WO2014171425A1 - パターン形成方法、電子デバイスの製造方法及び電子デバイス - Google Patents

パターン形成方法、電子デバイスの製造方法及び電子デバイス Download PDF

Info

Publication number
WO2014171425A1
WO2014171425A1 PCT/JP2014/060631 JP2014060631W WO2014171425A1 WO 2014171425 A1 WO2014171425 A1 WO 2014171425A1 JP 2014060631 W JP2014060631 W JP 2014060631W WO 2014171425 A1 WO2014171425 A1 WO 2014171425A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive
radiation
group
resin
exposure
Prior art date
Application number
PCT/JP2014/060631
Other languages
English (en)
French (fr)
Inventor
貴之 中村
山中 司
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020157029662A priority Critical patent/KR20150127291A/ko
Priority to CN201480021866.9A priority patent/CN105122144A/zh
Publication of WO2014171425A1 publication Critical patent/WO2014171425A1/ja
Priority to US14/884,345 priority patent/US20160033870A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain

Definitions

  • the present invention relates to a pattern forming method, an electronic device manufacturing method, and an electronic device that are preferably used in a semiconductor manufacturing process such as an IC, a circuit board such as a liquid crystal or a thermal head, and a photolithographic lithography process.
  • the exposure light source has become shorter and the projection lens has a higher numerical aperture (high NA).
  • high NA numerical aperture
  • an exposure machine using an ArF excimer laser having a wavelength of 193 nm as a light source has been developed.
  • immersion liquid a liquid having a high refractive index
  • EUV lithography in which exposure is performed with ultraviolet light having a shorter wavelength (13.5 nm) has also been proposed.
  • Patent Documents 1 to 10 disclose decomposition by the action of an acid. And the pattern formation method which has the process developed using the organic solvent type developing solution with respect to the resist composition containing resin containing the repeating unit which has the group which produces
  • Patent Document 10 discloses a technique for suppressing water remaining defects during immersion exposure by using a specific resin as a resin whose solubility in an organic solvent-based developer is reduced by the action of an acid. .
  • the present invention provides a method for forming fine water remaining defects caused by the immersion liquid remaining on the resist film after immersion exposure when immersion exposure is applied in a pattern forming method using an organic solvent developer. It is an object of the present invention to provide a pattern forming method capable of forming a non-pattern, an electronic device manufacturing method including the pattern forming method, and an electronic device.
  • the present invention is as follows. [1] A resin whose solubility in a developer containing one or more organic solvents is reduced by the action of an acid, a compound that generates an acid upon irradiation with actinic rays or radiation, and an actinic ray-sensitive or sensation containing a solvent.
  • a pattern forming method comprising a step of cleaning an actinic ray-sensitive or radiation-sensitive film after the film forming step and before the exposure step and / or after the exposure step and before the heating step.
  • the cleaning step is included after the exposure step and before the heating step, or after the film formation step and before the exposure step and after the exposure step and before the heating step,
  • [8] A method for manufacturing an electronic device, comprising the pattern forming method according to any one of [1] to [7].
  • [9] An electronic device manufactured by the method for manufacturing an electronic device according to [8].
  • a pattern forming method using an organic solvent-based developer capable of forming a pattern with reduced fine water residue defects caused by the immersion liquid remaining on the resist film after immersion exposure An electronic device manufacturing method including a pattern forming method and an electronic device can be provided.
  • FIG. 1 An example of a defect map showing the position of occurrence of fine defects on the wafer surface obtained by performing immersion exposure and heating after developing an actinic ray-sensitive or radiation-sensitive film and developing with an organic solvent developer.
  • FIG. The SEM photograph of FOV2micrometer which shows an example of a water-remaining bridge
  • the SEM photograph of FOV2micrometer which shows the other example of a water-remaining bridge
  • the description which does not indicate substitution and non-substitution includes not only a substituent but also a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • active light refers to, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet (EUV) rays, X rays, soft X rays, electron rays (EB). Etc.
  • light means actinic rays or radiation.
  • exposure refers to not only exposure with far ultraviolet rays, X-rays, EUV light, etc., typified by mercury lamps and excimer lasers, but also drawing with particle beams such as electron beams and ion beams, unless otherwise specified. Include in exposure.
  • the pattern forming method according to the present invention will be described, and then the actinic ray-sensitive or radiation-sensitive resin composition used in this pattern forming method will be described.
  • the pattern forming method includes: A film forming step of forming an actinic ray sensitive or radiation sensitive film by applying an actinic ray sensitive or radiation sensitive resin composition on a substrate; An exposure step of exposing the actinic ray-sensitive or radiation-sensitive film through the immersion liquid; A post-exposure heating step for heating the actinic ray-sensitive or radiation-sensitive film; and A development step for developing the actinic ray-sensitive or radiation-sensitive film with a developer containing an organic solvent in this order; A cleaning process for cleaning the actinic ray-sensitive or radiation-sensitive film after the film forming process and before the exposure process; And / or after the exposure step and before the post-exposure heating step.
  • the pattern forming method according to the present invention includes a cleaning step of cleaning the actinic ray-sensitive or radiation-sensitive film, thereby causing an immersion liquid remaining on the actinic-ray-sensitive or radiation-sensitive film in immersion exposure.
  • a cleaning step of cleaning the actinic ray-sensitive or radiation-sensitive film thereby causing an immersion liquid remaining on the actinic-ray-sensitive or radiation-sensitive film in immersion exposure.
  • This fine water remaining defect is a fine defect seen in a specific part near the wafer edge as illustrated in FIG. 1 when immersion exposure is performed and development is performed with an organic solvent developer, for example, 2 and FIG. 3 are fine bridge defects (hereinafter, referred to as “water residue bridge defects”).
  • water residue bridge defects In the pattern formation method using an organic solvent-based developer, it has not been recognized so far that a fine water-remaining bridge defect occurs in a specific portion near the wafer edge when immersion exposure is applied.
  • the pattern formation method according to the present invention includes a cleaning step at least one of after the film forming step and before the exposure step, and after the exposure step and before the post-exposure heating (PEB; Post Exposure Bake) step.
  • PEB post-exposure heating
  • pre-exposure cleaning cleaning performed after the film forming process and before the exposure process
  • post-exposure cleaning cleaning performed after the exposure process and before the PEB process
  • the outermost layer of the actinic ray-sensitive or radiation-sensitive film is cleaned in advance, so that when the immersion liquid remains on the wafer during the immersion exposure, the acid into the immersion liquid It becomes possible to mitigate the influence of elution. Further, even if the immersion liquid remains on the wafer during the immersion exposure, it is removed by post-exposure cleaning, and it is possible to suppress the occurrence of water residue defects.
  • the pattern forming method according to the present invention preferably includes a post-exposure cleaning step, and in another embodiment, preferably includes both a pre-exposure cleaning step and a post-exposure cleaning step.
  • the actinic ray-sensitive or radiation-sensitive film can be cleaned, for example, using pure water according to the following cleaning process (A) or (B).
  • Cleaning process (A) While rotating the wafer on which the actinic ray-sensitive or radiation-sensitive film is formed at a predetermined speed (for example, 5 to 35 rpm, more preferably 7 to 25 rpm), pure water rinse is performed at a predetermined flow rate (for example, 10 to 70 ml / Seconds, more preferably 15 to 50 ml / second) to form a paddle by discharging onto an actinic ray-sensitive or radiation-sensitive film, and this state is maintained.
  • the total time for maintaining the state where the paddle is formed after the discharge is started is, for example, 1 to 60 seconds, more preferably 3 to 40 seconds, and further preferably 5 to 20 seconds.
  • Cleaning process (B) While rotating the wafer on which the actinic ray-sensitive or radiation-sensitive film is formed at a predetermined speed (for example, 50 to 300 rpm, more preferably 70 to 250 rpm), pure water rinse is performed at a predetermined flow rate (for example, 1 to 30 ml / Seconds, more preferably 3 to 20 ml / second, still more preferably 5 to 20 ml / second) on the actinic ray-sensitive or radiation-sensitive film for a predetermined time (for example, 1 to 60 seconds, more preferably 3 to 30). Seconds, more preferably 5 to 20 seconds).
  • a predetermined flow rate for example, 1 to 30 ml / Seconds, more preferably 3 to 20 ml / second, still more preferably 5 to 20 ml / second
  • the cleaning process (A) is a cleaning method for forming a paddle, and the cleaning effect is higher than the cleaning process (B) that does not form a paddle, but the amount of pure water rinse used is increased.
  • the cleaning effect is slightly inferior to the cleaning process (A) for forming the paddle, but the amount of pure water rinse used is small.
  • the washing step may include removing pure water from the actinic ray sensitive or radiation sensitive film after washing the actinic ray sensitive or radiation sensitive film.
  • This removal of pure water can be performed by, for example, inert gas blowing or spin drying, or using both.
  • the removal of the pure water by the inert gas blow is, for example, blowing N 2 gas for a predetermined time while rotating the wafer on which the pure water remaining after the cleaning process (A) or (B) is rotated at a predetermined speed. Can be done.
  • the removal of pure water by spin drying is performed, for example, on a wafer in which pure water remains after the cleaning process (A) or (B) described above is performed at a predetermined speed (for example, 2000 rpm or more, more preferably 2500 rpm or more, further It can be carried out by preferably rotating at a predetermined time (eg, 10 seconds or more, more preferably 12 seconds or more) at 3000 rpm or more.
  • a predetermined speed for example, 2000 rpm or more, more preferably 2500 rpm or more, further It can be carried out by preferably rotating at a predetermined time (eg, 10 seconds or more, more preferably 12 seconds or more) at 3000 rpm or more.
  • the step of forming an actinic ray-sensitive or radiation-sensitive film by applying an actinic ray-sensitive or radiation-sensitive resin composition onto a substrate, an actinic ray-sensitive property via an immersion liquid Or a step of exposing the radiation sensitive film, a PEB step of heating the actinic ray sensitive or radiation sensitive film after the exposure, and a step of developing the actinic ray sensitive or radiation sensitive film with a developer containing an organic solvent.
  • an actinic ray-sensitive or radiation-sensitive film by applying an actinic ray-sensitive or radiation-sensitive resin composition onto a substrate, an actinic ray-sensitive property via an immersion liquid Or a step of exposing the radiation sensitive film, a PEB step of heating the actinic ray sensitive or radiation sensitive film after the exposure, and a step of developing the actinic ray sensitive or radiation sensitive film with a developer containing an organic solvent.
  • the pattern forming method of the present invention may include not only a PEB process as a heating process but also a preheating (PB) process after the film forming process and before the exposure process.
  • PB preheating
  • the pattern forming method of the present invention may include a developing step a plurality of times, and may combine a step of developing using an organic developer and a step of developing using an alkaline developer.
  • the pattern forming method of the present invention may further include a rinsing step of washing with a rinsing liquid after the developing step.
  • the heating temperature in the heating process is preferably 70 to 130 ° C., more preferably 80 to 120 ° C. for both PB and PEB.
  • the heating time is preferably 30 to 300 seconds, more preferably 30 to 180 seconds, and still more preferably 30 to 90 seconds. Heating can be performed by means provided in a normal coating / developing machine, and may be performed using a hot plate or the like. The reaction of the exposed part is promoted by baking, and the sensitivity and pattern profile are improved.
  • the exposure in the present invention is performed via an immersion liquid.
  • limiting in the light source wavelength used for the exposure apparatus in this invention It selects from the wavelength which permeate
  • the laser is 250 nm or less, More preferably, it is 220 nm or less, Especially preferably, it is a far ultraviolet light with a wavelength of 1-200 nm, Specifically, KrF excimer laser (248 nm), ArF excimer laser (193 nm) ), F 2 excimer laser (157 nm), X-ray, EUV (13 nm), electron beam, etc., preferably ArF excimer laser.
  • the exposure in the present invention is preferably performed through an immersion liquid using an ArF excimer laser having a wavelength of 193 nm as a light source.
  • the immersion exposure method can be combined with super-resolution techniques such as phase shift method and modified illumination method.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient as small as possible so as to minimize distortion of the optical image projected onto the film.
  • an ArF excimer laser (wavelength: 193 nm)
  • an additive liquid that decreases the surface tension of water and increases the surface activity may be added in a small proportion.
  • This additive is preferably one that does not dissolve the resist layer on the wafer and can ignore the influence on the optical coating on the lower surface of the lens element.
  • an aliphatic alcohol having a refractive index substantially equal to that of water is preferable, and specific examples include methyl alcohol, ethyl alcohol, isopropyl alcohol and the like.
  • distilled water is preferable as the water to be used because it causes distortion of the optical image projected on the resist when an opaque material or impurities whose refractive index is significantly different from that of water are mixed with 193 nm light. Further, pure water filtered through an ion exchange filter or the like may be used.
  • the electrical resistance of the water used as the immersion liquid is preferably 18.3 MQcm or more, the TOC (organic substance concentration) is preferably 20 ppb or less, and deaeration treatment is preferably performed.
  • an additive that increases the refractive index may be added to water, or heavy water (D 2 O) may be used instead of water.
  • the receding contact angle of the resist film formed by using the actinic ray-sensitive or radiation-sensitive resin composition in the present invention is 70 ° or more at a temperature of 23 ⁇ 3 ° C. and a humidity of 45 ⁇ 5%, and through the immersion medium. Suitable for exposure, preferably 75 ° or more, more preferably 75 to 85 °. If the receding contact angle is too small, it cannot be suitably used for exposure through an immersion medium, and the effect of reducing water residue (watermark) defects cannot be sufficiently exhibited. In order to achieve a preferable receding contact angle, it is preferable to include the hydrophobic resin (HR) in the actinic ray-sensitive or radiation-sensitive composition. Alternatively, the receding contact angle may be improved by forming a coating layer (so-called “topcoat”) of a hydrophobic resin composition on the resist film.
  • topcoat a coating layer
  • the immersion head In the immersion exposure process, the immersion head needs to move on the wafer following the movement of the exposure head to scan the wafer at high speed to form the exposure pattern.
  • the contact angle of the immersion liquid with respect to the resist film is important, and the resist is required to follow the high-speed scanning of the exposure head without remaining droplets.
  • the substrate on which the film is formed is not particularly limited, and an inorganic substrate such as silicon, SiN, SiO 2 or TiN, a coated inorganic substrate such as SOG, a semiconductor manufacturing process such as an IC, a liquid crystal, or a thermal head
  • an inorganic substrate such as silicon, SiN, SiO 2 or TiN
  • a coated inorganic substrate such as SOG
  • a semiconductor manufacturing process such as an IC
  • a liquid crystal such as a substrate generally used in a circuit board manufacturing process or other photofabrication lithography process
  • an antireflection film may be formed between the resist film and the substrate.
  • the antireflection film a known organic or inorganic antireflection film can be appropriately used.
  • the development step in the pattern forming method of the present invention is performed using a developer containing an organic solvent (hereinafter also referred to as “organic developer”). As a result, a negative pattern is formed.
  • organic developer hereinafter also referred to as “organic developer”.
  • organic developer polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents can be used.
  • ketone solvents include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 2-heptanone (methyl amyl ketone), 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, Examples include cyclohexanone, methylcyclohexanone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, acetonylacetone, ionone, diacetylalcohol, acetylcarbinol, acetophenone, methylnaphthylketone, isophorone, and propylene carbonate.
  • ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl.
  • Examples include ether acetate, ethyl-3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, and propyl lactate. be able to.
  • the alcohol solvents include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, n-heptyl alcohol, alcohols such as n-octyl alcohol and n-decanol, glycol solvents such as ethylene glycol, diethylene glycol and triethylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, Diethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methoxymethylbuta Glycol ether solvents such as Lumpur can be mentioned.
  • Examples of the ether solvent include dioxane, tetrahydrofuran and the like in addition to the glycol ether solvent.
  • Examples of amide solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like.
  • Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
  • the organic developer is preferably a developer containing at least one organic solvent selected from the group consisting of ketone solvents and ester solvents, and in particular, butyl acetate or ketone as the ester solvent.
  • a developer containing methyl amyl ketone (2-heptanone) as a system solvent is preferred.
  • a plurality of solvents may be mixed, or may be used by mixing with a solvent other than those described above or water.
  • the water content of the developer as a whole is preferably less than 10% by mass, and more preferably substantially free of moisture. That is, the amount of the organic solvent used in the organic developer is preferably 90% by mass or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less, with respect to the total amount of the developer.
  • the vapor pressure of the organic developer is preferably 5 kPa or less, more preferably 3 kPa or less, and particularly preferably 2 kPa or less at 20 ° C.
