WO2021052203A1 - 外延装置及应用于外延装置的进气结构 - Google Patents

外延装置及应用于外延装置的进气结构 Download PDF

Info

Publication number
WO2021052203A1
WO2021052203A1 PCT/CN2020/113708 CN2020113708W WO2021052203A1 WO 2021052203 A1 WO2021052203 A1 WO 2021052203A1 CN 2020113708 W CN2020113708 W CN 2020113708W WO 2021052203 A1 WO2021052203 A1 WO 2021052203A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
epitaxial
processed
processing gas
air intake
Prior art date
Application number
PCT/CN2020/113708
Other languages
English (en)
French (fr)
Inventor
夏振军
王磊磊
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to US17/642,889 priority Critical patent/US20220356600A1/en
Priority to JP2022515557A priority patent/JP7320669B2/ja
Priority to KR1020227006187A priority patent/KR102515428B1/ko
Priority to EP20865135.6A priority patent/EP4033011A4/en
Publication of WO2021052203A1 publication Critical patent/WO2021052203A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides

Definitions

  • the present invention relates to the field of semiconductor technology, and relates to a device, in particular, an epitaxial device and an air intake structure applied to the epitaxial device.
  • the process gas for epitaxial reaction of uniform concentration is usually introduced into the chamber from the inlet end, and the process gas flows horizontally through the surface of the wafer carried by the base to complete the growth of the epitaxial layer, and then from the exhaust gas The end is discharged from the chamber.
  • the gas flow rate of the process gas is the main factor affecting the film thickness distribution of the epitaxial layer.
  • the invention discloses an epitaxial device and an air intake structure applied to the epitaxial device to solve the problems in the background art, such as the phenomenon of uneven thickness of the epitaxial layer at the edge of the wafer.
  • an epitaxial device applied to the surface to be processed of a workpiece to be processed includes a chamber, a base set in the chamber for carrying a workpiece to be processed, an air intake structure, and an exhaust structure.
  • the air intake structure is arranged on the side wall of the chamber and is used to provide processing gas to the surface to be processed of the workpiece to be processed.
  • Two second air intake passages are arranged at intervals along the second direction, and respectively correspond to the two adjustment areas adjacent to the two sides of the surface to be processed, and at least One of the first air inlet passages; each of the second air inlet passages is used to provide a second processing gas to the adjustment area along the first direction, and the second processing gas is used to adjust the flow through the Adjusting the concentration of the gas for epitaxial reaction in the region, wherein the second direction is perpendicular to the first direction and parallel to the surface to be processed; and
  • the exhaust structure is arranged on the side wall of the chamber opposite to the intake structure.
  • the second processing gas includes a gas used for epitaxial reaction
  • the content of the gas used for epitaxial reaction in the second processing gas is lower than that of the gas used in the first processing gas.
  • the content of the gas used in the epitaxial reaction is lower than that of the gas used in the first processing gas.
  • the ratio of the radius of the surface to be processed to the width of the adjustment area in the second direction is greater than or equal to 15.
  • the flow rate of the first processing gas flowing out of the outlet of the first air inlet passage is the same as the flow rate of the second processing gas flowing out of the outlet of the second air inlet passage.
  • the plurality of first air intake passages are evenly arranged along the second direction.
  • the total distribution distance of the plurality of first air intake passages in the second direction is greater than or equal to the diameter of the surface to be processed.
  • each of the second air intake passages includes a plurality of auxiliary air intake pipes, and the plurality of auxiliary air intake pipes are arranged to form a radial cross-sectional shape of an equilateral polygon, and the lowest point of the equilateral polygon is It is located on the same plane as the lowest point of the radial cross section of the first intake passage.
  • the ratio of the total distribution distance of the two second air intake passages in the second direction to the diameter of the surface to be processed ranges from 0.8 to 1.4.
  • the distance between each of the first air intake passages and the adjacent first air intake passages ranges from 5 mm to 30 mm.
  • the aperture of the first intake passage is larger than the aperture of the second intake passage, and the ratio of the aperture of the first intake passage to the aperture of the second intake passage is in the range of 60 to 6.
  • the first processing gas includes a carrier gas, the gas used for epitaxial reaction, and a doping gas, wherein the carrier gas includes at least one of nitrogen and hydrogen, and the carrier gas is used for epitaxial reaction.
  • the reacted gas includes at least one of silane, dichlorosilane, trichlorosilane, and silicon tetrachloride
  • the doping gas includes at least one of phosphine, diborane, and arsine.
  • the second processing gas includes at least one of a carrier gas, the gas for epitaxial reaction, and a doping gas
  • the carrier gas includes at least one of nitrogen and hydrogen
  • the gas used for the epitaxial reaction includes at least one of silane, dichlorosilane, trichlorosilane, and silicon tetrachloride
  • the doping gas includes at least one of phosphine, diborane, and arsine.
  • an air intake structure applied to an epitaxial device includes a plurality of first air inlet passages for supplying a first processing gas containing a gas for epitaxial reaction to the surface of the workpiece to be processed along a first direction, and the first direction is parallel to the surface of the workpiece to be processed.
  • Two second air intake passages are arranged at intervals along the second direction, and respectively correspond to the two adjustment areas adjacent to the two sides of the surface to be processed, and at least One of the first air inlet passages; each of the second air inlet passages is used to provide a second processing gas to the adjustment area along the first direction, and the second processing gas is used to adjust the flow through the The concentration of the gas used for the epitaxial reaction in the adjustment region, wherein the second direction is perpendicular to the first direction and parallel to the surface to be processed.
