WO2020179793A1 - SiC基板の製造方法及びその製造装置及びSiC基板のマクロステップバンチングを低減する方法 - Google Patents

SiC基板の製造方法及びその製造装置及びSiC基板のマクロステップバンチングを低減する方法 Download PDF

Info

Publication number
WO2020179793A1
WO2020179793A1 PCT/JP2020/008964 JP2020008964W WO2020179793A1 WO 2020179793 A1 WO2020179793 A1 WO 2020179793A1 JP 2020008964 W JP2020008964 W JP 2020008964W WO 2020179793 A1 WO2020179793 A1 WO 2020179793A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic substrate
main body
etching
body container
vapor
Prior art date
Application number
PCT/JP2020/008964
Other languages
English (en)
French (fr)
Inventor
忠昭 金子
奈都紀 吉田
一史 青木
Original Assignee
学校法人関西学院
豊田通商株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, 豊田通商株式会社 filed Critical 学校法人関西学院
Priority to US17/436,309 priority Critical patent/US20220181149A1/en
Priority to EP20766086.1A priority patent/EP3936645A4/en
Priority to CN202080018847.6A priority patent/CN114207195A/zh
Priority to JP2021504115A priority patent/JP7464807B2/ja
Publication of WO2020179793A1 publication Critical patent/WO2020179793A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline

Definitions

  • the present invention relates to a method for manufacturing a SiC substrate in which the formation of macrostep bunching is suppressed, an apparatus for manufacturing the SiC substrate, and a method for reducing macrostep bunching of the SiC substrate.
  • SiC (silicon carbide) semiconductor devices have higher withstand voltage, higher efficiency, and higher temperature operation than Si (silicon) and GaAs (gallium arsenide) semiconductor devices, so they are being developed for industrialization.
  • a step-terrace structure is formed on the surface of the SiC substrate that is slightly inclined from (0001) used for device manufacturing.
  • a SiC substrate Conventionally, in the surface control of a SiC substrate, it has been regarded as a problem that steps are bundled (bunching) during a device manufacturing process to form step bunching.
  • This step bunching is known to adversely affect the characteristics of SiC semiconductor devices. Specifically, (1) when epitaxial growth is performed on the surface on which step bunching is formed, a defect due to step bunching may occur on the surface of the epitaxial growth layer (hereinafter referred to as an epi layer), (2) It is known that in SiC semiconductor devices such as MOSFETs manufactured by forming an oxide film on the surface of an epi layer, the presence of step bunching may affect operating performance and reliability.
  • Patent Document 1 states that "the single crystal silicon carbide substrate is stored in a storage container made of tantalum metal and fitted up and down so as to expose the tantalum carbide layer to the internal space, and the internal pressure of the storage container. Is higher than the external pressure and is kept under vacuum under the saturated vapor pressure of silicon, the heat treatment step including the heat treatment step of uniformly heating the storage container at a temperature of 1500° C. or higher and 2300° C. or lower” Techniques for etching the surface to obtain a flat surface at the molecular level are described.
  • An object of the present invention is to provide a method for manufacturing a SiC substrate in which formation of macro step bunching is suppressed and a manufacturing apparatus therefor.
  • the SiC substrate manufacturing apparatus of one aspect of the present invention can accommodate the SiC substrate, and by heating, the vapor pressure of the vapor phase species containing Si element and the vapor pressure of the vapor phase species containing C element is transferred to the internal space.
  • the main body container to be generated in It is provided with a heating furnace that houses the main body container and heats the vapor pressure of vapor phase species containing Si element in the internal space so as to form a temperature gradient.
  • the main body container is formed by facing a part of the main body container arranged on the low temperature side of the temperature gradient and the SiC substrate in a state where the SiC substrate is arranged on the high temperature side of the temperature gradient.
  • Etching space to be done It has a Si steam supply source capable of supplying Si steam in the main body container.
  • the SiC substrate and the Si vapor supply source are arranged and etched in the main body container that generates the vapor pressure of the vapor phase species containing Si element and the vapor phase species containing C element by heating in the internal space. , The formation of macrostep bunching can be suppressed and etching can be performed.
  • the Si vapor supply source is arranged such that the atomic number ratio Si/C in the main body container exceeds 1. In this way, by arranging the Si steam supply source so that the atomic number ratio Si / C in the main body container exceeds 1, a SiC-Si balanced vapor pressure environment can be formed in the main body container.
  • the main body container has a substrate holder provided between the SiC substrate and the main body container.
  • the substrate holder provided between the SiC substrate and the main body container.
  • the main body container is made of a material containing polycrystalline SiC.
  • the main body container is made of a material containing polycrystalline SiC, when the main body container is heated by the heating furnace, the vapor phase species containing Si element and the vapor phase species containing C element in the main body container are contained. Vapor pressure can be generated.
  • the heating furnace has a melting point container capable of accommodating the main body container and a Si steam supply source capable of supplying Si steam into the melting point container. Since the heating furnace has the high melting point container and the Si vapor supply source as described above, the main body container can be heated in the Si vapor pressure environment. As a result, it is possible to suppress a decrease in the vapor pressure of gas phase species containing Si element in the main body container.
  • the high melting point container is made of a material containing tantalum, and the Si vapor supply source is tantalum silicide.
  • the present invention also relates to a method of manufacturing a SiC substrate. That is, in the method for manufacturing a SiC substrate according to one aspect of the present invention, the SiC substrate and Si vapor are supplied to the inside of the main body container that generates the vapor pressure of the vapor phase species containing Si element and the vapor phase species containing C element in the internal space. It comprises an etching step of etching the SiC substrate by accommodating the source and heating the main body container so as to form a temperature gradient in an environment of vapor pressure of a vapor phase species containing a Si element.
  • the SiC substrate and the Si vapor supply source are arranged and etched in the main body container that generates the vapor pressure of the vapor phase species containing the Si element and the vapor phase species containing the C element in the internal space. Etching can be performed while suppressing the formation of step bunching.
  • the Si vapor supply source is arranged so that the atomic ratio Si/C in the main body container exceeds 1.
  • the SiC substrate is etched under a SiC-Si equilibrium vapor pressure environment.
  • the Si atom sublimation step of thermally sublimating Si atoms from the surface of the SiC substrate, and the C atoms remaining on the surface of the SiC substrate are reacted with the Si vapor in the main body container to obtain SiC. It has a C atom sublimation step of sublimating C atoms from the surface of a substrate.
  • the SiC substrate arranged on the high temperature side of the temperature gradient and a part of the main body container arranged on the low temperature side of the temperature gradient are opposed to each other for etching.
  • the present invention also relates to a method of reducing macrostep bunching of a SiC substrate. That is, a method of reducing macrostep bunching of a SiC substrate according to one aspect of the present invention is a method including an etching step of etching the SiC substrate under a SiC-Si equilibrium vapor pressure environment.
  • the etching step is a step of heating in a temperature range of 1400° C. or higher and 2300° C. or lower.
  • the etching step is a step of arranging the Si vapor supply source so that the atomic number ratio Si/C in the etching space exceeds 1 and performing etching.
  • the present invention also relates to a method for manufacturing a SiC substrate. That is, a method for manufacturing a SiC substrate according to one aspect of the present invention includes an etching step of etching a SiC substrate under a SiC-Si equilibrium vapor pressure environment, and the etching step includes a step of removing a vapor pressure of a vapor phase species containing a Si element. This is a step of arranging the SiC substrate in an etching space exhausted through the environment and etching.
  • the etching step is a step of arranging the Si vapor supply source so that the atomic number ratio Si/C in the etching space exceeds 1 and performing etching.
  • the etching step is a step of heating the etching space in which the SiC substrate is arranged on the high temperature side of the temperature gradient.
  • the present invention also relates to a SiC substrate manufacturing apparatus. That is, a SiC substrate manufacturing apparatus according to an aspect of the present invention can accommodate a SiC substrate and generates a vapor pressure of a vapor phase species containing a Si element and a vapor phase species containing a C element in a main body container by heating.
  • the main body container is provided with a heating furnace that accommodates the main body container and heats the vapor pressure of a gas phase species containing a Si element in the internal space so as to form a temperature gradient.
  • the main body container is provided with the SiC.
  • the substrate has an etching space in which the substrate is arranged on the high temperature side of the temperature gradient, and a Si vapor supply source capable of supplying Si vapor into the main body container.
  • the Si vapor supply source is arranged so that the atomic number ratio Si/C in the main body container exceeds 1.
  • the main body container has a substrate holder capable of holding at least a part of the SiC substrate in the hollow of the main body container.
  • FIGS. 1 to 8 a preferred embodiment shown in the drawings.
  • the technical scope of the present invention is not limited to the embodiments shown in the accompanying drawings, and can be appropriately changed within the scope described in the claims.
  • SiC substrate manufacturing equipment [SiC substrate manufacturing equipment]
  • SiC substrate manufacturing apparatus According to the embodiment of the present invention will be described in detail.
  • the SiC substrate manufacturing apparatus can accommodate the SiC substrate 10 and heats the vapor pressure of the vapor phase species containing Si element and the vapor pressure of the vapor phase species containing C element in the internal space. It is provided with a main body container 20 for generating the main body container 20 and a heating furnace 30 for accommodating the main body container 20 and heating the vapor pressure of the vapor phase species containing Si element in the internal space so as to form a temperature gradient. .. Further, the main body container 20 is formed by facing a part of the main body container 20 arranged on the low temperature side of the temperature gradient and the SiC substrate 10 in a state where the SiC substrate 10 is arranged on the high temperature side of the temperature gradient. The etching space S1 and the Si vapor supply source 25 capable of supplying Si vapor into the main body container 20.
  • SiC substrate 10 examples include a SiC wafer sliced into a disk shape from a bulk crystal produced by a sublimation method or the like, and a SiC substrate obtained by processing a single crystal SiC into a thin plate shape.
  • the crystal polymorphism of single crystal SiC any polymorphism can be adopted.
  • the surface of the SiC substrate 10 on which the semiconductor element is formed (specifically, the surface on which the epi layer is deposited) is referred to as the main surface 101, and the surface facing the main surface is referred to as the back surface 102.
  • the main surface 101 and the back surface 102 are collectively referred to as a front surface, and a direction that penetrates the main surface 101 and the back surface 102 is referred to as a front-back direction.
  • a surface provided with an off angle of several degrees (for example, 0.4 to 8°) from the (0001) plane or the (000-1) plane can be exemplified (note that in the present specification In the book, in the Miller index notation, "-" means the bar immediately following the index).
  • a step-terrace structure is confirmed on the surface of the SiC substrate 10 flattened at the atomic level.
  • This step-terrace structure has a step structure in which step 11 which is a stepped portion of one molecular layer or more and terrace 12 which is a flat portion where the ⁇ 0001 ⁇ plane is exposed are alternately arranged.
  • Step 1 has a minimum height (minimum unit) of one molecular layer (0.25 nm), and various ones of the one molecular layer are stacked to form various step heights.
  • step 11 is bundled (bunched) to become huge and has a height exceeding 1 unit cell of each polytype, and macro step bunching (MSB: Macro Step Bunching. It is called MSB).
  • MSB is step 11 which is bunching beyond 4 molecular layers (5 molecular layers or more) in the case of 4H-SiC, and beyond 6 molecular layers (7 molecular layers or more) in the case of 6H-SiC. ) Step 11 where bunching is performed.
  • This MSB is not formed on the surface of the SiC substrate 10 because defects caused by MSB occur on the surface at the time of epi layer formation and it is one of the factors that hinder the reliability of the oxide film of MOSFET. desirable.
  • the size of the SiC substrate 10 may be a 6-inch wafer or 8-inch wafer, from a chip size of several centimeters square.