  • the surfactant is not particularly limited, and for example, ionic or nonionic fluorine-based and / or silicon-based surfactants can be used.
  • fluorine and / or silicon surfactants include, for example, JP-A No. 62-36663, JP-A No. 61-226746, JP-A No. 61-226745, JP-A No. 62-170950, JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, US Pat. No. 5,405,720,
  • it is a nonionic surfactant.
  • it does not specifically limit as a nonionic surfactant, It is still more preferable to use a fluorochemical surfactant or a silicon-type surfactant.
  • the amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developer.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), a method of continuously discharging the developer while scanning the developer discharge nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
  • dip method a method in which a substrate is immersed in a tank filled with a developer for a certain period of time
  • paddle a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time
  • spray method a method of spraying the developer on the substrate surface
  • the discharge pressure of the discharged developer (the flow rate per unit area of the discharged developer) is As an example, it is preferably 2 mL / sec / mm 2 or less, more preferably 1.5 mL / sec / mm 2 or less, and still more preferably 1 mL / sec / mm 2 or less.
  • the flow rate is no particular lower limit on the flow rate, but 0.2 mL / sec / mm 2 or more is preferable in consideration of throughput. Details of this are described in Japanese Patent Application Laid-Open No. 2010-232550, especially paragraphs 0022 to 0029.
  • a step of stopping development may be performed while substituting with another solvent.
  • the pattern forming method of the present invention includes a plurality of development steps, a step of developing using an alkaline developer and a step of developing using an organic developer may be combined. As a result, FIG. 1-FIG. 11 and the like, it can be expected that a pattern having a half of the spatial frequency of the optical image can be obtained.
  • the alkali developer that can be used is not particularly limited, but generally, it is 2.38% by mass of tetramethylammonium hydroxide.
  • An aqueous solution is desirable.
  • an appropriate amount of alcohol or surfactant may be added to the alkaline aqueous solution.
  • the alkali concentration of the alkali developer is usually from 0.1 to 20% by mass.
  • the pH of the alkali developer is usually from 10.0 to 15.0.
  • pure water can be used, and an appropriate amount of a surfactant can be added.
  • ⁇ Rinse process> After the step of developing using an organic developer, it is preferable to include a rinse step of washing using a rinse solution.
  • the rinsing liquid is not particularly limited as long as the resist pattern is not dissolved, and a solution containing a general organic solvent can be used.
  • a rinsing liquid containing at least one organic solvent selected from the group consisting of hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents is used. It is preferable.
  • hydrocarbon solvent ketone solvent, ester solvent, alcohol solvent, amide solvent and ether solvent
  • hydrocarbon solvent ketone solvent, ester solvent, alcohol solvent, amide solvent and ether solvent
  • the step of washing with a rinse liquid containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, and amide solvents is performed, and the step of washing with a rinsing solution containing a monohydric alcohol is particularly preferred.
  • a cleaning step is performed using a rinse liquid containing a monohydric alcohol having 5 or more carbon atoms.
  • examples of the monohydric alcohol used in the rinsing step include linear, branched, and cyclic monohydric alcohols. Specific examples include 1-hexanol, 2-hexanol, and 4-methyl-2-pen. Tanol, 1-pentanol, 3-methyl-1-butanol and the like can be used. A plurality of these components may be mixed, or may be used by mixing with an organic solvent other than the above.
  • the water content in the rinse liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less. By setting the water content to 10% by mass or less, good development characteristics can be obtained.
  • the vapor pressure of the rinsing solution used after the step of developing with a developer containing an organic solvent is preferably 0.05 kPa or more and 5 kPa or less, more preferably 0.1 kPa or more and 5 kPa or less at 20 ° C. 12 kPa or more and 3 kPa or less are the most preferable.
  • the cleaning method is not particularly limited. For example, a method of continuing to discharge the rinse liquid onto the substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a tank filled with the rinse liquid for a certain period of time. A method (dip method), a method of spraying a rinsing liquid onto the substrate surface (spray method), etc. can be applied. Among these, a cleaning process is performed by a spin coating method, and after cleaning, the substrate is rotated at a speed of 2000 rpm to 4000 rpm.
  • the developing solution and the rinsing solution remaining between the patterns and inside the patterns are removed by baking.
  • the heating step after the rinsing step is usually performed at 40 to 160 ° C., preferably 70 to 95 ° C., usually 10 seconds to 3 minutes, preferably 30 seconds to 90 seconds.
  • the organic developer, alkali developer, and / or rinse solution used in the present invention preferably have few impurities such as various fine particles and metal elements.
  • these chemicals are manufactured in a clean room, and filtered with various filters such as Teflon (registered trademark) filters, polyolefin filters, ion exchange filters, etc. It is preferable to reduce impurities.
  • the metal element the metal element concentrations of Na, K, Ca, Fe, Cu, Mg, Mn, Li, Al, Cr, Ni, and Zn are all preferably 10 ppm or less, and preferably 5 ppm or less. More preferred.
  • the storage container for the developer and the rinsing liquid is not particularly limited, and containers such as polyethylene resin, polypropylene resin, and polyethylene-polypropylene resin that are used for electronic materials can be used as appropriate.
  • containers such as polyethylene resin, polypropylene resin, and polyethylene-polypropylene resin that are used for electronic materials can be used as appropriate.
  • a container having a small amount of components eluted from the inner wall of the container into the chemical solution As such a container, a container whose inner wall is a perfluoro resin (for example, FluoroPure PFA composite drum (wetted inner surface; PFA resin lining) manufactured by Entegris), steel drum can (wetted inner surface; zinc phosphate coating) manufactured by JFE ).
  • the present invention also relates to an electronic device manufacturing method including the pattern forming method of the present invention described above, and an electronic device manufactured by this manufacturing method.
  • the electronic device of the present invention is suitably mounted on electrical and electronic equipment (home appliances, OA / media related equipment, optical equipment, communication equipment, etc.).
  • the pattern obtained by the pattern forming method of the present invention is generally suitably used as an etching mask for a semiconductor device, but can also be used for other purposes.
  • Other uses include, for example, guide pattern formation in DSA (Directed Self-Assembly) (see, for example, ACS Nano Vol. 4, No. 8, Page 4815-4823), use as a core material (core) of a so-called spacer process (for example, JP-A-3-270227, JP-A-2013-164509, etc.).
  • the actinic ray-sensitive or radiation-sensitive resin composition (hereinafter also referred to as “the composition of the present invention”) used in the pattern forming method according to the present invention is a development containing one or more organic solvents by the action of an acid.
  • the resin contains a resin whose solubility in the liquid decreases, a compound that generates an acid upon irradiation with actinic rays or radiation, and a solvent as essential components.
  • Resins whose solubility in a developer containing one or more organic solvents is reduced by the action of an acid include, for example, resin Resin having a group (hereinafter also referred to as “acid-decomposable group”) that is decomposed by the action of an acid to generate a polar group (hereinafter also referred to as “acid-decomposable group”) on the main chain or side chain, or both of the main chain and side chain Resin "or" resin (A) ").
  • the acid-decomposable group preferably has a structure protected by a group capable of decomposing and leaving a polar group by the action of an acid.
  • Preferred polar groups include carboxyl groups, phenolic hydroxyl groups, fluorinated alcohol groups (preferably hexafluoroisopropanol groups), and sulfonic acid groups.
  • a preferred group as the acid-decomposable group is a group in which the hydrogen atom of these groups is substituted with a group capable of leaving with an acid.
  • Examples of the group leaving with an acid include —C (R 36 ) (R 37 ) (R 38 ), —C (R 36 ) (R 37 ) (OR 39 ), —C (R 01 ) (R 02 ). ) (OR 39 ) and the like.
  • R 36 to R 39 each independently represents an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may be bonded to each other to form a ring.
  • R 01 and R 02 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • the acid-decomposable group is preferably a cumyl ester group, an enol ester group, an acetal ester group, a tertiary alkyl ester group or the like. More preferably, it is a tertiary alkyl ester group.
  • the resin (A) preferably has a repeating unit having an acid-decomposable group.
  • the repeating unit include the following.
  • Rx represents a hydrogen atom, CH 3 , CF 3 , or CH 2 OH.
  • Rxa and Rxb each represents an alkyl group having 1 to 4 carbon atoms.
  • Xa 1 represents a hydrogen atom, CH 3 , CF 3 , or CH 2 OH.
  • Z represents a substituent, and when a plurality of Zs are present, the plurality of Zs may be the same as or different from each other.
  • p represents 0 or a positive integer.
  • Specific examples and preferred examples of Z are the same as specific examples and preferred examples of the substituent that each group such as Rx 1 to Rx 3 may have.
  • Xa represents a hydrogen atom, an alkyl group, a cyano group, or a halogen atom.
  • Xa 1 represents a hydrogen atom, CH 3 , CF 3 , or CH 2 OH.
  • One type of repeating unit having an acid-decomposable group may be used, or two or more types may be used in combination. Although the combination in the case of using 2 types together is not specifically limited, For example, the following combinations are mentioned preferably.
  • the content of the repeating unit having an acid-decomposable group contained in the resin (A) (when there are a plurality of repeating units having an acid-decomposable group, the total) is based on the total repeating units of the resin (A), It is preferably 15 mol% or more, more preferably 20 mol% or more, further preferably 25 mol% or more, and particularly preferably 40 mol% or more.
  • Resin (A) may contain a repeating unit having a lactone structure or a sultone structure.
  • repeating unit having a group having a lactone structure or a sultone structure are shown below, but the present invention is not limited thereto.
  • the content of the repeating unit having a lactone structure or a sultone structure is 5 to 60 mol% with respect to all the repeating units in the resin (A). It is preferably 5 to 55 mol%, more preferably 10 to 50 mol%.
  • the resin (A) may have a repeating unit having a cyclic carbonate structure. Although a specific example is given how, this invention is not limited to these.
  • R A 1 represents a hydrogen atom or an alkyl group (preferably a methyl group).
  • Resin (A) may have a repeating unit having a hydroxyl group or a cyano group.
  • repeating unit having a hydroxyl group or a cyano group are given below, but the present invention is not limited thereto.
  • Resin (A) may have a repeating unit having an acid group.
  • the resin (A) may or may not contain a repeating unit having an acid group, but when it is contained, the content of the repeating unit having an acid group is relative to all the repeating units in the resin (A). It is preferably 25 mol% or less, and more preferably 20 mol% or less.
  • content of the repeating unit which has an acid group in resin (A) is 1 mol% or more normally.
  • Rx represents H, CH 3 , CH 2 OH, or CF 3 .
  • the resin (A) further has an alicyclic hydrocarbon structure and / or an aromatic ring structure that does not have a polar group (for example, the acid group, hydroxyl group, cyano group), and has a repeating unit that does not exhibit acid decomposability. be able to.
  • the resin (A) may or may not contain this repeating unit, but when it is contained, the content thereof should be 5 to 30 mol% with respect to all the repeating units in the resin (A). Preferably, it is 5 to 25 mol% or less.
  • Ra represents H, CH 3 , CH 2 OH, or CF 3 .
  • the resin (A) used in the composition of the present invention has substantially no aromatic ring from the viewpoint of transparency to ArF light (specifically,
  • the ratio of the repeating unit having an aromatic group in the resin is preferably 5 mol% or less, more preferably 3 mol% or less, ideally 0 mol%, that is, no aromatic group).
  • the resin (A) preferably has a monocyclic or polycyclic alicyclic hydrocarbon structure.
  • the form of the resin (A) in the present invention may be any of random type, block type, comb type, and star type.
  • Resin (A) is compoundable by the radical, cation, or anion polymerization of the unsaturated monomer corresponding to each structure, for example. It is also possible to obtain the desired resin by conducting a polymer reaction after polymerization using an unsaturated monomer corresponding to the precursor of each structure.
  • the resin (A) used in the composition of the present invention has substantially no aromatic ring from the viewpoint of transparency to ArF light (specifically,
  • the ratio of the repeating unit having an aromatic group in the resin is preferably 5 mol% or less, more preferably 3 mol% or less, ideally 0 mol%, that is, no aromatic group).
  • the resin (A) preferably has a monocyclic or polycyclic alicyclic hydrocarbon structure.
  • the composition of the present invention contains a resin (D) described later, it is preferable that the resin (A) does not contain a fluorine atom and a silicon atom from the viewpoint of compatibility with the resin (D).
  • the resin (A) used in the composition of the present invention is preferably such that all of the repeating units are composed of (meth) acrylate-based repeating units.
  • all of the repeating units are methacrylate repeating units, all of the repeating units are acrylate repeating units, or all of the repeating units are methacrylate repeating units and acrylate repeating units.
  • the acrylate-based repeating unit is preferably 50 mol% or less of the total repeating units.
  • the resin (A) When the composition of the present invention is irradiated with KrF excimer laser light, electron beam, X-ray, high energy light beam (EUV, etc.) having a wavelength of 50 nm or less, the resin (A) has a repeating unit having an aromatic ring. May be.
  • the repeating unit having an aromatic ring is not particularly limited, and is also exemplified in the above description of each repeating unit, but a styrene unit, a hydroxystyrene unit, a phenyl (meth) acrylate unit, a hydroxyphenyl (meth) acrylate. Examples include units.
  • the resin (A) is a resin having a hydroxystyrene-based repeating unit and a hydroxystyrene-based repeating unit protected by an acid-decomposable group, a repeating unit having the aromatic ring, and (meth) Examples thereof include a resin having a repeating unit in which the carboxylic acid moiety of acrylic acid is protected by an acid-decomposable group.
  • the resin (A) in the present invention can be synthesized and purified according to a conventional method (for example, radical polymerization).
  • a conventional method for example, radical polymerization.
  • the weight average molecular weight of the resin (A) in the present invention is 7,000 or more, preferably 7,000 to 200,000, more preferably 7,000 as described above in terms of polystyrene by GPC method. 50,000 to 50,000, still more preferably 7,000 to 40,000,000, particularly preferably 7,000 to 30,000. When the weight average molecular weight is less than 7000, the solubility in an organic developer becomes too high, and there is a concern that a precise pattern cannot be formed.
  • the degree of dispersion is usually 1.0 to 3.0, preferably 1.0 to 2.6, more preferably 1.0 to 2.0, and particularly preferably 1.4 to 2.0. Those in the range are used.
  • the smaller the molecular weight distribution the better the resolution and the resist shape, the smoother the sidewall of the resist pattern, and the better the roughness.
  • the blending ratio of the resin (A) in the entire composition is preferably 30 to 99% by mass, more preferably 60 to 95% by mass in the total solid content.
  • the resin (A) may be used alone or in combination.
  • composition ratio of a repeating unit is a molar ratio
  • this invention is not limited to these.
  • supported by resin (A) is also illustrated.
  • composition in the present invention is a compound that generates acid upon irradiation with actinic ray or radiation (hereinafter referred to as “compound (B)” or “acid generator”). Contain).
  • compound (B) that generates an acid upon irradiation with actinic rays or radiation is preferably a compound that generates an organic acid upon irradiation with actinic rays or radiation.
  • photo-initiator of photocation polymerization photo-initiator of photo-radical polymerization, photo-decoloring agent of dyes, photo-discoloring agent, irradiation of actinic ray or radiation used for micro resist, etc.
  • the known compounds that generate an acid and mixtures thereof can be appropriately selected and used.
  • Examples include diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imide sulfonates, oxime sulfonates, diazodisulfones, disulfones, and o-nitrobenzyl sulfonates.
  • the acid generator can be synthesized by a known method. For example, [0200] to [0210] of JP2007-161707A, JP2010-100595A, and WO2011 / 093280 [ [0051] to [0058], [0382] to [0385] of International Publication No. 2008/153110, Japanese Patent Application Laid-Open No. 2007-161707, and the like.
  • An acid generator can be used individually by 1 type or in combination of 2 or more types.
  • the content of the compound that generates an acid upon irradiation with actinic rays or radiation in the composition is preferably 0.1 to 30% by mass, more preferably 0.5%, based on the total solid content of the composition of the present invention. -25% by mass, more preferably 3-20% by mass, particularly preferably 3-15% by mass.
  • Solvents that can be used in preparing the composition of the present invention include, for example, alkylene glycol monoalkyl ether carboxylates, alkylene glycol monoalkyl ethers, alkyl lactate esters, alkyl alkoxypropionates, cyclic lactones (preferably carbon And organic solvents such as monoketone compounds (preferably having 4 to 10 carbon atoms), alkylene carbonate, alkyl alkoxyacetate, and alkyl pyruvate.
  • solvents that can be used in preparing the composition of the present invention include, for example, alkylene glycol monoalkyl ether carboxylates, alkylene glycol monoalkyl ethers, alkyl lactate esters, alkyl alkoxypropionates, cyclic lactones (preferably carbon And organic solvents such as monoketone compounds (preferably having 4 to 10 carbon atoms), alkylene carbonate, alkyl alkoxyacetate, and alkyl pyruvate.
  • a mixed solvent obtained by mixing a solvent containing a hydroxyl group in the structure and a solvent not containing a hydroxyl group may be used as the organic solvent.
  • the solvent containing a hydroxyl group and the solvent not containing a hydroxyl group can be selected as appropriate.
  • the solvent containing a hydroxyl group alkylene glycol monoalkyl ether, alkyl lactate and the like are preferable, and propylene glycol monomethyl ether ( PGME, also known as 1-methoxy-2-propanol), ethyl lactate is more preferred.
