WO2021060071A1 - 感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法 - Google Patents

感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法 Download PDF

Info

Publication number
WO2021060071A1
WO2021060071A1 PCT/JP2020/034893 JP2020034893W WO2021060071A1 WO 2021060071 A1 WO2021060071 A1 WO 2021060071A1 JP 2020034893 W JP2020034893 W JP 2020034893W WO 2021060071 A1 WO2021060071 A1 WO 2021060071A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solvent
radiation
resin composition
sensitive resin
Prior art date
Application number
PCT/JP2020/034893
Other languages
English (en)
French (fr)
Inventor
田中 匠
博之 江副
原田 憲一
彰一郎 岩ヶ谷
呂有真 青木
三千紘 白川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021548832A priority Critical patent/JP7262601B2/ja
Publication of WO2021060071A1 publication Critical patent/WO2021060071A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Definitions

  • the present invention relates to a method for producing a radiation-sensitive resin composition, a method for forming a pattern, and a method for producing an electronic device.
  • fine processing is performed by lithography using a radiation-sensitive resin composition.
  • the lithography method include a method of forming a resist film with a radiation-sensitive resin composition, exposing the obtained film, and then developing the film.
  • Patent Document 1 discloses that a manufacturing apparatus used for manufacturing a radiation-sensitive resin composition is washed with a predetermined solvent.
  • a defect means that the pattern obtained by carrying out the development process has a dent or a chip, and the pattern does not have a predetermined size.
  • the radiation-sensitive resin composition is often used after being stored for a predetermined period of time. Therefore, the present inventors produced a radiation-sensitive resin composition using a manufacturing apparatus washed with a predetermined solvent with reference to Patent Document 1, and examined its characteristics, and stored the composition for a long period of time. In the pattern formed using the later radiation-sensitive resin composition, the occurrence of defects was observed, and it was found that there is room for further improvement.
  • a method for producing a radiation-sensitive resin composition which comprises producing the radiation-sensitive resin composition using a device for producing the radiation-sensitive resin composition. Step 1 of cleaning the equipment for producing the radiation-sensitive resin composition with solvent A having an SP value of 18.5 MPa 1/2 or more and 25.5 MPa 1/2 or less. After the step 1, the apparatus for producing the radiation-sensitive resin composition is washed with the solvent B having a higher SP value than the solvent A used in the step 1 and having an SP value of 30.0 MPa 1/2 or less.
  • a method for producing a radiation-sensitive resin composition comprising step 3 of producing the radiation-sensitive resin composition with a device for producing the radiation-sensitive resin composition after step 2.
  • the radiation-sensitive resin composition contains a resin and contains a resin. The resin does not have repeating units with silicon atoms, The method for producing a radiation-sensitive resin composition according to any one of (1) to (11), wherein the resin has a repeating unit derived from a monomer having a (meth) acrylic group.
  • the process of exposing the resist film and A pattern forming method comprising a step of developing an exposed resist film using a developing solution and forming a pattern.
  • a method for manufacturing an electronic device including the pattern forming method according to (13).
  • the present invention it is possible to provide a method for producing a radiation-sensitive resin composition in which the occurrence of defects in the formed pattern is suppressed even after long-term storage. Further, according to the present invention, it is possible to provide a pattern forming method and a method for manufacturing an electronic device.
  • a schematic diagram of an embodiment of a manufacturing apparatus used in the method for manufacturing a radiation-sensitive resin composition of the present invention is shown.
  • the numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the notation that does not describe substitution or non-substitution includes a group having a substituent as well as a group having no substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the bonding direction of the divalent groups described herein is not limited unless otherwise specified.
  • (meth) acrylic is a general term including acrylic and methacrylic, and means “at least one of acrylic and methacrylic”.
  • (meth) acrylic acid is a general term including acrylic acid and methacrylic acid, and means “at least one of acrylic acid and methacrylic acid”.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and degree of dispersion (also referred to as molecular weight distribution) (Mw / Mn) of the resin are GPC (Gel Permeation Chromatography) apparatus (HLC manufactured by Toso Co., Ltd.).
  • radiation refers to, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays (EUV: Extreme Ultra Violet), X-rays, electron beams (EB: Electron Beam), and the like. means.
  • EUV Extreme Ultra Violet
  • X-rays extreme ultraviolet rays
  • EB electron beams
  • light means radiation.
  • the acid dissociation constant (pKa) represents pKa in an aqueous solution, and specifically, using the following software package 1, a value based on a database of Hammett's substituent constants and known literature values is used. , It is a value obtained by calculation. All pKa values described herein indicate values calculated using this software package.
  • pKa can also be obtained by the molecular orbital calculation method.
  • a specific method for this there is a method of calculating by calculating H + dissociation free energy in an aqueous solution based on a thermodynamic cycle.
  • the calculation method of H + dissociation free energy can be calculated by, for example, DFT (density functional theory), but various other methods have been reported in the literature and are not limited to this. ..
  • DFT density functional theory
  • pKa in the present specification refers to a value obtained by calculation based on a database of Hammett's substituent constants and known literature values using software package 1. If it cannot be calculated, the value obtained by Gaussian 16 based on DFT (Density Functional Theory) shall be adopted. Further, pKa in the present specification refers to "pKa in an aqueous solution” as described above, but when pKa in an aqueous solution cannot be calculated, “pKa in a dimethyl sulfoxide (DMSO) solution” is adopted. It shall be.
  • DMSO dimethyl sulfoxide
  • composition of the present invention is predetermined.
  • composition of the present invention also simply referred to as “composition of the present invention", “composition” or “resist composition”
  • the manufacturing equipment is washed with a solvent.
  • the present inventors have found that the residue derived from the radiation-sensitive resin composition adhering to the manufacturing apparatus has an influence on the cause of the defect of the formed pattern.
  • a predetermined production apparatus is repeatedly used. Therefore, when the radiation-sensitive resin composition is produced using the manufacturing apparatus, the residue of the radiation-sensitive resin composition adhering to the manufacturing apparatus is mixed in the newly produced radiation-sensitive resin composition. It is desirable not to do so.
  • a solvent A having a predetermined SP value that is relatively compatible with a resin (for example, a resin whose polarity increases due to the action of an acid) and a photoacid generator, which are the main components of the radiation-sensitive resin composition The manufacturing equipment is cleaned with a solvent to remove most of the deposits.
  • a highly polar component such as a photoacid generator is removed by using a solvent B having a higher SP value than the solvent A.
  • the production method of the present invention is a method for producing a radiation-sensitive resin composition using an apparatus for producing a radiation-sensitive resin composition, and has the following steps 1 to 3 in this order.
  • Step 1 The equipment for producing the radiation-sensitive resin composition is washed with a solvent A having an SP value (solubility parameter) of 18.5 to 25.5 MPa 1/2.
  • Step 2 Radiation-sensitive after step 1.
  • the equipment for producing the sex resin composition is washed with a solvent B having a higher SP value than the solvent A used in the step 1 and an SP value of 30 MPa 1/2 or less.
  • Step of manufacturing the radiation-sensitive resin composition with the manufacturing apparatus of the sex resin composition The procedure of each step is described in detail below.
  • the manufacturing method of the present invention is preferably carried out in a clean room.
  • the degree of cleanliness is preferably class 6 or less, more preferably class 5 or less, and even more preferably class 4 or less according to the international standard ISO 14644-1.
  • the above steps 1 to 3 are carried out on the manufacturing apparatus used for manufacturing the radiation-sensitive resin composition.
  • Examples of the procedure for the step of producing the radiation-sensitive resin composition include the same procedure as in step 3 described later.
  • the solid content concentration of the radiation-sensitive resin composition produced in step 0 is 10% by mass or more, the effect of the present invention is remarkably exhibited. Further, the above steps 1 to 3 may be repeated twice or more.
  • Step 1 is a step of cleaning the equipment for producing the radiation-sensitive resin composition with the solvent A having an SP value of 18.5 to 25.5 MPa 1/2. As described above, by carrying out this step, the residue derived from the radiation-sensitive resin composition adhering to the manufacturing apparatus (for example, the residue derived from the resin and the residue derived from the photoacid generator). Most of the can be removed.
  • FIG. 1 shows a schematic view of an embodiment of a manufacturing apparatus used in the manufacturing method of the present invention.
  • the stirring tank 10 the stirring shaft 12 rotatably mounted in the stirring tank 10, the stirring blade 14 attached to the stirring shaft 12, and the bottom and one end of the stirring tank 10 are connected to each other.
  • the circulation pipe 16 whose ends are connected to the upper part of the stirring tank 10, the filter 18 arranged in the middle of the circulation pipe 16, the discharge pipe 20 connected to the circulation pipe 16, and the discharge pipe 20 are arranged at the ends. It also has a discharge nozzle 22. It is preferable that the wetted portion (the part in contact with the liquid) in the apparatus is lined or coated with a fluororesin or the like.
  • the stirring tank 10 is not particularly limited as long as it can contain a resin, a photoacid generator, a solvent, etc., which are contained in the radiation-sensitive resin composition and whose polarity is increased by the action of an acid, and are known.
  • a stirring tank can be mentioned.
  • the shape of the bottom of the stirring tank 10 is not particularly limited, and examples thereof include a dish-shaped end plate shape, a semi-elliptical end plate shape, a flat end plate shape, and a conical end plate shape, and a dish-shaped end plate shape or a semi-elliptical end plate shape is preferable.
  • a baffle plate may be installed in the stirring tank 10 in order to improve the stirring efficiency.
  • the number of baffle plates is not particularly limited, and 2 to 8 plates are preferable.
  • the width of the baffle plate in the horizontal direction of the stirring layer 10 is not particularly limited, and is preferably 1/8 to 1/2 of the diameter of the stirring tank.
  • the length of the baffle plate in the height direction of the stirring tank is not particularly limited, but is preferably 1/2 or more, more preferably 2/3 or more of the height from the bottom of the stirring tank to the liquid level of the component to be charged. 3/4 or more is more preferable.
  • a drive source for example, a motor or the like
  • the stirring blade 14 is rotated, and each component put into the stirring tank 10 is stirred.
  • the shape of the stirring blade 14 is not particularly limited, and examples thereof include a paddle blade, a propeller blade, and a turbine blade.
  • the stirring tank 10 may have a material charging port for charging various materials into the stirring tank. Further, the stirring tank 10 may have a gas introduction port for introducing gas into the stirring tank 10. Further, the stirring tank 10 may have a gas discharge port for discharging the gas inside the stirring tank 10 to the outside of the stirring tank.
  • the configuration of the apparatus for producing the radiation-sensitive resin composition is not limited to FIG. 1, and at least a stirring tank may be provided. Further, in the stirring tank, a cleaning nozzle (for example, a spray ball) may be arranged in the upper part of the tank. As the spray ball, a spray ball of a type in which the spray ball rotates when the solvent A described later flows and the inside of the stirring tank can be uniformly washed is preferable.
  • the solvent A used in this step is a solvent having an SP value of 18.5 to 25.5 MPa 1/2 . That is, the solvent A is a solvent having any SP value in the above SP value range. Among them, the SP value of the solvent A is 18.5 to 23.0 MPa 1/2 in that the occurrence of pattern defects is further suppressed (hereinafter, also simply referred to as “the point where the effect of the present invention is more excellent”). Is preferable.
  • the solvent A is not particularly limited as long as the conditions in the SP value range are satisfied.
  • an amide solvent, an alcohol solvent, an ester solvent, and a glycol ether solvent glycol ether solvent having a substituent may be used. Included), ketone solvents, alicyclic ether solvents, aliphatic hydrocarbon solvents, aromatic ether solvents, and aromatic hydrocarbon solvents. Specific examples are shown in Tables 2 and 3 below.
  • solvent A only one type may be used, or two or more types may be used in combination.
  • step 1 the manufacturing apparatus is washed with the solvent A.
  • the manufacturing apparatus When cleaning the manufacturing apparatus, the manufacturing apparatus may be washed a plurality of times (preferably 3 times or more, more preferably 10 times or more) using the solvent A. Further, when cleaning the manufacturing apparatus, the solvent A may be circulated for cleaning. That is, so-called circulation cleaning may be performed.
  • the filter When performing the circulation cleaning, the filter may be arranged in the middle of passing the solvent A. By arranging the filter, insoluble matter can be removed during cleaning. Examples of the filter used above include the filter used in the step X described later.
  • the liquid temperature of the solvent A at the time of use is preferably 20 ° C. or higher.
  • the upper limit of the liquid temperature of the solvent A is appropriately selected from the viewpoint of safety such as the flash point of the solvent A and the heat resistance of the equipment.
  • the liquid temperature at the time of using the propylene glycol monomethyl ether acetate is preferably 20 to 35 ° C, more preferably 25 to 35 ° C, and 30 to 35 ° C. Is more preferable.
  • the method for controlling the liquid temperature is not particularly limited, and examples thereof include a method of charging a solvent that has been preheated into the equipment and a method of using a temperature control device installed in the mixing equipment.
  • Solvent A is preferably filtered through a filter before use. That is, the production method of the present invention preferably includes a step X of filtering the solvent A with a filter before the step 1.
  • the type of filter used is not particularly limited, and a known filter is used.
  • the pore size (pore size) of the filter is preferably 0.20 ⁇ m or less, more preferably 0.10 ⁇ m or less, and even more preferably 0.05 ⁇ m or less.
  • the filter used in step X preferably contains a fluororesin.
  • the filter may be one that has been pre-cleaned with an organic solvent.
  • a plurality of filters When filtering with a filter, a plurality of filters may be connected in series or in parallel. When a plurality of filters are used, filters having different pore diameters and / or materials may be used in combination. Further, when filtering with a filter, circulation filtration may be performed. As a method of circulation filtration, for example, a method disclosed in JP-A-2002-0626667 is preferable.
  • the filter preferably has a reduced amount of eluate as disclosed in Japanese Patent Application Laid-Open No. 2016-201426. After the filter filtration, impurities may be further removed by the adsorbent.
  • step 2 After step 1, the apparatus for producing the radiation-sensitive resin composition is used with solvent B having a higher SP value than the solvent A used in step 1 and having an SP value of 30.0 MPa 1/2 or less. This is the cleaning process. By carrying out this step, highly polar components such as a photoacid generator can be washed and removed.
  • Solvent B has a higher SP value than solvent A used in step 1.
  • solvent B may be any solvent having a higher SP value than the solvent A used in step 1, and the lower limit of the SP value of the solvent B is preferably more than 18.5 MPa 1/2.
  • the upper limit of the SP value of the solvent B is 30.0 MPa 1/2 or less.
  • the SP value of the solvent B may be higher than that of the solvent A and 30.0 MPa 1/2 or less, but 20.0 to 30.0 Pa 1/2 is preferable because the effect of the present invention is more excellent.
  • the solvent B is not particularly limited as long as the above conditions are satisfied, but for example, an amide-based solvent, an alcohol-based solvent, an ester-based solvent, a glycol ether-based solvent (including a glycol ether-based solvent having a substituent), and a ketone-based solvent.
  • examples thereof include solvents, alicyclic ether-based solvents, aliphatic hydrocarbon-based solvents, aromatic ether-based solvents, and aromatic hydrocarbon-based solvents.
  • Specific examples of the solvent B include specific examples exemplified by the solvent A. In addition to the specific examples illustrated in Solvent A, the solvents shown in Table 4 can be mentioned.
  • solvent B only one type may be used, or two or more types may be used in combination.
  • the combination of the solvent A and the solvent B is not particularly limited, but it is preferable that one or both of the solvent A and the solvent B contains a ketone solvent or a glycol ether solvent in that the effect of the present invention is more excellent. ..
  • step 2 the manufacturing apparatus is washed with the solvent B.
  • cleaning the manufacturing apparatus it is preferable to clean the wetted portion of the manufacturing apparatus with which the radiation-sensitive resin composition comes into contact with the solvent B at least when producing the radiation-sensitive resin composition. Above all, it is preferable to wash at least the wetted portion of the stirring tank with the solvent B.
  • the manufacturing apparatus When cleaning the manufacturing apparatus, the manufacturing apparatus may be washed a plurality of times (preferably 3 times or more, more preferably 10 times or more) using the solvent B. Further, when cleaning the manufacturing apparatus, the solvent B may be circulated for cleaning. That is, so-called circulation cleaning may be performed.
  • the filter When performing the circulation cleaning, the filter may be arranged in the middle of passing the solvent B. By arranging the filter, insoluble matter can be removed during cleaning. Examples of the filter used above include the filter used in the above-mentioned step X.
  • the liquid temperature of the solvent B at the time of use is preferably 20 ° C. or higher.
  • the upper limit of the liquid temperature of the solvent B is appropriately selected from the viewpoint of safety such as the flash point of the solvent B and the heat resistance of the equipment.
  • Solvent B is preferably filtered through a filter before use. That is, the production method of the present invention preferably has a step Y of filtering the solvent B with a filter before the step 2. Examples of the filter used include the filter described in step X. The filter used in step Y preferably contains a fluororesin. Examples of the procedure of step Y include the procedure described in step X.
  • the step 3 is a step of manufacturing the radiation-sensitive resin composition with the device for manufacturing the radiation-sensitive resin composition after the step 2.
  • the procedure of step 3 is not particularly limited, and examples thereof include a method of adding various components constituting the radiation-sensitive resin composition to the manufacturing apparatus and mixing them to produce the radiation-sensitive resin composition.
  • the type of the component constituting the radiation-sensitive resin composition added to the stirring tank of the manufacturing apparatus is not particularly limited, but for example, a resin (preferably a resin whose polarity is increased by the action of an acid). ), Photoacid generator, and solvent. These components will be described in detail later.
  • the procedure for charging the above components into the stirring tank is not particularly limited. For example, a method of charging various components from the material input port of the stirring tank can be mentioned. When adding various components, the components may be added sequentially or collectively. Further, when adding one kind of component, it may be added in a plurality of times. Further, when each component is sequentially charged into the stirring tank, the order of charging is not particularly limited.
  • the component when a component other than the solvent is charged into the stirring tank, the component may be charged into the stirring tank as a solution dissolved in the solvent. At that time, in order to remove the insoluble matter in the solution, the solution may be filtered with a filter and then put into a stirring tank. Further, when the solvent is charged into the stirring tank, the solvent may be filtered and then charged into the stirring tank. Examples of the filter used above include the filter used in the above-mentioned step X.
  • a liquid feed pump may be used when charging various components into the stirring tank.
  • concentration of the component in the solution in which the above components are dissolved is not particularly limited, but is preferably 10 to 50% by mass with respect to the total mass of the solution.
  • a space is provided in the stirring tank. It is preferable to put in so that More specifically, as shown in FIG. 1, a stirring tank 10 is provided so that a space S (void S) not occupied by the mixture M of the components constituting the radiation-sensitive resin composition is generated in the stirring tank 10. It is preferable to put each component into the inside.
  • the occupancy of the mixture of the components constituting the radiation-sensitive resin composition in the stirring tank is not particularly limited, but is preferably 50 to 95% by volume, more preferably 80 to 90% by volume.
  • the porosity (ratio occupied by the space (void)) in the stirring tank is preferably 5 to 50% by volume, more preferably 10 to 20% by volume.
  • step 3 it is preferable to carry out stirring and mixing of the components constituting the radiation-sensitive resin composition.
  • the method of stirring and mixing is not particularly limited, but it is preferably carried out by the stirring blade described above.
  • the temperature of the mixture containing the components constituting the radiation-sensitive resin composition to be stirred and mixed is not particularly limited, but is preferably 15 to 32 ° C, more preferably 20 to 24 ° C.
  • the temperature of the mixture is preferably kept constant, preferably within ⁇ 10 ° C., more preferably within ⁇ 5 ° C., and even more preferably within ⁇ 1 ° C. from the set temperature.
  • the stirring and mixing time is not particularly limited, but 1 to 48 hours is preferable, and 15 to 24 hours is more preferable, from the viewpoint of the uniformity of the obtained radiation-sensitive resin composition and the balance of productivity.
  • the rotation speed of the stirring blade during stirring and mixing is not particularly limited, but 20 to 500 rpm is preferable, 40 to 350 rpm is more preferable, and 50 to 300 rpm is further preferable, in that the effect of the present invention is more excellent.
  • ultrasonic waves may be applied to the mixture.
  • the radiation-sensitive resin composition produced in the stirring tank 10 is fed to the discharge pipe 20 and discharged from the discharge nozzle 22 arranged at the end of the discharge pipe 20. And may be housed in a predetermined container.
  • the filling speed when filling the container with the radiation-sensitive resin composition is preferably 0.3 to 3.0 L / min, preferably 0.4 to 2.0 L / min, for example, in the case of a container having a capacity of 0.75 L or more and less than 5 L. min is more preferable, and 0.5 to 1.5 L / min is further preferable.
  • a plurality of discharge nozzles may be arranged in parallel and filled at the same time in order to improve filling efficiency.
  • the container examples include a bloom-treated glass container and a container in which the wetted portion is treated to be a fluororesin.
  • the space inside the container (the area inside the container not occupied by the radiation-sensitive resin composition) may be replaced with a predetermined gas.
  • the gas is preferably a gas that is inert or non-reactive with respect to the radiation-sensitive resin composition, and examples thereof include nitrogen and rare gases such as helium and argon.
  • a degassing treatment for removing the dissolved gas in the radiation-sensitive resin composition may be performed. Examples of the degassing method include ultrasonic treatment and defoaming treatment.
  • the content of water in the radiation-sensitive resin composition produced by the production method of the present invention is not particularly limited, but 0.10% by mass or less is preferable, and 0.06 is preferable because the effect of the present invention is more excellent. It is more preferably mass% or less, and further preferably 0.04 mass% or less.
  • the lower limit of the water content is not particularly limited, but is often 0.01% by mass or more. Examples of the method for measuring the water content in the radiation-sensitive resin composition include a method using a Karl Fischer water content measuring device.
  • the production method of the present invention may have steps other than the above-mentioned steps 1 to 3. Among them, in that the effect of the present invention is more excellent, the production method of the present invention is a step 4 in which the apparatus for producing the radiation-sensitive resin composition is washed with the solvent C between the steps 2 and 3. It is preferable to have more.
  • SP value of the solvent C is not particularly limited, in terms of the effect of the present invention is more excellent, 14.5 MPa 1/2 or more 18.5MPa than 1/2 are preferred.
  • the SP value of the solvent C is in the above range, impurities derived from the resin adhering to the manufacturing apparatus can be efficiently removed.
  • the solvent C is not particularly limited, but for example, an amide solvent, an alcohol solvent, an ester solvent, a glycol ether solvent (including a glycol ether solvent having a substituent), a ketone solvent, and an alicyclic ether solvent.
  • An aliphatic hydrocarbon solvent, an aromatic ether solvent, and an aromatic hydrocarbon solvent are preferable.
  • examples of the solvent C in the above-mentioned predetermined SP value range include the solvents listed in Tables 5 and 6 below.
  • solvent C examples include 2,2,4-trimethylpentane, 2-methylpentane, and the like, in addition to the solvents listed in Tables 2 to 6 above.
  • step 4 the manufacturing apparatus is washed with the solvent C.
  • the manufacturing apparatus When cleaning the manufacturing apparatus, the manufacturing apparatus may be washed a plurality of times (preferably 3 times or more, more preferably 10 times or more) using the solvent C. Further, when cleaning the manufacturing apparatus, the solvent C may be circulated for cleaning. That is, so-called circulation cleaning may be performed.
  • the filter When performing the circulation cleaning, the filter may be arranged in the middle of passing the solvent C. By arranging the filter, insoluble matter can be removed during cleaning. Examples of the filter used above include the filter used in the above-mentioned step X.
  • the liquid temperature of the solvent C at the time of use is preferably 20 ° C. or higher.
  • the upper limit of the liquid temperature of the solvent C is appropriately selected from the viewpoint of safety such as the flash point of the solvent C and the heat resistance of the equipment.
  • Solvent C is preferably filtered through a filter before use. That is, the production method of the present invention preferably has a step Z of filtering the solvent C with a filter before the step 4. Examples of the filter used include the filter described in step X. The filter used in step Z preferably contains a fluororesin.
  • the solvent C is different from the solvent contained in the produced radiation-sensitive resin composition
  • the solvent to be contained in the produced radiation-sensitive resin composition after cleaning the manufacturing apparatus with the solvent C is used. It is preferable to use and wash the manufacturing apparatus again.
  • cleaning using water may be performed in addition to the above-mentioned steps 1, 2, and 4.
  • Examples of the cleaning method with water include a cleaning method using nanobubbles or microbubbles.
  • the solvent used for cleaning may be recovered to confirm that there are no impurities.
  • the confirmation method is not particularly limited, and the method is selected according to the impurities to be identified.
  • evaluation of residual solvent by GC gas chromatography
  • evaluation of polymer residual amount by GPC gel permeation chromatography
  • content by liquid particle counter examples include evaluation of the number of particles, evaluation of metal content by ICP-MS (inductively coupled plasma mass spectrometer), and evaluation of applying a cleaning solvent on a wafer to inspect defects.
  • the produced radiation-sensitive resin composition may be subjected to a filtration treatment.
  • a method of feeding the radiation-sensitive resin composition produced in the stirring tank 10 to the circulation pipe 16 and filtering it with the filter 18 can be mentioned.
  • the radiation-sensitive resin composition is sent from the stirring tank 10 to the circulation pipe 16, it is preferable to open a valve (not shown) to send the radiation-sensitive resin composition into the circulation pipe 16. ..
  • the circulation filtration may be carried out continuously a plurality of times. That is, the radiation-sensitive resin composition may be continuously sent to the circulation pipe and the filter 18 may be passed through the filter 18 a plurality of times.
  • the method of sending the radiation-sensitive resin composition from the stirring tank 10 to the circulation pipe 16 is not particularly limited, and a method of sending liquid using gravity, a method of applying pressure from the liquid surface side of the radiation-sensitive resin composition, and circulation. Examples thereof include a method in which the pressure on the pipe 16 side is set to negative pressure and a method in which two or more of these are combined.
  • a method of utilizing the flowing pressure generated by the liquid feeding and a method of pressurizing the gas can be mentioned.
  • the flow pressure is preferably generated by, for example, a pump (liquid feeding pump, circulation pump, etc.) or the like.
  • pumps include the use of rotary pumps, diaphragm pumps, metering pumps, chemical pumps, plunger pumps, bellows pumps, gear pumps, vacuum pumps, air pumps, and liquid pumps, as well as commercially available pumps as appropriate. Can be mentioned.
  • the position where the pump is placed is not particularly limited.
  • the gas used for pressurization is preferably a gas that is inert or non-reactive with respect to the radiation-sensitive resin composition, and specific examples thereof include nitrogen and rare gases such as helium and argon. It is preferable that the circulation pipe 16 side is not decompressed and is at atmospheric pressure.
  • decompression by a pump is preferable, and decompression to vacuum is more preferable.
  • Examples of the filter 18 include a filter used in the filter filtration described in step X.
  • the differential pressure (pressure difference between the upstream side and the downstream side) applied to the filter 18 is preferably 200 kPa or less, more preferably 100 kPa or less. Further, when filtering with the filter 18, it is preferable that the change in the differential pressure during filtration is small.
  • the differential pressure before and after filtration from the time when the liquid is passed through the filter to the time when 90% by mass of the solution to be filtered is finished is ⁇ 50 kPa of the differential pressure before and after the filtration when the liquid is started. It is preferably maintained within ⁇ 20 kPa, and more preferably within ⁇ 20 kPa.
  • the linear velocity is preferably in the range of 3 to 150 L / (hr ⁇ m 2 ), more preferably 5 to 120 L / (hr ⁇ m 2 ), and 10 to 100 L / (hr ⁇ m 2). ) Is more preferable.
  • a buffer tank in which the filtered radiation-sensitive resin composition is stored may be arranged on the downstream side of the filter 18.
  • the radiation-sensitive resin composition produced by the above-mentioned production method is used for pattern formation. More specifically, the procedure of the pattern forming method using the composition of the present invention is not particularly limited, but it is preferable to have the following steps. Step A: Forming a resist film on a substrate using the composition of the present invention Step B: Exposing the resist film Step C: Using a developing solution, develop the exposed resist film to form a pattern. Steps for Forming The procedures for each of the above steps will be described in detail below.
  • Step A is a step of forming a resist film on the substrate using the composition of the present invention.
  • the composition of the present invention is as described above.
  • Examples of the method of forming a resist film on a substrate using the composition include a method of applying the composition on the substrate. It is preferable to filter the composition as necessary before coating.
  • the pore size of the filter is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.03 ⁇ m or less.
  • the filter is preferably made of polytetrafluoroethylene, polyethylene, or nylon.
  • the composition can be applied onto a substrate (eg, silicon, silicon dioxide coating) such as that used in the manufacture of integrated circuit devices by a suitable coating method such as a spinner or coater. As a coating method, spin coating using a spinner is preferable. After the composition is applied, the substrate may be dried to form a resist film. If necessary, various undercoat films (inorganic film, organic film, or antireflection film) may be formed under the resist film.
  • a substrate eg, silicon, silicon dioxide coating
  • a suitable coating method such as a spinner or coater.
  • spin coating using a spinner is preferable.
  • the substrate may be dried to form a resist film.
  • various undercoat films inorganic film, organic film, or antireflection film
  • drying method examples include a heating method (pre-baking: PB).
  • the heating can be performed by a means provided in a normal exposure machine and / or a developing machine, and may be performed by using a hot plate or the like.
  • the heating temperature is preferably 80 to 150 ° C, more preferably 80 to 140 ° C.
  • the heating time is preferably 30 to 1000 seconds, more preferably 40 to 800 seconds.
  • the film thickness of the resist film is not particularly limited, but in the case of a resist film for KrF exposure, it is preferably 0.2 to 12 ⁇ m, more preferably 0.3 to 5 ⁇ m. Further, in the case of a resist film for ArF exposure or EUV exposure, 30 to 700 nm is preferable, 40 to 400 nm is more preferable, and 40 to 200 nm is further preferable.
  • a top coat may be formed on the upper layer of the resist film by using the top coat composition. It is preferable that the topcoat composition is not mixed with the resist film and can be uniformly applied to the upper layer of the resist film.
  • the film thickness of the top coat is preferably 10 to 200 nm, more preferably 20 to 100 nm.
  • the top coat is not particularly limited, and a conventionally known top coat can be formed by a conventionally known method. For example, a top coat can be formed based on the description in paragraphs 0072 to 0082 of JP-A-2014-059543.
  • Step B is a step of exposing the resist film.
  • the exposure method include a method of irradiating the formed resist film with radiation through a predetermined mask.
  • the radiation include infrared light, visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light, X-ray, and EB (Excimer Beam), preferably 250 nm or less, more preferably 220 nm or less, still more preferably.
  • the heating temperature is preferably 80 to 150 ° C, more preferably 80 to 140 ° C.
  • the heating time is preferably 10 to 1000 seconds, more preferably 10 to 180 seconds.
  • the heating can be performed by a means provided in a normal exposure machine and / or a developing machine, and may be performed by using a hot plate or the like. This step is also referred to as post-exposure baking.
  • Step C is a step of developing the exposed resist film using a developing solution to form a pattern.
  • a developing method a method of immersing the substrate in a tank filled with a developing solution for a certain period of time (dip method) and a method of developing by raising the developing solution on the surface of the substrate by surface tension and allowing it to stand for a certain period of time (paddle method).
  • a method of spraying the developer on the surface of the substrate spray method
  • a method of continuously discharging the developer while scanning the developer discharge nozzle on the substrate rotating at a constant speed dynamic discharge method.
  • a step of stopping the development may be carried out while substituting with another solvent.
  • the developing time is not particularly limited as long as the resin in the unexposed portion is sufficiently dissolved, and is preferably 10 to 300 seconds, more preferably 20 to 120 seconds.
  • the temperature of the developing solution is preferably 0 to 50 ° C, more preferably 15 to 35 ° C.
  • the developing solution examples include an alkaline developing solution and an organic solvent developing solution.
  • the alkaline developer it is preferable to use an alkaline aqueous solution containing an alkali.
  • the alkaline developer is preferably an aqueous solution of a quaternary ammonium salt typified by tetramethylammonium hydroxide (TMAH).
  • TMAH tetramethylammonium hydroxide
  • An appropriate amount of alcohols, surfactants and the like may be added to the alkaline developer.
  • the alkali concentration of the alkaline developer is usually 0.1 to 20% by mass.
  • the pH of the alkaline developer is usually 10.0 to 15.0.
  • the organic solvent developer is a developer containing an organic solvent.
  • the organic solvent used in the organic solvent developing solution include known organic solvents, and examples thereof include ester-based solvents, ketone-based solvents, alcohol-based solvents, amide-based solvents, ether-based solvents, and hydrocarbon-based solvents.
  • the pattern forming method preferably includes a step of washing with a rinsing solution after the step C.
  • a rinsing solution used in the rinsing step after the step of developing with the developing solution include pure water.
  • An appropriate amount of surfactant may be added to pure water.
  • An appropriate amount of surfactant may be added to the rinse solution.
  • the substrate may be etched using the formed pattern as a mask. That is, the pattern formed in the step C may be used as a mask to process the substrate (or the underlayer film and the substrate) to form the pattern on the substrate.
  • the processing method of the substrate (or the underlayer film and the substrate) is not particularly limited, but the substrate (or the underlayer film and the substrate) is dry-etched using the pattern formed in step C as a mask to obtain the substrate.
  • the method of forming the pattern is preferable.
  • the dry etching may be one-step etching or multi-step etching. When the etching is an etching consisting of a plurality of stages, the etching of each stage may be the same process or different processes.
  • etching any known method can be used for etching, and various conditions and the like are appropriately determined according to the type and application of the substrate.
  • the Bulletin of the International Society of Optical Engineering (Proc. Of SPIE) Vol. Etching can be performed according to 6924, 692420 (2008), Japanese Patent Application Laid-Open No. 2009-267112, and the like. It is also possible to follow the method described in "Chapter 4 Etching" of "Semiconductor Process Textbook 4th Edition 2007 Published Publisher: SEMI Japan". Of these, oxygen plasma etching is preferable as the dry etching.
  • Various materials used in the production method and composition of the present invention do not contain impurities such as metals. Is preferable.
  • the content of impurities contained in these materials is preferably 1 mass ppm or less, more preferably 10 mass ppt or less, further preferably 100 mass ppt or less, particularly preferably 10 mass ppt or less, and most preferably 1 mass ppt or less. ..
  • metal impurities Na, K, Ca, Fe, Cu, Mn, Mg, Al, Li, Cr, Ni, Sn, Ag, As, Au, Ba, Cd, Co, Mo, Zr, Pb, Examples thereof include Ti, V, W, and Zn.
  • Examples of the method for removing impurities such as metals from the various materials include filtration using a filter.
  • the filter pore diameter is preferably 0.20 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.01 ⁇ m or less.
  • fluororesins such as polytetrafluoroethylene (PTFE) and perfluoroalkoxy alkane (PFA), polyolefin resins such as polypropylene and polyethylene, and polyamide resins such as nylon 6 and nylon 66 are preferable.
  • the filter may be one that has been pre-cleaned with an organic solvent. In the filter filtration step, a plurality of or a plurality of types of filters may be connected in series or in parallel.
  • filters having different pore diameters and / or materials may be used in combination.
  • various materials may be filtered a plurality of times, and the step of filtering the various materials a plurality of times may be a circulation filtration step.
  • the circulation filtration step for example, a method disclosed in JP-A-2002-62667 is preferable.
  • the filter preferably has a reduced amount of eluate as disclosed in Japanese Patent Application Laid-Open No. 2016-201426.
  • impurities may be removed by an adsorbent, and filter filtration and an adsorbent may be used in combination.
  • a known adsorbent can be used, and for example, an inorganic adsorbent such as silica gel or zeolite, or an organic adsorbent such as activated carbon can be used.
  • the metal adsorbent include those disclosed in JP-A-2016-206500.
  • a method for reducing impurities such as metals contained in the various materials a raw material having a low metal content is selected as a raw material constituting the various materials, and filter filtration is performed on the raw materials constituting the various materials.
  • a method such as lining or coating the inside of the apparatus with a fluororesin or the like to perform distillation under conditions in which contamination is suppressed as much as possible can be mentioned.
  • the preferable conditions in the filter filtration performed on the raw materials constituting the various materials are the same as the above-mentioned conditions.
  • the above-mentioned various materials are stored in the containers described in US Patent Application Publication No. 2015/0227049, Japanese Patent Application Laid-Open No. 2015-123351, Japanese Patent Application Laid-Open No. 2017-13804, etc. in order to prevent contamination with impurities. It is preferable to be done.
  • Various materials may be diluted with the solvent used in the composition and used.
  • the components contained in the radiation-sensitive resin composition of the present invention are not particularly limited, but preferably include a resin (preferably a resin whose polarity is increased by the action of an acid), a photoacid generator, and a solvent.
  • a resin preferably a resin whose polarity is increased by the action of an acid
  • a photoacid generator preferably a photoacid generator
  • the radiation-sensitive resin composition may contain a resin.
  • a resin whose polarity is increased by the action of an acid (hereinafter, also simply referred to as “resin (A)”) is preferable. It is preferable that the resin does not have a repeating unit having a silicon atom but has a repeating unit derived from a monomer having a (meth) acrylic group.
  • the resin (A) preferably has a repeating unit (Aa) having an acid-degradable group (hereinafter, also simply referred to as “repeating unit (Aa)”).
  • An acid-degradable group is a group that is decomposed by the action of an acid to produce a polar group.
  • the acid-degradable group preferably has a structure in which the polar group is protected by a leaving group that is eliminated by the action of an acid. That is, the resin (A) has a repeating unit (Aa) having a group that is decomposed by the action of an acid to produce a polar group.
  • the polarity of the resin having the repeating unit (Aa) is increased by the action of the acid, the solubility in the alkaline developer is increased, and the solubility in the organic solvent is decreased.
  • an alkali-soluble group is preferable, and for example, a carboxyl group, a phenolic hydroxyl group, a fluorinated alcohol group, a sulfonic acid group, a sulfonamide group, a sulfonylimide group, a (alkylsulfonyl) (alkylcarbonyl) methylene group, and (alkyl).
  • Sulfonyl) (alkylcarbonyl) imide group bis (alkylcarbonyl) methylene group, bis (alkylcarbonyl) imide group, bis (alkylsulfonyl) methylene group, bis (alkylsulfonyl) imide group, tris (alkylcarbonyl) methylene group, and ,
  • An acidic group such as a tris (alkylsulfonyl) methylene group, an alcoholic hydroxyl group and the like.
  • a carboxyl group a phenolic hydroxyl group, a fluorinated alcohol group (preferably a hexafluoroisopropanol group), or a sulfonic acid group is preferable.
  • Rx 1 to Rx 3 are independently alkyl groups (linear or branched chain), cycloalkyl groups (monocyclic or polycyclic), and alkenyl groups (straight chain), respectively. Represents a (mono- or branched-chain) or aryl group (monocyclic or polycyclic).
  • Rx 1 to Rx 3 are alkyl groups (linear or branched chain)
  • Rx 1 to Rx 3 preferably each independently represent a linear or branched alkyl group, and Rx 1 to Rx 3 may each independently represent a linear alkyl group. More preferred.
  • Rx 1 to Rx 3 may be combined to form a monocyclic or polycyclic ring.
  • alkyl group of Rx 1 to Rx 3 include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group. preferable.
  • Examples of the cycloalkyl group of Rx 1 to Rx 3 include a monocyclic cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, and a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, an adamantyl group and the like.
  • the polycyclic cycloalkyl group of is preferred.
  • the aryl group of Rx 1 to Rx 3 is preferably an aryl group having 6 to 10 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and an anthryl group.
  • a vinyl group is preferable.
  • the cycloalkyl group formed by combining two of Rx 1 to Rx 3 include a cyclopentyl group, a monocyclic cycloalkyl group such as a cyclohexyl group, and a norbornyl group, a tetracyclodecanyl group, and a tetracyclododeca.
  • a polycyclic cycloalkyl group such as an nyl group and an adamantyl group is preferable, and a monocyclic cycloalkyl group having 5 to 6 carbon atoms is more preferable.
  • the cycloalkyl group formed by combining two of Rx 1 to Rx 3 is, for example, a group in which one of the methylene groups constituting the ring has a hetero atom such as an oxygen atom or a hetero atom such as a carbonyl group. It may be replaced.
  • the group represented by the formula (Y1) or the formula (Y2) is, for example, an embodiment in which Rx 1 is a methyl group or an ethyl group, and Rx 2 and Rx 3 are bonded to form the above-mentioned cycloalkyl group. Is preferable.
  • composition of the present invention for example, if a EUV exposure resist composition, Rx 1 alkyl group represented by ⁇ Rx 3, cycloalkyl group, alkenyl group, aryl group, and, 2 of Rx 1 ⁇ Rx 3 It is also preferable that the ring formed by combining the two has a fluorine atom or an iodine atom as a substituent.
  • R 36 to R 38 each independently represent a hydrogen atom or a monovalent substituent.
  • R 37 and R 38 may be combined with each other to form a ring.
  • the monovalent substituent include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkenyl group and the like. It is also preferable that R 36 is a hydrogen atom.
  • L 1 and L 2 independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a group in which these are combined (for example, a group in which an alkyl group and an aryl group are combined).
  • .. M represents a single bond or a divalent linking group.
  • Q is an alkyl group which may have a hetero atom, a cycloalkyl group which may have a hetero atom, an aryl group which may have a hetero atom, an amino group, an ammonium group, a mercapto group, or a cyano.
  • the alkyl group and the cycloalkyl group for example, one of the methylene groups may be replaced with a hetero atom such as an oxygen atom or a group having a hetero atom such as a carbonyl group.
  • one of L 1 and L 2 is a hydrogen atom and the other is an alkyl group, a cycloalkyl group, an aryl group, or a group in which an alkylene group and an aryl group are combined.
  • L 2 is preferably a secondary or tertiary alkyl group, and more preferably a tertiary alkyl group.
  • the secondary alkyl group include an isopropyl group, a cyclohexyl group and a norbornyl group
  • examples of the tertiary alkyl group include a tert-butyl group and an adamantan ring group.
  • Tg glass transition temperature
  • activation energy are high, so that in addition to ensuring the film strength, fog can be suppressed.
  • Ar represents an aromatic ring group.
  • Rn represents an alkyl group, a cycloalkyl group or an aryl group.
  • Rn and Ar may be combined with each other to form a non-aromatic ring.
  • Ar is more preferably an aryl group.
  • repeating unit (Aa) the repeating unit represented by the formula (A) is also preferable.
  • L 1 represents a divalent linking group which may have a fluorine atom or an iodine atom
  • R 1 is an alkyl group which may have a hydrogen atom, a fluorine atom, an iodine atom, a fluorine atom or an iodine atom.
  • it represents an aryl group which may have a fluorine atom or an iodine atom
  • R 2 represents a desorbing group which is eliminated by the action of an acid and may have a fluorine atom or an iodine atom.
  • at least one of L 1 , R 1 , and R 2 has a fluorine atom or an iodine atom.
  • L 1 represents a divalent linking group which may have a fluorine atom or an iodine atom.
  • the fluorine atom or a linking group may divalent have a iodine atom, -CO -, - O -, - S -, - SO -, - SO 2 -, have a fluorine atom or an iodine atom Examples thereof include a hydrocarbon group (for example, an alkylene group, a cycloalkylene group, an alkenylene group, an arylene group, etc.), a linking group in which a plurality of these groups are linked, and the like.