  • the second processing gas includes a gas used for epitaxial reaction
  • the content of the gas used for epitaxial reaction in the second processing gas is lower than that of the gas used in the first processing gas.
  • the content of the gas used in the epitaxial reaction is lower than that of the gas used in the first processing gas.
  • the flow rate of the first processing gas flowing out of the outlet of the first air inlet passage is the same as the flow rate of the second processing gas flowing out of the outlet of the second air inlet passage.
  • each of the second air intake passages includes a plurality of auxiliary air intake pipes, and the plurality of auxiliary air intake pipes are arranged to form a radial cross-sectional shape of an equilateral polygon, and the lowest point of the equilateral polygon is It is located on the same plane as the lowest point of the radial cross section of the first intake passage.
  • each of the second air intake passages includes three auxiliary air intake pipes, and the three auxiliary air intake pipes are arranged to form an equilateral triangle radial cross-sectional shape.
  • the aperture of the first intake passage is larger than the aperture of the second intake passage, and the ratio of the aperture of the first intake passage to the aperture of the second intake passage is in the range of 60 to 6.
  • the air intake structure provided by the embodiment of the present invention includes a plurality of first air intake passages and two second air intake passages, which can provide the first processing gas to the surface to be processed of the workpiece to be processed in the same direction, and to The peripheral areas on both sides of the processing surface provide the second processing gas.
  • the second processing gas is used to adjust the concentration of the gas for epitaxial reaction flowing through the adjustment area, so as to improve the uniformity of the thickness distribution of the epitaxial layer formed on the entire surface to be processed; in addition, due to the first The inlet direction of the first processing gas and the second processing gas are the same, which can make the gas flow of the first processing gas and the second processing gas smooth without turbulence, which is beneficial to control the thickness distribution of the epitaxial layer.
  • the epitaxial device provided by the embodiment of the present invention can improve the uniformity of the thickness distribution of the epitaxial layer formed on the entire surface to be processed by adopting the above-mentioned air intake structure provided by the embodiment of the present invention.
  • FIG. 1 is a schematic top view of an epitaxial device provided by an embodiment of the present invention
  • FIG. 2 is a schematic side view of an epitaxial device provided by an embodiment of the present invention.
  • Figure 3 is a schematic diagram of an air intake structure provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an air intake structure provided by another embodiment of the present invention.
  • FIG. 5 is a schematic top view of an epitaxial device provided by another embodiment of the present invention.
  • Fig. 6 is a flowchart of an air intake method provided by an embodiment of the present invention.
  • first and second features are in direct contact with each other; and may also include
  • additional components are formed between the above-mentioned first and second features, so that the first and second features may not be in direct contact.
  • present disclosure may reuse component symbols and/or labels in multiple embodiments. Such repeated use is based on the purpose of brevity and clarity, and does not in itself represent the relationship between the different embodiments and/or configurations discussed.
  • spatially relative terms here such as “below”, “below”, “below”, “above”, “above” and similar, may be used to facilitate the description of the drawing in the figure
  • the relationship between one component or feature relative to another component or feature is shown.
  • the original meaning of these spatially-relative vocabulary covers a variety of different orientations of the device in use or operation, in addition to the orientation shown in the figure.
  • the device may be placed in other orientations (for example, rotated 90 degrees or in other orientations), and these spatially-relative description vocabulary should be explained accordingly.
  • the chamber components of the silicon epitaxial equipment include a main gas inlet structure and an auxiliary gas inlet structure, which are used to pass the main process gas and gas into the chamber from different directions.
  • auxiliary gas inlet structure which are used to pass the main process gas and gas into the chamber from different directions.
  • the present disclosure is made in consideration of the above-mentioned circumstances, and provides a film forming method and epitaxial apparatus using an epitaxial process, which can achieve a stable epitaxial layer growth rate while ensuring uniform thickness distribution of the epitaxial layer . Further, the present disclosure provides a chamber component for an epitaxial device, particularly an air intake structure.
  • An exemplary air intake structure includes a plurality of first air intake passages and two second air intake passages, wherein the two second air intake passages are spaced apart along the second direction, and are respectively connected to adjacent edges on both sides of the surface to be processed.
  • the two adjustment areas correspond to each other, and at least one first inlet passage is arranged between the two second inlet passages; each second inlet passage is used to provide second processing gas to the adjustment area along the first direction .
  • the improvement of these components can improve the uniformity of the thickness distribution of the epitaxial layer formed on the surface to be processed, thereby improving the product quality.
  • FIGS. 1 and 2 are schematic diagrams of an epitaxial device provided by an embodiment of the present invention.
  • the epitaxial device is used to process the surface to be processed of the workpiece to be processed, for example, to form an epitaxial layer on the surface to be processed of the workpiece to be processed (such as a wafer).
  • the epitaxial device includes a chamber 4, a base 5 arranged in the chamber 4 for carrying the workpiece 6 to be processed, an air intake structure 1 and an exhaust structure 7.
  • the air intake structure 1 is arranged on the side wall of the chamber 4 and is used to provide processing gas to the surface to be processed of the workpiece 6 to be processed.
  • the exhaust structure 7 is arranged on the side wall of the chamber 4 opposite to the intake structure 1 for gas exhaust.
  • the diameter of the upper surface of the base 5 is larger than the diameter of the surface to be processed of the workpiece 6 to be processed, so that when the workpiece 6 to be processed is placed on the base 5
  • a part of the upper surface of the base 5 ie, the area outside the workpiece 6 to be processed
  • the base 5 can be rotated. When the base 5 rotates, the workpiece 6 to be processed rotates together.
  • the base 5 can heat the workpiece 6 to be processed, so that the workpiece 6 to be processed can form an epitaxial layer at a predetermined temperature.
