WO2021054260A1 - 真空搬送装置および真空搬送装置の制御方法 - Google Patents

真空搬送装置および真空搬送装置の制御方法 Download PDF

Info

Publication number
WO2021054260A1
WO2021054260A1 PCT/JP2020/034506 JP2020034506W WO2021054260A1 WO 2021054260 A1 WO2021054260 A1 WO 2021054260A1 JP 2020034506 W JP2020034506 W JP 2020034506W WO 2021054260 A1 WO2021054260 A1 WO 2021054260A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
transfer device
vacuum transfer
dew point
temperature
Prior art date
Application number
PCT/JP2020/034506
Other languages
English (en)
French (fr)
Inventor
誠之 石橋
隼人 井冨
▲高▼橋 裕之
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN202080062638.1A priority Critical patent/CN114365273A/zh
Priority to KR1020227012188A priority patent/KR20220058635A/ko
Priority to US17/761,361 priority patent/US20220288796A1/en
Publication of WO2021054260A1 publication Critical patent/WO2021054260A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • B25J15/0625Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum provided with a valve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J21/00Chambers provided with manipulation devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • Various aspects and embodiments of the present disclosure relate to a vacuum transfer device and a method of controlling the vacuum transfer device.
  • the quality of the wiring may deteriorate due to the oxidation of the wiring formed on the substrate by the moisture adhering to the substrate. Therefore, in the FOUP (Front Opening Unified Pod) for transporting and storing the substrate, the inside of the substrate is filled with nitrogen gas to prevent moisture from adhering to the substrate. Further, since the inside of the vacuum transfer device is controlled to a low voltage, the amount of water adhering to the substrate is not so large in the process of being transferred in the vacuum transfer device.
  • FOUP Front Opening Unified Pod
  • the substrate since the substrate is exposed to the atmosphere until it is taken out from the FOUP and transferred to the vacuum transfer device and until it is taken out from the vacuum transfer device and contained in the FOUP, the substrate has a large amount of moisture. Adhere to.
  • the present disclosure provides a vacuum transfer device and a control method for the vacuum transfer device that can reduce the moisture adhering to the substrate.
  • One aspect of the present disclosure is a vacuum transfer device which is arranged between a process chamber and a load lock chamber and transports a substrate between the process chamber and the load lock chamber, and is a container, a transfer device, and an exhaust device. , A dew point meter, and a control device.
  • the container is connected to each of the process chamber and the load lock chamber via a gate valve.
  • the transfer device is provided in the container and transfers the substrate between the process chamber and the load lock chamber.
  • the exhaust device exhausts the gas in the container.
  • the dew point meter measures the dew point temperature of the gas in the container.
  • the control device determines whether or not the process can be executed based on the dew point temperature measured by the dew point meter, and when the process can be executed, the vacuum transfer device to that effect. Notify the user of.
  • FIG. 1 is a diagram showing an example of the configuration of the film forming system according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line XX showing an example of a vacuum transfer device, a load lock chamber, and an atmospheric transfer chamber.
  • FIG. 3 is a flowchart showing an example of control of the vacuum transfer device before the start of the process.
  • FIG. 4 is a flowchart showing an example of control of the vacuum transfer device when opening the gate valve between the process chamber and the vacuum transfer device when the process in one process chamber is completed.
  • FIG. 5 is a flowchart showing an example of a method of controlling the dew point temperature in the container during process execution.
  • the vacuum transfer device is sealed after being released to the atmosphere, and the gas in the vacuum transfer device is exhausted, so that the pressure in the vacuum transfer device is reduced. Therefore, even if the concentration of the gas in the vacuum transfer device is lowered by the exhaust gas, the ratio of the moisture contained in the gas in the vacuum transfer device is the same as that of the outside air. As the wiring pattern becomes finer, the characteristics of the wiring may change even with a slight amount of water adhering to it. Therefore, if the wiring pattern is further miniaturized, the wiring characteristics may change in the process of transporting the substrate in the vacuum transfer device.
  • the present disclosure provides a technique capable of further reducing the water content adhering to the substrate.
  • FIG. 1 is a schematic view showing an example of a film forming system 100 according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along the line XX showing an example of the vacuum transfer device 200, the load lock chamber 102, and the atmosphere transfer chamber 103.
  • the XX cross section of FIG. 1 corresponds to FIG.
  • the film forming system 100 is a multi-chamber type vacuum processing system.
  • the film forming system 100 includes a plurality of process chambers 101, a plurality of load lock chambers 102, an atmosphere transfer chamber 103, a gas supply device 110, an exhaust device 120, a control device 130, and a vacuum transfer device 200.
  • the plurality of process chambers 101 are connected to the four side walls of the vacuum transfer device 200 having a heptagonal planar shape, respectively, via a gate valve G1.
  • Each process chamber 101 performs a process such as film formation, etching, or modification on the substrate W carried into the inside via the vacuum transfer device 200.
  • four process chambers 101 are connected to the four side walls of the vacuum transfer device 200 having a heptagonal planar shape, but the number of process chambers 101 connected to the vacuum transfer device 200 is three or less. It may be five or more.
  • the plurality of load lock chambers 102 are connected to the three side walls of the vacuum transfer device 200 via a gate valve G2, respectively.
  • An air transport chamber 103 is connected to each load lock chamber 102 via a gate valve G3.
  • the load lock chamber 102 switches the atmosphere between the atmospheric atmosphere and the vacuum atmosphere when the substrate W is transported between the atmospheric transport chamber 103 and the vacuum transfer device 200.
  • the three load lock chambers 102 are connected to the three side walls of the vacuum transfer device 200, but the number of load lock chambers 102 connected to the vacuum transfer device 200 may be two or less. It may be four or more.
  • the vacuum transfer device 200 includes a container 201, a transfer device 202, a plurality of heaters 203, and a dew point meter 204.
  • the transfer device 202 is, for example, a robot arm, and transfers the substrate W between each process chamber 101 and each load lock chamber 102.
  • the transport device 202 for example, carries out the substrate W before processing from the load lock chamber 102 and carries it into the process chamber 101.
  • the transfer device 202 for example, carries out the processed substrate W from the process chamber 101 and carries it into the process chamber 101 which performs another process on the substrate W.
  • the transfer device 202 for example, carries out the processed substrate W from the process chamber 101 and carries it into the load lock chamber 102.
  • the heater 203 is, for example, rod-shaped and is embedded in the side wall of the container 201 to heat the side wall of the container 201. As a result, the wall surface of the container 201 is heated, and the water molecules adsorbed on the wall surface of the container 201 are easily separated. Further, the heater 203 may be embedded in the floor or ceiling of the container 201 to heat the floor or ceiling of the container 201. The supply and stop of power supply to the heater 203 are controlled by the control unit 132 in the control device 130.
  • the dew point meter 204 is arranged in the container 201 and measures the dew point temperature T d of the gas in the container 201.
  • the dew point meter 204 is a capacitance type dew point meter.
  • the information of the dew point temperature T d measured by the dew point meter 204 is output to the control device 130.
  • An exhaust device 120 is connected to the container 201 via a pipe 126.
  • the exhaust device 120 includes a TMP (TurboMolecular Pump) 121, a DP (Dry Pump) 122, a valve 123, a valve 124, and a valve 125.
  • the intake port of the TMP 121 is connected to the pipe 126 via the valve 124, and the exhaust port of the TMP 121 is connected to the DP 122 via the valve 125.
  • a pipe 127 is connected between the pipe 126 and the pipe between the valve 125 and the DP 122, and the valve 123 is provided in the pipe 127.
  • the DP 122 can exhaust the gas in the container 201 to a degree of vacuum of about several Torr.
  • the TMP 121 can exhaust the gas in the container 201 to a vacuum degree of 1 Torr or less. TMP121 consumes more power than DP122.
  • the TMP 121, DP 122, valve 123, valve 124, and valve 125 are controlled by the control unit 132 in the control device 130.
  • a gas supply device 110 is connected to the container 201 via a pipe 113.
  • the gas supply device 110 has a PCV (Pressure Control Valve) 111 and a gas supply source 112.
  • the gas supply source 112 is a source of an inert gas such as nitrogen gas or a rare gas.
  • the PCV 111 controls the amount of the inert gas supplied into the container 201 so that the pressure inside the container 201 becomes a predetermined pressure.
  • the PCV 111 is controlled by the control unit 132 in the control device 130.
  • a plurality of ports 105 for attaching a carrier (FOUP or the like) C for accommodating the substrate W are provided on the side surface of the air transport chamber 103.
