WO2021052389A1 - 制冰装置和具有制冰装置的冰箱 - Google Patents

制冰装置和具有制冰装置的冰箱 Download PDF

Info

Publication number
WO2021052389A1
WO2021052389A1 PCT/CN2020/115756 CN2020115756W WO2021052389A1 WO 2021052389 A1 WO2021052389 A1 WO 2021052389A1 CN 2020115756 W CN2020115756 W CN 2020115756W WO 2021052389 A1 WO2021052389 A1 WO 2021052389A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
ice making
tray
trays
liquid
Prior art date
Application number
PCT/CN2020/115756
Other languages
English (en)
French (fr)
Inventor
豊嶋昌志
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Aqua 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, Aqua 株式会社 filed Critical 青岛海尔电冰箱有限公司
Priority to CN202080065022.XA priority Critical patent/CN114424006B/zh
Priority to EP20866814.5A priority patent/EP4033182A4/en
Publication of WO2021052389A1 publication Critical patent/WO2021052389A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2305/00Special arrangements or features for working or handling ice
    • F25C2305/022Harvesting ice including rotating or tilting or pivoting of a mould or tray
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/04Ice guide, e.g. for guiding ice blocks to storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/06Multiple ice moulds or trays therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans

Definitions

  • the present invention relates to an ice making device that uses an ice making tray to make ice and a refrigerator having the ice making device.
  • Refrigerators having ice-making devices that use ice-making trays to make ice are widely used. It has been proposed to equip such a refrigerator with an ice making device that has a plurality of ice making trays and can make more ice (for example, refer to Patent Document 1).
  • an ice making device that has a plurality of ice making trays and can make more ice.
  • a plurality of ice making trays are arranged in the depth direction of the refrigerator to avoid an increase in the size of the ice making device in the width direction of the refrigerator.
  • Patent Document 1 JP 2003-279221 A
  • the plane area occupied by multiple ice making trays in the refrigerator is proportional to the number of ice making trays, so there is a problem that the storage rate of the refrigerator, that is, the space utilization rate decreases.
  • An object of the present invention is to provide an ice making device capable of supplying more ice while suppressing a decrease in the storage rate of the refrigerator, and a refrigerator having the ice making device.
  • the present invention provides an ice making device having a plurality of ice making trays arranged up and down and a rotating mechanism, the rotating mechanism can rotate the plurality of ice making trays and store liquid
  • the ice making position of the body and the de-icing position for detaching and falling the formed ice there is a cover on the upper part of the ice making tray located on the lower side, and the cover is used for guiding from the upper side of the ice making position.
  • the ice dropped from the ice making tray is caused to fall on the side of the ice making tray located on the lower side.
  • more ice can be supplied through multiple ice making trays.
  • the plurality of ice making trays are arranged up and down, in the case of arranging them in the refrigerator, compared with the case where the plurality of ice making trays are arranged laterally, the occupied area in a plan view can be reduced.
  • the cover Since there is a cover on the upper part of the ice tray on the lower side, the cover is used to guide the ice falling from the ice tray on the upper side to fall on the side of the ice tray on the lower side, so even if a plurality of ice trays are Arranged up and down, the ice from the upper ice making tray will not interfere with the ice making tray on the lower side, but can fall into a storage container arranged under the ice making device.
  • the present invention provides an ice maker capable of supplying more ice while suppressing a decrease in the storage rate of the refrigerator.
  • the ice making device further has a gas supply part and an air duct, the gas supply part supplies gas to the upper space of the at least one ice making tray, and the air duct is arranged in the ice making tray.
  • the side of the tray is connected between the upper space of the ice tray for supplying gas from the gas supply unit and the upper space of the other ice trays.
  • the air duct provided on the side of the ice making tray can also be used for other ice making
  • the tray is supplied with gas. In this way, it is possible to efficiently cool the liquid stored in the plurality of ice trays with a small amount of gas supply unit.
  • the ice-making tray has a plurality of ice-making areas separated by partition walls, and slits are provided at the partition walls, which make the liquid level in the ice-making area equal Over the preset height, it flows into the adjacent ice making area.
  • the ice making device of the present invention through the slit provided at the partition wall of the ice making tray, when liquid is supplied to at least one ice making area, it is possible to store the liquid in the ice making area while storing the liquid in the ice making area.
  • the liquid is supplied to other ice making areas.
  • the ice making device further has a liquid supply port for supplying liquid, the liquid supply port being provided at at least one of the ice making areas of the ice making tray located on the uppermost side, in addition to In addition to the ice making area where the liquid supply port is arranged, the lower part of at least one of the ice making areas of the ice making tray located on the upper side has a hole for dropping liquid.
  • the ice making device of the present invention since at least one ice making area of the ice making tray located on the uppermost side has a liquid supply port for supplying liquid, and in addition to the ice making area provided with the liquid supply port on the upper side
  • the lower part of at least one ice-making area of the ice-making tray has a hole for dropping liquid, so the liquid can be efficiently supplied to all ice-making areas of the upper and lower ice-making trays without using special power.
  • the present invention also provides a refrigerator with the ice making device.
  • the refrigerator can supply more ice while suppressing a decrease in the storage rate.
  • the beneficial effect of the present invention is that the ice making device of the present invention and the refrigerator having the ice making device can supply more ice while suppressing the decrease in the storage rate of the refrigerator.
  • Fig. 1 is a perspective view of an embodiment of the ice making device of the present invention.
  • Fig. 2 is a perspective view of the ice making device shown in Fig. 1 with a bearing part supporting a rotating shaft of the ice making tray removed.
  • Fig. 3 is a perspective view of the ice making device shown in Fig. 2 after further removing the cover for guiding the ice falling from the ice making tray on the upper side.
  • Fig. 4 is a perspective view of the ice making device shown in Fig. 3 after further removing the fan and the air duct provided on the side of the ice making tray.
  • Fig. 5 is a side view as viewed in the direction of arrow A-A in Fig. 2.
  • Fig. 6 is a perspective view of the ice tray on the upper side.
  • Fig. 7 is a perspective view of the ice tray on the lower side.
  • Fig. 8 is a side sectional view of a refrigerator having an ice making device.
  • Fig. 9 is a side sectional view of the refrigerator to show a modified embodiment of the ice making device.
  • FIG. 1 is a perspective view of an embodiment of the ice making device 2 of the present invention.
  • Fig. 2 is a perspective view of the ice making device 2 shown in Fig. 1 with the bearing part 24 supporting the rotating shafts of the ice trays 10A and 10B removed.
  • FIG. 3 is a perspective view after the cover 30 is further removed from the ice making device 2 shown in FIG. 2, where the cover 30 is used to guide the ice falling from the ice tray 10A on the upper side.
  • Fig. 4 is a perspective view of the ice making device 2 shown in Fig. 3 with the fan 40 and the air duct 50 provided on the side of the ice trays 10A and 10B removed.
  • Fig. 5 is a side view taken along the arrow A-A in Fig. 2.
  • FIG. 6 is a perspective view of the ice tray 10A located on the upper side.
  • Fig. 7 is a perspective view of the ice tray 10B located on the lower side.
  • the ice making device 2 has two ice making trays 10A and 10B arranged one above the other.
  • the ice trays 10A and 10B are formed of a resin material having elasticity.
  • the ice making trays 10A and 10B have a plurality of ice making areas 11 partitioned by partition walls 12. By freezing liquid such as drinking water stored in the ice making area 11, a plurality of ices having an outer shape corresponding to the shape of the inner surface of the ice making area 11 can be manufactured.
  • the present invention is not limited to this, and there may be three or more ice making trays arranged one above the other.
  • the ice making trays 10A, 10B are provided in positions that substantially completely overlap in the up-down direction, but the present invention is not limited to this. It is also possible that a plurality of ice making trays are slightly displaced in the lateral direction in a plan view. For the purpose of suppressing an increase in the occupied area in a plan view, it is preferable that 70% or more of the ice trays arranged vertically overlap each other, and it is more preferable that more than 80% of the ice trays arranged vertically overlap each other.