  • the intake structure 1 includes a plurality of first intake passages 2 and two second intake passages 3.
  • the plurality of first air inlet passages 2 are used to provide a first processing gas to the surface to be processed of the workpiece 6 to be processed along the first direction X1, and the first processing gas includes a gas for epitaxial reaction.
  • the first direction X1 is parallel to the surface to be processed of the workpiece 6 to be processed.
  • the first direction X1 is parallel to one of the radial directions of the surface to be processed.
  • the two second air intake passages 3 are arranged at intervals along the second direction X2, and at least one first air intake passage 2 is arranged between the two second air intake passages 3.
  • the second direction X2 is parallel to the surface to be processed of the workpiece 6 to be processed, and is perpendicular to the first direction X1.
  • the two second air intake passages 3 respectively correspond to the two adjustment areas 61 adjacent to the two sides of the surface to be processed, and each second air intake passage 3 is used to provide the adjustment area 61 along the first direction X1.
  • the second processing gas is used to adjust the concentration of the gas for epitaxial reaction flowing through the adjustment area.
  • the first processing gas and the second processing gas can be introduced into the chamber 4 at the same time or alternately by using the above-mentioned air inlet structure 1.
  • the first processing gas and the second processing gas are introduced at the same time, since the multiple first intake passages 2 and the two second intake passages 3 are all taken in in the first direction X1, that is, the first processing gas and the second The intake direction of the two processing gases is the same.
  • the first processing gas and the second processing gas respectively pass through the upper part of the surface to be processed and the adjustment area 61 in the first direction X1, and then continue to enter the exhaust structure 7 in the first direction X1, so as not to Turbulence will be generated; and, on the basis of passing the first processing gas, by passing the second processing gas to the adjustment area 61, the concentration of the gas for epitaxial reaction flowing through the adjustment area 61 can be adjusted, In order to reduce the concentration difference of the gas used for the epitaxial reaction between the edge area of the surface to be processed adjacent to the adjustment area 61 and the central area of the surface to be processed.
  • the base 5 drives the workpiece to be processed 6 to rotate together, adjustment regions 61 located on both sides of the surface to be processed of the workpiece 6 will appear
  • the abrupt change in air velocity makes the thickness of the epitaxial layer formed in the central area of the surface to be processed differ from the thickness of the epitaxial layer formed in the edge area adjacent to the adjustment area 61.
  • the thickness of the epitaxial layer formed by the edge area of the surface to be processed is relatively thicker than that of the center area of the surface to be processed.
  • the second processing gas can be used to dilute the concentration of the gas used for the epitaxial reaction flowing through the adjustment region 61, so that the thickness of the epitaxial layer formed at the edge region of the surface to be processed can be reduced, thereby increasing the thickness of the epitaxial layer to be processed.
  • the uniformity of the thickness distribution of the epitaxial layer formed on the processed surface can be used to dilute the concentration of the gas used for the epitaxial reaction flowing through the adjustment region 61, so that the thickness of the epitaxial layer formed at the edge region of the surface to be processed can be reduced, thereby increasing the thickness of the epitaxial layer to be processed.
  • the above-mentioned second processing gas includes a gas used for epitaxial reaction, and the content of the gas used for epitaxial reaction in the second processing gas is lower than the content of gas used for epitaxial reaction in the first processing gas.
  • the above-mentioned second processing gas can play a role in diluting the concentration of the gas used for the epitaxial reaction flowing through the adjustment region 61.
  • the above-mentioned second processing gas may not include the gas used for the epitaxial reaction, and any other gas capable of adjusting the concentration of the gas used for the epitaxial reaction flowing through the adjustment region may be used.
  • the second processing gas is also used to form an air curtain in the adjustment areas 61 on both sides of the surface to be processed, so as to ensure that the first processing gas can flow over the surface to be processed.
  • the adjustment area 61 shown in FIG. 1 is located outside the outer periphery of the surface to be processed, but the embodiment of the present invention is not limited to this. In practical applications, the range of the adjustment area 61 is not particularly limited. For example, it may also be located at the edge area inside the outer periphery of the surface to be processed, or may also be located at the peripheral area outside the outer periphery of the surface to be processed, and at the edge area inside the outer periphery of the surface to be processed.
  • the ratio of the radius Rs of the surface to be processed to the width of the adjustment area 61 in the second direction is greater than or equal to 15.
  • the flow rate of the first processing gas flowing out from the outlet of the first intake passage 2 is the same as the flow rate of the second processing gas flowing out of the outlet of the second intake passage 3.
  • the first processing gas and the second processing gas are caused to flow out from the outlets of an inlet passage 2 and a second inlet passage 3, respectively.
  • the flow rate of the gas is the same, so that the air flow over the entire area of the surface to be processed can be smooth, and no turbulence is generated, thereby facilitating the formation of an epitaxial layer with uniform thickness on the entire area of the surface to be processed.
  • the plurality of first air intake passages 2 are evenly arranged along the second direction X2. In this way, on the basis that the first processing gas flowing out from the outlet of each first intake passage 2 flows in the first direction X1, by evenly arranging the plurality of first intake passages 2 in the second direction X2, it is possible to make The first processing gas flowing through different positions on the surface to be processed is evenly distributed, and the arrangement density of the multiple first inlet channels 2 can be adjusted freely according to specific requirements, for example, according to the size of the workpiece 6 to be processed, the spatial size of the chamber 4, The gas flow rate and other parameters adjust the arrangement density of the multiple first intake channels 2.
  • the distance between each first intake passage 2 and the adjacent first intake passage 2 ranges from 5 mm to 30 mm.