  • the main body container 20 may be configured to accommodate the SiC substrate 10 and generate the vapor pressure of the vapor phase species containing Si element and the vapor phase species containing C element in the internal space during the heat treatment.
  • the main body container 20 is made of a material containing polycrystalline SiC.
  • the entire main body container 20 is made of polycrystalline SiC.
  • the environment inside the heat-treated main body container 20 be a vapor pressure environment of a mixed system of gas phase species containing Si element and gas phase species containing C element.
  • the vapor phase species containing the Si element include Si, Si 2 , Si 3 , Si 2 C, SiC 2 and SiC.
  • Si 2 C, SiC 2 , SiC, C can be exemplified as the vapor phase species containing the C element. That is, the SiC gas is present in the main container 20.
  • the vapor pressure of the vapor phase species containing the Si element and the vapor phase species containing the C element can be generated in the internal space during the heat treatment of the main body container 20, that configuration can be adopted.
  • a configuration in which the polycrystalline SiC is exposed on a part of the inner surface, a configuration in which the polycrystalline SiC is separately arranged in the main body container 20, and the like can be shown.
  • the main body container 20 is a fitting container that includes an upper container 21 and a lower container 22 that can be fitted to each other.
  • a minute gap 23 is formed in the fitting portion between the upper container 21 and the lower container 22, and the inside of the main container 20 can be exhausted (evacuated) from the gap 23.
  • the main body container 20 is formed by facing a part of the main body container 20 arranged on the low temperature side of the temperature gradient and the SiC substrate 10 in a state where the SiC substrate 10 is arranged on the high temperature side of the temperature gradient. It has an etching space S1. That is, the etching space S1 is formed by at least a part of the main body container 20 (for example, the bottom surface of the lower container 22) having a lower temperature than the SiC substrate 10 due to the temperature gradient provided in the heating furnace 30.
  • the etching space S1 is a space for transporting Si atoms and C atoms on the surface of the SiC substrate 10 to the main container 20 by using a temperature difference provided between the SiC substrate 10 and the main container 20 as a driving force. For example, when comparing the temperature of the main surface 101 (or the back surface 102) of the SiC substrate 10 with the temperature of the bottom surface of the lower container 22 facing the main surface 101, the temperature on the main surface 101 side is high and the lower container The SiC substrate 10 is arranged so that the temperature on the bottom surface side of 22 becomes low (see FIGS. 3 and 4).
  • the Si atoms and C atoms of the main surface 101 are generated by using the temperature difference as a driving force. It can be transported to the bottom surface of the lower container 22.
  • the main body container 20 may include a substrate holder 24 provided between the SiC substrate 10 and the main body container 20.
  • the heating furnace 30 according to the present embodiment is configured to heat so as to form a temperature gradient so that the temperature decreases from the upper container 21 to the lower container 22 of the main container 20. Therefore, by providing the substrate holder 24 capable of holding the SiC substrate 10 between the SiC substrate 10 and the lower container 22, the etching space S1 can be formed between the SiC substrate 10 and the lower container 22.
  • the substrate holder 24 may have a structure capable of holding at least a part of the SiC substrate 10 in the hollow of the main body container 20.
  • any conventional support means such as one-point support, three-point support, a structure for supporting the outer peripheral edge, and a structure for sandwiching a part thereof can be naturally adopted.
  • the substrate holder 24 may not be provided depending on the direction of the temperature gradient of the heating furnace 30.
  • the heating furnace 30 forms a temperature gradient so that the temperature decreases from the lower container 22 toward the upper container 21
  • the SiC substrate 10 is arranged on the bottom surface of the lower container 22 (without providing the substrate holder 24). You may do it.
  • the main body container 20 has a Si vapor supply source 25 capable of supplying Si vapor into the main body container 20.
  • the Si vapor supply source 25 may be configured to generate Si vapor in the main body container 20 during heat treatment.
  • Examples of the Si vapor supply source 25 include solid Si (Si substrate or Si pellets such as Si powder) and Si compounds.
  • the Si vapor supply source 25 is preferably arranged so that the atomic ratio Si/C in the main body container 20 exceeds 1.
  • the Si vapor supply source 25 only needs to be arranged. That is, in the main body container 20 of polycrystalline SiC satisfying the stoichiometric ratio 1:1, the SiC substrate 10 satisfying the stoichiometric ratio 1:1 and the substrate holder made of SiC satisfying the stoichiometric ratio 1:1.
  • the 24 and the Si steam supply source 25 Si pellets or the like
  • the atomic number ratio Si / C in the main body container 20 exceeds 1.
  • the heating furnace 30 includes a main heating chamber 31 capable of heating an object to be processed (SiC substrate 10 or the like) to a temperature of 1000 ° C. or higher and 2300 ° C. or lower, and an object to be processed at 500 ° C. or higher.
  • a preheating chamber 32 capable of preheating to the same temperature
  • a refractory container 40 capable of accommodating the main body container 20
  • a moving means 33 capable of moving the refractory container 40 from the preheating chamber 32 to the main heating chamber 31. The stand) and.
  • the main heating chamber 31 is formed in a regular hexagonal shape in a plan sectional view, and the high melting point container 40 is arranged inside thereof.
  • a heating heater 34 (mesh heater) is provided inside the heating chamber 31.
  • a multilayer heat-reflecting metal plate is fixed to the side wall or ceiling of the heating chamber 31 (not shown). The multilayer heat-reflecting metal plate is configured to reflect the heat of the heater 34 toward the substantially central portion of the main heating chamber 31.
  • a heating heater 34 is arranged so as to surround the melting point container 40 in which the object to be processed is housed, and a multilayer heat-reflecting metal plate is further arranged outside the heating heater 34, whereby 1000 ° C.
  • the temperature can be raised to a temperature of 2300° C. or lower.
  • a resistance heating type heater or a high frequency induction heating type heater can be used as the heating heater 34.
  • the heater 34 may have a structure capable of forming a temperature gradient in the high melting point container 40.
  • the heating heater 34 may be configured so that many heaters are arranged on the upper side (or lower side). Further, the heater 34 may be configured such that the width thereof becomes larger toward the upper side (or the lower side). Alternatively, the heater 34 may be configured to be able to increase the electric power supplied toward the upper side (or the lower side).
  • a vacuum forming valve 35 for exhausting the inside of the main heating chamber 31, an inert gas injection valve 36 for introducing an inert gas into the main heating chamber 31, and the main heating chamber 31
  • a vacuum gauge 37 for measuring the degree of vacuum inside is connected.
  • the vacuum forming valve 35 is connected to a vacuum pump that evacuates the main heating chamber 31 to create a vacuum (not shown). With the vacuum forming valve 35 and the vacuum pulling pump, the degree of vacuum in the main heating chamber 31 can be adjusted to, for example, 10 Pa or less, more preferably 1 Pa or less, still more preferably 10 -3 Pa or less.
  • a turbo molecular pump can be exemplified as the vacuum pump.
  • the Inert gas injection valve 36 is connected to the Inactive gas supply source (not shown). With the inert gas injection valve 36 and the inert gas supply source, the inert gas can be introduced into the heating chamber 31 in the range of 10-5 to 10000 Pa. As the inert gas, Ar, He, N 2, or the like can be selected.
  • the preheating chamber 32 is connected to the main heating chamber 31, and the high melting point container 40 can be moved by the moving means 33.
  • the preheating chamber 32 of the present embodiment is configured so that the temperature can be raised by the residual heat of the heater 34 of the main heating chamber 31. For example, when the temperature of the main heating chamber 31 is raised to 2000° C., the temperature of the preheating chamber 32 is raised to about 1000° C., and the objects to be treated (SiC substrate 10, main body container 20, high melting point container 40, etc.) are removed. Gas treatment can be performed.
  • the moving means 33 is configured to mount the high melting point container 40 and move the main heating chamber 31 and the preheating chamber 32.
  • the transfer between the main heating chamber 31 and the preheating chamber 32 by the moving means 33 is completed in about 1 minute at the shortest, so that the temperature can be raised or lowered at 1 to 1000 ° C./min. Since the rapid temperature rise and the rapid temperature decrease can be performed in this way, it is possible to observe a surface shape that does not have a history of low temperature growth during temperature rise and temperature reduction, which was difficult with conventional devices.
  • the preheating chamber 32 is arranged below the main heating chamber 31, but the present invention is not limited to this, and the preheating chamber 32 may be arranged in any direction.
  • the moving means 33 is a moving table on which the high melting point container 40 is placed. A small amount of heat is released from the contact portion between the moving table and the melting point container 40. As a result, a temperature gradient can be formed in the high melting point container 40.
  • a temperature gradient is provided so that the temperature decreases from the upper container 41 to the lower container 42 of the melting point container 40. ..
  • the direction of this temperature gradient can be set in any direction by changing the position of the contact portion between the moving table and the high melting point container 40.
  • the temperature gradient is provided such that the temperature rises from the upper container 41 to the lower container 42 of the high melting point container 40. It is desirable that this temperature gradient is formed along the front and back directions of the SiC substrate 10. Further, as described above, the temperature gradient may be formed by the configuration of the heater 34.
  • the vapor pressure environment of the vapor phase species containing the Si element in the heating furnace 30 according to the present embodiment is formed by using the high melting point container 40 and the Si vapor supply source 44.
  • any method capable of forming an environment of vapor pressure of a vapor phase species containing Si element around the main body container 20 can be adopted in the SiC substrate manufacturing apparatus of the present invention.
  • the melting point container 40 is configured to include a melting point material.
  • a general purpose heat-resistant member C, W is a refractory metal, Re, Os, Ta, Mo , Ta 9 C 8 is a carbide, HfC, TaC, NbC, ZrC , Ta 2 C, TiC, WC, MoC, a nitride HfN, TaN, BN, Ta 2 N, ZrN, TiN, HfB 2, TaB 2, ZrB 2, NB 2, TiB 2 is a boride, it can be exemplified polycrystalline SiC.
  • the high melting point container 40 is a fitting container that includes an upper container 41 and a lower container 42 that can be fitted to each other, and is configured to be able to accommodate the main body container 20.
  • a small gap 43 is formed in the fitting portion of the upper container 41 and the lower container 42, and the high melting point container 40 can be evacuated (evacuated) from the gap 43.
  • the high melting point container 40 has a Si vapor supply source 44 capable of supplying the vapor pressure of vapor phase species containing Si element into the high melting point container 40.
  • the Si vapor supply source 44 may be configured to generate vapor pressure of vapor phase species containing Si element in the high melting point container 40 during the heat treatment, and for example, solid Si (single crystal Si piece, Si powder, or the like). Examples thereof include Si pellets) and Si compounds.
  • TaC is used as the material of the melting point container 40
  • tantalum Silicide is used as the Si steam supply source 44. That is, as shown in FIGS. 3 and 4, a tantalum Silicide layer is formed inside the melting point container 40, and Si steam is supplied into the container from the tantalum Silicide layer during heat treatment, so that the Si vapor pressure It is configured to form an environment.
  • any structure can be adopted as long as the vapor pressure of the vapor phase species containing the Si element is formed in the high melting point container 40 during the heat treatment.
