processes; Calculations of released waste quantities

Definitions

  • the present invention relates to a method for manufacturing a SiC substrate.
  • the SiC (silicon carbide) substrate is formed by slicing a single crystal SiC ingot.
  • a surface layer hereinafter, referred to as a processed alteration layer
  • distortions and scratches of crystals introduced at the time of slicing.
  • machining has been performed in order to remove this processing alteration layer and obtain an epiready SiC substrate capable of epitaxial growth for manufacturing a SiC device.
  • This machining includes a rough grinding process using abrasive grains such as diamond, a finish grinding process using abrasive grains having a smaller particle size than the abrasive grains used in the rough grinding process, and the mechanical action of the polishing pad.
  • CMP chemical mechanical polishing
  • the processed alteration layer has a crack layer having a large number of cracks (scratches) and a strain layer in which the crystal lattice is distorted.
  • This strain layer is introduced at a position deeper in the SiC substrate than the crack layer. Therefore, in order to remove the strain layer, it is necessary to remove single crystal SiC having a size of several tens of ⁇ m to several hundreds of ⁇ m. As a result, there is a problem that a lot of material loss occurs.
  • an object to be solved by the present invention is to provide a new technique for manufacturing a SiC substrate capable of reducing the amount of material loss when removing the strain layer.
  • the present invention that solves the above-mentioned problems is a method for manufacturing a SiC substrate, which includes a strain layer thinning step of thinning the strain layer by moving the strain layer of the SiC substrate body to the surface side.
  • a strain layer thinning step of thinning the strain layer by moving the strain layer of the SiC substrate body to the surface side.
  • a preferred embodiment of the present invention includes a strain layer removing step of removing the strain layer.
  • the strain layer thinning step when the depth of the strain layer before the strain layer thinning step is set as a reference depth, the strain layer after the strain layer thinning step is moved to the surface side of the reference depth. It ’s a process,
  • the strain layer removing step is a step of removing at least a part of the surface side of the reference depth. In this way, the amount of material loss of the SiC substrate can be reduced by moving and removing the strain layer to the surface side of the reference depth that has been conventionally removed.
  • the strain layer removing step is chemical mechanical polishing.
  • the strain layer removing step is chemical mechanical polishing.
  • the strain layer removing step is a thermal etching method. As described above, by adopting the thermal etching method in the strain layer removing step, the strain layer can be moved and the strain layer can be removed at the same time. That is, the strain layer thinning step and the strain layer removing step can be performed at the same time.
  • a preferred embodiment of the present invention further includes a slicing step of slicing an ingot to obtain a SiC substrate, and the slicing step is a thickness obtained by adding a thickness of 100 ⁇ m or less to the thickness of the SiC substrate after the strain layer removing step.
  • This is a step of obtaining a SiC substrate body having the above.
  • the slicing step is a step of obtaining a SiC substrate having a thickness obtained by adding a thickness of 50 ⁇ m or less to the thickness of the SiC substrate after the strain layer removing step.
  • a preferred embodiment of the present invention further includes an etching step of etching the surface of the SiC substrate body, and the etching step is wet etching.
  • the etching step is selected from the group consisting of a potassium hydroxide melt, a chemical solution containing hydrofluoric acid, a potassium permanganate-based chemical solution, and tetramethylammonium hydroxide as the etching solution. Includes one or more.
  • a preferred embodiment of the present invention includes a slicing step of slicing an ingot to obtain a SiC substrate, and includes the slicing step, the etching step, and the strain layer thinning step in this order.
  • the strain layer thinning step is a step of heating a SiC substrate in an environment containing Si elements.
  • the strain layer thinning step is a step of heating the SiC substrate in a semi-closed space including a Si element supply source and a C element supply source.
  • the strain layer thinning step is a step of heating the SiC substrate in a main body container made of a SiC material.
  • the strain layer thinning step is a step of making the SiC substrate and the SiC material relative to each other and heating the SiC substrate so that a temperature gradient is formed between the SiC substrate and the SiC material. ..
  • the strain layer thinning step is a step of heating a SiC substrate body in a Si vapor pressure environment.
  • the strain layer thinning step is a metastable solvent epitaxy method.
  • the heating temperature in the strain layer thinning step is 1400 ° C. or higher and 1600 ° C. or lower.
  • FIG. 1 shows an embodiment in which the strain layer 12 is thinned and removed with respect to the SiC substrate body 10 having the strain layer 12.
  • FIG. 2 shows an embodiment in which a SiC substrate 30 having a substrate thickness D is obtained from an ingot I having a thickness D0.
  • the strain layer 12 is moved (concentrated) to the surface side of the strain layer 12 of the SiC substrate body 10.
  • This is a method for manufacturing a SiC substrate 30, which includes a strain layer thinning step S1 for thinning.
  • the strain layer 12 after the strain layer thinning step is set to the reference depth. This is a step of moving the surface to the surface side of the 20th.
  • the present invention is a method for manufacturing a SiC substrate 30, which includes a strain layer removing step S2 for removing the strain layer 12 moved by the strain layer thinning step S1.
  • This strain layer removing step S2 is a step of removing at least a part of the surface side of the reference depth 20.
  • FIG. 1A shows an embodiment in which the strain layer 12 is moved to the surface side while maintaining the substrate thickness of the SiC substrate body 10.
  • FIG. 1B shows an embodiment in which the strain layer 12 is moved to the surface side while the SiC substrate body 10 is crystal-grown.
  • FIG. 1C shows an embodiment in which the strain layer 12 is moved to the surface side while etching the SiC substrate body 10.
  • the conventional method includes a strain layer removing step S2 for removing all of the strain layer 12. That is, in order to remove the strain layer 12, it is necessary to remove the SiC single crystal at least to a position reaching the reference depth 20. In this way, when all of the introduced strain layer 12 is removed, a large amount of material loss L will occur.
  • the strain layer 12 is moved (concentrated) to the surface side of the SiC substrate body 10 before the strain layer 12 is removed (or while the strain layer 12 is removed).
  • the strain layer thinning step S1 for thinning 12 is included. As a result, the amount of material loss L of the SiC substrate body 10 can be reduced as compared with the conventional method.
  • the amount of material loss L can be reduced by the strain layer thinning step S1. Therefore, the SiC substrate body 10 can be sliced with a substrate thickness D1 thinner than that of the conventional method.
  • FIG. 2A shows how four SiC substrates 30 having a substrate thickness D are obtained from an ingot I having a thickness D0.
  • the conventional method includes a strain layer removing step S2 for removing all of the strain layers 12 introduced into the SiC substrate body 10. Therefore, in order to manufacture the SiC substrate 30 having a substrate thickness D produced in the present invention, it is necessary to slice with a substrate thickness D2 thicker than the substrate thickness D1. In FIG. 2B, it is shown that three SiC substrates 30 having a substrate thickness D are obtained from an ingot I having a thickness D0.
  • the present invention including the strain layer thinning step S1 and the conventional method not including the strain layer thinning step S1.
  • the number of SiC substrates 30 obtained differs from that of the above.
  • the strain layer thinning step S1 for thinning the strain layer 12 by moving (concentrating) the strain layer 12 of the SiC substrate body 10 to the surface side is included, so that from one ingot.
  • the number of SiC substrates 30 to be taken can be increased, and the unit price per substrate can be lowered.
  • the slicing step S3, the etching step S4, the strain layer thinning step S1, and the strain layer removing step S2 will be described in detail in this order.
  • the slicing step S3 is a step of slicing the SiC substrate body 10 from the ingot I.
  • a multi-wire saw cutting method for cutting the ingot I at predetermined intervals by reciprocating a plurality of wires an electric discharge machining method for intermittently generating a plasma discharge to cut the ingot, and an ingot. Examples thereof include cutting using a laser that irradiates and condenses a laser in I to form a layer serving as a base point for cutting.
  • the substrate thickness of the SiC substrate body 10 is determined by the interval of cutting in this slicing step S3. This substrate thickness is set in consideration of the single crystal SiC (material loss L) that will be removed in a future process. As described above, since the slice thickness from Ingot I is set in consideration of the amount of material loss L after all the processing steps, the specific numerical values thereof have been described for all the steps. It will be described later.
  • the etching step S4 is a step of etching the surface of the SiC substrate body 10 after the slicing step S3.
  • the etching method of the etching step S4 includes a thermal etching method such as a SiVE method or a hydrogen etching method, a potassium hydroxide melt, a chemical solution containing hydrofluoric acid, a potassium permanganate-based chemical solution, and tetramethylammonium hydroxide.
  • An example is a wet etching method using a chemical solution or the like. Normally, any chemical solution used in wet etching can be used.
  • etching step S4 it is preferable to etch the surface of the SiC substrate body 10 with a potassium hydroxide melt.
  • a potassium hydroxide melt By etching the surface of the SiC substrate body 10 by so-called KOH etching, the surface can be flattened while removing impurities adhering in the slicing step S3.
  • the SiC substrate 10 after the slicing step S3 may be subjected to an etching step S4 using a potassium hydroxide melt, and then a strain layer thinning step S1 and a strain layer removing step S2. good.
  • the strain layer thinning step S1 is a step of heating the SiC substrate 10 to at least 1400 ° C. or higher in an environment containing Si elements. By heating the SiC substrate 10 in such an environment, the strain layer 12 can be moved and concentrated on the surface side of the SiC substrate 10 without carbonizing the surface of the SiC substrate 10.
  • a semi-stable solvent epitaxy that grows a single crystal SiC crystal by heating a sandwich structure in which a polycrystalline SiC and a single crystal SiC are arranged via the single crystal Si.
  • MSE Metal Organic Chemical Vapor Deposition
  • SiVE Si vapor pressure etching
  • the heat treatment environment of the SiC substrate 10 in the strain layer thinning step S1 is a vapor phase environment containing a Si element or a liquid phase environment containing a Si element.
  • the following methods can be exemplified.
  • the strain layer thinning step S1 is a step of heating the SiC substrate body 10 in a semi-closed space including a Si element supply source and a C element supply source.
  • the SiC substrate body 10 is arranged in the main body container 50 in which the SiC material 40 (Si element supply source and C element supply source) is exposed.
  • the SiC material 40 Si element supply source and C element supply source
  • the "quasi-closed space” in the present specification means a space in which the inside of the container can be evacuated, but at least a part of the vapor generated in the container can be confined.
  • This semi-closed space can be formed in the main body container 50 or the melting point container 70, which will be described later.
  • the SiC substrate body 10 can be exemplified by processing a single crystal SiC into a plate shape. Specifically, a SiC wafer or the like sliced into a disk shape from a SiC ingot produced by a sublimation method or the like can be exemplified. As the crystal polymorphism of single crystal SiC, any polymorphism can be adopted.
  • the SiC substrate body 10 that has undergone mechanical processing (for example, slicing, grinding / polishing) or laser processing has a strain layer 12 in which the crystal lattice is distorted due to processing damage and such processing damage is introduced. It has a bulk layer 11 and no bulk layer 11 (see FIG. 1). In order to manufacture a high-quality SiC substrate 30, it is preferable to remove the strain layer 12 and expose the bulk layer 11 to which no processing damage has been introduced.
  • a crack layer having a large number of cracks is introduced in addition to the strain layer 12 due to processing damage, but it is omitted because it is introduced at a position shallower than the strain layer 12.
  • the crack layer and the strain layer 12 are collectively referred to as a processed alteration layer.
  • the presence or absence and depth of the strain layer 12 can be confirmed by the SEM-EBSD method, TEM, ⁇ XRD, Raman spectroscopy, or the like.
  • the SiC material 40 includes a SiC substrate and a SiC container (main body container 50 itself). That is, it is possible to exemplify a form in which a SiC substrate, which is a SiC material 40, is arranged in a container separately from the SiC substrate body 10 (see FIGS. 4 and 5). In addition, a form in which at least a part of the container accommodating the SiC substrate body 10 is formed of the SiC material 40 can be exemplified (see FIG. 7). In this case, the entire container may be formed of the SiC material 40, or the portion facing the SiC substrate 10 may be formed of the SiC material 40. When single crystal SiC is used for the SiC material 40, any polytype can be used.