  • alkylene glycol monoalkyl ether acetate, alkyl alkoxypropionate, monoketone compound which may contain a ring, cyclic lactone, alkyl acetate and the like are preferable, and among these, propylene glycol monomethyl ether Acetate (PGMEA, also known as 1-methoxy-2-acetoxypropane), ethyl ethoxypropionate, 2-heptanone, ⁇ -butyrolactone, cyclohexanone, butyl acetate are particularly preferred, propylene glycol monomethyl ether acetate, ethyl ethoxypropionate, 2 -Heptanone is most preferred.
  • PGMEA propylene glycol monomethyl ether Acetate
  • ethyl ethoxypropionate 2-heptanone
  • ⁇ -butyrolactone cyclohexanone
  • the mixing ratio (mass) of the solvent containing a hydroxyl group and the solvent not containing a hydroxyl group is 1/99 to 99/1, preferably 10/90 to 90/10, more preferably 20/80 to 60/40. .
  • a mixed solvent containing 50% by mass or more of a solvent not containing a hydroxyl group is particularly preferred from the viewpoint of coating uniformity.
  • the solvent preferably includes propylene glycol monomethyl ether acetate, and is preferably a propylene glycol monomethyl ether acetate single solvent or a mixed solvent of two or more containing propylene glycol monomethyl ether acetate.
  • Hydrophobic resin (D) The composition of the present invention may contain a hydrophobic resin (hereinafter also referred to as “hydrophobic resin (D)” or simply “resin (D)”).
  • the hydrophobic resin (D) is preferably different from the resin (A).
  • the hydrophobic resin (D) is unevenly distributed in the film surface layer, and when the immersion medium is water, the static / dynamic contact angle of the resist film surface with water is improved, and the immersion liquid followability is improved. be able to.
  • the hydrophobic resin (D) is preferably designed to be unevenly distributed at the interface as described above. However, unlike the surfactant, the hydrophobic resin (D) does not necessarily need to have a hydrophilic group in the molecule. There is no need to contribute to uniform mixing.
  • the hydrophobic resin (D) is selected from any one of “fluorine atom”, “silicon atom”, and “CH 3 partial structure contained in the side chain portion of the resin” from the viewpoint of uneven distribution in the film surface layer. It is preferable to have the above, and it is more preferable to have two or more.
  • the weight average molecular weight in terms of standard polystyrene of the hydrophobic resin (D) is preferably 1,000 to 100,000, more preferably 1,000 to 50,000, still more preferably 2,000 to 15,000. is there.
  • hydrophobic resin (D) may be used alone or in combination.
  • the content of the hydrophobic resin (D) in the composition is preferably 0.01 to 10% by mass, more preferably 0.05 to 8% by mass, based on the total solid content in the composition of the present invention. More preferably, it is 1 to 7% by mass.
  • the molecular weight distribution (Mw / Mn, also referred to as dispersity) is preferably in the range of 1 to 5, more preferably 1 to 3, and still more preferably from the viewpoints of resolution, resist shape, resist pattern sidewall, roughness, and the like. It is in the range of 1-2.
  • the hydrophobic resin (D) various commercially available products can be used, and the hydrophobic resin (D) can be synthesized according to a conventional method (for example, radical polymerization).
  • a conventional method for example, radical polymerization
  • a monomer polymerization method in which a monomer species and an initiator are dissolved in a solvent and the polymerization is performed by heating, and a solution of the monomer species and the initiator is dropped into the heating solvent over 1 to 10 hours.
  • the dropping polymerization method is added, and the dropping polymerization method is preferable.
  • the reaction solvent, the polymerization initiator, the reaction conditions (temperature, concentration, etc.) and the purification method after the reaction are the same as those described for the resin (A), but in the synthesis of the hydrophobic resin (D),
  • the concentration of the reaction is preferably 30 to 50% by mass.
  • hydrophobic resin (D) Specific examples of the hydrophobic resin (D) are shown below.
  • the following table shows the molar ratio of repeating units in each resin (corresponding to each repeating unit in order from the left), the weight average molecular weight, and the degree of dispersion.
  • composition of the present invention preferably contains a basic compound.
  • the composition of the present invention is also referred to as a basic compound or an ammonium salt compound (hereinafter referred to as “compound (N)”) whose basicity is reduced by irradiation with actinic rays or radiation. ) Is preferably contained.
  • the compound (N) is preferably a compound (N-1) having a basic functional group or an ammonium group and a group that generates an acidic functional group upon irradiation with actinic rays or radiation. That is, the compound (N) is a basic compound having a basic functional group and a group capable of generating an acidic functional group upon irradiation with actinic light or radiation, or an acidic functional group upon irradiation with an ammonium group and active light or radiation. An ammonium salt compound having a group to be generated is preferable.
  • Examples of the compound (N) include the following.
  • examples of the compound (N) include the compounds (A-1) to (A-44) described in US Patent Application Publication No. 2010/0233629, and US patent applications.
  • the compounds (A-1) to (A-23) described in JP 2012/0156617 A can also be preferably used in the present invention.
  • the molecular weight of the compound (N) is preferably 500 to 1,000.
  • composition of the present invention may or may not contain the compound (N), but when it is contained, the content of the compound (N) is from 0.1 to 0.1 on the basis of the solid content of the composition. It is preferably 20% by mass, more preferably 0.1 to 10% by mass.
  • composition of the present invention is different from the compound (N) as a basic compound in order to reduce the change in performance over time from exposure to heating. ) May be contained.
  • Preferred examples of the basic compound (N ′) include compounds having structures represented by the following formulas (A ′) to (E ′).
  • RA 200 , RA 201 and RA 202 may be the same or different and are a hydrogen atom, an alkyl group (preferably having a carbon number of 1 to 20), a cycloalkyl group (preferably having a carbon number of 3 to 20) or an aryl group (having a carbon number of 6-20), where RA 201 and RA 202 may combine with each other to form a ring.
  • RA 203 , RA 204 , RA 205 and RA 206 may be the same or different and each represents an alkyl group (preferably having 1 to 20 carbon atoms).
  • the alkyl group may have a substituent.
  • the alkyl group having a substituent include an aminoalkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group having 1 to 20 carbon atoms, and a carbon group having 1 to 20 carbon atoms.
  • a cyanoalkyl group is preferred.
  • alkyl groups in general formulas (A ′) and (E ′) are more preferably unsubstituted.
  • the basic compound (N ′) include guanidine, aminopyrrolidine, pyrazole, pyrazoline, piperazine, aminomorpholine, aminoalkylmorpholine, piperidine, and more preferable specific examples include an imidazole structure. , Diazabicyclo structure, onium hydroxide structure, onium carboxylate structure, trialkylamine structure, aniline structure or pyridine structure compound, alkylamine derivative having hydroxyl group and / or ether bond, aniline derivative having hydroxyl group and / or ether bond Etc.
  • Examples of the compound having an imidazole structure include imidazole, 2,4,5-triphenylimidazole, benzimidazole and the like.
  • Examples of the compound having a diazabicyclo structure include 1,4-diazabicyclo [2,2,2] octane, 1,5-diazabicyclo [4,3,0] non-5-ene, 1,8-diazabicyclo [5,4, 0] Undecaker 7-ene and the like.
  • Examples of the compound having an onium hydroxide structure include triarylsulfonium hydroxide, phenacylsulfonium hydroxide, sulfonium hydroxide having a 2-oxoalkyl group, specifically, triphenylsulfonium hydroxide, tris (t-butylphenyl) Examples include sulfonium hydroxide, bis (t-butylphenyl) iodonium hydroxide, phenacylthiophenium hydroxide, 2-oxopropylthiophenium hydroxide, and the like.
  • the compound having an onium carboxylate structure is a compound having an onium hydroxide structure in which the anion moiety is converted to a carboxylate, and examples thereof include acetate, adamantane-1-carboxylate, and perfluoroalkylcarboxylate.
  • Examples of the compound having a trialkylamine structure include tri (n-butyl) amine and tri (n-octyl) amine.
  • Examples of the compound having an aniline structure include 2,6-diisopropylaniline, N, N-dimethylaniline, N, N-dibutylaniline, N, N-dihexylaniline and the like.
  • alkylamine derivative having a hydroxyl group and / or an ether bond examples include ethanolamine, diethanolamine, triethanolamine, and tris (methoxyethoxyethyl) amine.
  • aniline derivatives having a hydroxyl group and / or an ether bond examples include N, N-bis (hydroxyethyl) aniline.
  • Preferred examples of the basic compound further include an amine compound having a phenoxy group, an ammonium salt compound having a phenoxy group, an amine compound having a sulfonic acid ester group, and an ammonium salt compound having a sulfonic acid ester group.
  • Specific examples thereof include, but are not limited to, compounds (C1-1) to (C3-3) exemplified in [0066] of US Patent Application Publication No. 2007/0224539. Absent.
  • composition of the present invention may contain a nitrogen-containing organic compound having a group capable of leaving by the action of an acid as one kind of basic compound.
  • a nitrogen-containing organic compound having a group capable of leaving by the action of an acid as one kind of basic compound.
  • this compound for example, specific examples of the compound are shown below.
  • the above compound can be synthesized, for example, according to the method described in JP-A-2009-199021.
  • the molecular weight of the basic compound (N ′) is preferably 250 to 2000, more preferably 400 to 1000. From the viewpoint of further reduction in LWR and uniformity of local pattern dimensions, the molecular weight of the basic compound is preferably 400 or more, more preferably 500 or more, and even more preferably 600 or more. .
  • These basic compounds (N ′) may be used in combination with the compound (N), or may be used alone or in combination of two or more.
  • the chemically amplified resist composition in the present invention may or may not contain the basic compound (N ′), but when it is contained, the amount of the basic compound (N ′) used depends on the chemically amplified resist composition. Based on the solid content of the product, it is usually 0.001 to 10% by mass, preferably 0.01 to 5% by mass.
  • the composition of the present invention may contain an onium salt represented by the following general formula (6A) or (6B) as a basic compound.
  • This onium salt is expected to control the diffusion of the generated acid in the resist system in relation to the acid strength of the photoacid generator usually used in the resist composition.
  • Ra represents an organic group. However, those in which a fluorine atom is substituted for a carbon atom directly bonded to a carboxylic acid group in the formula are excluded.
  • X + represents an onium cation.
  • Rb represents an organic group. However, those in which a fluorine atom is substituted for a carbon atom directly bonded to the sulfonic acid group in the formula are excluded.
  • X + represents an onium cation.
  • the atom directly bonded to the carboxylic acid group or sulfonic acid group in the formula is preferably a carbon atom.
  • the fluorine atom does not substitute for the carbon atom directly bonded to the sulfonic acid group or carboxylic acid group.
  • Examples of the organic group represented by Ra and Rb include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and an aralkyl group having 7 to 30 carbon atoms. Alternatively, a heterocyclic group having 3 to 30 carbon atoms can be used. In these groups, some or all of the hydrogen atoms may be substituted.
  • alkyl group, cycloalkyl group, aryl group, aralkyl group and heterocyclic group may have include a hydroxyl group, a halogen atom, an alkoxy group, a lactone group, and an alkylcarbonyl group.
  • Examples of the onium cation represented by X + in the general formulas (6A) and (6B) include a sulfonium cation, an ammonium cation, an iodonium cation, a phosphonium cation, and a diazonium cation. Among these, a sulfonium cation is more preferable.
  • an arylsulfonium cation having at least one aryl group is preferable, and a triarylsulfonium cation is more preferable.
  • the aryl group may have a substituent, and the aryl group is preferably a phenyl group.
  • the structure demonstrated in the compound (B) can also be mentioned preferably.
  • a specific structure of the onium salt represented by the general formula (6A) or (6B) is shown below.
  • the composition of the present invention is a compound included in the formula (I) of JP2012-189977A, or a compound of formula (I) of JP2013-6827A as a basic compound.
  • Onium in one molecule such as a compound represented by formula (I) in JP2013-8020A, a compound represented by formula (I) in JP2012-252124A, and the like
  • a compound having both a salt structure and an acid anion structure (hereinafter also referred to as a betaine compound) may be contained.
  • the onium salt structure include a sulfonium, iodonium, and ammonium structure, and a sulfonium or iodonium salt structure is preferable.
  • the acid anion structure is preferably a sulfonate anion or a carboxylic acid anion. Examples of this compound include the following.
  • composition of the present invention may further contain a surfactant.
  • a surfactant fluorine and / or silicon surfactant (fluorine surfactant, silicon surfactant, surfactant having both fluorine and silicon atoms) It is more preferable to contain either one or two or more.
  • composition of the present invention contains a surfactant
  • an exposure light source of 250 nm or less, particularly 220 nm or less it is possible to provide a resist pattern with less adhesion and development defects with good sensitivity and resolution. Become.
  • fluorine-based and / or silicon-based surfactant examples include surfactants described in [0276] of US Patent Application Publication No. 2008/0248425.
  • surfactants are derived from fluoroaliphatic compounds produced by the telomerization method (also referred to as the telomer method) or the oligomerization method (also referred to as the oligomer method).
  • a surfactant using a polymer having a fluoroaliphatic group can be used.
  • the fluoroaliphatic compound can be synthesized by the method described in JP-A-2002-90991.
  • Megafac F178, F-470, F-473, F-475, F-476, F-472 manufactured by DIC Corporation
  • surfactants other than fluorine-based and / or silicon-based surfactants described in [0280] of US Patent Application Publication No. 2008/0248425 can also be used. These surfactants may be used alone or in several combinations.
  • the amount of the surfactant used is preferably 0.0001 to 2% by mass, more preferably 0, based on the total amount of the composition (excluding the solvent). 0005 to 1% by mass.
  • the amount of the surfactant added is 10 ppm or less with respect to the total amount of the actinic ray-sensitive or radiation-sensitive resin composition (excluding the solvent), the surface unevenness of the hydrophobic resin is increased. As a result, the surface of the resist film can be made more hydrophobic, and the water followability during immersion exposure can be improved.
  • composition of the present invention may contain a carboxylic acid onium salt.
  • carboxylic acid onium salts include those described in US Patent Application Publication No. 2008/0187860 [0605] to [0606].
  • the content is generally 0.1 to 20% by mass, preferably 0.5 to 10% by mass, based on the total solid content of the composition. %, More preferably 1 to 7% by mass.
  • a dye In the composition of the present invention, a dye, a plasticizer, a photosensitizer, a light absorber, an alkali-soluble resin, a dissolution inhibitor, and a compound that promotes solubility in a developer (for example, a molecular weight of 1000 or less) A phenol compound, an alicyclic compound having a carboxyl group, or an aliphatic compound).
  • composition of the present invention is preferably used in a film thickness of 30 to 250 nm, more preferably in a film thickness of 30 to 200 nm, from the viewpoint of improving resolution.
  • the solid content concentration of the composition of the present invention is usually 1.0 to 10% by mass, preferably 2.0 to 5.7% by mass, and more preferably 2.0 to 5.3% by mass. By setting the solid content concentration within the above range, the resist solution can be uniformly applied on the substrate.
  • the solid content concentration is the weight percentage of the weight of other resist components excluding the solvent with respect to the total weight of the chemically amplified resist composition.
  • the composition of the present invention is used by dissolving the above-described components in a predetermined organic solvent, preferably the mixed solvent, filtering the solution, and applying the solution on a predetermined support (substrate).
  • the pore size of the filter used for filter filtration is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and still more preferably 0.03 ⁇ m or less made of polytetrafluoroethylene, polyethylene, or nylon.
  • filter filtration for example, as in JP-A-2002-62667, circulation filtration may be performed, or filtration may be performed by connecting a plurality of types of filters in series or in parallel.
  • the composition may be filtered multiple times. Furthermore, you may perform a deaeration process etc. with respect to a composition before and behind filter filtration.
  • ⁇ Resist preparation> The components shown in the table below are dissolved in the solvent shown in the table in a solid content of 3.5% by mass, and each is filtered through a polyethylene filter having a pore size of 0.03 ⁇ m to obtain an actinic ray-sensitive or radiation-sensitive resin. A composition (resist composition) was prepared.
  • W-1 Megafuck F176 (DIC Corporation; Fluorine)
  • W-2 PolyFox PF-6320 (manufactured by OMNOVA Solutions Inc .; fluorine system) ⁇ Solvent>
  • solvents SG-1 and SG-2 shown below were used.
  • SG-1 Propylene glycol monomethyl ether acetate
  • SG-2 Cyclohexanone ⁇ Preparation of resist film>
  • an organic antireflection film ARC29SR manufactured by Nissan Chemical Industries, Ltd.
  • An actinic ray-sensitive or radiation-sensitive resin composition was applied thereon, and baked (PB: Prebake) at 100 ° C. for 60 seconds to form a resist film having a thickness of 85 nm.
  • the resulting wafer was spun at a flow rate of 5 ml / second for 1 second at a flow rate of 5 ml / second while rotating the wafer at a rotation speed of 200 rpm in a coater / developer cleaning unit. Subsequently, the pure water rinse nozzle was moved from the wafer center to the peripheral direction while discharging the pure water rinse at a flow rate of 5 ml / second over 9 seconds while maintaining the wafer rotation speed at 200 rpm. Thereafter, spin drying was performed at a rotational speed of 3000 rpm for 15 seconds.
  • the obtained wafer was used with an ArF excimer laser immersion scanner (manufactured by ASML; XT1700i, NA1.20, Dipole-X, outer sigma 0.981, inner sigma 0.895, Y deflection) with a pitch of 90 nm and a mask width. Pattern exposure through a 45 nm halftone mask. Ultra pure water was used as the immersion liquid.
  • Example 2 evaluation was conducted in the same manner as in Example 1 except that 2% by mass of tri-n-octylamine was added to the developer butyl acetate, and it was confirmed that the defect performance was also good in this evaluation. It was done.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 酸の作用により1種類以上の有機溶剤を含む現像液に対する溶解度が減少する樹脂、活性光線又は放射線の照射により酸を発生する化合物、及び、溶剤を含有する感活性光線性又は感放射線性樹脂組成物を基板上に塗布して感活性光線性又は感放射線性膜を形成する工程、液浸液を介して感活性光線性又は感放射線性膜を露光する工程、感活性光線性又は感放射線性膜を加熱する工程、及び、感活性光線性又は感放射線性膜を、有機溶剤を含む現像液で現像する工程をこの順序で含み、更に、感活性光線性又は感放射線性膜を洗浄する工程を、前記膜形成工程後且つ前記露光工程前、および/または、前記露光工程後且つ前記加熱工程前に含むパターン形成方法。