  • the main body container 20 that can accommodate the SiC substrate 10 and that generates vapor pressures of the vapor phase species including the Si element and the vapor phase species including the C element in the internal space by heating.
  • a heating furnace 30 for accommodating the main body container 20 and heating so that a vapor pressure of a vapor phase species containing a Si element is generated in the internal space and a temperature gradient is formed.
  • a main body container 20 is provided with a Si vapor supply source 25 capable of supplying Si vapor.
  • a near heat equilibrium state can be formed between the SiC substrate 10 and the main body container 20, and a SiC-Si balanced vapor pressure environment can be formed in the main body container 20.
  • mass transport occurs with the temperature gradient of the heating furnace 30 as a driving force, and the SiC substrate 10 is etched, whereby a SiC substrate in which formation of MSB is suppressed can be manufactured.
  • the main body container 20 is heated in the main body container 20 in a vapor pressure environment (for example, Si vapor pressure environment) of a vapor phase species containing a Si element. It is possible to prevent the vapor phase species containing the Si element from being exhausted. That is, the environment inside the main body container 20 is maintained by balancing the vapor pressure of the vapor phase species containing the Si element inside the main body container 20 and the vapor pressure of the vapor phase species containing the Si element outside the main body container 20. be able to.
  • a vapor pressure environment for example, Si vapor pressure environment
  • the main body container 20 is arranged in the high melting point container 40 in which the vapor pressure environment of the vapor phase species containing the Si element (for example, the Si vapor pressure environment) is formed.
  • the inside of the main body container 20 is exhausted (evacuated) through the vapor pressure environment of the vapor phase species containing the Si element (for example, the Si vapor pressure environment), so that Si atoms are reduced from the etching space S1. Can be suppressed.
  • the atomic number ratio Si/C which is preferable for etching, can be maintained in the etching space S1 for a long time.
  • the main body container 20 is made of polycrystalline SiC. With such a configuration, when the main body container 20 is heated by using the heating furnace 30, only the vapor pressures of the vapor phase species containing Si element and the vapor phase species containing C element are generated in the main body container 20. Can be made.
  • the SiC substrate 10 and the Si vapor supply source are inside the main body container 20 that generates the vapor pressure of the vapor phase species containing Si element and the vapor phase species containing C element in the internal space. 25 is accommodated, and the main body container 20 includes an etching step of etching the SiC substrate 10 by heating the main body container 20 so as to form a temperature gradient in an environment of vapor pressure of a vapor phase species containing a Si element.
  • components that are basically the same as the above-mentioned SiC substrate manufacturing apparatus are designated by the same reference numerals to simplify the description.
  • a Si atom sublimation step of thermally sublimating Si atoms from the surface of the SiC substrate 10 and a reaction of the C atoms remaining on the surface of the SiC substrate 10 with the Si vapor in the main body container 20 are performed. It has a C atom sublimation step of sublimating from the surface of 10.
  • the etching step is characterized in that the SiC substrate 10 arranged on the high temperature side of the temperature gradient and a part of the main body container 20 arranged on the low temperature side of the temperature gradient are opposed to each other for etching. That is, by arranging the main surface 101 of the SiC substrate 10 and the bottom surface of the main body container 20 having a temperature lower than the main surface 101 so as to face each other, an etching space S1 is formed between them. In this etching space S1, mass transport occurs with the temperature gradient formed by the heating furnace 30 as a driving force, and as a result, the SiC substrate 10 can be etched.
  • the SiC substrate 10 and a part of the main body container 20 are arranged so as to face each other, and a temperature gradient is applied so that a part of the main body container 20 is on the low temperature side and the SiC substrate 10 is on the high temperature side. doing. Due to this temperature gradient, the Si element and the C element are transported from the SiC substrate 10 to the main body container 20, and the SiC substrate 10 is etched.
  • the etching process according to the present invention is characterized in that the SiC substrate 10 is etched under a SiC-Si equilibrium vapor pressure environment.
  • SiC-Si equilibrium vapor pressure environment and the SiC-C equilibrium vapor pressure environment will be described in detail.
  • the SiC-Si equilibrium vapor pressure environment and the SiC-C equilibrium vapor pressure environment in the present specification include a near thermal equilibrium vapor pressure environment that satisfies the relationship between the etching rate and the etching temperature derived from the theoretical thermal equilibrium environment.
  • the SiC-Si vapor pressure environment refers to the vapor pressure environment when SiC (solid) and Si (liquid phase) are in a phase equilibrium state via a gas phase.
  • the SiC-Si equilibrium vapor pressure environment is formed, for example, by heat-treating a quasi-closed space having an atomic ratio Si/C of more than 1.
  • the term "quasi-closed space” as used herein refers to a space in which the inside of the container can be evacuated, but at least a part of the vapor generated in the container can be confined. This semi-closed space can be formed in the main body container 20 or the melting point container 40.
  • the SiC-C equilibrium vapor pressure environment refers to the vapor pressure environment when SiC (solid phase) and C (solid phase) are in a phase equilibrium state via a gas phase.
  • the SiC-C equilibrium vapor pressure environment is formed, for example, by heat-treating a quasi-closed space having an atomic ratio Si/C of 1 or less.
  • the atomic number ratio Si/C in the vapor phase of the SiC-Si equilibrium vapor pressure environment is larger than the atomic number ratio Si/C in the vapor phase of the SiC-C equilibrium vapor pressure environment.
  • the etching space S1 in which the SiC-Si equilibrium vapor pressure environment is formed is formed by arranging and heating the Si vapor supply source 25 so that the atomic number ratio Si/C in the main body container 20 exceeds 1 before the heat treatment. can do.
  • a SiC substrate 10 satisfying a stoichiometric ratio of 1:1 and a stoichiometric ratio of 1:1 are provided in a main body container 20 of polycrystalline SiC satisfying a stoichiometric ratio of 1:1.
  • the SiC substrate holder 24 to be filled and the Si vapor supply source 25 Si pellets or the like
  • the atomic number ratio Si/C in the main body container 20 exceeds 1.
  • the etching space S1 in which the SiC-C equilibrium vapor pressure environment is formed is formed by arranging and heating the atomic number ratio Si/C in the etching space S1 to be 1 or less before the heat treatment.
  • a SiC substrate 10 having a stoichiometric ratio of 1: 1 and a stoichiometric ratio of 1: 1 are placed in a main body container 20 of a polycrystalline SiC having a stoichiometric ratio of 1: 1.
  • the SiC substrate holder 24 to be filled is arranged, the atomic ratio Si/C in the main body container 20 becomes 1 or 1 or less.
  • a C steam supply source may be separately arranged, or a main body container 20 or a substrate holder 24 including the C steam supply source may be adopted. .
  • this C vapor supply source include solid C (C substrate or C pellets such as C powder) and C compounds.
  • the etching temperature in this method is preferably set in the range of 1400 to 2300°C, and more preferably set in the range of 1600 to 2000°C.
  • the etching rate in this method can be controlled by the temperature range described above, and can be selected in the range of 0.001 to 2 ⁇ m/min.
  • the etching amount in this method can be adopted as long as it is an etching amount capable of decomposing the MSB of the SiC substrate 10.
  • the etching amount can be, for example, 0.1 ⁇ m or more and 20 ⁇ m or less, but can be applied as necessary.
  • the etching time in this method can be set to an arbitrary time so as to obtain a desired etching amount.
  • the etching time is 1 minute.
  • the temperature gradient in this method is set in the range of 0.1 to 5 ° C./mm in the etching space S1.
  • Example 1 The SiC substrates of Example 1 and Comparative Example 1 were manufactured by the following methods. ⁇ Example 1> The SiC substrate 10 was housed in the main body container 20 and the melting point container 40 under the following conditions (arrangement step).
  • FIG. 5 is an SEM image of the surface of the SiC substrate 10 before the etching process.
  • An MSB having a height of 3 nm or more is formed on the surface of the SiC substrate 10 before the etching step.
  • the height of step 11 was measured by AFM.
  • FIG. 6 is an SEM image of the surface of the SiC substrate 10 of Example 1 etched under the above conditions. It can be seen that the MSB is not formed on the surface of the SiC substrate 10 of the first embodiment, and the steps 11 of 1.0 nm (full unit cell) are regularly arranged.
  • the Si steam supply source 25 is arranged so that the atomic number ratio Si / C in the main container 20 exceeds 1. (See FIG. 3). As a result, a SiC-Si equilibrium vapor pressure environment is formed in the main body container 20. By etching the SiC substrate 10 under this SiC-Si equilibrium vapor pressure environment, the SiC substrate 10 in which the formation of MSB is suppressed can be manufactured.
  • SiC substrate 10 The same SiC substrate 10 as in Example 1 was used.
  • FIG. 7 is an SEM image of the surface of the SiC substrate 10 of Comparative Example 1 etched under the above conditions.
  • An MSB having a height of 3 nm or more is formed on the surface of the SiC substrate 10 of Comparative Example 1.
  • each member is arranged so that the atomic number ratio Si/C in the main body container 20 is 1 or less (see FIG. 4). As a result, a SiC—C equilibrium vapor pressure environment is formed in the main body container 20.
  • FIG. 8 is a graph showing the relationship between the heating temperature and the etching rate when etching is performed by the method for manufacturing a SiC substrate according to the present invention.
  • the horizontal axis of this graph is the reciprocal of the temperature, and the vertical axis of this graph is the logarithmic display of the etching rate.
  • the result of etching with the atomic number ratio Si/C in the etching space S1 set to exceed 1 (see FIG. 3) is indicated by a circle, and the atomic number ratio Si/C in the etching space S1 is 1 or less (1 Or less than 1) (see FIG. 4), and the result of etching is indicated by a cross.
  • No MSB was formed on the surface of the SiC substrate 10 marked with a circle, and step 11 had a height of 1 unit cell. On the other hand, MSBs were formed on the surfaces of the SiC substrates 10 marked with x.
  • the etching rate of the SiC substrate 10 Is calculated by the following formula 1.
  • T is the temperature of the SiC substrate 10
  • k is Boltzmann's constant.
  • P i is a value obtained by adding vapor pressures generated in the main body container 20 when the SiC substrate 10 is heated.
  • vapor-phase species of P i SiC, Si 2 C , SiC 2 and the like is contemplated.
  • thermodynamic calculation was performed under the following conditions (i) to (iv).
  • the etching driving force is a temperature gradient in the etching space S1, and
  • the raw material gas is SiC, Si 2 C, SiC. 2 and
  • the desorption coefficient at which the raw material sublimates from step 11 is 0.001.
  • the two-point chain wire is the thermodynamics when single crystal SiC is etched in a vapor pressure environment when SiC (solid phase) and C (solid phase) are in a phase equilibrium state via a gas phase. It is the result of the calculation. Specifically, using Equation 1, thermodynamic calculation was performed under the following conditions (i) to (iv). (I) it is a constant volume of SiC-C equilibrium vapor pressure environment, (ii) etching the driving force, it is a temperature gradient in the etching space S1, (iii) the raw material gas is SiC, Si 2 C, SiC 2 (Iv) The desorption coefficient at which the raw material sublimates from step 11 is 0.001. The values in the JANAF thermochemical table were used for the data of each chemical species used in the thermodynamic calculation.
  • the SiC substrate 10 includes the etching step of etching in the SiC-Si equilibrium vapor pressure environment, so that the SiC substrate in which the formation of MSB is suppressed can be manufactured. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