  • the heated semi-enclosed space be a vapor pressure environment of a mixed system of gas phase species containing Si element and gas phase species containing C element.
  • the vapor phase species containing the Si element include Si, Si 2 , Si 3 , Si 2 C, SiC 2 , and SiC.
  • the gas phase species containing the C element include Si 2 C, SiC 2 , SiC and C. That is, it is preferable that the SiC gas is present in the semi-closed space.
  • the heating temperature in the strain layer thinning step S1 is preferably set in the range of 1400 to 2300 ° C. Further, it is more preferably set in the range of 1400 to 1600 ° C.
  • the heating time in the strain layer thinning step S1 can be set to an arbitrary time so as to have a desired strain layer 12 depth.
  • the strain layer 12 By heating the SiC substrate 10 in such an environment, the strain layer 12 can be moved (concentrated) to the surface side, and the strain layer 12 can be thinned (see FIG. 3).
  • the SiC substrate body 10 and the SiC material 40 are arranged so as to face each other, and a temperature gradient is formed between the SiC substrate body 10 and the SiC material 40.
  • the strain layer 12 can be thinned while the SiC substrate body 10 is crystal-grown or etched.
  • [Strain layer thinning step S1 with crystal growth] 1 (b) and 4 are explanatory views showing an outline of the strain layer thinning step S1 accompanied by crystal growth.
  • the SiC substrate body 10 and the SiC material 40 are arranged so as to face each other, and a temperature gradient is provided between them for heating, so that the raw material (Si element) is transferred from the SiC material 40 to the SiC substrate body 10. And C element) can be transported to grow single crystal SiC.
  • the SiC substrate body 10 is placed in the semi-closed space where the SiC material 40 is exposed and heated in a temperature range of 1400 ° C. or higher and 2300 ° C. or lower. It is considered that the reaction is carried out continuously, and as a result, crystal growth proceeds (see FIG. 4 (b)).
  • the strain layer thinning step S1 accompanied by crystal growth involves a Si atom sublimation step of thermally sublimating Si atoms from the surface of the SiC material 40 and a reaction of the SiC material 40 with Si vapor in the semi-closed space.
  • the raw material reaches the steps of the SiC substrate body 10, a C atom sublimation step of sublimating the C atom remaining on the surface, a raw material transportation step of transporting the raw material to the surface of the SiC substrate body 10 using a temperature gradient or a chemical potential difference as a driving force. Includes a step-flow growth process to grow.
  • the SiC substrate body 10 and the SiC material 40 are arranged so as to face each other, and the SiC substrate body 10 is heated to the low temperature side and the SiC material 40 to the high temperature side. Is.
  • a crystal growth space X is formed between the SiC substrate body 10 and the SiC material 40, the SiC substrate body 10 can be crystal-grown by using the temperature gradient as a driving force, and the strain layer 12 is formed on the SiC substrate body 10. Can be moved to the surface side of.
  • [Strain layer thinning step S1 with etching] 1 (c) and 5 are explanatory views showing an outline of the strain layer thinning step S1 accompanied by etching.
  • the SiC substrate body 10 and the SiC material 40 are arranged so as to face each other, and a temperature gradient is provided between them to heat the SiC substrate body 10 to the SiC material 40 as a raw material (Si element). And C element) can be transported to etch the SiC substrate body 10.
  • the SiC substrate body 10 is placed in the semi-closed space where the SiC material 40 is exposed and heated in a temperature range of 1400 ° C. or higher and 2300 ° C. or lower. It is considered that the reaction is carried out continuously and the etching proceeds as a result (see FIG. 5 (b)).
  • the strain layer thinning step S1 accompanied by etching includes a Si atom sublimation step of thermally sublimating Si atoms from the surface of the SiC substrate body 10 and a C atom remaining on the surface of the SiC substrate body 10 and the inside of the semi-closed space. It includes a C atom sublimation step of sublimating from the surface of the SiC substrate body 10 by reacting the Si vapor of.
  • the strain layer thinning step S1 accompanied by etching is a step of arranging the SiC substrate body 10 and the SiC material 40 so as to face each other and heating the SiC substrate body 10 on the high temperature side and the SiC material 40 on the low temperature side. is there.
  • an etching space Y is formed between the SiC substrate body 10 and the SiC material 40, the SiC substrate body 10 is etched using the temperature gradient as a driving force, and the strain layer 12 is moved to the surface side of the SiC substrate body 10. Can be made to.
  • the strain layer removing step S2 is a step of removing the strain layer 12 thinned by the strain layer thinning step S1. Specifically, it is a step of removing the strain layer 12 that has moved to the surface side from the reference depth 20 which is the depth of the strain layer 12 before the strain layer thinning step S1, and is a step of removing the surface from the reference depth 20. This is a step of removing at least a part of the side (FIGS. 1 (a) to 1 (c)).
  • strain layer removing step S2 examples include the CMP method, the SIVE method, the hydrogen etching method, and the etching method described in the above-mentioned [Strain layer thinning step S1 accompanied by etching].
  • the strain layer removing step S2 in the conventional method includes a rough grinding step using abrasive grains such as diamond, a finish grinding step using abrasive grains having a smaller particle size than the abrasive grains used in the rough grinding step, and polishing.
  • the process of polishing is performed by combining the mechanical action of the pad and the chemical action of the slurry.
  • the strain layer 12 after the strain layer thinning step S1 is removed. Therefore, the strain layer 12 can be removed with a removal amount smaller than the strain layer depth (reference depth 20) conventionally introduced. As a result, the amount of the SiC substrate 10 removed in the strain layer removing step S2 of the present invention can be reduced as compared with the conventional method.
  • the strain layer thinning step S1 for thinning the strain layer 12 by moving the strain layer 12 of the SiC substrate body 10 to the surface side is included.
  • the amount of material loss L in the strain layer removing step S2 can be reduced.
  • the cost and processing time in the strain layer removing step S2 can be reduced.
  • the strain layer 12 depth (reference depth 20) of the SiC substrate body 10 before the strain layer thinning step S1 is 5 ⁇ m and the strain layer 12 depth is 1 ⁇ m by the strain layer thinning step S1.
  • 1 ⁇ m of the SiC substrate body 10 may be removed. That is, in the conventional method, it is necessary to remove the SiC substrate body 10 for 5 ⁇ m, but by including the strain layer thinning step S1, the material loss L for 4 ⁇ m can be reduced.
  • consumables grindstones, blades, abrasive grains, etc.
  • machining time required for machining can be reduced. Therefore, the cost in the strain layer removing step S2 can be significantly reduced.
  • the method for manufacturing a SiC substrate according to the present embodiment by adopting chemical mechanical polishing (CMP) in the strain layer removing step S2, an epiready surface can be obtained while reducing material loss L, cost, and processing time.
  • CMP chemical mechanical polishing
  • the SiC substrate 30 having the same can be manufactured.
  • the burden of CMP which is the finishing process of the conventional method, can be reduced.
  • the desired substrate thickness can be adjusted by adopting the strain layer thinning step S1 accompanied by crystal growth.
  • the strain layer thinning step S1 by adopting the strain layer thinning step S1 accompanied by etching, the strain layer thinning step S1 and the strain layer removing step S2 can be performed at the same time.
  • the introduction cost of the process and the equipment and the outsourcing cost can be reduced, and the cost can be reduced.
  • the heating temperature in the strain layer thinning step S1 is 1400 ° C. or higher and 1600 ° C. or lower.
  • the burden on the apparatus can be reduced.
  • the lower the temperature of the heat treatment apparatus the easier it can be introduced.
  • Table 1 summarizes an example of manufacturing a SiC substrate 30 having a substrate thickness of 350 ⁇ m in each of the methods for manufacturing a SiC substrate according to the present embodiment and the conventional method.
  • the amount of material loss L in the method for manufacturing the SiC substrate of the present embodiment is 50 ⁇ m as shown in Table 1. As described above, according to the present embodiment, it is possible to significantly reduce the amount of material loss L in the manufacture of the SiC substrate.
  • the substrate thickness D1 of the SiC substrate body 10 cut out from the ingot I in the slicing step S3 is set using this material loss L amount as an index. That is, the thickness obtained by adding the amount of material loss L to the substrate thickness D (thickness of the SiC substrate 30 at the end of surface processing) of the SiC substrate 30 to be finally obtained is set as the substrate thickness D1 at the time of slicing.
  • the amount of material loss L is added to the thickness of the SiC substrate 30 after the surface processing is completed to determine the substrate thickness D1 at the time of slicing.
  • surface processing refers to processing that reduces the thickness of the SiC substrate body 10, such as the etching step S4 and the strain layer removing step S2. That is, the substrate thickness D1 at the time of slicing is set by adding the amount of material loss L to the thickness of the SiC substrate 30 that has reached the point where the thickness does not decrease any more in the subsequent step.
  • the thickness D of the SiC substrate 30 is preferable to add to the lower limit of 37 ⁇ m or more, more preferably 40 ⁇ m or more, as the substrate thickness D1 at the time of slicing.
  • a thickness of 100 ⁇ m or less, more preferably 90 ⁇ m or less, still more preferably 80 ⁇ m or less, still more preferably 70 ⁇ m or less, still more preferably 60 ⁇ m or less, still more preferably 50 ⁇ m or less is added to the substrate thickness D of the SiC substrate 30. It is preferable to set the substrate thickness D1 at the time of slicing. This makes it possible to manufacture more SiC substrates 30 from one Ingot I.
  • the thickness D of the SiC substrate 30 it is common to remove 100 ⁇ m or more per 30 SiC substrates. Therefore, it is preferable to add the thickness D of the SiC substrate 30 to the upper limit of 100 ⁇ m or less, more preferably less than 100 ⁇ m, as the substrate thickness D1 at the time of slicing. As a result, more SiC substrates 30 can be manufactured as compared with the case where the conventional method generally used is used.
  • the substrate thickness D of the SiC substrate 30 that has undergone the slicing step S3 to the strain layer removing step S2 is typically 100 to 600 ⁇ m, more typically 150 to 550 ⁇ m, more typically 200 to 500 ⁇ m, and further. Typically 250-450 ⁇ m, more typically 300-400 ⁇ m can be exemplified. That is, it is preferable to add the amount of material loss L according to the method for manufacturing the SiC substrate of the present invention to the substrate thickness of these typical SiC substrates 30 to set the substrate thickness D1 at the time of slicing.
  • the substrate thickness D1 at the time of slicing is set to 387 ⁇ m or more as a lower limit. It is preferable to obtain the SiC substrate 30 having a thickness of preferably 390 ⁇ m or more, more preferably 400 ⁇ m or more in the slicing step S3.
  • the upper limit of the substrate thickness D1 at the time of slicing is 450 ⁇ m or less, more preferably 440 ⁇ m or less, still more preferably 430 ⁇ m or less, still more preferably 420 ⁇ m or less, still more preferably 410 ⁇ m or less, still more preferably 400 ⁇ m or less. It is preferable to obtain the substrate 30 in the slicing step S3.
  • a temperature gradient is formed between the main body container 50 capable of accommodating the SiC substrate body 10 and the SiC substrate body 10 and the SiC material 40.
  • a heating furnace 60 capable of heating is provided.
  • the main body container 50 is a fitting container including an upper container 51 and a lower container 52 that can be fitted to each other.
  • a minute gap 53 is formed in the fitting portion between the upper container 51 and the lower container 52, and the inside of the main container 50 can be exhausted (evacuated) from the gap 53.
  • the upper container 51 and the lower container 52 according to the present embodiment are made of polycrystalline SiC. Therefore, the main body container 50 itself may be the SiC material 40. Further, only the portion of the main body container 50 facing the SiC substrate body 10 may be made of the SiC material 40. In that case, a high melting point material (a material similar to the high melting point container 70 described later) can be used for the portion other than the SiC material 40.
  • a configuration in which the substrate-shaped SiC material 40 is separately accommodated may be adopted.
  • a spacer (a substrate holder 54 or the like) may be arranged between the substrate-shaped SiC material 40 and the SiC substrate body 10 to form a crystal growth space X or an etching space Y. It is desirable that the substrate holder 54 is made of the same high melting point material as the high melting point container 70.
  • the main body container 50 is configured to generate an atmosphere containing Si element and C element in the internal space when heated while accommodating the SiC substrate body 10.
  • the SiC material 40 composed of polycrystalline SiC is heated to form an atmosphere containing Si element and C element in the internal space.
  • the space in the heated main body container 50 becomes a vapor pressure environment of a mixed system of a gas phase species containing a Si element and a gas phase species containing a C element.
  • the vapor phase species containing the Si element include Si, Si 2 , Si 3 , Si 2 C, SiC 2 , and SiC.
  • the gas phase species containing the C element include Si 2 C, SiC 2 , SiC and C. That is, it is preferable that the SiC gas is present in the semi-closed space.