  • An alignment chamber 104 for aligning the substrate W is provided in the air transport chamber 103.
  • a transport device 106 such as a robot arm is provided in the atmosphere transport chamber 103. The transport device 106 transports the substrate W between the carrier C, the load lock chamber 102, and the alignment chamber 104.
  • a downflow of low humidity dry air is formed in the air transport chamber 103.
  • the control device 130 has a memory, a processor, and an input / output interface.
  • the memory stores a program executed by the processor and a recipe including conditions for each process.
  • the processor executes a program read from the memory and controls each part of the film forming system 100 via the input / output interface based on the recipe stored in the memory.
  • the processor of the control device 130 realizes the functions of the determination unit 131 and the control unit 132 by executing the program read from the memory.
  • the determination unit 131 acquires the dew point temperature T d from the dew point meter 204 when the container 201 of the vacuum transfer device 200 is sealed after being released to the atmosphere due to setup, maintenance, or the like. Then, the determination unit 131 determines whether it is a first temperature T d1 below acquired dew point temperature T d is predetermined dew point temperature T d is equal to or less than the first temperature T d1 In this case, the control unit 132 is notified to that effect.
  • the determination unit 131 after the dew point temperature T d is notified to the control unit 132 that falls below a first temperature T d1, subsequently acquires the dew point temperature T d from dew 204. Then, the determination unit 131, when determining whether or not it is higher than the second temperature T d2 dew point temperature T d is predetermined dew point temperature T d is higher than the second temperature T d2, Notify the control unit 132 to that effect.
  • the second temperature T d2 is higher than the first temperature T d1.
  • the first temperature T d1 and the second temperature T d2 may be the same temperature.
  • the control unit 132 controls each part of the film forming system 100.
  • the control unit 132 controls the PCV111, TMP121, DP122, valve 123, valve 124, valve 125, heater 203, gate valve G1, gate valve G2, and the like in response to the notification from the determination unit 131.
  • the details of the control by the control unit 132 will be described in the flowchart described later.
  • FIG. 3 is a flowchart showing an example of control of the vacuum transfer device 200 before the start of the process. For example, when the inside of the vacuum transfer device 200 is sealed after being released to the atmosphere due to setup, maintenance, or the like, the control device 130 starts the process shown in this flowchart.
  • control unit 132 starts heating the container 201 by the heater 203 by starting the power supply to each heater 203 (S100).
  • step S101 the control unit 132 controls the valve 123 in the closed state, controls the valve 124 and the valve 125 in the open state, and operates the TMP 121 and the DP 122. As a result, the gas in the container 201 is exhausted, and the pressure P in the container 201 is lowered.
  • control unit 132 refers to the measured value of a pressure gauge (not shown) arranged in the container 201, and determines whether or not the pressure P in the container 201 is equal to or less than the predetermined first pressure P 1. Is determined (S102).
  • the first pressure P 1 is, for example, a pressure of less than 0.01 Torr.
  • the PCV 111 is controlled to start supplying the inert gas into the container 201 (S103). Then, the control unit 132 controls the PCV 111 to control the supply amount of the inert gas so that the pressure P in the container 201 becomes a predetermined second pressure P 2 (S104).
  • the second pressure P 2 is, for example, a pressure in the range of 1 to 10 Torr.
  • control unit 132 controls the valve 123 in the open state, controls the valve 124 in the closed state, and stops the TMP 121 (S105). By stopping the TMP 121, the power consumption of the vacuum transfer device 200 can be reduced.
  • the container 201 is hermetically sealed, the outside air enters the container 201 via a sealing member arranged at a connecting portion between the container 201 and the process chamber 101, a connecting portion between the container 201 and the load lock chamber 102, and the like. May slightly invade.
  • the outside air enters the container 201 some of the water molecules contained in the outside air adhere to the inner surface of the container 201. As a result, even if the gas in the container 201 is exhausted, the amount of water in the container 201 may not drop below a certain level.
  • the gas in the container 201 is exhausted and the inert gas is supplied in the container 201.
  • the adhesion of water molecules contained in the outside air that has entered the container 201 to the inner surface of the container 201 is suppressed.
  • the water molecules contained in the outside air that have entered the container 201 are quickly exhausted by the exhaust device 120, and the amount of water in the container 201 can be further reduced.
  • the determination unit 131 determines whether or not the dew point temperature T d is equal to or less than the first temperature T d1 (S106). If dew point temperature T d is higher than the first temperature T d1 (S106: No), the execution processing shown again in step S106.
  • the determination unit 131 informs the control unit 132 that the dew point temperature T d has become the first temperature T d1 or less. Notice.
  • the control unit 132 stops the heating of the container 201 by the heater 203 by stopping the power supply to each of the heaters 203 (S107). As a result, the power consumption of the vacuum transfer device 200 can be reduced.
  • control unit 132 determines whether or not all the conditions for starting the process are satisfied (S108).
  • the process starts condition, and the dew point temperature T d in the container 201 in addition to be reduced below a first temperature T d1, and the pressure adjustment and temperature control of each process chamber 101 is completed, It includes that the carrier C is set in the port 105 and the like.
  • the determination unit 131 determines whether it is above a second temperature T d2 (S109). If dew point temperature T d is less than the second temperature T d2 (S109: No), the execution processing shown again in step S108.
  • the determination unit 131 informs the control unit 132 that the dew point temperature T d has become the second temperature T d 2 or more. Notice.
  • the dew point temperature T d is the fact that now more second temperature T d2, for some reason, such as the sealing of the sealing member that maintains the airtightness of the container 201 is weakened, the amount outside air intrusion increases Conceivable. Therefore, the control unit 132 notifies the user of the film forming system 100 of an error (S110).
  • the control unit 132 notifies the user of the film forming system 100 of an error by displaying, for example, on a display device (not shown) that the dew point temperature T d has reached the second temperature T d 2 or higher. Then, the control device 130 ends the process shown in this flowchart.
  • control unit 132 displays on, for example, a display device (not shown) that the process start is ready, so that the film forming system 100 Notify the user that the process can be executed (S111). Then, the control device 130 ends the process shown in this flowchart.
  • FIG. 4 is a flowchart showing an example of control of the vacuum transfer device 200 when opening the gate valve G1 between the process chamber 101 and the vacuum transfer device 200 when the process in one process chamber 101 is completed. ..
  • the control device 130 starts the process shown in this flowchart.
  • the control unit 132 controls the PCV 111 so as to increase the pressure P in the container 201 (S200). Then, the control unit 132 determines whether or not the pressure in the container 201 is equal to or higher than the predetermined third pressure P 3 by referring to the measured value of the pressure gauge (not shown) arranged in the container 201. (S201).
  • the third pressure P 3 is a pressure higher than the pressure in the process chamber 101 and lower than the atmospheric pressure. If the pressure in the vessel 201 is less than the third pressure P 3 (S201: No), the execution processing shown again in step S201.
  • the control unit 132 presses the gate valve G1 between the process chamber 101 and the container 201 in which the specific process is completed. By controlling the open state, the gate valve G1 is opened (S202). Then, the control unit 132 controls the transfer device 202 so as to carry out the substrate W from the inside of the process chamber 101 (S203). Then, the control unit 132 closes the gate valve G1 by controlling the gate valve G1 between the process chamber 101 and the container 201 in a closed state (S204).
  • the control unit 132 controls the pressure in the container 201 to be higher than the pressure in the process chamber 101 before opening the gate valve G1.
  • the gate valve G1 is opened, particles, residual gas, and the like in the process chamber 101 are suppressed from entering the container 201.
  • particles generated in the process chamber 101 are suppressed from entering the other process chamber 101 through the container 201.
  • the gate valve is opened by controlling the gate valve between the device to which the substrate W is conveyed and the container 201 in the open state (S205).
  • step S205 when another process is executed by another process chamber 101 with respect to the substrate W, the gate valve G1 between the other process chamber 101 and the container 201 is opened. Further, when the substrate W is housed in the carrier C, the gate valve G2 between the load lock chamber 102 and the container 201 is opened.