Description

パターン形成方法、電子デバイスの製造方法及び電子デバイス
 本発明は、IC等の半導体製造工程、液晶、サーマルヘッド等の回路基板の製造、更にその他のフォトファブリケーションのリソグラフィ工程に好適に用いられるパターン形成方法、電子デバイスの製造方法及び電子デバイスに関する。
 KrFエキシマレーザー(248nm)用レジスト以降、半導体用のリソグラフィにおいては、化学増幅を利用したパターン形成方法が用いられている。
 半導体素子の微細化のために、露光光源の短波長化及び投影レンズの高開口数(高NA)化が進み、現在では、193nmの波長を有するArFエキシマレーザーを光源とする露光機が開発されている。解像力を更に高める技術として、投影レンズと試料との間に高屈折率の液体(以下、「液浸液」ともいう)を満たす方法(即ち、液浸法)が提唱されている。また、更に短い波長(13.5nm)の紫外光で露光を行なうEUVリソグラフィも提唱されている。
 近年では、有機溶剤を含んだ現像液(以下、「有機溶剤系現像液」ともいう)を用いたパターン形成方法も開発されつつあり、例えば、特許文献1~10には、酸の作用により分解し、極性基を生じる基を有する繰り返し単位を含む樹脂を含有するレジスト組成物に対して有機溶剤系現像液を用いて現像する工程を有するパターン形成方法が記載されている。
 液浸法では、液浸露光によりレジスト表面に残存する液浸液(液浸水)に起因する欠陥、すなわち、レジスト膜上に残存する液浸水にレジスト露光部の酸が拡散し、露光部での酸による脱保護の触媒反応率が低下したり、液浸水に拡散した酸が未露光部での脱保護反応を引き起こしたり、露光後の加熱工程において温度ムラを生じさせ、レジストパターンの線幅均一性、パターン形状欠陥、現像欠陥を悪化させ得ることが知られている(以下、「水残り欠陥」ともいう)。これに対し、従来は、レジスト層上にトップコート層を形成することにより、残存する液浸水によるレジスト膜への影響を抑制したり、添加剤によりレジスト表面における撥水性を向上させて、レジスト膜上に残存する液浸水を低減させることが行われている。また、上掲の特許文献10では、酸の作用により有機溶剤系現像液に対する溶解度が減少する樹脂として特定の樹脂を用いることにより液浸露光時の水残り欠陥を抑制する技術が開示されている。
特開2008-292975号公報 特開2008-281975号公報 特開2010-139996号公報 特開2010-164958号公報 特開2009-25707号公報 特開2011-221513号公報 特開2012-208431号公報 特開平4-39665号公報 特開2009-25723号公報 特開2011-209520号公報
 本発明者等による鋭意研究の結果、液浸露光を行い、有機溶剤系現像液で現像した場合、図1に例示されるように、ウエハエッジ付近の特定部分に、液浸液を使用しない通常露光の場合には見られない微細な欠陥が発生することがわかった。図1において小さな点として認識されるものが欠陥である。これら微細な欠陥は、ウエハエッジと露光ステージの段差あるいはイマージョンフードのトラブル等の原因により、液浸水の微小な液滴が露光後にウエハ上に残ってしまうことに起因する水残り欠陥と推測されるが、例えばレジスト表面の撥水性を向上させるなどの上述した従来技術では、これら微細な欠陥は必ずしも完全に抑制することができない場合があることも本発明者等による研究の結果明らかとなった。また、検査装置の高感度化により、ますます微細な欠陥が検出されるようになってきているが、そのような微細な欠陥はこれまで欠陥として認識されず看過されてきており、そのような微細な水残り欠陥のないパターンを形成することが可能な、有機溶剤系現像液で現像するパターン形成方法はこれまでなかったのが実情である。
 そこで、本発明は、有機溶剤系現像液を用いたパターン形成方法において、液浸露光を適用する場合に、液浸露光後にレジスト膜上に残存した液浸液に起因する微細な水残り欠陥のないパターンを形成することが可能なパターン形成方法、そのパターン形成方法を含む電子デバイスの製造方法及び電子デバイスを提供することを課題とする。
 本発明は、一態様において、以下の通りである。 
 [1]-酸の作用により1種類以上の有機溶剤を含む現像液に対する溶解度が減少する樹脂、活性光線又は放射線の照射により酸を発生する化合物、及び、溶剤を含有する感活性光線性又は感放射線性樹脂組成物を基板上に塗布して感活性光線性又は感放射線性膜を形成する工程、
 -液浸液を介して感活性光線性又は感放射線性膜を露光する工程、
 -感活性光線性又は感放射線性膜を加熱する工程、及び
 -感活性光線性又は感放射線性膜を、有機溶剤を含む現像液で現像する工程
をこの順序で含み、更に、
 -感活性光線性又は感放射線性膜を洗浄する工程を、前記膜形成工程後且つ前記露光工程前、および/または、前記露光工程後且つ前記加熱工程前に含むパターン形成方法。
 [2] 前記洗浄工程を、前記露光工程後且つ前記加熱工程前、または、前記膜形成工程後且つ前記露光工程前と前記露光工程後且つ前記加熱工程前の双方に含むことを特徴とする、[1]に記載のパターン形成方法。
 [3] 前記洗浄工程が、純水で感活性光線性又は感放射線性膜を洗浄することを含む、[1]又は[2]に記載のパターン形成方法。
 [4] 前記洗浄工程が、純水を用いた洗浄後に、感活性光線性又は感放射線性膜上から純水を除去することを含む、[3]に記載のパターン形成方法。
 [5] 純水の除去が、不活性ガスブローおよび/またはスピンドライにより行われる、[3]又は[4]に記載のパターン形成方法。
 [6] 前記感活性光線性又は感放射線性樹脂組成物が更に疎水性樹脂を含む、[1]~[5]のいずれか1項に記載のパターン形成方法。
 [7] 前記現像液における有機溶剤の含有率が、現像液の全量に対して90質量%以上100質量%以下である、[1]~[6]のいずれか1項に記載のパターン形成方法。
 [8] [1]~[7]のいずれか1項に記載のパターン形成方法を含む、電子デバイスの製造方法。 
 [9] [8]に記載の電子デバイスの製造方法により製造された電子デバイス。
 本発明により、液浸露光後にレジスト膜上に残存した液浸液に起因する微細な水残り欠陥が低減されたパターンを形成することが可能な有機溶剤系現像液を用いたパターン形成方法、そのパターン形成方法を含む電子デバイスの製造方法及び電子デバイスの提供が可能となった。
感活性光線性又は感放射線性膜を形成後、液浸露光及び加熱を行い、有機溶剤系現像液で現像して得られるウエハ面上における、微細な欠陥の発生位置を示す欠陥マップの一例を示す図。 水残りブリッジ欠陥の一例を示すFOV2μmのSEM写真。 水残りブリッジ欠陥の他の例を示すFOV2μmのSEM写真。
 以下、本発明の実施形態について詳細に説明する。 
 本明細書に於ける基(原子団)の表記に於いて、置換及び無置換を記していない表記は置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 なお、ここで「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外(EUV)線、X線、軟X線、電子線(EB)等を意味する。また、本発明において光とは、活性光線又は放射線を意味する。
 また、ここで「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
 まず、本発明に係るパターン形成方法について説明し、次いで、このパターン形成方法において使用される感活性光線性又は感放射線性樹脂組成物について説明する。
 <パターン形成方法>
 本発明に係るパターン形成方法は、
 -感活性光線性又は感放射線性樹脂組成物を基板上に塗布して感活性光線性又は感放射線性膜を形成する製膜工程、
 -液浸液を介して感活性光線性又は感放射線性膜を露光する露光工程、
 -感活性光線性又は感放射線性膜を加熱する露光後加熱工程、及び、
 -感活性光線性又は感放射線性膜を、有機溶剤を含む現像液で現像する現像工程をこの順序で含み、更に、
 -感活性光線性又は感放射線性膜を洗浄する洗浄工程を、製膜工程後且つ露光工程前、
および/または、露光工程後且つ露光後加熱工程前に含む。
 本発明に係るパターン形成方法は、感活性光線性又は感放射線性膜を洗浄する洗浄工程を含むことにより、液浸露光において感活性光線性又は感放射線性膜上に残存した液浸液に起因する微細な水残り欠陥のないパターンを形成することが可能となる。
 この微細な水残り欠陥とは、液浸露光を行い、有機溶剤系現像液で現像した場合に、図1に例示されるようなウエハエッジ付近の特定部分に見られる微細な欠陥であり、例えば、図2及び図3に例示されるような微細なブリッジ欠陥(以下、「水残りブリッジ欠陥」という)である。有機溶剤系現像液を用いたパターン形成方法において、液浸露光を適用する場合に、このようにウエハエッジ付近の特定部分に微細な水残りブリッジ欠陥が生じることはこれまで認識されていなかった。
 <洗浄工程>
 本発明に係るパターン形成方法は、洗浄工程を、製膜工程後且つ露光工程前、及び、露光工程後且つ露光後加熱(PEB;Post Exposure Bake)工程前の少なくともいずれかに含む。以下において、製膜工程後且つ露光工程前に行われる洗浄を「露光前洗浄」といい、露光工程後且つPEB工程前に行われる洗浄を「露光後洗浄」という。
 露光前洗浄により、感活性光線性又は感放射線性膜の最表層があらかじめ洗浄されることとなり、これにより液浸露光時にウエハ上に液浸液が残存した場合の、液浸液中への酸の溶出の影響を緩和することが可能となる。また、液浸露光時にウエハ上に液浸液が残存したとしても、露光後洗浄により除去され、水残り欠陥の発生を抑制することが可能となる。
 本発明に係るパターン形成方法は、一形態において、露光後洗浄工程を含むことが好ましく、他の形態において、露光前洗浄工程と露光後洗浄工程の双方を含むことが好ましい。
 洗浄工程において、感活性光線性又は感放射線性膜の洗浄は、例えば、純水を用いて以下の洗浄プロセス(A)又は(B)に従い実施することができる。 
 洗浄プロセス(A)
 感活性光線性又は感放射線性膜が形成されたウエハを所定速度(例えば、5~35rpm、より好ましくは7~25rpm)で回転させながら、純水リンスを所定の流量(例えば、10~70ml/秒、より好ましくは、15~50ml/秒)で感活性光線性又は感放射線性膜上に吐出してパドルを形成し、この状態を維持する。吐出を始めてからパドルが形成された状態を維持する合計時間は、例えば、1~60秒であり、より好ましくは3~40秒であり、更に好ましくは5~20秒である。
 洗浄プロセス(B)
 感活性光線性又は感放射線性膜が形成されたウエハを所定速度(例えば、50~300rpm、より好ましくは70~250rpm)で回転させながら、純水リンスを所定の流量(例えば、1~30ml/秒、より好ましくは、3~20ml/秒、更に好ましくは、5~20ml/秒)で感活性光線性又は感放射線性膜上に所定時間(例えば、1~60秒、より好ましくは3~30秒、更に好ましくは5~20秒)吐出する。
 洗浄プロセス(A)は、パドルを形成する洗浄方法であり、洗浄効果はパドルを形成しない洗浄プロセス(B)より高いが、純水リンスの使用量が多くなる。一方、洗浄プロセス(B)は、洗浄効果はパドルを形成する洗浄プロセス(A)より若干劣るが、純水リンスの使用量は少ない。
 洗浄工程は、感活性光線性又は感放射線性膜を洗浄した後、感活性光線性又は感放射線性膜上から純水を除去することを含み得る。この純水の除去は、例えば、不活性ガスブロー又はスピンドライにより、あるいは双方を用いて行うことができる。
 不活性ガスブローによる純水の除去は、例えば、上掲の洗浄プロセス(A)又は(B)により洗浄した後の純水が残存するウェハを所定速度で回転させながら所定時間Nガスをブローすることにより行うことができる。
 スピンドライによる純水の除去は、例えば、上掲の洗浄プロセス(A)又は(B)により洗浄した後の純水が残存するウェハを所定速度(例えば、2000rpm以上、より好ましくは2500rpm以上、更に好ましくは3000rpm以上)で所定時間(例えば、10秒以上、より好ましくは12秒以上)で回転させることにより行うことができる。
 本発明のパターン形成方法において、感活性光線性又は感放射線性樹脂組成物を基板上に塗布して感活性光線性又は感放射線性膜を形成する工程、液浸液を介して感活性光線性又は感放射線性膜を露光する工程、露光後に感活性光線性又は感放射線性膜を加熱するPEB工程、及び、感活性光線性又は感放射線性膜を、有機溶剤を含む現像液で現像する工程は、一般的に知られている方法により行うことができる。
 本発明のパターン形成方法は、一形態において、加熱工程としてPEB工程だけではなく、更に、製膜工程後且つ露光工程前に、前加熱(PB;Prebake)工程を含んでもよい。
 また、本発明のパターン形成方法は、現像工程を複数回含んでいてもよく、有機系現像液を用いて現像する工程とアルカリ現像液を用いて現像する工程とを組み合わせてもよい。
 また、本発明のパターン形成方法は、他の形態において、現像工程の後にリンス液を用いて洗浄するリンス工程を更に含んでもよい。
 <加熱工程>
 加熱工程における加熱温度は、PB、PEB共に70~130℃で行うことが好ましく、80~120℃で行うことがより好ましい。 
 加熱時間は30~300秒が好ましく、30~180秒がより好ましく、30~90秒が更に好ましい。 
 加熱は通常の塗布・現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。 
 ベークにより露光部の反応が促進され、感度やパターンプロファイルが改善する。
 <露光工程>
 本発明における露光は液浸液を介して行われる。 
 本発明における露光装置に用いられる光源波長に制限は無いが、使用する液浸液を透過する波長から選択され、赤外光、可視光、紫外光、遠紫外光、極紫外光、X線、電子線等を挙げることができ、好ましくは250nm以下、より好ましくは220nm以下、特に好ましくは1~200nmの波長の遠紫外光、具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、X線、EUV(13nm)、電子線等であり、ArFエキシマレーザーであることが好ましい。
 本発明における露光は、波長が193nmのArFエキシマレーザーを光源とし、液浸液を介して行われることが好ましい。