  • the crystal growth space X or the etching space Y is a space for transporting raw materials from the SiC substrate 10 to the SiC material 40 by using a temperature gradient provided between the SiC substrate 10 and the SiC material 40 as a driving force. This is a space for transporting raw materials from the SiC material 40 to the SiC substrate body 10.
  • the temperature of the SiC substrate 10 is low and the temperature of the SiC material 40 is high.
  • the body 10 is arranged (see FIG. 4).
  • the SiC substrate body 10 and the SiC material 40 are arranged so as to face each other and heated so that the SiC substrate body 10 is on the low temperature side and the SiC material 40 is on the high temperature side, the SiC substrate body 40 to the SiC substrate body are heated.
  • the raw material is transported to No. 10, and single crystal SiC grows on the SiC substrate body 10. That is, a crystal growth space X is formed between the SiC material 40 and the SiC substrate body 10.
  • the temperature on the side of the SiC substrate 10 is high and the temperature of the SiC material 40 is low.
  • the substrate 10 is arranged (see FIG. 5).
  • the SiC substrate body 10 and the SiC material 40 are arranged so as to face each other and heated so that the SiC substrate body 10 is on the high temperature side and the SiC material 40 is on the low temperature side, the SiC substrate body 10 to the SiC material 40 are heated.
  • the raw material is transported to 40, and the SiC substrate body 10 is etched. That is, an etching space Y is formed between the SiC material 40 and the SiC substrate body 10.
  • the heating furnace 60 includes a main heating chamber 61 capable of heating an object to be processed (SiC substrate body 10 or the like) to a temperature of 1000 ° C. or higher and 2300 ° C. or lower, and a heating object at 500 ° C.
  • a preheating chamber 62 capable of preheating to the above temperature
  • a refractory container 70 capable of accommodating the main body container 50
  • a moving means 63 capable of moving the refractory container 70 from the preheating chamber 62 to the main heating chamber 61. It is equipped with a moving table).
  • the heating chamber 61 is formed in a regular hexagonal shape in a plan sectional view, and the melting point container 70 is arranged inside the heating chamber 61.
  • a heater 64 (mesh heater) is provided inside the heating chamber 61.
  • a multilayer heat-reflecting metal plate is fixed to the side wall or ceiling of the heating chamber 61 (not shown). The multilayer heat-reflecting metal plate is configured to reflect the heat of the heating heater 64 toward the substantially central portion of the main heating chamber 61.
  • the heating heater 64 is arranged so as to surround the melting point container 70 in which the object to be processed is housed, and further, the multilayer heat-reflecting metal plate is arranged outside the heating heater 64, so that the temperature is 1000 ° C.
  • the temperature can be raised to 2300 ° C. or lower.
  • a resistance heating type heater or a high frequency induction heating type heater can be used as the heating heater 64.
  • the heating heater 64 may adopt a configuration capable of forming a temperature gradient in the melting point container 70.
  • the heating heater 64 may be configured so that many heaters are arranged on the upper side. Further, the heating heater 64 may be configured so that the width increases toward the upper side. Alternatively, the heater 64 may be configured so that the electric power supplied can be increased toward the upper side.
  • a vacuum forming valve 65 for exhausting the inside of the main heating chamber 61
  • an inert gas injection valve 66 for introducing an inert gas into the main heating chamber 61
  • a vacuum gauge 67 for measuring the degree of vacuum inside is connected.
  • the vacuum forming valve 65 is connected to a vacuum drawing pump that exhausts the inside of the main heating chamber 61 to create a vacuum (not shown). With the vacuum forming valve 65 and the vacuum pulling pump, the degree of vacuum in the main heating chamber 61 can be adjusted to , for example, 10 Pa or less, more preferably 1 Pa or less, still more preferably 10 -3 Pa or less. As this evacuation pump, a turbo molecular pump can be exemplified.
  • the Inert gas injection valve 66 is connected to the Inactive gas supply source (not shown). With the inert gas injection valve 66 and the inert gas supply source, the inert gas can be introduced into the heating chamber 61 in the range of 10-5 to 10000 Pa. As the inert gas, Ar, He, N 2, or the like can be selected.
  • the inert gas injection valve 66 is a dopant gas supply means capable of supplying the dopant gas into the main body container 50. That is, the doping concentration of the growth layer can be adjusted by selecting a dopant gas (for example, N 2 or the like) as the inert gas.
  • a dopant gas for example, N 2 or the like
  • the preheating chamber 62 is connected to the main heating chamber 61, and the high melting point container 70 can be moved by the moving means 63.
  • the preheating chamber 62 of the present embodiment is configured so that the temperature can be raised by the residual heat of the heating heater 64 of the main heating chamber 61. For example, when the temperature of the main heating chamber 61 is raised to 2000 ° C., the temperature of the preheating chamber 62 is raised to about 1000 ° C. Degassing treatment can be performed.
  • the moving means 63 is configured to be movable between the main heating chamber 61 and the preheating chamber 62 on which the melting point container 70 is placed. Since the transfer between the main heating chamber 61 and the preheating chamber 62 by the moving means 63 is completed in about 1 minute at the shortest, the temperature can be raised or lowered at 1 to 1000 ° C./min. Since the rapid temperature rise and the rapid temperature decrease can be performed in this way, it is possible to observe a surface shape having no history of low temperature growth during temperature rise and temperature reduction, which was difficult with conventional devices. Further, in FIG. 6, the preheating chamber 62 is arranged below the main heating chamber 61, but the present invention is not limited to this, and the preheating chamber 62 may be arranged in any direction.
  • the moving means 63 is a moving table on which the melting point container 70 is placed. A small amount of heat is released from the contact portion between the moving table and the melting point container 70. Thereby, a temperature gradient can be formed in the high melting point container 70 (and in the main body container 50). That is, in the heating furnace 60 of the present embodiment, since the bottom of the melting point container 70 is in contact with the moving table, the temperature gradient is such that the temperature decreases from the upper container 71 to the lower container 72 of the melting point container 70. Is provided. It is desirable that this temperature gradient is formed along the front and back directions of the SiC substrate body 10. Further, as described above, a temperature gradient may be formed by the configuration of the heater 64. Further, the heating heater 64 may be configured so that the temperature gradient can be reversed.
  • the heating furnace 60 forms an atmosphere containing a Si element, and the main body container 50 can be heated in this atmosphere.
  • the atmosphere containing the Si element in the heating furnace 60 according to the present embodiment is formed by using the high melting point container 70 and the Si steam supply source 74. As long as the method can form an atmosphere containing Si element around the main body container 50, it can be naturally adopted.
  • the high melting point container 70 is configured to contain a high melting point material.
  • a general purpose heat-resistant member C, W is a refractory metal, Re, Os, Ta, Mo , Ta 9 C 8 is a carbide, HfC, TaC, NbC, ZrC , Ta 2 C, TiC, WC, MoC, a nitride HfN, TaN, BN, Ta 2 N, ZrN, TiN, HfB 2, TaB 2, ZrB 2, NB 2, TiB 2 is a boride, it can be exemplified polycrystalline SiC.
  • the high melting point container 70 is a fitting container including an upper container 71 and a lower container 72 that can be fitted to each other, and is configured to be able to accommodate the main body container 50.
  • a minute gap 73 is formed in the fitting portion between the upper container 71 and the lower container 72, and the inside of the high melting point container 70 can be exhausted (evacuated) from the gap 73.
  • the high melting point container 70 preferably has a Si steam supply source 55 capable of supplying the vapor pressure of a vapor phase species containing a Si element in the high melting point container 70.
  • the Si vapor supply source 55 may have a configuration in which Si vapor is generated in the melting point container 70 at the time of heating, and examples thereof include solid Si (Si pellets such as single crystal Si pieces and Si powder) and Si compounds. be able to.
  • the SiC substrate manufacturing apparatus employs TaC as the material of the melting point container 70 and tantalum Silicide as the Si vapor supply source 55. That is, as shown in FIGS. 4 and 5, a tantalum Silicide layer is formed inside the melting point container 70, and Si vapor is supplied into the container from the tantalum Silicide layer during heating, so that the Si vapor pressure environment Is configured to form. In addition to this, any configuration can be adopted as long as the vapor pressure of the vapor phase species containing the Si element is formed in the melting point container 70 during heating.
  • Example 1 Movement of strain layer>
  • the SiC substrate body 10 after the slicing step S3 was housed in the main body container 50 and the melting point container 70 (see FIG. 7), and heat-treated under the following heat treatment conditions.
  • the main body container 50 is formed of polycrystalline SiC so that the main body container 50 itself functions as a SiC material 40 (Si element supply source and C element supply source).
  • the depth of the strain layer 12 was confirmed by the SEM-EBSD method.
  • the strain layer 12 can also be confirmed by TEM, ⁇ XRD, or Raman spectroscopy.
  • Heating treatment conditions The SiC substrate body 10 arranged under the above-mentioned conditions was heat-treated under the following conditions. Heating temperature: 1500 ° C Heating time: 10h Etching amount: 40 nm Temperature gradient: 1 ° C / mm This heating chamber vacuum degree: 10-5 Pa
  • the lattice strain of the SiC substrate 10 can be obtained by comparing with a reference crystal lattice as a reference.
  • the SEM-EBSD method can be used as a means for measuring this lattice strain.
  • the SEM-EBSD method is a method (Electron Backscattering Diffraction) that enables strain measurement of a minute region based on the Kikuchi line diffraction pattern obtained by electron backscattering in a scanning electron microscope (SEM). : EBSD).
  • the amount of lattice strain can be obtained by comparing the diffraction pattern of the reference crystal lattice as a reference with the diffraction pattern of the measured crystal lattice.
  • a reference point is set in a region where lattice distortion is not considered to occur. That is, it is desirable to arrange the reference point in the region of the bulk layer 11. It is a well-established theory that the depth of the strain layer 12 is usually about 10 ⁇ m. Therefore, the reference point may be set at a position having a depth of about 20 to 35 ⁇ m, which is considered to be sufficiently deeper than the strain layer 12.
  • the diffraction pattern of the crystal lattice at this reference point is compared with the diffraction pattern of the crystal lattice in each measurement region measured at a pitch on the order of nanometers. This makes it possible to calculate the amount of lattice strain in each measurement region with respect to the reference point.
  • the presence or absence of the strain layer 12 can be determined. That is, when strain is introduced due to processing damage, lattice strain is generated in the SiC substrate body 10, so that stress is observed by the SEM-EBSD method.
  • the strain layer 12 existing in the SiC substrate body 10 of Example 1 before and after the strain layer thinning step S1 was observed by the SEM-EBSD method. The results are shown in FIGS. 8 (a) and 8 (b).
  • the cross section of the SiC substrate 10 before and after the strain layer thinning step S1 of Example 1 was measured using a scanning electron microscope under the following conditions.
  • FIG. 8A is a cross-sectional SEM-EBSD imaging image of the SiC substrate body 10 before the strain layer thinning step S1 in Example 1.
  • a lattice strain having a depth of 3.5 ⁇ m was observed in the SiC substrate body 10. This is the lattice strain introduced at the time of the slicing step S3, and it can be seen that the strain layer 12 is provided.
  • compressive stress is observed.
  • FIG. 8B is a cross-sectional SEM-EBSD imaging image of the SiC substrate body 10 after the strain layer thinning step S1 in Example 1.
  • a lattice strain having a depth of 1.3 ⁇ m was observed in the SiC substrate body 10. Since the etching amount during the heat treatment is 40 nm, it can be seen that the strain layer 12 has moved and concentrated on the surface side by about 2.2 ⁇ m. Further, by lengthening the heating time, the strain layer 12 can be further moved to the surface side. In this way, by heat-treating the SiC substrate body 10 in the semi-closed space including the Si element supply source and the C element supply source, the strain layer 12 can be moved and concentrated on the surface side of the SiC substrate body 10. ..
  • the region removed as the material loss in the conventional method can be reduced or reduced.
  • SiC substrate body 11
  • Bulk layer 12
  • Strain layer 20
  • Reference depth 30
  • SiC substrate 40
  • SiC material 50
  • Main body container 51
  • Upper container 52
  • Lower container 53
  • Gap 54
  • Substrate holder 55
  • Si steam supply source 60
  • Heating furnace 61
  • Heating chamber 62
  • Preheating Room 63
  • Transportation means 64
  • Heating heater 65
  • Vacuum forming valve 66
  • Inactive gas injection valve 67
  • Vacuum gauge 70
  • Refrigerating container 71
  • Lower container 72
  • Gap 74
  • Si Steam supply source
  • X Crystal growth space Y Etching space
  • S1 Strain layer thin Chemicalization process S2
  • S3 Slicing process
  • S4 Etching process I Ingot