  • the L 1, -CO-, or, - arylene - alkylene group having a fluorine atom or iodine atom - are preferred.
  • the arylene group a phenylene group is preferable.
  • the alkylene group may be linear or branched chain. The number of carbon atoms of the alkylene group is not particularly limited, but 1 to 10 is preferable, and 1 to 3 is more preferable.
  • the total number of fluorine atoms and iodine atoms contained in the alkylene group having a fluorine atom or an iodine atom is not particularly limited, but 2 or more is preferable, 2 to 10 is more preferable, and 3 to 10 is more preferable in terms of the superior effect of the present invention. 6 is more preferable.
  • R 1 represents an alkyl group which may have a hydrogen atom, a fluorine atom, an iodine atom, a fluorine atom or an iodine atom, or an aryl group which may have a fluorine atom or an iodine atom.
  • the alkyl group may be linear or branched.
  • the number of carbon atoms of the alkyl group is not particularly limited, but 1 to 10 is preferable, and 1 to 3 is more preferable.
  • the total number of fluorine atoms and iodine atoms contained in the alkyl group having a fluorine atom or an iodine atom is not particularly limited, but 1 or more is preferable, 1 to 5 is more preferable, and 1 to 1 to 5 is preferable in terms of the superior effect of the present invention. 3 is more preferable.
  • the alkyl group may have a hetero atom such as an oxygen atom other than the halogen atom.
  • R 2 represents a leaving group that is eliminated by the action of an acid and may have a fluorine atom or an iodine atom.
  • Rx 11 to Rx 13 are alkyl groups (linear or branched) or fluorine atoms which may independently have a fluorine atom or an iodine atom, respectively. Alternatively, it represents a cycloalkyl group (monocyclic or polycyclic) which may have an iodine atom. When all of Rx 11 to Rx 13 are alkyl groups (linear or branched chain), it is preferable that at least two of Rx 11 to Rx 13 are methyl groups.
  • Rx 11 to Rx 13 are the same as Rx 1 to Rx 3 in the above formulas (Y1) and (Y2) except that they may have a fluorine atom or an iodine atom, and are alkyl groups and cyclos. Same as the definition and preferred range of alkyl groups.
  • R 136 to R 138 each independently represent a hydrogen atom, or a monovalent substituent that may have a fluorine atom or an iodine atom.
  • R 137 and R 138 may be combined with each other to form a ring.
  • the monovalent substituent which may have a fluorine atom or an iodine atom includes an alkyl group which may have a fluorine atom or an iodine atom, and a cycloalkyl group which may have a fluorine atom or an iodine atom.
  • the alkyl group, cycloalkyl group, aryl group, and aralkyl group may contain a hetero atom such as an oxygen atom in addition to the fluorine atom and the iodine atom.
  • alkyl group cycloalkyl group, aryl group, and aralkyl group, for example, even if one of the methylene groups is replaced with a hetero atom such as an oxygen atom or a group having a hetero atom such as a carbonyl group.
  • a hetero atom such as an oxygen atom or a group having a hetero atom such as a carbonyl group.
  • L 11 and L 12 independently have an alkyl group selected from the group consisting of a hydrogen atom; a fluorine atom, an iodine atom and an oxygen atom; a fluorine atom, an iodine atom and an alkyl group.
  • a cycloalkyl group which may have a hetero atom selected from the group consisting of oxygen atoms; an aryl group which may have a hetero atom selected from the group consisting of a fluorine atom, an iodine atom and an oxygen atom; or , A group in which these are combined (for example, a group in which an alkyl group and a cycloalkyl group are combined, which may have a hetero atom selected from the group consisting of a fluorine atom, an iodine atom and an oxygen atom).
  • M 1 represents a single bond or a divalent linking group.
  • Q 1 represents a fluorine atom, an alkyl group which may have a hetero atom selected from the group consisting of iodine atoms and an oxygen atom; Yes fluorine atom, a hetero atom selected from the group consisting of iodine atoms and an oxygen atom May have a cycloalkyl group; may have a heteroatom selected from the group consisting of a fluorine atom, an iodine atom and an oxygen atom; an amino group; an ammonium group; a mercapto group; a cyano group; an aldehyde group.
  • Ar 1 represents an aromatic ring group which may have a fluorine atom or an iodine atom.
  • Rn 1 may have an alkyl group which may have a fluorine atom or an iodine atom, a cycloalkyl group which may have a fluorine atom or an iodine atom, or an aryl which may have a fluorine atom or an iodine atom.
  • Rn 1 and Ar 1 may be combined with each other to form a non-aromatic ring.
  • repeating unit (Aa) a repeating unit represented by the general formula (AI) is also preferable.
  • Xa 1 represents a hydrogen atom or an alkyl group which may have a substituent.
  • T represents a single bond or a divalent linking group.
  • Rx 1 to Rx 3 are independently alkyl groups (linear or branched chain), cycloalkyl groups (monocyclic or polycyclic), alkenyl groups (linear or branched chain), Alternatively, it represents an aryl (monocyclic or polycyclic) group. However, when all of Rx 1 to Rx 3 are alkyl groups (linear or branched chain), it is preferable that at least two of Rx 1 to Rx 3 are methyl groups. Two of Rx 1 to Rx 3 may be bonded to form a cycloalkyl group (monocyclic or polycyclic).
  • xa 1 Represented by xa 1, as the alkyl group which may have a substituent group, include groups represented by methyl group or -CH 2 -R 11.
  • R 11 represents a halogen atom (fluorine atom, etc.), a hydroxyl group, or a monovalent substituent.
  • the halogen atom may be substituted, an alkyl group having 5 or less carbon atoms, or a halogen atom may be substituted.
  • Examples thereof include an acyl group having 5 or less carbon atoms and an alkoxy group having 5 or less carbon atoms which may be substituted with a halogen atom, and an alkyl group having 3 or less carbon atoms is preferable, and a methyl group is more preferable.
  • Xa 1 a hydrogen atom, a methyl group, a trifluoromethyl group, or a hydroxymethyl group is preferable.
  • Examples of the divalent linking group of T include an alkylene group, an aromatic ring group, an -COO-Rt- group, an -O-Rt- group and the like.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T is preferably a single bond or a -COO-Rt- group.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, and is preferably a -CH 2- group,- (CH 2 ) 2- group, or- (CH 2 ) 3- Groups are more preferred.
  • Examples of the alkyl group of Rx 1 to Rx 3 include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group. preferable.
  • Examples of the cycloalkyl group of Rx 1 to Rx 3 include a monocyclic cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, or a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group.
  • the polycyclic cycloalkyl group of is preferred.
  • the aryl group of Rx 1 to Rx 3 is preferably an aryl group having 6 to 10 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and an anthryl group.
  • alkenyl group of Rx 1 to Rx 3 a vinyl group is preferable.
  • a cyclopentyl group and a monocyclic cycloalkyl group such as a cyclohexyl group are preferable, and in addition, a norbornyl group and a tetracyclodecanyl group are used.
  • Tetracyclododecanyl group, and polycyclic cycloalkyl group such as adamantyl group are preferable.
  • a monocyclic cycloalkyl group having 5 to 6 carbon atoms is preferable.
  • the cycloalkyl group formed by combining two of Rx 1 to Rx 3 is, for example, a group in which one of the methylene groups constituting the ring has a hetero atom such as an oxygen atom or a hetero atom such as a carbonyl group. It may be replaced.
  • the repeating unit represented by the general formula (AI) for example, it is preferable that Rx 1 is a methyl group or an ethyl group, and Rx 2 and Rx 3 are bonded to form the above-mentioned cycloalkyl group.
  • the substituents include, for example, an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), a carboxyl group, and an alkoxycarbonyl group. (2 to 6 carbon atoms) and the like.
  • the number of carbon atoms in the substituent is preferably 8 or less.
  • the repeating unit represented by the general formula (AI) is preferably an acid-degradable (meth) acrylic acid tertiary alkyl ester-based repeating unit (Xa 1 represents a hydrogen atom or a methyl group, and T is a single bond. It is a repeating unit that represents.
  • the resin (A) may have one type of repeating unit (Aa) alone, or may have two or more types.
  • the content of the repeating unit (AA) (total content when two or more repeating units (Aa) are present) is 15 to 80 mol% with respect to all the repeating units in the resin (A). Is preferable, and 20 to 70 mol% is more preferable.
  • the resin (A) has at least one repeating unit selected as the repeating unit (Aa) from the group consisting of the repeating units represented by the following general formulas (A-VIII) to (A-XII). Is preferable.
  • R 5 represents a tert-butyl group or a -CO-O- (tert-butyl) group.
  • R 6 and R 7 each independently represent a monovalent substituent. Examples of the monovalent substituent include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkenyl group and the like.
  • p represents 1 to 5, and 1 or 2 is preferable.
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 9 represents an alkyl group having 1 to 3 carbon atoms
  • R 10 represents an alkyl group having 1 to 3 carbon atoms or an adamantyl group.
  • the resin (A) may have a repeating unit having an acid group.
  • an acid group having a pKa of 13 or less is preferable.
  • the acid dissociation constant of the acid group is preferably 13 or less, more preferably 3 to 13, and even more preferably 5 to 10.
  • the content of the acid group in the acid-degradable resin is not particularly limited, but is often 0.2 to 6.0 mmol / g.
  • 0.8 to 6.0 mmol / g is preferable, 1.2 to 5.0 mmol / g is more preferable, and 1.6 to 4.0 mmol / g is even more preferable.
  • the content of the acid group is within the above range, the development proceeds well, the formed pattern shape is excellent, and the resolution is also excellent.
  • the acid group for example, a carboxyl group, a hydroxyl group, a phenolic hydroxyl group, a fluorinated alcohol group (preferably a hexafluoroisopropanol group), a sulfonic acid group, a sulfonamide group and the like are preferable.
  • a group in which one or more (preferably one or two) fluorine atoms are substituted with a group other than the fluorine atom is also preferable as the acid group.
  • examples of such a group include a group containing -C (CF 3 ) (OH) -CF 2-.
  • the -C (CF 3) (OH) -CF 2 - group containing the, -C (CF 3) (OH) -CF 2 - may be a cyclic group containing a.
  • a repeating unit having an acid group a repeating unit represented by the following general formula (B) is preferable.
  • R 3 represents a hydrogen atom or a monovalent substituent which may have a fluorine atom or an iodine atom.
  • the fluorine atom or an iodine atom monovalent substituent which may have a group represented by -L 4 -R 8 are preferred.
  • L 4 represents a single bond or an ester group.
  • R 8 is an alkyl group which may have a fluorine atom or an iodine atom, a cycloalkyl group which may have a fluorine atom or an iodine atom, an aryl group which may have a fluorine atom or an iodine atom, and the like. Alternatively, a group combining these can be mentioned.
  • R 4 and R 5 each independently represent a hydrogen atom, a fluorine atom, an iodine atom, or an alkyl group which may have a fluorine atom or an iodine atom.
  • L 2 represents a single bond or an ester group.
  • L 3 represents a (n + m + 1) -valent aromatic hydrocarbon ring group or a (n + m + 1) -valent alicyclic hydrocarbon ring group.
  • the aromatic hydrocarbon ring group include a benzene ring group and a naphthalene ring group.
  • the alicyclic hydrocarbon ring group may be monocyclic or polycyclic, and examples thereof include a cycloalkyl ring group.
  • R 6 represents a hydroxyl group or a fluorinated alcohol group (preferably a hexafluoroisopropanol group).
  • L 3 is preferably an aromatic hydrocarbon ring group having a (n + m + 1) valence.
  • R 7 represents a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • m represents an integer of 1 or more.
  • m is preferably an integer of 1 to 3, and more preferably an integer of 1 to 2.
  • n represents an integer of 0 or 1 or more.
  • n is preferably an integer of 1 to 4.
  • (n + m + 1) is preferably an integer of 1 to 5.
  • repeating unit having an acid group a repeating unit represented by the following general formula (I) is also preferable.
  • R 41 , R 42 and R 43 independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • R 42 may be bonded to Ar 4 to form a ring, in which case R 42 represents a single bond or an alkylene group.
  • X 4 represents a single bond, -COO-, or -CONR 64-
  • R 64 represents a hydrogen atom or an alkyl group.
  • L 4 represents a single bond or an alkylene group.
  • Ar 4 represents an (n + 1) -valent aromatic ring group, and represents an (n + 2) -valent aromatic ring group when combined with R 42 to form a ring.
  • n represents an integer from 1 to 5.
  • the alkyl groups of R 41 , R 42 , and R 43 in the general formula (I) include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, hexyl group, and 2-ethylhexyl.
  • Alkyl groups having 20 or less carbon atoms such as groups, octyl groups, and dodecyl groups are preferable, alkyl groups having 8 or less carbon atoms are more preferable, and alkyl groups having 3 or less carbon atoms are further preferable.
  • the cycloalkyl groups of R 41 , R 42 , and R 43 in the general formula (I) may be monocyclic or polycyclic. Of these, a monocyclic cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group is preferable.
  • Examples of the halogen atoms of R 41 , R 42 , and R 43 in the general formula (I) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group contained in the alkoxycarbonyl group of R 41 , R 42 , and R 43 in the general formula (I) is preferably the same as the alkyl group in R 41 , R 42 , and R 43.
  • Ar 4 represents an (n + 1) -valent aromatic ring group.
  • the divalent aromatic ring group when n is 1 may have a substituent, for example, an arylene group having 6 to 18 carbon atoms such as a phenylene group, a tolylen group, a naphthylene group, and an anthracenylene group.
  • an aromatic containing a heterocycle such as a thiophene ring, a furan ring, a pyrrole ring, a benzothiophene ring, a benzofuran ring, a benzopyrol ring, a triazine ring, an imidazole ring, a benzoimidazole ring, a triazole ring, a thiazazole ring, and a thiazole ring. Ring groups are preferred.
  • (n + 1) -valent aromatic ring group when n is an integer of 2 or more, (n-1) arbitrary hydrogen atoms are removed from the above-mentioned specific example of the divalent aromatic ring group. There is a group that is made up of.
  • the (n + 1) -valent aromatic ring group may further have a substituent.
  • Examples of the substituents that the above-mentioned alkyl group, cycloalkyl group, alkoxycarbonyl group, alkylene group, and (n + 1) -valent aromatic ring group can have include R 41 , R 42 , and R 41 in the general formula (I). , R 43 , an alkoxy group such as an alkyl group, a methoxy group, an ethoxy group, a hydroxyethoxy group, a propoxy group, a hydroxypropoxy group, and a butoxy group; an aryl group such as a phenyl group; and the like.
  • R 64 represents a hydrogen atom or an alkyl group
  • the alkyl group for R 64 in, a methyl group, an ethyl group, a propyl group, an isopropyl group, n- butyl group, sec- Examples thereof include alkyl groups having 20 or less carbon atoms such as a butyl group, a hexyl group, a 2-ethylhexyl group, an octyl group, and a dodecyl group, and an alkyl group having 8 or less carbon atoms is preferable.
  • X 4 a single bond, -COO-, or -CONH- is preferable, and a single bond or -COO- is more preferable.
  • the alkylene group for L 4, a methylene group, an ethylene group, a propylene group, butylene group, hexylene group, and is preferably an alkylene group having 1 to 8 carbon atoms such as octylene group.
  • Ar 4 an aromatic ring group having 6 to 18 carbon atoms is preferable, and a benzene ring group, a naphthalene ring group, and a biphenylene ring group are more preferable.
  • a 1 or 2.
  • the resin (A) preferably has a repeating unit (A-1) derived from hydroxystyrene as a repeating unit having an acid group.
  • the repeating unit (A-1) derived from hydroxystyrene include a repeating unit represented by the following general formula (1).
  • A represents a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, or a cyano group.
  • R represents a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, an aralkyl group, an alkoxy group, an alkylcarbonyloxy group, an alkylsulfonyloxy group, an alkyloxycarbonyl group or an aryloxycarbonyl group, and there are a plurality of them. In some cases, they may be the same or different. When having a plurality of Rs, they may form a ring jointly with each other.
  • a hydrogen atom is preferable as R.
  • a represents an integer of 1 to 3
  • b represents an integer of 0 to (5-a).
  • repeating unit (A-1) a repeating unit represented by the following general formula (AI) is preferable.
  • the composition containing the resin (A) having the repeating unit (A-1) is preferable for KrF exposure, EB exposure or EUV exposure.
  • the content of the repeating unit (A-1) is preferably 30 to 100 mol%, more preferably 40 to 100 mol%, and 50 to 100 mol% with respect to all the repeating units in the resin (A). Is more preferable.
  • the resin (A) may have a repeating unit (A-2) having at least one selected from the group consisting of a lactone structure, a carbonate structure, a sultone structure, and a hydroxyadamantane structure.
  • the lactone structure or sultone structure in the repeating unit having a lactone structure or sultone structure is not particularly limited, but a 5- to 7-membered ring lactone structure or a 5- to 7-membered ring sultone structure is preferable, and the 5- to 7-membered ring lactone structure is a bicyclo structure.
  • the other ring structure is fused in the form of forming a spiro structure, or the other ring structure is fused in the form of a bicyclo structure or a spiro structure in a 5- to 7-membered sultone structure. Is more preferable.
  • Examples of the repeating unit having a lactone structure or a sultone structure include the repeating units described in paragraphs 0094 to 0107 of WO2016 / 136354.
  • the resin (A) may have a repeating unit having a carbonate structure.
  • the carbonate structure is preferably a cyclic carbonate structure.
  • Examples of the repeating unit having a carbonate structure include the repeating unit described in paragraphs 0106 to 0108 of WO2019 / 054311.
  • the resin (A) may have a repeating unit having a hydroxyadamantane structure.
  • Examples of the repeating unit having a hydroxyadamantane structure include a repeating unit represented by the following general formula (AIIA).
  • R 1 c represents a hydrogen atom, a methyl group, a trifluoromethyl group or a hydroxymethyl group.
  • R 2 c to R 4 c each independently represent a hydrogen atom or a hydroxyl group. However, at least one of R 2 c to R 4 c represents a hydroxyl group. It is preferable that one or two of R 2 c to R 4 c are hydroxyl groups and the rest are hydrogen atoms.
  • the resin (A) may have a repeating unit having a fluorine atom or an iodine atom.
  • Examples of the repeating unit having a fluorine atom or an iodine atom include the repeating unit described in paragraphs 0080 to 0081 of JP-A-2019-045864.
  • the resin (A) may have a repeating unit having a group that generates an acid by irradiation with radiation as a repeating unit other than the above.
  • Examples of such a repeating unit include a repeating unit represented by the following formula (4).
  • R 41 represents a hydrogen atom or a methyl group.
  • L 41 represents a single bond or a divalent linking group.
  • L 42 represents a divalent linking group.
  • R 40 represents a structural site that is decomposed by irradiation with active light or radiation to generate an acid in the side chain. The repeating unit having a photoacid generating group is illustrated below.
  • repeating unit represented by the formula (4) for example, the repeating unit described in paragraphs [0094] to [0105] of JP-A-2014-041327, and International Publication No. 2018/193954 The repeating units described in paragraph [0094] are mentioned.
  • the content of the repeating unit having a photoacid generating group is preferably 1 mol% or more, more preferably 2 mol% or more, based on all the repeating units in the acid-degradable resin.
  • the upper limit is preferably 20 mol% or less, more preferably 10 mol% or less, and even more preferably 5 mol% or less.
  • Examples of the repeating unit having a photoacid-generating group include the repeating units described in paragraphs 0092 to 0906 of JP-A-2019-045864.
  • the resin (A) may have a repeating unit having an alkali-soluble group.
  • the alkali-soluble group include a carboxyl group, a sulfonamide group, a sulfonylimide group, a bisulsulfonylimide group, and an aliphatic alcohol group in which the ⁇ -position is substituted with an electron-withdrawing group (for example, a hexafluoroisopropanol group). Therefore, a carboxyl group is preferable.
  • the resin (A) has a repeating unit having an alkali-soluble group, the resolution in contact hole applications is increased.
  • the repeating unit having an alkali-soluble group includes a repeating unit in which an alkali-soluble group is directly bonded to the main chain of the resin, such as a repeating unit made of acrylic acid and methacrylic acid, or a repeating unit of the resin via a linking group. Repeat units to which an alkali-soluble group is attached can be mentioned.
  • the linking group may have a monocyclic or polycyclic cyclic hydrocarbon structure.
  • a repeating unit made of acrylic acid or methacrylic acid is preferable.
  • the resin (A) may further have a repeating unit that has neither an acid-degradable group nor a polar group.
  • the repeating unit having neither an acid-decomposable group nor a polar group preferably has an alicyclic hydrocarbon.
  • repeating unit having neither an acid-decomposable group nor a polar group examples include the repeating unit described in paragraphs 0236 to 0237 of U.S. Patent Application Publication No. 2016/0026038, and the U.S. Patent Application Publication No. The repeating unit described in paragraph 0433 of the specification of 2016/0070167 is mentioned.
  • the resin (A) contains various repeating structural units for the purpose of adjusting dry etching resistance, standard developer suitability, substrate adhesion, resist profile, resolution, heat resistance, sensitivity, and the like. You may have.
  • the resin (A) it is preferable that all the repeating units are composed of repeating units derived from a compound having an ethylenically unsaturated bond. In particular, as the resin (A), it is preferable that all the repeating units are composed of repeating units derived from a (meth) acrylate-based monomer (a monomer having a (meth) acrylic group).
  • any resin may be used: one in which all the repeating units are derived from a methacrylate-based monomer, one in which all the repeating units are derived from an acrylate-based monomer, and one in which all the repeating units are derived from a methacrylate-based monomer and an acrylate-based monomer.
  • the repeating unit derived from the acrylate-based monomer is preferably 50 mol% or less based on all the repeating units in the resin (A).
  • the resin (A) When the composition is for exposure to argon fluoride (ArF), it is preferable that the resin (A) has substantially no aromatic group from the viewpoint of transmitting ArF light. More specifically, the repeating unit having an aromatic group is preferably 5 mol% or less, more preferably 3 mol% or less, and ideally, based on all the repeating units of the resin (A). Is more preferably 0 mol%, i.e. not having a repeating unit having an aromatic group. Further, when the composition is for ArF exposure, the resin (A) preferably has a monocyclic or polycyclic alicyclic hydrocarbon structure, and preferably does not contain either a fluorine atom or a silicon atom. ..
  • the resin (A) When the composition is for krypton difluoride (KrF) exposure, EB exposure or EUV exposure, the resin (A) preferably has a repeating unit having an aromatic hydrocarbon group, preferably a repeating unit having a phenolic hydroxyl group. It is more preferable to have.
  • the repeating unit having a phenolic hydroxyl group include the repeating unit derived from hydroxystyrene (A-1) and the repeating unit derived from hydroxystyrene (meth) acrylate.
  • the resin (A) is a group (leaving group) in which the hydrogen atom of the phenolic hydroxyl group is decomposed and eliminated by the action of an acid. It is also preferred to have repeating units with a protected structure.
  • the content of the repeating unit having an aromatic hydrocarbon group contained in the resin (A) is the total repeating unit in the resin (A). On the other hand, 30 to 100 mol% is preferable, 40 to 100 mol% is more preferable, and 50 to 100 mol% is further preferable.
  • the resin (A) can be synthesized according to a conventional method (for example, radical polymerization).
  • the weight average molecular weight (Mw) of the resin (A) is preferably 1,000 to 200,000, more preferably 3,000 to 20,000, and even more preferably 5,000 to 15,000.
  • the weight average molecular weight (Mw) of the resin (A) is a polystyrene-equivalent value measured by the above-mentioned GPC method.
  • the dispersity (molecular weight distribution) of the resin (A) is usually 1 to 5, preferably 1 to 3, and more preferably 1.1 to 2.0.
  • the content of the resin (A) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total solid content of the composition. Further, the resin (A) may be used alone or in combination of two or more.
  • the solid content means a component that can form a resist film excluding the solvent. Even if the properties of the above components are liquid, they are treated as solids.
  • the composition of the present invention may contain a photoacid generator (P).
  • the photoacid generator (P) is not particularly limited as long as it is a compound that generates an acid by irradiation with radiation.
  • the photoacid generator (P) may be in the form of a low molecular weight compound or may be incorporated in a part of the polymer. Further, the form of the low molecular weight compound and the form incorporated in a part of the polymer may be used in combination.
  • the weight average molecular weight (Mw) is preferably 3000 or less, more preferably 2000 or less, still more preferably 1000 or less. ..
  • the photoacid generator (P) When the photoacid generator (P) is incorporated in a part of the polymer, it may be incorporated in a part of the resin (A) or in a resin different from the resin (A). Good.
  • the photoacid generator (P) is preferably in the form of a low molecular weight compound.
  • the photoacid generator (P) is not particularly limited as long as it is known, but a compound that generates an organic acid by irradiation with radiation is preferable, and a photoacid generator having a fluorine atom or an iodine atom in the molecule is preferable. More preferred.
  • organic acid examples include sulfonic acid (aliphatic sulfonic acid, aromatic sulfonic acid, camphor sulfonic acid, etc.), carboxylic acid (aliphatic carboxylic acid, aromatic carboxylic acid, aralkylcarboxylic acid, etc.), carbonyl.
  • sulfonic acid aliphatic sulfonic acid, aromatic sulfonic acid, camphor sulfonic acid, etc.
  • carboxylic acid aliphatic carboxylic acid, aromatic carboxylic acid, aralkylcarboxylic acid, etc.
  • carbonyl examples thereof include sulfonylimide acid, bis (alkylsulfonyl) imide acid, and tris (alkylsulfonyl) methidoic acid.
  • the volume of the acid generated by the photoacid generator (P) is not particularly limited, but 240 ⁇ 3 or more is preferable from the viewpoint of suppressing the diffusion of the acid generated by exposure to the unexposed portion and improving the resolution. , 305 ⁇ 3 or more is more preferable, 350 ⁇ 3 or more is further preferable, and 400 ⁇ 3 or more is particularly preferable.
  • the volume of the acid generated from the photoacid generator (P) is preferably 1500 ⁇ 3 or less, 1000 ⁇ 3, more preferably less, 700 ⁇ 3 or less is more preferable.
  • the above volume value is obtained using "WinMOPAC" manufactured by Fujitsu Limited.
  • each acid is calculated by molecular mechanics using the MM (Molecular Mechanics) 3 method with this structure as the initial structure.
  • the "accessible volume" of each acid can be calculated by determining the most stable conformations of the above and then performing the molecular orbital calculation of these most stable conformations using the PM (Parameterized Model number) 3 method.
  • the structure of the acid generated by the photoacid generator (P) is not particularly limited, but the acid and resin generated by the photoacid generator (P) in terms of suppressing the diffusion of the acid and improving the resolution (P). It is preferable that the interaction with A) is strong. From this point, when the acid generated by the photoacid generator (P) is an organic acid, for example, a sulfonic acid group, a carboxylic acid group, a carbonylsulfonylimide acid group, a bissulfonylimide acid group, and a trissulfonylmethide It is preferable to have a polar group in addition to an organic acid group such as an acid group.
  • Examples of the polar group include an ether group, an ester group, an amide group, an acyl group, a sulfo group, a sulfonyloxy group, a sulfonamide group, a thioether group, a thioester group, a urea group, a carbonate group, a carbamate group, a hydroxyl group, and Examples include mercapto groups.
  • the number of polar groups contained in the generated acid is not particularly limited, and is preferably 1 or more, and more preferably 2 or more. However, from the viewpoint of suppressing excessive development, the number of polar groups is preferably less than 6, and more preferably less than 4.
  • the photoacid generator (P) is preferably a photoacid generator composed of an anion portion and a cation portion because the effect of the present invention is more excellent.
  • Examples of the photoacid generator (P) include the photoacid generator described in paragraphs 0144 to 0173 of JP-A-2019-045864.
  • the content of the photoacid generator (P) is not particularly limited, but is preferably 5 to 50% by mass, preferably 10 to 40% by mass, based on the total solid content of the composition, in that the effect of the present invention is more excellent. More preferably, 10 to 35% by mass is further preferable.
  • the photoacid generator (P) may be used alone or in combination of two or more. When two or more photoacid generators (P) are used in combination, the total amount thereof is preferably within the above range.
  • composition of the present invention may contain the specific photoacid generator defined by the compounds (I) and (II) as the photoacid generator (P).
  • Compound (I) is a compound having one or more of the following structural parts X and one or more of the following structural parts Y, and is the following first acidic derived from the following structural parts X by irradiation with active light or radiation. It is a compound that generates an acid containing the site and the following second acidic site derived from the following structural site Y.
  • Structural part X Structural part consisting of anionic part A 1 ⁇ and cation part M 1 + , and forming the first acidic part represented by HA 1 by irradiation with active light or radiation
  • Structural part Y Anion part A 2 - consists of a cationic sites M 2 + and and structural site to form a second acidic moiety represented by HA 2 by irradiation with actinic rays or radiation, however, the compound (I) satisfies the following conditions I.
  • the compound PI obtained by replacing the cation site M 1 + in the structural site X and the cation site M 2 + in the structural site Y with H + is contained in the structural site X.
  • the acid dissociation constant a1 derived from the acidic site represented by HA 1 which is obtained by replacing the above-mentioned cation site M 1 + with H + , and the above-mentioned cation site M 2 + in the above-mentioned structural part Y are replaced with H +. It has an acid dissociation constant a2 derived from an acidic moiety represented by HA 2 , and the acid dissociation constant a2 is larger than the acid dissociation constant a1.
  • compound (I) is, for example, a compound that generates an acid having one of the first acidic sites derived from the structural site X and one second acidic site derived from the structural site Y.
  • Compound PI corresponds to "compound having HA 1 and HA 2".
  • compound PI acid dissociation constant a1 and acid dissociation constants a2
  • compound PI is "A 1 - a compound having an HA 2 pKa when the "and has an acid dissociation constant a1, the" a 1 - a compound having the HA 2 "is” a 1 - and a 2 - in pKa of an acid dissociation constant a2 when a compound "having a is there.
  • the compound (I) is, for example, a compound that generates an acid having two first acidic sites derived from the structural site X and one second acidic site derived from the structural site Y.
  • compounds PI is a "compound having two HA 1 and one HA 2". If asked for the acid dissociation constant of such compounds PI, Compound PI is - acid dissociation constant in the "one of A 1 and one HA 1 and the compound having one HA 2", and "one a 1 - and one HA 1 and one HA 2 compound having an "is” two a 1 - and one HA 2 and acid dissociation constant in the compound "having the acid described above dissociation constants a1 Corresponds to.
  • two A 1 - and one compound having a HA 2 is an acid dissociation constant in the "two A 1 - - and A 2 compound having” corresponds to the acid dissociation constant a2. That is, in the case of such a compound PI, when there are a plurality of acid dissociation constants derived from the acidic site represented by HA 1 , which is formed by replacing the cation site M 1 + in the structural site X with H +, a plurality of acid dissociation constants are present. The value of the acid dissociation constant a2 is larger than the largest value of the acid dissociation constant a1.
  • the compound PI is - an acid dissociation constant in the "one of A 1 and a compound having one HA 1 and one HA 2" and aa, "one of A 1 - and one HA 1 and 1 one of the HA 2 compound having an "is” two a 1 - and when the acid dissociation constant in the compound "having one HA 2 was ab, relationships aa and ab satisfy a aa ⁇ ab ..
  • the acid dissociation constant a1 and the acid dissociation constant a2 can be obtained by the above-mentioned method for measuring the acid dissociation constant.
  • the compound PI corresponds to an acid generated when compound (I) is irradiated with active light or radiation.
  • the structural sites X may be the same or different.
  • the two or more A 1 ⁇ and the two or more M 1 + may be the same or different from each other.
  • the A 1 - and the A 2 -, as well as, the M 1 + and the M 2 + each may be the same or different, but the A 1 - and the It is preferable that A 2 ⁇ is different from each other.
  • the difference between the acid dissociation constant a1 (the maximum value when a plurality of acid dissociation constants a1 exist) and the acid dissociation constant a2 is 0.1 in that the LWR performance of the formed pattern is more excellent.
  • the above is preferable, 0.5 or more is more preferable, and 1.0 or more is further preferable.
  • the upper limit of the difference between the acid dissociation constant a1 (the maximum value when a plurality of acid dissociation constants a1 exist) and the acid dissociation constant a2 is not particularly limited, but is, for example, 16 or less.
  • the acid dissociation constant a2 is, for example, 20 or less, preferably 15 or less, in that the LWR performance of the formed pattern is more excellent.
  • the lower limit of the acid dissociation constant a2 is preferably -4.0 or higher.
  • the acid dissociation constant a1 is preferably 2.0 or less, more preferably 0 or less, in that the LWR performance of the formed pattern is more excellent.
  • the lower limit of the acid dissociation constant a1 is preferably -20.0 or higher.
  • Anionic part A 1 - and anionic sites A 2 - is a structural moiety comprising an atom or atomic group negatively charged, for example, shown below the formula (AA-1) ⁇ (AA -3) and Formula (BB A structural site selected from the group consisting of -1) to (BB-6) can be mentioned.
  • anionic part A 2 - as an anion portion A 1 - is preferably one capable of forming a large acidic sites of the acid dissociation constant than is selected from any of formulas (BB-1) ⁇ (BB -6) Is preferable.
  • RA represents a monovalent organic group.
  • Examples of the monovalent organic group represented by RA include a cyano group, a trifluoromethyl group, a methanesulfonyl group and the like.
  • M 1 + and cations sites M 2 + is a cation site, a structural moiety comprising an atom or atomic group positively charged, for example, charges include monovalent organic cation.
  • organic cations those similar to the organic cation represented by below Formula (Ia-1) in the M 11 + and M 12 +.
  • the specific structure of the compound (I) is not particularly limited, and examples thereof include compounds represented by the formulas (Ia-1) to (Ia-5) described later.
  • the compound represented by the formula (Ia-1) will be described.
  • the compound represented by the formula (Ia-1) is as follows.
  • Compound (Ia-1) produces an acid represented by HA 11- L 1- A 12 H by irradiation with active light or radiation.
  • M 11 + and M 12 + each independently represents an organic cation.
  • a 11 - and A 12 - independently represents a monovalent anionic functional group.
  • L 1 represents a divalent linking group.
  • M 11 + and M 12 + may each independently selected from the same.
  • a 11 - and A 12 - may each may be the same or different, but preferably are different from each other.
  • the formed by replacing the organic cation represented by M 11 + and M 12 + to H + compound PIa (HA 11 -L 1 -A 12 H), at A 12 H
  • the acid dissociation constant a2 derived from the acidic moiety represented by HA 11 is larger than the acid dissociation constant a1 derived from the acidic moiety represented by HA 11.
  • the preferable values of the acid dissociation constant a1 and the acid dissociation constant a2 are as described above.
  • the acid generated from the compound represented by the formula (Ia-1) by irradiation with active light or radiation is the same as that of the compound PIa.
  • at least one of M 11 + , M 12 + , A 11 ⁇ , A 12 ⁇ , and L 1 may have an acid-degradable group as a substituent.
  • the monovalent anionic functional group represented by A 11 ⁇ is intended to be a monovalent group containing the above-mentioned anionic moiety A 1 ⁇ .
  • a 12 - a monovalent anionic functional group represented by the anion portion A 2 above - is intended a monovalent group containing a.
  • a monovalent anionic functional group More preferably, it is a monovalent anionic functional group.
  • RA1 and RA2 each independently represent a monovalent organic group. * Represents the bond position.
  • Examples of the monovalent organic group represented by RA1 include a cyano group, a trifluoromethyl group, a methanesulfonyl group and the like.
  • a linear, branched, or cyclic alkyl group or aryl group is preferable.
  • the alkyl group preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms.
  • the alkyl group may have a substituent.
  • a fluorine atom or a cyano group is preferable, and a fluorine atom is more preferable.
  • the alkyl group has a fluorine atom as a substituent, it may be a perfluoroalkyl group.
  • aryl group a phenyl group or a naphthyl group is preferable, and a phenyl group is more preferable.
  • the aryl group may have a substituent.
  • a fluorine atom, an iodine atom, a perfluoroalkyl group for example, 1 to 10 carbon atoms are preferable, and 1 to 6 carbon atoms are more preferable
  • a cyano group is preferable, and a fluorine atom, an iodine atom, or a fluorine atom, or Perfluoroalkyl groups are more preferred.
  • R B represents a monovalent organic group. * Represents the bond position.
  • the monovalent organic group represented by R B linear, branched, or cyclic alkyl group, or an aryl group.
  • the alkyl group preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms.
  • the alkyl group may have a substituent.
  • the substituent is not particularly limited, but the substituent is preferably a fluorine atom or a cyano group, and more preferably a fluorine atom.
  • the alkyl group When the alkyl group has a fluorine atom as a substituent, it may be a perfluoroalkyl group.
  • the carbon atom which becomes the bond position in the alkyl group for example, in the case of formulas (BX-1) and (BX-4), the carbon atom which directly bonds with -CO- specified in the formula in the alkyl group corresponds.
  • aryl group a phenyl group or a naphthyl group is preferable, and a phenyl group is more preferable.
  • the aryl group may have a substituent.
  • substituents include a fluorine atom, an iodine atom, a perfluoroalkyl group (for example, 1 to 10 carbon atoms are preferable, and 1 to 6 carbon atoms are more preferable), a cyano group, and an alkyl group (for example, 1 to 10 carbon atoms).
  • the number of carbon atoms is 1 to 6, and the alkoxy group (for example, the number of carbon atoms is preferably 1 to 10 and the number of carbon atoms is more preferably 1 to 6), or an alkoxycarbonyl group (for example, the number of carbon atoms is 2 to 10).
  • the number of carbon atoms is more preferably 2 to 6), and a fluorine atom, an iodine atom, a perfluoroalkyl group, an alkyl group, an alkoxy group, or an alkoxycarbonyl group is more preferable.
  • the divalent linking group represented by L 1 is not particularly limited, and -CO-, -NR-, -CO-, -O-, -S-, -SO-, -SO 2- , alkylene group (preferably 1 to 6 carbon atoms, which may be linear or branched), cycloalkylene group (preferably 3 to 15 carbon atoms), alkenylene group (preferably 2 to 6 carbon atoms) ), A divalent aliphatic heterocyclic group (preferably a 5- to 10-membered ring having at least one N atom, an O atom, an S atom, or a Se atom in the ring structure, more preferably a 5- to 7-membered ring.
  • a to 6-membered ring is more preferable), and a divalent aromatic heterocyclic group (a 5- to 10-membered ring having at least one N atom, an O atom, an S atom, or a Se atom in the ring structure is preferable, and 5 to 10 members are preferable.
  • a 7-membered ring is more preferable, a 5- to 6-membered ring is more preferable, a divalent aromatic hydrocarbon ring group (a 6 to 10-membered ring is preferable, a 6-membered ring is more preferable), and a plurality of these. Examples thereof include a combined divalent linking group.
  • the above R may be a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but for example, an alkyl group (preferably having 1 to 6 carbon atoms) is preferable.
  • the alkylene group, the cycloalkylene group, the alkenylene group, the divalent aliphatic heterocyclic group, the divalent aromatic heterocyclic group, and the divalent aromatic hydrocarbon ring group have substituents. You may be doing it. Examples of the substituent include a halogen atom (preferably a fluorine atom).
  • the divalent linking group represented by L 1 is preferably a divalent linking group represented by the formula (L1).
  • L 111 represents a single bond or a divalent linking group.
  • the divalent linking group represented by L 111 is not particularly limited, and may have, for example, -CO-, -NH-, -O-, -SO-, -SO 2- , and a substituent.
  • An alkylene group preferably 1 to 6 carbon atoms, which may be linear or branched
  • a cycloalkylene group which may have a substituent (preferably 3 to 15 carbon atoms)
  • substituent preferably 3 to 15 carbon atoms
  • substituent preferably 3 to 15 carbon atoms
  • the substituent is not particularly limited, and examples thereof include a halogen atom and the like.
  • p represents an integer of 0 to 3, and preferably represents an integer of 1 to 3.
  • v represents an integer of 0 or 1.
  • Xf 1 each independently represents a fluorine atom or an alkyl group substituted with at least one fluorine atom. The number of carbon atoms of this alkyl group is preferably 1 to 10, and more preferably 1 to 4. Further, as the alkyl group substituted with at least one fluorine atom, a perfluoroalkyl group is preferable.
  • Xf 2 independently represents a hydrogen atom, an alkyl group which may have a fluorine atom as a substituent, or a fluorine atom.
  • the number of carbon atoms of this alkyl group is preferably 1 to 10, and more preferably 1 to 4.
  • Xf 2 preferably represents a fluorine atom or an alkyl group substituted with at least one fluorine atom, and a fluorine atom or a perfluoroalkyl group is more preferable.
  • Xf 1 and Xf 2 are preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms, respectively, and more preferably a fluorine atom or CF 3 .
  • organic cation represented by M 11 + and M 12 + are each independently formula (Zai) organic cation represented by (cation (Zai)) or Formula organic cation (cation (ZaII represented by (ZaII) )) Is preferable.
  • R 201 , R 202 , and R 203 each independently represent an organic group.
  • the carbon number of the organic group as R 201 , R 202 , and R 203 is usually 1 to 30, preferably 1 to 20.
  • two of R 201 to R 203 may be bonded to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester group, an amide group, or a carbonyl group.
  • the two of the group formed by bonding of the R 201 ⁇ R 203 for example, an alkylene group (e.g., butylene and pentylene), and -CH 2 -CH 2 -O-CH 2 -CH 2 - is Can be mentioned.
  • the organic cation (cation (ZaI-3b) represented by the cation (ZaI-1), the cation (ZaI-2), and the formula (ZaI-3b) described later will be described.
  • an organic cation represented by the formula (ZaI-4b) (cation (ZaI-4b)).
  • the cation (ZaI-1) is an aryl sulfonium cation in which at least one of R 201 to R 203 of the above formula (ZaI) is an aryl group.
  • the aryl sulfonium cation all of R 201 to R 203 may be an aryl group, or a part of R 201 to R 203 may be an aryl group and the rest may be an alkyl group or a cycloalkyl group.
  • R 201 to R 203 may be an aryl group, and the remaining two of R 201 to R 203 may be bonded to form a ring structure, and an oxygen atom, a sulfur atom, and the like may be formed in the ring. It may contain an ester group, an amide group, or a carbonyl group.
  • a group formed by bonding two of R 201 to R 203 for example, one or more methylene groups are substituted with an oxygen atom, a sulfur atom, an ester group, an amide group, and / or a carbonyl group.
  • alkylene group e.g., butylene group, pentylene group, or -CH 2 -CH 2 -O-CH 2 -CH 2 -
  • aryl sulfonium cation examples include a triaryl sulfonium cation, a diallyl alkyl sulfonium cation, an aryl dialkyl sulfonium cation, a diallyl cycloalkyl sulfonium cation, and an aryl dicycloalkyl sulfonium cation.
  • aryl group contained in the arylsulfonium cation a phenyl group or a naphthyl group is preferable, and a phenyl group is more preferable.
  • the aryl group may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, a sulfur atom or the like. Examples of the heterocyclic structure include pyrrole residues, furan residues, thiophene residues, indole residues, benzofuran residues, benzothiophene residues and the like.
  • the aryl sulfonium cation has two or more aryl groups, the two or more aryl groups may be the same or different.
  • the alkyl group or cycloalkyl group that the arylsulfonium cation has as needed is a linear alkyl group having 1 to 15 carbon atoms, a branched alkyl group having 3 to 15 carbon atoms, or a branched alkyl group having 3 to 15 carbon atoms.
  • Cycloalkyl group is preferable, for example, methyl group, ethyl group, propyl group, n-butyl group, sec-butyl group, t-butyl group, cyclopropyl group, cyclobutyl group, cyclohexyl group and the like are more preferable.
  • the aryl group, alkyl group, and substituent that the cycloalkyl group of R 201 to R 203 may have are independently an alkyl group (for example, 1 to 15 carbon atoms) and a cycloalkyl group (for example, 3 carbon atoms).
  • aryl group for example, 6 to 14 carbon atoms
  • alkoxy group for example, 1 to 15 carbon atoms
  • cycloalkylalkoxy group for example, 1 to 15 carbon atoms
  • halogen atom for example, fluorine, iodine
  • hydroxyl group A carboxyl group, an ester group, a sulfinyl group, a sulfonyl group, an alkylthio group, a phenylthio group and the like are preferable.
  • the substituent may further have a substituent if possible.
  • the alkyl group may have a halogen atom as a substituent and may be an alkyl halide group such as a trifluoromethyl group. preferable. It is also preferable that the above-mentioned substituents form an acid-degradable group by any combination.
  • the acid-degradable group is intended to be a group that is decomposed by the action of an acid to generate an acid group, and preferably has a structure in which the acid group is protected by a leaving group that is eliminated by the action of an acid.
  • the above-mentioned acid group and leaving group are as described above.
  • the cation (ZaI-2) is a cation in which R 201 to R 203 in the formula (ZaI) each independently represent an organic group having no aromatic ring.
  • the aromatic ring also includes an aromatic ring containing a hetero atom.
  • the organic group having no aromatic ring as R 201 to R 203 generally has 1 to 30 carbon atoms, and preferably 1 to 20 carbon atoms.
  • R 201 to R 203 are each independently preferably an alkyl group, a cycloalkyl group, an allyl group, or a vinyl group, and are linear or branched 2-oxoalkyl groups, 2-oxocycloalkyl groups, or alkoxy groups.
  • a carbonyl methyl group is more preferred, and a linear or branched 2-oxoalkyl group is even more preferred.
  • the alkyl group and cycloalkyl group of R 201 to R 203 are, for example, a linear alkyl group having 1 to 10 carbon atoms or a branched chain alkyl group having 3 to 10 carbon atoms (for example, a methyl group, an ethyl group, or a propyl group). , Butyl group, and pentyl group), and cycloalkyl groups having 3 to 10 carbon atoms (for example, cyclopentyl group, cyclohexyl group, and norbornyl group).
  • R 201 to R 203 may be further substituted with a halogen atom, an alkoxy group (for example, 1 to 5 carbon atoms), a hydroxyl group, a cyano group, or a nitro group. It is also preferable that the substituents of R 201 to R 203 independently form an acid-degradable group by any combination of the substituents.
  • the cation (ZaI-3b) is a cation represented by the following formula (ZaI-3b).
  • R 1c to R 5c are independently hydrogen atom, alkyl group, cycloalkyl group, aryl group, alkoxy group, aryloxy group, alkoxycarbonyl group, alkylcarbonyloxy group, cycloalkylcarbonyloxy group, halogen atom, hydroxyl group. , Nitro group, alkylthio group, or arylthio group.
  • R 6c and R 7c independently represent a hydrogen atom, an alkyl group (t-butyl group, etc.), a cycloalkyl group, a halogen atom, a cyano group, or an aryl group.
  • R x and R y each independently represent an alkyl group, a cycloalkyl group, a 2-oxoalkyl group, a 2-oxocycloalkyl group, an alkoxycarbonylalkyl group, an allyl group, or a vinyl group. It is also preferable that R 1c to R 7c , and the substituents of R x and R y each independently form an acid-degradable group by any combination of the substituents.
  • R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and R x and R y , respectively, may be combined with each other to form a ring.
  • each ring may independently contain an oxygen atom, a sulfur atom, a ketone group, an ester bond, or an amide bond.
  • the ring include an aromatic or non-aromatic hydrocarbon ring, an aromatic or non-aromatic heterocycle, and a polycyclic fused ring formed by combining two or more of these rings.
  • the ring include a 3- to 10-membered ring, preferably a 4- to 8-membered ring, and more preferably a 5- or 6-membered ring.