 液浸露光方法は、位相シフト法、変形照明法などの超解像技術と組み合わせることが可能である。
 液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう、屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー(波長;193nm)である場合には、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。
 水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤(液体)を僅かな割合で添加しても良い。この添加剤はウエハー上のレジスト層を溶解させず、かつレンズ素子の下面の光学コートに対する影響が無視できるものが好ましい。 
 このような添加剤としては、例えば、水とほぼ等しい屈折率を有する脂肪族系のアルコールが好ましく、具体的にはメチルアルコール、エチルアルコール、イソプロピルアルコール等が挙げられる。水とほぼ等しい屈折率を有するアルコールを添加することにより、水中のアルコール成分が蒸発して含有濃度が変化しても、液体全体としての屈折率変化を極めて小さくできるといった利点が得られる。
 一方で、193nm光に対して不透明な物質や屈折率が水と大きく異なる不純物が混入した場合、レジスト上に投影される光学像の歪みを招くため、使用する水としては、蒸留水が好ましい。更にイオン交換フィルター等を通して濾過を行った純水を用いてもよい。
 液浸液として用いる水の電気抵抗は、18.3MQcm以上であることが望ましく、TOC(有機物濃度)は20ppb以下であることが望ましく、脱気処理をしていることが望ましい。
 また、液浸液の屈折率を高めることにより、リソグラフィー性能を高めることが可能である。このような観点から、屈折率を高めるような添加剤を水に加えたり、水の代わりに重水(DO)を用いたりしてもよい。
 本発明における感活性光線性又は感放射線性樹脂組成物を用いて形成したレジスト膜の後退接触角は温度23±3℃、湿度45±5%において70°以上であり、液浸媒体を介して露光する場合に好適であり、75°以上であることが好ましく、75~85°であることがより好ましい。 
 前記後退接触角が小さすぎると、液浸媒体を介して露光する場合に好適に用いることができず、かつ水残り(ウォーターマーク)欠陥低減の効果を十分に発揮することができない。好ましい後退接触角を実現する為には、前記の疎水性樹脂(HR)を前記感活性光線性または放射線性組成物に含ませることが好ましい。あるいは、レジスト膜の上に、疎水性の樹脂組成物によるコーティング層(いわゆる「トップコート」)を形成することにより後退接触角を向上させてもよい。
 液浸露光工程に於いては、露光ヘッドが高速でウェハ上をスキャンし露光パターンを形成していく動きに追随して、液浸液がウェハ上を動く必要があるので、動的な状態に於けるレジスト膜に対する液浸液の接触角が重要になり、液滴が残存することなく、露光ヘッドの高速なスキャンに追随する性能がレジストには求められる。
 <製膜工程>
 本発明において膜を形成する基板は特に限定されるものではなく、シリコン、SiN、SiOやTiN等の無機基板、SOG等の塗布系無機基板等、IC等の半導体製造工程、液晶、サーマルヘッド等の回路基板の製造工程、更にはその他のフォトファブリケーションのリソグラフィー工程で一般的に用いられる基板を用いることができる。更に、必要に応じて、レジスト膜と基板の間に反射防止膜を形成させてもよい。反射防止膜としては、公知の有機系、無機系の反射防止膜を適宜用いることができる。
 <現像工程>
 本発明のパターン形成方法における現像工程は、有機溶剤を含有する現像液(以下、「有機系現像液」ともいう)を用いて行われる。これによりネガ型のパターンが形成される。
 有機系現像液としては、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤及び炭化水素系溶剤を用いることができる。
 ケトン系溶剤としては、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、2-ヘプタノン(メチルアミルケトン)、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等を挙げることができる。
 エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチルー3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等を挙げることができる。
 アルコール系溶剤としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤等を挙げることができる。
 エーテル系溶剤としては、例えば、上記グリコールエーテル系溶剤の他、ジオキサン、テトラヒドロフラン等が挙げられる。 
 アミド系溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等が使用できる。 
 炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 特に、有機系現像液は、ケトン系溶剤、エステル系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有する現像液であるのが好ましく、とりわけ、エステル系溶剤としての酢酸ブチルまたケトン系溶剤としてのメチルアミルケトン(2-ヘプタノン)を含む現像液が好ましい。
 溶剤は、複数混合してもよいし、上記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、現像液全体としての含水率が10質量%未満であることが好ましく、実質的に水分を含有しないことがより好ましい。 
 すなわち、有機系現像液に対する有機溶剤の使用量は、現像液の全量に対して、90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることが好ましい。
 有機系現像液の蒸気圧は、20℃に於いて、5kPa以下が好ましく、3kPa以下が更に好ましく、2kPa以下が特に好ましい。有機系現像液の蒸気圧を5kPa以下にすることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する。
 有機系現像液には、必要に応じて界面活性剤を適当量添加することができる。 
 界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることが更に好ましい。
 界面活性剤の使用量は現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、更に好ましくは0.01~0.5質量%である。
 現像方法としては、たとえば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)などを適用することができる。
 上記各種の現像方法が、現像装置の現像ノズルから現像液をレジスト膜に向けて吐出する工程を含む場合、吐出される現像液の吐出圧(吐出される現像液の単位面積あたりの流速)は、一例として、好ましくは2mL/sec/mm以下、より好ましくは1.5mL/sec/mm以下、更に好ましくは1mL/sec/mm以下である。流速の下限は特に無いが、スループットを考慮すると0.2mL/sec/mm以上が好ましい。この詳細については、特開2010-232550号公報の特に0022段落~0029段落等に記載されている。
 また、有機溶剤を含む現像液を用いて現像する工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
 また、本発明のパターン形成方法が複数回の現像工程を含む場合、アルカリ現像液を用いて現像する工程と有機系現像液を用いて現像する工程とを組み合わせてもよい。これにより、US8227183B号公報のFIG.1-FIG.11等で説明されているように、光学像の空間周波数の1/2のパターンを得られることが期待できる。
 本発明のパターン形成方法が、アルカリ現像液を用いて現像する工程を含む場合、使用可能なアルカリ現像液は特に限定されないが、一般的には、テトラメチルアンモニウムヒドロキシドの2.38%質量の水溶液が望ましい。また、アルカリ性水溶液にアルコール類、界面活性剤を適当量添加して使用することもできる。 
 アルカリ現像液のアルカリ濃度は、通常0.1~20質量%である。 
 アルカリ現像液のpHは、通常10.0~15.0である。 
 アルカリ現像の後に行うリンス処理におけるリンス液としては、純水を使用し、界面活性剤を適当量添加して使用することもできる。 
 <リンス工程>
 有機系現像液を用いて現像する工程の後には、リンス液を用いて洗浄するリンス工程を含むことが好ましい。このリンス液としては、レジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液を使用することができる。前記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。
 炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤の具体例としては、有機溶剤を含む現像液において説明したものと同様のものを挙げることができる。
 本発明の一形態において、現像工程後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行い、更に好ましくは、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行い、特に好ましくは、1価アルコールを含有するリンス液を用いて洗浄する工程を行い、最も好ましくは、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。
 ここで、リンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノールなどを用いることができる。 
 前記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
 リンス液中の含水率は、10質量%以下が好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下である。含水率を10質量%以下にすることで、良好な現像特性を得ることができる。
 有機溶剤を含む現像液を用いて現像する工程の後に用いるリンス液の蒸気圧は、20℃に於いて0.05kPa以上、5kPa以下が好ましく、0.1kPa以上、5kPa以下が更に好ましく、0.12kPa以上、3kPa以下が最も好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウェハ面内の温度均一性が向上し、更にはリンス液の浸透に起因した膨潤が抑制され、ウェハ面内の寸法均一性が良化する。
 リンス液には、界面活性剤を適当量添加して使用することもできる。 
 リンス工程においては、有機溶剤を含む現像液を用いる現像を行ったウェハを前記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。また、リンス工程の後に加熱工程(Post Bake)を含むことも好ましい。ベークによりパターン間及びパターン内部に残留した現像液及びリンス液が除去される。リンス工程の後の加熱工程は、通常40~160℃、好ましくは70~95℃で、通常10秒~3分、好ましくは30秒から90秒間行う。
 本発明に使用される有機系現像液、アルカリ現像液、および/またはリンス液は、各種微粒子や金属元素などの不純物が少ないことが好ましい。このような不純物が少ない薬液を得るためには、これら薬液をクリーンルーム内で製造し、また、テフロン(登録商標)フィルター、ポリオレフィン系フィルター、イオン交換フィルター等の各種フィルターによるろ過を行うなどして、不純物低減を行うことが好ましい。金属元素は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znの金属元素濃度がいずれも10ppm以下であることが好ましく、5ppm以下であることがより好ましい。
 また、現像液やリンス液の保管容器については、特に限定されず、電子材料用途で用いられている、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレン-ポリプロピレン樹脂などの容器を適宜使用することができるが、容器から溶出する不純物を低減する為、容器の内壁から薬液へ溶出する成分が少ない容器を選択することも好ましい。このような容器として、容器の内壁がパーフルオロ樹脂である容器(例えば、Entegris社製 FluoroPurePFA複合ドラム(接液内面;PFA樹脂ライニング)、JFE社製 鋼製ドラム缶(接液内面;燐酸亜鉛皮膜))などが挙げられる。
 本発明は、上記した本発明のパターン形成方法を含む、電子デバイスの製造方法、及び、この製造方法により製造された電子デバイスにも関する。 
 本発明の電子デバイスは、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)に、好適に、搭載されるものである。
 また、本発明のパターン形成方法で得られたパターンは、一般には、半導体デバイスのエッチングマスク等として好適に用いられるが、その他の用途にも用いられる。その他の用途としては、例えば、DSA(Directed Self-Assembly)におけるガイドパターン形成(例えば、ACS Nano Vol.4 No.8 Page4815-4823参照)、いわゆるスペーサープロセスの芯材(コア)としての使用(例えば特開平3-270227号公報、特開2013-164509号公報など参照)などがある。
 <感活性光線性又は感放射線性樹脂組成物>
 本発明に係るパターン形成方法において使用される感活性光線性又は感放射線性樹脂組成物(以下、「本発明の組成物」ともいう)は、酸の作用により1種類以上の有機溶剤を含む現像液に対する溶解度が減少する樹脂、活性光線又は放射線の照射により酸を発生する化合物、及び、溶剤を必須成分として含有する。
 [1]酸の作用により1種類以上の有機溶剤を含む現像液に対する溶解度が減少する樹