  • a liquid supply port 60 for supplying liquid to the ice tray 10A is provided above the ice tray 10A located on the upper side.
  • the liquid stored in a container installed in the refrigerator may be supplied from the liquid supply port 60 to the ice tray 10A, or the liquid supply port 60 may be directly connected to a water pipe or the like.
  • the flow of the liquid supplied from the liquid supply port 60 to the upper ice tray 10 in the ice trays 10A and 10B will be described in detail later with reference to FIGS. 6 and 7, and a brief description will be given as follows.
  • the ice tray 10A located on the upper side, there is a fan 40 for supplying gas to the upper space of the ice tray 10A.
  • the cooled air passing through the evaporator of the refrigerator enters the ice making device 2 through the fan 40 and is supplied to the upper space of the ice making tray 10A.
  • the ice making device 2 has an air duct 50 which is provided on the sides of the ice trays 10A and 10B and connected between the upper space of the upper ice tray 10A and the upper space of the lower ice tray 10B.
  • the cold air that has passed through the evaporator of the refrigerator is supplied by the fan 40, and the cold air flows through the upper space of the upper ice tray 10A and the upper space of the lower ice tray 10B.
  • the liquid stored in the ice trays 10A, 10B is frozen and forms ice.
  • the flow of this gas will be described in detail later with reference to FIG. 5.
  • the ice making device 2 further includes a rotating mechanism 20 for rotating the two ice making trays 10A, 10B, and a bearing 24.
  • a rotating mechanism 20 for rotating the two ice making trays 10A, 10B, and a bearing 24.
  • a drive shaft portion 15 and a non-drive shaft portion 16 are provided at both ends of the ice trays 10A and 10B.
  • the drive shaft portions 15 of the ice trays 10A, 10B are respectively mounted on the upper and lower holding portions 22A, 22B of the rotating mechanism 20.
  • the holding parts 22A and 22B are rotated by a motor included in the rotation mechanism 20.
  • the non-driving shaft portions 16 of the ice trays 10A and 10B are inserted into the upper hole and the lower hole of the bearing portion 24, respectively.
  • the ice trays 10A and 10B are rotated around the rotation axes Xa and Xb by the driving force of the rotation mechanism 20, respectively.
  • the upper surface 18 of the ice making trays 10A, 10B faces the upper side and can store liquid.
  • the upper surface 18 of the ice making trays 10A, 10B is in a horizontal position, but the upper surface 18 is also in a slightly inclined position. of.
  • the upper surface 18 needs to become downward, but it does not have to reach a horizontal position, and may be a downwardly inclined position.
  • the driving force of the rotating mechanism 20 causes the ice trays 10A, 10B to rotate from the upper surface 18 toward the upper ice-making position, thereby turning the upper surface 18 toward the lower side, and is provided on the non-driving ice trays 10A, 10B
  • the convex portion 17 at the end on the side of the shaft portion 16 abuts against a stopper portion provided at the bearing portion 24.
  • the side of the non-driving shaft portion 16 that becomes the ice tray 10A, 10B basically stops rotating, and the side of the driving shaft portion 15 continues to rotate.
  • the ice making trays 10A, 10B made of elastic material are twisted, and the ice is separated from each ice making area 11 and falls due to gravity. Therefore, the stop position in the twisted state with the upper surfaces 18 of the ice trays 10A and 10B facing downward is the ice removal position.
  • the rotating mechanism 20 has a motor, and the two ice making trays 10A, 10B are simultaneously rotated by a gear transmission mechanism.
  • the present invention is not limited to this, and the two ice making trays 10A, 10B may be rotated separately.
  • any known de-icing mechanism can be used. The travel mode of ice falling from the ice making trays 10A, 10B will be described in detail later with reference to FIG. 5.
  • the ice trays 10A and 10B are provided with two rows of 5 ice-making areas 11 separated by partition walls 12, a total of 10 ice-making areas 11.
  • the setting of the ice making area 11 is not limited to this.
  • a slit 13 is provided in the partition wall 12. The slit 13 is provided from a position of a predetermined height h from the bottom surface of the ice making zone 11 to the upper end of the partition wall 12. Therefore, as soon as the liquid level of the liquid in the ice making area 11 exceeds the predetermined height h, it flows into the adjacent ice making area 11. In this way, if the liquid is supplied to one ice making area 11 of the ice making trays 10A, 10B, the liquid can be stored in each ice making area 11 to the height h.
  • the liquid supply port 60 is provided above one of the two ice making areas 11 at the end of the upper ice making tray 10A on the side of the non-driving shaft portion 16. Between two ice making areas 11 in adjacent rows at the end on the side of the non-drive shaft portion 16, and two ice making areas 11 in adjacent rows on the end on the side of the drive shaft portion 15 There are slits 13 between the ice regions 11. In addition, slits 13 are provided between the ice making areas 11 adjacent in the row direction. Further, a hole 14 for dropping liquid is provided in the lower part of one of the two ice-making areas 11 located at the end of the drive shaft 15 side.
  • the liquid supplied from the liquid supply port 60 to one ice making area 11 at the end on the side of the non-driving shaft portion 16 is divided as shown by the dotted arrow in FIG. 6
  • the liquid having the liquid level h is stored in all ice making areas 11 of the upper ice making tray 10A except for the ice making area 11 having the hole 14.
  • a slit 13 is provided between the two ice making areas 11 in adjacent rows.
  • slits 13 are provided between the ice making areas 11 adjacent in the row direction, and the ice making area 11 with holes 14 is not opened in the lower ice making tray 10B.
  • the liquid flowing from the upper ice making tray 10A and falling to one ice making zone 11 at the end on the side of the drive shaft 15 is divided into two as shown by the dotted arrow in FIG. 7 Groups and rows flow from the drive shaft 15 side to the non-drive shaft 16 side.
  • the liquid having the liquid level h is stored in all the ice making areas 11 of the lower ice making tray 10B.
  • the liquid can be divided into two groups, one in each row. Set of smooth liquid flow.
  • the arrangement of the slits 13 in the ice making trays 10A and 10B is only an example, and any other arrangement of the slits 13 can also be adopted according to the arrangement of the ice making area 11.
  • one hole 14 is provided at the upper ice making tray 10A in this embodiment, the present invention is not limited to this. It is also possible to provide holes for liquid drop at the lower part of the ice making areas 11 of the ice making tray 10A. 14.
  • the liquid supply port 60 may be provided to supply liquid to one ice making area 11 of the ice making tray 10 located on the uppermost side.
  • the liquid is supplied from the liquid supply port 60 to one ice making area 11, and the liquid may be supplied to a plurality of ice making areas 11 from the liquid supply port 60.
  • liquid in the case where liquid is supplied to at least one ice making area 11 through the slit 13 provided at the partition wall 12 of the ice making trays 10A, 10B, the liquid can be stored in the ice making area 11 At the same time, liquid can also be supplied to other ice making areas 11.
  • liquid supply port 60 for supplying liquid to at least one ice making area 11 of the ice making tray 10A located on the uppermost side, and in addition to the ice making area 11 provided with the liquid supply port 60, there are The lower part of at least one ice-making area 11 of the upper ice-making tray 10A has a hole 14 for dropping liquid, so the liquid can be efficiently supplied to all ice-making areas of the upper and lower ice-making trays 10A, 10B without using special power. 11.
  • FIG. 5 The flow of gas in the ice making device 2 will be described with reference to FIG. 5.
  • a dotted arrow is used to indicate the flow of gas.
  • the upper space of the upper ice tray 10A is closed by the wall part 34 (refer FIG. 1, FIG. 2) at the end part of the right side in the figure. Therefore, the gas that has passed through the evaporator of the refrigerator and is cooled and discharged downward by the fan 40 flows from the right to the left in the figure in the lower part of the fan 40 and the upper space of the upper ice tray 10A.
  • the liquid stored in each ice making zone 11 of the ice making tray 10A is cooled by the flow of the gas discharged downward.
  • the gas flowing in the lower part of the fan 40 and in the upper space of the ice making tray 10A flows into the air duct 50, which is provided on the sides of the ice making trays 10A and 10B and connected to the upper side of the ice making tray 10A.
  • the air duct 50 is formed with a flow path having a curved surface or an inclined surface, so that the gas flows smoothly with a small pressure loss.
  • the gas flows from top to bottom in the air duct 50, and flows into the upper space of the lower ice tray 10B.
  • gas flows from the left side to the right side of the figure in the upper space of the lower ice tray 10B.
  • This flow cools the liquid stored in each ice making zone 11 of the ice making tray 10B.
  • the gas flowing in the upper space of the ice making tray 10B flows out to the outside of the ice making device 2 from the opening 32 (refer to FIGS. 1 and 2) provided in the cover 30.