  • Examples of the group formed by combining any two or more of R 1c to R 5c , R 6c and R 7c , and R x and R y include an alkylene group such as a butylene group and a pentylene group.
  • the methylene group in the alkylene group may be substituted with a hetero atom such as an oxygen atom.
  • a single bond or an alkylene group is preferable.
  • Examples of the alkylene group include a methylene group and an ethylene group.
  • the cation (ZaI-4b) is a cation represented by the following formula (ZaI-4b).
  • R 13 is a group having a hydrogen atom, a halogen atom (for example, a fluorine atom, an iodine atom, etc.), a hydroxyl group, an alkyl group, an alkyl halide group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, or a cycloalkyl group (cycloalkyl). It may be a group itself or a group containing a cycloalkyl group in part). These groups may have substituents.
  • R 14 is a hydroxyl group, a halogen atom (for example, a fluorine atom, an iodine atom, etc.), an alkyl group, an alkyl halide group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylsulfonyl group, a cycloalkylsulfonyl group, or a cycloalkyl.
  • Represents a group having a group it may be a cycloalkyl group itself or a group containing a cycloalkyl group as a part). These groups may have substituents.
  • R 15 independently represents an alkyl group, a cycloalkyl group, or a naphthyl group. Bonded to two R 15 each other may form a ring. When two R 15 are combined to form a ring together, in the ring skeleton may contain a hetero atom such as an oxygen atom, or a nitrogen atom. In one embodiment, two R 15 is an alkylene group, preferably bonded together to form a ring structure. The above alkyl group, the cycloalkyl group and the naphthyl group, as well as two rings of R 15 is formed by bonding may have a substituent.
  • the alkyl groups of R 13 , R 14 and R 15 are linear or branched chain.
  • the alkyl group preferably has 1 to 10 carbon atoms.
  • the alkyl group is more preferably a methyl group, an ethyl group, an n-butyl group, a t-butyl group or the like. It is also preferable that R 13 to R 15 and each of the substituents of R x and R y independently form an acid-degradable group by any combination of the substituents.
  • R 204 and R 205 each independently represent an aryl group, an alkyl group or a cycloalkyl group.
  • the aryl group of R 204 and R 205 is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group.
  • the aryl group of R 204 and R 205 may be an aryl group having a heterocycle having an oxygen atom, a nitrogen atom, a sulfur atom or the like.
  • Examples of the skeleton of the aryl group having a heterocycle include pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
  • the alkyl group and cycloalkyl group of R 204 and R 205 are a linear alkyl group having 1 to 10 carbon atoms or a branched chain alkyl group having 3 to 10 carbon atoms (for example, methyl group, ethyl group, propyl group, butyl group).
  • a group or a pentyl group), or a cycloalkyl group having 3 to 10 carbon atoms is preferable.
  • the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may each independently have a substituent.
  • substituents that the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may have include an alkyl group (for example, 1 to 15 carbon atoms) and a cycloalkyl group (for example, 3 to 15 carbon atoms). 15), an aryl group (for example, 6 to 15 carbon atoms), an alkoxy group (for example, 1 to 15 carbon atoms), a halogen atom, a hydroxyl group, a phenylthio group and the like can be mentioned. It is also preferable that the substituents of R 204 and R 205 independently form an acid-degradable group by any combination of the substituents.
  • a 21a - and A 21b - each independently represent a monovalent anionic functional group.
  • a 21a - The monovalent anionic functional group represented by the anionic part A 1 described above - - and A 21b intended a monovalent group containing a.
  • a 21a - and A 21b - The monovalent anionic functional group represented by is not particularly limited, for example, monovalent selected from the group consisting of the above formulas (AX-1) ⁇ (AX -3) Anionic functional groups and the like can be mentioned.
  • a 22 ⁇ represents a divalent anionic functional group.
  • a 22 - The divalent anionic functional group represented by the anionic sites A 2 mentioned above - is intended a bivalent group containing a. Examples of the divalent anionic functional group represented by A 22 ⁇ include divalent anionic functional groups represented by the following formulas (BX-8) to (BX-11).
  • M 21a +, M 21b +, and M 22 + each independently represents an organic cation.
  • M 21a +, as the organic cation represented by + M 21b +, and M 22, has the same meaning as above M 1 +, preferred embodiments are also the same.
  • L 21 and L 22 each independently represent a divalent organic group.
  • M 21a +, M 21b + , and M 22 + may being the same or different. Further, at least one of M 21a + , M 21b + , M 22 + , A 21a ⁇ , A 21b ⁇ , L 21 and L 22 has an acid-degradable group as a substituent. You may.
  • a 31a - and A 32 - independently represents a monovalent anionic functional group.
  • a 32 - a monovalent anionic functional group represented by the anionic sites A 2 mentioned above - is intended a monovalent group containing a.
  • a 32 - Examples of the monovalent anionic functional group represented by is not particularly limited, for example, monovalent anionic functional group selected from the group consisting of the above formula (BX-1) ⁇ (BX -7) And so on.
  • a 31b - represents a divalent anionic functional group.
  • a 31b - and divalent anionic functional group represented by the anionic part A 1 above - intends a divalent group containing a.
  • Examples of the divalent anionic functional group represented by A 31b ⁇ include a divalent anionic functional group represented by the following formula (AX-4).
  • M 31a +, M 31b +, and M 32 + each independently represents a monovalent organic cation.
  • the M 31a + , M 31b + , and M 32 + organic cations are synonymous with the above-mentioned M 1 + , and the preferred embodiments are also the same.
  • L 31 and L 32 each independently represent a divalent organic group.
  • the acidity represented by A 32 H in the compound PIa-3 formed by replacing the organic cations represented by M 31a + , M 31b + , and M 32 + with H + , the acidity represented by A 32 H.
  • the acid dissociation constant a2 derived from the site is larger than the acid dissociation constant a1-3 derived from the acidic site represented by A 31a H and the acid dissociation constant a1-4 derived from the acidic site represented by A 31b H. ..
  • the acid dissociation constant a1-3 and the acid dissociation constant a1-4 correspond to the acid dissociation constant a1 described above.
  • a 31a - and A 32 - may be the same as or different from each other.
  • M 31a +, M 31b + , and M 32 + may being the same or different. Further, M 31a +, M 31b + , M 32 +, A 31a -, A 32 -, L 31, and at least one of L 32, as a substituent, may have an acid-decomposable group.
  • a 41a -, A 41b -, and A 42 - independently represents a monovalent anionic functional group.
  • a 41a - and A 41b - Definition of monovalent anionic functional group represented by, A 21a in the above-mentioned formula (Ia-2) - and A 21b - as synonymous.
  • the definition of the monovalent anionic functional group represented by A 42 ⁇ is synonymous with A 32 ⁇ in the above-mentioned formula (Ia-3), and the preferred embodiment is also the same.
  • M 41a +, M 41b +, and M 42 + each independently represents an organic cation.
  • L 41 represents a trivalent organic group.
  • M 41a +, M 41b + , and M 42 + may being the same or different. Further, at least one of M 41a + , M 41b + , M 42 + , A 41a ⁇ , A 41b ⁇ , A 42 ⁇ , and L 41 may have an acid-degradable group as a substituent.
  • the divalent organic groups represented by L 21 and L 22 in the formula (Ia-2) and L 31 and L 32 in the formula (Ia-3) are not particularly limited, and are not particularly limited, for example, -CO-. , -NR-, -O-, -S-, -SO-, -SO 2- , alkylene group (preferably 1 to 6 carbon atoms, which may be linear or branched), cycloalkylene group (preferably 3 to 15 carbon atoms), alkenylene group (preferably 2 to 6 carbon atoms), divalent aliphatic heterocyclic group (having at least one N atom, O atom, S atom, or Se atom in the ring structure 5) A to 10-membered ring is preferred, a 5- to 7-membered ring is more preferred, a 5- to 6-membered ring is even more preferred), and a divalent aromatic heterocyclic group (at least one N atom, O atom, S atom, or Se.
  • a 5- to 10-membered ring having an atom in the ring structure is preferred, a 5- to 7-membered ring is more preferred, a 5- to 6-membered ring is even more preferred), and a divalent aromatic hydrocarbon ring group (6 to 10-membered ring). , And a 6-membered ring is more preferable), and a divalent organic group in which a plurality of these are combined.
  • the above R may be a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but for example, an alkyl group (preferably having 1 to 6 carbon atoms) is preferable.
  • the alkylene group, the cycloalkylene group, the alkenylene group, the divalent aliphatic heterocyclic group, the divalent aromatic heterocyclic group, and the divalent aromatic hydrocarbon ring group have substituents. You may be doing it. Examples of the substituent include a halogen atom (preferably a fluorine atom).
  • Examples of the divalent organic group represented by L 21 and L 22 in the formula (Ia-2) and L 31 and L 32 in the formula (Ia-3) are represented by the following formula (L2). It is also preferable that it is a divalent organic group.
  • q represents an integer of 1 to 3.
  • Xf each independently represents a fluorine atom or an alkyl group substituted with at least one fluorine atom.
  • the number of carbon atoms of this alkyl group is preferably 1 to 10, and more preferably 1 to 4.
  • a perfluoroalkyl group is preferable.
  • Xf is preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms, and more preferably a fluorine atom or CF 3 . In particular, it is more preferable that both Xfs are fluorine atoms.
  • L A represents a single bond or a divalent linking group.
  • divalent linking group represented by L A for example, -CO -, - O -, - SO -, - SO 2 -.
  • An alkylene group preferably having a carbon number of 1 to 6 linear It may be in the form of a branched or branched chain
  • a cycloalkylene group preferably having 3 to 15 carbon atoms
  • a divalent aromatic hydrocarbon ring group preferably a 6 to 10-membered ring, more preferably a 6-membered ring
  • a divalent linking group in which a plurality of these is combined can be mentioned.
  • the alkylene group, the cycloalkylene group, and the divalent aromatic hydrocarbon ring group may have a substituent. Examples of the substituent include a halogen atom (preferably a fluorine atom).
  • the divalent organic group represented by the formula (L2) for example, * - CF 2 - *, * - CF 2 -CF 2 - *, * - CF 2 -CF 2 -CF 2 - *, * - Ph-O-SO 2 -CF 2 - *, * - Ph-O-SO 2 -CF 2 -CF 2 - *, and * -Ph-O-SO 2 -CF 2 -CF 2 -CF 2 - *, * -Ph-OCO-CF 2- * and the like can be mentioned.
  • Ph is a phenylene group which may have a substituent, and is preferably a 1,4-phenylene group.
  • the substituent is not particularly limited, but an alkyl group (for example, 1 to 10 carbon atoms is preferable, and 1 to 6 carbon atoms are more preferable) and an alkoxy group (for example, 1 to 10 carbon atoms are preferable, and 1 to 6 carbon atoms are preferable). 6 is more preferable) or an alkoxycarbonyl group (for example, 2 to 10 carbon atoms are preferable, and 2 to 6 carbon atoms are more preferable).
  • L 21 and L 22 in the formula (Ia-2) represents a divalent organic group represented by the formula (L2)
  • bond L A side in the formula (L2) (*) has the formula ( Ia-2) in the a 21a - and a 21b - that binds preferable.
  • the trivalent organic group represented by L 41 in the formula (Ia-4) is not particularly limited, and examples thereof include a trivalent organic group represented by the following formula (L3).
  • L3 represents a trivalent hydrocarbon ring group or a trivalent heterocyclic group. * Represents the bond position.
  • the hydrocarbon ring group may be an aromatic hydrocarbon ring group or an aliphatic hydrocarbon ring group.
  • the number of carbon atoms contained in the hydrocarbon ring group is preferably 6 to 18, and more preferably 6 to 14.
  • the heterocyclic group may be an aromatic heterocyclic group or an aliphatic heterocyclic group.
  • the heterocycle is preferably a 5- to 10-membered ring having at least one N atom, an O atom, an S atom, or a Se atom in the ring structure, more preferably a 5- to 7-membered ring, and a 5- to 6-membered ring. Rings are more preferred.
  • the L B preferably a trivalent hydrocarbon ring group, a benzene ring group or an adamantane ring group is more preferable.
  • the benzene ring group or the adamantane ring group may have a substituent.
  • the substituent is not particularly limited, and examples thereof include a halogen atom (preferably a fluorine atom).
  • LB1 to LB3 each independently represent a single bond or a divalent linking group.
  • a divalent aromatic heterocyclic group (preferably a 5- to 10-membered ring having at least one N, O, S, or Se atom in the ring structure, more preferably a 5- to 7-membered ring.
  • a 5- to 6-membered ring is more preferable
  • a divalent aromatic hydrocarbon ring group (a 6 to 10-membered ring is preferable, and a 6-membered ring is more preferable)
  • the above R may be a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but for example, an alkyl group (preferably having 1 to 6 carbon atoms) is preferable.
  • the alkylene group, the cycloalkylene group, the alkenylene group, the divalent aliphatic heterocyclic group, the divalent aromatic heterocyclic group, and the divalent aromatic hydrocarbon ring group have substituents. You may be doing it. Examples of the substituent include a halogen atom (preferably a fluorine atom). Examples of the divalent linking group represented by L B1 ⁇ L B3, Among the above, -CO -, - NR -, - O -, - S -, - SO -, - SO 2 -, a substituent An alkylene group which may be possessed and a divalent linking group in which a plurality of these are combined are preferable.
  • L B11 represents a single bond or a divalent linking group.
  • the divalent linking group represented by L B11 is not particularly limited, for example, -CO -, - O -, - SO -, - SO 2 -, an alkylene group (preferably having substituent Has 1 to 6 carbon atoms, which may be linear or branched), and a divalent linking group in which a plurality of these are combined.
  • the substituent is not particularly limited, and examples thereof include a halogen atom and the like.
  • r represents an integer of 1 to 3.
  • Xf has the same meaning as Xf in the above-mentioned formula (L2), and the preferred embodiment is also the same. * Represents the bond position.
  • Examples of the divalent linking group represented by LB1 to LB3 include * -O- *, * -O -SO 2- CF 2- *, and * -O -SO 2- CF 2- CF 2-. *, * - O-SO 2 -CF 2 -CF 2 -CF 2 - *, and * -COO-CH 2 -CH 2 - * , and the like.
  • L 41 of (Ia-4) in comprises a divalent organic group represented by the formula (L3-1), and a divalent organic group represented by the formula (L3-1) and A 42 - If bets are attached formula (L3-1) carbon atoms side bonds which are expressly in (*) is, a 42 in formula (Ia-4) - preferably bind to.
  • a 51a ⁇ , A 51b ⁇ , and A 51c ⁇ each independently represent a monovalent anionic functional group.
  • the monovalent anionic functional group represented by A 51a ⁇ , A 51b ⁇ , and A 51c ⁇ is intended to be a monovalent group containing the above-mentioned anionic moiety A 1 ⁇ .
  • the monovalent anionic functional group represented by A 51a ⁇ , A 51b ⁇ , and A 51c ⁇ is not particularly limited, but is, for example, from the group consisting of the above formulas (AX-1) to (AX-3). Examples thereof include a monovalent anionic functional group to be selected.
  • a 52a - and A 52 b - represents a divalent anionic functional group.
  • a 52a - and A 52 b - a divalent anionic functional group represented by the anionic sites A 2 mentioned above - is intended a bivalent group containing a.
  • the divalent anionic functional group represented by A 22 ⁇ for example, a divalent anionic functional group selected from the group consisting of the above formulas (BX-8) to (BX-11) may be used. Can be mentioned.
  • M 51a + , M 51b + , M 51c + , M 52a + , and M 52b + each independently represent an organic cation.
  • the organic cations represented by M 51a + , M 51b + , M 51c + , M 52a + , and M 52b + are synonymous with the above-mentioned M 1 + , and the preferred embodiments are also the same.
  • L 51 and L 53 each independently represent a divalent organic group.
  • the divalent organic group represented by L 51 and L 53 has the same meaning as L 21 and L 22 in the above-mentioned formula (Ia-2), and the preferred embodiment is also the same.
  • L 52 represents a trivalent organic group.
  • the trivalent organic group represented by L 52 has the same meaning as L 41 in the above-mentioned formula (Ia-4), and the preferred embodiment is also the same.
  • the acid dissociation constant a2-1 derived from the acidic moiety represented by A 52a H and the acid dissociation constant a2-2 derived from the acidic moiety represented by A 52b H are the acid dissociation constant a1- derived from A 51a H. 1. It is larger than the acid dissociation constant a1-2 derived from the acidic moiety represented by A 51b H and the acid dissociation constant a1-3 derived from the acidic moiety represented by A 51c H.
  • the acid dissociation constants a1-1 to a1-3 correspond to the acid dissociation constant a1 described above, and the acid dissociation constants a2-1 and a2-2 correspond to the acid dissociation constant a2 described above.
  • a 51a ⁇ , A 51b ⁇ , and A 51c ⁇ may be the same or different from each other.
  • a 52a - and A 52 b - may be be the same or different from each other.
  • M 51a + , M 51b + , M 51c + , M 52a + , and M 52b + may be the same or different from each other.
  • Compound (II) is a compound having two or more of the above-mentioned structural parts X and one or more of the following structural parts Z, and is the first acidic acid derived from the above-mentioned structural parts X by irradiation with active light or radiation. It is a compound that generates an acid containing two or more sites and a compound that generates an acid containing the structural site Z.
  • Structural site Z Nonionic site capable of neutralizing acid
  • HA 1 comprising substituting the cationic sites M 1 + in the structural moiety X to H +
  • the preferable range of the acid dissociation constant a1 derived from the acidic moiety represented by is the same as the acid dissociation constant a1 in the above-mentioned compound PI.
  • compound (II) is, for example, a compound that generates an acid having two first acidic sites derived from the structural site X and the structural site Z, the compound PII is "two HA 1".
  • compound PII is - acid dissociation constant in the "one of A 1 and one HA 1 and compounds having", and "one of A 1 - and one HA compounds having one and “is” two a 1 - acid dissociation constant in the compound "having found corresponds to the acid dissociation constant a1.
  • the acid dissociation constant a1 is obtained by the above-mentioned method for measuring the acid dissociation constant.
  • the compound PII corresponds to an acid generated when compound (II) is irradiated with active light rays or radiation.
  • the two or more structural parts X may be the same or different from each other. Further, the two or more A 1 ⁇ and the two or more M 1 + may be the same or different from each other.
  • the nonionic site capable of neutralizing the acid in the structural site Z is not particularly limited, and is preferably a site containing a functional group having a group or an electron capable of electrostatically interacting with a proton, for example. ..
  • a functional group having a group or an electron capable of electrostatically interacting with a proton a functional group having a macrocyclic structure such as a cyclic polyether or a nitrogen atom having an unshared electron pair that does not contribute to ⁇ conjugation is used. Examples thereof include functional groups having.
  • the nitrogen atom having an unshared electron pair that does not contribute to ⁇ conjugation is, for example, a nitrogen atom having a partial structure shown in the following formula.
  • Substructures of functional groups having groups or electrons that can electrostatically interact with protons include, for example, crown ether structures, aza crown ether structures, 1-3 amine structures, pyridine structures, imidazole structures, and pyrazine structures. Etc., and among them, the 1st to 3rd grade amine structure is preferable.
  • the compound (II) is not particularly limited, and examples thereof include compounds represented by the following formulas (IIa-1) and the following formula (IIa-2).
  • R 2X represents a monovalent organic group.
  • the monovalent organic group represented by R 2X is not particularly limited, and for example, -CH 2- is -CO-, -NH-, -O-, -S-, -SO-, and -SO 2.
  • -Alkyl groups preferably having 1 to 10 carbon atoms, which may be linear or branched
  • cycloalkyl groups preferably, which may be substituted with one or a combination of two or more selected from the group consisting of 3 to 15 carbon atoms
  • an alkenyl group preferably 2 to 6 carbon atoms
  • the alkylene group, the cycloalkylene group, and the alkenylene group may have a substituent.
  • the substituent is not particularly limited, and examples thereof include a halogen atom (preferably a fluorine atom).
  • the acid generated from the compound represented by the formula (IIa-1) by irradiation with active light or radiation is the same as that of the compound PIIa-1.
  • at least one of M 61a + , M 61b + , A 61a ⁇ , A 61b ⁇ , L 61 , L 62 , and R 2X may have an acid-degradable group as a substituent.
  • a 71a ⁇ , A 71b ⁇ , and A 71c ⁇ are synonymous with A 11 ⁇ in the above formula (Ia-1), and the preferred embodiments are also the same.
  • M 71a + , M 71b + , and M 71c + are synonymous with M 11 + in the above-mentioned formula (Ia-1), and the preferred embodiments are also the same.
  • L 71 , L 72 , and L 73 are synonymous with L 1 in the above formula (Ia-1), and the preferred embodiments are also the same.
  • the acidic moiety represented by A 71a H in the compound PIIa-2 formed by replacing the organic cations represented by M 71a + , M 71b + , and M 71c + with H + , the acidic moiety represented by A 71a H.
  • the acid dissociation constant a1-9 derived from, the acid dissociation constant a1-10 derived from the acidic moiety represented by A 71b H, and the acid dissociation constant a1-11 derived from the acidic moiety represented by A 71c H are It corresponds to the acid dissociation constant a1 described above.
  • the compound PIIa-2 in which the cation sites M 71a + , M 71b + , and M 71c + in the structural site X are replaced with H + is HA 71a- L 71- N.
  • (L 73- A 71c H) -L 72- A 71b H corresponds.
  • the acid generated from the compound represented by the formula (IIa-2) by irradiation with active light or radiation is the same as that of the compound PIIa-2.
  • the organic cations are, for example, M 11 + , M 12 + , M 21a + , M 21b + , M 22 + , M 31a + in the compounds represented by the formulas (Ia-1) to (Ia-5).
  • M 31b + , M 32 + , M 41a + , M 41b + , M 42 + can be used as M 51a + , M 51b + , M 51c + , M 52a + , or M 52b +.
  • the other sites are, for example, M 11 + , M 12 + , M 21a + , M 21b + , M 22 + , in the compounds represented by the formulas (Ia-1) to (Ia-5).
  • the organic cations shown below and other sites can be appropriately combined and used as a specific photoacid generator.
  • the molecular weight of the specific photoacid generator is preferably 100 to 10000, more preferably 100 to 2500, and even more preferably 100 to 1500.
  • the content is 10% by mass or more based on the total solid content of the composition. It is preferable, and more preferably 20% by mass or more.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less.
  • the specific photoacid generator may be used alone or in combination of two or more. When two or more kinds are used, it is preferable that the total content is within the above-mentioned suitable content range.
  • composition of the present invention may have the following compound (III) as the photoacid generator (P).
  • Compound (III) is a compound having two or more of the following structural sites X, and is a compound that generates two acidic sites derived from the following structural sites X by irradiation with active light or radiation.
  • Structural moiety X anionic part A 1 - and consists cationic sites M 1 + and and structural site of forming acid moiety represented by the HA 1 by irradiation of actinic ray or radiation
  • the two or more structural sites X contained in compound (III) may be the same or different from each other. Further, the two or more A 1 ⁇ and the two or more M 1 + may be the same or different from each other.
  • Photoacid generator - preferably a compound represented by the "M + X".
  • M + represents an organic cation.
  • the organic cation is preferably a cation represented by the above formula (ZaI) (cation (ZaI)) or a cation represented by the above formula (ZaII) (cation (ZaII)).
  • the composition of the present invention may contain an acid diffusion control agent (Q).
  • the acid diffusion control agent (Q) acts as a quencher that traps the acid generated from the photoacid generator (P) or the like during exposure and suppresses the reaction of the acid-degradable resin in the unexposed portion due to the excess generated acid. Is what you do.
  • Examples of the acid diffusion control agent (Q) include a basic compound (DA), a basic compound (DB) whose basicity is reduced or eliminated by irradiation with radiation, and a photoacid generator (P).
  • Onium salt (DC) that becomes a weak acid, low molecular weight compound (DD) that has a nitrogen atom and has a group that is eliminated by the action of acid, and onium salt compound (DE) that has a nitrogen atom in the cation part are used.
  • a known acid diffusion control agent can be appropriately used.
  • Known compounds disclosed in paragraphs [0403] to [0423] of the specification and paragraphs [0259] to [0328] of US Patent Application Publication No. 2016/0274458 are used as acid diffusion control agents (Q). Can be preferably used.
  • Examples of the basic compound (DA) include the repeating unit described in paragraphs 0188 to 0208 of JP-A-2019-045864.
  • an onium salt (DC), which is a weak acid relative to the photoacid generator (P), can be used as the acid diffusion control agent (Q).
  • a photoacid generator (P) and an onium salt that generates an acid that is a relatively weak acid with respect to the acid generated from the photoacid generator (P) are mixed and used, the active light or radiation
  • the acid generated from the photoacid generator (P) by irradiation collides with an onium salt having an unreacted weak acid anion
  • the weak acid is released by salt exchange to form an onium salt having a strong acid anion.
  • the strong acid is exchanged for the weak acid with lower catalytic ability, so that the acid is apparently inactivated and the acid diffusion can be controlled.
  • Examples of the onium salt that is relatively weak acid with respect to the photoacid generator (P) include the onium salt described in paragraphs 0226 to 0233 of JP-A-2019-070676.
  • the content of the acid diffusion control agent (Q) (the total of a plurality of types, if present) is based on the total solid content of the composition. It is preferably 0.1 to 10.0% by mass, more preferably 0.1 to 5.0% by mass.
  • the acid diffusion control agent (Q) may be used alone or in combination of two or more.
  • the composition of the present invention may contain a hydrophobic resin different from the above resin (A) as the hydrophobic resin (E).
  • the hydrophobic resin (E) is preferably designed to be unevenly distributed on the surface of the resist film, but unlike a surfactant, it does not necessarily have to have a hydrophilic group in the molecule, and is a polar substance and a non-polar substance. Does not have to contribute to the uniform mixing of.
  • the effects of adding the hydrophobic resin (E) include controlling the static and dynamic contact angles of the resist film surface with respect to water, suppressing outgas, and the like.
  • Hydrophobic resin (E) from the viewpoint of uneven distribution in the film surface layer, "fluorine atom”, “silicon atom”, and, any one of “includes the CH 3 moiety to the side chain portion of the resin” It is preferable to have the above, and it is more preferable to have two or more kinds. Further, the hydrophobic resin (E) preferably has a hydrocarbon group having 5 or more carbon atoms. These groups may be contained in the main chain of the resin or may be substituted in the side chain.
  • the fluorine atoms and / or silicon atoms in the hydrophobic resin may be contained in the main chain of the resin, and may be contained in the side chain. It may be included.
  • the partial structure having a fluorine atom is preferably an alkyl group having a fluorine atom, a cycloalkyl group having a fluorine atom, or an aryl group having a fluorine atom. ..
  • the alkyl group having a fluorine atom (preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms) is a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom. Further, it may have a substituent other than a fluorine atom.
  • the cycloalkyl group having a fluorine atom is a monocyclic or polycyclic cycloalkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and may further have a substituent other than the fluorine atom.
  • the aryl group having a fluorine atom include a phenyl group and a group in which at least one hydrogen atom of an aryl group such as a naphthyl group is substituted with a fluorine atom, and further has a substituent other than the fluorine atom. May be good.
  • Examples of repeating units having a fluorine atom or a silicon atom include those exemplified in paragraph 0519 of US2012 / 0251948.
  • the hydrophobic resin (E) has a CH 3-part structure in the side chain portion.
  • CH 3 partial structure contained in the side chain portion in the hydrophobic resin comprises ethyl group, and a CH 3 partial structure having a propyl group.
  • the methyl group directly bonded to the main chain of the hydrophobic resin (E) (for example, the ⁇ -methyl group of a repeating unit having a methacrylic acid structure) is on the surface of the hydrophobic resin (E) due to the influence of the main chain. for contribution to uneven distribution is small, it shall not be included in the CH 3 partial structures in the present invention.
  • hydrophobic resin (E) the resins described in JP-A-2011-248019, JP-A-2010-175859, and JP-A-2012-032544 can also be preferably used.
  • the content of the hydrophobic resin (E) is preferably 0.01 to 20% by mass, preferably 0.1, based on the total solid content of the composition. More preferably, it is ⁇ 15% by mass.
  • the composition of the present invention may contain a solvent (F).
  • the solvent (F) is (M1) propylene glycol monoalkyl ether carboxylate, and (M2) propylene glycol monoalkyl ether, lactic acid ester, and the like. It preferably contains at least one selected from the group consisting of acetates, alkoxypropionic acid esters, chain ketones, cyclic ketones, lactones, and alkylene carbonates.
  • the solvent in this case may further contain components other than the components (M1) and (M2).
  • the solvent containing the component (M1) or (M2) is used in combination with the above-mentioned resin (A), the coatability of the composition is improved and a pattern with a small number of development defects can be formed, which is preferable. ..
  • examples of the solvent (F) include alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, lactic acid alkyl ester, and alkoxypropion.
  • Organic solvents such as alkyl acids, cyclic lactones (preferably 4-10 carbon atoms), monoketone compounds that may contain rings (preferably 4-10 carbon atoms), alkylene carbonates, alkyl alkoxyacetates, and alkyl pyruvates. Can be mentioned.
  • the content of the solvent (F) in the composition of the present invention is preferably set so that the solid content concentration is 0.5 to 40% by mass.
  • the solid content concentration is preferably 10% by mass or more in that the effect of the present invention is more excellent.
  • the composition of the present invention may contain a surfactant (H).
  • a surfactant (H) By containing the surfactant (H), it is possible to form a pattern having better adhesion and fewer development defects.
  • a fluorine-based surfactant and / or a silicon-based surfactant is preferable.
  • Fluorine-based and / or silicon-based surfactants include, for example, the surfactants described in paragraph 0276 of US Patent Application Publication No. 2008/0248425.
  • Ftop EF301 or EF303 (manufactured by Shin-Akita Kasei Co., Ltd.); Florard FC430, 431 or 4430 (manufactured by Sumitomo 3M Co., Ltd.); Megafuck F171, F173, F176, F189, F113, F110, F177, F120 or R08 (manufactured by DIC Co., Ltd.); Surflon S-382, SC101, 102, 103, 104, 105 or 106 (manufactured by Asahi Glass Co., Ltd.); Troysol S-366 (manufactured by Troy Chemical Co., Ltd.); GF-300 or GF-150 (manufactured by Toa Synthetic Chemical Co., Ltd.), Surflon S-393 (manufactured by Seimi Chemical Co., Ltd.); EFTOP EF121, EF122A, EF122B, RF122C, EF125M, EF135M, EF351,
  • the surfactant (H) is a fluorocarbon produced by a telomerization method (also referred to as a telomer method) or an oligomerization method (also referred to as an oligomer method) in addition to the known surfactants as shown above. It may be synthesized using an aliphatic compound. Specifically, a polymer having a fluoroaliphatic group derived from this fluoroaliphatic compound may be used as the surfactant (H). This fluoroaliphatic compound can be synthesized, for example, by the method described in JP-A-2002-090991.
  • the polymer having a fluoroaliphatic group a copolymer of a monomer having a fluoroaliphatic group and (poly (oxyalkylene)) acrylate and / or (poly (oxyalkylene)) methacrylate is preferable, and the polymer is irregularly distributed. It may be a block copolymerized product.
  • the poly (oxyalkylene) group include a poly (oxyethylene) group, a poly (oxypropylene) group, and a poly (oxybutylene) group, and poly (oxyethylene, oxypropylene, and oxyethylene).
  • a unit having alkylenes having different chain lengths within the same chain length such as poly (block conjugate of oxyethylene and oxypropylene), may be used.
  • the copolymer of the monomer having a fluoroaliphatic group and the (poly (oxyalkylene)) acrylate (or methacrylate) is not only a binary copolymer, but also a monomer having two or more different fluoroaliphatic groups.
  • a ternary or higher copolymer obtained by simultaneously copolymerizing two or more different (poly (oxyalkylene)) acrylates (or methacrylates) or the like may be used.
  • acrylates having a C 6 F 13 group ( or methacrylate) and (poly (oxyalkylene)) acrylate (copolymer of or methacrylate), acrylate having a C 3 F 7 group (or methacrylate) (poly (oxyethylene) and) acrylate (or methacrylate) (poly (Oxypropylene)) Copolymer with acrylate (or methacrylate) can be mentioned.
  • surfactants other than the fluorine-based and / or silicon-based surfactants described in paragraph [0280] of US Patent Application Publication No. 2008/0248425 may be used.
  • These surfactants (H) may be used alone or in combination of two or more.
  • the content of the surfactant (H) is preferably 0.0001 to 2% by mass, more preferably 0.0005 to 1% by mass, based on the total solid content of the composition.
  • the composition of the present invention is also suitably used as a photosensitive composition for EUV light.
  • EUV light has a wavelength of 13.5 nm, which is shorter than that of ArF (wavelength 193 nm) light and the like, so that the number of incident photons when exposed with the same sensitivity is small. Therefore, the influence of "photon shot noise" in which the number of photons varies stochastically is large, which causes deterioration of LER and bridge defects.
  • photon shot noise there is a method of increasing the exposure amount and increasing the number of incident photons, but this is a trade-off with the demand for higher sensitivity.
  • the absorption efficiency of EUV light and electron beam of the resist film formed from the composition becomes high, which is effective in reducing photon shot noise.
  • the A value represents the absorption efficiency of EUV light and electron beam in the mass ratio of the resist film.
  • the A value is preferably 0.120 or more.
  • the upper limit is not particularly limited, but if the A value is too large, the EUV light and electron beam transmittance of the resist film decreases, the optical image profile in the resist film deteriorates, and as a result, it becomes difficult to obtain a good pattern shape. Therefore, 0.240 or less is preferable, and 0.220 or less is more preferable.
  • [H] represents the molar ratio of hydrogen atoms derived from all solids to all atoms of all solids in the radiation-sensitive resin composition
  • [C] is radiation-sensitive.
  • [N] is the total solids to all atoms of all solids in the radiation sensitive resin composition.
  • the molar ratio of the derived nitrogen atom is represented
  • [O] represents the molar ratio of the oxygen atom derived from the total solid content to the total atom of the total solid content in the radiation-sensitive resin composition
  • [F] represents the feeling.
  • [S] is all to all atoms of all solids in the radiosensitive resin composition. It represents the molar ratio of sulfur atoms derived from solids
  • [I] represents the molar ratio of iodine atoms derived from all solids to all atoms of all solids in the radiation sensitive resin composition.
  • the composition contains a resin (acid-degradable resin) whose polarity is increased by the action of an acid, a photoacid generator, an acid diffusion control agent, and a solvent, the resin, the photoacid generator, and the acid diffusion.
  • the control agent corresponds to the solid content. That is, all the atoms of the total solid content correspond to the total of all the atoms derived from the resin, all the atoms derived from the photoacid generator, and all the atoms derived from the acid diffusion control agent.
  • [H] represents the molar ratio of hydrogen atoms derived from all solids to all atoms of all solids.
  • [H] is all atoms derived from the resin and the light.
  • the hydrogen atom derived from the resin, the hydrogen atom derived from the photoacid generator, and the hydrogen atom derived from the acid diffusion controller with respect to the total of all the atoms derived from the acid generator and all the atoms derived from the acid diffusion regulator. It will represent the total molar ratio.
  • the A value can be calculated by calculating the ratio of the number of atoms contained in the composition when the structure and content of the constituent components of the total solid content are known. Further, even when the constituent atoms are unknown, the constituent atomic number ratio can be calculated for the resist film obtained by evaporating the solvent component of the composition by an analytical method such as elemental analysis.
  • composition of the present invention further comprises a cross-linking agent, an alkali-soluble resin, a dissolution-inhibiting compound, a dye, a plasticizer, a photosensitizer, a light absorber, and / or a compound that promotes solubility in a developer. May be good.
  • the weight average molecular weight (Mw) and the dispersity (Mw / Mn) of the resins A-1 to A-61 are polystyrene-equivalent values measured by the above-mentioned GPC method (carrier: tetrahydrofuran (THF)).
  • the composition ratio (mol% ratio) of the repeating unit in the resin was measured by 13 C-NMR (nuclear magnetic resonance).
  • ⁇ Hydrophobic resin (E)> The structures of the resins E-1 to E-17 used as the hydrophobic resin (E) in Examples and Comparative Examples are shown below. As the resins E-1 to E-17, those synthesized based on known techniques were used. Table 8 shows the composition ratio (molar ratio; corresponding in order from the left), the weight average molecular weight (Mw), and the dispersity (Mw / Mn) of each repeating unit in the hydrophobic resin (E).
  • the weight average molecular weight (Mw) and the dispersity (Mw / Mn) of the resins E-1 to E-17 are polystyrene-equivalent values measured by the above-mentioned GPC method (carrier: tetrahydrofuran (THF)).
  • the composition ratio (mol% ratio) of the repeating unit in the resin was measured by 13 C-NMR (nuclear magnetic resonance).
  • H-1 Mega Fvck R-41 (manufactured by DIC Corporation)
  • H-2 Mega Fvck F176 (manufactured by DIC Corporation)
  • H-3 Mega Fvck R08 (manufactured by DIC Corporation)
  • X-5 Polyvinyl Methyl Ether Lutonal M40 (manufactured by BASF)
  • X-6 KF-53 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • X-7 salicylic acid
  • FIG. 1 shows a radiation-sensitive resin composition (hereinafter, also referred to as “resist composition”) as shown in Tables 9 to 11 shown in the “Pre-cleaning resist” column shown in Tables 13 to 18. Manufactured with the manufacturing equipment shown. Then, the resist composition was extracted from the manufacturing apparatus as much as possible.
  • resist composition a radiation-sensitive resin composition
  • the solvent A (solvent described in the "solvent A” column shown in Table 12) used in the cleaning method carried out in the "cleaning method” column shown in Tables 13 to 18 is subjected to polytetrafluoro having a pore size of 0.1 ⁇ m. After filtering through an ethylene filter, the filtered solvent A (25 kg) was put into the stirring tank of the manufacturing apparatus. Then, the solvent A was circulated for a predetermined time so that the solvent A circulated through the stirring tank and the circulation pipe shown in FIG. 1, and circulation filtration was performed.
  • solvent A was removed from the manufacturing apparatus.
  • solvent B solvent described in “solvent B” column shown in Table 12
  • solvent C solvent described in the “solvent C” column shown in Table 12
  • the solvent B is used.
  • the manufacturing apparatus was washed with the solvent C according to the same procedure as that for the solvent A, and the solvent C was removed from the manufacturing apparatus.
  • a resist composition as shown in Tables 9 to 11 shown in the "Post-cleaning resist” column shown in Tables 13 to 18 was produced.
  • the produced resist composition was stored in a constant temperature bath at 35 ° C. for 1 month, and a defect evaluation described later was carried out.
  • each resist composition is passed through a polyethylene filter having a pore size of 0.01 ⁇ m, and each component is passed through the solvent in advance. Each was dissolved to prepare a diluted solution. Then, the obtained diluted solution was passed through a filter and put into a stirring tank. The porosity (ratio occupied by the space (void)) in the stirring tank after each component was charged was 15% by volume. In other words, the occupancy of the mixture in the stirring tank was 85% by volume. The dilution concentration of the diluted solution and the type of filter were changed according to the resist composition to be prepared.
  • the dilution concentration of the dilution solution in which the resin is dissolved is 50% by mass, and other materials (photoacid generator).
  • the dilution concentration of the diluted solution in which the acid diffusion control agent, the additive 1 and the additive 2) are dissolved is 20% by mass, and the filter used for the diluted solution in which the resin is dissolved is polyethylene having a pore size of 0.1 ⁇ m.
  • a polyethylene filter having a pore size of 0.05 ⁇ m was used as the filter used for the diluted solution in which other materials (photoacid generator, acid diffusion control agent, additive 1, additive 2) were dissolved.
  • resists 1 to 15 were used for KrF exposure.
  • the dilution concentration was 10% by mass, and a polyethylene filter having a pore size of 0.02 ⁇ m was used as the filter. As will be described later, the resists 16 to 31 were used for ArF exposure.
  • the dilution concentration was 5% by mass, and the filter was a polyethylene filter having a pore size of 0.01 ⁇ m. Was used. As will be described later, resists 32 to 48 were used for EUV exposure.
  • the stirring shafts equipped with the stirring blades arranged in the stirring tank were rotated to stir and mix each component.
  • the temperature of the mixture at the time of stirring and mixing was 22 ° C.
  • the rotation speed of the stirring blade was 300 rpm.
  • the rotation speed of the stirring blade was 60 rpm.
  • the rotation speed of the stirring blade was 60 rpm.
  • the circulation pipe is a pipe in which one end is connected to the bottom of the stirring tank and the other end is connected to the upper part of the stirring tank, and a filter is arranged in the middle of the circulation pipe. Filtration is carried out.
  • the above circulation was carried out until the amount of liquid when the mixture passed through the filter became four times the total amount of liquid in the pipe.
  • the type of the filter was changed according to the resist composition to be prepared.
  • the resist compositions (resists 1 to 15) shown in Table 9 are prepared, they are composed of a filter made of nylon 66 having a pore size of 0.02 ⁇ m and a polyethylene filter having a pore size of 0.01 ⁇ m 2 A step filter was used.
  • a two-stage filter composed of a filter made of nylon 6 having a pore size of 0.01 ⁇ m and a polyethylene filter having a pore size of 0.003 ⁇ m was used. ..
  • a two-stage filter composed of a filter made of nylon 6 having a pore size of 0.005 ⁇ m and a polyethylene filter having a pore size of 0.003 ⁇ m was used. ..
  • the obtained resist composition was filled in a container for evaluation via a discharge pipe and a discharge nozzle as shown in FIG.
  • the gas in the container was replaced with the specific gas filled in the stirring tank in each Example and Comparative Example.
  • TMAH (2.38%) in the “Developer” column represents an aqueous solution having a tetramethylammonium hydroxide content of 2.38% by mass.
  • TMAH (1.00%) in the “Developer” column represents an aqueous solution having a tetramethylammonium hydroxide content of 1.00% by mass.
  • TMAH (3.00%) in the “Developer” column means an aqueous solution having a tetramethylammonium hydroxide content of 3.00% by mass.
  • NBA in the "Developer” column represents butyl acetate.
  • the “content” column of each component represents the content (mass%) of each component with respect to the total solid content in the resist composition.
  • the numerical values in the "solvent” column represent the content mass ratio of each component.
  • the “solid content” column represents the total solid content concentration (mass%) in the resist composition.
  • Examples K-1 to K-36, Comparative Examples K-1 to K-30 KrF exposure experiment> (Pattern formation 1) Using the Tokyo Electron spin coater "ACT-8", "cleaning" in Tables 13 to 14 on a silicon wafer (8 inch diameter) treated with HMDS (hexamethyl disilazane) without providing an antireflection film.
  • the prepared resist compositions (resists 1 to 15) described in the "Post-manufactured resist” column are each applied, baked under the PB conditions corresponding to each resist composition shown in Table 9, and each resist composition shown in Table 9 is applied.
  • a resist film having a thickness corresponding to that of the above was formed.
  • Pattern exposure was performed through a mask having a line-and-space pattern such that the length was 20 ⁇ m.
  • the resist film after exposure is baked under the PEB conditions corresponding to each resist composition shown in Table 9, then developed with a developer corresponding to each resist composition shown in Table 9 for 30 seconds, and spin-dried to create a space.
  • An isolated space pattern having a width of 5 ⁇ m and a pitch width of 20 ⁇ m was obtained.
  • a scanning electron microscope (9380II manufactured by Hitachi High-Technologies Corporation) was used for measuring the pattern size.
  • Defect generation density is 0.3 count / cm 2 or more and less than 0.4 count / cm 2.
  • D Defect generation density is 0.4 count / cm 2 or more and less than 0.5 count / cm 2.
  • E Defect generation density is 0.5 count / cm 2 or more.
  • Examples A-1 to A-37, Comparative Examples A-1 to A-31 ArF exposure experiment> (Pattern formation 2) Using the Tokyo Electron spin coater "ACT-12", apply the organic antireflection film forming composition ARC29SR (manufactured by Brewer Science) on a silicon wafer (12 inch diameter), and bake at 205 ° C. for 60 seconds. , An antireflection film having a film thickness of 98 nm was formed.
  • the prepared resist composition (resist 16 to 31) described in the “resist manufactured after cleaning” column of Tables 15 to 16 is applied onto the obtained antireflection film using the same apparatus, and each resist shown in Table 10 is applied.
  • a resist film having a thickness corresponding to each resist composition shown in Table 10 was formed.
  • the obtained resist film was subjected to a hole using an ArF excimer laser immersion scanner (manufactured by ASML; XT1700i, NA1.20, C-Quad, outer sigma 0.900, inner sigma 0.812, XY deflection). Pattern exposure was performed via a square array of 6% halftone masks with portions of 45 nm and pitches between holes of 90 nm. Ultrapure water was used as the immersion liquid.
  • the resist film after exposure is baked under the PEB conditions corresponding to each resist composition shown in Table 10, then developed with a developer corresponding to each resist composition shown in Table 10 for 30 seconds, and then rinsed with pure water for 30 seconds. did. Then, this was spin-dried to obtain a hole pattern having a pore diameter of 45 nm.
  • a scanning electron microscope (9380II manufactured by Hitachi High-Technologies Corporation) was used for measuring the pattern size.
  • Defect generation density is 0.3 count / cm 2 or more and less than 0.4 count / cm 2.
  • D Defect generation density is 0.4 count / cm 2 or more and less than 0.5 count / cm 2.
  • E Defect generation density is 0.5 count / cm 2 or more.
  • Examples E-1 to E-54, Comparative Examples E-1 to E-48 EUV exposure experiment> (Pattern formation 3) Using the Tokyo Electron spin coater "ACT-12", apply the organic antireflection film forming composition AL412 (manufactured by Brewer Science) on a silicon wafer (12 inch diameter), and bake at 205 ° C. for 60 seconds. , An antireflection film having a film thickness of 200 nm was formed. On the obtained antireflection film, the resist composition prepared according to the "resist produced after cleaning" column of Tables 17 to 18 (Table 17, Table 18 (1) and Table 18 (2)) using the same apparatus.
  • resist 32 to 64 was applied and baked under the PB conditions corresponding to each resist composition shown in Table 11 to form a resist film having a thickness corresponding to each resist composition shown in Table 11.
  • the hole portion of the obtained resist film was 28 nm using an EUV exposure apparatus (Micro Exposure Tool, NA0.3, Quadrupole, outer sigma 0.68, inner sigma 0.36, manufactured by Exitech). Pattern exposure was performed through a square mask with a pitch between holes of 55 nm.
  • the resist film after exposure is baked under the PEB conditions corresponding to each resist composition shown in Table 11, then developed with a developer corresponding to each resist composition shown in Table 11 for 30 seconds, and then rinsed with pure water for 30 seconds. did. Then, this was spin-dried to obtain a hole pattern having a pore size of 28 nm.
  • a scanning electron microscope (9380II manufactured by Hitachi High-Technologies Corporation) was used for measuring the pattern size.
  • Defect generation density is 0.3 count / cm 2 or more and less than 0.4 count / cm 2.
  • D Defect generation density is 0.4 count / cm 2 or more and less than 0.5 count / cm 2.
  • E Defect generation density is 0.5 count / cm 2 or more.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