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明の解決しようとする課題は、歪層を除去する際の素材ロスを低減可能なSiC基板を製造するための新規の技術を提供することにある。 本発明は、SiC基板体10の歪層12を表面側に移動させることで歪層12を薄くする歪層薄化工程S1を含む、SiC基板30の製造方法である。このように、歪層12を表面側に移動させる(集中させる)歪層薄化工程S1を含むことで、歪層12を除去する際の素材ロスLを低減することができる。

Description

SiC基板の製造方法
 本発明は、SiC基板の製造方法に関する。
 SiC(炭化ケイ素)基板は、単結晶SiCのインゴットをスライスすることにより形成される。スライスされたSiC基板の表面には、スライス時に導入された結晶の歪みや傷等を有する表面層(以下、加工変質層という。)が存在する。デバイス製造工程にて歩留まりを低下させないためには、この加工変質層を除去する必要がある。
 従来、この加工変質層を除去し、SiCデバイス製造のためのエピタキシャル成長を行うことができるエピレディなSiC基板を得るため、機械加工が行われていた。この機械加工としては、ダイヤモンド等の砥粒を用いた粗研削工程、粗研削工程で用いた砥粒よりも粒径の小さい砥粒を用いた仕上げ研削工程、そして、研磨パッドの機械的な作用とスラリーの化学的な作用を併用して研磨を行う化学機械研磨(Chemical Mechanical Polishing:CMP)工程という段階を経ることが一般的であった(例えば、特許文献1参照)。
特開2015-5702号公報
 ところで、加工変質層は、多数のクラック(傷)を有するクラック層と、結晶格子に歪みが生じた歪層と、を有していると考えられている。この歪層は、クラック層よりもSiC基板の深い位置に導入される。そのため、歪層を除去するには、数十μm~数百μmもの単結晶SiCを除去する必要があった。これにより、多くの素材ロスが生じてしまうという問題があった。
 特に、CMPにより歪層の除去を行う場合には、数μm~十数μmもの単結晶SiCを数時間かけて除去する必要があり、CMPにかかるコストが高いという問題や、加工時間が長いという問題があった。
 上述した問題に鑑み、本発明の解決しようとする課題は、歪層を除去する際の素材ロス量を低減することができるSiC基板を製造するための新規の技術を提供することにある。
 上述した課題を解決する本発明は、SiC基板体の歪層を表面側に移動させることで前記歪層を薄くする歪層薄化工程を含む、SiC基板の製造方法である。
 このように、歪層を表面側に移動させる(集中させる)工程を含むことで、後に行う歪層を除去する歪層除去工程での、SiC基板体の素材ロス量を低減することができる。さらには、歪層除去工程おける加工コストや加工時間を低減することができる。
 本発明の好ましい形態では、前記歪層を除去する歪層除去工程を含み、
 前記歪層薄化工程は、前記歪層薄化工程前の歪層の深さを基準深さとした場合において、前記歪層薄化工程後の歪層を前記基準深さよりも表面側に移動させる工程であり、
 前記歪層除去工程は、前記基準深さよりも表面側の少なくとも一部を除去する工程である。
 このように、従来除去されていた基準深さよりも表面側へ歪層を移動させ、除去することにより、SiC基板体の素材ロス量を低減することができる。
 本発明の好ましい形態では、前記歪層除去工程は、化学機械研磨である。
 このように、SiC基板体の歪層を表面側に移動させることで前記歪層を薄くした後に化学機械研磨を施すことにより、素材ロス量とコストを低減しつつ、エピレディな表面を形成することができる。
 本発明の好ましい形態では、前記歪層除去工程は、熱エッチング法である。
 このように、歪層除去工程に熱エッチング法を採用することで、歪層の移動と、歪層の除去と、を同時に行うことができる。すなわち、歪層薄化工程と歪層除去工程を同時に行うことができる。
 本発明の好ましい形態では、インゴットをスライスしてSiC基板体を得るスライス工程をさらに含み、前記スライス工程は、前記歪層除去工程後におけるSiC基板体の厚みに、100μm以下の厚みを加算した厚みを有するSiC基板体を得る工程である。
 また、前記スライス工程は、前記歪層除去工程後におけるSiC基板体の厚みに、50μm以下の厚みを加算した厚みを有するSiC基板体を得る工程である。
 このような厚みでSiC基板体をスライスすることで、1インゴットからのSiC基板体の取り枚数を増やすことができ、1枚当たりの単価を下げることができる。
 本発明の好ましい形態では、前記SiC基板体の表面をエッチングするエッチング工程をさらに含み、前記エッチング工程は、ウェットエッチングである。
 このように、SiC基板体をウェットエッチングすることにより、スライス工程にて付着した不純物を除去しつつ表面を平坦化することができる。
 本発明の好ましい形態では、前記エッチング工程は、エッチング液として、水酸化カリウム溶融液、フッ化水素酸を含む薬液、過マンガン酸カリウム系の薬液及び水酸化テトラメチルアンモニウムからなる群から選択される1種又は2種以上を含む。
 本発明の好ましい形態では、インゴットをスライスしてSiC基板体を得るスライス工程を含み、前記スライス工程、前記エッチング工程、前記歪層薄化工程をこの順で含む。
 本発明の好ましい形態では、前記歪層薄化工程は、Si元素を含む環境下でSiC基板体を加熱する工程である。
 本発明の好ましい形態では、前記歪層薄化工程は、Si元素供給源およびC元素供給源を含む準閉鎖空間内で、前記SiC基板体を加熱する工程である。
 本発明の好ましい形態では、前記歪層薄化工程は、SiC材料で構成された本体容器内で前記SiC基板体を加熱する工程である。
 本発明の好ましい形態では、前記歪層薄化工程は、SiC基板体とSiC材料とを相対させて、SiC基板体とSiC材料との間に温度勾配が形成されるように加熱する工程である。
 本発明の好ましい形態では、前記歪層薄化工程は、Si蒸気圧環境下でSiC基板体を加熱する工程である。
 本発明の好ましい形態では、前記歪層薄化工程は、準安定溶媒エピタキシー法である。
 本発明の好ましい形態では、前記歪層薄化工程の加熱温度は、1400℃以上1600℃以下である。
 開示した技術によれば、歪層を除去する際の素材ロス量を低減可能な、SiC基板を製造するための新規の技術を提供することができる。
 他の課題、特徴および利点は、図面および特許請求の範囲と共に取り上げられる際に、以下に記載される発明を実施するための形態を読むことにより明らかになるであろう。
本発明および従来法のSiC基板の製造工程の説明図である。 実施の形態にかかるSiC基板の製造工程の説明図である。 実施の形態にかかる歪層薄化工程の概要を示す説明図である。 実施の形態にかかる歪層薄化工程の概要を示す説明図である。 実施の形態にかかる歪層薄化工程の概要を示す説明図である。 実施の形態にかかるSiC基板の製造装置の説明図である。 実施例1にかかるSiC基板の製造装置の説明図である。 実施例1にかかるSiC基板の説明図である。
 以下、本発明の好ましい実施の形態について、図を用いて詳細に説明する。本発明の技術的範囲は、添付図面に示した実施の形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、適宜変更が可能である。
《SiC基板の製造方法》
 図1および図2は、本発明の実施の形態にかかるSiC基板の製造方法と、従来法にかかるSiC基板の製造方法と、を比較する説明図である。
 図1は、歪層12を有するSiC基板体10に対し、歪層12を薄くして除去する実施の形態を示している。一方、図2は、厚みD0のインゴットIから、基板厚みDのSiC基板30を得る実施の形態を示している。
 本発明は、図1(a)~図1(c),図2(a)に示すように、SiC基板体10の歪層12を表面側に移動させる(集中させる)ことで歪層12を薄くする歪層薄化工程S1を含む、SiC基板30の製造方法である。
 具体的には、歪層薄化工程S1は、歪層薄化工程前の歪層12の深さを基準深さ20とした場合において、歪層薄化工程後の歪層12を、基準深さ20よりも表面側に移動させる工程である。
 また、本発明は、歪層薄化工程S1により移動した歪層12を除去する歪層除去工程S2を含む、SiC基板30の製造方法である。この歪層除去工程S2は、基準深さ20よりも表面側の少なくとも一部を除去する工程である。
 図1(a)は、SiC基板体10の基板厚みを保ったまま、歪層12を表面側に移動させる実施の形態を示している。図1(b)は、SiC基板体10を結晶成長させつつ、歪層12を表面側に移動させる実施の形態を示している。図1(c)は、SiC基板体10をエッチングしつつ、歪層12を表面側に移動させる実施の形態を示している。
 一方、従来法は、図1(d)に示すように、歪層12の全てを除去する歪層除去工程S2を含む。すなわち、歪層12を除去するためには、少なくとも基準深さ20に至る位置までSiC単結晶を除去する必要がある。このように、導入された歪層12の全てを除去する場合には、多くの素材ロスLが発生することとなる。
 すなわち、本発明によれば、歪層12を除去する前に(若しくは、歪層12を除去すると共に)、SiC基板体10の歪層12を表面側に移動させる(集中させる)ことで歪層12を薄くする歪層薄化工程S1を含む。これにより、従来法に比して、SiC基板体10の素材ロスL量を低減することができる。
 また、図2(a)に示した本発明の実施の形態は、インゴットIをスライスしてSiC基板体10を得るスライス工程S3と、SiC基板体10の表面をエッチングするエッチング工程S4と、SiC基板体10の歪層12を表面側に移動させる(集中させる)ことで歪層12を薄くする歪層薄化工程S1と、この移動させた歪層12を除去する歪層除去工程S2と、を含むSiC基板30の製造方法である。
 本発明によれば、歪層薄化工程S1により素材ロスL量を低減することできる。そのため、従来法よりも薄い基板厚みD1でSiC基板体10をスライスすることができる。この図2(a)においては、厚みD0のインゴットIから基板厚みDのSiC基板30を4枚得る様子が示されている。
 一方、従来法は、図2(b)に示すように、SiC基板体10に導入された歪層12の全てを除去する歪層除去工程S2を含む。そのため、本発明で製造される基板厚みDのSiC基板30を製造するためには、基板厚みD1よりも厚い基板厚みD2でスライスする必要がある。この図2(b)においては、厚みD0のインゴットIから、基板厚みDのSiC基板30を3枚得る様子が示されている。
 このように、厚みD0のインゴットIを出発点として、同じ基板厚みDのSiC基板30を得る場合において、歪層薄化工程S1を含む本発明と、歪層薄化工程S1を含まない従来法とでは、得られるSiC基板30の枚数が異なる。
 すなわち、本実施の形態によれば、SiC基板体10の歪層12を表面側に移動させる(集中させる)ことで歪層12を薄くする歪層薄化工程S1を含むことにより、1インゴットからのSiC基板30の取り枚数を増やすことができ、1枚当たりの単価を下げることができる。
 以下、図2に示した実施の形態に沿って、スライス工程S3,エッチング工程S4,歪層薄化工程S1,歪層除去工程S2の順に、詳細に説明する。
〈スライス工程〉
 スライス工程S3は、インゴットIからSiC基板体10をスライスする工程である。スライス工程S3のスライス手法としては、複数本のワイヤーを往復運動させることでインゴットIを所定の間隔で切断するマルチワイヤーソー切断や、プラズマ放電を断続的に発生させて切断する放電加工法、インゴットI中にレーザーを照射・集光させて切断の基点となる層を形成するレーザーを用いた切断、等を例示できる。