  • the gas flowing out of the ice maker 2 flows inside the refrigerator, and passes through the evaporator of the refrigerator again to be cooled.
  • the fan 40 is provided above the upper ice tray 10A, but the present invention is not limited to this.
  • the fan 40 may be provided on the side of the lower ice making tray 10B, and the air may flow from the side of the lower ice making tray 10B to the side of the upper ice making tray 10A via the air duct 50.
  • the fan 40 may be arranged at the position of one of the ice making trays 10, or the fan 40 may also be arranged at a plurality of ice making trays with different heights. The position of the disk 10.
  • the ice making device 2 has a fan 40 and an air duct 50.
  • the fan 40 is used to supply air to the upper space of at least one ice making tray 10A.
  • the air duct 50 is provided on the side of the ice making trays 10A, 10B and connected Between the upper space of the upper ice tray 10A and the upper space of the lower ice tray 10B.
  • the fan 40 may also be referred to as a gas supply unit. In this way, if air is supplied from the fan 40 to at least one ice making tray 10A, the air can be also supplied to the other ice making trays 10B through the air duct 50 provided on the side of the ice making trays 10A and 10B. In this way, a small amount of fans 40 can be used to efficiently cool the liquid stored in the ice trays 10A and 10B.
  • FIG. 9 shows a side cross-sectional view of the refrigerator for explaining a modified example of the ice making device 2.
  • the cold air discharge port for example, the opening 112
  • the suction port 42 for introducing cold air into the ice making device 2
  • the ice making device 2 is disposed near the opening 112, and the opening 112 is used to send the cold air passing through the evaporator 126 of the refrigerator 100 to the freezing compartment 110.
  • a suction port is provided on the side or above the upper space of the ice tray 10A, gas can be sucked into the upper space of one ice tray 10A.
  • a suction port 42 serving as a gas supply unit is provided on the side of the upper space of the ice tray 10A. In this way, the cold air that has passed through the evaporator 126 can be directly sucked into the upper space of the ice tray 10A.
  • the suction port 42 is provided on the side of the upper space of the ice tray 10A, considering the flow of gas, it is preferable to provide the suction port at a position opposite to the side where the air duct 50 is provided.
  • the ice making device 2 has gas supply parts 40, 42 and an air duct 50, and the gas supply parts 40, 42 are used to supply gas to at least one system.
  • the air duct 50 is provided on the sides of the ice trays 10A and 10B, and is connected between the upper space of the upper ice tray 10A and the upper space of the lower ice tray 10B".
  • a cover 30 is provided on the upper part of the ice making tray 10B located on the lower side, which is used to guide the ice falling from the ice making tray 10A located on the upper side so that it is located at The side of the ice tray 10B on the lower side drops.
  • the cover 30 in this embodiment has a curved surface. In this way, the ice falling from the upper ice making tray 10A moves along the curved surface, and falls from the side of the ice making device 2 into the storage container 70 provided below the ice making device 2. In this way, the ice dropped from the upper ice tray 10A can be smoothly stored in the storage container 70 while avoiding damage to the ice and the machine.
  • the cover 30 does not necessarily have to have a curved surface, as long as it can change the traveling direction of the falling ice to an obliquely downward direction to drop it on the side of the ice making tray 10B located on the lower side, it may have any other shape .
  • the traveling direction of the fallen ice can also be changed to an obliquely downward direction.
  • the cover 30 has a shape having both a curved surface and an inclined surface.
  • the cover 30 is provided with a plurality of slit-shaped openings 32 for allowing the gas supplied by the fan 40 to pass therethrough.
  • the ice making tray 10B since there is a cover 30 on the upper part of the ice making tray 10B located on the lower side, it is used to guide the ice falling from the ice making tray 10A located on the upper side so that it is on the lower side of the ice making tray 10B. Since the ice is dropped from the side, the ice of the ice trays 10A and 10B installed up and down can be accurately stored in the storage container 70. In this way, it is possible to realize the ice making device 2 in which the ice making trays 10A, 10B are arranged up and down, and it is possible to provide the ice making device 2 capable of supplying more ice while suppressing the decrease in the storage rate of the refrigerator.
  • FIG. 8 is a side cross-sectional view illustrating an example of the refrigerator 100 having the ice making device 2.
  • FIG. 8 an example of the refrigerator 100 having the ice making device 2 according to the above-mentioned embodiment will be explained with reference to FIG. 8.
  • the ice making device 2 and the liquid supply device 130 are drawn larger than the refrigerator.
  • the ice maker 2 is provided on the rear side of the freezer compartment 110 of the refrigerator 100, and the ice storage container 70 is provided below it.
  • the refrigerator 100 has a liquid supply device 130 for supplying liquid to the ice making trays 10A and 10B of the ice making device 2.
  • the liquid stored in the water tank 132 is supplied to the pipe 136 side by the discharge force of the pump 134. Then, the liquid flowing down through the pipe 136 is supplied from the liquid supply port 60 to the upper ice tray 10A of the ice maker 2.
  • the refrigerator 100 has a cooling mechanism 120, which mainly forms a cooling cycle through a compressor 122, a condenser 124, and an evaporator 126, so as to supply cold air into the refrigerator.
  • the gas circulating in the refrigerator 100 is cooled while passing through the evaporator 126.
  • the gas cooled by the heat exchange in the evaporator 126 is blown into the freezing compartment 110 through the opening 112 through the refrigerator fan 128.
  • a part of the air blown into the freezing compartment 110 is sucked into the ice making device 2 by the fan 40 of the ice making device 2, and is supplied to the upper space of the upper ice making tray 10A.
  • the gas sucked into the ice making device 2 flows from the upper space of the upper ice making tray 10A to the upper space of the lower ice making tray 10B by means of an air duct, and flows out of the opening provided in the lid to the outside of the ice making device 2 .
  • the outflowing gas flows to the side of the cooling mechanism 120 via the opening 114, and is cooled when it passes through the evaporator 126 again.
  • the cooled gas is continuously supplied to the ice making device 2 and the liquid in the ice making trays 10A, 10B is frozen to make ice.
  • the ice maker 2 may have a gas suction port 42 instead of the fan 40. In this case, the cold air blown into the freezer compartment 110 through the opening 112 is directly sucked into the ice making device 2 from the gas suction port 42 to be supplied to the upper space of the upper ice making tray 10A.
  • the ice making device 2 is provided inside the freezer compartment 110, but the present invention is not limited to this. Since the plurality of ice making trays 10A, 10B are arranged up and down, the ice making device 2 can be arranged in the door of the refrigerator 100 relatively easily. However, in this case, there may be a risk that the water in the ice tray will fly away due to the opening and closing of the door.
  • guide rods 19 may be installed so as to abut on the ice making trays 10A, 10B along the column of the ice making area 11 (that is, along the longer direction). The protrusions on both sides of the surface.
  • the guide rod 19 extends upward from the upper surface 18 of the ice tray 10A, 10B. In this way, the water splashed by the opening and closing of the door hits the guide rod 19 and returns to the ice making area 11 of the ice trays 10A and 10B along the inner surface of the guide rod 19. With this guide rod 19, even if the door is opened and closed, the liquid in the ice trays 10A, 10B can be prevented from spilling outward.
  • the protrusions of the ice trays 10A, 10B and the guide rod 19 are formed of a flexible resin material, it is also possible to adequately adapt to the stress when the ice trays 10A, 10B are twisted for ice removal and the vibration when the refrigerator door is opened and closed.
  • the ice making trays 10A, 10A and 10B are provided on both sides along the longer direction of the ice making trays 10A and 10B.
  • the guide rod 19 extending upward on the upper surface 18 of 10B can effectively prevent the liquid in the ice trays 10A and 10B from splashing with the opening and closing of the door.
  • each ice making area 11 of the ice making trays 10A and 10B is used to make a plurality of ices, but an ice crusher may be provided under the ice making device 2 for crushing ice making devices 2 Manufacture of ice.
  • the liquid stored in the water tank 132 of the liquid supply device 130 is supplied to the ice making device 2, but the ice making device 2 may be connected to a water supply pipe and directly supply liquid to the ice making device 2 from the water supply pipe.
  • a separate ice making device 2 independent of the refrigerator can also be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种能在抑制冰箱收纳率降低的同时供给更多的冰的制冰装置以及具有该制冰装置的冰箱。制冰装置(2)具有上下设置的多个制冰盘(10A、10B)以及旋转机构,旋转机构能使多个制冰盘(10A、10B)旋转,并且在能存积液体的制冰位置以及使已形成的冰脱离并落下的脱冰位置之间旋转,在位于下侧的制冰盘(10B)的上部具有盖子(30),盖子(30)用于引导从位于上侧的制冰盘(10A)落下的冰以使其在位于下侧的制冰盘(10B)的侧方落下。