長期間保管した後においても、形成されるパターンの欠陥の発生が抑制される感放射線性樹脂組成物を製造する、感放射線性樹脂組成物の製造方法、パターン形成方法、及び、電子デバイスの製造方法の提供。感放射線性樹脂組成物の製造方法は、感放射線性樹脂組成物の製造装置を用いて感放射線性樹脂組成物を製造し、感放射線性樹脂組成物の製造装置を、SP値が18.5MPa1/2以上25.5MPa1/2以下の溶剤Aを用いて洗浄する工程1と、工程1の後、感放射線性樹脂組成物の製造装置を、工程1で使用した溶剤AよりもSP値が高く、SP値が30.0MPa1/2以下の溶剤Bを用いて洗浄する工程2と、工程2の後、感放射線性樹脂組成物の製造装置で感放射線性樹脂組成物を製造する工程3と、を有する。

Description

感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法
 本発明は、感放射線性樹脂組成物の製造方法、パターン形成方法、及び、電子デバイスの製造方法に関する。
 IC(Integrated Circuit、集積回路)及びLSI(Large Scale Integrated circuit、大規模集積回路)等の半導体デバイスの製造プロセスにおいては、感放射線性樹脂組成物を用いたリソグラフィーによる微細加工が行われている。
 リソグラフィーの方法としては、感放射線性樹脂組成物によりレジスト膜を形成した後、得られた膜を露光して、その後、現像する方法が挙げられる。
 特許文献1においては、感放射線性樹脂組成物を製造する際に用いられる製造装置を所定の溶剤で洗浄することが開示されている。
特開2004-053887号公報
 一方で、感放射線性樹脂組成物を用いたパターン(レジストパターン)の形成においては、形成されるパターンにおいて欠陥が少ないことが望ましい。なお、本明細書において、欠陥とは、現像処理を実施して得られるパターンにおいて、凹み、又は、欠けがある、及び、所定の大きさのパターンとなっていないこと等を意味する。
 感放射線性樹脂組成物は所定期間保管した後に用いられる場合が多い。
 そこで、本発明者らは、特許文献1を参考にして所定の溶剤で洗浄した製造装置を用いて感放射線性樹脂組成物を製造して、その特性について検討を行ったところ、長期間保管した後の感放射線性樹脂組成物を用いて形成されたパターンにおいて、欠陥の発生が観察され、更なる改良の余地があることを知見した。
 本発明は、長期間保管した後においても、形成されるパターンの欠陥の発生が抑制された、感放射線性樹脂組成物の製造方法を提供することを課題とする。
 また、本発明は、パターン形成方法、及び、電子デバイスの製造方法を提供することも課題とする。
 本発明者らは、以下の構成により上記課題を解決できることを見出した。
(1) 感放射線性樹脂組成物の製造装置を用いて感放射線性樹脂組成物を製造する、感放射線性樹脂組成物の製造方法であって、
 感放射線性樹脂組成物の製造装置を、SP値が18.5MPa1/2以上25.5MPa1/2以下の溶剤Aを用いて洗浄する工程1と、
 工程1の後、感放射線性樹脂組成物の製造装置を、工程1で使用した溶剤AよりもSP値が高く、SP値が30.0MPa1/2以下の溶剤Bを用いて洗浄する工程2と、
 工程2の後、感放射線性樹脂組成物の製造装置で感放射線性樹脂組成物を製造する工程3と、を有する、感放射線性樹脂組成物の製造方法。
(2) 溶剤AのSP値が18.5MPa1/2以上23.0MPa1/2以下である、(1)に記載の感放射線性樹脂組成物の製造方法。
(3) 溶剤A及び溶剤Bの一方又は両方が、ケトン系溶剤、又は、グリコールエーテル系溶剤を含む、(1)又は(2)に記載の感放射線性樹脂組成物の製造方法。
(4) 工程1の前に、溶剤Aをフィルターでろ過する工程Xを有する、(1)~(3)のいずれかに記載の感放射線性樹脂組成物の製造方法。
(5) 工程2の前に、溶剤Bをフィルターでろ過する工程Yを有する、(1)~(4)のいずれかに記載の感放射線性樹脂組成物の製造方法。
(6) フィルターがフッ素樹脂を含む、(4)又は(5)に記載の感放射線性樹脂組成物の製造方法。
(7) 工程2と工程3との間に、感放射線性樹脂組成物の製造装置を、溶剤Cを用いて洗浄する工程4を更に有する、(1)~(6)のいずれかに記載の感放射線性樹脂組成物の製造方法。
(8) 溶剤CのSP値が14.5MPa1/2以上18.5MPa1/2未満である、(7)に記載の感放射線性樹脂組成物の製造方法。
(9) 溶剤Cが、エステル系溶剤又は脂肪族炭化水素系溶剤を含む、(7)又は(8)に記載の感放射線性樹脂組成物の製造方法。
(10) 工程4の前に、溶剤Cをフィルターでろ過する工程Zを有する、(7)~(9)のいずれかに記載の感放射線性樹脂組成物の製造方法。
(11) フィルターがフッ素樹脂を含む、(10)に記載の感放射線性樹脂組成物の製造方法。
(12) 感放射線性樹脂組成物が、樹脂を含み、
 樹脂は、ケイ素原子を有する繰り返し単位を有さず、
 樹脂は、(メタ)アクリル基を有するモノマー由来の繰り返し単位を有する、(1)~(11)のいずれかに記載の感放射線性樹脂組成物の製造方法。
(13) (1)~(12)のいずれかに記載の製造方法より製造される感放射線性樹脂組成物を用いて、基板上にレジスト膜を形成する工程と、
 レジスト膜を露光する工程と、
 現像液を用いて、露光されたレジスト膜を現像し、パターンを形成する工程と、を有する、パターン形成方法。
(14) (13)に記載のパターン形成方法を含む、電子デバイスの製造方法。
 本発明によれば、長期間保管した後においても、形成されるパターンの欠陥の発生が抑制された、感放射線性樹脂組成物の製造方法を提供できる。
 また、本発明によれば、パターン形成方法、及び、電子デバイスの製造方法を提供できる。
本発明の感放射線性樹脂組成物の製造方法で用いられる製造装置の一実施形態の概略図を表す。
 以下に、本発明を実施するための形態の一例を説明する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書における基(原子団)の表記において、置換又は無置換を記していない表記は、置換基を有していない基と共に置換基を有する基をも含む。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも含む。
 本明細書において表記される二価の基の結合方向は、特に断らない限り制限されない。例えば、「L-M-N」なる一般式で表される化合物中の、Mが-OCO-C(CN)=CH-である場合、L側に結合している位置を*1、N側に結合している位置を*2とすると、Mは、*1-OCO-C(CN)=CH-*2であってもよく、*1-CH=C(CN)-COO-*2であってもよい。
 本明細書における、「(メタ)アクリル」とは、アクリル及びメタクリルを含む総称であり、「アクリル及びメタクリルの少なくとも1種」を意味する。同様に「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸を含む総称であり、「アクリル酸及びメタクリル酸の少なくとも1種」を意味する。
 本明細書において、樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(分子量分布とも記載する)(Mw/Mn)は、GPC(Gel Permeation Chromatography)装置(東ソー社製HLC-8120GPC)によるGPC測定(溶剤:テトラヒドロフラン、流量(サンプル注入量):10μL、カラム:東ソー社製TSK gel Multipore HXL-M、カラム温度:40℃、流速:1.0mL/分、検出器:示差屈折率検出器(Refractive Index Detector))によるポリスチレン換算値として定義される。
 本明細書における「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV:Extreme Ultra Violet)、X線、及び電子線(EB:Electron Beam)等を意味する。本明細書における「光」とは、放射線を意味する。
 本明細書において酸解離定数(pKa)とは、水溶液中でのpKaを表し、具体的には、下記ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を、計算により求められる値である。本明細書中に記載したpKaの値は、全て、このソフトウェアパッケージを用いて計算により求めた値を示す。
 ソフトウェアパッケージ1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs)。
 一方で、pKaは、分子軌道計算法によっても求められる。この具体的な方法としては、熱力学サイクルに基づいて、水溶液中におけるH解離自由エネルギーを計算することで算出する手法が挙げられる。H解離自由エネルギーの計算方法については、例えばDFT(密度汎関数法)により計算することができるが、他にも様々な手法が文献等で報告されており、これに制限されるものではない。なお、DFTを実施できるソフトウェアは複数存在するが、例えば、Gaussian16が挙げられる。
 本明細書中のpKaとは、上述した通り、ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を計算により求められる値を指すが、この手法によりpKaが算出できない場合には、DFT(密度汎関数法)に基づいてGaussian16により得られる値を採用するものとする。
 また、本明細書中のpKaは、上述した通り「水溶液中でのpKa」を指すが、水溶液中でのpKaが算出できない場合には、「ジメチルスルホキシド(DMSO)溶液中でのpKa」を採用するものとする。
 本発明の感放射線性樹脂組成物(以下、単に「本発明の組成物」、「組成物」又は「レジスト組成物」とも記載する。)の製造方法の特徴点の一つとしては、所定の溶媒で製造装置を洗浄している点が挙げられる。
 本発明者らは、形成されるパターンの欠陥が発生する原因として、製造装置に付着していた感放射線性樹脂組成物に由来する残渣物が影響していることを見出している。通常、感放射線性樹脂組成物を製造する際には、所定の製造装置を繰り返し使用する。そのため、製造装置を用いて感放射線性樹脂組成物を製造する際には、製造装置に付着している感放射線性樹脂組成物の残渣物が新たに製造される感放射線性樹脂組成物に混入しないように、することが望ましい。本発明では、まず、感放射線性樹脂組成物の主成分である樹脂(例えば、酸の作用により極性が増大する樹脂)及び光酸発生剤と比較的相溶しやすい所定のSP値の溶剤Aを用いて製造装置を洗浄して、付着物の大部分を除去する。次に、溶剤AよりもSP値の高い溶剤Bを用いて、光酸発生剤等の高極性の成分を除去する。光酸発生剤等の高極性の成分は一旦凝集してしまうと、溶剤に溶解し難く、欠陥の原因となりやすい。そのため、溶剤Aの後に、溶剤Bを用いた洗浄を実施する。仮に、溶剤Aの後に溶剤AよりもSP値の低い溶剤で洗浄した場合、光酸発生剤等の高極性の成分が凝集してしまい、その後の手順で除去し難い不純物となり、形成されるパターンの欠陥が発生しやすくなる。
 本発明の製造方法は、感放射線性樹脂組成物の製造装置を用いて感放射線性樹脂組成物を製造する方法であり、以下の工程1~工程3をこの順に有する。
工程1:感放射線性樹脂組成物の製造装置を、SP値(溶解度パラメータ)が18.5~25.5MPa1/2の溶剤Aを用いて洗浄する工程
工程2:工程1の後、感放射線性樹脂組成物の製造装置を、工程1で使用した溶剤AよりもSP値が高く、SP値が30MPa1/2以下の溶剤Bを用いて洗浄する工程
工程3:工程2の後、感放射線性樹脂組成物の製造装置で感放射線性樹脂組成物を製造する工程
 以下、各工程の手順について詳述する。
 なお、本発明の製造方法は、クリーンルーム内で実施することが好ましい。クリーン度としては、国際統一規格ISO 14644-1におけるクラス6以下が好ましく、クラス5以下がより好ましく、クラス4以下が更に好ましい。
 また、上記工程1~工程3は、感放射線性樹脂組成物の製造に用いられた製造装置に対して実施することが好ましい。言い換えれば、工程1を実施する前に、感放射線性樹脂組成物の製造装置を用いて、感放射線性樹脂組成物を製造する工程0を実施した後、工程1を実施することが好ましい。なお、上記感放射線性樹脂組成物を製造する工程の手順としては、後述する工程3と同様の手順が挙げられる。
 なお、工程0にて製造される感放射線性樹脂組成物の固形分濃度が10質量%以上の場合、本発明の効果が顕著に発揮される。
 更に、上記工程1~工程3は、2回以上繰り返して実施してもよい。
<工程1>
 工程1は、感放射線性樹脂組成物の製造装置を、SP値が18.5~25.5MPa1/2の溶剤Aを用いて洗浄する工程である。上述したように、本工程を実施することにより、製造装置に付着している感放射線性樹脂組成物由来の残渣物(例えば、樹脂由来の残渣物、及び、光酸発生剤由来の残渣物)の大部分を除去することができる。
 図1において、本発明の製造方法で用いられる製造装置の一実施形態の概略図を表す。
 製造装置100は、撹拌槽10と、撹拌槽10内に回転可能に取り付けられた撹拌軸12と、撹拌軸12に取り付けられた撹拌翼14と、撹拌槽10の底部と一端が連結し、他端が撹拌槽10の上部に連結している循環配管16と、循環配管16の途中に配置されたフィルター18と、循環配管16と連結した排出配管20と、排出配管20の端部に配置された排出ノズル22とを有する。
 装置内の接液部(液と接する個所)は、フッ素樹脂等でライニング、又は、コーティングされていることが好ましい。
 撹拌槽10としては、感放射線性樹脂組成物に含まれる、酸の作用により極性が増大する樹脂、光酸発生剤、及び、溶剤等を収容できる撹拌槽であれば特に制限されず、公知の撹拌槽が挙げられる。
 撹拌槽10の底部の形状は特に制限されず、皿形鏡板形状、半楕円鏡板形状、平鏡板形状、及び、円錐鏡板形状が挙げられ、皿型鏡板形状、又は、半楕円鏡板形状が好ましい。
 撹拌槽10内には、撹拌効率を高めるために、邪魔板を設置してもよい。
 邪魔板の枚数は特に制限されず、2~8枚が好ましい。
 攪拌層10の水平方向における邪魔板の幅は特に制限されず、撹拌槽の径の1/8~1/2が好ましい。
 撹拌槽の高さ方向における邪魔板の長さは特に制限されないが、撹拌槽の底部から投入される成分の液面までの高さの1/2以上が好ましく、2/3以上がより好ましく、3/4以上が更に好ましい。
 撹拌軸12には、図示しない駆動源(例えばモータ等)が取り付けられていることが好ましい。駆動源により撹拌軸12が回転することで、撹拌翼14が回転し、撹拌槽10内に投入された各成分が撹拌される。
 撹拌翼14の形状は特に制限されないが、例えば、パドル翼、プロペラ翼、及び、タービン翼が挙げられる。
 なお、撹拌槽10は、各種材料を撹拌槽内に投入するための材料投入口を有していてもよい。
 また、撹拌槽10は、その内部に気体を導入するための気体導入口を有していてもよい。
 また、撹拌槽10は、その内部の気体を撹拌槽外に排出するための気体排出口を有していてもよい。
 感放射線性樹脂組成物の製造装置の構成は図1には限定されず、少なくとも撹拌槽を有していればよい。
 また、撹拌槽内には、槽上部に洗浄ノズル(例えば、スプレーボール)が配置されていてもよい。
 スプレーボールとしては、後述する溶剤Aが流れると、スプレーボールが回転し、撹拌槽内を均一に洗浄できるタイプのスプレーボールが好ましい。
 本工程で使用される溶剤Aは、SP値が18.5~25.5MPa1/2の溶剤である。つまり、溶剤Aは、上記SP値の範囲のいずれかSP値の溶剤である。なかでも、パターンの欠陥発生がより抑制される点(以下、単に「本発明の効果がより優れる点」ともいう。)で、溶剤AのSP値は、18.5~23.0MPa1/2が好ましい。
 本発明のSP値は、「Properties of Polymers、第二番、1976出版」に記載のFedors法を用いて計算されたものである。用いた計算式及び各置換基のパラメーターを以下の表1に示す。
 SP値(Fedors法)=[(各置換基の凝集エネルギーの和)/(各置換基の体積の和)]0.5
Figure JPOXMLDOC01-appb-T000001
 溶剤Aとしては、上記SP値の範囲の条件を満たしていれば特に制限されないが、例えば、アミド系溶剤、アルコール系溶剤、エステル系溶剤、グリコールエーテル系溶剤(置換基を有するグリコールエーテル系溶剤を含む)、ケトン系溶剤、脂環式エーテル系溶剤、脂肪族炭化水素系溶剤、芳香族エーテル系溶剤、及び、芳香族炭化水素系溶剤が挙げられる。
 具体例を以下の表2及び3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 溶剤Aとしては1種のみを用いてもよい、2種以上を併用してもよい。
 工程1では、溶剤Aを用いて製造装置が洗浄される。製造装置を洗浄する際には、感放射線性樹脂組成物を製造する際に感放射線性樹脂組成物が接液する製造装置の接液部を少なくとも溶剤Aによって洗浄することが好ましい。なかでも、少なくとも撹拌槽の接液部を溶剤Aによって洗浄することが好ましい。
 製造装置を洗浄する際には、溶剤Aを用いて複数回(好ましくは3回以上、より好ましくは10回以上)にわたって製造装置を洗浄してもよい。
 また、製造装置を洗浄する際には、溶剤Aを循環させながら洗浄してもよい。つまり、いわゆる循環洗浄を行ってもよい。
 循環洗浄を実施する際、溶剤Aが通液する途中にフィルターを配置してもよい。フィルターを配置することにより、洗浄中に不溶物を除去することができる。
 なお、上記で使用されるフィルターとしては、後述する工程Xで使用されるフィルターが挙げられる。
 使用時における溶剤Aの液温は、20℃以上が好ましい。溶剤Aの液温の上限は、溶剤Aの引火点及び設備の耐熱性等の安全上の点から適宜選択される。
 例えば、プロピレングリコールモノメチルエーテルアセテートの引火点は42℃であるため、上記プロピレングリコールモノメチルエーテルアセテートの使用時の液温は、20~35℃が好ましく、25~35℃がより好ましく、30~35℃が更に好ましい。
 液温の制御方法は特に制限されず、あらかじめ加温しておいた溶剤を設備に投入する手法、及び、調合設備に備え付けた温度調節機器を使用する手法が挙げられる。
 溶剤Aは、使用前にフィルターでろ過されることが好ましい。つまり、本発明の製造方法は、工程1の前に、溶剤Aをフィルターでろ過する工程Xを有することが好ましい。
 使用されるフィルターの種類は特に制限されず、公知のフィルターが用いられる。
 フィルターの孔径(ポアサイズ)としては、0.20μm以下が好ましく、0.10μm以下がより好ましく、0.05μm以下がより好ましい。
 工程Xで用いられるフィルターは、フッ素樹脂を含むことが好ましい。
 フィルターの材質としては、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、ポリビニリデンフルオライド、及び、エチレンテトラフルオロエチレンコポリマー等のフッ素樹脂、ポリプロピレン、及び、ポリエチレン等のポリオレフィン樹脂、ナイロン6及びナイロン66等のポリアミド樹脂、並びに、ポリイミド樹脂(ポリイミドフィルターとしては、例えば、特開2017-064711号公報、特開2017-064712号公報に記載されるポリイミドフィルターが挙げられる。)が好ましい。
 フィルターは、有機溶剤で予め洗浄したものを用いてもよい。
 フィルターでろ過する際には、複数のフィルターを直列又は並列に接続して用いてもよい。複数のフィルターを用いる場合は、孔径及び/又は材質が異なるフィルターを組み合わせて使用してもよい。また、フィルターでろ過する際には、循環ろ過を実施してもよい。循環ろ過の方法としては、例えば、特開2002-062667号公報に開示されるような手法が好ましい。
 フィルターとしては、特開2016-201426号公報に開示されるような溶出物が低減されたものが好ましい。
 なお、上記フィルターろ過の後、更に、吸着材による不純物の除去を行ってもよい。
<工程2>
 工程2は、工程1の後、感放射線性樹脂組成物の製造装置を、工程1で使用した溶剤AよりもSP値が高く、SP値が30.0MPa1/2以下の溶剤Bを用いて洗浄する工程である。本工程を実施することにより、光酸発生剤等の高極性の成分を洗浄除去することができる。
 溶剤Bは、工程1で使用した溶剤AよりもSP値が高い。例えば、溶剤Aとしてアセトン(SP値:18.6MPa1/2)を用いた場合、シクロヘキサノン(SP値:20.0MPa1/2)は溶剤Bに該当する。つまり、溶剤Bは、工程1で使用される溶剤AよりもSP値が高い溶剤であればよく、溶剤BのSP値の下限としては18.5MPa1/2超であることが好ましい。
 溶剤BのSP値の上限は30.0MPa1/2以下である。
 溶剤BのSP値は、溶剤Aよりも高く、30.0MPa1/2以下であればよいが、本発明の効果がより優れる点で、20.0~30.0Pa1/2が好ましい。
 溶剤Bとしては、上記条件を満たしていれば特に制限されないが、例えば、アミド系溶剤、アルコール系溶剤、エステル系溶剤、グリコールエーテル系溶剤(置換基を有するグリコールエーテル系溶剤を含む)、ケトン系溶剤、脂環式エーテル系溶剤、脂肪族炭化水素系溶剤、芳香族エーテル系溶剤、及び、芳香族炭化水素系溶剤が挙げられる。
 溶剤Bの具体例としては、溶剤Aで例示した具体例が挙げられる。また、溶剤Aで例示した具体例以外にも、表4に示す溶剤が挙げられる。
Figure JPOXMLDOC01-appb-T000004
 溶剤Bとしては1種のみを用いてもよい、2種以上を併用してもよい。
 溶剤Aと溶剤Bとの組み合わせは特に制限されないが、本発明の効果がより優れる点で、溶剤A及び溶剤Bの一方又は両方が、ケトン系溶剤、又は、グリコールエーテル系溶剤を含むことが好ましい。
 工程2では、溶剤Bを用いて製造装置が洗浄される。製造装置を洗浄する際には、感放射線性樹脂組成物を製造する際に感放射線性樹脂組成物が接液する製造装置の接液部を少なくとも溶剤Bによって洗浄することが好ましい。なかでも、少なくとも撹拌槽の接液部を溶剤Bによって洗浄することが好ましい。
 製造装置を洗浄する際には、溶剤Bを用いて複数回(好ましくは3回以上、より好ましくは10回以上)にわたって製造装置を洗浄してもよい。
 また、製造装置を洗浄する際には、溶剤Bを循環させながら洗浄してもよい。つまり、いわゆる循環洗浄を行ってもよい。
 循環洗浄を実施する際、溶剤Bが通液する途中にフィルターを配置してもよい。フィルターを配置することにより、洗浄中に不溶物を除去することができる。
 なお、上記で使用されるフィルターとしては、上述した工程Xで使用されるフィルターが挙げられる。
 使用時における溶剤Bの液温は、20℃以上が好ましい。溶剤Bの液温の上限は、溶剤Bの引火点及び設備の耐熱性等の安全上の点から適宜選択される。
 溶剤Bは、使用前にフィルターでろ過されることが好ましい。つまり、本発明の製造方法は、工程2の前に、溶剤Bをフィルターでろ過する工程Yを有することが好ましい。
 使用されるフィルターとしては、工程Xで説明したフィルターが挙げられる。
 工程Yで用いられるフィルターは、フッ素樹脂を含むことが好ましい。
 工程Yの手順としては、工程Xで説明した手順が挙げられる。
<工程3>
 工程3は、工程2の後、感放射線性樹脂組成物の製造装置で感放射線性樹脂組成物を製造する工程である。
 工程3の手順は特に制限されないが、製造装置に感放射線性樹脂組成物を構成する各種成分を加えて、これらを混合して、感放射線性樹脂組成物を製造する方法が挙げられる。
 より具体的には、製造装置が有する撹拌槽に添加される感放射線性樹脂組成物を構成する成分の種類は特に制限されないが、例えば、樹脂(好ましくは、酸の作用により極性が増大する樹脂)、光酸発生剤、及び、溶剤が挙げられる。これらの成分については、後段で詳述する。
 撹拌槽に上記成分を投入する手順は特に制限されない。
 例えば、撹拌槽の材料投入口から、各種成分を投入する方法が挙げられる。各種成分を投入する際には、成分を順次投入してもよいし、一括して投入してもよい。また、1種の成分を投入する際、複数回に分けて投入してもよい。
 また、撹拌槽内に各成分を順次投入する場合、投入順番は特に制限されない。
 また、溶剤以外の成分を撹拌槽内に投入する際には、成分を溶剤中に溶解させた溶液として撹拌槽内に投入してもよい。その際、溶液中の不溶物を除去するために、上記溶液をフィルターでろ過した後、撹拌槽内に投入してもよい。
 また、溶剤を撹拌槽内に投入する際には、溶剤をフィルターろ過した後、撹拌槽内に投入してもよい。上記で使用されるフィルターとしては、上述した工程Xで使用されるフィルターが挙げられる。
 なお、各種成分を撹拌槽内に投入する際には、送液ポンプを利用してもよい。
 上記成分を溶解させた溶液中の成分濃度は特に制限されないが、溶液全質量に対して、10~50質量%が好ましい。
 通常、撹拌槽に、感放射線性樹脂組成物を構成する成分(例えば、酸の作用により極性が増大する樹脂、光酸発生剤、及び、溶剤)を投入する際には、撹拌槽内に空間が生じるように投入することが好ましい。より具体的には、図1に示すように、撹拌槽10内において、感放射線性樹脂組成物を構成する成分の混合物Mによって占有されていない空間S(空隙S)が生じるように、撹拌槽内に各成分を投入することが好ましい。
 撹拌槽内における、感放射線性樹脂組成物を構成する成分の混合物の占有率は特に制限されないが、50~95体積%が好ましく、80~90体積%がより好ましい。
 なお、上記混合物の占有率は、以下の式(1)によって求められる。
 式(1):占有率={(撹拌槽内の混合物の体積/撹拌槽の容器体積)}×100
 また、撹拌槽内における空隙率(空間(空隙)が占める割合)は、5~50体積%が好ましく、10~20体積%がより好ましい。
 上記空隙率は、以下の式(2)によって求められる。
 式(2):空隙率={1-(撹拌槽内の混合物の体積/撹拌槽の容器体積)}×100
 工程3においては、感放射線性樹脂組成物を構成する成分の撹拌混合を実施することが好ましい。
 撹拌混合の方法は特に制限されないが、上述した撹拌翼によって実施することが好ましい。なお、撹拌混合を行う際には、液が十分に撹拌されるよう、撹拌翼の形状、大きさ、設置箇所、及び、撹拌回転数等を考慮し、撹拌を行うことが好ましい。
 撹拌混合する感放射線性樹脂組成物を構成する成分を含む混合物の温度は特に制限されないが、15~32℃が好ましく、20~24℃がより好ましい。
 また、撹拌混合する際には混合物の温度は一定に保たれていることが好ましく、設定温度から±10℃以内が好ましく、±5℃以内がより好ましく、±1℃以内が更に好ましい。
 撹拌混合時間は特に制限されないが、得られる感放射線性樹脂組成物の均一性、及び、生産性のバランスの点から、1~48時間が好ましく、15~24時間がより好ましい。
 撹拌混合の際の撹拌翼の回転速度は特に制限されないが、本発明の効果がより優れる点で、20~500rpmが好ましく、40~350rpmがより好ましく、50~300rpmが更に好ましい。
 なお、撹拌混合を停止する際には、各種成分が溶剤に溶解していること確認することが好ましい。
 撹拌混合時には、混合物に超音波をかけてもよい。
 なお、撹拌槽10にて製造された感放射線性樹脂組成物は、図1に示すように、排出配管20に送液して、排出配管20の端部に配置された排出ノズル22から排出して、所定の容器に収容してもよい。
 感放射線性樹脂組成物を容器へ充填する際の充填速度は、例えば容量0.75L以上5L未満の容器の場合、0.3~3.0L/minが好ましく、0.4~2.0L/minがより好ましく、0.5~1.5L/minが更に好ましい。
 排出ノズルは、充填効率を上げるために、並列に複数並べ、同時に充填してもよい。
 容器としては、例えば、ブルーム処理されたガラス容器、及び、接液部がフッ素樹脂となるよう処理された容器が挙げられる。
 容器内に感放射線性樹脂組成物を収容した場合、容器内の空間部(感放射線性樹脂組成物が占有していない容器内の領域)を所定のガスで置換してもよい。ガスとしては感放射線性樹脂組成物に対して不活性又は非反応性のガスが好ましく、例えば、窒素、並びに、ヘリウム及びアルゴン等の希ガスが挙げられる。
 なお、容器中に感放射線性樹脂組成物を収容する前に、感放射線性樹脂組成物中の溶存ガスを除去するための脱気処理を実施してもよい。脱気方法としては、超音波処理、及び、脱泡処理が挙げられる。
 本発明の製造方法にて製造された感放射線性樹脂組成物中における水分の含有量は特に制限されないが、本発明の効果がより優れる点で、0.10質量%以下が好ましく、0.06質量%以下がより好ましく、0.04質量%以下が更に好ましい。上記水分の含有量の下限は特に制限されないが、0.01質量%以上の場合が多い。
 感放射線性樹脂組成物中における水分の含有量の測定方法としては、カールフィッシャー水分測定装置を用いる方法が挙げられる。
<他の工程>
 本発明の製造方法は、上述した工程1~工程3以外の他の工程を有していてもよい。
 なかでも、本発明の効果がより優れる点で、本発明の製造方法は、工程2と工程3との間に、感放射線性樹脂組成物の製造装置を、溶剤Cを用いて洗浄する工程4を更に有することが好ましい。
 溶剤CのSP値は特に制限されないが、本発明の効果がより優れる点で、14.5MPa1/2以上18.5MPa1/2未満が好ましい。溶剤CのSP値が上記範囲である場合、主に、製造装置に付着している樹脂由来の不純物を効率的に除去できる。
 溶剤Cとしては特に制限されないが、例えば、アミド系溶剤、アルコール系溶剤、エステル系溶剤、グリコールエーテル系溶剤(置換基を有するグリコールエーテル系溶剤を含む)、ケトン系溶剤、脂環式エーテル系溶剤、脂肪族炭化水素系溶剤、芳香族エーテル系溶剤、及び、芳香族炭化水素系溶剤が挙げられる。なかでも、溶剤Cとしては、エステル系溶剤又は脂肪族炭化水素系溶剤が好ましい。
 なかでも、上述した所定のSP値の範囲である溶剤Cとしては、以下の表5及び6に記載の溶剤が挙げられる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 溶剤Cとしては、上記表2~6に記載の溶剤以外に、2,2,4-トリメチルペンタン、及び、2-メチルペンタン等も挙げられる。
 工程4では、溶剤Cを用いて製造装置が洗浄される。製造装置を洗浄する際には、感放射線性樹脂組成物を製造する際に感放射線性樹脂組成物が接液する製造装置の接液部を少なくとも溶剤Cによって洗浄することが好ましい。なかでも、少なくとも撹拌槽の接液部を溶剤Cによって洗浄することが好ましい。
 製造装置を洗浄する際には、溶剤Cを用いて複数回(好ましくは3回以上、より好ましくは10回以上)にわたって製造装置を洗浄してもよい。
 また、製造装置を洗浄する際には、溶剤Cを循環させながら洗浄してもよい。つまり、いわゆる循環洗浄を行ってもよい。
 循環洗浄を実施する際、溶剤Cが通液する途中にフィルターを配置してもよい。フィルターを配置することにより、洗浄中に不溶物を除去することができる。
 なお、上記で使用されるフィルターとしては、上述した工程Xで使用されるフィルターが挙げられる。
 使用時における溶剤Cの液温は、20℃以上が好ましい。溶剤Cの液温の上限は、溶剤Cの引火点及び設備の耐熱性等の安全上の点から適宜選択される。
 溶剤Cは、使用前にフィルターでろ過されることが好ましい。つまり、本発明の製造方法は、工程4の前に、溶剤Cをフィルターでろ過する工程Zを有することが好ましい。
 使用されるフィルターとしては、工程Xで説明したフィルターが挙げられる。
 工程Zで用いられるフィルターは、フッ素樹脂を含むことが好ましい。
 なお、溶剤Cが、製造される感放射線性樹脂組成物に含まれる溶剤とは異なる場合、溶剤Cで製造装置を洗浄した後、製造される感放射線性樹脂組成物に含まれる予定の溶剤を用いて再度製造装置を洗浄することが好ましい。
 製造装置の洗浄に関しては、上述した工程1、工程2、及び工程4以外にも、水を用いた洗浄を実施してもよい。水での洗浄方法としては、ナノバブル又はマイクロバブルを用いた洗浄方法が挙げられる。
 なお、各洗浄工程(工程1、工程2、及び工程4)においては、洗浄に使用した後の溶剤を回収して、不純物がないことを確認してもよい。
 確認手法は特に制限されず、特定したい不純物によって手法を選択する。
 例えば、GC(ガスクロマトグラフィー)による残存溶剤の評価、UV(紫外線)照射評価による低分子成分の残存物量の評価、GPC(ゲル浸透クロマトグラフィー)によるポリマー残存物量の評価、液中パーティクルカウンターによる含有パーティクル数の評価、ICP-MS(誘導結合プラズマ質量分析計)によるメタル含有量の評価、及び、洗浄溶剤をウェハ上に塗布して欠陥検査を行う評価が挙げられる。
 また、工程3を実施した後、製造された感放射線性樹脂組成物に対してろ過処理を施してもよい。
 例えば、図1に示す製造装置100においては、撹拌槽10内に製造された感放射線性樹脂組成物を循環配管16に送液し、フィルター18でろ過する方法が挙げられる。なお、撹拌槽10から循環配管16に感放射線性樹脂組成物を送液する際には、図示しないバルブを開放して、感放射線性樹脂組成物を循環配管16内に送液することが好ましい。
 上記循環ろ過は、複数回連続して実施してもよい。つまり、感放射線性樹脂組成物を連続して循環配管に送液して、フィルター18を複数回通液させてもよい。
 撹拌槽10から循環配管16に感放射線性樹脂組成物を送液する方法は特に制限されず、重力を利用した送液方法、感放射線性樹脂組成物の液面側から圧力を加える方法、循環配管16側を負圧にする方法、及び、これらを2つ以上組み合わせた方法が挙げられる。
 感放射線性樹脂組成物の液面側から圧力を加える方法の場合、送液で生じる流液圧を利用する方法、及び、ガスを加圧する方法が挙げられる。
 流液圧は、例えば、ポンプ(送液ポンプ、及び、循環ポンプ等)等により発生させることが好ましい。ポンプとしては、ロータリーポンプ、ダイヤフラムポンプ、定量ポンプ、ケミカルポンプ、プランジャーポンプ、ベローズポンプ、ギアポンプ、真空ポンプ、エアーポンプ、及び、液体ポンプの使用が挙げられ、そのほかにも適宜、市販のポンプが挙げられる。ポンプが配置される位置は特に制限されない。
 加圧に用いるガスとしては、感放射線性樹脂組成物に対して不活性又は非反応性のガスが好ましく、具体的には、窒素、並びに、ヘリウム及びアルゴン等の希ガス等が挙げられる。なお、循環配管16側は減圧せず、大気圧であることが好ましい。
 循環配管16側を負圧にする方法としては、ポンプによる減圧が好ましく、真空にまで減圧することがより好ましい。
 フィルター18としては、工程Xで説明したフィルターろ過の際に使用されるフィルターが挙げられる。
 フィルター18にかかる差圧(上流側と下流側との圧力差)は200kPa以下が好ましく、100kPa以下がより好ましい。
 また、フィルター18でろ過する際には、ろ過中における差圧の変化が少ないことが好ましい。フィルターに通液を開始した時点から、ろ過される溶液の90質量%の通液が終了する時点までの、ろ過前後の差圧を、通液を開始した時点のろ過前後の差圧の±50kPa以内に維持することが好ましく、±20kPa以内に維持することがより好ましい。
 フィルター18でろ過する際には、線速度は3~150L/(hr・m)の範囲が好ましく、5~120L/(hr・m)がより好ましく、10~100L/(hr・m)が更に好ましい。
 なお、図1に記載の装置10には、フィルター18の下流側にろ過された感放射線性樹脂組成物が貯留されるバッファタンクが配置されていてもよい。
<パターン形成方法>
 上述した製造方法によって製造された感放射線性樹脂組成物は、パターン形成に用いられる。
 より具体的には、本発明の組成物を用いたパターン形成方法の手順は特に制限されないが、以下の工程を有することが好ましい。
工程A:本発明の組成物を用いて、基板上にレジスト膜を形成する工程
工程B:レジスト膜を露光する工程
工程C:現像液を用いて、露光されたレジスト膜を現像し、パターンを形成する工程
 以下、上記それぞれの工程の手順について詳述する。
(工程A:レジスト膜形成工程)
 工程Aは、本発明の組成物を用いて、基板上にレジスト膜を形成する工程である。
 本発明の組成物については、上述のとおりである。
 組成物を用いて基板上にレジスト膜を形成する方法としては、組成物を基板上に塗布する方法が挙げられる。
 なお、塗布前に組成物を必要に応じてフィルターろ過することが好ましい。フィルターのポアサイズとしては、0.1μm以下が好ましく、0.05μm以下がより好ましく、0.03μm以下が更に好ましい。また、フィルターは、ポリテトラフルオロエチレン製、ポリエチレン製、又は、ナイロン製が好ましい。
 組成物は、集積回路素子の製造に使用されるような基板(例:シリコン、二酸化シリコン被覆)上に、スピナー又はコーター等の適当な塗布方法により塗布できる。塗布方法としては、スピナーを用いたスピン塗布が好ましい。
 組成物の塗布後、基板を乾燥し、レジスト膜を形成してもよい。なお、必要により、レジスト膜の下層に、各種下地膜(無機膜、有機膜、又は、反射防止膜)を形成してもよい。
 乾燥方法としては、加熱する方法(プリベーク:PB)が挙げられる。加熱は通常の露光機、及び/又は、現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。
 加熱温度は80~150℃が好ましく、80~140℃がより好ましい。
 加熱時間は30~1000秒間が好ましく、40~800秒間がより好ましい。
 レジスト膜の膜厚は、特に制限されないが、KrF露光用のレジスト膜の場合、0.2~12μmが好ましく、0.3~5μmがより好ましい。
 また、ArF露光用又はEUV露光用のレジスト膜の場合、30~700nmが好ましく、40~400nmがより好ましく、40~200nmがさらに好ましい。
 なお、レジスト膜の上層にトップコート組成物を用いてトップコートを形成してもよい。
 トップコート組成物は、レジスト膜と混合せず、更にレジスト膜上層に均一に塗布できることが好ましい。
 トップコートの膜厚は、10~200nmが好ましく、20~100nmがより好ましい。
 トップコートについては、特に制限されず、従来公知のトップコートを、従来公知の方法によって形成でき、例えば、特開2014-059543号公報の段落0072~0082の記載に基づいてトップコートを形成できる。
(工程B:露光工程)
 工程Bは、レジスト膜を露光する工程である。
 露光の方法としては、形成したレジスト膜に所定のマスクを通して放射線を照射する方法が挙げられる。
 放射線としては、赤外光、可視光、紫外光、遠紫外光、極紫外光、X線、及び、EB(Electron Beam)が挙げられ、好ましくは250nm以下、より好ましくは220nm以下、更に好ましくは1~200nmの波長の遠紫外光、具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、EUV(13nm)、X線、及び、EBが挙げられる。
 露光後、現像を行う前にベーク(ポストエクスポージャーベーク:PEB)を行うことが好ましい。
 加熱温度は80~150℃が好ましく、80~140℃がより好ましい。
 加熱時間は10~1000秒間が好ましく、10~180秒間がより好ましい。
 加熱は通常の露光機、及び/又は現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。
 この工程は露光後ベークとも記載する。
(工程C:現像工程)
 工程Cは、現像液を用いて、露光されたレジスト膜を現像し、パターンを形成する工程である。
 現像方法としては、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静置することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、及び、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)が挙げられる。
 また、現像を行う工程の後に、他の溶剤に置換しながら、現像を停止する工程を実施してもよい。
 現像時間は未露光部の樹脂が十分に溶解する時間であれば特に制限はなく、10~300秒間が好ましく、20~120秒間がより好ましい。
 現像液の温度は0~50℃が好ましく、15~35℃がより好ましい。
 現像液としては、アルカリ現像液、及び、有機溶剤現像液が挙げられる。
 アルカリ現像液としては、アルカリを含むアルカリ水溶液を用いることが好ましい。中でも、アルカリ現像液は、テトラメチルアンモニウムヒドロキシド(TMAH)に代表される4級アンモニウム塩の水溶液であることが好ましい。アルカリ現像液には、アルコール類、界面活性剤等を適当量添加してもよい。アルカリ現像液のアルカリ濃度は、通常、0.1~20質量%である。また、アルカリ現像液のpHは、通常、10.0~15.0である。
 有機溶剤現像液とは、有機溶剤を含む現像液である。
 有機溶剤現像液に用いられる有機溶剤としては、公知の有機溶剤が挙げられ、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、及び、炭化水素系溶剤が挙げられる。
(他の工程)
 上記パターン形成方法は、工程Cの後に、リンス液を用いて洗浄する工程を含むことが好ましい。
 現像液を用いて現像する工程の後のリンス工程に用いるリンス液としては、例えば、純水が挙げられる。なお、純水には、界面活性剤を適当量添加してもよい。
 リンス液には、界面活性剤を適当量添加してもよい。
 また、形成されたパターンをマスクとして、基板のエッチング処理を実施してもよい。つまり、工程Cにて形成されたパターンをマスクとして、基板(又は、下層膜及び基板)を加工して、基板にパターンを形成してもよい。
 基板(又は、下層膜及び基板)の加工方法は特に制限されないが、工程Cで形成されたパターンをマスクとして、基板(又は、下層膜及び基板)に対してドライエッチングを行うことにより、基板にパターンを形成する方法が好ましい。
 ドライエッチングは、1段のエッチングであっても、複数段からなるエッチングであってもよい。エッチングが複数段からなるエッチングである場合、各段のエッチングは同一の処理であっても異なる処理であってもよい。
 エッチングは、公知の方法をいずれも用いることができ、各種条件等は、基板の種類又は用途等に応じて、適宜、決定される。例えば、国際光工学会紀要(Proc.of SPIE)Vol.6924,692420(2008)、特開2009-267112号公報等に準じて、エッチングを実施できる。また、「半導体プロセス教本 第四版 2007年刊行 発行人:SEMIジャパン」の「第4章 エッチング」に記載の方法に準ずることもできる。
 中でも、ドライエッチングとしては、酸素プラズマエッチングが好ましい。
 本発明の製造方法及び組成物において使用される各種材料(例えば、溶剤、現像液、リンス液、反射防止膜形成用組成物、トップコート形成用組成物等)は、金属等の不純物を含まないことが好ましい。これら材料に含まれる不純物の含有量としては、1質量ppm以下が好ましく、10質量ppb以下がより好ましく、100質量ppt以下が更に好ましく、10質量ppt以下が特に好ましく、1質量ppt以下が最も好ましい。ここで、金属不純物としては、Na、K、Ca、Fe、Cu、Mn、Mg、Al、Li、Cr、Ni、Sn、Ag、As、Au、Ba、Cd、Co、Mo、Zr、Pb、Ti、V、W、及び、Zn等が挙げられる。
 上記各種材料から金属等の不純物を除去する方法としては、例えば、フィルターを用いたろ過が挙げられる。フィルター孔径としては、0.20μm以下が好ましく、0.05μm以下がより好ましく、0.01μm以下が更に好ましい。
 フィルターの材質としては、ポリテトラフルオロエチレン(PTFE)及びパーフルオロアルコキシアルカン(PFA)等のフッ素樹脂、ポリプロピレン及びポリエチレン等のポリオレフィン樹脂、ナイロン6及びナイロン66等のポリアミド樹脂が好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数又は複数種類のフィルターを直列又は並列に接続して用いてもよい。複数種類のフィルターを使用する場合は、孔径及び/又は材質が異なるフィルターを組み合わせて使用してもよい。また、各種材料を複数回ろ過してもよく、複数回ろ過する工程が循環ろ過工程であってもよい。循環ろ過工程としては、例えば、特開2002-62667号公報に開示されるような手法が好ましい。