  • control unit 132 controls the transfer device 202 so as to carry the substrate W into another process chamber 101 or the load lock chamber 102 (S206). Then, the control unit 132 closes the gate valve (S207).
  • control unit 132 controls the PCV 111 to control the supply amount of the inert gas so that the pressure P in the container 201 becomes a predetermined second pressure P 2 (S208). Then, the control device 130 ends the process shown in this flowchart.
  • the vacuum transfer device 200 in the present embodiment is arranged between the process chamber 101 and the load lock chamber 102, and transfers the substrate W between the process chamber 101 and the load lock chamber 102.
  • the vacuum transfer device 200 includes a container 201, a transfer device 202, an exhaust device 120, a dew point meter 204, and a control device 130.
  • the container 201 is connected to each of the process chamber 101 and the load lock chamber 102 via a gate valve (G1, G2).
  • the transfer device 202 is provided in the container 201 and transfers the substrate W between the process chamber 101 and the load lock chamber 102.
  • the exhaust device 120 exhausts the gas in the container 201.
  • the dew point meter 204 measures the dew point temperature of the gas in the container 201.
  • the control device 130 determines whether or not the process can be executed based on the dew point temperature measured by the dew point meter 204, and when the process can be executed, the control device 130 vacuums to that effect. Notify the user of the transport device 200. As a result, the vacuum transfer device 200 can reduce the moisture adhering to the substrate W.
  • the control device 130 has a determination unit 131 and a control unit 132.
  • the determination unit 131 determines whether or not the dew point temperature T d of the gas in the container 201 becomes equal to or lower than the predetermined first temperature T d 1 after the inside of the container 201 is released to the atmosphere and sealed again.
  • the control unit 132 satisfies all of a plurality of predetermined conditions, including one of the conditions that the determination unit 131 determines that the dew point temperature T d is equal to or lower than the first temperature T d1.
  • the vacuum transfer device 200 can reduce the moisture adhering to the substrate W.
  • the control unit 132 has a second temperature T d2 or higher in which the dew point temperature T d is predetermined by the control unit 132 while the process chamber 101 is processing the substrate W.
  • T d2 the dew point temperature T d is predetermined by the control unit 132 while the process chamber 101 is processing the substrate W.
  • the container 201 is provided with a heater 203 for heating the inner wall surface of the container 201. Further, the control unit 132 heats the inner wall surface of the container 201 by supplying electric power to the heater 203 after the inside of the container 201 is released to the atmosphere and sealed again. As a result, water molecules adhering to the inner wall surface of the container 201 can be quickly separated, and the water content in the container 201 can be quickly reduced.
  • control unit 132 when the dew point temperature T d of the gas in the container 201 by the determination unit 131 is determined to equal to or less than the first temperature T d1, power supply to the heater 203 Stops heating of the inner wall surface of the container 201 by the heater 203. As a result, the power consumption of the vacuum transfer device 200 can be reduced.
  • the vacuum transfer device 200 in the above-described embodiment further includes a gas supply device 110 that supplies the inert gas into the container 201.
  • a gas supply device 110 that supplies the inert gas into the container 201.
  • the gas supply device 110 has a PCV 111
  • the exhaust device 120 has a TMP 121 and a DP 122.
  • the control unit 132 exhausts the gas in the container 201 by operating the TMP 121 and the DP 122. Then, when the pressure P in the container 201 becomes equal to or less than the predetermined first pressure P 1 , the control unit 132 stops the TMP 121, and the pressure in the container 201 is in a state where the DP 122 is operating. Is controlled so that the second pressure P 2 is higher than the first pressure P 1. As a result, the water content in the container 201 can be quickly reduced, and the power consumption of the vacuum transfer device 200 can be reduced.
  • control unit 132 makes the pressure in the container 201 higher than the pressure in the process chamber 101 before the gate valve G1 between the process chamber 101 and the container 201 is opened. Controls the PCV111. As a result, when the gate valve G1 between the process chamber 101 and the container 201 is opened, particles, residual gas, and the like in the process chamber 101 are suppressed from entering the container 201.
  • the dew point temperature of the gas in the container 201 measured by the dew point meter 204 provided in the container 201 after the inside of the container 201 is released to the atmosphere and sealed again. and determining whether it is below a first temperature T d1 that T d is predetermined, as one condition that the dew point temperature T d is determined to equal to or less than the first temperature T d1 Including a step of notifying the user of the vacuum transfer apparatus that the process can be executed when all of a plurality of predetermined conditions are satisfied. As a result, the vacuum transfer device 200 can reduce the moisture adhering to the substrate W.
  • the process it is determined whether or not the process can be executed based on the dew point temperature Td measured by the dew point meter 204 provided in the container 201.
  • Technology is not limited to this.
  • an oxygen concentration meter for measuring the concentration of oxygen contained in the gas in the container 201 is provided in the container 201, and the process can be executed based on the dew point temperature T d and the oxygen concentration of the gas in the container 201. It may be determined whether or not.
  • the dew point temperature T d of the gas in the container 201 is equal to or less than the first temperature T d1 and the oxygen concentration of the gas in the container 201 is equal to or less than the first concentration, a plurality of for starting the process. It may be determined that one of the conditions of is satisfied. Further, when the dew point temperature T d of the gas in the container 201 becomes higher than the second temperature T d2 during the process execution, or when the oxygen concentration of the gas in the container 201 becomes higher than the second concentration. In addition, the user of the film forming system 100 may be notified of the error to interrupt the process. As a result, oxidation of the substrate W by oxygen remaining in the vacuum transfer device 200 is also suppressed.
  • the control of the dew point temperature of the gas in the container 201 when the container 201 of the vacuum transfer device 200 is sealed after being released to the atmosphere due to setup, maintenance, or the like has been mainly described.
  • Technology is not limited to this.
  • the dew point temperature in the container 201 may be controlled even during the execution of the process for the substrate W.
  • FIG. 5 is a flowchart showing an example of a method of controlling the dew point temperature in the container 201 during process execution. For example, when the process is started, the control device 130 starts the process shown in this flowchart.
  • the determination unit 131 of the control device 130 determines whether or not the dew point temperature T d is equal to or higher than the predetermined third temperature T d 3 based on the dew point temperature T d output from the dew point meter 204. (S300).
  • Third temperature T d3 is, for example, a temperature higher than the second temperature T d2 equal to or second temperature T d2. If dew point temperature T d is lower than the third temperature T d3 (S300: No), the execution processing shown again in step S300.
  • the determination unit 131 informs the control unit 132 that the dew point temperature T d becomes the third temperature T d 3 or more. Notice.
  • the control unit 132 interrupts the removal of the substrate W included in the new lot from the carrier C, and determines whether or not the processing of the substrate W contained in the lot being conveyed and processed is completed (S301). When the processing of the substrate W included in the lot being processed is not completed (S301: No), the processing of the substrate W included in the lot being processed is continuously executed, and the processing shown in step S300 is executed again. To.
  • the control device 130 again executes the processing of steps S100 to S107 described with reference to FIG. As a result, the dew point temperature T d of the gas in the container 201 becomes equal to or lower than the first temperature T d 1 again. Then, the control device 130 restarts the taking out of the substrate W included in the next lot from the carrier C, and restarts the process for the substrate W (S302). Then, the process shown in step S300 is executed again.
  • step S301 the end of the process is determined in lot units, but the end of the process may be determined in units of the substrate W. That is, when the dew point temperature T d is determined to have become the third temperature T d3 or more in step S300, the check out a new substrate W from the same lot in a by the Carrier C of the substrate W in or during processing conveyor May be interrupted. As a result, even in the middle of the lot, the dew point temperature T d of the gas in the container 201 can be quickly restored to the first temperature T d 1 or less as soon as the processing of the substrate W during transportation or processing is completed. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