  • the total distribution distance Dg2 of the plurality of first inlet passages 2 along the second direction X2 is greater than or equal to the diameter Ds of the surface to be processed, so that the first processing gas can flow out of the plurality of first inlet passages 2 Can flow through the entire surface to be processed.
  • the above-mentioned total distribution distance Dg2 refers to the maximum distance in the second direction X2 between the two first intake passages 2 located at the outermost side.
  • the distance between the air inlet structure 1 and the surface to be processed in the third direction Y is not particularly limited, as long as the first processing gas can effectively react with the entire surface to be processed.
  • the aforementioned third direction Y is perpendicular to the surface to be processed.
  • each first intake passage 2 and the center of each second intake passage 3 are at the same distance from the surface to be processed in the third direction Y, that is, each first intake passage 2 and each second air inlet passage 3 are located at the same height relative to the surface to be processed.
  • the first processing gas includes a carrier gas, a gas for epitaxial reaction, and a doping gas.
  • the carrier gas includes at least one of nitrogen (N2) and hydrogen (H2).
  • the gas used for the epitaxial reaction includes at least one of silane (SiH4), dichlorosilane (SiH2Cl2), trichlorosilane (SiHCl3), and silicon tetrachloride (SiCl4).
  • the doping gas includes at least one of phosphine (PH3), diborane (B2H6), and arsine (AsH3).
  • the second processing gas includes at least one of a carrier gas, a gas for epitaxial reaction, and a doping gas.
  • the content of the gas used for the epitaxial reaction in the second processing gas is lower than the content of the gas used for the epitaxial reaction in the first processing gas.
  • the carrier gas includes at least one of nitrogen (N2) and hydrogen (H2).
  • the gas used for the epitaxial reaction includes at least one of silane (SiH4), dichlorosilane (SiH2Cl2), trichlorosilane (SiHCl3), and silicon tetrachloride (SiCl4).
  • the doping gas includes at least one of phosphine (PH3), diborane (B2H6), and arsine (AsH3).
  • the above-mentioned second processing gas is used to adjust the concentration of the gas used for the epitaxial reaction in the adjustment region 61.
  • the second processing gas can dilute the gas used for the epitaxial reaction in the adjustment area 61 so that the concentration of the gas used for the epitaxial reaction in the adjustment area 61 is reduced.
  • the gas used for the epitaxial reaction can be changed by adjusting the carrier gas concentration of the second processing gas and the position of each second gas inlet channel 3 The concentration and the area where it is diluted.
  • each second gas inlet channel 3 can be used to provide the corresponding adjustment area 61 with a second processing gas with stable gas flow, for example, The flow rate of the second processing gas flowing out from the gas outlet of each second gas inlet passage 3 is fixed.
  • the first processing gas can be appropriately diluted by adjusting the concentration of the carrier gas in the second processing gas.
  • the carrier gas of the second processing gas is used to dilute the gas used for the epitaxial reaction in the first processing gas.
  • the second processing gas includes a carrier gas and a doping gas, but does not contain a gas for epitaxial reaction.
  • the proportion of the gas used for the epitaxial reaction in the first processing gas is a%, and the proportion of the carrier gas is (100-a)% (doping gas is not included); the second processing gas is used The proportion of the gas in the epitaxial reaction is b%, and the proportion of the carrier gas is (100-b)% (doping gas is not included), where a is a positive number less than 100 and greater than b.
  • Fig. 3 is a schematic diagram of an air intake structure provided by an embodiment of the present invention.
  • the aperture of the second intake passage 3 is smaller than the aperture of the first intake passage 2, so that the distribution area of the second processing gas flowing out of the second intake passage 3 is in the first
  • the width in the two directions X2 is relatively narrow, and does not occupy the distribution area of the first processing gas flowing out of the first gas inlet channel 2, so as to ensure that the first processing gas can perform epitaxial reaction with the surface to be processed.
  • the ratio of the aperture of the first intake passage 2 to the aperture of the second intake passage 3 ranges from 60 to 6.
  • the center of the outlet of each first intake passage 2 and the center of the outlet of each second intake passage 3 are located on the same plane, for example, the center of the outlet of each first intake passage 2 and each The centers of the outlets of the two second air intake passages 3 are all located on the plane P1, which is parallel to the plane to be processed.
  • the ratio of the total distribution distance Dg1 of the two second air intake passages 3 in the second direction X2 to the diameter Ds of the surface to be processed ranges from 0.8 to 1.4.
  • the total distribution distance Dg1 refers to the maximum distance in the second direction X2 between the two outermost second air intake passages 3.
  • the total distribution distance Dg1 of the two second air intake passages 3 in the second direction X2 is the diameter Ds of the surface to be processed ⁇ 50 mm. In some embodiments, the total distribution distance Dg1 of the two second intake passages 3 in the second direction X2 is smaller than the total distribution distance Dg2 of the plurality of first intake passages 2 in the second direction X2.
  • each of the first air intake passages 2 and each of the second air intake passages 3 can be respectively connected to independent pipelines, and each independent pipeline is independently connected to each An air inlet passage 2 and a second air inlet passage 3 provide the first processing gas and the second processing gas.
  • a plurality of first intake passages 2 may be connected to the same pipeline, which provides the first processing gas to each first intake passage 2 at the same time, and the two second intake passages 3 may be connected to the same pipeline.
  • the pipeline provides the second processing gas to each of the second intake passages 3 at the same time.
  • Fig. 4 is a schematic diagram of an air intake structure provided by an embodiment of the present invention.
  • dispersing the gas flow of the second processing gas helps to keep the gas flow of the first processing gas smooth.