マクロステップバンチングの形成が抑制されたSiC基板の製造方法及びその製造装置を提供することを課題とする SiC基板10を収容可能で、加熱によりSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器20と、前記本体容器20を収容し、Si元素を含む気相種の蒸気圧を内部空間に発生させるとともに温度勾配が形成されるように加熱する加熱炉30と、を備え、 前記本体容器20は、前記SiC基板10が前記温度勾配の高温側に配置された状態で、前記温度勾配の低温側に配置される前記本体容器20の一部と、前記SiC基板10とを相対させることで形成されるエッチング空間S1と、前記本体容器20内にSi蒸気を供給可能なSi蒸気供給源25と、を有することを特徴とする。

Description

SiC基板の製造方法及びその製造装置及びSiC基板のマクロステップバンチングを低減する方法
 本発明は、マクロステップバンチングの形成が抑制されたSiC基板の製造方法及びその製造装置及びSiC基板のマクロステップバンチングを低減する方法に関する。
 SiC(炭化珪素)半導体デバイスは、Si(シリコン)やGaAs(ガリウムヒ素)半導体デバイスに比べて高耐圧及び高効率、高温動作が可能であるため、産業化に向けて開発が進められている。
 通常、デバイス製造に用いられる(0001)から僅かな傾斜を設けたSiC基板の表面には、ステップ-テラス構造が形成されている。従来、SiC基板の表面制御においては、デバイス製造プロセス中にステップが束化(バンチング)して、ステップバンチングが形成されてしまうことが問題視されてきた。
 このステップバンチングは、SiC半導体デバイスの特性に悪影響を与えることが知られている。具体的には、(1)ステップバンチングが形成された表面にエピタキシャル成長を行うと、エピタキシャル成長層(以下、エピ層という。)の表面にステップバンチング起因の欠陥が発生する場合があること、(2)エピ層表面に酸化膜を形成して製造されるMOSFET等のSiC半導体デバイスにおいて、ステップバンチングの存在は動作性能および信頼性に影響を与える場合があること、がそれぞれ知られている。
 このような問題に対し、ステップバンチングの発生を抑制する技術が種々提案されている。例えば、特許文献1には、「タンタル金属からなるとともに炭化タンタル層を内部空間に露出させるように上下が嵌合した収納容器に前記単結晶炭化ケイ素基板を収納するとともに、前記収納容器の内部圧力を外部圧力よりも高く且つシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で前記収納容器を均一に加熱処理する加熱処理工程を含む熱処理工程」により、SiC基板の表面をエッチングし、分子レベルに平坦な表面を得る技術が記載されている。
特開2008-16691号公報
 本発明は、マクロステップバンチングの形成が抑制されたSiC基板の製造方法及びその製造装置を提供することを課題とする。
 上記課題を解決するため、本発明の一態様のSiC基板の製造装置は、SiC基板を収容可能で、加熱によりSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器と、
 前記本体容器を収容し、Si元素を含む気相種の蒸気圧を内部空間に発生させるとともに温度勾配が形成されるように加熱する加熱炉と、を備え、
 前記本体容器は、前記SiC基板が前記温度勾配の高温側に配置された状態で、前記温度勾配の低温側に配置される前記本体容器の一部と、前記SiC基板とを相対させることで形成されるエッチング空間と、
 前記本体容器内にSi蒸気を供給可能なSi蒸気供給源と、を有する。
 このように、加熱によりSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器内に、SiC基板とSi蒸気供給源を配置してエッチングすることにより、マクロステップバンチングの形成を抑制してエッチングすることができる。
 この態様において、前記Si蒸気供給源は、前記本体容器内の原子数比Si/Cが1を超えるよう配置される。
 このように、本体容器内の原子数比Si/Cが1を超えるようSi蒸気供給源を配置することで、本体容器内にSiC-Si平衡蒸気圧環境を形成することができる。
 この態様において、前記本体容器は、前記SiC基板と前記本体容器との間に設けられる基板保持具を有する。
 このように、SiC基板と本体容器との間に基板保持具を設けることにより、容易にエッチング空間を形成することができる。
 この態様において、前記本体容器は、多結晶SiCを含む材料で構成される。
 このように、本体容器が多結晶SiCを含む材料で構成されることにより、加熱炉によって本体容器を加熱した際に、本体容器内にSi元素を含む気相種及びC元素を含む気相種の蒸気圧を発生させることができる。
 この態様において、前記加熱炉は、前記本体容器を収容可能な高融点容器と、この高融点容器内にSi蒸気を供給可能なSi蒸気供給源を有する。
 このように、加熱炉が高融点容器とSi蒸気供給源を有することにより、本体容器をSi蒸気圧環境下で加熱することができる。これにより、本体容器内のSi元素を含む気相種の蒸気圧の低下を抑制することができる。
 この態様において、前記高融点容器は、タンタルを含む材料で構成され、前記Si蒸気供給源は、タンタルシリサイドである。
 また、本発明はSiC基板の製造方法にも関する。すなわち、本発明の一態様のSiC基板の製造方法は、Si元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器の内部にSiC基板とSi蒸気供給源を収容し、前記本体容器を、Si元素を含む気相種の蒸気圧の環境下で温度勾配が形成されるように加熱することで、前記SiC基板をエッチングするエッチング工程を含む。
 このように、Si元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器内に、SiC基板とSi蒸気供給源を配置してエッチングすることにより、マクロステップバンチングの形成を抑制してエッチングすることができる。
 この態様において、前記Si蒸気供給源が、前記本体容器内の原子数比Si/Cが1を超えるよう配置される。
 この態様において、前記エッチング工程は、SiC基板をSiC-Si平衡蒸気圧環境下でエッチングする。
 この態様において、前記エッチング工程は、SiC基板の表面からSi原子を熱昇華させるSi原子昇華工程と、SiC基板の表面に残存したC原子と前記本体容器内のSi蒸気とを反応させることでSiC基板の表面からC原子を昇華させるC原子昇華工程と、を有する。
 この態様において、前記エッチング工程は、前記温度勾配の高温側に配置された前記SiC基板と、前記温度勾配の低温側に配置された前記本体容器の一部と、を相対させてエッチングする。
 また、本発明は、SiC基板のマクロステップバンチングを低減する方法にも関する。すなわち、本発明の一態様のSiC基板のマクロステップバンチングを低減する方法は、SiC基板をSiC-Si平衡蒸気圧環境下でエッチングするエッチング工程を含む方法である。
 この態様において、前記エッチング工程は、1400℃以上2300℃以下の温度範囲で加熱する工程である。
 この態様において、前記エッチング工程は、エッチング空間内の原子数比Si/Cが1を超えるようSi蒸気供給源を配置してエッチングする工程である。
 また、本発明はSiC基板の製造方法にも関する。すなわち、本発明の一態様のSiC基板の製造方法は、SiC基板をSiC-Si平衡蒸気圧環境下でエッチングするエッチング工程を含み、前記エッチング工程は、Si元素を含む気相種の蒸気圧の環境を介して排気されるエッチング空間に前記SiC基板を配置してエッチングする工程である。
 この態様において、前記エッチング工程は、エッチング空間内の原子数比Si/Cが1を超えるようSi蒸気供給源を配置してエッチングする工程である。
 この態様において、前記エッチング工程は、前記SiC基板が温度勾配の高温側に配置されたエッチング空間を加熱する工程である。
 また、本発明はSiC基板の製造装置にも関する。すなわち、本発明の一態様のSiC基板の製造装置は、SiC基板を収容可能で、加熱によりSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器と、前記本体容器を収容し、Si元素を含む気相種の蒸気圧を内部空間に発生させるとともに温度勾配が形成されるように加熱する加熱炉と、を備え、前記本体容器は、前記SiC基板が前記温度勾配の高温側に配置されるエッチング空間と、前記本体容器内にSi蒸気を供給可能なSi蒸気供給源と、を有する。
 この態様において、前記Si蒸気供給源は、前記本体容器内の原子数比Si/Cが1を超えるよう配置される。
 この態様において、前記本体容器は、前記SiC基板の少なくとも一部を前記本体容器の中空に保持可能な基板保持具を有する。
 開示した技術によれば、マクロステップバンチングの形成が抑制されたSiC基板の製造方法及びその製造装置を提供することができる。
 他の課題、特徴及び利点は、図面及び特許請求の範囲とともに取り上げられる際に、以下に記載される発明を実施するための形態を読むことにより明らかになるであろう。
一実施の形態のSiC基板の製造装置の概略図である。 一実施の形態のSiC基板の製造装置でエッチングされるSiC基板の説明図である。 一実施の形態のSiC基板の製造装置の説明図である。 一実施の形態のSiC基板の製造装置の説明図である。 一実施の形態のSiC基板の製造方法のエッチング工程前のSiC基板表面のSEM像である。 一実施の形態のSiC基板の製造方法の実施例1で観察されるSiC基板表面のSEM像である。 一実施の形態のSiC基板の製造方法の比較例1で観察されるSiC基板表面のSEM像である。 一実施の形態のSiC基板の製造方法のエッチング工程の本体容器内の環境を説明するグラフである。
 以下、本発明を、図面に示した好ましい一実施形態について、図1~図8を用いて詳細に説明する。本発明の技術的範囲は、添付図面に示した実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、適宜変更が可能である。
[SiC基板の製造装置]
 以下、本発明の一実施形態であるSiC基板の製造装置について詳細に説明する。
 図1に示すように、本実施形態に係るSiC基板の製造装置は、SiC基板10を収容可能で、加熱によりSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器20と、この本体容器20を収容し、Si元素を含む気相種の蒸気圧を内部空間に発生させるとともに温度勾配が形成されるように加熱する加熱炉30と、を備える。
 また、本体容器20は、SiC基板10が温度勾配の高温側に配置された状態で、温度勾配の低温側に配置される本体容器20の一部と、SiC基板10とを相対させることで形成されるエッチング空間S1と、本体容器20内にSi蒸気を供給可能なSi蒸気供給源25と、を有する。
 このようなSiC基板の製造装置を用いることで、図2に示すように、マクロステップバンチングの形成が抑制されたSiC基板を製造することができる。
<SiC基板10>
 SiC基板10としては、昇華法等で作製したバルク結晶から円盤状にスライスしたSiCウェハや、単結晶SiCを薄板状に加工したSiC基板を例示することができる。なお、単結晶SiCの結晶多型としては、何れのポリタイプのものも採用することができる。
 本明細書中の説明においては、SiC基板10の半導体素子を作る面(具体的にはエピ層を堆積する面)を主面101といい、この主面に相対する面を裏面102という。また、主面101及び裏面102を合わせて表面といい、主面101と裏面102を貫通する方向を表裏方向という。
 なお、主面101としては、(0001)面や(000-1)面から数度(例えば、0.4~8°)のオフ角を設けた表面を例示することができる(なお、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味する)。
 原子レベルで平坦化されたSiC基板10の表面には、ステップ-テラス構造が確認される。このステップ-テラス構造は、1分子層以上の段差部位であるステップ11と、{0001}面が露出した平坦部位であるテラス12と、が交互に並んだ階段構造となっている。
 ステップ11は、1分子層(0.25nm)が最小高さ(最小単位)であり、この1分子層が複数層重なることで、様々なステップ高さを形成している。本明細書中の説明においては、ステップ11が束化(バンチング)して巨大化し、各ポリタイプの1ユニットセルを超えた高さを有するものをマクロステップバンチング(MSB:Macro Step Bunching。以下、MSBという。)という。
 すなわち、MSBとは、4H-SiCの場合には4分子層を超えて(5分子層以上)バンチングしたステップ11であり、6H-SiCの場合には6分子層を超えて(7分子層以上)バンチングしたステップ11である。
 このMSBは、エピ層形成時の表面にMSB起因の欠陥が発生することや、MOSFETの酸化膜信頼性の阻害要因の一つであるため、SiC基板10の表面には形成されていないことが望ましい。
 なお、SiC基板10の大きさとしては、数センチ角のチップサイズから、6インチウェハや8インチウェハを例示することができる。
<本体容器20>