 フィルターとしては、特開2016-201426号公報に開示されるような溶出物が低減されたものが好ましい。
 フィルターろ過のほか、吸着材による不純物の除去を行ってもよく、フィルターろ過と吸着材とを組み合わせて使用してもよい。吸着材としては、公知の吸着材を用いることができ、例えば、シリカゲル若しくはゼオライト等の無機系吸着材、又は、活性炭等の有機系吸着材を使用できる。金属吸着剤としては、例えば、特開2016-206500号公報に開示されるものが挙げられる。
 また、上記各種材料に含まれる金属等の不純物を低減する方法としては、各種材料を構成する原料として金属含有量が少ない原料を選択する、各種材料を構成する原料に対してフィルターろ過を行う、又は、装置内をフッ素樹脂等でライニング若しくはコーティングする等してコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法が挙げられる。各種材料を構成する原料に対して行うフィルターろ過における好ましい条件は、上記した条件と同様である。
 上記の各種材料は、不純物の混入を防止するために、米国特許出願公開第2015/0227049号明細書、特開2015-123351号公報、特開2017-13804号公報等に記載された容器に保存されることが好ましい。
 各種材料は組成物に使用する溶剤により希釈し、使用してもよい。
 本発明の感放射線性樹脂組成物に含まれる成分は特に制限されないが、樹脂(好ましくは、酸の作用により極性が増大する樹脂)、光酸発生剤、及び、溶剤を含むことが好ましい。
 以下、感放射線性樹脂組成物に含まれる成分について詳述する。
<樹脂>
 感放射線性樹脂組成物は、樹脂を含んでいてもよい。
 樹脂としては、酸の作用により極性が増大する樹脂(以下、単に「樹脂(A)」とも記載する。)が好ましい。
 なお、樹脂は、ケイ素原子を有する繰り返し単位を有さず、(メタ)アクリル基を有するモノマー由来の繰り返し単位を有することが好ましい。
 樹脂(A)は、酸分解性基を有する繰り返し単位(A-a)(以下、単に「繰り返し単位(A-a)」とも記載する)を有することが好ましい。
 酸分解性基とは、酸の作用により分解し、極性基を生じる基をいう。酸分解性基は、酸の作用により脱離する脱離基で極性基が保護された構造を有することが好ましい。つまり、樹脂(A)は、酸の作用により分解し、極性基を生じる基を有する繰り返し単位(A-a)を有する。この繰り返し単位(A-a)を有する樹脂は、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する。
 極性基としては、アルカリ可溶性基が好ましく、例えば、カルボキシル基、フェノール性水酸基、フッ素化アルコール基、スルホン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、及び、トリス(アルキルスルホニル)メチレン基等の酸性基、並びに、アルコール性水酸基等が挙げられる。
 中でも、極性基としては、カルボキシル基、フェノール性水酸基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、又は、スルホン酸基が好ましい。
 酸の作用により脱離する脱離基としては、例えば、式(Y1)~(Y4)で表される基が挙げられる。
 式(Y1):-C(Rx)(Rx)(Rx
 式(Y2):-C(=O)OC(Rx)(Rx)(Rx
 式(Y3):-C(R36)(R37)(OR38
 式(Y4):-C(Rn)(H)(Ar)
 式(Y1)及び式(Y2)中、Rx~Rxは、それぞれ独立に、アルキル基(直鎖状もしくは分岐鎖状)、シクロアルキル基(単環もしくは多環)、アルケニル基(直鎖状若しくは分岐鎖状)、又はアリール基(単環若しくは多環)を表す。なお、Rx~Rxの全てがアルキル基(直鎖状もしくは分岐鎖状)である場合、Rx~Rxのうち少なくとも2つはメチル基であることが好ましい。
 中でも、Rx~Rxは、それぞれ独立に、直鎖状又は分岐鎖状のアルキル基を表すことが好ましく、Rx~Rxは、それぞれ独立に、直鎖状のアルキル基を表すことがより好ましい。
 Rx~Rxの2つが結合して、単環又は多環を形成してもよい。
 Rx~Rxのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及び、t-ブチル基等の炭素数1~4のアルキル基が好ましい。
 Rx~Rxのシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、並びに、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。
 Rx~Rxのアリール基としては、炭素数6~10のアリール基が好ましく、例えば、フェニル基、ナフチル基、及びアントリル基等が挙げられる。
 Rx~Rxのアルケニル基としては、ビニル基が好ましい。
 Rx~Rxの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、並びに、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましく、炭素数5~6の単環のシクロアルキル基がより好ましい。
 Rx~Rxの2つが結合して形成されるシクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 式(Y1)又は式(Y2)で表される基は、例えば、Rxがメチル基又はエチル基であり、RxとRxとが結合して上述のシクロアルキル基を形成している態様が好ましい。
 本発明の組成物が、例えば、EUV露光用レジスト組成物である場合、Rx~Rxで表されるアルキル基、シクロアルキル基、アルケニル基、アリール基、及び、Rx~Rxの2つが結合して形成される環は、更に、置換基として、フッ素原子又はヨウ素原子を有しているのも好ましい。
 式(Y3)中、R36~R38は、それぞれ独立に、水素原子又は1価の置換基を表す。R37とR38とは、互いに結合して環を形成してもよい。1価の置換基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基、及び、アルケニル基等が挙げられる。R36は水素原子であることも好ましい。
 式(Y3)としては、下記式(Y3-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000007
 ここで、L及びLは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又は、これらを組み合わせた基(例えば、アルキル基とアリール基とを組み合わせた基)を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、ヘテロ原子を有していてもよいアルキル基、ヘテロ原子を有していてもよいシクロアルキル基、ヘテロ原子を有していてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基、アルデヒド基、又は、これらを組み合わせた基(例えば、アルキル基とシクロアルキル基とを組み合わせた基)を表す。
 アルキル基及びシクロアルキル基は、例えば、メチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 なお、L及びLのうち一方は水素原子であり、他方はアルキル基、シクロアルキル基、アリール基、又は、アルキレン基とアリール基とを組み合わせた基であることが好ましい。
 Q、M、及び、Lの少なくとも2つが結合して環(好ましくは、5員又は6員環)を形成してもよい。
 パターンの微細化の点では、Lが2級又は3級アルキル基であることが好ましく、3級アルキル基であることがより好ましい。2級アルキル基としては、イソプロピル基、シクロヘキシル基、及び、ノルボルニル基が挙げられ、3級アルキル基としては、tert-ブチル基、及び、アダマンタン環基が挙げられる。これらの態様では、Tg(ガラス転移温度)及び活性化エネルギーが高くなるため、膜強度の担保に加え、かぶりの抑制ができる。
 式(Y4)中、Arは、芳香環基を表す。Rnは、アルキル基、シクロアルキル基又はアリール基を表す。RnとArとは互いに結合して非芳香族環を形成してもよい。Arはより好ましくはアリール基である。
 繰り返し単位(A-a)としては、式(A)で表される繰り返し単位も好ましい。
Figure JPOXMLDOC01-appb-C000008
 Lは、フッ素原子又はヨウ素原子を有していてもよい2価の連結基を表し、Rは水素原子、フッ素原子、ヨウ素原子、フッ素原子もしくはヨウ素原子を有していてもよいアルキル基、又は、フッ素原子もしくはヨウ素原子を有していてもよいアリール基を表し、Rは酸の作用によって脱離し、フッ素原子又はヨウ素原子を有していてもよい脱離基を表す。ただし、L、R、及び、Rのうち少なくとも1つは、フッ素原子又はヨウ素原子を有する。
 Lは、フッ素原子又はヨウ素原子を有していてもよい2価の連結基を表す。フッ素原子又はヨウ素原子を有していてもよい2価の連結基としては、-CO-、-O-、-S-、-SO-、-SO-、フッ素原子又はヨウ素原子を有していてもよい炭化水素基(例えば、アルキレン基、シクロアルキレン基、アルケニレン基、アリーレン基等)、及び、これらの複数が連結した連結基等が挙げられる。中でも、本発明の効果がより優れる点で、Lとしては、-CO-、又は、-アリーレン基-フッ素原子もしくはヨウ素原子を有するアルキレン基-が好ましい。
 アリーレン基としては、フェニレン基が好ましい。
 アルキレン基は、直鎖状であっても、分岐鎖状であってもよい。アルキレン基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
 フッ素原子又はヨウ素原子を有するアルキレン基に含まれるフッ素原子及びヨウ素原子の合計数は特に制限されないが、本発明の効果がより優れる点で、2以上が好ましく、2~10がより好ましく、3~6が更に好ましい。
 Rは、水素原子、フッ素原子、ヨウ素原子、フッ素原子もしくはヨウ素原子が有していてもよいアルキル基、又は、フッ素原子もしくはヨウ素原子を有していてもよいアリール基を表す。
 アルキル基は、直鎖状であっても、分岐鎖状であってもよい。アルキル基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
 フッ素原子又はヨウ素原子を有するアルキル基に含まれるフッ素原子及びヨウ素原子の合計数は特に制限されないが、本発明の効果がより優れる点で、1以上が好ましく、1~5がより好ましく、1~3が更に好ましい。
 上記アルキル基は、ハロゲン原子以外の酸素原子等のヘテロ原子を有していてもよい。
 Rは、酸の作用によって脱離し、フッ素原子又はヨウ素原子を有していてもよい脱離基を表す。
 脱離基としては、式(Z1)~(Z4)で表される基が挙げられる。
 式(Z1):-C(Rx11)(Rx12)(Rx13
 式(Z2):-C(=O)OC(Rx11)(Rx12)(Rx13
 式(Z3):-C(R136)(R137)(OR138
 式(Z4):-C(Rn)(H)(Ar
 式(Z1)及び式(Z2)中、Rx11~Rx13は、それぞれ独立に、フッ素原子もしくはヨウ素原子を有していてもよいアルキル基(直鎖状もしくは分岐鎖状)、又は、フッ素原子もしくはヨウ素原子を有していてもよいシクロアルキル基(単環もしくは多環)を表す。なお、Rx11~Rx13の全てがアルキル基(直鎖状もしくは分岐鎖状)である場合、Rx11~Rx13のうち少なくとも2つはメチル基であることが好ましい。
 Rx11~Rx13は、フッ素原子又はヨウ素原子を有していてもよい点以外は、上述した式(Y1)及び式(Y2)中のRx~Rxと同じであり、アルキル基及びシクロアルキル基の定義及び好適範囲と同じである。
 式(Z3)中、R136~R138は、それぞれ独立に、水素原子、又は、フッ素原子もしくはヨウ素原子を有していてもよい1価の置換基を表す。R137とR138とは、互いに結合して環を形成してもよい。フッ素原子又はヨウ素原子を有していてもよい1価の置換基としては、フッ素原子又はヨウ素原子を有していてもよいアルキル基、フッ素原子又はヨウ素原子を有していてもよいシクロアルキル基、フッ素原子又はヨウ素原子を有していてもよいアリール基、フッ素原子又はヨウ素原子を有していてもよいアラルキル基、及び、これらを組み合わせた基(例えば、アルキル基とシクロアルキル基とを組み合わせた基)が挙げられる。
 なお、上記アルキル基、シクロアルキル基、アリール基、及び、アラルキル基には、フッ素原子及びヨウ素原子以外に、酸素原子等のヘテロ原子が含まれていてもよい。つまり、上記アルキル基、シクロアルキル基、アリール基、及び、アラルキル基は、例えば、メチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 式(Z3)としては、下記式(Z3-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000009
 ここで、L11及びL12は、それぞれ独立に、水素原子;フッ素原子、ヨウ素原子及び酸素原子からなる群より選択されるヘテロ原子を有していてもよいアルキル基;フッ素原子、ヨウ素原子及び酸素原子からなる群より選択されるヘテロ原子を有していてもよいシクロアルキル基;フッ素原子、ヨウ素原子及び酸素原子からなる群より選択されるヘテロ原子を有していてもよいアリール基;又は、これらを組み合わせた基(例えば、フッ素原子、ヨウ素原子及び酸素原子からなる群より選択されるヘテロ原子を有していてもよい、アルキル基とシクロアルキル基とを組み合わせた基)を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、フッ素原子、ヨウ素原子及び酸素原子からなる群より選択されるヘテロ原子を有していてもよいアルキル基;フッ素原子、ヨウ素原子及び酸素原子からなる群より選択されるヘテロ原子を有していてもよいシクロアルキル基;フッ素原子、ヨウ素原子及び酸素原子からなる群より選択されるヘテロ原子を有していてもよいアリール基;アミノ基;アンモニウム基;メルカプト基;シアノ基;アルデヒド基;又は、これらを組み合わせた基(例えば、フッ素原子、ヨウ素原子及び酸素原子からなる群より選択されるヘテロ原子を有していてもよい、アルキル基とシクロアルキル基とを組み合わせた基)を表す。
 式(Z4)中、Arは、フッ素原子又はヨウ素原子を有していてもよい芳香環基を表す。Rnは、フッ素原子もしくはヨウ素原子を有していてもよいアルキル基、フッ素原子もしくはヨウ素原子を有していてもよいシクロアルキル基、又は、フッ素原子もしくはヨウ素原子を有していてもよいアリール基を表す。RnとArとは互いに結合して非芳香族環を形成してもよい。
 繰り返し単位(A-a)としては、一般式(AI)で表される繰り返し単位も好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(AI)において、
 Xaは、水素原子、又は、置換基を有していてもよいアルキル基を表す。
 Tは、単結合、又は、2価の連結基を表す。
 Rx~Rxは、それぞれ独立に、アルキル基(直鎖状、又は、分岐鎖状)、シクロアルキル基(単環、又は、多環)、アルケニル基(直鎖状若しくは分岐鎖状)、又はアリール(単環若しくは多環)基を表す。ただし、Rx~Rxの全てがアルキル基(直鎖状、又は、分岐鎖状)である場合、Rx~Rxのうち少なくとも2つはメチル基であることが好ましい。
 Rx~Rxの2つが結合して、シクロアルキル基(単環もしくは多環)を形成してもよい。
 Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基又は-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基又は1価の置換基を表し、例えば、ハロゲン原子が置換していてもよい炭素数5以下のアルキル基、ハロゲン原子が置換していてもよい炭素数5以下のアシル基、及び、ハロゲン原子が置換していてもよい炭素数5以下のアルコキシ基が挙げられ、炭素数3以下のアルキル基が好ましく、メチル基がより好ましい。Xaとしては、水素原子、メチル基、トリフルオロメチル基、又は、ヒドロキシメチル基が好ましい。
 Tの2価の連結基としては、アルキレン基、芳香環基、-COO-Rt-基、及び、-O-Rt-基等が挙げられる。式中、Rtは、アルキレン基、又は、シクロアルキレン基を表す。
 Tは、単結合又は-COO-Rt-基が好ましい。Tが-COO-Rt-基を表す場合、Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、又は、-(CH-基がより好ましい。
 Rx~Rxのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及び、t-ブチル基等の炭素数1~4のアルキル基が好ましい。
 Rx~Rxのシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。
 Rx~Rxのアリール基としては、炭素数6~10のアリール基が好ましく、例えば、フェニル基、ナフチル基、及びアントリル基等が挙げられる。
 Rx~Rxのアルケニル基としては、ビニル基が好ましい。
 Rx~Rxの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基が好ましく、その他にも、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。中でも、炭素数5~6の単環のシクロアルキル基が好ましい。
 Rx~Rxの2つが結合して形成されるシクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 一般式(AI)で表される繰り返し単位は、例えば、Rxがメチル基又はエチル基であり、RxとRxとが結合して上述のシクロアルキル基を形成している態様が好ましい。
 上記各基が置換基を有する場合、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシル基、及び、アルコキシカルボニル基(炭素数2~6)等が挙げられる。置換基中の炭素数は、8以下が好ましい。
 一般式(AI)で表される繰り返し単位としては、好ましくは、酸分解性(メタ)アクリル酸3級アルキルエステル系繰り返し単位(Xaが水素原子又はメチル基を表し、かつ、Tが単結合を表す繰り返し単位)である。
 樹脂(A)は、繰り返し単位(A-a)を1種単独で有していてもよく、2種以上を有していてもよい。
 繰り返し単位(A-a)の含有量(2種以上の繰り返し単位(A-a)が存在する場合は合計含有量)は、樹脂(A)中の全繰り返し単位に対し、15~80モル%が好ましく、20~70モル%がより好ましい。
 樹脂(A)は、繰り返し単位(A-a)として、下記一般式(A-VIII)~(A-XII)で表される繰り返し単位からなる群より選択される少なくとも1つの繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式(A-VIII)中、Rは、tert-ブチル基、又は、-CO-O-(tert-ブチル)基を表す。
 一般式(A-IX)中、R及びRは、それぞれ独立に、1価の置換基を表す。1価の置換基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基、及び、アルケニル基等が挙げられる。
 一般式(A-X)中、pは1~5を表し、1又は2が好ましい。
 一般式(A-X)~(A-XII)中、Rは、水素原子又は炭素数1~3のアルキル基を表し、Rは、炭素数1~3のアルキル基を表す。
 一般式(A-XII)中、R10は、炭素数1~3のアルキル基又はアダマンチル基を表す。
(酸基を有する繰り返し単位)
 樹脂(A)は、酸基を有する繰り返し単位を有してもよい。
 酸基としては、pKaが13以下の酸基が好ましい。上記酸基の酸解離定数は、上記のように、13以下が好ましく、3~13がより好ましく、5~10が更に好ましい。
 酸分解性樹脂が、pKaが13以下の酸基を有する場合、酸分解性樹脂中における酸基の含有量は特に制限されないが、0.2~6.0mmol/gの場合が多い。なかでも、0.8~6.0mmol/gが好ましく、1.2~5.0mmol/gがより好ましく、1.6~4.0mmol/gが更に好ましい。酸基の含有量が上記範囲内であれば、現像が良好に進行し、形成されるパターン形状に優れ、解像性にも優れる。
 酸基としては、例えば、カルボキシル基、水酸基、フェノール性水酸基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、スルホン酸基、又はスルホンアミド基等が好ましい。
 また、上記ヘキサフルオロイソプロパノール基において、フッ素原子の1つ以上(好ましくは1~2つ)がフッ素原子以外の基で置換されてなる基も酸基として好ましい。このような基としては、例えば、-C(CF)(OH)-CF-を含む基が挙げられる。なお、上記-C(CF)(OH)-CF-を含む基は、-C(CF)(OH)-CF-を含む環基であってもよい。
 酸基を有する繰り返し単位としては、下記一般式(B)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000012
 Rは、水素原子、又は、フッ素原子もしくはヨウ素原子を有していてもよい1価の置換基を表す。フッ素原子又はヨウ素原子を有していてもよい1価の置換基としては、-L-Rで表される基が好ましい。Lは、単結合、又は、エステル基を表す。Rは、フッ素原子もしくはヨウ素原子を有していてもよいアルキル基、フッ素原子もしくはヨウ素原子を有していてもよいシクロアルキル基、フッ素原子もしくはヨウ素原子を有していてもよいアリール基、又は、これらを組み合わせた基が挙げられる。
 R及びRは、それぞれ独立に、水素原子、フッ素原子、ヨウ素原子、又は、フッ素原子もしくはヨウ素原子を有していてもよいアルキル基を表す。
 Lは、単結合、又は、エステル基を表す。
 Lは、(n+m+1)価の芳香族炭化水素環基、又は、(n+m+1)価の脂環式炭化水素環基を表す。芳香族炭化水素環基としては、ベンゼン環基、及び、ナフタレン環基が挙げられる。脂環式炭化水素環基としては、単環であっても、多環であってもよく、例えば、シクロアルキル環基が挙げられる。
 Rは、水酸基、又は、フッ素化アルコール基(好ましくは、ヘキサフルオロイソプロパノール基)を表す。なお、Rが水酸基の場合、Lは(n+m+1)価の芳香族炭化水素環基であることが好ましい。
 Rは、ハロゲン原子を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子が挙げられる。
 mは、1以上の整数を表す。mは、1~3の整数が好ましく、1~2の整数がより好ましい。
 nは、0又は1以上の整数を表す。nは、1~4の整数が好ましい。
 なお、(n+m+1)は、1~5の整数が好ましい。
 酸基を有する繰り返し単位としては、下記一般式(I)で表される繰り返し単位も好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(I)中、
 R41、R42及びR43は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。但し、R42はArと結合して環を形成していてもよく、その場合のR42は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表し、R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R42と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 nは、1~5の整数を表す。
 一般式(I)におけるR41、R42、及び、R43のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基、及び、ドデシル基等の炭素数20以下のアルキル基が好ましく、炭素数8以下のアルキル基がより好ましく、炭素数3以下のアルキル基が更に好ましい。
 一般式(I)におけるR41、R42、及び、R43のシクロアルキル基としては、単環型でも、多環型でもよい。中でも、シクロプロピル基、シクロペンチル基、及び、シクロヘキシル基等の炭素数3~8個で単環型のシクロアルキル基が好ましい。
 一般式(I)におけるR41、R42、及び、R43のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子が挙げられ、フッ素原子が好ましい。
 一般式(I)におけるR41、R42、及び、R43のアルコキシカルボニル基に含まれるアルキル基としては、上記R41、R42、R43におけるアルキル基と同様のものが好ましい。
 Arは、(n+1)価の芳香環基を表す。nが1である場合における2価の芳香環基は、置換基を有していてもよく、例えば、フェニレン基、トリレン基、ナフチレン基、及び、アントラセニレン基等の炭素数6~18のアリーレン基、又は、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、チアジアゾール環、及び、チアゾール環等のヘテロ環を含む芳香環基が好ましい。
 nが2以上の整数である場合における(n+1)価の芳香環基の具体例としては、2価の芳香環基の上記した具体例から、(n-1)個の任意の水素原子を除してなる基が挙げられる。(n+1)価の芳香環基は、更に置換基を有していてもよい。
 上述したアルキル基、シクロアルキル基、アルコキシカルボニル基、アルキレン基、及び、(n+1)価の芳香環基が有し得る置換基としては、例えば、一般式(I)におけるR41、R42、及び、R43で挙げたアルキル基、メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基、及び、ブトキシ基等のアルコキシ基;フェニル基等のアリール基;等が挙げられる。
 Xにより表わされる-CONR64-(R64は、水素原子又はアルキル基を表す)におけるR64のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基、及び、ドデシル基等の炭素数20以下のアルキル基が挙げられ、炭素数8以下のアルキル基が好ましい。
 Xとしては、単結合、-COO-、又は、-CONH-が好ましく、単結合、又は、-COO-がより好ましい。
 Lにおけるアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、及び、オクチレン基等の炭素数1~8のアルキレン基が好ましい。
 Arとしては、炭素数6~18の芳香環基が好ましく、ベンゼン環基、ナフタレン環基、及び、ビフェニレン環基がより好ましい。
 以下、一般式(I)で表される繰り返し単位の具体例を示すが、本発明は、これに制限されるものではない。式中、aは1又は2を表す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(ヒドロキシスチレンに由来する繰り返し単位(A-1))
 樹脂(A)は、酸基を有する繰り返し単位として、ヒドロキシスチレンに由来する繰り返し単位(A-1)を有することが好ましい。
 ヒドロキシスチレンに由来する繰り返し単位(A-1)としては、下記一般式(1)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 一般式(1)中、
 Aは水素原子、アルキル基、シクロアルキル基、ハロゲン原子、又はシアノ基を表す。
 Rは、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アルケニル基、アラルキル基、アルコキシ基、アルキルカルボニルオキシ基、アルキルスルホニルオキシ基、アルキルオキシカルボニル基又はアリールオキシカルボニル基を表し、複数個ある場合には同じであっても異なっていてもよい。複数のRを有する場合には、互いに共同して環を形成していてもよい。Rとしては水素原子が好ましい。
 aは1~3の整数を表し、bは0~(5-a)の整数を表す。
 繰り返し単位(A-1)としては、下記一般式(A-I)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000018
 繰り返し単位(A-1)を有する樹脂(A)を含む組成物は、KrF露光用、EB露光用又はEUV露光用として好ましい。この場合の繰り返し単位(A-1)の含有量は、樹脂(A)中の全繰り返し単位に対して、30~100モル%が好ましく、40~100モル%がより好ましく、50~100モル%が更に好ましい。
(ラクトン構造、スルトン構造、カーボネート構造、及びヒドロキシアダマンタン構造からなる群より選択される少なくとも1種を有する繰り返し単位(A-2))
 樹脂(A)は、ラクトン構造、カーボネート構造、スルトン構造、及びヒドロキシアダマンタン構造からなる群より選択される少なくとも1種を有する繰り返し単位(A-2)を有していてもよい。
 ラクトン構造又はスルトン構造を有する繰り返し単位におけるラクトン構造又はスルトン構造は、特に制限されないが、5~7員環ラクトン構造又は5~7員環スルトン構造が好ましく、5~7員環ラクトン構造にビシクロ構造、スピロ構造を形成する形で他の環構造が縮環しているもの、又は5~7員環スルトン構造にビシクロ構造、スピロ構造を形成する形で他の環構造が縮環しているものがより好ましい。
 ラクトン構造又はスルトン構造を有する繰り返し単位としては、WO2016/136354号の段落0094~0107に記載の繰り返し単位が挙げられる。
 樹脂(A)は、カーボネート構造を有する繰り返し単位を有していてもよい。カーボネート構造は、環状炭酸エステル構造であることが好ましい。
 カーボネート構造を有する繰り返し単位としては、WO2019/054311号の段落0106~0108に記載の繰り返し単位が挙げられる。
 樹脂(A)は、ヒドロキシアダマンタン構造を有する繰り返し単位を有していてもよい。ヒドロキシアダマンタン構造を有する繰り返し単位としては、下記一般式(AIIa)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 一般式(AIIa)中、Rcは、水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基を表す。Rc~Rcは、それぞれ独立に、水素原子又は水酸基を表す。但し、Rc~Rcのうちの少なくとも1つは、水酸基を表す。Rc~Rcのうちの1つ又は2つが水酸基で、残りが水素原子であることが好ましい。
(フッ素原子又はヨウ素原子を有する繰り返し単位)
 樹脂(A)は、フッ素原子又はヨウ素原子を有する繰り返し単位を有していてもよい。
 フッ素原子又はヨウ素原子を有する繰り返し単位としては、特開2019-045864号公報の段落0080~0081に記載の繰り返し単位が挙げられる。
(光酸発生基を有する繰り返し単位)
 樹脂(A)は、上記以外の繰り返し単位として、放射線の照射により酸を発生する基を有する繰り返し単位を有していてもよい。
 このような繰り返し単位としては、例えば、下記式(4)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 R41は、水素原子又はメチル基を表す。L41は、単結合、又は2価の連結基を表す。L42は、2価の連結基を表す。R40は、活性光線又は放射線の照射により分解して側鎖に酸を発生させる構造部位を表す。
 光酸発生基を有する繰り返し単位を以下に例示する。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-I000022
 そのほか、式(4)で表される繰り返し単位としては、例えば、特開2014-041327号公報の段落[0094]~[0105]に記載された繰り返し単位、及び国際公開第2018/193954号公報の段落[0094]に記載された繰り返し単位が挙げられる。
 光酸発生基を有する繰り返し単位の含有量は、酸分解性樹脂中の全繰り返し単位に対して、1モル%以上が好ましく、2モル%以上がより好ましい。また、その上限値としては、20モル%以下が好ましく、10モル%以下がより好ましく、5モル%以下が更に好ましい。
 光酸発生基を有する繰り返し単位としては、特開2019-045864号公報の段落0092~0096に記載の繰り返し単位が挙げられる。
(アルカリ可溶性基を有する繰り返し単位)
 樹脂(A)は、アルカリ可溶性基を有する繰り返し単位を有していてもよい。
 アルカリ可溶性基としては、カルボキシル基、スルホンアミド基、スルホニルイミド基、ビスルスルホニルイミド基、及び、α位が電子求引性基で置換された脂肪族アルコール基(例えば、ヘキサフルオロイソプロパノール基)が挙げられ、カルボキシル基が好ましい。
 樹脂(A)がアルカリ可溶性基を有する繰り返し単位を有することにより、コンタクトホール用途での解像性が増す。
 アルカリ可溶性基を有する繰り返し単位としては、アクリル酸及びメタクリル酸による繰り返し単位のような樹脂の主鎖に直接アルカリ可溶性基が結合している繰り返し単位、又は、連結基を介して樹脂の主鎖にアルカリ可溶性基が結合している繰り返し単位が挙げられる。なお、連結基は、単環又は多環の環状炭化水素構造を有していてもよい。
 アルカリ可溶性基を有する繰り返し単位としては、アクリル酸又はメタクリル酸による繰り返し単位が好ましい。
(酸分解性基及び極性基のいずれも有さない繰り返し単位)
 樹脂(A)は、更に、酸分解性基及び極性基のいずれも有さない繰り返し単位を有してもよい。酸分解性基及び極性基のいずれも有さない繰り返し単位は、脂環式炭化水素を有することが好ましい。
 酸分解性基及び極性基のいずれも有さない繰り返し単位としては、例えば、米国特許出願公開第2016/0026083号明細書の段落0236~0237に記載された繰り返し単位、及び、米国特許出願公開第2016/0070167号明細書の段落0433に記載された繰り返し単位が挙げられる。
 樹脂(A)は、上記の繰り返し構造単位以外に、ドライエッチング耐性、標準現像液適性、基板密着性、レジストプロファイル、解像力、耐熱性、及び、感度等を調節する目的で様々な繰り返し構造単位を有していてもよい。
(樹脂(A)の特性)
 樹脂(A)としては、繰り返し単位のすべてが、エチレン性不飽和結合を有する化合物に由来する繰り返し単位で構成されることが好ましい。特に、樹脂(A)としては、繰り返し単位のすべてが(メタ)アクリレート系モノマー((メタ)アクリル基を有するモノマー)に由来する繰り返し単位で構成されることが好ましい。この場合、繰り返し単位のすべてがメタクリレート系モノマーに由来するもの、繰り返し単位のすべてがアクリレート系モノマーに由来するもの、繰り返し単位のすべてがメタクリレート系モノマー及びアクリレート系モノマーに由来するもののいずれの樹脂でも用いることができる。アクリレート系モノマーに由来する繰り返し単位が、樹脂(A)中の全繰り返し単位に対して50モル%以下であることが好ましい。
 組成物がフッ化アルゴン(ArF)露光用であるとき、ArF光の透過性の観点から、樹脂(A)は実質的には芳香族基を有さないことが好ましい。より具体的には、芳香族基を有する繰り返し単位が、樹脂(A)の全繰り返し単位に対して5モル%以下であることが好ましく、3モル%以下であることがより好ましく、理想的には0モル%、すなわち芳香族基を有する繰り返し単位を有さないことが更に好ましい。
 また、組成物がArF露光用であるとき、樹脂(A)は、単環又は多環の脂環炭化水素構造を有することが好ましく、また、フッ素原子及び珪素原子のいずれも含まないことが好ましい。
 組成物がフッ化クリプトン(KrF)露光用、EB露光用又はEUV露光用であるとき、樹脂(A)は芳香族炭化水素基を有する繰り返し単位を有することが好ましく、フェノール性水酸基を有する繰り返し単位を有することがより好ましい。
 フェノール性水酸基を有する繰り返し単位としては、上記ヒドロキシスチレン由来の繰り返し単位(A-1)、及び、ヒドロキシスチレン(メタ)アクリレート由来の繰り返し単位を挙げることができる。
 また、組成物が、KrF露光用、EB露光用又はEUV露光用であるとき、樹脂(A)は、フェノール性水酸基の水素原子が酸の作用により分解し脱離する基(脱離基)で保護された構造を有する繰り返し単位を有することも好ましい。
 組成物が、KrF露光用、EB露光用又はEUV露光用であるとき、樹脂(A)に含まれる芳香族炭化水素基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対して、30~100モル%が好ましく、40~100モル%がより好ましく、50~100モル%が更に好ましい。
 樹脂(A)は、常法(例えばラジカル重合)に従って合成できる。
 樹脂(A)の重量平均分子量(Mw)は、1,000~200,000が好ましく、3,000~20,000がより好ましく、5,000~15,000が更に好ましい。樹脂(A)の重量平均分子量(Mw)を、1,000~200,000とすることにより、耐熱性及びドライエッチング耐性の劣化を防ぐことができ、更に、現像性の劣化、及び、粘度が高くなって製膜性が劣化することを防ぐことができる。なお、樹脂(A)の重量平均分子量(Mw)は、上述のGPC法により測定されたポリスチレン換算値である。
 樹脂(A)の分散度(分子量分布)は、通常1~5であり、1~3が好ましく、1.1~2.0がより好ましい。分散度が小さいものほど、解像度、及び、レジスト形状が優れ、更に、パターンの側壁がスムーズであり、ラフネス性に優れる。
 本発明の組成物において、樹脂(A)の含有量は、組成物の全固形分に対して、50~99.9質量%が好ましく、60~99.0質量%がより好ましい。
 また、樹脂(A)は、1種単独で使用してもよいし、2種以上を併用してもよい。
 なお、本明細書において、固形分とは溶剤を除いたレジスト膜を構成し得る成分を意味する。上記成分の性状が液状であっても、固形分として扱う。
<光酸発生剤(P)>
 本発明の組成物は、光酸発生剤(P)を含んでいてもよい。光酸発生剤(P)は、放射線の照射により酸を発生する化合物であれば特に制限されない。
 光酸発生剤(P)は、低分子化合物の形態であってもよく、重合体の一部に組み込まれた形態であってもよい。また、低分子化合物の形態と重合体の一部に組み込まれた形態を併用してもよい。
 光酸発生剤(P)が、低分子化合物の形態である場合、重量平均分子量(Mw)が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることが更に好ましい。
 光酸発生剤(P)が、重合体の一部に組み込まれた形態である場合、樹脂(A)の一部に組み込まれてもよく、樹脂(A)とは異なる樹脂に組み込まれてもよい。
 本発明において、光酸発生剤(P)は、低分子化合物の形態であることが好ましい。
 光酸発生剤(P)としては、公知のものであれば特に制限されないが、放射線の照射により、有機酸を発生する化合物が好ましく、分子中にフッ素原子又はヨウ素原子を有する光酸発生剤がより好ましい。
 上記有機酸として、例えば、スルホン酸(脂肪族スルホン酸、芳香族スルホン酸、及び、カンファースルホン酸等)、カルボン酸(脂肪族カルボン酸、芳香族カルボン酸、及び、アラルキルカルボン酸等)、カルボニルスルホニルイミド酸、ビス(アルキルスルホニル)イミド酸、及び、トリス(アルキルスルホニル)メチド酸等が挙げられる。
 光酸発生剤(P)より発生する酸の体積は特に制限されないが、露光で発生した酸の非露光部への拡散を抑制し、解像性を良好にする点から、240Å以上が好ましく、305Å以上がより好ましく、350Å以上が更に好ましく、400Å以上が特に好ましい。なお、感度又は塗布溶剤への溶解性の点から、光酸発生剤(P)より発生する酸の体積は、1500Å以下が好ましく、1000Å以下がより好ましく、700Å以下が更に好ましい。
 上記体積の値は、富士通株式会社製の「WinMOPAC」を用いて求める。上記体積の値の計算にあたっては、まず、各例に係る酸の化学構造を入力し、次に、この構造を初期構造としてMM(Molecular Mechanics)3法を用いた分子力場計算により、各酸の最安定立体配座を決定し、その後、これら最安定立体配座についてPM(Parameterized Model number)3法を用いた分子軌道計算を行うことにより、各酸の「accessible volume」を計算できる。
 光酸発生剤(P)より発生する酸の構造は特に制限されないが、酸の拡散を抑制し、解像性を良好にする点で、光酸発生剤(P)より発生する酸と樹脂(A)との間の相互作用が強いことが好ましい。この点から、光酸発生剤(P)より発生する酸が有機酸である場合、例えば、スルホン酸基、カルボン酸基、カルボニルスルホニルイミド酸基、ビススルホニルイミド酸基、及び、トリススルホニルメチド酸基等の有機酸基、以外に、更に極性基を有することが好ましい。
 極性基としては、例えば、エーテル基、エステル基、アミド基、アシル基、スルホ基、スルホニルオキシ基、スルホンアミド基、チオエーテル基、チオエステル基、ウレア基、カーボネート基、カーバメート基、ヒドロキシル基、及び、メルカプト基が挙げられる。
 発生する酸が有する極性基の数は特に制限されず、1個以上であることが好ましく、2個以上であることがより好ましい。ただし、過剰な現像を抑制する観点から、極性基の数は、6個未満であることが好ましく、4個未満であることがより好ましい。
 中でも、本発明の効果がより優れる点で、光酸発生剤(P)は、アニオン部及びカチオン部からなる光酸発生剤であることが好ましい。
 光酸発生剤(P)としては、特開2019-045864号公報の段落0144~0173に記載の光酸発生剤が挙げられる。
 光酸発生剤(P)の含有量は特に制限されないが、本発明の効果がより優れる点で、組成物の全固形分に対して、5~50質量%が好ましく、10~40質量%がより好ましく、10~35質量%が更に好ましい。
 光酸発生剤(P)は、1種単独で使用してもよいし、2種以上を併用してもよい。光酸発生剤(P)を2種以上併用する場合は、その合計量が上記範囲内であることが好ましい。
 本発明の組成物は、光酸発生剤(P)として、化合物(I)及び(II)で定義される特定光酸発生剤を含んでもよい。
(化合物(I))
 化合物(I)は、1つ以上の下記構造部位X及び1つ以上の下記構造部位Yを有する化合物であって、活性光線又は放射線の照射によって、下記構造部位Xに由来する下記第1の酸性部位と下記構造部位Yに由来する下記第2の酸性部位とを含む酸を発生する化合物である。
  構造部位X:アニオン部位A とカチオン部位M とからなり、且つ活性光線又は放射線の照射によってHAで表される第1の酸性部位を形成する構造部位
  構造部位Y:アニオン部位A とカチオン部位M とからなり、且つ活性光線又は放射線の照射によってHAで表される第2の酸性部位を形成する構造部位
 但し、化合物(I)は、下記条件Iを満たす。
 条件I:上記化合物(I)において上記構造部位X中の上記カチオン部位M 及び上記構造部位Y中の上記カチオン部位M をHに置き換えてなる化合物PIが、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a1と、上記構造部位Y中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a2を有し、且つ、上記酸解離定数a1よりも上記酸解離定数a2の方が大きい。
 以下において、条件Iをより具体的に説明する。
 化合物(I)が、例えば、上記構造部位Xに由来する上記第1の酸性部位を1つと、上記構造部位Yに由来する上記第2の酸性部位を1つ有する酸を発生する化合物である場合、化合物PIは「HAとHAを有する化合物」に該当する。
 このような化合物PIの酸解離定数a1及び酸解離定数a2とは、より具体的に説明すると、化合物PIの酸解離定数を求めた場合において、化合物PIが「A とHAを有する化合物」となる際のpKaが酸解離定数a1であり、上記「A とHAを有する化合物」が「A とA を有する化合物」となる際のpKaが酸解離定数a2である。
 また、化合物(I)が、例えば、上記構造部位Xに由来する上記第1の酸性部位を2つと、上記構造部位Yに由来する上記第2の酸性部位を1つ有する酸を発生する化合物である場合、化合物PIは「2つのHAと1つのHAとを有する化合物」に該当する。