プロセスチャンバとロードロック室との間に配置され、プロセスチャンバとロードロック室との間で基板を搬送する真空搬送装置であって、容器と、搬送装置と、排気装置と、露点計と、制御装置とを備える。容器は、ゲートバルブを介してプロセスチャンバおよびロードロック室のそれぞれに接続されている。搬送装置は、容器内に設けられ、プロセスチャンバとロードロック室との間で基板を搬送する。排気装置は、容器内のガスを排気する。露点計は、容器内のガスの露点温度を測定する。制御装置は、露点計によって測定された露点温度に基づいてプロセスの実行が可能な状態であるか否かを判定し、プロセスの実行が可能な状態になった場合に、その旨を真空搬送装置のユーザに通知する。

Description

真空搬送装置および真空搬送装置の制御方法
 本開示の種々の側面および実施形態は、真空搬送装置および真空搬送装置の制御方法に関するものである。
 近年、配線パターンの微細化に伴い、基板に付着した水分によって基板上に形成された配線が酸化することで、配線の品質が低下する場合がある。そのため、基板を搬送および保管するためのFOUP(Front Opening Unified Pod)では、基板が収容された内部に窒素ガスを充填することにより、基板に水分が付着しないようにしている。また、真空搬送装置内は低圧に制御されるため、真空搬送装置内を搬送される過程では、基板に付着する水分はあまり多くはない。
 しかし、FOUPから取り出されて真空搬送装置に搬送されるまでの間、および、真空搬送装置から取り出されてFOUPに収容されるまでの間は、基板が大気に晒されるため、基板に水分が多く付着する。
 これを回避するため、FOUPと真空搬送装置との間に、FOUPと真空搬送装置との間の搬送経路を低湿度状態に保つミニエンバイロメント搬送装置を設ける技術が知られている(例えば、下記特許文献1参照)。
特開2013-115065号公報
 本開示は、基板に付着する水分を低減することができる真空搬送装置および真空搬送装置の制御方法を提供する。
 本開示の一側面は、プロセスチャンバとロードロック室との間に配置され、プロセスチャンバとロードロック室との間で基板を搬送する真空搬送装置であって、容器と、搬送装置と、排気装置と、露点計と、制御装置とを備える。容器は、ゲートバルブを介してプロセスチャンバおよびロードロック室のそれぞれに接続されている。搬送装置は、容器内に設けられ、プロセスチャンバとロードロック室との間で基板を搬送する。排気装置は、容器内のガスを排気する。露点計は、容器内のガスの露点温度を測定する。制御装置は、露点計によって測定された露点温度に基づいてプロセスの実行が可能な状態であるか否かを判定し、プロセスの実行が可能な状態になった場合に、その旨を真空搬送装置のユーザに通知する。
 本開示の種々の側面および実施形態によれば、基板に付着する水分を低減することができる。
図1は、実施形態に係る成膜システムの構成の一例を示す図である。 図2は、真空搬送装置、ロードロック室、および大気搬送室の一例を示すX-X断面図である。 図3は、プロセス開始前までの真空搬送装置の制御の一例を示すフローチャートである。 図4は、1つのプロセスチャンバでのプロセスが終了した場合において、プロセスチャンバと真空搬送装置との間のゲートバルブを開く際の真空搬送装置の制御の一例を示すフローチャートである。 図5は、プロセス実行中における容器内の露点温度の管理方法の一例を示すフローチャートである。
 以下、図面を参照して本願の開示する真空搬送装置および真空搬送装置の制御方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示される真空搬送装置および真空搬送装置の制御方法が限定されるものではない。
 ところで、真空搬送装置は、大気解放された後に密閉され、真空搬送装置内のガスが排気されることにより、真空搬送装置内の圧力が下げられる。そのため、排気により真空搬送装置内のガスの濃度が低くなったとしても、真空搬送装置内のガスに含まれる水分の割合は、外気と同等である。配線パターンの微細化がさらに進むと、わずかな水分の付着でも、配線の特性が変化する場合がある。そのため、配線パターンの微細化がさらに進むと、真空搬送装置内を基板が搬送される過程で、配線の特性が変化する場合がある。
 そこで、本開示は、基板に付着する水分をさらに低減することができる技術を提供する。
[成膜システム100]
 図1は、本開示の一実施形態における成膜システム100の一例を示す模式図である。図2は、真空搬送装置200、ロードロック室102、および大気搬送室103の一例を示すX-X断面図である。図1のX-X断面が図2に対応する。成膜システム100は、マルチチャンバタイプの真空処理システムである。成膜システム100は、複数のプロセスチャンバ101、複数のロードロック室102、大気搬送室103、ガス供給装置110、排気装置120、制御装置130、および真空搬送装置200を備える。
 複数のプロセスチャンバ101は、平面形状が七角形をなす真空搬送装置200の4つの側壁に、それぞれゲートバルブG1を介して接続されている。それぞれのプロセスチャンバ101は、真空搬送装置200を介して内部に搬入された基板Wに対して、成膜、エッチング、または改質等の処理を行う。本実施形態では、平面形状が七角形をなす真空搬送装置200の4つの側壁に4つのプロセスチャンバ101が接続されるが、真空搬送装置200に接続されるプロセスチャンバ101の数は、3つ以下であってもよく、5つ以上であってもよい。
 複数のロードロック室102は、真空搬送装置200の3つの側壁に、それぞれゲートバルブG2を介して接続されている。それぞれのロードロック室102には、ゲートバルブG3を介して大気搬送室103が接続されている。ロードロック室102は、大気搬送室103と真空搬送装置200との間で基板Wを搬送する際に、大気雰囲気と真空雰囲気との間で雰囲気の切り替えを行う。本実施形態では、真空搬送装置200の3つの側壁に3つのロードロック室102が接続されるが、真空搬送装置200に接続されるロードロック室102の数は、2つ以下であってもよく、4つ以上であってもよい。
 真空搬送装置200は、容器201、搬送装置202、複数のヒータ203、および露点計204を有する。搬送装置202は、例えばロボットアームであり、それぞれのプロセスチャンバ101とそれぞれのロードロック室102との間で基板Wを搬送する。搬送装置202は、例えば、処理前の基板Wをロードロック室102から搬出し、プロセスチャンバ101内に搬入する。また、搬送装置202は、例えば、処理後の基板Wをプロセスチャンバ101から搬出し、基板Wに対して別な処理を行うプロセスチャンバ101内に搬入する。また、搬送装置202は、例えば、処理後の基板Wをプロセスチャンバ101から搬出し、ロードロック室102内に搬入する。
 ヒータ203は、例えば棒状であり、容器201の側壁内に埋め込まれており、容器201の側壁を加熱する。これにより、容器201の壁面が加熱され、容器201の壁面に吸着していた水の分子が離脱しやすくなる。また、ヒータ203は、容器201の床や天井内にも埋め込まれ、容器201の床や天井を加熱してもよい。ヒータ203への電力の供給および供給停止は、制御装置130内の制御部132によって制御される。