 酸の作用により1種類以上の有機溶剤を含む現像液に対する溶解度が減少する樹脂としては、例えば、樹脂の主鎖又は側鎖、あるいは、主鎖及び側鎖の両方に、酸の作用により分解し、極性基を生じる基(以下、「酸分解性基」ともいう)を有する樹脂(以下、「酸分解性樹脂」又は「樹脂(A)」ともいう)を挙げることができる。
 酸分解性基は、極性基を酸の作用により分解し脱離する基で保護された構造を有することが好ましい。好ましい極性基としては、カルボキシル基、フェノール性水酸基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、スルホン酸基が挙げられる。
 酸分解性基として好ましい基は、これらの基の水素原子を酸で脱離する基で置換した基である。
 酸で脱離する基としては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、-C(R01)(R02)(OR39)等を挙げることができる。
 式中、R36~R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
 R01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
 酸分解性基としては好ましくは、クミルエステル基、エノールエステル基、アセタールエステル基、第3級のアルキルエステル基等である。更に好ましくは、第3級アルキルエステル基である。また、本発明のパターン形成方法をKrF光またはEUV光による露光、あるいは電子線照射により行う場合、フェノール性水酸基を酸脱離基により保護した酸分解性基を用いてもよい。
 樹脂(A)は、酸分解性基を有する繰り返し単位を有することが好ましい。 
 この繰り返し単位としては、以下が挙げられる。 
 具体例中、Rxは、水素原子、CH、CF、又はCHOHを表す。Rxa、Rxbはそれぞれ炭素数1~4のアルキル基を表す。Xaは、水素原子、CH、CF、又はCHOHを表す。Zは、置換基を表し、複数存在する場合、複数のZは互いに同じであっても異なっていてもよい。pは0又は正の整数を表す。Zの具体例及び好ましい例は、Rx~Rxなどの各基が有し得る置換基の具体例及び好ましい例と同様である。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 下記具体例において、Xaは、水素原子、アルキル基、シアノ基又はハロゲン原子を表す。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 下記具体例中、Xaは、水素原子、CH、CF、又はCHOHを表す。
Figure JPOXMLDOC01-appb-C000008
 酸分解性基を有する繰り返し単位は、1種類であってもよいし、2種以上を併用してもよい。2種を併用する場合の組合せは特に限定されないが、例えば以下のような組合せが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000009
 樹脂(A)に含まれる酸分解性基を有する繰り返し単位の含有量(酸分解性基を有する繰り返し単位が複数存在する場合はその合計)は、樹脂(A)の全繰り返し単位に対して、15モル%以上であることが好ましく、20モル%以上であることがより好ましく、25モル%以上であることが更に好ましく、40モル%以上であることが特に好ましい。
 樹脂(A)は、ラクトン構造又はスルトン構造を有する繰り返し単位を含有していてもよい。
 以下にラクトン構造又はスルトン構造を有する基を有する繰り返し単位の具体例を示すが、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 2種以上のラクトン構造又はスルトン構造を有する繰り返し単位を併用することも可能である。
 樹脂(A)がラクトン構造又はスルトン構造を有する繰り返し単位を含有する場合、ラクトン構造又はスルトン構造を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、5~60モル%が好ましく、より好ましくは5~55モル%、更に好ましくは10~50モル%である。
 また、樹脂(A)は、環状炭酸エステル構造を有する繰り返し単位を有していてもよい。如何に具体例を挙げるが、本発明はこれらに限定されない。
 なお、以下の具体例中のR は、水素原子又はアルキル基(好ましくはメチル基)を表す。
Figure JPOXMLDOC01-appb-C000013
 樹脂(A)は、水酸基又はシアノ基を有する繰り返し単位を有していても良い。
 水酸基又はシアノ基を有する繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 樹脂(A)は、酸基を有する繰り返し単位を有してもよい。 
 樹脂(A)は、酸基を有する繰り返し単位を含有してもしなくても良いが、含有する場合、酸基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、25モル%以下であることが好ましく、20モル%以下であることがより好ましい。樹脂(A)が酸基を有する繰り返し単位を含有する場合、樹脂(A)における酸基を有する繰り返し単位の含有量は、通常、1モル%以上である。
 酸基を有する繰り返し単位の具体例を以下に示すが、本発明は、これに限定されるものではない。 
 具体例中、RxはH、CH、CHOH又はCFを表す。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 樹脂(A)は、更に極性基(例えば、前記酸基、ヒドロキシル基、シアノ基)を持たない脂環炭化水素構造及び/または芳香環構造を有し、酸分解性を示さない繰り返し単位を有することができる。樹脂(A)は、この繰り返し単位を含有してもしなくてもよいが、含有する場合、その含有率は、樹脂(A)中の全繰り返し単位に対し、5~30モル%であることが好ましく、5~25モル%以下であることがより好ましい。
 極性基を持たない脂環炭化水素構造を有し、酸分解性を示さない繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。式中、Raは、H、CH、CHOH、又はCFを表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 本発明の組成物が、ArF露光用であるとき、ArF光への透明性の点から本発明の組成物に用いられる樹脂(A)は実質的には芳香環を有さない(具体的には、樹脂中、芳香族基を有する繰り返し単位の比率が好ましくは5モル%以下、より好ましくは3モル%以下、理想的には0モル%、すなわち、芳香族基を有さない)ことが好ましく、樹脂(A)は単環又は多環の脂環炭化水素構造を有することが好ましい。
 本発明における樹脂(A)の形態としては、ランダム型、ブロック型、クシ型、スター型のいずれの形態でもよい。樹脂(A)は、例えば、各構造に対応する不飽和モノマーのラジカル、カチオン、又はアニオン重合により合成することができる。また各構造の前駆体に相当する不飽和モノマーを用いて重合した後に、高分子反応を行うことにより目的とする樹脂を得ることも可能である。
 本発明の組成物が、ArF露光用であるとき、ArF光への透明性の点から本発明の組成物に用いられる樹脂(A)は実質的には芳香環を有さない(具体的には、樹脂中、芳香族基を有する繰り返し単位の比率が好ましくは5モル%以下、より好ましくは3モル%以下、理想的には0モル%、すなわち、芳香族基を有さない)ことが好ましく、樹脂(A)は単環又は多環の脂環炭化水素構造を有することが好ましい。
 本発明の組成物が、後述する樹脂(D)を含んでいる場合、樹脂(A)は、樹脂(D)との相溶性の観点から、フッ素原子及びケイ素原子を含有しないことが好ましい。
 本発明の組成物に用いられる樹脂(A)として好ましくは、繰り返し単位のすべてが(メタ)アクリレート系繰り返し単位で構成されたものである。この場合、繰り返し単位のすべてがメタクリレート系繰り返し単位であるもの、繰り返し単位のすべてがアクリレート系繰り返し単位であるもの、繰り返し単位のすべてがメタクリレート系繰り返し単位とアクリレート系繰り返し単位とによるもののいずれのものでも用いることができるが、アクリレート系繰り返し単位が全繰り返し単位の50モル%以下であることが好ましい。
 本発明の組成物にKrFエキシマレーザー光、電子線、X線、波長50nm以下の高エネルギー光線(EUVなど)を照射する場合には、樹脂(A)は、芳香環を有する繰り返し単位を有してもよい。芳香環を有する繰り返し単位としては、特に限定されず、また、前述の各繰り返し単位に関する説明でも例示しているが、スチレン単位、ヒドロキシスチレン単位、フェニル(メタ)アクリレート単位、ヒドロキシフェニル(メタ)アクリレート単位などが挙げられる。樹脂(A)としては、より具体的には、ヒドロキシスチレン系繰り返し単位と、酸分解性基によって保護されたヒドロキシスチレン系繰り返し単位とを有する樹脂、上記芳香環を有する繰り返し単位と、(メタ)アクリル酸のカルボン酸部位が酸分解性基によって保護された繰り返し単位を有する樹脂、などが挙げられる。
 本発明における樹脂(A)は、常法に従って(例えばラジカル重合)合成、及び精製することができる。この合成方法及び精製方法としては、例えば特開2008-292975号公報の0201段落~0202段落等の記載を参照されたい。
 本発明における樹脂(A)の重量平均分子量は、GPC法によりポリスチレン換算値として、上記のように7,000以上であり、好ましくは7,000~200,000であり、より好ましくは7,000~50,000、更により好ましくは7,000~40,000,000、特に好ましくは7,000~30,000である。重量平均分子量が7000より小さいと、有機系現像液に対する溶解性が高くなりすぎ、精密なパターンを形成できなくなる懸念が生じる。
 分散度(分子量分布)は、通常1.0~3.0であり、好ましくは1.0~2.6、更に好ましくは1.0~2.0、特に好ましくは1.4~2.0の範囲のものが使用される。分子量分布の小さいものほど、解像度、レジスト形状が優れ、かつ、レジストパターンの側壁がスムーズであり、ラフネス性に優れる。
 本発明の化学増幅型レジスト組成物において、樹脂(A)の組成物全体中の配合率は、全固形分中30~99質量%が好ましく、より好ましくは60~95質量%である。
 また、本発明において、樹脂(A)は、1種で使用してもよいし、複数併用してもよい。
 以下、樹脂(A)の具体例(繰り返し単位の組成比はモル比である)を挙げるが、本発明はこれらに限定されるものではない。なお、以下では、後述する、酸発生剤(B)に対応する構造が樹脂(A)に担持されている場合の態様も例示している。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 [2]活性光線又は放射線の照射により酸を発生する化合物
 本発明における組成物は、活性光線又は放射線の照射により酸を発生する化合物(以下、「化合物(B)」又は「酸発生剤」ともいう)を含有する。活性光線又は放射線の照射により酸を発生する化合物(B)としては、活性光線又は放射線の照射により有機酸を発生する化合物であることが好ましい。
 酸発生剤としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている、活性光線又は放射線の照射により酸を発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができる。
 たとえば、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネートを挙げることができる。
 酸発生剤の中で、特に好ましい例を以下に挙げる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 酸発生剤は、公知の方法で合成することができ、例えば、特開2007-161707号公報、特開2010-100595号公報の[0200]~[0210]、国際公開第2011/093280号の[0051]~[0058]、国際公開第2008/153110号の[0382]~[0385]、特開2007-161707号公報等に記載の方法に準じて合成することができる。 
 酸発生剤は、1種類単独又は2種類以上を組み合わせて使用することができる。
 活性光線又は放射線の照射により酸を発生する化合物の組成物中の含有率は、本発明の組成物の全固形分を基準として、0.1~30質量%が好ましく、より好ましくは0.5~25質量%、更に好ましくは3~20質量%、特に好ましくは3~15質量%である。
 なお、感活性光線性又は感放射線性樹脂組成物によっては、酸発生剤に対応する構造が、前記樹脂(A)に担持されている態様(B´)もある。このような態様として具体的には、特開2011-248019号公報に記載の構造(特に、段落0164から段落0191に記載の構造、段落0555の実施例で記載されている樹脂に含まれる構造)などが挙げられる。ちなみに、酸発生剤に対応する構造が、前記樹脂(A)に担持されている態様であっても、感活性光線性又は感放射線性樹脂組成物は、追加的に、前記樹脂(A)に担持されていない酸発生剤を含んでもよい。 
 態様(B´)として、以下のような繰り返し単位が挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000032
 [3]溶剤
 本発明の組成物は、通常、溶剤を含有する。 
 本発明の組成物を調製する際に使用することができる溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有しても良いモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、ピルビン酸アルキル等の有機溶剤を挙げることができる。
 これらの溶剤の具体例は、米国特許出願公開2008/0187860号明細書[0441]~[0455]に記載のものを挙げることができる。
 本発明においては、有機溶剤として構造中に水酸基を含有する溶剤と、水酸基を含有しない溶剤とを混合した混合溶剤を使用してもよい。
 水酸基を含有する溶剤、水酸基を含有しない溶剤としては前述の例示化合物が適宜選択可能であるが、水酸基を含有する溶剤としては、アルキレングリコールモノアルキルエーテル、乳酸アルキル等が好ましく、プロピレングリコールモノメチルエーテル(PGME、別名1-メトキシ-2-プロパノール)、乳酸エチルがより好ましい。また、水酸基を含有しない溶剤としては、アルキレングリコールモノアルキルエーテルアセテート、アルキルアルコキシプロピオネート、環を含有しても良いモノケトン化合物、環状ラクトン、酢酸アルキルなどが好ましく、これらの内でもプロピレングリコールモノメチルエーテルアセテート(PGMEA、別名1-メトキシ-2-アセトキシプロパン)、エチルエトキシプロピオネート、2-ヘプタノン、γ-ブチロラクトン、シクロヘキサノン、酢酸ブチルが特に好ましく、プロピレングリコールモノメチルエーテルアセテート、エチルエトキシプロピオネート、2-ヘプタノンが最も好ましい。
 水酸基を含有する溶剤と水酸基を含有しない溶剤との混合比(質量)は、1/99~99/1、好ましくは10/90~90/10、更に好ましくは20/80~60/40である。水酸基を含有しない溶剤を50質量%以上含有する混合溶剤が塗布均一性の点で特に好ましい。
 溶剤は、プロピレングリコールモノメチルエーテルアセテートを含むことが好ましく、プロピレングリコールモノメチルエーテルアセテート単独溶媒、又は、プロピレングリコールモノメチルエーテルアセテートを含有する2種類以上の混合溶剤であることが好ましい。
 [4]疎水性樹脂(D)
 本発明の組成物は、疎水性樹脂(以下、「疎水性樹脂(D)」又は単に「樹脂(D)」ともいう)を含有してもよい。なお、疎水性樹脂(D)は、前記樹脂(A)とは異なることが好ましい。
 これにより、膜表層に疎水性樹脂(D)が偏在化し、液浸媒体が水の場合、水に対するレジスト膜表面の静的/動的な接触角を向上させ、液浸液追随性を向上させることができる。
 疎水性樹脂(D)は前述のように界面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性/非極性物質を均一に混合することに寄与しなくても良い。
 疎水性樹脂(D)は、膜表層への偏在化の観点から、“フッ素原子”、“珪素原子”、及び、“樹脂の側鎖部分に含有されたCH部分構造”のいずれか1種以上を有することが好ましく、2種以上を有することがさらに好ましい。
 疎水性樹脂(D)の標準ポリスチレン換算の重量平均分子量は、好ましくは1,000~100,000で、より好ましくは1,000~50,000、更により好ましくは2,000~15,000である。
 また、疎水性樹脂(D)は、1種で使用してもよいし、複数併用してもよい。 
 疎水性樹脂(D)の組成物中の含有量は、本発明の組成物中の全固形分に対し、0.01~10質量%が好ましく、0.05~8質量%がより好ましく、0.1~7質量%が更に好ましい。
 疎水性樹脂(D)は、樹脂(A)同様、金属等の不純物が少ないのは当然のことながら、残留単量体やオリゴマー成分が0.01~5質量%であることが好ましく、より好ましくは0.01~3質量%、0.05~1質量%が更により好ましい。それにより、液中異物や感度等の経時変化のない化学増幅型レジスト組成物が得られる。また、解像度、レジスト形状、レジストパターンの側壁、ラフネスなどの点から、分子量分布(Mw/Mn、分散度ともいう)は、1~5の範囲が好ましく、より好ましくは1~3、更に好ましくは1~2の範囲である。
 疎水性樹脂(D)は、各種市販品を利用することもできるし、常法に従って(例えばラジカル重合)合成することができる。例えば、一般的合成方法としては、モノマー種及び開始剤を溶剤に溶解させ、加熱することにより重合を行う一括重合法、加熱溶剤にモノマー種と開始剤の溶液を1~10時間かけて滴下して加える滴下重合法などが挙げられ、滴下重合法が好ましい。
 反応溶媒、重合開始剤、反応条件(温度、濃度等)、及び、反応後の精製方法は、樹脂(A)で説明した内容と同様であるが、疎水性樹脂(D)の合成においては、反応の濃度が30~50質量%であることが好ましい。より詳細には、特開2008-292975号公報の0320段落~0329段落付近の記載を参照されたい。
 以下に疎水性樹脂(D)の具体例を示す。また、下記表に、各樹脂における繰り返し単位のモル比(各繰り返し単位と左から順に対応)、重量平均分子量、分散度を示す。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 [5]塩基性化合物
 本発明の組成物は、塩基性化合物を含有することが好ましい。 
 (1)本発明の組成物は、一形態において、塩基性化合物として、活性光線又は放射線の照射により塩基性が低下する、塩基性化合物又はアンモニウム塩化合物(以下、「化合物(N)」ともいう)を含有することが好ましい。
 化合物(N)は、塩基性官能基又はアンモニウム基と、活性光線又は放射線の照射により酸性官能基を発生する基とを有する化合物(N-1)であることが好ましい。すなわち、化合物(N)は、塩基性官能基と活性光線若しくは放射線の照射により酸性官能基を発生する基とを有する塩基性化合物、又は、アンモニウム基と活性光線若しくは放射線の照射により酸性官能基を発生する基とを有するアンモニウム塩化合物であることが好ましい。
 化合物(N)の具体例としては、例えば下記を挙げることができる。また、下記に挙げる化合物以外にも、化合物(N)として、例えば、米国特許出願公開第2010/0233629号明細書に記載の(A-1)~(A-44)の化合物や、米国特許出願公開第2012/0156617号明細書に記載の(A-1)~(A-23)の化合物も本発明において好ましく使用することができる。
Figure JPOXMLDOC01-appb-C000043
 これらの化合物は、特開2006-330098号公報に記載の合成例などに準じて合成することができる。 
 化合物(N)の分子量は、500~1000であることが好ましい。
 本発明の組成物は、化合物(N)を含有してもしていなくてもよいが、含有する場合、化合物(N)の含有率は、該組成物の固形分を基準として、0.1~20質量%が好ましく、より好ましくは0.1~10質量%である。