 本体容器20は、SiC基板10を収容可能であり、加熱処理時にSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる構成であれば良い。例えば、本体容器20は、多結晶SiCを含む材料で構成されている。本実施形態では、本体容器20の全体が多結晶SiCで構成されている。このような材料で構成された本体容器20を加熱することで、Si元素を含む気相種及びC元素を含む気相種の蒸気圧を発生させることができる。
 すなわち、加熱処理された本体容器20内の環境は、Si元素を含む気相種及びC元素を含む気相種の混合系の蒸気圧環境となることが望ましい。このSi元素を含む気相種としては、Si,Si,Si,SiC,SiC,SiCが例示できる。また、C元素を含む気相種としては、SiC,SiC,SiC,Cが例示できる。すなわち、SiC系ガスが本体容器20内に存在している状態となる。
 また、本体容器20の加熱処理時に、内部空間にSi元素を含む気相種及びC元素を含む気相種の蒸気圧を発生可能な構成であれば、その構成を採用することができる。例えば、内面の一部に多結晶SiCが露出した構成や、本体容器20内に別途多結晶SiCを配置する構成等を示すことができる。
 本体容器20は、図3に示すように、互いに嵌合可能な上容器21と下容器22とを備える嵌合容器である。上容器21と下容器22の嵌合部には、微小な間隙23が形成されており、この間隙23から本体容器20内の排気(真空引き)が可能なよう構成されている。
 本体容器20は、SiC基板10が温度勾配の高温側に配置された状態で、温度勾配の低温側に配置される本体容器20の一部と、SiC基板10とを相対させることで形成されるエッチング空間S1を有する。すなわち、加熱炉30に設けられる温度勾配により、少なくとも本体容器20の一部(例えば、下容器22の底面)がSiC基板10よりも低温となることで、エッチング空間S1が形成されている。
 エッチング空間S1は、SiC基板10と本体容器20の間に設けられた温度差を駆動力として、SiC基板10表面のSi原子及びC原子を本体容器20に輸送する空間である。
 例えば、SiC基板10の主面101(又は、裏面102)の温度と、この主面101に相対する下容器22の底面の温度を比較した際に、主面101側の温度が高く、下容器22の底面側の温度が低くなるようSiC基板10を配置する(図3及び図4参照)。このように、主面101と下容器22底面との間に温度差を設けた空間(エッチング空間S1)を形成することで、温度差を駆動力として、主面101のSi原子及びC原子を下容器22の底面に輸送することができる。
 本体容器20は、SiC基板10と本体容器20との間に設けられる基板保持具24を有していても良い。
 本実施形態に係る加熱炉30は、本体容器20の上容器21から下容器22に向かって温度が下がるよう温度勾配を形成するよう加熱する構成となっている。そのため、SiC基板10を保持可能な基板保持具24を、SiC基板10と下容器22の間に設けることにより、SiC基板10と下容器22の間にエッチング空間S1を形成することができる。
 基板保持具24は、SiC基板10の少なくとも一部を本体容器20の中空に保持可能な構成であればよい。例えば、1点支持や3点支持、外周縁を支持する構成や一部を挟持する構成等、慣用の支持手段であれば当然に採用することができる。この基板保持具24の材料としては、SiC材料や高融点金属材料を採用することができる。
 なお、基板保持具24は、加熱炉30の温度勾配の方向によっては設けなくても良い。例えば、加熱炉30が下容器22から上容器21に向かって温度が下がるよう温度勾配を形成する場合には、(基板保持具24を設けずに)下容器22の底面にSiC基板10を配置しても良い。
 また、本体容器20は、本体容器20内にSi蒸気を供給可能なSi蒸気供給源25を有する。
 Si蒸気供給源25は、加熱処理時にSi蒸気を本体容器20内に発生させる構成であれば良い。このSi蒸気供給源25としては、固体のSi(Si基板やSi粉末等のSiペレット)やSi化合物を例示することができる。なお、このSi蒸気供給源25は、本体容器20内の原子数比Si/Cが1を超えるよう配置されることが望ましい。
 例えば、本実施形態のように本体容器20の全体が多結晶SiCで構成され、基板保持具24がSiC材料で構成されている場合には、Si蒸気供給源25を配置するだけで良い。すなわち、化学量論比1:1を満たす多結晶SiCの本体容器20内に、化学量論比1:1を満たすSiC基板10と、化学量論比1:1を満たすSiC製の基板保持具24と、Si蒸気供給源25(Siペレット等)と、を配置した場合には、本体容器20内の原子数比Si/Cは、1を超えることとなる。
<加熱炉30>
 加熱炉30は、図1に示すように、被処理物(SiC基板10等)を1000℃以上2300℃以下の温度に加熱することが可能な本加熱室31と、被処理物を500℃以上の温度に予備加熱可能な予備加熱室32と、本体容器20を収容可能な高融点容器40と、この高融点容器40を予備加熱室32から本加熱室31へ移動可能な移動手段33(移動台)と、を備えている。
 本加熱室31は、平面断面視で正六角形に形成されており、その内側に高融点容器40が配置される。
 本加熱室31の内部には、加熱ヒータ34(メッシュヒーター)が備えられている。また、本加熱室31の側壁や天井には多層熱反射金属板が固定されている(図示せず。)。この多層熱反射金属板は、加熱ヒータ34の熱を本加熱室31の略中央部に向けて反射させるように構成されている。
 これにより、本加熱室31内において、被処理物が収容される高融点容器40を取り囲むように加熱ヒータ34が配置され、更にその外側に多層熱反射金属板が配置されることで、1000℃以上2300℃以下の温度まで昇温させることができる。
 なお、加熱ヒータ34としては、例えば、抵抗加熱式のヒータや高周波誘導加熱式のヒータを用いることができる。
 また、加熱ヒータ34は、高融点容器40内に温度勾配を形成可能な構成を採用しても良い。例えば、加熱ヒータ34は、上側(若しくは下側)に多くのヒータが配置されるよう構成しても良い。また、加熱ヒータ34は、上側(若しくは下側)に向かうにつれて幅が大きくなるように構成しても良い。あるいは、加熱ヒータ34は、上側(若しくは下側)に向かうにつれて供給される電力を大きくすることが可能なよう構成しても良い。
 また、本加熱室31には、本加熱室31内の排気を行う真空形成用バルブ35と、本加熱室31内に不活性ガスを導入する不活性ガス注入用バルブ36と、本加熱室31内の真空度を測定する真空計37と、が接続されている。
 真空形成用バルブ35は、本加熱室31内を排気して真空引きする真空引ポンプと接続されている(図示せず。)。この真空形成用バルブ35及び真空引きポンプにより、本加熱室31内の真空度は、例えば、10Pa以下、より好ましくは1Pa以下、さらに好ましくは10-3Pa以下に調整することができる。この真空引きポンプとしては、ターボ分子ポンプを例示することができる。
 不活性ガス注入用バルブ36は、不活性ガス供給源と接続されている(図示せず。)。この不活性ガス注入用バルブ36及び不活性ガス供給源により、本加熱室31内に不活性ガスを10-5~10000Paの範囲で導入することができる。この不活性ガスとしては、ArやHe、N等を選択することができる。
 予備加熱室32は、本加熱室31と接続されており、移動手段33により高融点容器40を移動可能に構成されている。なお、本実施形態の予備加熱室32には、本加熱室31の加熱ヒータ34の余熱により昇温可能なよう構成されている。例えば、本加熱室31を2000℃まで昇温した場合には、予備加熱室32は1000℃程度まで昇温され、被処理物(SiC基板10や本体容器20、高融点容器40等)の脱ガス処理を行うことができる。
 移動手段33は、高融点容器40を載置して、本加熱室31と予備加熱室32を移動可能に構成されている。この移動手段33による本加熱室31と予備加熱室32間の搬送は、最短1分程で完了するため、1~1000℃/minでの昇温・降温を実現することができる。
 このように急速昇温及び急速降温が行えるため、従来の装置では困難であった、昇温中及び降温中の低温成長履歴を持たない表面形状を観察することが可能である。
 また、図1においては、本加熱室31の下方に予備加熱室32を配置しているが、これに限られず、何れの方向に配置しても良い。
 また、本実施形態に係る移動手段33は、高融点容器40を載置する移動台である。この移動台と高融点容器40の接触部から、微小な熱を逃がしている。これにより、高融点容器40内に温度勾配を形成することができる。
 本実施形態の加熱炉30では、高融点容器40の底部が移動台と接触しているため、高融点容器40の上容器41から下容器42に向かって温度が下がるように温度勾配が設けられる。
 なお、この温度勾配の方向は、移動台と高融点容器40の接触部の位置を変更することで、任意の方向に設定することができる。例えば、移動台に吊り下げ式等を採用して、接触部を高融点容器40の天井に設ける場合には、熱が上方向に逃げる。そのため温度勾配は、高融点容器40の上容器41から下容器42に向かって温度が上がるように温度勾配が設けられることとなる。なお、この温度勾配は、SiC基板10の表裏方向に沿って形成されていることが望ましい。
 また、上述したように、加熱ヒータ34の構成により、温度勾配を形成してもよい。
<高融点容器40>
 本実施形態に係る加熱炉30内のSi元素を含む気相種の蒸気圧環境は、高融点容器40及びSi蒸気供給源44を用いて形成している。例えば、本体容器20の周囲にSi元素を含む気相種の蒸気圧の環境を形成可能な方法であれば、本発明のSiC基板の製造装置に採用することができる。
 高融点容器40は、高融点材料を含んで構成されている。例えば、汎用耐熱部材であるC、高融点金属であるW,Re,Os,Ta,Mo、炭化物であるTa,HfC,TaC,NbC,ZrC,TaC,TiC,WC,MoC、窒化物であるHfN,TaN,BN,TaN,ZrN,TiN、ホウ化物であるHfB,TaB,ZrB,NB,TiB,多結晶SiC等を例示することができる。
 この高融点容器40は、本体容器20と同様に、互いに嵌合可能な上容器41と下容器42とを備える嵌合容器であり、本体容器20を収容可能に構成されている。上容器41と下容器42の嵌合部には、微小な間隙43が形成されており、この間隙43から高融点容器40内の排気(真空引き)が可能なよう構成されている。
 高融点容器40は、高融点容器40内にSi元素を含む気相種の蒸気圧を供給可能なSi蒸気供給源44を有している。Si蒸気供給源44は、加熱処理時にSi元素を含む気相種の蒸気圧を高融点容器40内に発生させる構成であれば良く、例えば、固体のSi(単結晶Si片やSi粉末等のSiペレット)やSi化合物を例示することができる。
 本実施形態に係るSiC基板の製造装置においては、高融点容器40の材料としてTaCを採用し、Si蒸気供給源44としてタンタルシリサイドを採用している。すなわち、図3及び図4に示すように、高融点容器40の内側にタンタルシリサイド層が形成されており、加熱処理時にタンタルシリサイド層からSi蒸気が容器内に供給されることにより、Si蒸気圧環境が形成されるように構成されている。
 この他にも、加熱処理時に高融点容器40内にSi元素を含む気相種の蒸気圧が形成される構成であれば採用することができる。
 本発明に係るSiC基板の製造装置によれば、SiC基板10を収容可能で、加熱によりSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器20と、本体容器20を収容し、Si元素を含む気相種の蒸気圧を内部空間に発生させるとともに温度勾配が形成されるように加熱する加熱炉30と、を備え、本体容器20は、SiC基板10が温度勾配の高温側に配置された状態で、温度勾配の低温側に配置される本体容器20の一部と、SiC基板10とを相対させることで形成されるエッチング空間S1と、前記本体容器20内にSi蒸気を供給可能なSi蒸気供給源25と、を有する構成となっている。
 SiC基板10と本体容器20の間に近熱平衡状態を形成可能であり、かつ、本体容器20内にSiC-Si平衡蒸気圧環境が形成可能となる。このような環境において、加熱炉30の温度勾配を駆動力として質量の輸送が起こり、SiC基板10がエッチングされることで、MSBの形成が抑制されたSiC基板を製造することができる。
 また、本実施形態に係るSiC基板の製造装置によれば、本体容器20を、Si元素を含む気相種の蒸気圧環境(例えばSi蒸気圧環境)下で加熱することにより、本体容器20内からSi元素を含む気相種が排気されることを抑制することができる。すなわち、本体容器20内のSi元素を含む気相種の蒸気圧と、本体容器20外のSi元素を含む気相種の蒸気圧とをバランスさせることにより、本体容器20内の環境を維持することができる。
 言い換えれば、本体容器20はSi元素を含む気相種の蒸気圧環境(例えばSi蒸気圧環境)が形成される高融点容器40内に配置されている。このように、Si元素を含む気相種の蒸気圧環境(例えばSi蒸気圧環境)を介して本体容器20内が排気(真空引き)されることで、エッチング空間S1内からSi原子が減少することを抑制することができる。これにより、エッチング空間S1内をエッチングに好ましい原子数比Si/Cを長時間維持することができる。
 また、本実施形態に係るSiC基板の製造装置によれば、本体容器20は多結晶SiCで構成されている。このような構成とすることにより、加熱炉30を用いて本体容器20を加熱した際に、本体容器20内にSi元素を含む気相種及びC元素を含む気相種の蒸気圧のみを発生させることができる。