 露点計204は、容器201内に配置され、容器201内のガスの露点温度Tdを測定する。本実施形態において、露点計204は、静電容量方式の露点計である。露点計204によって測定された露点温度Tdの情報は、制御装置130へ出力される。
 容器201には、配管126を介して排気装置120が接続されている。排気装置120は、TMP(TurboMolecular Pump)121、DP(Dry Pump)122、バルブ123、バルブ124、およびバルブ125を有する。TMP121の吸気口は、バルブ124を介して配管126に接続されており、TMP121の排気口は、バルブ125を介してDP122に接続されている。また、配管126と、バルブ125とDP122との間の配管との間には、配管127が接続されており、配管127には、バルブ123が設けられている。DP122は、数Torr程度の真空度まで容器201内のガスを排気することができる。一方、TMP121は、1Torr以下の真空度まで容器201内のガスを排気することができる。TMP121は、DP122よりも消費電力が大きい。TMP121、DP122、バルブ123、バルブ124、およびバルブ125は、制御装置130内の制御部132によって制御される。
 容器201には、配管113を介してガス供給装置110が接続されている。ガス供給装置110は、PCV(Pressure Control Valve)111およびガス供給源112を有する。ガス供給源112は、窒素ガスや希ガス等の不活性ガスの供給源である。PCV111は、容器201内の圧力が予め定められた圧力となるように、容器201内への不活性ガスの供給量を制御する。PCV111は、制御装置130内の制御部132によって制御される。
 大気搬送室103の側面には、基板Wを収容するキャリア(FOUP等)Cを取り付けるためのポート105が複数設けられている。大気搬送室103内には、基板Wのアライメントを行うためのアライメント室104が設けられている。また、大気搬送室103内には、ロボットアーム等の搬送装置106が設けられている。搬送装置106は、キャリアC、ロードロック室102、およびアライメント室104の間で基板Wを搬送する。大気搬送室103内には、低湿度のドライエアのダウンフローが形成されている。
 制御装置130は、メモリ、プロセッサ、および入出力インターフェイスを有する。メモリには、プロセッサによって実行されるプログラム、および、各処理の条件等を含むレシピが格納されている。プロセッサは、メモリから読み出したプログラムを実行し、メモリ内に記憶されたレシピに基づいて、入出力インターフェイスを介して、成膜システム100の各部を制御する。
 制御装置130のプロセッサは、メモリから読み出したプログラムを実行することにより、判定部131および制御部132の機能を実現する。判定部131は、セットアップやメンテナンス等により真空搬送装置200の容器201が大気解放された後に密閉された場合に露点温度Tdを露点計204から取得する。そして、判定部131は、取得された露点温度Tdが予め定められた第1の温度Td1以下になったか否かを判定し、露点温度Tdが第1の温度Td1以下になった場合に、その旨を制御部132に通知する。
 また、判定部131は、露点温度Tdが第1の温度Td1以下になったことを制御部132に通知した後に、引き続き露点計204から露点温度Tdを取得する。そして、判定部131は、露点温度Tdが予め定められた第2の温度Td2より高くなったか否かを判定し、露点温度Tdが第2の温度Td2より高くなった場合に、その旨を制御部132に通知する。本実施形態において、第2の温度Td2は、第1の温度Td1よりも高い温度である。なお、他の形態として、第1の温度Td1と第2の温度Td2とは同じ温度であってもよい。
 制御部132は、成膜システム100の各部を制御する。例えば、制御部132は、判定部131からの通知に応じて、PCV111、TMP121、DP122、バルブ123、バルブ124、バルブ125、ヒータ203、ゲートバルブG1、およびゲートバルブG2等を制御する。制御部132による制御の詳細については、後述するフローチャートの中で説明する。
[プロセス開始前の準備]
 図3は、プロセス開始前までの真空搬送装置200の制御の一例を示すフローチャートである。例えば、セットアップやメンテナンス等により真空搬送装置200内が大気解放された後に密閉された場合に、制御装置130は、本フローチャートに示される処理を開始する。
 まず、制御部132は、それぞれのヒータ203への電力供給を開始することにより、ヒータ203による容器201の加熱を開始する(S100)。
 次に、制御部132は、TMP121およびDP122による排気を開始する(S101)。ステップS101では、制御部132は、バルブ123を閉状態に制御し、バルブ124およびバルブ125を開状態に制御し、TMP121およびDP122を稼働させる。これにより、容器201内のガスが排気され、容器201内の圧力Pが下がる。
 次に、制御部132は、容器201内に配置された図示しない圧力計の測定値を参照して、容器201内の圧力Pが予め定められた第1の圧力P1以下になったか否かを判定する(S102)。第1の圧力P1は、例えば0.01Torr未満の圧力である。容器201内の圧力Pが第1の圧力P1より高い場合(S102:No)、再びステップS102の処理が実行される。
 一方、容器201内の圧力Pが第1の圧力P1以下になった場合(S102:Yes)、PCV111を制御して、容器201内に不活性ガスの供給を開始する(S103)。そして、制御部132は、PCV111を制御して、容器201内の圧力Pが予め定められた第2の圧力P2となるように不活性ガスの供給量を制御する(S104)。第2の圧力P2は、例えば1~10Torrの範囲の圧力である。
 そして、制御部132は、バルブ123を開状態に制御し、バルブ124を閉状態に制御し、TMP121を停止させる(S105)。TMP121を停止させることにより、真空搬送装置200の消費電力を削減することができる。
 ここで、容器201は密閉されているものの、容器201とプロセスチャンバ101との接続部分や、容器201とロードロック室102との接続部分等に配置されたシール部材を介して外気が容器201内にわずかに侵入する場合がある。容器201内に外気が侵入すると、外気に含まれる水の分子の一部が容器201の内面に付着する。これにより、容器201内のガスを排気しても、容器201内の水分量がある程度以下に下がらない場合がある。
 そこで、本実施形態では、容器201内のガスを排気すると共に、容器201内に不活性ガスを供給する。これにより、容器201内に侵入した外気に含まれる水の分子の容器201の内面への付着が抑制される。これにより、容器201内に侵入した外気に含まれる水の分子は排気装置120により迅速に排気され、容器201内の水分量をさらに低減することができる。
 次に、判定部131は、露点温度Tdが第1の温度Td1以下になったか否かを判定する(S106)。露点温度Tdが第1の温度Td1より高い場合(S106:No)、再びステップS106に示された処理が実行される。
 一方、露点温度Tdが第1の温度Td1以下になった場合(S106:Yes)、判定部131は、露点温度Tdが第1の温度Td1以下になったことを制御部132に通知する。制御部132は、それぞれのヒータ203への電力供給を停止することにより、ヒータ203による容器201の加熱を停止する(S107)。これにより、真空搬送装置200の消費電力を削減することができる。