 (2)本発明の組成物は、他の形態において、露光から加熱までの経時による性能変化を低減するために、塩基性化合物として、前記化合物(N)とは異なる、塩基性化合物(N’)を含有していてもよい。
 塩基性化合物(N’)としては、好ましくは、下記式(A’)~(E’)で示される構造を有する化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000044
 一般式(A’)と(E’)において、
 RA200、RA201及びRA202は、同一でも異なってもよく、水素原子、アルキル基(好ましくは炭素数1~20)、シクロアルキル基(好ましくは炭素数3~20)又はアリール基(炭素数6~20)を表し、ここで、RA201とRA202は、互いに結合して環を形成してもよい。RA203、RA204、RA205及びRA206は、同一でも異なってもよく、アルキル基(好ましくは炭素数1~20)を表す。
 上記アルキル基は、置換基を有していてもよく、置換基を有するアルキル基としては、炭素数1~20のアミノアルキル基、炭素数1~20のヒドロキシアルキル基又は炭素数1~20のシアノアルキル基が好ましい。
 これら一般式(A’)と(E’)中のアルキル基は、無置換であることがより好ましい。
 塩基性化合物(N’)の好ましい具体例としては、グアニジン、アミノピロリジン、ピラゾール、ピラゾリン、ピペラジン、アミノモルホリン、アミノアルキルモルフォリン、ピペリジン等を挙げることができ、更に好ましい具体例としては、イミダゾール構造、ジアザビシクロ構造、オニウムヒドロキシド構造、オニウムカルボキシレート構造、トリアルキルアミン構造、アニリン構造又はピリジン構造を有する化合物、水酸基及び/又はエーテル結合を有するアルキルアミン誘導体、水酸基及び/又はエーテル結合を有するアニリン誘導体等を挙げることができる。
 イミダゾール構造を有する化合物としては、イミダゾール、2、4、5-トリフェニルイミダゾール、ベンズイミダゾール等が挙げられる。ジアザビシクロ構造を有する化合物としては、1、4-ジアザビシクロ[2,2,2]オクタン、1、5-ジアザビシクロ[4,3,0]ノナ-5-エン、1、8-ジアザビシクロ[5,4,0]ウンデカー7-エン等が挙げられる。オニウムヒドロキシド構造を有する化合物としては、トリアリールスルホニウムヒドロキシド、フェナシルスルホニウムヒドロキシド、2-オキソアルキル基を有するスルホニウムヒドロキシド、具体的にはトリフェニルスルホニウムヒドロキシド、トリス(t-ブチルフェニル)スルホニウムヒドロキシド、ビス(t-ブチルフェニル)ヨードニウムヒドロキシド、フェナシルチオフェニウムヒドロキシド、2-オキソプロピルチオフェニウムヒドロキシド等が挙げられる。オニウムカルボキシレート構造を有する化合物としては、オニウムヒドロキシド構造を有する化合物のアニオン部がカルボキシレートになったものであり、例えばアセテート、アダマンタンー1-カルボキシレート、パーフロロアルキルカルボキシレート等が挙げられる。トリアルキルアミン構造を有する化合物としては、トリ(n-ブチル)アミン、トリ(n-オクチル)アミン等を挙げることができる。アニリン構造を有する化合物としては、2,6-ジイソプロピルアニリン、N,N-ジメチルアニリン、N,N-ジブチルアニリン、N,N-ジヘキシルアニリン等を挙げることができる。水酸基及び/又はエーテル結合を有するアルキルアミン誘導体としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリス(メトキシエトキシエチル)アミン等を挙げることができる。水酸基及び/又はエーテル結合を有するアニリン誘導体としては、N,N-ビス(ヒドロキシエチル)アニリン等を挙げることができる。
 好ましい塩基性化合物として、更に、フェノキシ基を有するアミン化合物、フェノキシ基を有するアンモニウム塩化合物、スルホン酸エステル基を有するアミン化合物及びスルホン酸エステル基を有するアンモニウム塩化合物を挙げることができる。この具体例としては、米国特許出願公開第2007/0224539号明細書の[0066]に例示されている化合物(C1-1)~(C3-3)が挙げられるが、これらに限定されるものではない。
 (3)本発明の組成物は、他の形態において、塩基性化合物の1種として、酸の作用により脱離する基を有する含窒素有機化合物を含有していてもよい。この化合物の例として、例えば、化合物の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000045
 上記化合物は、例えば、特開2009-199021号公報に記載の方法に準じて合成することができる。 
 また、塩基性化合物(N’)としては、アミンオキシド構造を有する化合物も用いることもできる。この化合物の具体例としては、トリエチルアミンピリジン N-オキシド、トリブチルアミン N-オキシド、トリエタノールアミン N-オキシド、トリス(メトキシエチル)アミン N-オキシド、トリス(2-(メトキシメトキシ)エチル)アミン=オキシド、2,2’,2”-ニトリロトリエチルプロピオネート N-オキシド、N-2-(2-メトキシエトキシ)メトキシエチルモルホリン N-オキシド、その他特開2008-102383に例示されたアミンオキシド化合物が使用可能である。
 塩基性化合物(N’)の分子量は、250~2000であることが好ましく、更に好ま
しくは400~1000である。LWRのさらなる低減及び局所的なパターン寸法の均一
性の観点からは、塩基性化合物の分子量は、400以上であることが好ましく、500以
上であることがより好ましく、600以上であることが更に好ましい。
 これらの塩基性化合物(N’)は、前記化合物(N)と併用していてもよいし、単独であるいは2種以上一緒に用いられる。
 本発明における化学増幅型レジスト組成物は塩基性化合物(N’)を含有してもしていなくてもよいが、含有する場合、塩基性化合物(N’)の使用量は、化学増幅型レジスト組成物の固形分を基準として、通常、0.001~10質量%、好ましくは0.01~5質量%である。
 (4)本発明の組成物は、他の形態において、塩基性化合物として、下記一般式(6A)又は(6B)で表されるオニウム塩を含んでもよい。このオニウム塩は、レジスト組成物で通常用いられる光酸発生剤の酸強度との関係で、レジスト系中で、発生酸の拡散を制御することが期待される。
Figure JPOXMLDOC01-appb-C000046
 一般式(6A)中、
 Raは、有機基を表す。但し、式中のカルボン酸基に直接結合する炭素原子にフッ素原子が置換しているものを除く。 
 Xは、オニウムカチオンを表す。
 一般式(6B)中、
 Rbは、有機基を表す。但し、式中のスルホン酸基に直接結合する炭素原子にフッ素原子が置換しているものを除く。 
 Xはオニウムカチオンを表す。
 Ra及びRbにより表される有機基は、式中のカルボン酸基又はスルホン酸基に直接結合する原子が炭素原子であることが好ましい。但し、この場合、上述した光酸発生剤から発生する酸よりも相対的に弱い酸とするために、スルホン酸基又はカルボン酸基に直接結合する炭素原子にフッ素原子が置換することはない。
 Ra及びRbにより表される有機基としては、例えば、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数3~30の複素環基等が挙げられる。これらの基は水素原子の一部又は全部が置換されていてもよい。
 上記アルキル基、シクロアルキル基、アリール基、アラルキル基及び複素環基が有し得る置換基としては、例えば、ヒドロキシル基、ハロゲン原子、アルコキシ基、ラクトン基、アルキルカルボニル基等が挙げられる。
 一般式(6A)及び(6B)中のXにより表されるオニウムカチオンとしては、スルホニウムカチオン、アンモニウムカチオン、ヨードニウムカチオン、ホスホニウムカチオン、ジアゾニウムカチオンなどが挙げられ、中でもスルホニウムカチオンがより好ましい。
 スルホニウムカチオンとしては、例えば、少なくとも1つのアリール基を有するアリールスルホニウムカチオンが好ましく、トリアリールスルホニウムカチオンがより好ましい。アリール基は置換基を有していてもよく、アリール基としては、フェニル基が好ましい。
 スルホニウムカチオン及びヨードニウムカチオンの例としては、化合物(B)において説明した構造も好ましく挙げることができる。 
 一般式(6A)又は(6B)で表されるオニウム塩の具体的構造を以下に示す。
Figure JPOXMLDOC01-appb-C000047
 (5)本発明の組成物は、他の形態において、塩基性化合物として、特開2012-189977号公報の式(I)に含まれる化合物、特開2013-6827号公報の式(I)で表される化合物、特開2013-8020号公報の式(I)で表される化合物、特開2012-252124号公報の式(I)で表される化合物などのような、1分子内にオ
ニウム塩構造と酸アニオン構造の両方を有する化合物(以下、ベタイン化合物ともいう)を含有していてもよい。このオニウム塩構造としては、スルホニウム、ヨードニウム、アンモニウム構造が挙げられ、スルホニウムまたはヨードニウム塩構造であることが好ましい。また、酸アニオン構造としては、スルホン酸アニオンまたはカルボン酸アニオンが好ましい。この化合物例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000048
 [6]界面活性剤
 本発明の組成物は、更に界面活性剤を含有してもよい。本発明の組成物が界面活性剤を含有する場合、フッ素及び/又はシリコン系界面活性剤(フッ素系界面活性剤、シリコン系界面活性剤、フッ素原子とケイ素原子の両方を有する界面活性剤)のいずれか、あるいは2種以上を含有することがより好ましい。
 本発明の組成物が界面活性剤を含有することにより、250nm以下、特に220nm以下の露光光源の使用時に、良好な感度及び解像度で、密着性及び現像欠陥の少ないレジストパターンを与えることが可能となる。
 フッ素系及び/又はシリコン系界面活性剤として、米国特許出願公開第2008/0248425号明細書の[0276]に記載の界面活性剤が挙げられ、例えばエフトップEF301、EF303、(新秋田化成(株)製)、フロラードFC430、431、4430(住友スリーエム(株)製)、メガファックF171、F173、F176、F189、F113、F110、F177、F120、R08(DIC(株)製)、サーフロンS-382、SC101、102、103、104、105、106、KH-20(旭硝子(株)製)、トロイゾルS-366(トロイケミカル(株)製)、GF-300、GF-150(東亜合成化学(株)製)、サーフロンS-393(セイミケミカル(株)製)、エフトップEF121、EF122A、EF122B、RF122C、EF125M、EF135M、EF351、EF352、EF801、EF802、EF601((株)ジェムコ製)、PF636、PF656、PF6320、PF6520(OMNOVA社製)、FTX-204G、208G、218G、230G、204D、208D、212D、218D、222D((株)ネオス製)等である。またポリシロキサンポリマーKP-341(信越化学工業(株)製)もシリコン系界面活性剤として用いることができる。
 また、界面活性剤としては、上記に示すような公知のものの他に、テロメリゼーション法(テロマー法ともいわれる)若しくはオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物から導かれたフルオロ脂肪族基を有する重合体を用いた界面活性剤を用いることが出来る。フルオロ脂肪族化合物は、特開2002-90991号公報に記載された方法によって合成することが出来る。
 上記に該当する界面活性剤として、メガファックF178、F-470、F-473、F-475、F-476、F-472(DIC(株)製)、C13基を有するアクリレート(又はメタクリレート)と(ポリ(オキシアルキレン))アクリレート(又はメタクリレート)との共重合体、C基を有するアクリレート(又はメタクリレート)と(ポリ(オキシエチレン))アクリレート(又はメタクリレート)と(ポリ(オキシプロピレン))アクリレート(又はメタクリレート)との共重合体等を挙げることができる。
 また、本発明では、米国特許出願公開第2008/0248425号明細書の[0280]に記載の、フッ素系及び/又はシリコン系界面活性剤以外の他の界面活性剤を使用することもできる。 
 これらの界面活性剤は単独で使用してもよいし、また、いくつかの組み合わせで使用してもよい。
 本発明の組成物が界面活性剤を含有する場合、界面活性剤の使用量は、該組成物の全量(溶剤を除く)に対して、好ましくは0.0001~2質量%、より好ましくは0.0005~1質量%である。
 一方、界面活性剤の添加量を、感活性光線性又は感放射線性樹脂組成物の全量(溶剤を除く)に対して、10ppm以下とすることで、疎水性樹脂の表面偏在性があがり、それにより、レジスト膜表面をより疎水的にすることができ、液浸露光時の水追随性を向上させることが出来る。
 [7]その他添加剤(G)
 本発明の組成物は、カルボン酸オニウム塩を含有してもよい。このようなカルボン酸オニウム塩は、米国特許出願公開2008/0187860号明細書[0605]~[0606]に記載のものを挙げることができる。
 本発明の組成物がカルボン酸オニウム塩を含有する場合、その含有率は、該組成物の全固形分に対し、一般的には0.1~20質量%、好ましくは0.5~10質量%、更に好ましくは1~7質量%である。
 本発明の組成物には、必要に応じて更に染料、可塑剤、光増感剤、光吸収剤、アルカリ可溶性樹脂、溶解阻止剤及び現像液に対する溶解性を促進させる化合物(例えば、分子量1000以下のフェノール化合物、カルボキシル基を有する脂環族、又は脂肪族化合物)等を含有させることができる。
 本発明の組成物は、解像力向上の観点から、膜厚30~250nmで使用されることが好ましく、より好ましくは、膜厚30~200nmで使用されることが好ましい。
 本発明の組成物の固形分濃度は、通常1.0~10質量%であり、好ましくは、2.0~5.7質量%、更に好ましくは2.0~5.3質量%である。固形分濃度を前記範囲とすることで、レジスト溶液を基板上に均一に塗布することができる。
 固形分濃度とは、化学増幅型レジスト組成物の総重量に対する、溶剤を除く他のレジスト成分の重量の重量百分率である。
 本発明の組成物は、上記の成分を所定の有機溶剤、好ましくは前記混合溶剤に溶解し、フィルター濾過した後、所定の支持体(基板)上に塗布して用いる。フィルター濾過に用いるフィルターのポアサイズは0.1μm以下、より好ましくは0.05μm以下、更に好ましくは0.03μm以下のポリテトラフロロエチレン製、ポリエチレン製、ナイロン製のものが好ましい。フィルター濾過においては、例えば特開2002-62667号公報のように、循環的な濾過を行ったり、複数種類のフィルターを直列又は並列に接続して濾過を行ったりしてもよい。また、組成物を複数回濾過してもよい。更に、フィルター濾過の前後で、組成物に対して脱気処理などを行ってもよい。
 以下、本発明を実施例により詳細に説明するが、本発明の内容がこれにより限定されるものではない。
 <レジスト調製>
 後掲の表に示す成分を同表に示す溶剤に固形分で3.5質量%溶解させ、それぞれを0.03μmのポアサイズを有するポリエチレンフィルターでろ過して、感活性光線性又は感放射線性樹脂組成物(レジスト組成物)を調製した。
Figure JPOXMLDOC01-appb-T000049
 <樹脂(A)>
 樹脂(A)として、下記に示すA-1~A-3を使用した。なお、これら樹脂は公知のラジカル重合法により合成し、精製した。
Figure JPOXMLDOC01-appb-C000050
 <酸発生剤(B)>
 酸発生剤(B)として、下記に示すPAG-1~PAG-3を使用した。
Figure JPOXMLDOC01-appb-C000051
 <疎水性樹脂(D)>
 疎水性樹脂(D)として、下記に示すD-1~D-3を使用した。
Figure JPOXMLDOC01-appb-C000052
 <塩基性化合物>
 塩基性化合物として、下記に示す化合物C-1~C-5を使用した。
Figure JPOXMLDOC01-appb-C000053
<界面活性剤>
 界面活性剤としては、以下に示すW-1及びW-2を用いた。
 W-1: メガファックF176(DIC(株)製;フッ素系)
 W-2: PolyFox PF-6320(OMNOVA Solutions Inc.製;フッ素系)
 <溶剤>
 溶剤としては、以下に示すSG-1及びSG-2を使用した。
 SG-1:プロピレングリコールモノメチルエーテルアセテート
 SG-2:シクロヘキサノン
 <レジスト膜の作成>
 コータ/デベロッパーを用いて、300mmのシリコンウエハ上に有機反射防止膜ARC29SR(日産化学社製)を塗布し、205℃で60秒間ベークを行い、膜厚95nmの反射防止膜を形成した。その上に感活性光線性又は感放射線性樹脂組成物を塗布し、100℃で60秒間に亘ってベーク(PB:Prebake)を行い、膜厚85nmのレジスト膜を形成した。
 <洗浄>
 各実施例では、下記に示す2種の洗浄方法のいずれかを、露光前洗浄および/または露光後洗浄として用いた(表5)。
 洗浄(1)
 得られたウェハをコータ/デベロッパーの洗浄ユニットにて、10rpmの回転数でウェハを回転させながら、純水リンスを25ml/秒の流量で9秒間吐出後、30rpmの回転数で6秒間パドル状態を維持した。続いて30rpmの回転数でウェハを回転させながら、ウェハ中心にNガスを5秒間ブローした。続いて回転数3000rpmで15秒間スピンドライを行った。
 洗浄(2)
 得られたウェハをコータ/デベロッパーの洗浄ユニットにて、200rpmの回転数でウェハを回転させながら、ウェハ中心に純水リンスを5ml/秒の流量で1秒間吐出した。続いてウェハ回転数を200rpmで維持したまま9秒間かけて、純水リンスを5ml/秒の流量で吐出しながら純水リンスノズルをウェハ中心から周辺方向へ移動した。その後、回転数3000rpmで15秒間スピンドライを行った。
純水を用いた。
 <液浸露光>
 得られたウエハをArFエキシマレーザー液浸スキャナー(ASML社製;XT1700i、NA1.20、Dipole-X、アウターシグマ0.981、インナーシグマ0.895、Y偏向)を用い、ピッチが90nm且つマスク幅が45nmのハーフトーンマスクを介して、パターン露光を行った。液浸液としては超純水を用いた。
 <PEB及び現像>
 その後、105℃で60秒間加熱した。次いで、酢酸ブチルで30秒間パドルして現像し、リンスをする場合は4-メチル-2-ペンタノールで30秒間リンスし、45nmの1:1ラインアンドスペースパターンを得た。
 〔水残りブリッジ欠陥評価〕
 ライン幅45nmのラインアンドスペースパターンを解像する時の最適露光量にて解像したラインアンドスペースパターンの観測において、UVision3+(APPLIED MATERIALS社製)を用い、ピクセルサイズ120nm、Horizontal偏光照明、Cell to Cellモードでパターン欠陥検査を行った後、SEMVISION G4(APPLIED MATERIALS社製)により、300mmウェハの最外周35mm幅の領域内の現像欠陥の観察を行った。ウェハ上の欠陥の形態から、水残りブリッジ欠陥を選別抽出し、その個数をカウントして評価した。評価結果を下表に示す。
Figure JPOXMLDOC01-appb-T000054
 上記表に示した結果から明らかなように、洗浄工程を含めることにより、水残りブリッジ欠陥の発生が抑えられていることが分かる。また、露光前洗浄工程と露光後洗浄工程の双方を含めることにより、水残りブリッジ欠陥の抑制効果がより高いことが分かる。
 また、現像液の酢酸ブチルに2質量%のトリ-n-オクチルアミンを添加した以外は、実施例1と同様にして評価を行ったところ、この評価においても欠陥性能が良好であることが確認された。
 また、実施例1において、マスクパターンを変更して、ライン:スペース=3:1のトレンチパターンを形成した以外は同様にパターン形成を行った後、更に2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた現像処理を行ったところ、中間的な露光量の領域のみが残存するパターンを得ることができた。