Description

制冰装置和具有制冰装置的冰箱 技术领域
本发明涉及使用制冰盘来制冰的制冰装置以及具有该制冰装置的冰箱。
背景技术
具有使用制冰盘来制冰的制冰装置的冰箱正广泛使用。提出了在这样的冰箱中配备如下的制冰装置:其具有多个制冰盘并且可以制造更多的冰(例如,参照专利文献1)。在专利文献1记载的冰箱中,在冰箱的深度方向上布置有多个制冰盘,以避免制冰装置在冰箱的宽度方向上的尺寸增加。
(在先技术文献)
(专利文献)
专利文献1:JP特开2003-279221号公报
与具有一个制冰盘的情况相比,多个制冰盘在冰箱内占有的平面面积与制冰盘的数量成正比例,于是存在冰箱的收纳率、也即空间使用率降低的问题。
有鉴于此,有必要对现有的制冰装置和冰箱予以改进,以解决上述问题。
发明内容
本发明的目的在于提供一种能够在抑制冰箱的收纳率降低的同时可供给更多冰的制冰装置以及具有该制冰装置的冰箱。
为实现上述目的,本发明提供了一种制冰装置,其具有上下布置的多个制冰盘以及旋转机构,所述旋转机构能使多个所述制冰盘旋转、并且在能存积液体的制冰位置以及使已形成的冰脱离并落下的脱冰位置之间旋转,在位于下侧的所述制冰盘的上部具有盖子,所述盖子用于引导从位于上侧的所述制冰盘落下的冰以使其在位于下侧的所述制冰盘的侧方落下。
根据本发明,通过多个制冰盘,可以供给更多的冰。此外,由于多个制冰盘上下布置,因此在将其布置在冰箱中的情况下,与多个制冰盘横向布置的情况相比,可以减小在平面图中的占有面积。由于在下侧的制冰盘的上部具有盖子,所述盖子用于引导从上侧的制冰盘落下的冰以使其在下侧的制冰盘的侧方落下,因此即使多个制冰盘是上下布置的,来自上侧制冰盘的冰也不会干涉到下侧的制冰盘,而是可以落入设置在制冰装置下方的收纳容器中。
如此,在本发明提供一种能够在抑制冰箱的收纳率降低的同时供给更多的冰的制冰装置。
作为本发明的进一步改进,所述制冰装置还具有气体供给部和风道,所述气体供给部向至少一个所述制冰盘的上部空间供给气体,所述风道被设置在所述制冰盘的侧方、且连接在用于从所述气体供给部供给气体的所述制冰盘的上部空间与其他的所述制冰盘的上部空间之间。
根据本发明的制冰装置,在从由风扇或气体吸入口构成的气体供给部向至少一个制冰盘供给气体时,通过设置在制冰盘侧方的风道,可以也向其他的制冰盘供给气体。这样,可以以少量的气体供给部有效率地冷却存积在多个制冰盘中的液体。
作为本发明的进一步改进,所述制冰盘具有由间隔壁隔开的多个制冰区,在所述间隔壁处设有狭缝,其使得所述制冰区内的液体的液面一越过预设高度就流入到相邻的所述制冰区中。
根据本发明的制冰装置,通过设在制冰盘的间隔壁处的狭缝,在向至少一个制冰区供给液体的情况下,可以一边使液体存积在制冰区中,一边还将液体供给至其他制冰区。
作为本发明的进一步改进,所述制冰装置还具有用以供给液体的液体供给口,所述液体供给口设置在位于最上侧的所述制冰盘的至少一个所述制冰区处,除了布置有所述液体供给口的所述制冰区之外,在位于上侧的所述制冰盘的至少一个所述制冰区的下部具有使液体落下的孔。
根据本发明的制冰装置,由于在位于最上侧的制冰盘的至少一个制冰区处具有供给液体的液体供给口,并且除了设置有液体供给口的制冰区之外在位于上侧的制冰盘的至少一个制冰区的下部具有使液体落下的孔,因此可以在不使用特别的动力的情况下将液体有效率地供给至上下制冰盘的所有制冰区中。
为实现上述目的,本发明还提供了一种具有所述制冰装置的冰箱。
如此,所述冰箱能在抑制收纳率降低的同时可供给更多的冰。
本发明的有益效果是:本发明的制冰装置以及具有该制冰装置的冰箱能在抑制冰箱的收纳率降低的同时可供给更多的冰。
附图说明
图1是本发明制冰装置的一个实施例的立体图。
图2是图1所示制冰装置将支撑制冰盘的旋转轴的轴承部拆除后的立体图。
图3是图2所示制冰装置进一步将用于引导从上侧的制冰盘落下的冰的盖子拆除后的立体图。
图4是图3所示制冰装置进一步拆除风扇和设置设置在制冰盘侧方的风道后的立体图。
图5是沿图2中箭头A-A的方向看去的侧视图。
图6是位于上侧的制冰盘的立体图。
图7是位于下侧的制冰盘的立体图。
图8是具有制冰装置的冰箱的侧视截面图。
图9是冰箱的侧视截面图,以展示制冰装置的一个变型实施例。
元件符号说明
2制冰装置
10、10A、10B制冰盘
11制冰区
12间隔壁
13狭缝
14孔
15驱动轴部
16非驱动轴部
17凸部
18上表面
19引导杆
20旋转机构
22A、22B保持部
24轴承部
30盖子
34壁部
40风扇
42吸入口
50风道
60液体供给口
70收纳容器
100冰箱
110冷冻室
112开口
114开口
120冷却机构
122压缩器
124冷凝器
126蒸发器
128冰箱风扇
130液体供给装置
132水槽
134泵
136配管
Xa、Xb旋转轴
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
以下,基于附图来详细说明本发明的实施例。另外,接下来说明的装置是用于具体化本发明的技术思想的装置,除非有特别指出的记载,否则本发明不限于以下内容。为了使说明清楚,可能存在夸张地示出了各图中元件的大小或位置关系等的情况。在说明书和附图中,上下方向是在假定设置在地面上的冰箱的情况下示出的。
(制冰装置的一个实施例)
图1是本发明制冰装置2的一个实施例的立体图。图2是从图1所示的制冰装置2拆下了支撑制冰盘10A、10B的旋转轴的轴承部24后的立体图。图3是从图2所示的制冰装置2进一步拆下盖子30后的立体图,其中盖子30用于引导从上侧的制冰盘10A落下的冰。图4是从图3所示的制冰装置2进一步拆下风扇40和设置在制冰盘10A、10B侧方的风道50 后的立体图。图5是沿图2中箭头A-A看去的侧视图。图6是位于上侧的制冰盘10A的立体图。图7是位于下侧的制冰盘10B的立体图。
在此,以将制冰装置2设置在冰箱中的情况为例进行说明。制冰装置2具有上下设置的两个制冰盘10A、10B。制冰盘10A、10B由具有弹性的树脂材料形成。制冰盘10A、10B具有由间隔壁12隔开的多个制冰区11。通过冻结存积在制冰区11中的诸如饮用水之类的液体,可以制造具有与制冰区11的内表面的形状相对应的外形的多个冰。
在本发明所展示的实施例中具有两个制冰盘10A、10B,但是本发明不限于此,可以有具有上下设置的三个以上的制冰盘的情况。另外,在本实施例中,制冰盘10A、10B被设置成在上下方向上基本上完全重叠的位置,但本发明不限于此。多个制冰盘在平面图中在横向方向上稍微错位地设置的情况也是可以的。从抑制平面图中的占有面积的增加的目的出发,优选为上下设置的制冰盘的70%以上彼此重叠,更优选为上下设置的制冰盘的80%以上彼此重叠。
如图4所示,用于将液体供给至制冰盘10A的液体供给口60设置在位于上侧的制冰盘10A的上方。在这种情况下,例如,也可以将储存在设置在冰箱中的容器内的液体从液体供给口60供给至制冰盘10A,或者液体供给口60直接与水管等连结的情况也是可以的。稍后参照图6和图7详细地说明关于从液体供给口60供给至上侧制冰盘10的液体在制冰盘10A、10B中的流动,简单说明如下。
从液体供给口60供给至上侧制冰盘10A的一个制冰区11的液体一边使液体储存在制冰区11中,一边借助于狭缝13流到依次邻接的制冰区11。进一步地,液体从设在上侧制冰盘10A的一个制冰区11中的孔14向下流到下侧制冰盘10B。然后,在下侧的制冰盘10B中也是一边使液体储存在制冰区11中,一边借助于狭缝13流到依次邻接的制冰区11。这样,液体就储存在制冰盘10A、10B的各个制冰区11中。