 次に、制御部132は、プロセス開始の条件が全て満たされたか否かを判定する(S108)。プロセス開始の条件には、容器201内の露点温度Tdが第1の温度Td1以下になることの他に、それぞれのプロセスチャンバ101内の圧力調整や温度制御が完了していることや、ポート105にキャリアCがセットされていること等が含まれる。
 プロセス開始の条件の少なくとも一部が満たされていない場合(S108:No)、判定部131は、露点温度Tdが第2の温度Td2以上になったか否かを判定する(S109)。露点温度Tdが第2の温度Td2未満である場合(S109:No)、再びステップS108に示された処理が実行される。
 一方、露点温度Tdが第2の温度Td2以上になった場合(S109:Yes)、判定部131は、露点温度Tdが第2の温度Td2以上になったことを制御部132に通知する。露点温度Tdが第2の温度Td2以上になったということは、容器201の気密性を維持するシール部材のシール性が弱くなった等の何らかの原因により、外気の侵入量が増加したと考えられる。そのため、制御部132は、成膜システム100のユーザにエラーを通知する(S110)。制御部132は、例えば図示しない表示装置等に、露点温度Tdが第2の温度Td2以上になったことを表示することにより、成膜システム100のユーザにエラーを通知する。そして、制御装置130は、本フローチャートに示される処理を終了する。
 一方、プロセス開始の条件が全て満たされた場合(S108:Yes)、制御部132は、例えば図示しない表示装置等に、プロセス開始の準備が整った旨を表示することで、成膜システム100のユーザにプロセスの実行が可能であることを通知する(S111)。そして、制御装置130は、本フローチャートに示される処理を終了する。
[プロセス実行中の真空搬送装置200の制御]
 図4は、1つのプロセスチャンバ101でのプロセスが終了した場合において、プロセスチャンバ101と真空搬送装置200との間のゲートバルブG1を開く際の真空搬送装置200の制御の一例を示すフローチャートである。例えば、1つのプロセスチャンバ101において基板Wに対して特定のプロセスの実行が終了した場合に、制御装置130は、本フローチャートに示される処理を開始する。
 まず、制御部132は、容器201内の圧力Pを上げるようにPCV111を制御する(S200)。そして、制御部132は、容器201内に配置された図示しない圧力計の測定値を参照して、容器201内の圧力が予め定められた第3の圧力P3以上になったか否かを判定する(S201)。第3の圧力P3は、プロセスチャンバ101内の圧力よりも高く、かつ、大気圧よりも低い圧力である。容器201内の圧力が第3の圧力P3未満である場合(S201:No)、再びステップS201に示された処理が実行される。
 一方、容器201内の圧力が第3の圧力P3以上になった場合(S201:Yes)、制御部132は、特定のプロセスが終了したプロセスチャンバ101と容器201との間のゲートバルブG1を開状態に制御することで、ゲートバルブG1を開く(S202)。そして、制御部132は、プロセスチャンバ101内から基板Wを搬出するように搬送装置202を制御する(S203)。そして、制御部132は、プロセスチャンバ101と容器201との間のゲートバルブG1を閉状態に制御することで、ゲートバルブG1を閉じる(S204)。
 このように、本実施形態では、制御部132が、ゲートバルブG1を開く前に、容器201内の圧力がプロセスチャンバ101内の圧力よりも高くなるように制御する。これにより、ゲートバルブG1が開かれた際にプロセスチャンバ101内のパーティクルや残留ガス等が容器201内に侵入することが抑制される。これにより、プロセスチャンバ101内で発生したパーティクルが、容器201を介して他のプロセスチャンバ101内に侵入することが抑制される。
 次に、基板Wの搬送先の装置と容器201との間のゲートバルブを開状態に制御することで、当該ゲートバルブを開く(S205)。ステップS205において、基板Wに対して、別なプロセスチャンバ101によって別なプロセスが実行される場合には、当該別なプロセスチャンバ101と容器201との間のゲートバルブG1が開かれる。また、基板WをキャリアCに収容する場合には、ロードロック室102と容器201との間のゲートバルブG2が開かれる。
 そして、制御部132は、別なプロセスチャンバ101内またはロードロック室102内に基板Wを搬入するように搬送装置202を制御する(S206)。そして、制御部132は、ゲートバルブを閉じる(S207)。
 次に、制御部132は、PCV111を制御して、容器201内の圧力Pが予め定められた第2の圧力P2となるように不活性ガスの供給量を制御する(S208)。そして、制御装置130は、本フローチャートに示される処理を終了する。
 以上、一実施形態について説明した。上記したように、本実施形態における真空搬送装置200は、プロセスチャンバ101とロードロック室102との間に配置され、プロセスチャンバ101とロードロック室102との間で基板Wを搬送する。真空搬送装置200は、容器201と、搬送装置202と、排気装置120と、露点計204と、制御装置130とを備える。容器201は、ゲートバルブ(G1、G2)を介してプロセスチャンバ101およびロードロック室102のそれぞれに接続されている。搬送装置202は、容器201内に設けられ、プロセスチャンバ101とロードロック室102との間で基板Wを搬送する。排気装置120は、容器201内のガスを排気する。露点計204は、容器201内のガスの露点温度を測定する。制御装置130は、露点計204によって測定された露点温度に基づいてプロセスの実行が可能な状態であるか否かを判定し、プロセスの実行が可能な状態になった場合に、その旨を真空搬送装置200のユーザに通知する。これにより、真空搬送装置200は、基板Wに付着する水分を低減することができる。
 また、上記した実施形態において、制御装置130は、判定部131および制御部132を有する。判定部131は、容器201内が大気解放され再び密閉された後に、容器201内のガスの露点温度Tdが予め定められた第1の温度Td1以下になったか否かを判定する。制御部132は、判定部131により露点温度Tdが第1の温度Td1以下になったと判定されることを条件の一つとして含む、予め定められた複数の条件が全て満たされた場合に、プロセスの実行が可能な状態になったことを真空搬送装置200のユーザに通知する。これにより、真空搬送装置200は、基板Wに付着する水分を低減することができる。
 また、上記した実施形態において、制御部132は、プロセスチャンバ101による基板Wへの処理が行われている間に、制御部132により露点温度Tdが予め定められた第2の温度Td2以上になったと判定された場合に、真空搬送装置200のユーザにエラーを通知する。これにより、真空搬送装置200は、容器201内の露点温度Tdが高い状態で容器201内を基板Wが通過することを防止することができる。