  • each second air inlet passage 3 has multiple air outlets, where each second air inlet passage 3 may include an auxiliary air inlet pipe, and the auxiliary air inlet pipe has multiple air outlets, or
  • Each second air intake passage 3 may include a plurality of auxiliary air intake pipes, and each auxiliary air intake pipe has a single air outlet.
  • FIG. 4 is a schematic diagram of an air intake structure provided by an embodiment of the present invention.
  • dispersing the gas flow of the second processing gas helps to keep the gas flow of the first processing gas smooth.
  • each second air inlet passage 3 has multiple air outlets, where each second air inlet passage 3 may include an auxiliary air inlet pipe, and the auxiliary air inlet pipe has multiple air outlets, or
  • Each second air intake passage 3 may include a plurality of auxiliary air intake pipes, and each auxiliary air intake pipe
  • each second air inlet passage 3 may include three auxiliary air inlet pipes 31, and each auxiliary air inlet pipe 31 has a single air outlet, as long as the amount of the second processing gas flowing out from each air outlet is If the flow rate is the same, they should all belong to the scope of the present invention.
  • the plurality of auxiliary intake pipes are arranged to form an equilateral polygonal radial cross-sectional shape, such as but not limited to an equilateral triangle, and one side of the equilateral polygon is the lowest of the radial cross-section of the first intake passage 2
  • the points are located on the same plane.
  • one side of the equilateral polygon and the lowest point of the radial cross section of the first intake passage 2 are both located on the plane P2.
  • the three auxiliary intake pipes 31 are arranged to form an equilateral triangle.
  • the radial cross-sectional shape, and the base of the equilateral triangle and the lowest point of the radial cross-section of the first air inlet passage 2 are, for example, but not limited to, located on the same plane P2.
  • the epitaxial device may also have other necessary devices and components to process the workpiece 6 to be processed.
  • the epitaxy device should have a heating device to adjust the temperature of the workpiece 6 to be processed on the base 5 to a predetermined processing temperature.
  • the heating device is provided in the base 5.
  • FIGS. 1 and 2 only depict devices and components related to the inventive spirit of the embodiments of the present invention.
  • Fig. 5 is a top view of an epitaxial device provided by an embodiment of the present invention.
  • the total distribution distance Dg1 of the two second intake passages 3 in the second direction X2 is greater than the total distribution distance of the plurality of first intake passages 2 in the second direction X2 Dg2. That is, in FIG. 5, the air intake structure 1 is viewed from a plan view, and the plurality of first air intake passages 2 are all arranged between the two second air intake passages 3.
  • the first processing gas provided by the air intake structure 1 is all confined between the gas curtains formed by the second processing gas on both sides of the surface to be processed.
  • the total distribution distance Dg1 of the two second air intake passages 3 along the second direction X2 is greater than the diameter Ds of the surface to be processed. In some embodiments, the total distribution distance Dg1 of the two second intake passages 3 in the second direction X2 is greater than the total distribution distance Dg2 of the plurality of first intake passages 2 in the second direction X2, and the plurality of first intake passages 2 The total distribution distance Dg2 of an intake passage 2 along the second direction X2 is greater than the diameter Ds of the surface to be processed.
  • the present disclosure also provides an air intake method, particularly an air intake method for an epitaxial device.
  • An exemplary air intake method is shown in FIG. 6, which illustrates the air intake method provided by an embodiment of the present invention. If substantially the same result can be obtained, the steps shown in FIG. 6 do not need to be executed in the order described, and other orders or simultaneous executions can be implemented.
  • Air intake method 8 includes the following steps:
  • step 81 a first processing gas is provided to the entire surface to be processed of the workpiece 6 to be processed in the first direction X1.
  • Step 82 Provide the second processing gas to the two adjustment regions 61 adjacent to the two sides of the surface to be processed in the first direction X1.
  • the air intake method 8 is performed in an epitaxial device as shown in FIGS. 1, 2 or 5.
  • the first processing gas and the second processing gas are provided at the same time, and the second processing gas is used to adjust the concentration of the gas used for the epitaxial reaction flowing through the adjustment region 61, such as diluting the gas used in the first processing gas. Gas for epitaxial reaction.
  • the first direction X1 is parallel to a radial direction of the surface to be processed and is located above the surface to be processed.
  • the first processing gas and the second processing gas can perform an epitaxial reaction on the surface to be processed.
  • the flow rate of the first processing gas through the surface to be processed is the same as the flow rate of the second processing gas through the adjustment area 61.
  • the flow rate of the first processing gas is 50 SLM; the concentration of the gas used for the epitaxial reaction contained in the first processing gas is 4%; at the same time, the second processing gas that does not contain the gas for the epitaxial reaction is divided by two
  • the two second air inlet passages 3 lead into the chamber 4 along the first direction X1 to provide the second processing gas to the adjustment regions 61 on both sides of the surface to be processed.
  • the flow rate of the second processing gas is 3SLM.
  • the gas used for the epitaxial reaction includes a silicon source.
  • the workpiece 6 to be processed is a wafer, and the average concentration of the gas used for the epitaxial reaction flowing through the adjustment region 61 is 3.5%.
  • the thickness of the epitaxial layer at a distance of 3 mm from the edge of the epitaxial layer is 1% thicker than the thickness of the epitaxial layer at a distance of 10 mm from the edge of the epitaxial layer.
  • the flow rate of the first processing gas is 50 SLM; the concentration of the gas used for the epitaxial reaction contained in the first processing gas is 4%; and the two second gas inlet channels 3 are not fed with gas.