 このスライス工程S3にて切断される間隔により、SiC基板体10の基板厚みが決定される。この基板厚みは、今後の工程で除去される単結晶SiC(素材ロスL)を考慮した厚みに設定される。このように、インゴットIからのスライス厚みは、全ての加工工程を経た後の素材ロスL量を考慮して設定されるため、その具体的な数値については、全ての工程についての説明を行った後に説明する。
〈エッチング工程〉
 エッチング工程S4は、スライス工程S3後のSiC基板体10の表面をエッチングする工程である。エッチング工程S4のエッチング手法としては、SiVE法や水素エッチング法等の熱エッチング法、水酸化カリウム溶融液、フッ化水素酸を含む薬液、過マンガン酸カリウム系の薬液、水酸化テトラメチルアンモニウムを含む薬液等を用いたウェットエッチング法を例示できる。なお、通常、ウェットエッチングで用いられる薬液であれば採用することができる。
 中でも、エッチング工程S4は、水酸化カリウム溶融液を用いて前記SiC基板体10の表面をエッチングすることが好ましい。いわゆるKOHエッチングにより、SiC基板体10の表面をエッチングすることにより、スライス工程S3にて付着した不純物を除去しつつ表面を平坦化することができる。
 具体的には、スライス工程S3後のSiC基板体10に対して、水酸化カリウム溶融液を用いたエッチング工程S4を施し、次いで、歪層薄化工程S1および歪層除去工程S2を施しても良い。
〈歪層薄化工程〉
 歪層薄化工程S1は、Si元素を含む環境下で、SiC基板体10を少なくとも1400℃以上に加熱する工程である。このような環境下でSiC基板体10を加熱することにより、SiC基板体10表面を炭化させることなく、歪層12をSiC基板体10の表面側に移動・集中させることができる。
 歪層薄化工程S1に採用可能な手法としては、多結晶SiCと単結晶SiCとを単結晶Siを介して配置するサンドイッチ構造を加熱することで、単結晶SiCを結晶成長させる準安定溶媒エピタキシー(Metastable Solvent Epitaxy:MSE)法や、Si蒸気圧下で加熱することで単結晶SiCをエッチングするSi蒸気圧エッチング(Si-Vapor Etching:SiVE)法を、例示することができる。
 すなわち、歪層薄化工程S1におけるSiC基板体10の熱処理環境は、Si元素を含む気相環境下、又は、Si元素を含む液相環境下であることが望ましい。
 上述したSiVE法やMSE法の他に、以下の手法を例示することができる。
 本発明の実施の形態にかかる歪層薄化工程S1は、Si元素供給源およびC元素供給源を含む準閉鎖空間内で、SiC基板体10を加熱する工程である。
 具体的には、図3に示すように、SiC材料40(Si元素供給源およびC元素供給源)を露出させた本体容器50内に、SiC基板体10を配置する。この本体容器50を加熱することにより、容器内にSi元素を含む気相環境を形成することができる。
 なお、本明細書における「準閉鎖空間」とは、容器内の真空引きは可能であるが、容器内に発生した蒸気の少なくとも一部を閉じ込め可能な空間のことをいう。この準閉鎖空間は、後述する本体容器50内や高融点容器70内に形成することができる。
 SiC基板体10は、単結晶SiCを板状に加工したものを例示することができる。具体的には、昇華法等で作製したSiCインゴットから円盤状にスライスしたSiCウェハ等を例示できる。なお、単結晶SiCの結晶多型としては、何れのポリタイプのものも採用することができる。
 通常、機械的な加工(例えば、スライスや研削・研磨)やレーザー加工を経たSiC基板体10は、加工ダメージにより結晶格子に歪みが生じた歪層12と、このような加工ダメージが導入されていないバルク層11と、を有している(図1参照)。高品質なSiC基板30を製造するためには、歪層12を除去し、加工ダメージが導入されていないバルク層11を表出させることが好ましい。
 なお、通常、加工ダメージにより、歪層12の他に、多数のクラック(傷)を有するクラック層が導入されるが、歪層12よりも浅い位置に導入されるため省略している。このクラック層や歪層12を合わせて加工変質層という。
 この歪層12の有無や深さは、SEM-EBSD法やTEM、μXRD、ラマン分光法等で確認することができる。
 SiC材料40は、SiC製基板やSiC製容器(本体容器50自体)を含む。すなわち、SiC基板体10とは別に、SiC材料40となるSiC製の基板を容器内に配置する形態を例示することができる(図4および図5参照)。
 また、SiC基板体10を収容する容器の少なくとも一部を、SiC材料40で形成する形態を例示することができる(図7参照)。この場合、容器全体をSiC材料40で形成しても良いし、SiC基板体10と相対する部分をSiC材料40で形成しても良い。
 なお、SiC材料40に単結晶SiCを採用する場合には、何れのポリタイプのものも採用することができる。
 加熱された準閉鎖空間内は、Si元素を含む気相種およびC元素を含む気相種の混合系の蒸気圧環境となることが望ましい。このSi元素を含む気相種としては、Si,Si,Si,SiC,SiC,SiCが例示できる。また、C元素を含む気相種としては、SiC,SiC,SiC,Cが例示できる。すなわち、SiC系ガスが準閉鎖空間に存在している状態となるのが好ましい。
 歪層薄化工程S1における加熱温度は、好ましくは1400~2300℃の範囲で設定される。また、更に好ましくは1400~1600℃の範囲で設定される。
 歪層薄化工程S1における加熱時間は、所望の歪層12深さとなるよう任意の時間に設定することができる。
 このような環境でSiC基板体10を加熱することにより、歪層12を表面側に移動させる(集中させる)ことができ、歪層12を薄くすることができる(図3参照)。
 また、本実施の形態にかかる歪層薄化工程S1は、SiC基板体10とSiC材料40とを相対させて配置し、SiC基板体10とSiC材料40との間に温度勾配が形成されるように加熱することで、SiC基板体10を結晶成長又はエッチングしつつ、歪層12を薄くすることができる。
 以下、エッチングを伴う場合と結晶成長を伴う場合に分けて詳細に説明する。
[結晶成長を伴う歪層薄化工程S1]
 図1(b)および図4は、結晶成長を伴う歪層薄化工程S1の概要を示す説明図である。図4に示すように、SiC基板体10とSiC材料40とを相対させて配置し、これらの間に温度勾配を設けて加熱することで、SiC材料40からSiC基板体10へ原料(Si元素およびC元素)を輸送し、単結晶SiCを成長させることが可能である。
 この歪層薄化工程S1においては、SiC材料40が露出した準閉鎖空間にSiC基板体10を配置し、1400℃以上2300℃以下の温度範囲で加熱することで、以下1)~5)の反応が持続的に行われ、結果として結晶成長が進行すると考えられる(図4(b)参照)。
 1) Poly-SiC(s)→Si(v)+C(s)
 2) 2C(s)+Si(v)→SiC(v)
 3) C(s)+2Si(v)→SiC(v)
 4) Si(v)+SiC(v)→2SiC(s)
 5) SiC(v)→Si(v)+SiC(s)
 1)の説明:SiC材料(Poly-SiC(s))が加熱されることで、熱分解によってSiCからSi原子(Si(v))が脱離する。
 2)および3)の説明:Si原子(Si(v))が脱離することで残存したC原子(C(s))は、準閉鎖空間内のSi蒸気(Si(v))と反応する。その結果、C原子(C(s))は、SiC又はSiC等となって準閉鎖空間内に昇華する。
 4)および5)の説明:昇華したSiC又はSiC等が、温度勾配(又は化学ポテンシャル差)によってSiC基板体10のテラスに到達・拡散しステップに到達することで、下地のSiC基板体10の多型を引き継いで成長する(ステップフロー成長)。
 このように、結晶成長を伴う歪層薄化工程S1は、SiC材料40の表面からSi原子を熱昇華させるSi原子昇華工程と、準閉鎖空間内のSi蒸気と反応させることでSiC材料40の表面に残存したC原子を昇華させるC原子昇華工程と、温度勾配や化学ポテンシャル差を駆動力として原料をSiC基板体10表面まで輸送する原料輸送工程と、SiC基板体10のステップに原料が到達して成長するステップフロー成長工程と、を含む。
 すなわち、結晶成長を伴う歪層薄化工程S1は、SiC基板体10とSiC材料40とを相対させて配置し、SiC基板体10が低温側、SiC材料40が高温側となるよう加熱する工程である。これにより、SiC基板体10とSiC材料40との間に結晶成長空間Xが形成され、温度勾配を駆動力としてSiC基板体10を結晶成長させることができると共に、歪層12をSiC基板体10の表面側に移動させることができる。
[エッチングを伴う歪層薄化工程S1]
 図1(c)および図5は、エッチングを伴う歪層薄化工程S1の概要を示す説明図である。図5に示すように、SiC基板体10とSiC材料40とを相対させて配置し、これらの間に温度勾配を設けて加熱することで、SiC基板体10からSiC材料40へ原料(Si元素およびC元素)を輸送し、SiC基板体10をエッチングさせることが可能である。
 この歪層薄化工程S1においては、SiC材料40が露出した準閉鎖空間にSiC基板体10を配置し、1400℃以上2300℃以下の温度範囲で加熱することで、以下1)~5)の反応が持続的に行われ、結果としてエッチングが進行すると考えられる(図5(b)参照)。
 1) SiC(s)→Si(v)+C(s)
 2) 2C(s)+Si(v)→SiC(v)
 3) C(s)+2Si(v)→SiC(v)
 4) Si(v)+SiC(v)→2SiC(s)
 5) SiC(v)→Si(v)+SiC(s)
 1)の説明:SiC基板体10(SiC(s))が加熱されることで、熱分解によってSiC基板体10表面からSi原子(Si(v))が脱離する(Si原子昇華工程)。
 2)および3)の説明:Si原子(Si(v))が脱離することで、SiC基板体10表面に残存したC(C(s))は、準閉鎖空間内のSi蒸気(Si(v))と反応する。その結果、C(C(s))は、SiC又はSiC等となってSiC基板体10表面から昇華する(C原子昇華工程)。
 4)および5)の説明:昇華したSiC又はSiC等が、温度勾配によって準閉鎖空間内のSiC材料40に到達し、結晶成長する。
 このように、エッチングを伴う歪層薄化工程S1は、SiC基板体10の表面からSi原子を熱昇華させるSi原子昇華工程と、SiC基板体10の表面に残存したC原子と準閉鎖空間内のSi蒸気を反応させることでSiC基板体10の表面から昇華させるC原子昇華工程と、含む。
 すなわち、エッチングを伴う歪層薄化工程S1は、SiC基板体10とSiC材料40とを相対させて配置し、SiC基板体10が高温側、SiC材料40が低温側となるよう加熱する工程である。
 これにより、SiC基板体10とSiC材料40との間にエッチング空間Yが形成され、温度勾配を駆動力としてSiC基板体10をエッチングすると共に、歪層12をSiC基板体10の表面側に移動させることができる。
〈歪層除去工程〉
 歪層除去工程S2は、歪層薄化工程S1により薄くされた歪層12を除去する工程である。具体的には、歪層薄化工程S1前の歪層12の深さである基準深さ20よりも、表面側に移動した歪層12を除去する工程であり、基準深さ20よりも表面側の少なくとも一部を除去する工程である(図1(a)~図1(c))。