 このような化合物PIの酸解離定数を求めた場合、化合物PIが「1つのA と1つのHAと1つのHAとを有する化合物」となる際の酸解離定数、及び「1つのA と1つのHAと1つのHAとを有する化合物」が「2つのA と1つのHAとを有する化合物」となる際の酸解離定数が、上述の酸解離定数a1に該当する。また、「2つのA と1つのHAとを有する化合物」が「2つのA とA を有する化合物」となる際の酸解離定数が酸解離定数a2に該当する。つまり、このような化合物PIの場合、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数を複数有する場合、複数の酸解離定数a1のうち最も大きい値よりも、酸解離定数a2の値の方が大きい。なお、化合物PIが「1つのA と1つのHAと1つのHAとを有する化合物」となる際の酸解離定数をaaとし、「1つのA と1つのHAと1つのHAとを有する化合物」が「2つのA と1つのHAとを有する化合物」となる際の酸解離定数をabとしたとき、aa及びabの関係は、aa<abを満たす。
 酸解離定数a1及び酸解離定数a2は、上述した酸解離定数の測定方法により求められる。
 上記化合物PIとは、化合物(I)に活性光線又は放射線を照射した場合に、発生する酸に該当する。
 化合物(I)が2つ以上の構造部位Xを有する場合、構造部位Xは、各々同一であっても異なっていてもよい。また、2つ以上の上記A 、及び2つ以上の上記M は、各々同一であっても異なっていてもよい。
 また、化合物(I)中、上記A 及び上記A 、並びに、上記M 及び上記M は、各々同一であっても異なっていてもよいが、上記A 及び上記A は、各々異なっているのが好ましい。
 形成されるパターンのLWR性能がより優れる点で、上記化合物PIにおいて、酸解離定数a1(酸解離定数a1が複数存在する場合はその最大値)と酸解離定数a2との差は、0.1以上が好ましく、0.5以上がより好ましく、1.0以上が更に好ましい。なお、酸解離定数a1(酸解離定数a1が複数存在する場合はその最大値)と酸解離定数a2との差の上限値は特に制限されないが、例えば、16以下である。
 また、形成されるパターンのLWR性能がより優れる点で、上記化合物PIにおいて、酸解離定数a2は、例えば、20以下であり、15以下が好ましい。なお、酸解離定数a2の下限値としては、-4.0以上が好ましい。
 また、形成されるパターンのLWR性能がより優れる点で、上記化合物PIにおいて、酸解離定数a1は、2.0以下が好ましく、0以下がより好ましい。なお、酸解離定数a1の下限値としては、-20.0以上が好ましい。
 アニオン部位A 及びアニオン部位A は、負電荷を帯びた原子又は原子団を含む構造部位であり、例えば、以下に示す式(AA-1)~(AA-3)及び式(BB-1)~(BB-6)からなる群から選ばれる構造部位が挙げられる。アニオン部位A としては、酸解離定数の小さい酸性部位を形成し得るものが好ましく、なかでも、式(AA-1)~(AA-3)のいずれかであるのが好ましい。また、アニオン部位A としては、アニオン部位A よりも酸解離定数の大きい酸性部位を形成し得るものが好ましく、式(BB-1)~(BB-6)のいずれかから選ばれるのが好ましい。なお、以下の式(AA-1)~(AA-3)及び式(BB-1)~(BB-6)中、*は、結合位置を表す。
 式(AA-2)中、Rは、1価の有機基を表す。Rで表される1価の有機基としては、シアノ基、トリフルオロメチル基、及びメタンスルホニル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-I000024
 また、カチオン部位M 及びカチオン部位M は、正電荷を帯びた原子又は原子団を含む構造部位であり、例えば、電荷が1価の有機カチオンが挙げられる。なお、有機カチオンとしては特に制限されないが、後述する式(Ia-1)中のM11 及びM12 で表される有機カチオンと同様のものが挙げられる。
 化合物(I)の具体的な構造としては特に制限されないが、例えば、後述する式(Ia-1)~式(Ia-5)で表される化合物が挙げられる。
 以下において、まず、式(Ia-1)で表される化合物について述べる。式(Ia-1)で表される化合物は以下のとおりである。
 M11  A11 -L-A12  M12     (Ia-1)
 化合物(Ia-1)は、活性光線又は放射線の照射によって、HA11-L-A12Hで表される酸を発生する。
 式(Ia-1)中、M11 及びM12 は、各々独立に、有機カチオンを表す。
 A11 及びA12 は、各々独立に、1価のアニオン性官能基を表す。
 Lは、2価の連結基を表す。
 M11 及びM12 は、各々同一であっても異なっていてもよい。
 A11 及びA12 は、各々同一であっても異なっていてもよいが、互いに異なっているのが好ましい。
 但し、上記式(Ia-1)において、M11 及びM12 で表される有機カチオンをHに置き換えてなる化合物PIa(HA11-L-A12H)において、A12Hで表される酸性部位に由来する酸解離定数a2は、HA11で表される酸性部位に由来する酸解離定数a1よりも大きい。なお、酸解離定数a1と酸解離定数a2の好適値については、上述した通りである。また、化合物PIaと、活性光線又は放射線の照射によって式(Ia-1)で表される化合物から発生する酸は同じである。
 また、M11 、M12 、A11 、A12 、及びLの少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 式(Ia-1)中、M 及びM で表される有機カチオンについては、後述のとおりである。
 A11 で表される1価のアニオン性官能基とは、上述したアニオン部位A を含む1価の基を意図する。また、A12 で表される1価のアニオン性官能基とは、上述したアニオン部位A を含む1価の基を意図する。
 A11 及びA12 で表される1価のアニオン性官能基としては、上述した式(AA-1)~(AA-3)及び式(BB-1)~(BB-6)のいずれかのアニオン部位を含む1価のアニオン性官能基であるのが好ましく、式(AX-1)~(AX-3)、及び式(BX-1)~(BX-7)からなる群から選ばれる1価のアニオン性官能基であるのがより好ましい。A11 で表される1価のアニオン性官能基としては、なかでも、式(AX-1)~(AX-3)のいずれかで表される1価のアニオン性官能基であるのが好ましい。また、A12 で表される1価のアニオン性官能基としては、なかでも、式(BX-1)~(BX-7)のいずれかで表される1価のアニオン性官能基が好ましく、式(BX-1)~(BX-6)のいずれかで表される1価のアニオン性官能基がより好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(AX-1)~(AX-3)中、RA1及びRA2は、各々独立に、1価の有機基を表す。*は、結合位置を表す。
 RA1で表される1価の有機基としては、シアノ基、トリフルオロメチル基、及びメタンスルホニル基等が挙げられる。
 RA2で表される1価の有機基としては、直鎖状、分岐鎖状、若しくは環状のアルキル基、又はアリール基が好ましい。
 上記アルキル基の炭素数は1~15が好ましく、1~10がより好ましく、1~6が更に好ましい。
 上記アルキル基は、置換基を有していてもよい。置換基としては、フッ素原子又はシアノ基が好ましく、フッ素原子がより好ましい。上記アルキル基が置換基としてフッ素原子を有する場合、パーフルオロアルキル基であってもよい。
 上記アリール基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
 上記アリール基は、置換基を有していてもよい。置換基としては、フッ素原子、ヨウ素原子、パーフルオロアルキル基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、又はシアノ基が好ましく、フッ素原子、ヨウ素原子、又はパーフルオロアルキル基がより好ましい。
 式(BX-1)~(BX-4)及び式(BX-6)中、Rは、1価の有機基を表す。*は、結合位置を表す。
 Rで表される1価の有機基としては、直鎖状、分岐鎖状、若しくは環状のアルキル基、又はアリール基が好ましい。
 上記アルキル基の炭素数は1~15が好ましく、1~10がより好ましく、1~6が更に好ましい。
 上記アルキル基は、置換基を有していてもよい。置換基として特に制限されないが、置換基としては、フッ素原子又はシアノ基が好ましく、フッ素原子がより好ましい。上記アルキル基が置換基としてフッ素原子を有する場合、パーフルオロアルキル基であってもよい。
 なお、アルキル基において結合位置となる炭素原子(例えば、式(BX-1)及び(BX-4)の場合、アルキル基中の式中に明示される-CO-と直接結合する炭素原子が該当し、式(BX-2)及び(BX-3)の場合、アルキル基中の式中に明示される-SO-と直接結合する炭素原子が該当し、式(BX-6)の場合、アルキル基中の式中に明示されるNと直接結合する炭素原子が該当する。)が置換基を有する場合、フッ素原子又はシアノ基以外の置換基であるのも好ましい。
 また、上記アルキル基は、炭素原子がカルボニル炭素で置換されていてもよい。
 上記アリール基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
 上記アリール基は、置換基を有していてもよい。置換基としては、フッ素原子、ヨウ素原子、パーフルオロアルキル基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、シアノ基、アルキル基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、アルコキシ基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、又はアルコキシカルボニル基(例えば、炭素数2~10が好ましく、炭素数2~6がより好ましい。)が好ましく、フッ素原子、ヨウ素原子、パーフルオロアルキル基、アルキル基、アルコキシ基、又はアルコキシカルボニル基がより好ましい。
 式(Ia-1)中、Lで表される2価の連結基としては特に制限されず、-CO-、-NR-、-CO-、-O-、-S-、-SO-、-SO-、アルキレン基(好ましくは炭素数1~6。直鎖状でも分岐鎖状でもよい)、シクロアルキレン基(好ましくは炭素数3~15)、アルケニレン基(好ましくは炭素数2~6)、2価の脂肪族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族炭化水素環基(6~10員環が好ましく、6員環が更に好ましい。)、及びこれらの複数を組み合わせた2価の連結基が挙げられる。上記Rは、水素原子又は1価の有機基が挙げられる。1価の有機基としては特に制限されないが、例えば、アルキル基(好ましくは炭素数1~6)が好ましい。
 また、上記アルキレン基、上記シクロアルキレン基、上記アルケニレン基、上記2価の脂肪族複素環基、2価の芳香族複素環基、及び2価の芳香族炭化水素環基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 Lで表される2価の連結基としては、なかでも式(L1)で表される2価の連結基であるのが好ましい。
Figure JPOXMLDOC01-appb-C000026
 式(L1)中、L111は、単結合又は2価の連結基を表す。
 L111で表される2価の連結基としては特に制限されず、例えば、-CO-、-NH-、-O-、-SO-、-SO-、置換基を有していてもよいアルキレン基(好ましくは炭素数1~6がより好ましい。直鎖状及び分岐鎖状のいずれでもよい)、置換基を有していてもよいシクロアルキレン基(好ましくは炭素数3~15)、置換基を有していてもよいアリール(好ましくは炭素数6~10)、及びこれらの複数を組み合わせた2価の連結基が挙げられる。置換基としては特に制限されず、例えば、ハロゲン原子等が挙げられる。
 pは、0~3の整数を表し、1~3の整数を表すのが好ましい。
 vは、0又は1の整数を表す。
 Xfは、各々独立に、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基を表す。このアルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。また、少なくとも1つのフッ素原子で置換されたアルキル基としては、パーフルオロアルキル基が好ましい。
 Xfは、各々独立に、水素原子、置換基としてフッ素原子を有していてもよいアルキル基、又はフッ素原子を表す。このアルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。Xfとしては、なかでも、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基を表すのが好ましく、フッ素原子、又はパーフルオロアルキル基がより好ましい。
 なかでも、Xf及びXfとしては、各々独立に、フッ素原子又は炭素数1~4のパーフルオロアルキル基であることが好ましく、フッ素原子又はCFであることがより好ましい。特に、Xf及びXfが、いずれもフッ素原子であることが更に好ましい。
 *は結合位置を表す。
 式(Ia-1)中のL11が式(L1)で表される2価の連結基を表す場合、式(L1)中のL111側の結合手(*)が、式(Ia-1)中のA12 と結合するのが好ましい。
 (Ia-1)中、M11 及びM12 で表される有機カチオンの好ましい形態について詳述する。
 M11 及びM12 で表される有機カチオンは、各々独立に、式(ZaI)で表される有機カチオン(カチオン(ZaI))又は式(ZaII)で表される有機カチオン(カチオン(ZaII))が好ましい。
Figure JPOXMLDOC01-appb-C000027
 上記式(ZaI)において、
 R201、R202、及びR203は、各々独立に、有機基を表す。
 R201、R202、及びR203としての有機基の炭素数は、通常1~30であり、1~20が好ましい。また、R201~R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル基、アミド基、又はカルボニル基を含んでいてもよい。R201~R203の内の2つが結合して形成する基としては、例えば、アルキレン基(例えば、ブチレン基及びペンチレン基)、及び-CH-CH-O-CH-CH-が挙げられる。
 式(ZaI)における有機カチオンの好適な態様としては、後述する、カチオン(ZaI-1)、カチオン(ZaI-2)、式(ZaI-3b)で表される有機カチオン(カチオン(ZaI-3b))、及び式(ZaI-4b)で表される有機カチオン(カチオン(ZaI-4b))が挙げられる。
 まず、カチオン(ZaI-1)について説明する。
 カチオン(ZaI-1)は、上記式(ZaI)のR201~R203の少なくとも1つがアリール基である、アリールスルホニウムカチオンである。
 アリールスルホニウムカチオンは、R201~R203の全てがアリール基でもよいし、R201~R203の一部がアリール基であり、残りがアルキル基又はシクロアルキル基であってもよい。
 また、R201~R203のうちの1つがアリール基であり、R201~R203のうちの残りの2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル基、アミド基、又はカルボニル基を含んでいてもよい。R201~R203のうちの2つが結合して形成する基としては、例えば、1つ以上のメチレン基が酸素原子、硫黄原子、エステル基、アミド基、及び/又はカルボニル基で置換されていてもよいアルキレン基(例えば、ブチレン基、ペンチレン基、又は-CH-CH-O-CH-CH-)が挙げられる。
 アリールスルホニウムカチオンとしては、例えば、トリアリールスルホニウムカチオン、ジアリールアルキルスルホニウムカチオン、アリールジアルキルスルホニウムカチオン、ジアリールシクロアルキルスルホニウムカチオン、及びアリールジシクロアルキルスルホニウムカチオンが挙げられる。
 アリールスルホニウムカチオンに含まれるアリール基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。アリール基は、酸素原子、窒素原子、又は硫黄原子等を有するヘテロ環構造を有するアリール基であってもよい。ヘテロ環構造としては、ピロール残基、フラン残基、チオフェン残基、インドール残基、ベンゾフラン残基、及びベンゾチオフェン残基等が挙げられる。アリールスルホニウムカチオンが2つ以上のアリール基を有する場合に、2つ以上あるアリール基は同一であっても異なっていてもよい。
 アリールスルホニウムカチオンが必要に応じて有しているアルキル基又はシクロアルキル基は、炭素数1~15の直鎖状アルキル基、炭素数3~15の分岐鎖状アルキル基、又は炭素数3~15のシクロアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、シクロプロピル基、シクロブチル基、及びシクロヘキシル基等がより好ましい。
 R201~R203のアリール基、アルキル基、及びシクロアルキル基が有していてもよい置換基は、各々独立に、アルキル基(例えば炭素数1~15)、シクロアルキル基(例えば炭素数3~15)、アリール基(例えば炭素数6~14)、アルコキシ基(例えば炭素数1~15)、シクロアルキルアルコキシ基(例えば炭素数1~15)、ハロゲン原子(例えばフッ素、ヨウ素)、水酸基、カルボキシル基、エステル基、スルフィニル基、スルホニル基、アルキルチオ基、及びフェニルチオ基等が好ましい。
 上記置換基は可能な場合更に置換基を有していてもよく、例えば、上記アルキル基が置換基としてハロゲン原子を有して、トリフルオロメチル基などのハロゲン化アルキル基となっていることも好ましい。
 また、上記置換基は任意の組み合わせにより、酸分解性基を形成することも好ましい。
 なお、酸分解性基とは、酸の作用により分解して酸基を生じる基を意図し、酸の作用により脱離する脱離基で酸基が保護された構造であるのが好ましい。上記の酸基及び脱離基としては、既述のとおりである。
 次に、カチオン(ZaI-2)について説明する。
 カチオン(ZaI-2)は、式(ZaI)におけるR201~R203が、各々独立に、芳香環を有さない有機基を表すカチオンである。ここで芳香環とは、ヘテロ原子を含む芳香族環も包含する。
 R201~R203としての芳香環を有さない有機基は、一般的に炭素数1~30であり、炭素数1~20が好ましい。
 R201~R203は、各々独立に、アルキル基、シクロアルキル基、アリル基、又はビニル基が好ましく、直鎖状又は分岐鎖状の2-オキソアルキル基、2-オキソシクロアルキル基、又はアルコキシカルボニルメチル基がより好ましく、直鎖状又は分岐鎖状の2-オキソアルキル基が更に好ましい。
 R201~R203のアルキル基及びシクロアルキル基は、例えば、炭素数1~10の直鎖状アルキル基又は炭素数3~10の分岐鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、及びペンチル基)、並びに、炭素数3~10のシクロアルキル基(例えばシクロペンチル基、シクロヘキシル基、及びノルボルニル基)が挙げられる。
 R201~R203は、ハロゲン原子、アルコキシ基(例えば炭素数1~5)、水酸基、シアノ基、又はニトロ基によって更に置換されていてもよい。
 また、R201~R203の置換基は、各々独立に、置換基の任意の組み合わせにより、酸分解性基を形成することも好ましい。
 次に、カチオン(ZaI-3b)について説明する。
 カチオン(ZaI-3b)は、下記式(ZaI-3b)で表されるカチオンである。
Figure JPOXMLDOC01-appb-C000028
 式(ZaI-3b)中、
 R1c~R5cは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アルキルカルボニルオキシ基、シクロアルキルカルボニルオキシ基、ハロゲン原子、水酸基、ニトロ基、アルキルチオ基、又はアリールチオ基を表す。
 R6c及びR7cは、各々独立に、水素原子、アルキル基(t-ブチル基等)、シクロアルキル基、ハロゲン原子、シアノ基、又はアリール基を表す。
 R及びRは、各々独立に、アルキル基、シクロアルキル基、2-オキソアルキル基、2-オキソシクロアルキル基、アルコキシカルボニルアルキル基、アリル基、又はビニル基を表す。
 また、R1c~R7c、並びに、R及びRの置換基は、各々独立に、置換基の任意の組み合わせにより、酸分解性基を形成することも好ましい。
 R1c~R5c中のいずれか2つ以上、R5cとR6c、R6cとR7c、R5cとR、及びRとRは、それぞれ互いに結合して環を形成してもよく、この環は、各々独立に、酸素原子、硫黄原子、ケトン基、エステル結合、又はアミド結合を含んでいてもよい。
 上記環としては、芳香族又は非芳香族の炭化水素環、芳香族又は非芳香族のヘテロ環、及びこれらの環が2つ以上組み合わされてなる多環縮合環が挙げられる。環としては、3~10員環が挙げられ、4~8員環が好ましく、5又は6員環がより好ましい。
 R1c~R5c中のいずれか2つ以上、R6cとR7c、及びRとRが結合して形成する基としては、ブチレン基及びペンチレン基等のアルキレン基が挙げられる。このアルキレン基中のメチレン基が酸素原子等のヘテロ原子で置換されていてもよい。
 R5cとR6c、及びR5cとRが結合して形成する基としては、単結合又はアルキレン基が好ましい。アルキレン基としては、メチレン基及びエチレン基等が挙げられる。
 R1c~R5c、R6c、R7c、R、R、並びに、R1c~R5c中のいずれか2つ以上、R5cとR6c、R6cとR7c、R5cとR、及びRとRがそれぞれ互いに結合して形成する環は、置換基を有していてもよい。
 次に、カチオン(ZaI-4b)について説明する。
 カチオン(ZaI-4b)は、下記式(ZaI-4b)で表されるカチオンである。
Figure JPOXMLDOC01-appb-C000029
 式(ZaI-4b)中、
 lは0~2の整数を表す。
 rは0~8の整数を表す。
 R13は、水素原子、ハロゲン原子(例えば、フッ素原子、ヨウ素原子等)、水酸基、アルキル基、ハロゲン化アルキル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、又はシクロアルキル基を有する基(シクロアルキル基そのものであってもよく、シクロアルキル基を一部に含む基であってもよい)を表す。これらの基は置換基を有してもよい。
 R14は、水酸基、ハロゲン原子(例えば、フッ素原子、ヨウ素原子等)、アルキル基、ハロゲン化アルキル基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルスルホニル基、シクロアルキルスルホニル基、又はシクロアルキル基を有する基(シクロアルキル基そのものであってもよく、シクロアルキル基を一部に含む基であってもよい)を表す。これらの基は置換基を有してもよい。R14は、複数存在する場合は各々独立して、水酸基等の上記基を表す。
 R15は、各々独立して、アルキル基、シクロアルキル基、又はナフチル基を表す。2つのR15が互いに結合して環を形成してもよい。2つのR15が互いに結合して環を形成するとき、環骨格内に、酸素原子、又は窒素原子等のヘテロ原子を含んでもよい。一態様において、2つのR15がアルキレン基であり、互いに結合して環構造を形成するのが好ましい。なお、上記アルキル基、上記シクロアルキル基、及び上記ナフチル基、並びに、2つのR15が互いに結合して形成する環は置換基を有してもよい。
 式(ZaI-4b)において、R13、R14、及びR15のアルキル基は、直鎖状又は分岐鎖状である。アルキル基の炭素数は、1~10が好ましい。アルキル基は、メチル基、エチル基、n-ブチル基、又はt-ブチル基等がより好ましい。
 また、R13~R15、並びに、R及びRの各置換基は、各々独立に、置換基の任意の組み合わせにより、酸分解性基を形成するのも好ましい。
 次に、式(ZaII)について説明する。
 式(ZaII)中、R204及びR205は、各々独立に、アリール基、アルキル基又はシクロアルキル基を表す。
 R204及びR205のアリール基は、フェニル基、又はナフチル基が好ましく、フェニル基がより好ましい。R204及びR205のアリール基は、酸素原子、窒素原子、又は硫黄原子等を有するヘテロ環を有するアリール基であってもよい。ヘテロ環を有するアリール基の骨格としては、例えば、ピロール、フラン、チオフェン、インドール、ベンゾフラン、及びベンゾチオフェン等が挙げられる。
 R204及びR205のアルキル基及びシクロアルキル基は、炭素数1~10の直鎖状アルキル基又は炭素数3~10の分岐鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、又はペンチル基)、又は炭素数3~10のシクロアルキル基(例えばシクロペンチル基、シクロヘキシル基、又はノルボルニル基)が好ましい。
 R204及びR205のアリール基、アルキル基、及びシクロアルキル基は、各々独立に、置換基を有していてもよい。R204及びR205のアリール基、アルキル基、及びシクロアルキル基が有していてもよい置換基としては、例えば、アルキル基(例えば炭素数1~15)、シクロアルキル基(例えば炭素数3~15)、アリール基(例えば炭素数6~15)、アルコキシ基(例えば炭素数1~15)、ハロゲン原子、水酸基、及びフェニルチオ基等が挙げられる。また、R204及びR205の置換基は、各々独立に、置換基の任意の組み合わせにより、酸分解性基を形成することも好ましい。
 次に、式(Ia-2)~(Ia-4)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000030
 式(Ia-2)中、A21a 及びA21b は、各々独立に、1価のアニオン性官能基を表す。ここで、A21a 及びA21b で表される1価のアニオン性官能基とは、上述したアニオン部位A を含む1価の基を意図する。A21a 及びA21b で表される1価のアニオン性官能基としては特に制限されないが、例えば、上述の式(AX-1)~(AX-3)からなる群から選ばれる1価のアニオン性官能基等が挙げられる。
 A22 は、2価のアニオン性官能基を表す。ここで、A22 で表される2価のアニオン性官能基とは、上述したアニオン部位A を含む2価の基を意図する。A22 で表される2価のアニオン性官能基としては、例えば、以下に示す式(BX-8)~(BX-11)で表される2価のアニオン性官能基等が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 M21a 、M21b 、及びM22 は、各々独立に、有機カチオンを表す。M21a 、M21b 、及びM22 で表される有機カチオンとしては、上述のM と同義であり、好適態様も同じである。
 L21及びL22は、各々独立に、2価の有機基を表す。
 また、上記式(Ia-2)において、M21a 、M21b 、及びM22 で表される有機カチオンをHに置き換えてなる化合物PIa-2において、A22Hで表される酸性部位に由来する酸解離定数a2は、A21aHに由来する酸解離定数a1-1及びA21bHで表される酸性部位に由来する酸解離定数a1-2よりも大きい。なお、酸解離定数a1-1と酸解離定数a1-2は、上述した酸解離定数a1に該当する。
 なお、A21a 及びA21b は、互いに同一であっても異なっていてもよい。また、M21a 、M21b 、及びM22 は、互いに同一であっても異なっていてもよい。
 また、M21a 、M21b 、M22 、A21a 、A21b 、L21、及びL22の少なくとも1つが、の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 式(Ia-3)中、A31a 及びA32 は、各々独立に、1価のアニオン性官能基を表す。なお、A31a で表される1価のアニオン性官能基の定義は、上述した式(Ia-2)中のA21a 及びA21b と同義であり、好適態様も同じである。
 A32 で表される1価のアニオン性官能基は、上述したアニオン部位A を含む1価の基を意図する。A32 で表される1価のアニオン性官能基としては特に制限されないが、例えば、上述の式(BX-1)~(BX-7)からなる群から選ばれる1価のアニオン性官能基等が挙げられる。
 A31b は、2価のアニオン性官能基を表す。ここで、A31b で表される2価のアニオン性官能基とは、上述したアニオン部位A を含む2価の基を意図する。A31b で表される2価のアニオン性官能基としては、例えば、以下に示す式(AX-4)で表される2価のアニオン性官能基等が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 M31a 、M31b 、及びM32 は、各々独立に、1価の有機カチオンを表す。M31a 、M31b 、及びM32 有機カチオンとしては、上述のM と同義であり、好適態様も同じである。
 L31及びL32は、各々独立に、2価の有機基を表す。
 また、上記式(Ia-3)において、M31a 、M31b 、及びM32 で表される有機カチオンをHに置き換えてなる化合物PIa-3において、A32Hで表される酸性部位に由来する酸解離定数a2は、A31aHで表される酸性部位に由来する酸解離定数a1-3及びA31bHで表される酸性部位に由来する酸解離定数a1-4よりも大きい。なお、酸解離定数a1-3と酸解離定数a1-4は、上述した酸解離定数a1に該当する。
 なお、A31a 及びA32 は、互いに同一であっても異なっていてもよい。また、M31a 、M31b 、及びM32 は、互いに同一であっても異なっていてもよい。
 また、M31a 、M31b 、M32 、A31a 、A32 、L31、及びL32の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 式(Ia-4)中、A41a 、A41b 、及びA42 は、各々独立に、1価のアニオン性官能基を表す。なお、A41a 及びA41b で表される1価のアニオン性官能基の定義は、上述した式(Ia-2)中のA21a 及びA21b と同義である。また、A42 で表される1価のアニオン性官能基の定義は、上述した式(Ia-3)中のA32 と同義であり、好適態様も同じである。
 M41a 、M41b 、及びM42 は、各々独立に、有機カチオンを表す。
 L41は、3価の有機基を表す。
 また、上記式(Ia-4)において、M41a 、M41b 、及びM42 で表される有機カチオンをHに置き換えてなる化合物PIa-4において、A42Hで表される酸性部位に由来する酸解離定数a2は、A41aHで表される酸性部位に由来する酸解離定数a1-5及びA41bHで表される酸性部位に由来する酸解離定数a1-6よりも大きい。なお、酸解離定数a1-5と酸解離定数a1-6は、上述した酸解離定数a1に該当する。
 なお、A41a 、A41b 、及びA42 は、互いに同一であっても異なっていてもよい。また、M41a 、M41b 、及びM42 は、互いに同一であっても異なっていてもよい。
 また、M41a 、M41b 、M42 、A41a 、A41b 、A42 、及びL41の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 式(Ia-2)中のL21及びL22、並びに、式(Ia-3)中のL31及びL32で表される2価の有機基としては特に制限されず、例えば、-CO-、-NR-、-O-、-S-、-SO-、-SO-、アルキレン基(好ましくは炭素数1~6。直鎖状でも分岐鎖状でもよい)、シクロアルキレン基(好ましくは炭素数3~15)、アルケニレン基(好ましくは炭素数2~6)、2価の脂肪族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族炭化水素環基(6~10員環が好ましく、6員環が更に好ましい。)、及びこれらの複数を組み合わせた2価の有機基が挙げられる。上記Rは、水素原子又は1価の有機基が挙げられる。1価の有機基としては特に制限されないが、例えば、アルキル基(好ましくは炭素数1~6)が好ましい。
 また、上記アルキレン基、上記シクロアルキレン基、上記アルケニレン基、上記2価の脂肪族複素環基、2価の芳香族複素環基、及び2価の芳香族炭化水素環基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 式(Ia-2)中のL21及びL22、並びに、式(Ia-3)中のL31及びL32で表される2価の有機基としては、例えば、下記式(L2)で表される2価の有機基であるのも好ましい。
Figure JPOXMLDOC01-appb-C000033
 式(L2)中、qは、1~3の整数を表す。*は結合位置を表す。
 Xfは、各々独立に、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基を表す。このアルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。また、少なくとも1つのフッ素原子で置換されたアルキル基としては、パーフルオロアルキル基が好ましい。
 Xfは、フッ素原子又は炭素数1~4のパーフルオロアルキル基であることが好ましく、フッ素原子又はCFであることがより好ましい。特に、双方のXfがフッ素原子であることが更に好ましい。
 Lは、単結合又は2価の連結基を表す。
 Lで表される2価の連結基としては特に制限されず、例えば、-CO-、-O-、-SO-、-SO-、アルキレン基(好ましくは炭素数1~6。直鎖状でも分岐鎖状でもよい)、シクロアルキレン基(好ましくは炭素数3~15)、2価の芳香族炭化水素環基(6~10員環が好ましく、6員環が更に好ましい。)、及びこれらの複数を組み合わせた2価の連結基が挙げられる。
 また、上記アルキレン基、上記シクロアルキレン基、及び2価の芳香族炭化水素環基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 式(L2)で表される2価の有機基としては、例えば、*-CF-*、*-CF-CF-*、*-CF-CF-CF-*、*-Ph-O-SO-CF-*、*-Ph-O-SO-CF-CF-*、及び*-Ph-O-SO-CF-CF-CF-*、*-Ph-OCO-CF-*等が挙げられる。なお、Phとは、置換基を有していてもよいフェニレン基であり、1,4-フェニレン基であるのが好ましい。置換基としては特に制限されないが、アルキル基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、アルコキシ基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、又はアルコキシカルボニル基(例えば、炭素数2~10が好ましく、炭素数2~6がより好ましい。)が好ましい。
 式(Ia-2)中のL21及びL22が式(L2)で表される2価の有機基を表す場合、式(L2)中のL側の結合手(*)が、式(Ia-2)中のA21a 及びA21b と結合するのが好ましい。
 また、式(Ia-3)中のL31及びL32が式(L2)で表される2価の有機基を表す場合、式(L2)中のL側の結合手(*)が、式(Ia-3)中のA31a 及びA32 と結合するのが好ましい。
 式(Ia-4)中のL41で表される3価の有機基としては特に制限されず、例えば、下記式(L3)で表される3価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000034
 式(L3)中、Lは、3価の炭化水素環基又は3価の複素環基を表す。*は結合位置を表す。
 上記炭化水素環基は、芳香族炭化水素環基であっても、脂肪族炭化水素環基であってもよい。上記炭化水素環基に含まれる炭素数は、6~18が好ましく、6~14がより好ましい。上記複素環基は、芳香族複素環基であっても、脂肪族複素環基であってもよい。上記複素環は、少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環であることが好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。
 Lとしては、なかでも、3価の炭化水素環基が好ましく、ベンゼン環基又はアダマンタン環基がより好ましい。ベンゼン環基又はアダマンタン環基は、置換基を有していてもよい。置換基としては特に制限されないが、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 また、式(L3)中、LB1~LB3は、各々独立に、単結合又は2価の連結基を表す。LB1~LB3で表される2価の連結基としては特に制限されず、例えば、-CO-、-NR-、-O-、-S-、-SO-、-SO-、アルキレン基(好ましくは炭素数1~6。直鎖状でも分岐鎖状でもよい)、シクロアルキレン基(好ましくは炭素数3~15)、アルケニレン基(好ましくは炭素数2~6)、2価の脂肪族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族炭化水素環基(6~10員環が好ましく、6員環が更に好ましい。)、及びこれらの複数を組み合わせた2価の連結基が挙げられる。上記Rは、水素原子又は1価の有機基が挙げられる。1価の有機基としては特に制限されないが、例えば、アルキル基(好ましくは炭素数1~6)が好ましい。
 また、上記アルキレン基、上記シクロアルキレン基、上記アルケニレン基、上記2価の脂肪族複素環基、2価の芳香族複素環基、及び2価の芳香族炭化水素環基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 LB1~LB3で表される2価の連結基としては、上記のなかでも、-CO-、-NR-、-O-、-S-、-SO-、-SO-、置換基を有していてもよいアルキレン基、及びこれらの複数を組み合わせた2価の連結基が好ましい。
 LB1~LB3で表される2価の連結基としては、なかでも式(L3-1)で表される2価の連結基であるのがより好ましい。
Figure JPOXMLDOC01-appb-C000035
 式(L3-1)中、LB11は、単結合又は2価の連結基を表す。
 LB11で表される2価の連結基としては特に制限されず、例えば、-CO-、-O-、-SO-、-SO-、置換基を有していてもよいアルキレン基(好ましくは炭素数1~6。直鎖状でも分岐鎖状でもよい)、及びこれらの複数を組み合わせた2価の連結基が挙げられる。置換基としては特に制限されず、例えば、ハロゲン原子等が挙げられる。
 rは、1~3の整数を表す。
 Xfは、上述した式(L2)中のXfと同義であり、好適態様も同じである。
 *は結合位置を表す。
 LB1~LB3で表される2価の連結基としては、例えば、*-O-*、*-O-SO-CF-*、*-O-SO-CF-CF-*、*-O-SO-CF-CF-CF-*、及び*-COO-CH-CH-*等が挙げられる。
 式(Ia-4)中のL41が式(L3-1)で表される2価の有機基を含み、且つ、式(L3-1)で表される2価の有機基とA42 とが結合する場合、式(L3-1)中に明示される炭素原子側の結合手(*)が、式(Ia-4)中のA42 と結合するのが好ましい。
 次に、式(Ia-5)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000036
 式(Ia-5)中、A51a 、A51b 、及びA51c は、各々独立に、1価のアニオン性官能基を表す。ここで、A51a 、A51b 、及びA51c で表される1価のアニオン性官能基とは、上述したアニオン部位A を含む1価の基を意図する。
51a 、A51b 、及びA51c で表される1価のアニオン性官能基としては特に制限されないが、例えば、上述の式(AX-1)~(AX-3)からなる群から選ばれる1価のアニオン性官能基等が挙げられる。
 A52a 及びA52b は、2価のアニオン性官能基を表す。ここで、A52a 及びA52b で表される2価のアニオン性官能基とは、上述したアニオン部位A を含む2価の基を意図する。A22 で表される2価のアニオン性官能基としては、例えば、例えば、上述の式(BX-8)~(BX-11)からなる群から選ばれる2価のアニオン性官能基等が挙げられる。
 M51a 、M51b 、M51c 、M52a 、及びM52b は、各々独立に、有機カチオンを表す。M51a 、M51b 、M51c 、M52a 、及びM52b で表される有機カチオンとしては、上述のM と同義であり、好適態様も同じである。
 L51及びL53は、各々独立に、2価の有機基を表す。L51及びL53で表される2価の有機基としては、上述した式(Ia-2)中のL21及びL22と同義であり、好適態様も同じである。
 L52は、3価の有機基を表す。L52で表される3価の有機基としては、上述した式(Ia-4)中のL41と同義であり、好適態様も同じである。
 また、上記式(Ia-5)において、M51a 、M51b 、M51c 、M52a 、及びM52b で表される有機カチオンをHに置き換えてなる化合物PIa-5において、A52aHで表される酸性部位に由来する酸解離定数a2-1及びA52bHで表される酸性部位に由来する酸解離定数a2-2は、A51aHに由来する酸解離定数a1-1、A51bHで表される酸性部位に由来する酸解離定数a1-2、及びA51cHで表される酸性部位に由来する酸解離定数a1-3よりも大きい。なお、酸解離定数a1-1~a1-3は、上述した酸解離定数a1に該当し、酸解離定数a2-1及びa2-2は、上述した酸解離定数a2に該当する。
 なお、A51a 、A51b 、及びA51c は、互いに同一であっても異なっていてもよい。また、A52a 及びA52b は、互いに同一であっても異なっていてもよい。また、M51a 、M51b 、M51c 、M52a 、及びM52b は、互いに同一であっても異なっていてもよい。
 また、M51b 、M51c 、M52a 、M52b 、A51a 、A51b 、A51c 、L51、L52、及びL53の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
(化合物(II))
 化合物(II)は、2つ以上の上記構造部位X及び1つ以上の下記構造部位Zを有する化合物であって、活性光線又は放射線の照射によって、上記構造部位Xに由来する上記第1の酸性部位を2つ以上と上記構造部位Zとを含む酸を発生する化合物とを含む酸を発生する化合物である。
 構造部位Z:酸を中和可能な非イオン性の部位
 化合物(II)中、構造部位Xの定義、並びに、A 及びM の定義は、上述した化合物(I)中の構造部位Xの定義、並びに、A 及びM の定義と同義であり、好適態様も同じである。
 上記化合物(II)において上記構造部位X中の上記カチオン部位M をHに置き換えてなる化合物PIIにおいて、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a1の好適範囲については、上記化合物PIにおける酸解離定数a1と同じである。
 なお、化合物(II)が、例えば、上記構造部位Xに由来する上記第1の酸性部位を2つと上記構造部位Zとを有する酸を発生する化合物である場合、化合物PIIは「2つのHAを有する化合物」に該当する。この化合物PIIの酸解離定数を求めた場合、化合物PIIが「1つのA と1つのHAとを有する化合物」となる際の酸解離定数、及び「1つのA と1つのHAとを有する化合物」が「2つのA を有する化合物」となる際の酸解離定数が、酸解離定数a1に該当する。
 酸解離定数a1は、上述した酸解離定数の測定方法により求められる。
 上記化合物PIIとは、化合物(II)に活性光線又は放射線を照射した場合に、発生する酸に該当する。
 なお、上記2つ以上の構造部位Xは、各々同一であっても異なっていてもよい。また、2つ以上の上記A 、及び2つ以上の上記M は、各々同一であっても異なっていてもよい。
 構造部位Z中の酸を中和可能な非イオン性の部位としては特に制限されず、例えば、プロトンと静電的に相互作用し得る基又は電子を有する官能基を含む部位であることが好ましい。