在位于上侧的制冰盘10A的上方具有风扇40,其用于向制冰盘10A上部空间供给气体。在本实施例中,经过冰箱的蒸发器的被冷却的气体通过风扇40进入到制冰装置2中,并供给至制冰盘10A的上部空间。制冰装置2具有风道50,其设置在制冰盘10A、10B的侧方,并且连接在上侧制冰盘10A的上部空间与下侧制冰盘10B的上部空间之间。通过这样的构造,通过风扇40供给经过了冰箱的蒸发器的冷气,并且所述冷气流过上侧制冰盘10A的上部空间和下侧制冰盘10B的上部空间。这样,存积在制冰盘10A、10B中的液体被冻结并形成冰。稍后参照图5详细地描述该气体的流动。
所述制冰装置2还具有用于使两个制冰盘10A、10B旋转的旋转机构20以及轴承部24。在制冰盘10A、10B的两端具有驱动轴部15和非驱动轴部16。所述制冰盘10A、10B的驱动轴部15分别安装到旋转机构20上、下部的保持部22A、22B。通过旋转机构20中具有的电动机来使保持部22A、22B旋转。制冰盘10A、10B的非驱动轴部16分别插入到轴承部24的上孔和下孔。
通过这样的构造,通过旋转机构20的驱动力使制冰盘10A、10B分别以旋转轴Xa和Xb为中心旋转。在制冰盘10A、10B的旋转位置,存在制冰位置,且在该位置处,制冰盘10A、10B的上表面18朝向上侧,并且能存积液体。考虑到制冰盘10A、10B的制冰区11中的液体存积效率,优选为制冰盘10A、10B的上表面18是水平的位置,但是上表面18处于稍微倾斜的位置的情况也是可以的。进一步地,在制冰盘10A、10B的旋转位置,存在脱冰位置,在该位置处,在制冰区11中形成的冰脱离并落下。在脱冰位置处,为了使冰落下,上表面18需要变得朝向下,但是其不必到达水平位置,可以是向下倾斜的位置。
通过旋转机构20的驱动力使制冰盘10A、10B从上表面18朝向上侧的制冰位置旋转,进而使得上表面18变为朝向下侧,并且设在制冰盘10A、10B的非驱动轴部16一侧的端部处的凸部17与设在轴承部24处的止挡部抵接。当在抵接之后继续驱动旋转机构20时,变成制冰盘10A、10B的非驱动轴部16一侧基本上停止旋转,而驱动轴部15一侧继续旋转。如此,造成了由弹性材料制成的制冰盘10A、10B被扭转,于是冰从各制冰区11脱离并且由于重力而落下。因此,制冰盘10A、10B的上表面18朝向下侧的同时扭转状态的停止位置即为脱冰位置。
在本实施例中,所述旋转机构20具有一个电动机,并且两个制冰盘10A、10B通过齿轮传动机构而同时旋转。然而,本发明不限于此,两个制冰盘10A、10B也可以分别旋转。关于使制冰盘10A、10B旋转并使其扭转以便脱冰的机构,可以使用任何已知的脱冰机构。稍后参照图5详细地描述关于从制冰盘10A、10B落下冰的行进方式。
(流入制冰盘10A、10B中的液体)
如图6和图7所示,在制冰盘10A、10B中,设有分别由间隔壁12隔开的2列×5个、共计10个制冰区11。然而,制冰区11的设置不限于此。在间隔壁12中设有狭缝13。狭缝13设在从距制冰区11的底表面的规定高度h的位置到间隔壁12的上端。因此,制冰区11中的液体的液面一越过规定高度h就流入相邻的制冰区11。这样,如果将液体供给至制冰盘10A、10B的一个制冰区11,就可以将液体储存到各个制冰区11中、到高度h为止。
<上侧制冰盘10A>
液体供给口60设置在位于上侧制冰盘10A的非驱动轴部16一侧的端部的两个制冰区11中的一个制冰区11的上方。在位于非驱动轴部16一侧的端部的相邻的列中的两个制冰区11之间、以及在位于驱动轴部15一侧的端部的相邻的列中的两个制冰区11之间设有狭缝13。此外,在沿列的方向邻接的制冰区11之间设有狭缝13。进一步地,在位于驱动轴部15一侧的端部的两个制冰区11中的一个制冰区11的下部设有使液体落下的孔14。
通过如上面这样的狭缝13和孔14的设置,从液体供给口60供给至非驱动轴部16一侧的端部的一个制冰区11的液体如图6的虚线箭头所示的那样分成两组、每列一组地从非驱动轴部16一侧流到驱动轴部15一侧,并且从位于非驱动轴部16一侧的端部的一个制冰区11的孔14向下方流动落下。这样,具有液面高度h的液体存积在上侧制冰盘10A的除具有 孔14的制冰区11之外的所有制冰区11中。通过仅在两端部的制冰区11处在相邻的列的制冰区11之间设有狭缝,可以实现将液体分为两组、每列一组的顺畅的液体流动。
<下侧制冰盘10B>
对于下侧制冰盘10B,在位于非驱动轴部16一侧的端部的相邻的列中的两个制冰区11之间、以及在位于驱动轴部15一侧的端部的相邻的列中的两个制冰区11之间设有狭缝13。此外,在沿列的方向邻接的制冰区11之间设有狭缝13,且下侧制冰盘10B没有开设有孔14的制冰区11。
通过如上面这样的狭缝13的设置,从上侧制冰盘10A流动落到驱动轴部15一侧的端部的一个制冰区11的液体如图7的虚线箭头所示的那样分成两组、每列一组地从驱动轴部15一侧流到非驱动轴部16一侧。这样,具有液面高度h的液体存积在下侧制冰盘10B的所有制冰区11中。在下侧制冰盘10B中也是,通过仅在两端部的制冰区11处在相邻的列的制冰区11之间设有狭缝,可以实现将液体分为两组、每列一组的顺畅的液体流动。
然而,上述制冰盘10A、10B中的狭缝13的设置仅仅是一个示例,也可以根据制冰区11的设置而采用狭缝13的任何其他设置。虽然在本实施例中在上侧制冰盘10A处设有一个孔14,但是本发明不限于此,也可以在制冰盘10A的多个制冰区11的下部设有用于液体落下的孔14。
另外,在上下排布的三个以上的制冰盘10的情况下,也可以将液体供给口60设置成将液体供给至位于最上侧的制冰盘10的一个制冰区11。另外,不限于将液体从液体供给口60供给至一个制冰区11的情况,也可以将液体从液体供给口60供给至多个制冰区11。在这种情况下,优选为根据多个液体供给口60的位置来设置狭缝13,以使得来自各个液体供给口60的液体流动不会彼此干涉。
如上面那样,在通过设在制冰盘10A、10B的间隔壁12处的狭缝13将液体供给至至少一个制冰区11的情况下,可以在使液体存积在制冰区11中的同时,还可将液体供给至其他的制冰区11。
进一步地,由于具有用于将液体供给至位于最上侧的制冰盘10A的至少一个制冰区11的液体供给口60,并且除了设置有液体供给口60的制冰区11之外,在位于上侧的制冰盘10A的至少一个制冰区11的下部具有使液体落下的孔14,因此不用使用特别的动力即可将液体有效率地供给至上下制冰盘10A、10B的所有制冰区11。
(气体的流动)
参照图5来说明制冰装置2中的气体的流动。在图5中,用点划线箭头来示意气体的流动。上侧制冰盘10A的上部空间在图中右侧的端部用壁部34(参照图1、图2)封闭。因此,已经过冰箱的蒸发器而被冷却并通过风扇40向下排出的气体在风扇40的下部和上侧制冰盘10A的上部空间中从图的右侧向左侧流动。通过向下排出的气体的流动来冷却存积在制冰盘10A的各制冰区11中的液体。然后,在风扇40的下部和在制冰盘10A的上部空间中流动 的气体流入风道50,风道50设置在制冰盘10A、10B的侧方,并且连接在上侧制冰盘10A的上部空间和下侧制冰盘10B的上部空间之间。风道50形成有具有弯曲表面或倾斜表面的流路,从而使气体以较小的压力损失顺畅地流动。
然后,气体在风道50中从上向下流动,并流入下侧制冰盘10B的上部空间。另外,气体在下侧制冰盘10B的上部空间中从图的左侧向右侧流动。通过该流动来冷却存积在制冰盘10B的各制冰区11中的液体。然后,在制冰盘10B的上部空间中流动的气体从设在盖子30中的开口32(参照图1和图2)流出到制冰装置2的外部。流出到制冰装置2的外部的气体在冰箱内部流动,并再次经过冰箱的蒸发器而被冷却。