 この歪層除去工程S2で用いる手法としては、CMP法やSiVE法、水素エッチング法、上述した[エッチングを伴う歪層薄化工程S1]にて説明したエッチング手法、を例示することができる。
 なお、従来法における歪層除去工程S2は、ダイヤモンド等の砥粒を用いた粗研削工程、粗研削工程で用いた砥粒よりも粒径の小さい砥粒を用いた仕上げ研削工程、そして、研磨パッドの機械的な作用とスラリーの化学的な作用を併用して研磨を行うCMP工程という段階を経ることが一般的であった。この従来法においては、SiC基板体10に導入された歪層12の全てを除去することが通常であった(図1(d)参照)。
 本発明にかかる歪層除去工程S2においては、歪層薄化工程S1後の歪層12を除去する。そのため、従来導入されていた歪層深さ(基準深さ20)よりも少ない除去量で、歪層12を除去することができる。これにより、本発明の歪層除去工程S2におけるSiC基板体10の除去量は、従来法に比して少なくすることができる。
 本発明にかかるSiC基板の製造方法によれば、SiC基板体10の歪層12を表面側に移動させることで歪層12を薄くする歪層薄化工程S1を含む。これにより、歪層除去工程S2における素材ロスL量を低減することができる。また、歪層除去工程S2におけるコストや加工時間を低減することができる。
 例えば、歪層薄化工程S1前のSiC基板体10の歪層12深さ(基準深さ20)が5μmであり、歪層薄化工程S1により歪層12深さが1μmとなった場合を考える。この時、歪層除去工程S2においては、1μm分のSiC基板体10を除去すればよい。すなわち、従来法では、5μm分のSiC基板体10を除去する必要があったところ、歪層薄化工程S1を含むことにより、4μm分の素材ロスLを低減することができる。また、加工にかかる消耗品(砥石やブレード,砥粒等)や加工時間を低減することができる。このため、歪層除去工程S2におけるコストを大幅に削減することができる。
 本実施の形態にかかるSiC基板の製造方法によれば、歪層除去工程S2に化学機械研磨(CMP)を採用することにより、素材ロスL・コスト・加工時間を低減しつつ、エピレディな表面を有するSiC基板30を製造することができる。本発明は、歪層12を薄くすることにより、従来法の仕上げ加工であるCMPの負担を低減することができる。
 本実施の形態にかかるSiC基板の製造方法によれば、結晶成長を伴う歪層薄化工程S1を採用することにより、所望の基板厚みに調整することができる。
 本実施の形態にかかるSiC基板の製造方法によれば、エッチングを伴う歪層薄化工程S1を採用することにより、歪層薄化工程S1と歪層除去工程S2とを同時に行うことができる。これにより、工程および装置の導入費や外注費を削減することができ、コストを削減することができる。
 本実施の形態にかかるSiC基板の製造方法によれば、歪層薄化工程S1の加熱温度は、1400℃以上1600℃以下である。このような温度範囲で加熱することにより、装置への負担を軽減することができる。また、低温度の熱処理装置ほど、容易に導入することができる。
[スライス工程におけるスライス厚み]
 表1に、本実施の形態と従来法とのそれぞれのSiC基板の製造法において、基板厚み350μmのSiC基板30を製造する場合の一例についてまとめる。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、従来法においては合計で100μmの素材ロスLが生じる。特に、従来法では各工程で導入される歪層12を確実に除去するため、SiC基板体10一枚当たり100μm以上を除去するのが一般的である。
 一方、本実施の形態のSiC基板の製造方法における素材ロスL量は、表1に示すように50μmである。この通り、本実施の形態によれば、SiC基板の製造における素材ロスL量を大幅に低減することが可能である。
 また、スライス工程S3においてインゴットIから切り出すSiC基板体10の基板厚みD1は、この素材ロスL量を指標に設定される。つまり、最終的に得たいSiC基板30の基板厚みD(表面加工終了時おけるSiC基板30の厚み)に、素材ロスL量を加算した厚みを、スライス時の基板厚みD1に設定する。
 この通り、表面加工の終了後におけるSiC基板30の厚みに素材ロスL量を加算して、スライス時の基板厚みD1を決定する。ここでいう「表面加工」とは、エッチング工程S4、歪層除去工程S2のように、SiC基板体10の厚さを減少させる加工のことをいう。
 つまり、後行の工程により厚みがそれ以上減少しない時点にまで至ったSiC基板30の厚さに対して、素材ロスL量を加算して、スライス時の基板厚みD1を設定する。
 したがって、SiC基板30の基板厚みDに、下限として37μm以上、より好ましくは40μm以上の厚みを加算したものをスライス時の基板厚みD1に設定することが好ましい。
 また、SiC基板30の基板厚みDに、上限として100μm以下、より好ましくは90μm以下、さらに好ましくは80μm以下、さらに好ましくは70μm以下、さらに好ましくは60μm以下、さらに好ましくは50μm以下の厚みを加算したものをスライス時の基板厚みD1に設定することが好ましい。これにより、1つのインゴットIからより多くのSiC基板30を製造することができる。
 また、上述の通り、従来法ではSiC基板30一枚当たり100μm以上を除去するのが一般的である。そのため、SiC基板30の基板厚みDに、上限として100μm以下、より好ましくは100μm未満の厚みを加算したものをスライス時の基板厚みD1に設定することが好ましい。これにより、一般的に行われる従来法を使用したときに比べて、多くのSiC基板30を製造することができる。
 なお、スライス工程S3から歪層除去工程S2までを経たSiC基板30の基板厚みDは、典型的には100~600μm、より典型的には150~550μm、さらに典型的には200~500μm、さらに典型的には250~450μm、さらに典型的には300~400μmを例示することができる。
 つまり、これら典型的なSiC基板30の基板厚みに、本発明のSiC基板の製造方法による素材ロスL量を加算して、スライス時の基板厚みD1を設定することが好ましい。
 具体的には、本発明のSiC基板の製造方法によって、基板厚みDが350μmであるSiC基板30を最終生産物として得たい場合には、スライス時の基板厚みD1は、下限として387μm以上、より好ましくは390μm以上、さらに好ましくは400μm以上であるSiC基板30をスライス工程S3において得ることが好ましい。
 また、この場合、スライス時の基板厚みD1は、上限として450μm以下、より好ましくは440μm以下、さらに好ましくは430μm以下、さらに好ましくは420μm以下、さらに好ましくは410μm以下、さらに好ましくは400μm以下であるSiC基板30をスライス工程S3において得ることが好ましい。
《SiC基板の製造装置》
 以下、本発明にかかるSiC基板の製造方法を実現する製造装置について詳細に説明する。なお、この実施の形態において、先の製造方法に示した構成と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本実施の形態にかかるSiC基板の製造装置は、図6に示すように、SiC基板体10を収容可能な本体容器50と、SiC基板体10とSiC材料40との間に温度勾配が形成されるよう加熱可能な加熱炉60と、を備える。
(本体容器)
 本体容器50は、互いに嵌合可能な上容器51および下容器52と、を備える嵌合容器である。上容器51と下容器52の嵌合部には、微小な間隙53が形成されており、この間隙53から本体容器50内の排気(真空引き)が可能なよう構成されている。
 本実施の形態にかかる上容器51および下容器52は、多結晶SiCで構成されている。そのため、本体容器50自体をSiC材料40としてもよい。また、本体容器50のSiC基板体10と相対する部分のみをSiC材料40で構成していても良い。その場合、SiC材料40以外の部分は高融点材料(後述する高融点容器70と同様の材料)を採用することができる。
 また、図3ないし図5に示すように、基板状のSiC材料40を別途収容する構成を採用しても良い。その場合には、基板状のSiC材料40とSiC基板体10の間にスペーサー(基板保持具54等)を配置して、結晶成長空間X又はエッチング空間Yを形成しても良い。基板保持具54は、高融点容器70と同様の高融点材料で構成されていることが望ましい。
 すなわち、本体容器50は、SiC基板体10を収容した状態で加熱した際に、内部空間にSi元素およびC元素を含む雰囲気を発生させる構成となっている。本実施の形態においては、多結晶SiCで構成されたSiC材料40を加熱することで、内部空間内にSi元素およびC元素を含む雰囲気を形成している。
 また、加熱された本体容器50内の空間は、Si元素を含む気相種およびC元素を含む気相種の混合系の蒸気圧環境となることが望ましい。このSi元素を含む気相種としては、Si,Si,Si,SiC,SiC,SiCが例示できる。また、C元素を含む気相種としては、SiC,SiC,SiC,Cが例示できる。すなわち、SiC系ガスが準閉鎖空間に存在している状態となるのが好ましい。
 結晶成長空間X又はエッチング空間Yは、SiC基板体10とSiC材料40との間に設けられる温度勾配を駆動力として、SiC基板体10からSiC材料40へ原料を輸送する空間であり、また、SiC材料40からSiC基板体10へ原料を輸送する空間である。
 例えば、SiC基板体10の表面の温度と、この表面に相対するSiC材料40の温度を比較した際に、SiC基板体10側の温度が低く、SiC材料40の温度が高くなるよう、SiC基板体10を配置した場合を考える(図4参照)。このように、SiC基板体10とSiC材料40とを相対させて配置し、SiC基板体10が低温側、SiC材料40が高温側となるよう加熱した場合には、SiC材料40からSiC基板体10へ原料が輸送され、SiC基板体10上に単結晶SiCが成長する。すなわち、SiC材料40とSiC基板体10の間に、結晶成長空間Xが形成される。
 一方で、SiC基板体10の表面の温度と、この表面に相対するSiC材料40の温度を比較した際に、SiC基板体10側の温度が高く、SiC材料40の温度が低くなるよう、SiC基板体10を配置した場合を考える(図5参照)。このように、SiC基板体10とSiC材料40とを相対させて配置し、SiC基板体10が高温側、SiC材料40が低温側となるよう加熱した場合には、SiC基板体10からSiC材料40へ原料が輸送され、SiC基板体10がエッチングされる。すなわち、SiC材料40とSiC基板体10の間に、エッチング空間Yが形成される。
(加熱炉)
 加熱炉60は、図6に示すように、被処理物(SiC基板体10等)を1000℃以上2300℃以下の温度に加熱することが可能な本加熱室61と、被処理物を500℃以上の温度に予備加熱可能な予備加熱室62と、本体容器50を収容可能な高融点容器70と、この高融点容器70を予備加熱室62から本加熱室61へ移動可能な移動手段63(移動台)と、を備えている。
 本加熱室61は、平面断面視で正六角形に形成されており、その内側に高融点容器70が配置される。
 本加熱室61の内部には、加熱ヒータ64(メッシュヒーター)が備えられている。また、本加熱室61の側壁や天井には多層熱反射金属板が固定されている(図示せず。)。この多層熱反射金属板は、加熱ヒータ64の熱を本加熱室61の略中央部に向けて反射させるように構成されている。