 また、上記した実施形態において、容器201には、容器201の内側の壁面を加熱するヒータ203が設けられている。また、制御部132は、容器201内が大気解放され再び密閉された後に、ヒータ203に電力を供給することにより容器201の内側の壁面を加熱させる。これにより、容器201の内側の壁面に付着した水の分子を迅速に離脱させることができ、容器201内の水分を迅速に低減することができる。
 また、上記した実施形態において、制御部132は、判定部131により容器201内のガスの露点温度Tdが第1の温度Td1以下になったと判定された場合に、ヒータ203への電力供給を停止することによりヒータ203による容器201の内側の壁面の加熱を停止させる。これにより、真空搬送装置200の消費電力を削減することができる。
 また、上記した実施形態における真空搬送装置200は、容器201内に不活性ガスを供給するガス供給装置110をさらに有する。これにより、シール部材等を介して容器201内に侵入した外気に含まれる水の分子の容器201の内面への付着が抑制される。
 また、上記した実施形態において、ガス供給装置110は、PCV111を有し、排気装置120は、TMP121およびDP122を有する。制御部132は、TMP121およびDP122を稼働させることにより容器201内のガスを排気させる。そして、制御部132は、容器201内の圧力Pが予め定められた第1の圧力P1以下になった場合に、TMP121を停止させ、DP122が稼働している状態で、容器201内の圧力が第1の圧力P1よりも高い第2の圧力P2となるようにPCV111を制御する。これにより、容器201内の水分を迅速に低減することができると共に、真空搬送装置200の消費電力を削減することができる。
 また、上記した実施形態において、制御部132は、プロセスチャンバ101と容器201との間のゲートバルブG1が開かれる前に、容器201内の圧力がプロセスチャンバ101の圧力よりも高くなるように、PCV111を制御する。これにより、プロセスチャンバ101と容器201との間のゲートバルブG1が開かれた際にプロセスチャンバ101内のパーティクルや残留ガス等が容器201内に侵入することが抑制される。
 また、本実施形態における真空搬送装置200の制御方法は、容器201内が大気解放され再び密閉された後に、容器201内に設けられた露点計204によって測定された容器201内のガスの露点温度Tdが予め定められた第1の温度Td1以下になったか否かを判定する工程と、露点温度Tdが第1の温度Td1以下になったと判定されることを条件の一つとして含む、予め定められた複数の条件が全て満たされた場合に、プロセスの実行が可能な状態になったことを前記真空搬送装置のユーザに通知する工程とを含む。これにより、真空搬送装置200は、基板Wに付着する水分を低減することができる。
[その他]
 なお、本願に開示された技術は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
 例えば、上記した実施形態では、容器201内に設けられた露点計204によって測定された露点温度Tdに基づいて、プロセスの実行が可能な状態であるか否かが判定されるが、開示の技術はこれに限られない。例えば、容器201内のガスに含まれる酸素の濃度を測定する酸素濃度計を容器201内に設け、容器201内のガスの露点温度Tdおよび酸素濃度に基づいて、プロセスの実行が可能な状態であるか否かが判定されてもよい。
 例えば、容器201内のガスの露点温度Tdが第1の温度Td1以下であり、かつ、容器201内のガスの酸素濃度が第1の濃度以下である場合に、プロセス開始のための複数の条件の一つが満たされたと判定されてもよい。また、プロセス実行中に、容器201内のガスの露点温度Tdが第2の温度Td2より高くなった場合、または、容器201内のガスの酸素濃度が第2の濃度より高くなった場合に、成膜システム100のユーザにエラーを通知してプロセスを中断してもよい。これにより、真空搬送装置200内に残留する酸素による基板Wの酸化も抑制される。
 また、上記した実施形態では、セットアップやメンテナンス等により真空搬送装置200の容器201が大気解放された後に密閉された場合の容器201内のガスの露点温度の管理を中心に説明したが、開示の技術はこれに限られない。例えば、基板Wに対するプロセスの実行中においても、容器201内の露点温度の管理が実行されてもよい。
 図5は、プロセス実行中における容器201内の露点温度の管理方法の一例を示すフローチャートである。例えば、プロセスが開始された場合に、制御装置130は、本フローチャートに示される処理を開始する。
 まず、制御装置130の判定部131は、露点計204から出力された露点温度Tdに基づいて、露点温度Tdが予め定められた第3の温度Td3以上になったか否かを判定する(S300)。第3の温度Td3は、例えば第2の温度Td2と同じか第2の温度Td2よりも高い温度である。露点温度Tdが第3の温度Td3より低い場合(S300:No)、再びステップS300に示された処理が実行される。
 一方、露点温度Tdが第3の温度Td3以上になった場合(S300:Yes)、判定部131は、露点温度Tdが第3の温度Td3以上になったことを制御部132に通知する。制御部132は、新たなロットに含まれる基板WのキャリアCからの取り出しを中断し、搬送中および処理中のロットに含まれる基板Wの処理が終了したか否かを判定する(S301)。処理中のロットに含まれる基板Wの処理が終了していない場合(S301:No)、引き続き処理中のロットに含まれる基板Wの処理が実行され、再びステップS300に示された処理が実行される。
 一方、処理中のロットに含まれる基板Wの処理が終了した場合(S301:Yes)、制御装置130は、再び図3で説明されたステップS100~S107の処理を実行する。これにより、容器201内のガスの露点温度Tdが再び第1の温度Td1以下になる。そして、制御装置130は、次のロットに含まれる基板WのキャリアCからの取り出しを再開し、基板Wに対するプロセスを再開する(S302)。そして、再びステップS300に示された処理が実行される。
 これにより、基板Wに対するプロセスが開始された後も、基板Wに付着する水分を低く保つことができる。なお、ステップS301では、ロット単位で処理の終了が判定されたが、基板W単位で処理の終了が判定されてもよい。即ち、ステップS300において露点温度Tdが第3の温度Td3以上になったと判定された場合、搬送中または処理中の基板Wと同じロットであってもキャリアC内から新たに基板Wを取り出すことが中断されてもよい。これにより、ロットの途中であっても、搬送中または処理中の基板Wの処理が終了し次第、容器201内のガスの露点温度Tdを第1の温度Td1以下に迅速に回復させることができる。
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
C キャリア
G1 ゲートバルブ
G2 ゲートバルブ
G3 ゲートバルブ
W 基板
100 成膜システム
101 プロセスチャンバ
102 ロードロック室
103 大気搬送室
104 アライメント室
105 ポート
106 搬送装置
110 ガス供給装置
111 PCV
112 ガス供給源
113 配管
120 排気装置
121 TMP
122 DP
123 バルブ
124 バルブ
125 バルブ
126 配管
127 配管
130 制御装置
131 判定部
132 制御部
200 真空搬送装置
201 容器
202 搬送装置
203 ヒータ
204 露点計