Claims (9)

  1.  -酸の作用により1種類以上の有機溶剤を含む現像液に対する溶解度が減少する樹脂、活性光線又は放射線の照射により酸を発生する化合物、及び、溶剤を含有する感活性光線性又は感放射線性樹脂組成物を基板上に塗布して感活性光線性又は感放射線性膜を形成する工程、
     -液浸液を介して感活性光線性又は感放射線性膜を露光する工程、
     -感活性光線性又は感放射線性膜を加熱する工程、及び
     -感活性光線性又は感放射線性膜を、有機溶剤を含む現像液で現像する工程
    をこの順序で含み、更に、
     -感活性光線性又は感放射線性膜を洗浄する工程を、前記膜形成工程後且つ前記露光工程前、および/または、前記露光工程後且つ前記加熱工程前に含むパターン形成方法。
  2.  前記洗浄工程を、前記露光工程後且つ前記加熱工程前、または、前記膜形成工程後且つ前記露光工程前と前記露光工程後且つ前記加熱工程前の双方に含むことを特徴とする、請求項1に記載のパターン形成方法。
  3.  前記洗浄工程が、純水で感活性光線性又は感放射線性膜を洗浄することを含む、請求項1に記載のパターン形成方法。
  4.  前記洗浄工程が、純水を用いた洗浄後に、感活性光線性又は感放射線性膜上から純水を除去することを含む、請求項3に記載のパターン形成方法。
  5.  純水の除去が、不活性ガスブローおよび/またはスピンドライにより行われる、4に記載のパターン形成方法。
  6.  前記感活性光線性又は感放射線性樹脂組成物が更に疎水性樹脂を含む、請求項1に記載のパターン形成方法。
  7.  前記現像液における有機溶剤の含有率が、現像液の全量に対して90質量%以上100質量%以下である、請求項1に記載のパターン形成方法。
  8.  請求項1に記載のパターン形成方法を含む、電子デバイスの製造方法。
  9.  請求項8に記載の電子デバイスの製造方法により製造された電子デバイス。
PCT/JP2014/060631 2013-04-17 2014-04-14 パターン形成方法、電子デバイスの製造方法及び電子デバイス WO2014171425A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157029662A KR20150127291A (ko) 2013-04-17 2014-04-14 패턴 형성 방법, 전자 디바이스의 제조 방법 및 전자 디바이스
CN201480021866.9A CN105122144A (zh) 2013-04-17 2014-04-14 图案形成方法、电子元件的制造方法及电子元件
US14/884,345 US20160033870A1 (en) 2013-04-17 2015-10-15 Pattern formation method, electronic-device manufacturing method, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-086755 2013-04-17
JP2013086755A JP2014211490A (ja) 2013-04-17 2013-04-17 パターン形成方法、電子デバイスの製造方法及び電子デバイス

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/884,345 Continuation US20160033870A1 (en) 2013-04-17 2015-10-15 Pattern formation method, electronic-device manufacturing method, and electronic device

Publications (1)

Publication Number Publication Date
WO2014171425A1 true WO2014171425A1 (ja) 2014-10-23

Family

ID=51731366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060631 WO2014171425A1 (ja) 2013-04-17 2014-04-14 パターン形成方法、電子デバイスの製造方法及び電子デバイス

Country Status (6)

Country Link
US (1) US20160033870A1 (ja)
JP (1) JP2014211490A (ja)
KR (1) KR20150127291A (ja)
CN (1) CN105122144A (ja)
TW (1) TW201447484A (ja)
WO (1) WO2014171425A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159746B2 (ja) * 2014-02-28 2017-07-05 富士フイルム株式会社 パターン形成方法、処理剤、電子デバイス及びその製造方法
JP6424143B2 (ja) * 2015-04-17 2018-11-14 株式会社ニューフレアテクノロジー 検査方法およびテンプレート
KR20210138143A (ko) * 2016-03-31 2021-11-18 후지필름 가부시키가이샤 반도체 제조용 처리액, 반도체 제조용 처리액이 수용된 수용 용기, 패턴 형성 방법 및 전자 디바이스의 제조 방법
JP6961573B2 (ja) 2016-04-08 2021-11-05 富士フイルム株式会社 処理液、その製造方法、パターン形成方法及び電子デバイスの製造方法
CN106125520B (zh) * 2016-08-12 2020-04-28 京东方科技集团股份有限公司 应用光刻胶前烘装置进行光刻胶前烘的方法
US11022890B2 (en) * 2017-02-23 2021-06-01 International Business Machines Corporation Photoresist bridging defect removal by reverse tone weak developer
KR102555351B1 (ko) * 2019-11-15 2023-07-13 닛산 가가쿠 가부시키가이샤 현상액 및 린스액을 이용한 수지제 렌즈의 제조방법, 그리고 그의 린스액

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277053A (ja) * 2004-03-24 2005-10-06 Toshiba Corp レジストパターン形成方法
JP2008141043A (ja) * 2006-12-04 2008-06-19 Tokyo Electron Ltd 液浸露光用洗浄装置および洗浄方法、ならびにコンピュータプログラムおよび記憶媒体
JP2013057836A (ja) * 2011-09-09 2013-03-28 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW442710B (en) * 1995-12-07 2001-06-23 Clariant Finance Bvi Ltd Isolation of novolak resin without high temperature distillation and photoresist composition therefrom
CN1074840C (zh) * 1998-09-11 2001-11-14 清华大学 酸性无显影气相光刻胶及其刻蚀氮化硅的工艺
JP5075706B2 (ja) * 2007-03-27 2012-11-21 富士フイルム株式会社 ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法
JP2010080626A (ja) * 2008-09-25 2010-04-08 Toshiba Corp レジストパターン形成方法
WO2012004976A1 (ja) * 2010-07-09 2012-01-12 住友ベークライト株式会社 硬化膜形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277053A (ja) * 2004-03-24 2005-10-06 Toshiba Corp レジストパターン形成方法
JP2008141043A (ja) * 2006-12-04 2008-06-19 Tokyo Electron Ltd 液浸露光用洗浄装置および洗浄方法、ならびにコンピュータプログラムおよび記憶媒体
JP2013057836A (ja) * 2011-09-09 2013-03-28 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト組成物

Also Published As

Publication number Publication date
CN105122144A (zh) 2015-12-02
JP2014211490A (ja) 2014-11-13
KR20150127291A (ko) 2015-11-16
US20160033870A1 (en) 2016-02-04
TW201447484A (zh) 2014-12-16

Similar Documents

Publication Publication Date Title
KR101888887B1 (ko) 화학증폭형 레지스트막의 패터닝용 유기계 처리액, 및 이것을 사용한 패턴형성방법 및 전자 디바이스의 제조방법
JP5728517B2 (ja) 化学増幅型レジスト膜のパターニング用有機系処理液の製造方法、パターン形成方法、及び、電子デバイスの製造方法
JP6186168B2 (ja) パターン形成方法、及び電子デバイスの製造方法
WO2014171425A1 (ja) パターン形成方法、電子デバイスの製造方法及び電子デバイス
JP6126551B2 (ja) パターン剥離方法、電子デバイスの製造方法
JP2015084122A (ja) 化学増幅型レジスト膜のパターニング用有機系処理液
JP5775754B2 (ja) パターン形成方法及び電子デバイスの製造方法
JP6296972B2 (ja) パターン形成方法、エッチング方法、及び、電子デバイスの製造方法
WO2015133235A1 (ja) パターン形成方法、エッチング方法、電子デバイスの製造方法、及び、電子デバイス
JP2016191953A (ja) 化学増幅型レジスト膜のパターニング用有機系処理液、並びに、これを使用したパターン形成方法、及び、電子デバイスの製造方法
JP2016075920A (ja) 化学増幅型レジスト膜のパターニング用有機系処理液の製造方法、パターン形成方法及び電子デバイスの製造方法
WO2016163174A1 (ja) パターン形成方法、エッチング方法、及び、電子デバイスの製造方法
WO2015060151A1 (ja) パターン形成方法、電子デバイスの製造方法、及び、電子デバイス
JP6014507B2 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法及び電子デバイスの製造方法
WO2018042956A1 (ja) パターン形成方法、感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、及び、電子デバイスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021866.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 241855

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 20157029662

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785819

Country of ref document: EP

Kind code of ref document: A1