 これにより、本加熱室61内において、被処理物が収容される高融点容器70を取り囲むように加熱ヒータ64が配置され、さらにその外側に多層熱反射金属板が配置されることで、1000℃以上2300℃以下の温度まで昇温させることができる。
 なお、加熱ヒータ64としては、例えば、抵抗加熱式のヒータや高周波誘導加熱式のヒータを用いることができる。
 また、加熱ヒータ64は、高融点容器70内に温度勾配を形成可能な構成を採用しても良い。例えば、加熱ヒータ64は、上側に多くのヒータが配置されるよう構成しても良い。また、加熱ヒータ64は、上側に向かうにつれて幅が大きくなるように構成しても良い。あるいは、加熱ヒータ64は、上側に向かうにつれて供給される電力を大きくすることが可能なよう構成しても良い。
 また、本加熱室61には、本加熱室61内の排気を行う真空形成用バルブ65と、本加熱室61内に不活性ガスを導入する不活性ガス注入用バルブ66と、本加熱室61内の真空度を測定する真空計67と、が接続されている。
 真空形成用バルブ65は、本加熱室61内を排気して真空引きする真空引ポンプと接続されている(図示せず。)。この真空形成用バルブ65および真空引きポンプにより、本加熱室61内の真空度は、例えば、10Pa以下、より好ましくは1Pa以下、さらに好ましくは10-3Pa以下に調整することができる。この真空引きポンプとしては、ターボ分子ポンプを例示することができる。
 不活性ガス注入用バルブ66は、不活性ガス供給源と接続されている(図示せず。)。この不活性ガス注入用バルブ66および不活性ガス供給源により、本加熱室61内に不活性ガスを10-5~10000Paの範囲で導入することができる。この不活性ガスとしては、ArやHe、N等を選択することができる。
 また、不活性ガス注入用バルブ66は、本体容器50内にドーパントガスを供給可能なドーパントガス供給手段である。すなわち、不活性ガスにドーパントガス(例えば、N等)を選択することにより、成長層のドーピング濃度を調整することができる。
 予備加熱室62は、本加熱室61と接続されており、移動手段63により高融点容器70を移動可能に構成されている。なお、本実施の形態の予備加熱室62には、本加熱室61の加熱ヒータ64の余熱により昇温可能なよう構成されている。例えば、本加熱室61を2000℃まで昇温した場合には、予備加熱室62は1000℃程度まで昇温され、被処理物(SiC基板体10や本体容器50、高融点容器70等)の脱ガス処理を行うことができる。
 移動手段63は、高融点容器70を載置して、本加熱室61と予備加熱室62を移動可能に構成されている。この移動手段63による本加熱室61と予備加熱室62間の搬送は、最短1分程で完了するため、1~1000℃/minでの昇温・降温を実現することができる。
 このように急速昇温および急速降温が行えるため、従来の装置では困難であった、昇温中および降温中の低温成長履歴を持たない表面形状を観察することが可能である。
 また、図6においては、本加熱室61の下方に予備加熱室62を配置しているが、これに限られず、何れの方向に配置しても良い。
 また、本実施の形態にかかる移動手段63は、高融点容器70を載置する移動台である。この移動台と高融点容器70の接触部から、微小な熱を逃がしている。これにより、高融点容器70内(および本体容器50内)に温度勾配を形成することができる。
 すなわち、本実施の形態の加熱炉60は、高融点容器70の底部が移動台と接触しているため、高融点容器70の上容器71から下容器72に向かって温度が下がるように温度勾配が設けられる。この温度勾配は、SiC基板体10の表裏方向に沿って形成されていることが望ましい。
 また、上述したように、加熱ヒータ64の構成により、温度勾配を形成してもよい。また、この加熱ヒータ64により、温度勾配を逆転可能に構成しても良い。
(高融点容器)
 加熱炉60は、Si元素を含む雰囲気を形成し、この雰囲気内で本体容器50を加熱可能であることが好ましい。本実施の形態にかかる加熱炉60内のSi元素を含む雰囲気は、高融点容器70およびSi蒸気供給源74を用いて形成している。
 なお、本体容器50の周囲にSi元素を含む雰囲気を形成可能な方法であれば、当然に採用することができる。
 高融点容器70は、高融点材料を含んで構成されている。例えば、汎用耐熱部材であるC、高融点金属であるW,Re,Os,Ta,Mo、炭化物であるTa,HfC,TaC,NbC,ZrC,TaC,TiC,WC,MoC、窒化物であるHfN,TaN,BN,TaN,ZrN,TiN、ホウ化物であるHfB,TaB,ZrB,NB,TiB,多結晶SiC等を例示することができる。
 この高融点容器70は、本体容器50と同様に、互いに嵌合可能な上容器71と下容器72とを備える嵌合容器であり、本体容器50を収容可能に構成されている。上容器71と下容器72の嵌合部には、微小な間隙73が形成されており、この間隙73から高融点容器70内の排気(真空引き)が可能なよう構成されている。
 高融点容器70は、高融点容器70内にSi元素を含む気相種の蒸気圧を供給可能なSi蒸気供給源55を有していることが好ましい。Si蒸気供給源55は、加熱時にSi蒸気を高融点容器70内に発生させる構成であれば良く、例えば、固体のSi(単結晶Si片やSi粉末等のSiペレット)やSi化合物を例示することができる。
 本実施の形態にかかるSiC基板の製造装置は、高融点容器70の材料としてTaCを採用し、Si蒸気供給源55としてタンタルシリサイドを採用している。すなわち、図4および図5に示すように、高融点容器70の内側にタンタルシリサイド層が形成されており、加熱時にタンタルシリサイド層からSi蒸気が容器内に供給されることにより、Si蒸気圧環境が形成されるように構成されている。
 この他にも、加熱時に高融点容器70内にSi元素を含む気相種の蒸気圧が形成される構成であれば採用することができる。
 以下、実施例1を挙げて、本発明をより具体的に説明する。
〈実施例1:歪層の移動〉
 スライス工程S3後のSiC基板体10を、本体容器50および高融点容器70に収容し(図7参照)、以下の熱処理条件で熱処理した。なお、この実施例1においては、本体容器50を多結晶SiCで形成することにより、本体容器50自体がSiC材料40(Si元素供給源およびC元素供給源)として機能するよう構成されている。
[SiC基板体10]
 多型:4H-SiC
 基板サイズ:横幅10mm×縦幅10mm×厚み0.45mm
 オフ方向およびオフ角:<11-20>方向4°オフ
 熱処理面:(0001)面
 歪層12深さ:3.5μm
 なお、歪層12の深さはSEM-EBSD法にて確認した。また、この歪層12は、TEMやμXRD、ラマン分光法で確認することもできる。
[本体容器50]
 材料:多結晶SiC
 容器サイズ:直径60mm×高さ4mm
 基板保持具54の材料:単結晶SiC
 SiC基板体10と本体容器50の底面の距離:2mm
[高融点容器70]
 材料:TaC
 容器サイズ:直径160mm×高さ60mm
 Si蒸気供給源74(Si化合物):TaSi
[熱処理条件]
 上述した条件で配置したSiC基板体10を、以下の条件で熱処理した。
 加熱温度:1500℃
 加熱時間:10h
 エッチング量:40nm
 温度勾配:1℃/mm
 本加熱室真空度:10-5Pa
[SEM-EBSD法による歪層の測定]
 SiC基板体10の格子歪みは、基準となる基準結晶格子と比較することにより求めることができる。この格子歪みを測定する手段としては、例えば、SEM-EBSD法を用いることができる。SEM-EBSD法は、走査電子顕微鏡(Scanning Electron Microscope:SEM)の中で、電子線後方散乱により得られる菊池線回折図形をもとに、微小領域の歪み測定が可能な手法(Electron Back Scattering Diffraction:EBSD)である。この手法では、基準となる基準結晶格子の回折図形と測定した結晶格子の回折図形を比較することで、格子歪み量を求めることができる。
 基準結晶格子としては、例えば、格子歪みが生じていないと考えられる領域に基準点を設定する。すなわち、バルク層11の領域に基準点を配置することが望ましい。通常、歪層12の深さは、10μm程度となるのが定説である。そのため、歪層12よりも十分に深いと考えられる深さ20~35μm程度の位置に、基準点を設定すればよい。
 次に、この基準点における結晶格子の回折図形と、ナノメートルオーダーのピッチで測定した各測定領域の結晶格子の回折図形とを比較する。これにより、基準点に対する各測定領域の格子歪み量を算出することができる。
 また、基準結晶格子として格子歪みが生じていないと考えられる基準点を設定する場合を示したが、単結晶SiCの理想的な結晶格子を基準とすることや、測定領域面内の大多数(例えば、過半数以上)を占める結晶格子を基準とすることも当然に可能である。
 このSEM-EBSD法により格子歪みが存在するか否かを測定することにより、歪層12の有無を判断することができる。すなわち、加工ダメージにより歪みが導入されている場合には、SiC基板体10に格子歪みが生じるため、SEM-EBSD法により応力が観察される。
 歪層薄化工程S1前後の実施例1のSiC基板体10に存在する歪層12をSEM-EBSD法により観察した。その結果を図8(a)および図8(b)に示す。
 なお、この測定においては実施例1の歪層薄化工程S1前後のSiC基板体10を劈開した断面について、走査型電子顕微鏡を用いて、以下の条件で測定を行った。
 SEM装置:Zeiss製Merline
 EBSD解析:TSLソリューションズ製OIM結晶方位解析装置
 加速電圧:15kV
 プローブ電流:15nA
 ステップサイズ:200nm
 基準点R深さ:20μm
 図8(a)は、実施例1における、歪層薄化工程S1前のSiC基板体10の断面SEM-EBSDイメージング画像である。
 この図8(a)に示すように、歪層薄化工程S1の前においては、SiC基板体10内に深さ3.5μmの格子歪みが観察された。これは、スライス工程S3時により導入された格子歪みであり、歪層12を有していることがわかる。なお、この図8(a)では圧縮応力が観測されている。
 図8(b)は、実施例1における、歪層薄化工程S1後のSiC基板体10の断面SEM-EBSDイメージング画像である。
 この図8(b)に示すように、歪層薄化工程S1の後においては、SiC基板体10内に深さ1.3μmの格子歪みが観測された。熱処理時のエッチング量は40nmであるため、歪層12は、2.2μm程表面側に移動・集中したことがわかる。また、加熱時間を長くすることで、さらに表面側へ歪層12を移動させることができる。
 このように、Si元素供給源およびC元素供給源を含む準閉鎖空間内で、SiC基板体10を熱処理することにより、SiC基板体10の表面側に歪層12が移動・集中させることができる。
 本発明によれば、歪層薄化工程S1を含むことにより、従来法では素材ロスとして除去されていた領域を縮小・低減することができる。
 10 SiC基板体
 11 バルク層
 12 歪層
 20 基準深さ
 30 SiC基板
 40 SiC材料
 50 本体容器
 51 上容器
 52 下容器
 53 間隙
 54 基板保持具
 55 Si蒸気供給源
 60 加熱炉
 61 本加熱室
 62 予備加熱室
 63 移動手段
 64 加熱ヒータ
 65 真空形成用バルブ
 66 不活性ガス注入用バルブ
 67 真空計
 70 高融点容器
 71 上容器
 72 下容器
 73 間隙
 74 Si蒸気供給源
 X 結晶成長空間
 Y エッチング空間
 S1 歪層薄化工程
 S2 歪層除去工程
 S3 スライス工程
 S4 エッチング工程
 I インゴット