 プロトンと静電的に相互作用し得る基又は電子を有する官能基としては、環状ポリエーテル等のマクロサイクリック構造を有する官能基、又はπ共役に寄与しない非共有電子対をもった窒素原子を有する官能基等が挙げられる。π共役に寄与しない非共有電子対を有する窒素原子とは、例えば、下記式に示す部分構造を有する窒素原子である。
Figure JPOXMLDOC01-appb-C000037
 プロトンと静電的に相互作用し得る基又は電子を有する官能基の部分構造としては、例えば、クラウンエーテル構造、アザクラウンエーテル構造、1~3級アミン構造、ピリジン構造、イミダゾール構造、及びピラジン構造等が挙げられ、なかでも、1~3級アミン構造が好ましい。
 化合物(II)としては特に制限されないが、例えば、下記式(IIa-1)及び下記式(IIa-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 上記式(IIa-1)中、A61a 及びA61b は、各々上述した式(Ia-1)中のA11 と同義であり、好適態様も同じである。また、M61a 及びM61b は、各々上述した式(Ia-1)中のM11 と同義であり、好適態様も同じである。
 上記式(IIa-1)中、L61及びL62は、各々上述した式(Ia-1)中のLと同義であり、好適態様も同じである。
 式(IIa-1)中、R2Xは、1価の有機基を表す。R2Xで表される1価の有機基としては特に制限されず、例えば、-CH-が、-CO-、-NH-、-O-、-S-、-SO-、及び-SO-よりなる群より選ばれる1種又は2種以上の組み合わせで置換されていてもよい、アルキル基(好ましくは炭素数1~10。直鎖状でも分岐鎖状でもよい)、シクロアルキル基(好ましくは炭素数3~15)、又はアルケニル基(好ましくは炭素数2~6)等が挙げられる。
 また、上記アルキレン基、上記シクロアルキレン基、及び上記アルケニレン基は、置換基を有していてもよい。置換基としては、特に制限されないが、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 また、上記式(IIa-1)において、M61a 及びM61b で表される有機カチオンをHに置き換えてなる化合物PIIa-1において、A61aHで表される酸性部位に由来する酸解離定数a1-7及びA61bHで表される酸性部位に由来する酸解離定数a1-8は、上述した酸解離定数a1に該当する。
 なお、上記化合物(IIa-1)において上記構造部位X中の上記カチオン部位M61a 及びM61b をHに置き換えてなる化合物PIIa-1は、HA61a-L61-N(R2X)-L62-A61bHが該当する。また、化合物PIIa-1と、活性光線又は放射線の照射によって式(IIa-1)で表される化合物から発生する酸は同じである。
 また、M61a 、M61b 、A61a 、A61b 、L61、L62、及びR2Xの少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 上記式(IIa-2)中、A71a 、A71b 、及びA71c は、各々上述した式(Ia-1)中のA11 と同義であり、好適態様も同じである。また、M71a 、M71b 、M71c は、各々上述した式(Ia-1)中のM11 と同義であり、好適態様も同じである。
 上記式(IIa-2)中、L71、L72、及びL73は、各々上述した式(Ia-1)中のLと同義であり、好適態様も同じである。
 また、上記式(IIa-2)において、M71a 、M71b 、M71c で表される有機カチオンをHに置き換えてなる化合物PIIa-2において、A71aHで表される酸性部位に由来する酸解離定数a1-9、A71bHで表される酸性部位に由来する酸解離定数a1-10、及びA71cHで表される酸性部位に由来する酸解離定数a1-11は、上述した酸解離定数a1に該当する。
 なお、上記化合物(IIa-1)において上記構造部位X中の上記カチオン部位M71a 、M71b 、M71c をHに置き換えてなる化合物PIIa-2は、HA71a-L71-N(L73-A71cH)-L72-A71bHが該当する。また、化合物PIIa-2と、活性光線又は放射線の照射によって式(IIa-2)で表される化合物から発生する酸は同じである。
 また、M71a 、M71b 、M71c 、A71a 、A71b 、A71c 、L71、L72、及びL73の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 以下に、特定光酸発生剤が有し得る、有機カチオン及びそれ以外の部位を例示する。
 上記有機カチオンは、例えば、式(Ia-1)~式(Ia-5)で表される化合物における、M11 、M12 、M21a 、M21b 、M22 、M31a 、M31b 、M32 、M41a 、M41b 、M42 でM51a 、M51b 、M51c 、M52a 、又はM52b として使用できる。
 上記それ以外の部位とは、例えば、式(Ia-1)~式(Ia-5)で表される化合物における、M11 、M12 、M21a 、M21b 、M22 、M31a 、M31b 、M32 、M41a 、M41b 、M42 でM51a 、M51b 、M51c 、M52a 、及びM52b 以外の部分として使用できる。
 以下に示す有機カチオン及びそれ以外の部位を適宜組み合わせて、特定光酸発生剤として使用できる。
 まず、特定光酸発生剤が有し得る、有機カチオンを例示する。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 次に、特定光酸発生剤が有し得る、有機カチオン以外の部位を例示する。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 特定光酸発生剤の分子量は100~10000が好ましく、100~2500がより好ましく、100~1500が更に好ましい。
 本発明の組成物が特定光酸発生剤を含有する場合、その含有量(化合物(I)及び(II)の合計含有量)は、組成物の全固形分に対して、10質量%以上が好ましく、20質量%以上がより好ましい。また、その上限値としては、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が更に好ましい。
 特定光酸発生剤は1種単独で使用してもよく、2種以上を使用してもよい。2種以上使用する場合は、その合計含有量が、上記好適含有量の範囲内であるのが好ましい。
(化合物(III))
 本発明の組成物は、光酸発生剤(P)として、下記化合物(III)を有してもよい。
 化合物(III)は、2つ以上の下記構造部位Xを有する化合物であって、活性光線又は放射線の照射によって、下記構造部位Xに由来する2つの酸性部位を発生する化合物である。
  構造部位X:アニオン部位A とカチオン部位M とからなり、且つ活性光線又は放射線の照射によってHAで表される酸性部位を形成する構造部位
 化合物(III)に含まれる2つ以上の構造部位Xは、各々同一であっても異なっていてもよい。また、2つ以上の上記A 、及び2つ以上の上記M は、各々同一であっても異なっていてもよい。
 化合物(III)中、構造部位Xの定義、並びに、A 及びM の定義は、上述した化合物(I)中の構造部位Xの定義、並びに、A 及びM の定義と同義であり、好適態様も同じである。
 光酸発生剤は、「M X」で表される化合物であることが好ましい。Mは、有機カチオンを表す。
 上記有機カチオンは、上述した式(ZaI)で表されるカチオン(カチオン(ZaI))又は上述した式(ZaII)で表されるカチオン(カチオン(ZaII))が好ましい。
<酸拡散制御剤(Q)>
 本発明の組成物は、酸拡散制御剤(Q)を含んでいてもよい。
 酸拡散制御剤(Q)は、露光時に光酸発生剤(P)等から発生する酸をトラップし、余分な発生酸による、未露光部における酸分解性樹脂の反応を抑制するクエンチャーとして作用するものである。酸拡散制御剤(Q)としては、例えば、塩基性化合物(DA)、放射線の照射により塩基性が低下又は消失する塩基性化合物(DB)、光酸発生剤(P)に対して相対的に弱酸となるオニウム塩(DC)、窒素原子を有し、酸の作用により脱離する基を有する低分子化合物(DD)、及び、カチオン部に窒素原子を有するオニウム塩化合物(DE)等が使用できる。
 本発明の組成物においては、公知の酸拡散制御剤を適宜使用できる。例えば、米国特許出願公開2016/0070167号明細書の段落[0627]~[0664]、米国特許出願公開2015/0004544号明細書の段落[0095]~[0187]、米国特許出願公開2016/0237190号明細書の段落[0403]~[0423]、及び、米国特許出願公開2016/0274458号明細書の段落[0259]~[0328]に開示された公知の化合物を、酸拡散制御剤(Q)として好適に使用できる。
 塩基性化合物(DA)としては、特開2019-045864号公報の段落0188~0208に記載の繰り返し単位が挙げられる。
 本発明の組成物では、光酸発生剤(P)に対して相対的に弱酸となるオニウム塩(DC)を酸拡散制御剤(Q)として使用できる。
 光酸発生剤(P)と、光酸発生剤(P)から生じた酸に対して相対的に弱酸である酸を発生するオニウム塩とを混合して用いた場合、活性光線性又は放射線の照射により光酸発生剤(P)から生じた酸が未反応の弱酸アニオンを有するオニウム塩と衝突すると、塩交換により弱酸を放出して強酸アニオンを有するオニウム塩を生じる。この過程で強酸がより触媒能の低い弱酸に交換されるため、見かけ上、酸が失活して酸拡散を制御できる。
 光酸発生剤(P)に対して相対的に弱酸となるオニウム塩としては、特開2019-070676号公報の段落0226~0233に記載のオニウム塩が挙げられる。
 本発明の組成物に酸拡散制御剤(Q)が含まれる場合、酸拡散制御剤(Q)の含有量(複数種存在する場合はその合計)は、組成物の全固形分に対して、0.1~10.0質量%が好ましく、0.1~5.0質量%がより好ましい。
 本発明の組成物において、酸拡散制御剤(Q)は1種単独で使用してもよいし、2種以上を併用してもよい。
<疎水性樹脂(E)>
 本発明の組成物は、疎水性樹脂(E)として、上記樹脂(A)とは異なる疎水性の樹脂を含んでいてもよい。
 疎水性樹脂(E)は、レジスト膜の表面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性物質及び非極性物質を均一に混合することに寄与しなくてもよい。
 疎水性樹脂(E)を添加することの効果として、水に対するレジスト膜表面の静的及び動的な接触角の制御、並びに、アウトガスの抑制等が挙げられる。
 疎水性樹脂(E)は、膜表層への偏在化の観点から、“フッ素原子”、“珪素原子”、及び、“樹脂の側鎖部分に含まれたCH部分構造”のいずれか1種以上を有することが好ましく、2種以上を有することがより好ましい。また、疎水性樹脂(E)は、炭素数5以上の炭化水素基を有することが好ましい。これらの基は樹脂の主鎖中に有していても、側鎖に置換していてもよい。
 疎水性樹脂(E)が、フッ素原子及び/又は珪素原子を含む場合、疎水性樹脂における上記フッ素原子及び/又は珪素原子は、樹脂の主鎖中に含まれていてもよく、側鎖中に含まれていてもよい。
 疎水性樹脂(E)がフッ素原子を有している場合、フッ素原子を有する部分構造としては、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、又は、フッ素原子を有するアリール基が好ましい。
 フッ素原子を有するアルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~4)は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状又は分岐鎖状のアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子を有するシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環又は多環のシクロアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子を有するアリール基としては、フェニル基、及び、ナフチル基等のアリール基の少なくとも1つの水素原子がフッ素原子で置換されたものが挙げられ、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子又は珪素原子を有する繰り返し単位の例としては、US2012/0251948の段落0519に例示されたものが挙げられる。
 また、上記したように、疎水性樹脂(E)は、側鎖部分にCH部分構造を有することも好ましい。
 ここで、疎水性樹脂中の側鎖部分が有するCH部分構造は、エチル基、及び、プロピル基等を有するCH部分構造を含む。
 一方、疎水性樹脂(E)の主鎖に直接結合しているメチル基(例えば、メタクリル酸構造を有する繰り返し単位のα-メチル基)は、主鎖の影響により疎水性樹脂(E)の表面偏在化への寄与が小さいため、本発明におけるCH部分構造に含まれないものとする。
 疎水性樹脂(E)に関しては、特開2014-010245号公報の段落0348~0415の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 なお、疎水性樹脂(E)としては、特開2011-248019号公報、特開2010-175859号公報、特開2012-032544号公報に記載された樹脂も、好ましく用いることができる。
 本発明の組成物が疎水性樹脂(E)を含む場合、疎水性樹脂(E)の含有量は、組成物の全固形分に対して、0.01~20質量%が好ましく、0.1~15質量%がより好ましい。
<溶剤(F)>
 本発明の組成物は、溶剤(F)を含んでいてもよい。
 本発明の組成物がEUV用の感放射線性樹脂組成物である場合、溶剤(F)は、(M1)プロピレングリコールモノアルキルエーテルカルボキシレート、並びに、(M2)プロピレングリコールモノアルキルエーテル、乳酸エステル、酢酸エステル、アルコキシプロピオン酸エステル、鎖状ケトン、環状ケトン、ラクトン、及び、アルキレンカーボネートからなる群より選択される少なくとも1つの少なくとも一方を含むことが好ましい。この場合の溶剤は、成分(M1)及び(M2)以外の成分を更に含んでいてもよい。
 成分(M1)又は(M2)を含む溶剤は、上述した樹脂(A)とを組み合わせて用いると、組成物の塗布性が向上すると共に、現像欠陥数の少ないパターンが形成可能となるため、好ましい。
 また、本発明の組成物がArF用の感放射線性樹脂組成物である場合、溶剤(F)としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を含んでいてもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、及び、ピルビン酸アルキル等の有機溶剤が挙げられる。
 本発明の組成物中の溶剤(F)の含有量は、固形分濃度が0.5~40質量%となるように定めることが好ましい。
 なかでも、本発明の効果がより優れる点で、固形分濃度は10質量%以上であることが好ましい。
<界面活性剤(H)>
 本発明の組成物は、界面活性剤(H)を含んでいてもよい。界面活性剤(H)を含むことにより、密着性により優れ、現像欠陥のより少ないパターンを形成できる。
 界面活性剤(H)としては、フッ素系及び/又はシリコン系界面活性剤が好ましい。
 フッ素系及び/又はシリコン系界面活性剤としては、例えば、米国特許出願公開第2008/0248425号明細書の段落0276に記載の界面活性剤が挙げられる。また、エフトップEF301又はEF303(新秋田化成(株)製);フロラードFC430、431又は4430(住友スリーエム(株)製);メガファックF171、F173、F176、F189、F113、F110、F177、F120又はR08(DIC(株)製);サーフロンS-382、SC101、102、103、104、105又は106(旭硝子(株)製);トロイゾルS-366(トロイケミカル(株)製);GF-300又はGF-150(東亞合成化学(株)製)、サーフロンS-393(セイミケミカル(株)製);エフトップEF121、EF122A、EF122B、RF122C、EF125M、EF135M、EF351、EF352、EF801、EF802又はEF601((株)ジェムコ製);PF636、PF656、PF6320又はPF6520(OMNOVA社製);KH-20(旭化成(株)製);FTX-204G、208G、218G、230G、204D、208D、212D、218D又は222D((株)ネオス製)を用いてもよい。なお、ポリシロキサンポリマーKP-341(信越化学工業(株)製)も、シリコン系界面活性剤として用いることができる。
 また、界面活性剤(H)は、上記に示すような公知の界面活性剤の他に、テロメリゼーション法(テロマー法ともいわれる)又はオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物を用いて合成してもよい。具体的には、このフルオロ脂肪族化合物から導かれたフルオロ脂肪族基を備えた重合体を、界面活性剤(H)として用いてもよい。このフルオロ脂肪族化合物は、例えば、特開2002-90991号公報に記載された方法によって合成できる。
 フルオロ脂肪族基を有する重合体としては、フルオロ脂肪族基を有するモノマーと(ポリ(オキシアルキレン))アクリレート及び/又は(ポリ(オキシアルキレン))メタクリレートとの共重合体が好ましく、不規則に分布しているものでも、ブロック共重合していてもよい。また、ポリ(オキシアルキレン)基としては、ポリ(オキシエチレン)基、ポリ(オキシプロピレン)基、及び、ポリ(オキシブチレン)基が挙げられ、また、ポリ(オキシエチレンとオキシプロピレンとオキシエチレンとのブロック連結体)やポリ(オキシエチレンとオキシプロピレンとのブロック連結体)等同じ鎖長内に異なる鎖長のアルキレンを有するようなユニットでもよい。更に、フルオロ脂肪族基を有するモノマーと(ポリ(オキシアルキレン))アクリレート(又はメタクリレート)との共重合体は2元共重合体ばかりでなく、異なる2種以上のフルオロ脂肪族基を有するモノマー、及び、異なる2種以上の(ポリ(オキシアルキレン))アクリレート(又はメタクリレート)等を同時に共重合した3元系以上の共重合体でもよい。
 例えば、市販の界面活性剤としては、メガファックF178、F-470、F-473、F-475、F-476、F-472(DIC(株)製)、C13基を有するアクリレート(又はメタクリレート)と(ポリ(オキシアルキレン))アクリレート(又はメタクリレート)との共重合体、C基を有するアクリレート(又はメタクリレート)と(ポリ(オキシエチレン))アクリレート(又はメタクリレート)と(ポリ(オキシプロピレン))アクリレート(又はメタクリレート)との共重合体が挙げられる。
 また、米国特許出願公開第2008/0248425号明細書の段落[0280]に記載されているフッ素系及び/又はシリコン系以外の界面活性剤を使用してもよい。
 これら界面活性剤(H)は、1種を単独で用いてもよく、又は、2種以上を組み合わせて用いてもよい。
 界面活性剤(H)の含有量は、組成物の全固形分に対して、0.0001~2質量%が好ましく、0.0005~1質量%がより好ましい。
 本発明の組成物は、EUV光用感光性組成物としても好適に用いられる。
 EUV光は波長13.5nmであり、ArF(波長193nm)光等に比べて、より短波長であるため、同じ感度で露光された際の入射フォトン数が少ない。そのため、確率的にフォトンの数がばらつく“フォトンショットノイズ”の影響が大きく、LERの悪化およびブリッジ欠陥を招く。フォトンショットノイズを減らすには、露光量を大きくして入射フォトン数を増やす方法があるが、高感度化の要求とトレードオフとなる。
 下記式(1)で求められるA値が高い場合は、組成物より形成されるレジスト膜のEUV光及び電子線の吸収効率が高くなるなり、フォトンショットノイズの低減に有効である。A値は、レジスト膜の質量割合のEUV光及び電子線の吸収効率を表す。
式(1):A=([H]×0.04+[C]×1.0+[N]×2.1+[O]×3.6+[F]×5.6+[S]×1.5+[I]×39.5)/([H]×1+[C]×12+[N]×14+[O]×16+[F]×19+[S]×32+[I]×127)
 A値は0.120以上が好ましい。上限は特に制限されないが、A値が大きすぎる場合、レジスト膜のEUV光及び電子線透過率が低下し、レジスト膜中の光学像プロファイルが劣化し、結果として良好なパターン形状が得られにくくなるため、0.240以下が好ましく、0.220以下がより好ましい。
 なお、式(1)中、[H]は、感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の水素原子のモル比率を表し、[C]は、感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の炭素原子のモル比率を表し、[N]は、感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の窒素原子のモル比率を表し、[O]は、感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の酸素原子のモル比率を表し、[F]は、感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来のフッ素原子のモル比率を表し、[S]は、感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の硫黄原子のモル比率を表し、[I]は、感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来のヨウ素原子のモル比率を表す。
 例えば、組成物が酸の作用により極性が増大する樹脂(酸分解性樹脂)、光酸発生剤、酸拡散制御剤、及び溶剤を含む場合、上記樹脂、上記光酸発生剤、及び上記酸拡散制御剤が固形分に該当する。つまり、全固形分の全原子とは、上記樹脂由来の全原子、上記光酸発生剤由来の全原子、及び上記酸拡散制御剤由来の全原子の合計に該当する。例えば、[H]は、全固形分の全原子に対する、全固形分由来の水素原子のモル比率を表し、上記例に基づいて説明すると、[H]は、上記樹脂由来の全原子、上記光酸発生剤由来の全原子、及び上記酸拡散制御剤由来の全原子の合計に対する、上記樹脂由来の水素原子、上記光酸発生剤由来の水素原子、及び上記酸拡散制御剤由来の水素原子の合計のモル比率を表すことになる。
 A値の算出は、組成物中の全固形分の構成成分の構造、及び含有量が既知の場合には、含有される原子数比を計算し、算出できる。また、構成成分が未知の場合であっても、組成物の溶剤成分を蒸発させて得られたレジスト膜に対して、元素分析等の解析的な手法によって構成原子数比を算出可能である。
<その他の添加剤>
 本発明の組成物は、架橋剤、アルカリ可溶性樹脂、溶解阻止化合物、染料、可塑剤、光増感剤、光吸収剤、及び/又は、現像液に対する溶解性を促進させる化合物を更に含んでいてもよい。
 以下に、実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されない。
<樹脂(A)の合成>
 実施例及び比較例において、樹脂(A)として、以下に例示する樹脂A-1~A-61を用いた。樹脂A-1~A-61はいずれも、公知技術に基づいて合成したものを用いた。
 表7に、樹脂(A)中の各繰り返し単位の組成比(モル比;左から順に対応)、重量平均分子量(Mw)、及び、分散度(Mw/Mn)を示す。
 なお、樹脂A-1~A-61の重量平均分子量(Mw)及び分散度(Mw/Mn)は、上述のGPC法(キャリア:テトラヒドロフラン(THF))により測定したポリスチレン換算値である。また、樹脂中の繰り返し単位の組成比(モル%比)は、13C-NMR(nuclear magnetic resonance)により測定した。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
<光酸発生剤>
 実施例及び比較例において光酸発生剤として使用した化合物P-1~P-63の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
<酸拡散制御剤(Q)>
 実施例及び比較例において酸拡散制御剤として使用した化合物Q-1~Q-23の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
<疎水性樹脂(E)>
 実施例及び比較例において疎水性樹脂(E)として使用した樹脂E-1~E-17の構造を以下に示す。樹脂E-1~E-17はいずれも、公知技術に基づいて合成したものを用いた。
 表8に、疎水性樹脂(E)中の各繰り返し単位の組成比(モル比;左から順に対応)、重量平均分子量(Mw)、及び、分散度(Mw/Mn)を示す。
 なお、樹脂E-1~E-17の重量平均分子量(Mw)及び分散度(Mw/Mn)は、上述のGPC法(キャリア:テトラヒドロフラン(THF))により測定したポリスチレン換算値である。また、樹脂中の繰り返し単位の組成比(モル%比)は、13C-NMR(nuclear magnetic resonance)により測定した。
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
<溶剤>
 実施例及び比較例において使用した溶剤を以下に示す。
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 PGME:プロピレングリコールモノメチルエーテル
 EL:エチルラクテート
 BA:酢酸ブチル
 MAK:2-ヘプタノン
 MMP:3-メトキシプロピオン酸メチル
 γ-BL:γ-ブチロラクトン
 CyHx:シクロヘキサノン
<界面活性剤(H)>
 実施例及び比較例において使用した界面活性剤を以下に示す。
 H-1:メガファックR-41(DIC(株)製)
 H-2:メガファックF176(DIC(株)製)
 H-3:メガファックR08(DIC(株)製)
<添加剤(X)>
 実施例及び比較例において使用した添加剤を以下に示す。
Figure JPOXMLDOC01-appb-C000091
X-5:ポリビニルメチルエーテルルトナールM40(BASF社製)
X-6:KF-53(信越化学工業株式会社製)
X-7:サリチル酸
<実施例及び比較例>
 温度22.0℃、湿度58%、気圧102.6kPaである、クラス6(国際統一規格ISO 14644-1のクラス表記)のクリーンルーム内において以下の操作を実施した。
 具体的には、表13~18に示す「洗浄前製造レジスト」欄に示す表9~11に示すような感放射線性樹脂組成物(以下、「レジスト組成物」ともいう。)を図1に示す製造装置にて製造した。その後、レジスト組成物を可能な限り製造装置から抜き出した。その後、表13~18に示す「洗浄法」欄で実施される洗浄法にて使用される溶剤A(表12に示す「溶剤A」欄に記載の溶剤)を孔径0.1μmのポリテトラフルオロエチレンフィルターに通してろ過した後、製造装置の撹拌槽内にフィルターろ過された溶剤A(25kg)を投入した。その後、図1に示す撹拌槽と循環配管とを通って溶剤Aが循環するように、溶剤Aを所定時間循環させて、循環ろ過を実施した。なお、表13~18に示す「洗浄後製造レジスト」欄が表9中のレジスト組成物(レジスト1~15)である場合には、循環時間は2時間であり、表13~18に示す「洗浄後製造レジスト」欄が表10~11中のレジスト組成物(レジスト16~64)である場合には、循環時間は0.5時間であった。なお、循環ろ過を実施する際には、図1に示すフィルター18として、孔径0.1μmのポリテトラフルオロエチレンフィルターを用いた。また、循環ろ過の際、撹拌槽に戻ってきた溶剤Aは、スプレーボールを用いて撹拌槽の上部や壁面に向けて均一に吐出される。所定時間の循環ろ過が終了した後、溶剤Aを製造装置から除去した。
 次に、表13~18に示す「洗浄法」欄で実施される洗浄法にて溶剤B(表12に示す「溶剤B」欄に記載の溶剤)が用いられる場合には、溶剤Aを用いた後に、溶剤Bを用いて、上記溶剤Aと同様の手順に従って、製造装置を洗浄して、溶剤Bを製造装置から除去した。
 次に、表13~18に示す「洗浄法」欄で実施される洗浄法にて溶剤C(表12に示す「溶剤C」欄に記載の溶剤)が用いられる場合には、溶剤Bを用いた後に、溶剤Cを用いて、上記溶剤Aと同様の手順に従って、製造装置を洗浄して、溶剤Cを製造装置から除去した。
 上記洗浄が終了した製造装置を用いて、表13~18に示す「洗浄後製造レジスト」欄に示す表9~11に示すようなレジスト組成物を製造した。
 製造したレジスト組成物を35℃の恒温槽で1か月保管し、後述する欠陥評価を実施した。
 なお、上記製造装置を用いて、レジスト組成物(表13~18に記載の「洗浄前製造レジスト」欄及び「洗浄後製造レジスト」欄に記載のレジスト組成物)を調製する具体的な手順としては、以下の通りである。
 クリーンルーム内に配置された撹拌槽(容量200L)に、表9~11に記載のレジスト組成物(レジスト1~64)の組成となるように、各成分を投入した。その際、溶剤の投入に関しては、溶剤をポアサイズ0.01μmのポリエチレンフィルターに通液させて、撹拌槽に投入した。また、溶剤以外の成分の投入に関しては、まず、各レジスト組成物の調製に使用される溶剤の一部をポアサイズ0.01μmのポリエチレンフィルターに通液させ、通液された溶剤に各成分を予め溶解させて希釈溶液をそれぞれ調製した。その後、得られた希釈溶液をフィルターを通液させて、撹拌槽に投入した。
 各成分が投入された後の撹拌槽内の空隙率(空間(空隙)が占める割合)は15体積%であった。言い換えれば、撹拌槽内の混合物の占有率は85体積%であった。
 なお、上記希釈溶液の希釈濃度及びフィルターの種類は、調製するレジスト組成物に応じて変更した。
 具体的には、表9中のレジスト組成物(レジスト1~15)を調製する際には、樹脂を溶解させた希釈溶液の希釈濃度は50質量%であり、その他の材料(光酸発生剤、酸拡散制御剤、添加剤1、添加剤2)を溶解させた希釈溶液の希釈濃度は20質量%であり、樹脂を溶解させた希釈溶液に対して用いるフィルターとしてはポアサイズ0.1μmのポリエチレンフィルターを、その他の材料(光酸発生剤、酸拡散制御剤、添加剤1、添加剤2)を溶解させた希釈溶液に対して用いるフィルターとしてはポアサイズ0.05μmのポリエチレンフィルターを用いた。なお、後述するように、レジスト1~15は、KrF露光用に用いた。
 表10中のレジスト組成物(レジスト16~31)を調製する際には、希釈濃度は10質量%であり、フィルターとしてはポアサイズ0.02μmのポリエチレンフィルターを用いた。なお、後述するように、レジスト16~31は、ArF露光用に用いた。
 表11(表11(1)および(2))中のレジスト組成物(レジスト32~64)を調製する際には、希釈濃度は5質量%であり、フィルターとしてはポアサイズ0.01μmのポリエチレンフィルターを用いた。なお、後述するように、レジスト32~48は、EUV露光用に用いた。
 次に、図1に示すような、撹拌槽内に配置された、撹拌翼が取り付けられた撹拌軸を回転させて、各成分を撹拌混合した。撹拌混合時の混合物の温度は、22℃であった。
 なお、表9中のレジスト組成物(レジスト1~15)を調製する際には、撹拌翼の回転速度は300rpmであった。また、表10中のレジスト組成物(レジスト16~31)を調製する際には、撹拌翼の回転速度は60rpmであった。また、表11中のレジスト組成物(レジスト32~64)を調製する際には、撹拌翼の回転速度は60rpmであった。
 撹拌終了後、図1に示すような、撹拌槽に連結した循環配管に、撹拌槽内の混合物を送液ポンプによって送液した。なお、循環配管は、撹拌槽の底部に一端が連結し、他端が撹拌槽の上部に連結した配管であって、その途中にフィルターが配置されており、循環配管を循環することによりフィルターによるろ過が実施される。上記循環は、混合物がフィルターを通過した際の液量が、配管の総液量の4倍量となるまで実施した。
 なお、上記フィルターの種類は、調製するレジスト組成物に応じて変更した。
 具体的には、表9中のレジスト組成物(レジスト1~15)を調製する際には、ポアサイズ0.02μmのナイロン66からなるフィルターと、ポアサイズ0.01μmのポリエチレンフィルターとから構成される2段フィルターを用いた。
 表10中のレジスト組成物(レジスト16~31)を調製する際には、ポアサイズ0.01μmのナイロン6からなるフィルターと、ポアサイズ0.003μmのポリエチレンフィルターとから構成される2段フィルターを用いた。
 表11中のレジスト組成物(レジスト32~64)を調製する際には、ポアサイズ0.005μmのナイロン6からなるフィルターと、ポアサイズ0.003μmのポリエチレンフィルターとから構成される2段フィルターを用いた。
 上記循環ろ過処理終了後、図1に示すような、排出配管及び排出ノズルを経由して、得られたレジスト組成物を評価用の容器に充填した。なお、容器中の気体は、各実施例及び比較例で撹拌槽に充填した特定気体で置換されていた。
 表9~11中、「現像液」欄の「TMAH(2.38%)」は、テトラメチルアンモニウムヒドロキシドの含有量が2.38質量%である水溶液を表す。
 「現像液」欄の「TMAH(1.00%)」は、テトラメチルアンモニウムヒドロキシドの含有量が1.00質量%である水溶液を表す。
 「現像液」欄の「TMAH(3.00%)」は、テトラメチルアンモニウムヒドロキシドの含有量が3.00質量%である水溶液を意味する。
 「現像液」欄の「nBA」は、酢酸ブチルを表す。
 表9~11中、各成分の「含有量」欄は、各成分のレジスト組成物中の全固形分に対する含有量(質量%)を表す。
 表9~11中、「溶剤」欄の数値は、各成分の含有質量比を表す。
 表9~11中、「固形分」欄は、レジスト組成物中の全固形分濃度(質量%)を表す。
 表12中、「PGMEA」はプロピレングリコールモノメチルエーテルアセテートを表し、「PGME」はプロピレングリコールモノメチルエーテルを表し、「NMP」はN-メチル-2-ピロリドンを表す。
 表12中、「溶剤の事前ろ過」欄の「有」は、溶剤A~溶剤Cの全てにおいて使用する前に各溶剤のフィルターろ過を実施したことを意味し、「溶剤C」は溶剤Cのみ使用する前のフィルターろ過を実施したことを意味し、「溶剤B、溶剤C」は溶剤B及び溶剤Cについて使用する前のフィルターろ過を実施したことを意味し、「無」は溶剤A~溶剤Cの全てにおいて使用する前のフィルターろ過を実施しなかったことを意味する。なお、使用したフィルターは、孔径0.1μmのポリテトラフルオロエチレンフィルターであった。
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
<実施例K-1~K-36、比較例K-1~K-30:KrF露光実験>
(パターン形成1)
 東京エレクトロン製スピンコーター「ACT-8」を用いて、HMDS(ヘキサメチルジシラザン)処理を施したシリコンウエハ(8インチ口径)上に、反射防止膜を設けることなく、表13~14の「洗浄後製造レジスト」欄に記載の調製したレジスト組成物(レジスト1~15)をそれぞれ塗布し、表9に示す各レジスト組成物に対応するPB条件でベークして、表9に示す各レジスト組成物に対応する膜厚のレジスト膜を形成した。
 得られたレジスト膜に対して、KrFエキシマレーザースキャナー(ASML製;PAS5500/850C、波長248nm、NA=0.60、σ=0.75)を用いて、パターンのスペース幅が5μm、ピッチ幅が20μmとなるような、ラインアンドスペースパターンを有するマスクを介して、パターン露光を行った。
 露光後のレジスト膜を表9に示す各レジスト組成物に対応するPEB条件でベークした後、表9に示す各レジスト組成物に対応する現像液で30秒間現像し、これをスピン乾燥してスペース幅が5μm、ピッチ幅が20μmの孤立スペースパターンを得た。
 なお、パターンサイズの測定は、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製9380II)を用いた。
(欠陥評価)
 KLA2360(ケー・エル・エー・テンコール社製)を用いて、シリコンウエハ上における欠陥分布を検出し、SEMVisionG3(AMAT社製)を用いて、欠陥の形状を観察した。観察した欠陥の内、パターン部に凹みがあるモード及びパターンエッジ部分が欠けているモードの欠陥の数をカウントし、欠陥検査の走査面積で割った欠陥の発生密度(count/cm)で集計し、下記基準に従って評価した。結果を表13~14に示す。
A:欠陥の発生密度が0.2count/cm未満。
B:欠陥の発生密度が0.2count/cm以上0.3count/cm未満。
C:欠陥の発生密度が0.3count/cm以上0.4count/cm未満。
D:欠陥の発生密度が0.4count/cm以上0.5count/cm未満。
E:欠陥の発生密度が0.5count/cm以上。
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
 表13~14に示すように本発明の製造方法によれば、所望の効果が得られることが確認された。
 なかでも、実施例K-1~K-8の比較より、溶剤AのSP値が18.5~23.0MPa1/2であるより優れた効果が得られることが確認された。
 また、実施例K-1~K-13の比較より、工程4を実施する場合、より優れた効果が得られることが確認された。
 また、実施例K-9~K-13の比較より、溶剤CのSP値が14.5MPa1/2以上18.5MPa1/2未満の場合、より優れた効果が得られることが確認された。
 また、実施例K-14~K-17の比較より、工程X~工程Zを実施する場合、より優れた効果が得られることが確認された。
<実施例A-1~A-37、比較例A-1~A-31:ArF露光実験>
(パターン形成2)
 東京エレクトロン製スピンコーター「ACT-12」を用いて、シリコンウエハ(12インチ口径)上に有機反射防止膜形成用組成物ARC29SR(Brewer Science社製)を塗布し、205℃で60秒間ベークして、膜厚98nmの反射防止膜を形成した。
 得られた反射防止膜上に、同装置を用いて表15~16の「洗浄後製造レジスト」欄に記載の調製したレジスト組成物(レジスト16~31)を塗布し、表10に示す各レジスト組成物に対応するPB条件でベークして、表10に示す各レジスト組成物に対応する膜厚のレジスト膜を形成した。
 得られたレジスト膜に対して、ArFエキシマレーザー液浸スキャナー(ASML社製;XT1700i、NA1.20、C-Quad、アウターシグマ0.900、インナーシグマ0.812、XY偏向)を用いて、ホール部分が45nmであり且つホール間のピッチが90nmである正方配列の6%ハーフトーンマスクを介して、パターン露光を行った。液浸液は、超純水を使用した。
 露光後のレジスト膜を表10に示す各レジスト組成物に対応するPEB条件でベークした後、表10に示す各レジスト組成物に対応する現像液で30秒間現像し、次いで純水で30秒間リンスした。その後、これをスピン乾燥して孔径45nmのホールパターンを得た。
 なお、パターンサイズの測定は、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製9380II)を用いた。
(パターン欠陥評価)
 UVision5(AMAT社製)を用いて、シリコンウエハ上における欠陥分布を検出し、SEMVisionG4(AMAT社製)を用いて、欠陥の形状を観察した。観察した欠陥の内、ホールパターンの形状が正常ではなく、隣接するホールとつながったものや、目的のパターンサイズよりも大きいものの数をカウントし、欠陥検査の走査面積で割った欠陥の発生密度(count/cm)で集計し、下記基準に従って評価した。結果を表15~16に示す。
A:欠陥の発生密度が0.2count/cm未満。
B:欠陥の発生密度が0.2count/cm以上0.3count/cm未満。
C:欠陥の発生密度が0.3count/cm以上0.4count/cm未満。
D:欠陥の発生密度が0.4count/cm以上0.5count/cm未満。
E:欠陥の発生密度が0.5count/cm以上。
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
 表15~16に示すように本発明の製造方法によれば、所望の効果が得られることが確認された。
 なかでも、実施例A-1~A-8の比較より、溶剤AのSP値が18.5~23.0MPa1/2であるより優れた効果が得られることが確認された。
 また、実施例A-1~A-13の比較より、工程4を実施する場合、より優れた効果が得られることが確認された。
 また、実施例A-9~A-13の比較より、溶剤CのSP値が14.5MPa1/2以上18.5MPa1/2未満の場合、より優れた効果が得られることが確認された。
 また、実施例A-14~A-17の比較より、工程X~工程Zを実施する場合、より優れた効果が得られることが確認された。
<実施例E-1~E-54、比較例E-1~E-48:EUV露光実験>
(パターン形成3)
 東京エレクトロン製スピンコーター「ACT-12」を用いて、シリコンウエハ(12インチ口径)上に有機反射防止膜形成用組成物AL412(Brewer Science社製)を塗布し、205℃で60秒間ベークして、膜厚200nmの反射防止膜を形成した。
 得られた反射防止膜上に、同装置を用いて表17~18(表17、表18(1)および表18(2))の「洗浄後製造レジスト」欄に記載の調製したレジスト組成物(レジスト32~64)を塗布し、表11に示す各レジスト組成物に対応するPB条件でベークして、表11に示す各レジスト組成物に対応する膜厚のレジスト膜を形成した。
 得られたレジスト膜に対して、EUV露光装置(Exitech社製、Micro Exposure Tool、NA0.3、Quadrupole、アウターシグマ0.68、インナーシグマ0.36)を用いて、ホール部分が28nmであり且つホール間のピッチが55nmである正方配列のマスクを介して、パターン露光を行った。
 露光後のレジスト膜を表11に示す各レジスト組成物に対応するPEB条件でベークした後、表11に示す各レジスト組成物に対応する現像液で30秒間現像し、次いで純水で30秒間リンスした。その後、これをスピン乾燥して孔径28nmのホールパターンを得た。
 なお、パターンサイズの測定は、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製9380II)を用いた。
(パターン欠陥評価)
 UVision5(AMAT社製)を用いて、シリコンウエハ上における欠陥分布を検出し、SEMVisionG4(AMAT社製)を用いて、欠陥の形状を観察した。観察した欠陥の内、ホールパターンの形状が正常ではなく、隣接するホールとつながったものや、目的のパターンサイズよりも大きいものの数をカウントし、欠陥検査の走査面積で割った欠陥の発生密度(count/cm)で集計し、下記基準に従って評価した。結果を表17~18に示す。
A:欠陥の発生密度が0.2count/cm未満。
B:欠陥の発生密度が0.2count/cm以上0.3count/cm未満。
C:欠陥の発生密度が0.3count/cm以上0.4count/cm未満。
D:欠陥の発生密度が0.4count/cm以上0.5count/cm未満。
E:欠陥の発生密度が0.5count/cm以上。
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
 表17~18に示すように本発明の製造方法によれば、所望の効果が得られることが確認された。
 なかでも、実施例E-1~E-8の比較より、溶剤AのSP値が18.5~23.0MPa1/2であるより優れた効果が得られることが確認された。
 また、実施例E-1~E-13の比較より、工程4を実施する場合、より優れた効果が得られることが確認された。
 また、実施例E-9~E-13の比較より、溶剤CのSP値が14.5MPa1/2以上18.5MPa1/2未満の場合、より優れた効果が得られることが確認された。
 また、実施例E-14~E-17の比較より、工程X~工程Zを実施する場合、より優れた効果が得られることが確認された。
 10 撹拌槽
 12 撹拌軸
 14 撹拌翼
 16 循環配管
 18 フィルター
 20 排出配管
 22 排出ノズル
 100 製造装置