Claims (9)

  1.  プロセスチャンバとロードロック室との間に配置され、前記プロセスチャンバと前記ロードロック室との間で基板を搬送する真空搬送装置において、
     ゲートバルブを介して前記プロセスチャンバおよび前記ロードロック室のそれぞれに接続された容器と、
     前記容器内に設けられ、前記プロセスチャンバと前記ロードロック室との間で基板を搬送する搬送装置と、
     前記容器内のガスを排気する排気装置と、
     前記容器内のガスの露点温度を測定する露点計と、
     前記露点計によって測定された前記露点温度に基づいてプロセスの実行が可能な状態であるか否かを判定し、プロセスの実行が可能な状態になった場合に、その旨を真空搬送装置のユーザに通知する制御装置と
    を備える真空搬送装置。
  2.  前記制御装置は、
     前記容器内が大気解放され再び密閉された後に、前記露点温度が予め定められた第1の温度以下になったか否かを判定する判定部と、
     前記判定部により前記露点温度が前記第1の温度以下になったと判定されることを条件の一つとして含む、予め定められた複数の条件が全て満たされた場合に、プロセスの実行が可能な状態になったことを前記ユーザに通知する制御部と
    を有する請求項1に記載の真空搬送装置。
  3.  前記制御部は、
     前記プロセスチャンバによる前記基板への処理が行われている間に、前記判定部により前記露点温度が予め定められた第2の温度以上になったと判定された場合に、前記真空搬送装置のユーザにエラーを通知する請求項2に記載の真空搬送装置。
  4.  前記容器には、前記容器の内側の壁面を加熱するヒータが設けられており、
     前記制御部は、
     前記容器内が大気解放され再び密閉された後に、前記ヒータに電力を供給することにより前記壁面を加熱させる請求項2または3に記載の真空搬送装置。
  5.  前記制御部は、
     前記判定部により前記露点温度が前記第1の温度以下になったと判定された場合に、前記ヒータへの電力供給を停止することにより前記ヒータによる前記壁面の加熱を停止させる請求項4に記載の真空搬送装置。
  6.  前記容器内に不活性ガスを供給するガス供給装置をさらに有する請求項2から5のいずれか一項に記載の真空搬送装置。
  7.  前記ガス供給装置は、圧力制御バルブを有し、
     前記排気装置は、ターボ分子ポンプおよびドライポンプを有し、
     前記制御部は、
     前記ターボ分子ポンプおよび前記ドライポンプを稼働させることにより前記容器内のガスを排気させ、前記容器内の圧力が予め定められた第1の圧力以下になった場合に、前記ターボ分子ポンプを停止させ、前記ドライポンプが稼働している状態で、前記容器内の圧力が前記第1の圧力よりも高い第2の圧力となるように前記圧力制御バルブを制御する請求項6に記載の真空搬送装置。
  8.  前記制御部は、
     前記プロセスチャンバと前記容器との間のゲートバルブが開かれる前に、前記容器内の圧力が前記プロセスチャンバの圧力よりも高くなるように、圧力制御バルブを制御する請求項6または7に記載の真空搬送装置。
  9.  プロセスチャンバとロードロック室との間に配置された容器と、
     前記容器内に設けられ、前記プロセスチャンバと前記ロードロック室との間で基板を搬送する搬送装置と、
     前記容器内のガスを排気する排気装置と
    を備える真空搬送装置の制御方法において、
     前記容器内が大気解放され再び密閉された後に、前記容器内に設けられた露点計によって測定された前記容器内のガスの露点温度が予め定められた第1の温度以下になったか否かを判定する工程と、
     前記露点温度が前記第1の温度以下になったと判定されることを条件の一つとして含む、予め定められた複数の条件が全て満たされた場合に、プロセスの実行が可能な状態になったことを前記真空搬送装置のユーザに通知する工程と
    を含む真空搬送装置の制御方法。
PCT/JP2020/034506 2019-09-20 2020-09-11 真空搬送装置および真空搬送装置の制御方法 WO2021054260A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080062638.1A CN114365273A (zh) 2019-09-20 2020-09-11 真空搬送装置和真空搬送装置的控制方法
KR1020227012188A KR20220058635A (ko) 2019-09-20 2020-09-11 진공 반송 장치 및 진공 반송 장치의 제어 방법
US17/761,361 US20220288796A1 (en) 2019-09-20 2020-09-11 Vacuum transfer device and method for controlling vacuum transfer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-172276 2019-09-20
JP2019172276A JP7379042B2 (ja) 2019-09-20 2019-09-20 真空搬送装置および真空搬送装置の制御方法

Publications (1)

Publication Number Publication Date
WO2021054260A1 true WO2021054260A1 (ja) 2021-03-25

Family

ID=74883203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034506 WO2021054260A1 (ja) 2019-09-20 2020-09-11 真空搬送装置および真空搬送装置の制御方法

Country Status (5)

Country Link
US (1) US20220288796A1 (ja)
JP (2) JP7379042B2 (ja)
KR (1) KR20220058635A (ja)
CN (1) CN114365273A (ja)
WO (1) WO2021054260A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338967A (ja) * 2000-05-29 2001-12-07 Hitachi Kokusai Electric Inc 基板処理装置
JP2001345241A (ja) * 2000-05-31 2001-12-14 Tokyo Electron Ltd 基板処理システム及び基板処理方法
JP2010177357A (ja) * 2009-01-28 2010-08-12 Hitachi High-Technologies Corp 真空処理装置および真空処理方法
JP2011181771A (ja) * 2010-03-02 2011-09-15 Hitachi Kokusai Electric Inc 基板処理装置
JP2013115065A (ja) * 2011-11-25 2013-06-10 Hitachi High-Tech Control Systems Corp ミニエンバイロメント搬送装置
JP2019016798A (ja) * 2013-08-12 2019-01-31 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated ファクトリインターフェースの環境制御を伴う基板処理のシステム、装置、及び方法
JP2019161097A (ja) * 2018-03-15 2019-09-19 シンフォニアテクノロジー株式会社 Efemシステム及びefemシステムにおけるガス供給方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712101B2 (ja) * 2010-12-24 2015-05-07 東京エレクトロン株式会社 基板処理方法及び基板処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338967A (ja) * 2000-05-29 2001-12-07 Hitachi Kokusai Electric Inc 基板処理装置
JP2001345241A (ja) * 2000-05-31 2001-12-14 Tokyo Electron Ltd 基板処理システム及び基板処理方法
JP2010177357A (ja) * 2009-01-28 2010-08-12 Hitachi High-Technologies Corp 真空処理装置および真空処理方法
JP2011181771A (ja) * 2010-03-02 2011-09-15 Hitachi Kokusai Electric Inc 基板処理装置
JP2013115065A (ja) * 2011-11-25 2013-06-10 Hitachi High-Tech Control Systems Corp ミニエンバイロメント搬送装置
JP2019016798A (ja) * 2013-08-12 2019-01-31 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated ファクトリインターフェースの環境制御を伴う基板処理のシステム、装置、及び方法
JP2019161097A (ja) * 2018-03-15 2019-09-19 シンフォニアテクノロジー株式会社 Efemシステム及びefemシステムにおけるガス供給方法

Also Published As

Publication number Publication date
JP7379042B2 (ja) 2023-11-14
CN114365273A (zh) 2022-04-15
KR20220058635A (ko) 2022-05-09
JP2024008992A (ja) 2024-01-19
US20220288796A1 (en) 2022-09-15
JP2021052031A (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
KR101929857B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
JP3486821B2 (ja) 処理装置及び処理装置内の被処理体の搬送方法
US20040105738A1 (en) Substrate processing apparatus and method of processing substrate while controlling for contamination in substrate transfer module
TWI524388B (zh) A substrate processing apparatus, a manufacturing method of a semiconductor device, and a recording medium
JP2008251631A (ja) 真空処理装置、真空処理装置の運転方法及び記憶媒体
JP2008091761A (ja) 基板処理装置及び半導体装置の製造方法
JP2009065113A (ja) 基板処理装置
KR102281717B1 (ko) 진공 처리 장치 및 진공 처리 장치의 제어 방법
WO2021054260A1 (ja) 真空搬送装置および真空搬送装置の制御方法
JP5224567B2 (ja) 基板処理装置、基板処理方法および半導体装置の製造方法
JP2011114319A (ja) 気体置換装置および気体置換方法
KR102423578B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록매체
WO2012008439A1 (ja) 基板処理方法及び基板処理システム
JP2010177357A (ja) 真空処理装置および真空処理方法
JP5997542B2 (ja) 真空処理装置及び真空処理方法
KR102517603B1 (ko) 기판 반송 방법 및 기판 처리 장치
WO2021049368A1 (ja) 基板処理装置及び基板処理装置制御方法
WO2002052638A1 (fr) Procede de regulation de pression, dispositif de transfert, et outil en grappe
JP2011228397A (ja) 真空処理装置
KR20060057460A (ko) 반도체소자 제조용 증착설비
JPH11229141A (ja) 基板搬送方法
JP2010073706A (ja) 半導体装置の製造方法
JP2000357678A (ja) 半導体製造装置
JPH10163291A (ja) 半導体製造装置
WO2014041656A1 (ja) 真空処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227012188

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20865668

Country of ref document: EP

Kind code of ref document: A1