 

Claims (16)

  1.  SiC基板体の歪層を表面側に移動させることで前記歪層を薄くする歪層薄化工程を含む、SiC基板の製造方法。
  2.  前記歪層を除去する歪層除去工程を含み、
     前記歪層薄化工程は、前記歪層薄化工程前の歪層の深さを基準深さとした場合において、前記歪層薄化工程後の歪層を前記基準深さよりも表面側に移動させる工程であり、
     前記歪層除去工程は、前記基準深さよりも表面側の少なくとも一部を除去する工程である、請求項1に記載のSiC基板の製造方法。
  3.  前記歪層除去工程は、化学機械研磨である、請求項2に記載のSiC基板の製造方法。
  4.  前記歪層除去工程は、熱エッチング法である、請求項2に記載のSiC基板の製造方法。
  5.  インゴットをスライスしてSiC基板体を得るスライス工程をさらに含み、
     前記スライス工程は、前記歪層除去工程後におけるSiC基板体の厚みに、100μm以下の厚みを加算した厚みを有するSiC基板体を得る工程である、請求項2~4の何れか一項に記載のSiC基板の製造方法。
  6.  前記スライス工程は、前記歪層除去工程後におけるSiC基板体の厚みに、50μm以下の厚みを加算した厚みを有するSiC基板体を得る工程である、請求項5に記載のSiC基板の製造方法。
  7.  前記SiC基板体の表面をエッチングするエッチング工程をさらに含み、
     前記エッチング工程は、ウェットエッチングである、請求項1~6の何れか一項に記載のSiC基板の製造方法。
  8.  前記エッチング工程は、エッチング液として、水酸化カリウム溶融液、フッ化水素酸を含む薬液、過マンガン酸カリウム系の薬液及び水酸化テトラメチルアンモニウムからなる群から選択される1種又は2種以上を含む、請求項7に記載のSiC基板の製造方法。
  9.  インゴットをスライスしてSiC基板体を得るスライス工程を含み、
     前記スライス工程、前記エッチング工程、前記歪層薄化工程をこの順で含む、請求項8に記載のSiC基板の製造方法。
  10.  前記歪層薄化工程は、Si元素を含む環境下でSiC基板体を加熱する工程である、請求項1~9の何れか一項に記載のSiC基板の製造方法。
  11.  前記歪層薄化工程は、Si元素供給源およびC元素供給源を含む準閉鎖空間内で、前記SiC基板体を加熱する工程である、請求項1~10の何れか一項に記載のSiC基板の製造方法。
  12.  前記歪層薄化工程は、SiC材料で構成された本体容器内で前記SiC基板体を加熱する工程である、請求項1~11の何れか一項に記載のSiC基板の製造方法。
  13.  前記歪層薄化工程は、SiC基板体とSiC材料とを相対させて配置し、SiC基板体とSiC材料との間に温度勾配が形成されるように加熱する工程である、請求項1~12の何れか一項に記載のSiC基板の製造方法。
  14.  前記歪層薄化工程は、Si蒸気圧環境下でSiC基板体を加熱する工程である、請求項1~13の何れか一項に記載のSiC基板の製造方法。
  15.  前記歪層薄化工程は、準安定溶媒エピタキシー法である、請求項1~14の何れか一項に記載のSiC基板の製造方法。
  16.  前記歪層薄化工程の加熱温度は、1400℃以上1600℃以下である、請求項1~15の何れか一項に記載のSiC基板の製造方法。

     
PCT/JP2020/036002 2019-09-27 2020-09-24 SiC基板の製造方法 WO2021060367A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/761,086 US20220344152A1 (en) 2019-09-27 2020-09-24 Method for manufacturing sic substrate
JP2021548981A JPWO2021060367A1 (ja) 2019-09-27 2020-09-24
CN202080066201.5A CN114424322A (zh) 2019-09-27 2020-09-24 SiC衬底的制造方法
EP20868266.6A EP4036283A4 (en) 2019-09-27 2020-09-24 METHOD FOR PRODUCING A SIC SUBSTRATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-176574 2019-09-27
JP2019176574 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060367A1 true WO2021060367A1 (ja) 2021-04-01

Family

ID=75167029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036002 WO2021060367A1 (ja) 2019-09-27 2020-09-24 SiC基板の製造方法

Country Status (6)

Country Link
US (1) US20220344152A1 (ja)
EP (1) EP4036283A4 (ja)
JP (1) JPWO2021060367A1 (ja)
CN (1) CN114424322A (ja)
TW (1) TW202129097A (ja)
WO (1) WO2021060367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220220633A1 (en) * 2019-04-26 2022-07-14 Kwansei Gakuin Educational Foundation Method of manufacturing semiconductor substrate, manufacturing apparatus therefor, and epitaxial growth method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115875A (ja) * 2005-10-20 2007-05-10 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
JP2011233780A (ja) * 2010-04-28 2011-11-17 Kwansei Gakuin Univ 半導体素子の製造方法
WO2014199615A1 (ja) * 2013-06-13 2014-12-18 学校法人関西学院 SiC基板の表面処理方法
JP2015005702A (ja) 2013-06-24 2015-01-08 昭和電工株式会社 SiC基板の製造方法
WO2017188381A1 (ja) * 2016-04-28 2017-11-02 学校法人関西学院 気相エピタキシャル成長方法及びエピタキシャル層付き基板の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232329B2 (ja) * 2014-03-31 2017-11-15 東洋炭素株式会社 SiC種結晶の加工変質層の除去方法、SiC種結晶及びSiC基板の製造方法
JP2017105697A (ja) * 2015-11-26 2017-06-15 東洋炭素株式会社 薄型のSiCウエハの製造方法及び薄型のSiCウエハ
JP2017119594A (ja) * 2015-12-28 2017-07-06 東洋炭素株式会社 単結晶SiCの製造方法及び収容容器
WO2019167337A1 (ja) * 2018-03-01 2019-09-06 住友電気工業株式会社 炭化珪素基板
EP4012078A4 (en) * 2019-08-06 2023-11-15 Kwansei Gakuin Educational Foundation SEED CRYSTAL SEED OF SIC AND PRODUCTION METHOD THEREFOR, SIC INGOT PRODUCED BY GROWING SAID SEED CRYSTAL SEED OF SIC AND PRODUCTION METHOD THEREFOR, AND SIC WAFER PRODUCED FROM SAID SIC INGOT AND EPITAXIAL FILM SIC WAFER AND METHODS RESPECTIVE PRODUCTION RESPECTS OF SAID SIC WAFER AND SAID EPITAXIAL FILM SIC WAFER
WO2021025077A1 (ja) * 2019-08-06 2021-02-11 株式会社デンソー SiC基板の製造方法
CN114375351B (zh) * 2019-08-06 2024-04-26 学校法人关西学院 SiC衬底、SiC外延衬底、SiC晶锭及它们的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115875A (ja) * 2005-10-20 2007-05-10 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
JP2011233780A (ja) * 2010-04-28 2011-11-17 Kwansei Gakuin Univ 半導体素子の製造方法
WO2014199615A1 (ja) * 2013-06-13 2014-12-18 学校法人関西学院 SiC基板の表面処理方法
JP2015005702A (ja) 2013-06-24 2015-01-08 昭和電工株式会社 SiC基板の製造方法
WO2017188381A1 (ja) * 2016-04-28 2017-11-02 学校法人関西学院 気相エピタキシャル成長方法及びエピタキシャル層付き基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220220633A1 (en) * 2019-04-26 2022-07-14 Kwansei Gakuin Educational Foundation Method of manufacturing semiconductor substrate, manufacturing apparatus therefor, and epitaxial growth method

Also Published As

Publication number Publication date
EP4036283A4 (en) 2023-10-25
EP4036283A1 (en) 2022-08-03
JPWO2021060367A1 (ja) 2021-04-01
TW202129097A (zh) 2021-08-01
US20220344152A1 (en) 2022-10-27
CN114424322A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2021025077A1 (ja) SiC基板の製造方法
WO2020179795A1 (ja) SiC基板の製造方法及びその製造装置
EP2907790A1 (en) Method for producing nanocarbon film and nanocarbon film
WO2021025085A1 (ja) SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法
CN107002288B (zh) 碳化硅基板的表面处理方法
WO2021025084A1 (ja) SiC種結晶及びその製造方法、当該SiC種結晶を成長させたSiCインゴット及びその製造方法、並びに、当該SiCインゴットより製造されるSiCウェハ、エピタキシャル膜付きSiCウェハ及びこれらの製造方法
WO2021060367A1 (ja) SiC基板の製造方法
WO2021060368A1 (ja) SiC単結晶の製造方法、SiC単結晶の製造装置及びSiC単結晶ウェハ
WO2020179793A1 (ja) SiC基板の製造方法及びその製造装置及びSiC基板のマクロステップバンチングを低減する方法
JP2020015645A (ja) SiCウェハの製造方法
WO2021025086A1 (ja) SiC基板の製造方法
WO2020179794A1 (ja) SiC基板の製造方法及びその製造装置及びSiC基板の加工変質層を低減する方法
TWI833919B (zh) 碳化矽基板、碳化矽基板的製造方法、碳化矽基板的製造裝置以及降低碳化矽基板的加工變質層的方法
JP2020015646A (ja) SiCウェハの製造方法
US20220372653A1 (en) Method for reducing structural damage to the surface of monocrystalline aluminium-nitride substrates, and monocrystalline aluminium-nitride substrates that can be produced by a method of this type
CN114423888A (zh) 半导体衬底的制造方法和半导体衬底的制造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020868266

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020868266

Country of ref document: EP

Effective date: 20220428