在本实施例中,风扇40设置在上侧制冰盘10A的上方,但是本发明不限于此。例如,风扇40也可设置在下侧制冰盘10B一侧,并且气体也可以借助于风道50从下侧制冰盘10B一侧流到上侧制冰盘10A一侧。此外,在上下排布的三个以上的制冰盘10的情况下,风扇40可以设置在其中的一个制冰盘10的位置处,或者风扇40也可以设置在具有不同高度的多个制冰盘10的位置处。
如上面那样,制冰装置2具有风扇40和风道50,风扇40用于将气体供给至至少一个制冰盘10A的上部空间,风道50设置在制冰盘10A、10B的侧方,并且连接在上侧制冰盘10A的上部空间和下侧制冰盘10B的上部空间之间。风扇40也可以称为气体供给部。这样,如果将气体从风扇40供给至至少一个制冰盘10A,则可以通过设置在制冰盘10A、10B的侧方的风道50来将气体也供给至其他制冰盘10B。这样,可以用少量的风扇40来有效率地冷却存积在制冰盘10A、10B中的液体。
<变型例>
在上述实施例中,制冰装置2具有供给气体的风扇40,但是本发明不限于此。图9展示了冰箱的侧视截面图,用于说明制冰装置2的变型例。如图9所示,在冷气排出口(例如,开口112)在制冰装置2的周围的情况下,即使没有风扇40,在有用于将冷气导入制冰装置2的吸入口42的情况下,也可以实现与上述相同的功能。
在图9中,所述制冰装置2设置在开口112附近,开口112用于将经过了冰箱100的蒸发器126的冷气送到冷冻室110中。在这种情况下,若在制冰盘10A的上侧空间的侧方或上方设有吸入口,则可以将气体吸入一个制冰盘10A的上部空间。在图9中,在制冰盘10A的上侧空间的侧方设有用作气体供给部的吸入口42。这样,经过了蒸发器126的冷气可以被直接吸入到制冰盘10A的上部空间。在吸入口42设在制冰盘10A的上侧空间的侧方的情况下,考虑到气体的流动,优选为将吸入口设在与设置风道50的一侧相对的位置处。
如果综合表达具有风扇40的情况和具有吸入口42的情况,则可以是“制冰装置2具有气体供给部40、42和风道50,气体供给部40、42用于将气体供给至至少一个制冰盘10A的上部空间,风道50设置在制冰盘10A、10B的侧方,并且连接在上侧制冰盘10A的上部空间和下侧制冰盘10B的上部空间之间”。
(冰的落下)
参照图5来说明关于在通过旋转机构20使制冰盘10A、10B旋转到脱冰位置之后从制冰盘10A、10B脱离并落下的冰的后续行进方式。如以图5的虚线箭头示意的,从下侧制冰盘10B脱落的冰由于重力而径直落到设置在制冰装置2下方的收纳容器70中。另一方面,由于下侧制冰盘10B存在于下方,因此从上侧制冰盘10A脱落的冰无法径直进入收纳容器70。
在本实施例所涉及的制冰装置2中,在位于下侧的制冰盘10B的上部具有盖子30,其用于引导从位于上侧的制冰盘10A落下的冰,以使其在位于下侧的制冰盘10B的侧方落下。进一步地,本实施例中盖子30具有弯曲的表面。如此,从上侧制冰盘10A落下的冰沿着弯曲表面移动,并从制冰装置2的侧方落到设置在制冰装置2下方的收纳容器70中。如此,从上侧制冰盘10A落下的冰可以顺滑地收纳到收纳容器70中,同时避免对冰和机器造成损伤。
然而,盖子30不必一定具有弯曲表面,只要能够将落下来的冰的行进方向改变为倾斜向下的方向以使其在位于下侧的制冰盘10B的侧方落下,其可以具有任何其他形状。例如,通过使用具有倾斜面的平面的盖子30,也可以使落下来的冰的行进方向改变为倾斜向下的方向。进一步地,盖子30具有同时具备弯曲曲面和倾斜面二者的形状的情况也是可以的。如上所述,在盖子30中设有用于使通过风扇40供给的气体穿过的多个狭缝形的开口32。
如上面那样,由于在位于下侧的制冰盘10B的上部具有盖子30,其用于引导从位于上侧的制冰盘10A落下的冰,以使其在位于下侧的制冰盘10B的侧方落下,因此上下设置的制冰盘10A、10B的冰可以准确地收纳在收纳容器70中。这样,可以实现其中制冰盘10A、10B上下设置的制冰装置2,并且可以提供能在抑制冰箱的收纳率降低的同时供给更多的冰的制冰装置2。
(冰箱)
图8是示意具有制冰装置2的冰箱100的一个示例的侧视截面图。接下来,将参照图8来说明具有上述实施例所涉及的制冰装置2的冰箱100的一个示例。在图8中,出于说明的目的,与冰箱相比,较大地描绘了制冰装置2和液体供给装置130。
制冰装置2设置在冰箱100的冷冻室110的后侧,并且冰的收纳容器70设置在其下方。冰箱100中具有液体供给装置130,其用于将液体供给至制冰装置2的制冰盘10A、10B。在液体供给装置130中,通过泵134的排出力将储存在水槽132中的液体供给至配管136一侧。然后,在配管136中流下的液体从液体供给口60供给至制冰装置2的上侧制冰盘10A。
冰箱100具有冷却机构120,其主要通过压缩器122、冷凝器124和蒸发器126形成冷却循环,以便将冷气供给至冰箱内。在冰箱100内循环的气体在经过蒸发器126时被冷却。然后,如点划线箭头所示,通过蒸发器126中的热交换而冷却的气体通过冰箱风扇128借助于开口112吹入到冷冻室110中。吹入冷冻室110中的气体的一部分通过制冰装置2的风扇 40而吸入到制冰装置2中,并被供给至上侧制冰盘10A的上部空间。吸入制冰装置2中的气体从上侧制冰盘10A的上部空间借助于风道流到下侧制冰盘10B的上部空间,并从设在盖子上的开口流出到制冰装置2的外部。流出的气体借助于开口114流向冷却机构120一侧,并在再次经过蒸发器126时被冷却。通过重复这样的气体循环,将冷却的气体不间断地供给至制冰装置2中,并使制冰盘10A、10B中的液体冻结以制造冰。
如上面那样,在具有其中制冰盘10A、10B上下设置的制冰装置2的冰箱100中,与制冰盘横向并置的情况相比,可以减小平面图中的占有面积。这样,可以提供能在抑制收纳率降低的同时供给更多的冰的冰箱。如图9所示,制冰装置2具有气体吸入口42来代替风扇40的情况也是可以的。在这种情况下,通过将借助于开口112吹入冷冻室110中的冷气从气体吸入口42直接吸入到制冰装置2中,可以将其供给至上侧制冰盘10A的上部空间。
<变型例>
在上述实施例所涉及的冰箱100中,制冰装置2设置在冷冻室110的内部,但是本发明不限于此。由于多个制冰盘10A、10B是上下设置的,因此制冰装置2可以相对容易地设置在冰箱100的门中。但是在这种情况下,可能会有制冰盘中的水由于门的开关而飞散的风险。
为了解决该问题,如图4和图5所示,可安装引导棒19,以使其抵接在沿着制冰区11的列(即,沿着较长方向)的制冰盘10A、10B的两侧表面的突起处。引导棒19从制冰盘10A、10B的上表面18向上延伸。这样,因门的开关而飞溅的水撞上引导棒19,并沿着引导棒19的内表面回到制冰盘10A、10B的制冰区11。通过该引导棒19,即使门被打开和关闭,也可以防止制冰盘10A、10B中的液体向外洒落。
由于制冰盘10A、10B的突起以及引导棒19由柔性树脂材料形成,因此还使得能够充分地适应在为了脱冰而扭转制冰盘10A、10B时的应力以及大力开关冰箱门时的振动。如上面那样,在门的内部具有上述实施例所涉及的制冰装置2的冰箱100中,由于在沿着制冰盘10A、10B的较长方向的两侧表面上具有从制冰盘10A、10B的上表面18向上延伸的引导棒19,可以有效地防止制冰盘10A、10B中的液体随着门的开关的飞溅。
(其他实施例)
(1)仍在上述实施例中用制冰盘10A、10B的各制冰区11来制造多个冰,不过可以在制冰装置2的下方具有碎冰机,其用于粉碎用制冰装置2制造的冰。(2)在上述实施例中将用液体供给装置130的水槽132储存的液体供给至制冰装置2,不过制冰装置2可以连接至供水配管并直接从供水配管向制冰装置2供给液体。(3)假如在具有专用于制冰装置2的冷却机构的情况下,也可以实现独立于冰箱的单独的制冰装置2。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (5)