  • the gas used for the epitaxial reaction includes a silicon source.
  • the workpiece 6 to be processed is a wafer. After epitaxial growth, the thickness of the epitaxial layer at a distance of 3 mm from the edge of the epitaxial layer is 4% thicker than the thickness of the epitaxial layer at a distance of 10 mm from the edge of the epitaxial layer.
  • Example 1 By comparing the above-mentioned Example 1 and Comparative Example 1, it can be seen that while the first processing gas is introduced from the first gas inlet channel 2, at the same time, the two second gas inlet channels 3 contain or do not contain any gas for epitaxial reaction.
  • the second processing gas of the gas can significantly improve the uniformity of the thickness distribution of the epitaxial layer formed on the entire surface of the workpiece 6 to be processed.
  • the embodiment of the present invention provides an air intake structure and related extension device, using the air intake structure provided by the embodiment of the present invention, which includes a plurality of first air intake passages 2 and two second air intake passages 3.
  • the multiple first air inlet passages 2 can provide the first processing gas to the surface to be processed of the workpiece 6; the two second air inlet passages 3 can be located on the surface to be processed in the same direction as the first air inlet passage 2
  • the peripheral areas on both sides provide the second processing gas.
  • the first processing gas contains gas used for epitaxial reaction
  • the second processing gas contains or does not contain gas used for epitaxial reaction
  • the content of gas used for epitaxial reaction in the second processing gas is lower than that used in the first processing gas.
  • the air intake structure provided by the embodiment of the present invention makes the air flow of the first processing gas and the second processing gas smooth, thereby improving the uniformity of the thickness distribution of the epitaxial layer formed on the entire surface to be processed.

Abstract

一种外延装置及应用于外延装置的进气结构(1),该外延装置包含腔室(4)、基台(5)、进气结构(1)及排气结构(7)。其中,该进气结构(1)包括:多个第一进气通道(2),用于沿第一方向(X1)向待加工表面提供包含用于外延反应的气体的第一处理气体;以及两个第二进气通道(3),沿第二方向(X2)间隔设置,且分别与邻近待加工表面两侧边缘的两个调整区域(61)相对应,并且两个所述第二进气通道(3)之间设置有至少一个所述第一进气通道(2);每个第二进气通道(3)用于沿第一方向(X1)向调整区域(61)提供第二处理气体,该第二处理气体用于调整流经调整区域(61)的用于外延反应的气体的浓度。所述外延装置及进气结构(1),可以改善整个待加工表面上所形成的外延层的厚度分布均匀性。

Description

外延装置及应用于外延装置的进气结构 技术领域
本发明涉及半导体技术领域,有关一种装置,详细来说,是一种外延装置及应用于外延装置的进气结构。
背景技术
在硅外延设备中,通常使均匀浓度的用于外延反应的工艺气体从进气端进入腔室,工艺气体沿水平方向流经基台承载的晶圆表面以完成外延层的生长,然后从尾气端排出腔室。在硅源提供的气体浓度和温度固定的条件下,工艺气体的气流速度是影响外延层的膜厚分布的主要因素。为了保证外延层厚度均匀性,需要将基台设置为可旋转的,然而,在晶圆与基台共同旋转的过程中,晶圆与基台的交界处会有不受控制的气流发生速度突变,从而导致晶圆边缘的外延层厚度极难控制,很难保证外延层的厚度分布均匀。