[SiC基板の製造方法]
 以下、本発明の一実施形態であるSiC基板の製造方法について詳細に説明する。
 本実施形態に係るSiC基板の製造方法は、Si元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器20の内部にSiC基板10とSi蒸気供給源25を収容し、この本体容器20を、Si元素を含む気相種の蒸気圧の環境下で温度勾配が形成されるように加熱することで、SiC基板10をエッチングするエッチング工程を含む。
 なお、同実施形態において、先のSiC基板の製造装置と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 以下、本実施形態に係るSiC基板の製造方法のエッチング工程について、詳細に説明する。
<エッチング工程>
 SiC基板10を配置した本体容器20を、1400℃以上2300℃以下の温度範囲で加熱することで、以下1)~5)の反応が持続的に行われ、結果としてエッチングが進行すると考えられる。
 1) SiC(s)→Si(v)+C(s)
 2) 2C(s)+Si(v)→SiC(v)
 3) C(s)+2Si(v)→SiC(v)
 4) Si(v)+SiC(v)→2SiC(s)
 5) SiC(v)→Si(v)+SiC(s)
 1)の説明:SiC基板10(SiC(s))が加熱されることで、熱分解によってSiC基板10表面からSi原子(Si(v))が脱離する(Si原子昇華工程)。
 2)及び3)の説明:Si原子(Si(v))が脱離することでSiC基板10表面に残存したC(C(s))は、本体容器20内のSi蒸気(Si(v))と反応することで、SiC又はSiC等となって本体容器20内に昇華する(C原子昇華工程)。
 4)及び5)の説明:昇華したSiC又はSiC等が、温度勾配によって本体容器20内の底面(多結晶SiC)に到達し成長する。
 すなわち、エッチング工程は、SiC基板10の表面からSi原子を熱昇華させるSi原子昇華工程と、SiC基板10の表面に残存したC原子と本体容器20内のSi蒸気とを反応させることでSiC基板10の表面から昇華させるC原子昇華工程と、を有する。
 また、エッチング工程は、温度勾配の高温側に配置されたSiC基板10と、温度勾配の低温側に配置された本体容器20の一部と、を相対させてエッチングすることを特徴とする。
 すなわち、SiC基板10の主面101と、この主面101よりも温度が低い本体容器20底面とを相対させて配置することにより、これらの間にエッチング空間S1を形成する。このエッチング空間S1では、加熱炉30が形成する温度勾配を駆動力として質量の輸送が起こり、結果としてSiC基板10をエッチングすることができる。
 言い換えれば、エッチング工程は、SiC基板10と本体容器20の一部とを相対させて配置し、本体容器20の一部が低温側、SiC基板10が高温側となるよう温度勾配をつけて加熱している。この温度勾配により、SiC基板10から本体容器20にSi元素及びC元素を輸送して、SiC基板10をエッチングする。
 また、本発明に係るエッチング工程は、SiC基板10をSiC-Si平衡蒸気圧環境下でエッチングすることを特徴とする。以下、SiC-Si平衡蒸気圧環境及びSiC-C平衡蒸気圧環境について詳細に説明する。
 なお、本明細書におけるSiC-Si平衡蒸気圧環境及びSiC-C平衡蒸気圧環境とは、理論的な熱平衡環境から導かれたエッチング速度とエッチング温度の関係を満たす近熱平衡蒸気圧環境を含む。
 SiC-Si蒸気圧環境とは、SiC(固体)とSi(液相)とが気相を介して相平衡状態となっているときの蒸気圧の環境のことを言う。
 SiC-Si平衡蒸気圧環境は、例えば、原子数比Si/Cが1を超える準閉鎖空間が熱処理されることで形成される。
 なお、本明細書における「準閉鎖空間」とは、容器内の真空引きは可能であるが、容器内に発生した蒸気の少なくとも一部を閉じ込め可能な空間のことをいう。この準閉鎖空間は、本体容器20内や高融点容器40内に形成することができる。
 また、SiC-C平衡蒸気圧環境とは、SiC(固相)とC(固相)とが気相を介して相平衡状態となっているときの蒸気圧の環境のことを言う。
 SiC-C平衡蒸気圧環境は、例えば、原子数比Si/Cが1以下である準閉鎖空間が熱処理されることで形成される。
 SiC-Si平衡蒸気圧環境の気相中の原子数比Si/Cは、SiC-C平衡蒸気圧環境の気相中の原子数比Si/Cよりも大きい。
 以下、SiC-Si平衡蒸気圧環境が形成される本体容器20内のエッチング空間S1(図3)について、SiC-C平衡蒸気圧環境が形成される本体容器20内のエッチング空間S1(図4)を参照して詳細に説明する。
 SiC-Si平衡蒸気圧環境が形成されるエッチング空間S1は、加熱処理前に本体容器20内の原子数比Si/Cが1を超えるようSi蒸気供給源25を配置し、加熱することで形成することができる。
 例えば、図3に示すように、化学量論比1:1を満たす多結晶SiCの本体容器20内に、化学量論比1:1を満たすSiC基板10と、化学量論比1:1を満たすSiC製の基板保持具24と、Si蒸気供給源25(Siペレット等)と、を配置した場合には、本体容器20内の原子数比Si/Cは、1を超えることとなる。
 一方で、SiC-C平衡蒸気圧環境が形成されるエッチング空間S1は、加熱処理前にエッチング空間S1内の原子数比Si/Cが1以下となるよう配置し、加熱することで形成することができる。
 例えば、図4に示すように、化学量論比1:1を満たす多結晶SiCの本体容器20内に、化学量論比1:1を満たすSiC基板10と、化学量論比1:1を満たすSiC製の基板保持具24と、を配置した場合には、本体容器20内の原子数比Si/Cは、1若しくは1以下となる。
 また、エッチング空間S1内の原子数比Si/Cを下げるため、C蒸気供給源を別途配置してもよいし、C蒸気供給源を含む本体容器20や基板保持具24を採用してもよい。このC蒸気供給源としては、固体のC(C基板やC粉末等のCペレット)やC化合物を例示することができる。
 本手法におけるエッチング温度は、好ましくは1400~2300℃の範囲で設定され、より好ましくは1600~2000℃の範囲で設定される。
 本手法におけるエッチング速度は、上記温度領域によって制御することができ、0.001~2μm/minの範囲で選択することが可能である。
 本手法におけるエッチング量は、SiC基板10のMSBを分解できるエッチング量であれば採用することができる。このエッチング量としては、0.1μm以上20μm以下を例示することができるが、必要に応じて適用可能である。
 本手法におけるエッチング時間は、所望のエッチング量となるよう任意の時間に設定することができる。例えば、エッチング速度が1μm/minの時に、エッチング量を1μmとしたい場合には、エッチング時間は1分間となる。
 本手法における温度勾配は、エッチング空間S1において、0.1~5℃/mmの範囲で設定される。
 以下の方法で実施例1、比較例1のSiC基板を製造した。
<実施例1>
 以下の条件で、SiC基板10を本体容器20及び高融点容器40に収容した(配置工程)。
[SiC基板10]
 多型:4H-SiC
 基板サイズ:横幅10mm×縦幅10mm×厚み0.3mm
 オフ方向及びオフ角:<11-20>方向4°オフ
 エッチング面:(0001)面
 MSBの有無:有
 図5は、エッチング工程前のSiC基板10の表面のSEM像である。このエッチング工程前のSiC基板10表面には、高さ3nm以上のMSBが形成されている。なお、ステップ11高さはAFMにより測定した。
 [本体容器20]
 材料:多結晶SiC
 容器サイズ:直径60mm×高さ4mm
 基板保持具24の材料:単結晶SiC
 SiC基板10と本体容器20の底面との距離:2mm
 Si蒸気供給源25:単結晶Si片
 [高融点容器40]
 材料:TaC
 容器サイズ:直径160mm×高さ60mm
 Si蒸気供給源44(Si化合物):TaSi
 [エッチング工程]
 上記条件で配置したSiC基板10を、以下の条件で加熱処理した。
 加熱温度:1900℃
 加熱時間:60min
 エッチング速度:300nm/min
 本加熱室真空度:10-5Pa
 図6は、上記条件でエッチングした実施例1のSiC基板10表面のSEM像である。
 この実施例1のSiC基板10表面には、MSBは形成されておらず、1.0nm(フルユニットセル)のステップ11が規則正しく配列していることがわかる。
 この実施例1においては、本体容器20内の原子数比Si/Cが1を超えるようSi蒸気供給源25が配置されている(図3参照)。これにより本体容器20内に、SiC-Si平衡蒸気圧環境を形成される。このSiC-Si平衡蒸気圧環境下でSiC基板10をエッチングすることで、MSBの形成が抑制されたSiC基板10を製造することができる。
<比較例1>
 以下の条件で、SiC基板10を本体容器20及び高融点容器40に収容した(配置工程)。
 [SiC基板10]
 実施例1と同様のSiC基板10を用いた。
 [本体容器20]
 実施例1と同様の本体容器20を用いた。この時、Si蒸気供給源25(単結晶Si片)は配置せず、本体容器20内にはSiC基板10のみを配置した(図4参照)。
 [高融点容器40]
 実施例1と同様の高融点容器40及びSi蒸気供給源44(Si化合物)を用いた。
 [エッチング工程]
 上記条件で配置したSiC基板10を、実施例1と同様の条件でエッチングした。
 図7は、上記条件でエッチングした比較例1のSiC基板10表面のSEM像である。
 この比較例1のSiC基板10表面には、高さ3nm以上のMSBが形成されている。
 この比較例1においては、本体容器20内の原子数比Si/Cが1以下となるよう各部材が配置されている(図4参照)。これにより、本体容器20内にSiC-C平衡蒸気圧環境が形成されている。
 図8は、本発明に係るSiC基板の製造方法にてエッチングした場合の、加熱温度とエッチング速度の関係を示すグラフである。このグラフの横軸は温度の逆数であり、このグラフの縦軸はエッチング速度を対数表示している。エッチング空間S1内の原子数比Si/Cが1を超えるように設定して(図3参照)エッチングした結果を○印で示し、エッチング空間S1内の原子数比Si/Cが1以下(1又は1未満)となるよう設定して(図4参照)エッチングした結果を×印で示している。○印箇所のSiC基板10表面は何れもMSBが形成されておらず、ステップ11は1ユニットセルの高さであった。一方、×印箇所のSiC基板10表面は何れもMSBが形成されていた。
 ここで、本体容器20内の加熱した際に、SiC基板10から発生するSi元素を含む気相種及びC元素を含む気相種の蒸気圧をエッチング量とした場合、SiC基板10のエッチング速度は以下の数1で求められる。
Figure JPOXMLDOC01-appb-M000001
 ここで、TはSiC基板10の温度、mは気相種(Six)の分子量、kはボルツマン定数である。
 また、Pは、SiC基板10が加熱されることで本体容器20内に発生する蒸気圧を足し合わせた値のことである。なお、Pの気相種としては、SiC,SiC,SiC等が想定される。
 図8のグラフにおいては、SiC-Si平衡蒸気圧環境におけるSiC基板エッチングの熱力学計算の結果を破線(アレニウスプロット)で、SiC-C平衡蒸気圧環境におけるSiC基板エッチングの熱力学計算の結果を二点鎖線(アレニウスプロット)にて示している。
 すなわち、破線は、SiC(固体)とSi(液相)とが気相を介して相平衡状態となっているときの蒸気圧の環境において、単結晶SiCをエッチングした際の熱力学計算の結果である。具体的には、数1を用いて、以下の条件(i)~(iv)で熱力学計算を行った。(i)体積一定のSiC-Si平衡蒸気圧環境であること,(ii)エッチング駆動力は、エッチング空間S1内の温度勾配であること,(iii)原料ガスは、SiC,SiC,SiCであること,(iv)原料がステップ11から昇華する脱離係数は0.001であること。
 また、二点鎖線は、SiC(固相)とC(固相)とが気相を介して相平衡状態となっているときの蒸気圧の環境において、単結晶SiCをエッチングした際の熱力学計算の結果である。具体的には、数1を用いて、以下の条件(i)~(iv)で熱力学計算を行った。(i)体積一定のSiC-C平衡蒸気圧環境であること,(ii)エッチング駆動力は、エッチング空間S1内の温度勾配であること,(iii)原料ガスはSiC,SiC,SiCであること,(iv)原料がステップ11から昇華する脱離係数は0.001であること。
 なお、熱力学計算に用いた各化学種のデータはJANAF熱化学表の値を採用した。
 その結果、SiC-Si平衡蒸気圧環境下でエッチングされた図8の○印箇所の条件においては、MSBの形成が分解・抑制されており、SiC基板10表面に1nm(1ユニットセル)高さのステップ11が整列していることがわかる。
 一方で、SiC-C平衡蒸気圧環境下でエッチングされた図8の×印箇所の条件においては、MSBが形成されていることがわかる。
 本発明のSiC基板の製造方法によれば、SiC基板10がSiC-Si平衡蒸気圧環境下でエッチングされるエッチング工程を含むことにより、MSBの形成が抑制されたSiC基板を製造することができる。
 10 SiC基板
 101 主面
 11 ステップ
 12 テラス
 20 本体容器
 24 基板保持具
 25 Si蒸気供給源
 30 加熱炉
 40 高融点容器
 44 Si蒸気供給源
 S1 エッチング空間