Claims (14)

  1.  感放射線性樹脂組成物の製造装置を用いて感放射線性樹脂組成物を製造する、感放射線性樹脂組成物の製造方法であって、
     前記感放射線性樹脂組成物の製造装置を、SP値が18.5MPa1/2以上25.5MPa1/2以下の溶剤Aを用いて洗浄する工程1と、
     前記工程1の後、前記感放射線性樹脂組成物の製造装置を、前記工程1で使用した前記溶剤AよりもSP値が高く、SP値が30.0MPa1/2以下の溶剤Bを用いて洗浄する工程2と、
     前記工程2の後、前記感放射線性樹脂組成物の製造装置で感放射線性樹脂組成物を製造する工程3と、を有する、感放射線性樹脂組成物の製造方法。
  2.  前記溶剤AのSP値が18.5MPa1/2以上23.0MPa1/2以下である、請求項1に記載の感放射線性樹脂組成物の製造方法。
  3.  前記溶剤A及び前記溶剤Bの一方又は両方が、ケトン系溶剤、又は、グリコールエーテル系溶剤を含む、請求項1又は2に記載の感放射線性樹脂組成物の製造方法。
  4.  前記工程1の前に、前記溶剤Aをフィルターでろ過する工程Xを有する、請求項1~3のいずれか1項に記載の感放射線性樹脂組成物の製造方法。
  5.  前記工程2の前に、前記溶剤Bをフィルターでろ過する工程Yを有する、請求項1~4のいずれか1項に記載の感放射線性樹脂組成物の製造方法。
  6.  前記フィルターがフッ素樹脂を含む、請求項4又は5に記載の感放射線性樹脂組成物の製造方法。
  7.  前記工程2と前記工程3との間に、前記感放射線性樹脂組成物の製造装置を、溶剤Cを用いて洗浄する工程4を更に有する、請求項1~6のいずれか1項に記載の感放射線性樹脂組成物の製造方法。
  8.  前記溶剤CのSP値が14.5MPa1/2以上18.5MPa1/2未満である、請求項7に記載の感放射線性樹脂組成物の製造方法。
  9.  前記溶剤Cが、エステル系溶剤又は脂肪族炭化水素系溶剤を含む、請求項7又は8に記載の感放射線性樹脂組成物の製造方法。
  10.  前記工程4の前に、前記溶剤Cをフィルターでろ過する工程Zを有する、請求項7~9のいずれか1項に記載の感放射線性樹脂組成物の製造方法。
  11.  前記フィルターがフッ素樹脂を含む、請求項10に記載の感放射線性樹脂組成物の製造方法。
  12.  前記感放射線性樹脂組成物が、樹脂を含み、
     前記樹脂は、ケイ素原子を有する繰り返し単位を有さず、
     前記樹脂は、(メタ)アクリル基を有するモノマー由来の繰り返し単位を有する、請求項1~11のいずれか1項に記載の感放射線性樹脂組成物の製造方法。
  13.  請求項1~12のいずれか1項に記載の製造方法より製造される感放射線性樹脂組成物を用いて、基板上にレジスト膜を形成する工程と、
     前記レジスト膜を露光する工程と、
     現像液を用いて、露光された前記レジスト膜を現像し、パターンを形成する工程と、を有する、パターン形成方法。
  14.  請求項13に記載のパターン形成方法を含む、電子デバイスの製造方法。
PCT/JP2020/034893 2019-09-27 2020-09-15 感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法 WO2021060071A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021548832A JP7262601B2 (ja) 2019-09-27 2020-09-15 感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-176935 2019-09-27
JP2019176935 2019-09-27
JP2020149952 2020-09-07
JP2020-149952 2020-09-07

Publications (1)

Publication Number Publication Date
WO2021060071A1 true WO2021060071A1 (ja) 2021-04-01

Family

ID=75166971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034893 WO2021060071A1 (ja) 2019-09-27 2020-09-15 感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法

Country Status (3)

Country Link
JP (1) JP7262601B2 (ja)
TW (1) TW202117445A (ja)
WO (1) WO2021060071A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153059A1 (ja) * 2022-02-09 2023-08-17 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法及び重合体
WO2023162762A1 (ja) * 2022-02-28 2023-08-31 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311598A (ja) * 2001-04-13 2002-10-23 Sumitomo Chem Co Ltd フォトレジスト液製品の製造方法
JP2006209121A (ja) * 2005-01-25 2006-08-10 Samsung Electronics Co Ltd フォトレジストストリッパー組成物及びこれを用いた半導体素子の製造方法
JP2007072138A (ja) * 2005-09-06 2007-03-22 Tokyo Ohka Kogyo Co Ltd レジスト液製造方法及びこれを用いたレジスト膜
JP2014219506A (ja) * 2013-05-07 2014-11-20 信越化学工業株式会社 レジスト組成物の製造方法
JP2015197509A (ja) * 2014-03-31 2015-11-09 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物の製造方法及び感活性光線性又は感放射線性樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033600B2 (ja) * 2000-04-28 2008-01-16 住友化学株式会社 レジスト塗布装置
TW576859B (en) * 2001-05-11 2004-02-21 Shipley Co Llc Antireflective coating compositions
JP4165138B2 (ja) * 2002-07-19 2008-10-15 住友化学株式会社 化学増幅系レジスト液の製造装置、及び該装置を用いる化学増幅系レジスト液の製造方法
JP6466650B2 (ja) * 2014-04-03 2019-02-06 信越化学工業株式会社 レジスト組成物の製造方法
JP7072634B2 (ja) * 2018-03-22 2022-05-20 富士フイルム株式会社 ろ過装置、精製装置、及び、薬液の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311598A (ja) * 2001-04-13 2002-10-23 Sumitomo Chem Co Ltd フォトレジスト液製品の製造方法
JP2006209121A (ja) * 2005-01-25 2006-08-10 Samsung Electronics Co Ltd フォトレジストストリッパー組成物及びこれを用いた半導体素子の製造方法
JP2007072138A (ja) * 2005-09-06 2007-03-22 Tokyo Ohka Kogyo Co Ltd レジスト液製造方法及びこれを用いたレジスト膜
JP2014219506A (ja) * 2013-05-07 2014-11-20 信越化学工業株式会社 レジスト組成物の製造方法
JP2015197509A (ja) * 2014-03-31 2015-11-09 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物の製造方法及び感活性光線性又は感放射線性樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153059A1 (ja) * 2022-02-09 2023-08-17 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法及び重合体
WO2023162762A1 (ja) * 2022-02-28 2023-08-31 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法

Also Published As

Publication number Publication date
TW202117445A (zh) 2021-05-01
JPWO2021060071A1 (ja) 2021-04-01
JP7262601B2 (ja) 2023-04-21

Similar Documents

Publication Publication Date Title
KR102272628B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 패턴 형성 방법 및 전자 디바이스의 제조 방법
WO2021070590A1 (ja) 感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法
WO2020158313A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP2023145543A (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、レジスト膜、電子デバイスの製造方法
WO2014162912A1 (ja) 化学増幅型レジスト膜のパターニング用有機系処理液の製造方法、化学増幅型レジスト膜のパターニング用有機系処理液、パターン形成方法、電子デバイスの製造方法、及び、電子デバイス
WO2014069245A1 (ja) 化学増幅型レジスト膜のパターニング用有機系処理液、及び、化学増幅型レジスト膜のパターニング用有機系処理液の収容容器、並びに、これらを使用したパターン形成方法、電子デバイスの製造方法、及び、電子デバイス
JP6186168B2 (ja) パターン形成方法、及び電子デバイスの製造方法
WO2014171425A1 (ja) パターン形成方法、電子デバイスの製造方法及び電子デバイス
JP6296972B2 (ja) パターン形成方法、エッチング方法、及び、電子デバイスの製造方法
WO2021172173A1 (ja) 感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法
WO2020255964A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2021060071A1 (ja) 感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法
JP5982442B2 (ja) 化学増幅型レジスト膜のパターニング用有機系処理液、並びに、これを使用したパターン形成方法、及び、電子デバイスの製造方法
WO2020261784A1 (ja) 感放射線性樹脂組成物の製造方法
JP7266093B2 (ja) 感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法
WO2020261753A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、組成物収容体
JP6633103B2 (ja) パターン形成方法、電子デバイスの製造方法
TWI766074B (zh) 感光化射線性或感放射線性樹脂組成物、抗蝕劑膜、圖案形成方法、電子元件的製造方法
WO2021192802A1 (ja) 感放射線性樹脂組成物の製造方法、パターン形成方法
JP7470803B2 (ja) 感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法
WO2021172172A1 (ja) 感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法
WO2021199823A1 (ja) 感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法
KR102669761B1 (ko) 감방사선성 수지 조성물의 제조 방법, 패턴 형성 방법
JP7495404B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、組成物収容体
JP2022142378A (ja) レジスト塗布装置の洗浄方法、レジスト組成物の品質検査方法、レジスト組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868910

Country of ref document: EP

Kind code of ref document: A1