发明内容
本发明公开一种外延装置及应用于外延装置的进气结构来解决背景技术中的问题,如晶圆边缘的外延层厚度不均的现象。
依据本发明的一实施例,揭露一种应用于对待加工工件的待加工表面进行加工的外延装置。所述外延装置包括腔室、设置在所述腔室中用于承载待加工工件的基台、进气结构以及排气结构。所述进气结构,设置于所述腔室的侧壁上,用于向所述待加工工件的待加工表面提供处理气体。多个第一进气通道,用于沿第一方向向所述待加工表面提供包含用于外延反应的气体的第一处理气体,所述第一方向平行于所述待加工表面;以及
两个第二进气通道,沿第二方向间隔设置,且分别与邻近所述待加工表 面两侧边缘的两个调整区域相对应,并且两个所述第二进气通道之间设置有至少一个所述第一进气通道;每个所述第二进气通道用于沿所述第一方向向所述调整区域提供第二处理气体,所述第二处理气体用于调整流经所述调整区域的所述用于外延反应的气体的浓度,其中,所述第二方向垂直于所述第一方向,且平行于所述待加工表面;以及
排气结构,设置于与所述进气结构相对的所述腔室的侧壁上。
在一些实施例中,所述第二处理气体包含用于外延反应的气体,且所述第二处理气体中所述用于外延反应的气体的含量低于所述第一处理气体中所述用于外延反应的气体的含量。
在一些实施例中,所述待加工表面的半径与所述调整区域在所述第二方向上的宽度的比值大于等于15。
在一些实施例中,自所述第一进气通道的出口流出的所述第一处理气体的流速与自所述第二进气通道的出口流出的所述第二处理气体的流速相同。
在一些实施例中,所述多个第一进气通道沿所述第二方向均匀排列。
在一些实施例中,所述多个第一进气通道在所述第二方向上的总分布距离大于等于所述待加工表面的直径。
在一些实施例中,每个所述第二进气通道均包括多个辅助进气管,所述多个辅助进气管排列形成等边多边形的径向截面形状,且所述等边多边形的最低点与所述第一进气通道的径向截面的最低点位于同一平面。
在一些实施例中,两个所述第二进气通道在所述第二方向上的总分布距离与所述待加工表面的直径的比例范围为0.8至1.4。
在一些实施例中,每个所述第一进气通道和与之相邻的所述第一进气通道之间的间距范围为5mm至30mm。
在一些实施例中,所述第一进气通道的孔径大于所述第二进气通道的孔径,且所述第一进气通道的孔径与所述第二进气通道的孔径的比例范围为60 至6。
在一些实施例中,所述第一处理气体包括载气、所述用于外延反应的气体以及掺杂气体,其中,所述载气包括氮、氢中的至少一种,所述用于外延反应的气体包括硅烷、二氯二氢硅、三氯氢硅、四氯化硅中的至少一种,所述掺杂气体包括磷化氢、二硼烷、砷化氢中的至少一种。
在一些实施例中,所述第二处理气体包括载气、所述用于外延反应的气体、掺杂气体中的至少一种,所述载气包括氮、氢中的至少一种,所述用于外延反应的气体包括硅烷、二氯二氢硅、三氯氢硅、四氯化硅中的至少一种,所述掺杂气体包括磷化氢、二硼烷、砷化氢中的至少一种。
依据本发明的另一实施例,揭露一种应用于外延装置中的进气结构。所述进气结构包含多个第一进气通道,用于沿第一方向向待加工工件的待加工表面提供包含用于外延反应的气体的第一处理气体,所述第一方向平行于所述待加工表面;以及
两个第二进气通道,沿第二方向间隔设置,且分别与邻近所述待加工表面两侧边缘的两个调整区域相对应,并且两个所述第二进气通道之间设置有至少一个所述第一进气通道;每个所述第二进气通道用于沿所述第一方向向所述调整区域提供第二处理气体,所述第二处理气体用于调整流经所述调整区域的所述用于外延反应的气体的浓度,其中,所述第二方向垂直于所述第一方向,且平行于所述待加工表面。
在一些实施例中,所述第二处理气体包含用于外延反应的气体,且所述第二处理气体中所述用于外延反应的气体的含量低于所述第一处理气体中所述用于外延反应的气体的含量。
在一些实施例中,自所述第一进气通道的出口流出的所述第一处理气体的流速与自所述第二进气通道的出口流出的所述第二处理气体的流速相同。
在一些实施例中,每个所述第二进气通道均包括多个辅助进气管,所述 多个辅助进气管排列形成等边多边形的径向截面形状,且所述等边多边形的最低点与所述第一进气通道的径向截面的最低点位于同一平面。
在一些实施例中,每个所述第二进气通道均包括三个所述辅助进气管,三个所述辅助进气管排列形成等边三角形的径向截面形状。
在一些实施例中,所述第一进气通道的孔径大于所述第二进气通道的孔径,且所述第一进气通道的孔径与所述第二进气通道的孔径的比例范围为60至6。
本发明实施例提供的进气结构,其包括多个第一进气通道及两个第二进气通道,能够沿相同方向向待加工工件的待加工表面提供第一处理气体,以及向位于待加工表面两侧的外围区域提供第二处理气体。其中,第二处理气体用于调整流经所述调整区域的所述用于外延反应的气体的浓度,从而可以改善整个待加工表面上所形成的外延层的厚度分布均匀性;此外,由于第一处理气体及第二处理气体的进气方向相同,这可以使第一处理气体及第二处理气体的气流平顺,没有紊流产生,从而有利于对外延层的厚度分布进行控制。
本发明实施例提供的外延装置,其通过采用本发明实施例提供的上述进气结构,可以改善整个待加工表面上所形成的外延层的厚度分布均匀性。
附图说明
图1是本发明一实施例提供的外延装置的俯视示意图;
图2是本发明一实施例提供的外延装置的侧视示意图;
图3是本发明一实施例提供的进气结构的示意图;
图4是本发明另一实施例提供的进气结构的示意图;
图5是本发明另一实施例提供的外延装置的俯视示意图;
图6是本发明一实施例提供的进气方法的流程图。
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示 的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
为了提高外延层的厚度分布均匀性,在现有技术中,硅外延设备的腔室部件包含主进气结构及辅助进气结构,用以由不同的方向向腔室中通入主要工艺气体及辅助工艺气体。但是,由于进入腔室的主要工艺气体及辅助工艺气体在相遇时会因气流交叉而无法保持气流平顺,故而仍然存在所形成的外延层的厚度分布不易控制的问题。