 

Claims (21)

  1.  SiC基板を収容可能で、加熱によりSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器と、
     前記本体容器を収容し、Si元素を含む気相種の蒸気圧を内部空間に発生させるとともに温度勾配が形成されるように加熱する加熱炉と、を備え、
     前記本体容器は、前記SiC基板が前記温度勾配の高温側に配置された状態で、前記温度勾配の低温側に配置される前記本体容器の一部と、前記SiC基板とを相対させることで形成されるエッチング空間と、
     前記本体容器内にSi蒸気を供給可能なSi蒸気供給源と、を有する、SiC基板の製造装置。
  2.  前記Si蒸気供給源は、前記本体容器内の原子数比Si/Cが1を超えるよう配置される、請求項1に記載のSiC基板の製造装置。
  3.  前記本体容器は、前記SiC基板と前記本体容器との間に設けられる基板保持具を有する、請求項1又は請求項2に記載のSiC基板の製造装置。
  4.  前記本体容器は、多結晶SiCを含む材料で構成される、請求項1~3の何れかに記載のSiC基板の製造装置。
  5.  前記加熱炉は、前記本体容器を収容可能な高融点容器と、
     この高融点容器内にSi蒸気を供給可能なSi蒸気供給源と、を有する、請求項1~4の何れかに記載のSiC基板の製造装置。
  6.  前記高融点容器は、タンタルを含む材料で構成され、
     前記Si蒸気供給源は、タンタルシリサイドである、請求項5に記載のSiC基板の製造装置。
  7.  Si元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器の内部にSiC基板とSi蒸気供給源を収容し、前記本体容器を、Si元素を含む気相種の蒸気圧の環境下で温度勾配が形成されるように加熱することで、前記SiC基板をエッチングするエッチング工程を含む、SiC基板の製造方法。
  8.  前記Si蒸気供給源が、前記本体容器内の原子数比Si/Cが1を超えるよう配置される、請求項7に記載のSiC基板の製造方法。
  9.  前記エッチング工程は、SiC基板をSiC-Si平衡蒸気圧環境下でエッチングする、請求項7又は請求項8に記載のSiC基板の製造方法。
  10.  前記エッチング工程は、SiC基板の表面からSi原子を熱昇華させるSi原子昇華工程と、
     SiC基板の表面に残存したC原子と前記本体容器内のSi蒸気とを反応させることでSiC基板の表面からC原子を昇華させるC原子昇華工程と、を有する、請求項7~9の何れかに記載のSiC基板の製造方法。
  11.  前記エッチング工程は、前記温度勾配の高温側に配置された前記SiC基板と、前記温度勾配の低温側に配置された前記本体容器の一部と、を相対させてエッチングする、請求項7~10の何れかに記載のSiC基板の製造方法。
  12.  SiC基板をSiC-Si平衡蒸気圧環境下でエッチングするエッチング工程を含む、SiC基板のマクロステップバンチングを低減する方法。
  13.  前記エッチング工程は、1400℃以上2300℃以下の温度範囲で加熱する工程である、請求項12に記載の方法。
  14.  前記エッチング工程は、エッチング空間内の原子数比Si/Cが1を超えるようSi蒸気供給源を配置してエッチングする工程である、請求項12又は請求項13に記載の方法。
  15.  SiC基板をSiC-Si平衡蒸気圧環境下でエッチングするエッチング工程を含み、
     前記エッチング工程は、Si元素を含む気相種の蒸気圧の環境を介して排気されるエッチング空間に前記SiC基板を配置してエッチングする工程である、SiC基板の製造方法。
  16.  前記エッチング工程は、エッチング空間内の原子数比Si/Cが1を超えるようSi蒸気供給源を配置してエッチングする工程である、請求項15に記載のSiC基板の製造方法。
  17.  前記エッチング工程は、前記SiC基板が温度勾配の高温側に配置されたエッチング空間を加熱する工程である、請求項15又は請求項16に記載のSiC基板の製造方法。
  18.  SiC基板を収容可能で、加熱によりSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる本体容器と、
     前記本体容器を収容し、Si元素を含む気相種の蒸気圧を内部空間に発生させるとともに温度勾配が形成されるように加熱する加熱炉と、を備え、
     前記本体容器は、前記SiC基板が前記温度勾配の高温側に配置されるエッチング空間と、前記本体容器内にSi蒸気を供給可能なSi蒸気供給源と、を有する、SiC基板の製造装置。
  19.  前記Si蒸気供給源は、前記本体容器内の原子数比Si/Cが1を超えるよう配置される、請求項18に記載のSiC基板の製造装置。
  20.  前記本体容器は、前記SiC基板の少なくとも一部を前記本体容器の中空に保持可能な基板保持具を有する、請求項18又は請求項19に記載のSiC基板の製造装置。
  21.  請求項7~11、15~17の何れか一項に記載の製造方法により製造されたSiC基板。

     
PCT/JP2020/008964 2019-03-05 2020-03-03 SiC基板の製造方法及びその製造装置及びSiC基板のマクロステップバンチングを低減する方法 WO2020179793A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/436,309 US20220181149A1 (en) 2019-03-05 2020-03-03 METHOD AND DEVICE FOR MANUFACTURING SiC SUBSTRATE, AND METHOD FOR REDUCING MACRO-STEP BUNCHING OF SiC SUBSTRATE
EP20766086.1A EP3936645A4 (en) 2019-03-05 2020-03-03 METHOD AND APPARATUS FOR MANUFACTURING A SIC SUBSTRATE, AND METHOD FOR REDUCING MACRO-LEVEL BUNTING IN A SIC SUBSTRATE
CN202080018847.6A CN114207195A (zh) 2019-03-05 2020-03-03 SiC衬底的制造方法及其制造装置和减少SiC衬底的宏观台阶聚束的方法
JP2021504115A JP7464807B2 (ja) 2019-03-05 2020-03-03 SiC基板の製造方法及びその製造装置及びSiC基板のマクロステップバンチングを低減する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-040070 2019-03-05
JP2019040070 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179793A1 true WO2020179793A1 (ja) 2020-09-10

Family

ID=72337457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008964 WO2020179793A1 (ja) 2019-03-05 2020-03-03 SiC基板の製造方法及びその製造装置及びSiC基板のマクロステップバンチングを低減する方法

Country Status (6)

Country Link
US (1) US20220181149A1 (ja)
EP (1) EP3936645A4 (ja)
JP (1) JP7464807B2 (ja)
CN (1) CN114207195A (ja)
TW (1) TWI811529B (ja)
WO (1) WO2020179793A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3936646A4 (en) * 2019-03-05 2023-01-04 Kwansei Gakuin Educational Foundation METHOD AND DEVICE FOR MAKING SIC SUBSTRATE, AND METHOD FOR REDUCING AFFECTED LAYER DURING SHAPING INTO SIC SUBSTRATE
CN114777427B (zh) * 2022-05-10 2023-11-17 星恒电源股份有限公司 一种方形叠片锂离子电池电芯的干燥方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225710A (ja) * 2004-02-12 2005-08-25 Denso Corp SiC単結晶の製造方法およびSiC単結晶の製造装置
JP2008016691A (ja) 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
WO2016079983A1 (ja) * 2014-11-18 2016-05-26 東洋炭素株式会社 SiC基板のエッチング方法及び収容容器
JP2017066019A (ja) * 2015-09-30 2017-04-06 住友電気工業株式会社 炭化珪素単結晶の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989340A (en) * 1995-11-14 1999-11-23 Siemens Aktiengesellschaft Process and device for sublimation growing of silicon carbide monocrystals
JP3550967B2 (ja) * 1997-09-11 2004-08-04 富士電機ホールディングス株式会社 炭化けい素基板の熱処理方法
JP2011243618A (ja) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
JP6080075B2 (ja) * 2013-06-13 2017-02-15 学校法人関西学院 SiC基板の表面処理方法
WO2016079984A1 (ja) * 2014-11-18 2016-05-26 学校法人関西学院 SiC基板の表面処理方法
US11365491B2 (en) * 2016-04-27 2022-06-21 Kwansei Gakuin Educational Foundation Method for producing SiC substrate provided with graphene precursor and method for surface treating SiC substrate
US11359307B2 (en) * 2016-04-28 2022-06-14 Kwansei Gakuin Educational Foundation Vapour-phase epitaxial growth method, and method for producing substrate equipped with epitaxial layer
TW202037773A (zh) * 2018-11-05 2020-10-16 學校法人關西學院 碳化矽半導體基板、碳化矽半導體基板的製造方法、碳化矽半導體基板的製造裝置以及降低碳化矽半導體基板之底面差排的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225710A (ja) * 2004-02-12 2005-08-25 Denso Corp SiC単結晶の製造方法およびSiC単結晶の製造装置
JP2008016691A (ja) 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
WO2016079983A1 (ja) * 2014-11-18 2016-05-26 東洋炭素株式会社 SiC基板のエッチング方法及び収容容器
JP2017066019A (ja) * 2015-09-30 2017-04-06 住友電気工業株式会社 炭化珪素単結晶の製造方法

Also Published As

Publication number Publication date
TWI811529B (zh) 2023-08-11
US20220181149A1 (en) 2022-06-09
CN114207195A (zh) 2022-03-18
EP3936645A1 (en) 2022-01-12
EP3936645A4 (en) 2022-11-09
JPWO2020179793A1 (ja) 2020-09-10
TW202044487A (zh) 2020-12-01
JP7464807B2 (ja) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2020179796A1 (ja) SiCエピタキシャル基板の製造方法及びその製造装置
WO2020095873A1 (ja) SiC半導体基板及びその製造方法及びその製造装置
US20220282395A1 (en) SiC SUBSTRATE, SiC EPITAXIAL SUBSTRATE, SiC INGOT AND PRODUCTION METHODS THEREOF
WO2020179793A1 (ja) SiC基板の製造方法及びその製造装置及びSiC基板のマクロステップバンチングを低減する方法
WO2020218483A1 (ja) 半導体基板の製造方法、その製造装置、及び、エピタキシャル成長方法
WO2021060368A1 (ja) SiC単結晶の製造方法、SiC単結晶の製造装置及びSiC単結晶ウェハ
WO2020218482A1 (ja) SiC基板の製造方法、その製造装置、及び、エピタキシャル成長方法
WO2020179794A1 (ja) SiC基板の製造方法及びその製造装置及びSiC基板の加工変質層を低減する方法
US12014939B2 (en) Device for manufacturing semiconductor substrate comprising temperature gradient inversion means and method for manufacturing semiconductor substrate
WO2021060365A1 (ja) 半導体基板の製造方法及び半導体基板の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020766086

Country of ref document: EP

Effective date: 20211005