  1. 一种制冰装置,其特征在于,其具有上下排布的多个制冰盘以及旋转机构,所述旋转机构能使多个所述制冰盘旋转,并且在能存积液体的制冰位置以及使已形成的冰脱离并落下的脱冰位置之间旋转,在位于下侧的所述制冰盘的上部具有盖子,所述盖子引导从位于上侧的所述制冰盘落下的冰以使其在位于下侧的所述制冰盘的侧方落下。
  2. 根据权利要求1所述的制冰装置,其特征在于:所述制冰装置还具有气体供给部和风道,所述气体供给部向至少一个所述制冰盘的上部空间供给气体,所述风道被设置在所述制冰盘的侧方,且连接在用于从所述气体供给部供给气体的所述制冰盘的上部空间与其他的所述制冰盘的上部空间之间。
  3. 根据权利要求1或2所述的制冰装置,其特征在于:所述制冰盘具有由间隔壁隔开的多个制冰区,在所述间隔壁处设有狭缝,其使得所述制冰区内液体的液面一越过规定高度就流入到相邻的所述制冰区中。
  4. 根据权利要求3所述的制冰装置,其特征在于:所述制冰装置还具有用于供给液体的液体供给口,所述液体供给口设置在位于最上侧的所述制冰盘的至少一个所述制冰区处,除了设置有所述液体供给口的所述制冰区之外,在位于上侧的所述制冰盘的至少一个所述制冰区的下部具有使液体落下的孔。
  5. 一种冰箱,其特征在于:所述冰箱具有如权利要求1至4中的任一项所述的制冰装置。
PCT/CN2020/115756 2019-09-18 2020-09-17 制冰装置和具有制冰装置的冰箱 WO2021052389A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080065022.XA CN114424006B (zh) 2019-09-18 2020-09-17 制冰装置和具有制冰装置的冰箱
EP20866814.5A EP4033182A4 (en) 2019-09-18 2020-09-17 ICE MAKER AND REFRIGERATOR WITH IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-169312 2019-09-18
JP2019169312A JP7373186B2 (ja) 2019-09-18 2019-09-18 製氷装置及び製氷装置を備えた冷蔵庫

Publications (1)

Publication Number Publication Date
WO2021052389A1 true WO2021052389A1 (zh) 2021-03-25

Family

ID=74878230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115756 WO2021052389A1 (zh) 2019-09-18 2020-09-17 制冰装置和具有制冰装置的冰箱

Country Status (4)

Country Link
EP (1) EP4033182A4 (zh)
JP (1) JP7373186B2 (zh)
CN (1) CN114424006B (zh)
WO (1) WO2021052389A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193702A1 (zh) * 2022-04-05 2023-10-12 海尔智家股份有限公司 给液装置和包括给液装置的冰箱

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279221A (ja) 2002-03-22 2003-10-02 Matsushita Refrig Co Ltd 冷蔵庫
CN101082458A (zh) * 2006-05-29 2007-12-05 Lg电子株式会社 制冰盘构件以及配有该制冰盘构件的电冰箱
CN101375117A (zh) * 2006-06-29 2009-02-25 Lg电子株式会社 用于冰箱的制冰装置
US20090178431A1 (en) * 2008-01-16 2009-07-16 Samsung Electronics Co., Ltd. Ice making unit and refrigerator having the same
CN101490486A (zh) * 2006-08-24 2009-07-22 Lg电子株式会社 制冰装置及包括所述制冰装置的冰箱
CN101868679A (zh) * 2007-11-21 2010-10-20 星崎电机株式会社 流下式制冰机
CN101896782A (zh) * 2007-12-14 2010-11-24 Lg电子株式会社 冰箱的制冰组件
CN107850365A (zh) * 2015-10-14 2018-03-27 三星电子株式会社 冰箱
CN110832261A (zh) * 2017-07-14 2020-02-21 夏普株式会社 制冰托盘及制冰单元

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855274U (ja) * 1981-10-09 1983-04-14 三菱電機株式会社 冷凍冷蔵庫
US5012655A (en) * 1989-11-03 1991-05-07 Philip Chatterton Filling assembly for ice trays
JP3067175B2 (ja) * 1990-08-06 2000-07-17 ホシザキ電機株式会社 製氷機
JP3454025B2 (ja) * 1996-07-16 2003-10-06 三菱電機株式会社 製氷皿および製氷方法
CA2253645A1 (en) * 1998-11-04 2000-05-04 Michael O'brien Ice cube tray and filling device
MXPA04003411A (es) 2004-04-07 2005-10-11 Mabe De Mexico S De R L De C V Dispositivo para la fabricacion de hielos en gabinetes refrigerados.
KR101406187B1 (ko) 2007-06-04 2014-06-13 삼성전자주식회사 제빙기 및 이를 갖는 냉장고
KR20090007326U (ko) * 2008-01-16 2009-07-21 삼성전자주식회사 냉장고
JP6216609B2 (ja) 2013-10-29 2017-10-18 石福金属興業株式会社 担持触媒製造用組成物の製造方法
JP2017161086A (ja) 2016-03-07 2017-09-14 日本電産サンキョー株式会社 製氷装置、冷蔵庫および製氷方法
CN108645086A (zh) 2018-05-22 2018-10-12 滁州市银田科技有限公司 一种冰箱用的制冰槽
CN111336732B (zh) 2018-11-30 2021-11-26 海尔智家股份有限公司 用于冰箱的制冰盒及冰箱

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279221A (ja) 2002-03-22 2003-10-02 Matsushita Refrig Co Ltd 冷蔵庫
CN101082458A (zh) * 2006-05-29 2007-12-05 Lg电子株式会社 制冰盘构件以及配有该制冰盘构件的电冰箱
CN101375117A (zh) * 2006-06-29 2009-02-25 Lg电子株式会社 用于冰箱的制冰装置
CN101490486A (zh) * 2006-08-24 2009-07-22 Lg电子株式会社 制冰装置及包括所述制冰装置的冰箱
CN101868679A (zh) * 2007-11-21 2010-10-20 星崎电机株式会社 流下式制冰机
CN101896782A (zh) * 2007-12-14 2010-11-24 Lg电子株式会社 冰箱的制冰组件
US20090178431A1 (en) * 2008-01-16 2009-07-16 Samsung Electronics Co., Ltd. Ice making unit and refrigerator having the same
CN107850365A (zh) * 2015-10-14 2018-03-27 三星电子株式会社 冰箱
CN110832261A (zh) * 2017-07-14 2020-02-21 夏普株式会社 制冰托盘及制冰单元

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193702A1 (zh) * 2022-04-05 2023-10-12 海尔智家股份有限公司 给液装置和包括给液装置的冰箱

Also Published As

Publication number Publication date
EP4033182A4 (en) 2022-10-19
JP2021046966A (ja) 2021-03-25
CN114424006B (zh) 2023-09-15
JP7373186B2 (ja) 2023-11-02
CN114424006A (zh) 2022-04-29
EP4033182A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
ES2931510T3 (es) Refrigerador con dispositivo de fabricación de hielo
JP5744808B2 (ja) 冷蔵庫
KR101957793B1 (ko) 냉장고
EP2610562B1 (en) Refrigerator and ice making apparatus
EP2610563B1 (en) Refrigerator
KR100809749B1 (ko) 냉장고의 아이스메이커 어셈블리
EP2610564B1 (en) Refrigerator and icemaker
KR101157704B1 (ko) 제빙 장치 및 상기 제빙 장치를 구비하는 냉장고
JP5586534B2 (ja) 冷凍冷蔵庫
JPH05296623A (ja) 自動製氷機付き冷蔵庫
WO2021052389A1 (zh) 制冰装置和具有制冰装置的冰箱
ES2638002T3 (es) Refrigerador
KR20090084048A (ko) 냉장고
KR20080014553A (ko) 냉장고
KR102037319B1 (ko) 냉장고의 기계실
JP5290706B2 (ja) 冷蔵庫
KR101754374B1 (ko) 냉장고용 제빙장치
KR20070076993A (ko) 제빙장치 및 이를 갖춘 냉장고
KR101798557B1 (ko) 냉장고용 제빙장치
JP7076560B2 (ja) 自動製氷機
JPWO2019111321A1 (ja) 製氷装置
CN220959026U (zh) 一种结构紧凑的制冰机
JP5749607B2 (ja) 冷蔵庫
KR20080015340A (ko) 냉장고
KR20120072775A (ko) 냉기토출구를 가지는 냉장고

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020866814

Country of ref document: EP

Effective date: 20220419