本公开内容是在考虑到以上所提到情形的情况下做出,提供一种使用外延工艺的薄膜形成方法以及外延装置,其能够实现稳定的外延层生长速率,同时确保外延层的厚度分布均匀。进一步地,本公开内容提供一种用于外延装置的腔室部件,特别是一种进气结构。示例性的进气结构包括多个第一进气通道及两个第二进气通道,其中,两个第二进气通道沿第二方向间隔设置,且分别与邻近待加工表面两侧边缘的两个调整区域相对应,并且两个第二进气通道之间设置有至少一个第一进气通道;每个第二进气通道用于沿所述第一方向向调整区域提供第二处理气体。这些部件的改进可以提高待加工表面上所形成的外延层的厚度分布均匀性,从而使得产品质量提高。
图1和图2是本发明一实施例提供的外延装置的示意图。在本实施例中,外延装置用于对待加工工件的待加工表面进行处理,举例来说,用于在待加工工件(如晶圆)的待加工表面形成外延层。如图1和图2所示,外延装置包括腔室4、设置在腔室4中用于承载待加工工件6的基台5、进气结构1及排气结构7。其中,进气结构1设置于腔室4的侧壁上,用于向待加工工件6的待加工表面提供处理气体。排气结构7设置于与进气结构1相对的腔室4的侧壁上,用于进行气体排放。
在一些实施例中,在图1中,由俯视方向来看,基台5的上表面的直径大于待加工工件6的待加工表面的直径,这样,当待加工工件6被置于基台5的上表面时,基台5有部分上表面(即,位于待加工工件6外侧的区域)未被待加工工件6覆盖。在一些实施例中,基台5可以旋转。当基台5旋转时,待加工工件6会一同旋转。在一些实施例中,基台5可以加热待加工工件6,使待加工工件6可以在预定温度下形成外延层。
进气结构1包括多个第一进气通道2及两个第二进气通道3。其中,多个第一进气通道2用于沿第一方向X1向待加工工件6的待加工表面提供第一处理气体,该第一处理气体包含用于外延反应的气体。第一方向X1平行于待加工工件6的待加工表面。详细来说,第一方向X1是平行于待加工表面的其中一个径向方向。两个第二进气通道3沿第二方向X2间隔设置,且有至少一个第一进气通道2设置于两个第二进气通道3之间。第二方向X2平行于待加工工件6的待加工表面,且与第一方向X1相互垂直。并且,两个第二进气通道3分别与邻近待加工表面两侧边缘的两个调整区域61相对应,每个第二进气通道3均用于沿第一方向X1向该调整区域61提供第二处理气体,该第二处理气体用于调整流经所述调整区域的所述用于外延反应的气体的浓度。
在实际应用中,利用上述进气结构1可同时或交替地将第一处理气体及第二处理气体通入腔室4中。当同时通入第一处理气体及第二处理气体时,由于多个第一进气通道2及两个第二进气通道3均沿第一方向X1进气,即,第一处理气体及第二处理气体的进气方向相同,第一处理气体及第二处理气体沿第一方向X1分别通过待加工表面的上方和调整区域61后,继续沿第一方向X1进入排气结构7,从而不会有紊流产生;并且,在通入第一处理气体的基础上,通过向上述调整区域61通入第二处理气体,可以调节流经该调整区域61的用于外延反应的气体的浓度,以减小待加工表面的邻近该调整区域 61的边缘区域与待加工表面的中心区域之间的用于外延反应的气体的浓度差异。
举例来说,在使用外延装置对待加工工件6的待加工表面进行处理时,由于基台5带动待加工工件6共同旋转,而位于待加工工件6的待加工表面两侧的调整区域61会出现气流速度突变,这使得待加工表面的中心区域所形成的外延层的厚度与邻近调整区域61的边缘区域所形成的外延层的厚度不同。具体来说,待加工表面的边缘区域所形成的外延层的厚度相对于待加工表面的中心区域较厚。在这种情况下,可以利用第二处理气体稀释流经调整区域61的用于外延反应的气体的浓度,以使待加工表面的边缘区域所形成的外延层的厚度变薄,从而可以提高待加工表面所形成的外延层的厚度的分布均匀性。
在某些实施例中,上述第二处理气体包含用于外延反应的气体,且第二处理气体中用于外延反应的气体的含量低于第一处理气体中用于外延反应的气体的含量。这样,上述第二处理气体可以起到稀释流经调整区域61的用于外延反应的气体的浓度的作用。当然,在实际应用中,上述第二处理气体还可以不包含用于外延反应的气体,而采用能够调整流经所述调整区域的用于外延反应的气体的浓度的其他任意气体。
在某些实施例中,第二处理气体还用于在待加工表面两侧的调整区域61形成气幕(air curtain),用以确保第一处理气体能够流经待加工表面上方。
需要说明的是,图1中示出的调整区域61位于待加工表面的外周缘的外侧,但是,本发明实施例并不局限于此,在实际应用中,调整区域61的范围并没有特别限制,例如,也可以位于待加工表面的外周缘内侧的边缘区域,或者还可以既位于待加工表面的外周缘外侧的外围区域,又位于待加工表面的外周缘内侧的边缘区域。
在一些实施例中,待加工表面的半径Rs与调整区域61在第二方向上的 宽度的比值大于等于15。
在一些实施例中,自第一进气通道2的出口流出的第一处理气体的流速与自第二进气通道3的出口流出的第二处理气体的流速相同。这样,在第一处理气体及第二处理气体均沿第一方向X1流动的基础上,通过使分别自一进气通道2及第二进气通道3的出口流出第一处理气体及第二处理气体的流速相同,可以使待加工表面的整个区域上方的气流平顺,没有紊流产生,从而有利于在待加工表面的整个区域形成厚度均匀的外延层。
在一些实施例中,多个第一进气通道2沿第二方向X2均匀排列。这样,在自各个第一进气通道2的出口流出的第一处理气体均沿第一方向X1流动的基础上,通过使多个第一进气通道2沿第二方向X2均匀排列,可以使流经待加工表面不同位置处的第一处理气体均匀分布,多个第一进气信道2的排列密度可根据具体需求自由调整,例如根据待加工工件6的尺寸、腔室4的空间尺寸、气体流速等参数对多个第一进气信道2的排列密度进行调整。
在一些实施例中,每一个第一进气通道2和与之相邻的第一进气通道2的间距范围为5mm至30mm。
在一些实施例中,多个第一进气通道2沿第二方向X2的总分布距离Dg2大于等于待加工表面的直径Ds,这样可以使自多个第一进气通道2流出第一处理气体可以流经整个待加工表面。上述总分布距离Dg2是指位于最外侧的两个第一进气通道2之间在第二方向X2上的最大间距。
在一些实施例中,进气结构1与待加工表面在第三方向Y上的距离并没有特别限制,只要能使第一处理气体能有效的与整个待加工表面的反应即可。上述第三方向Y与待加工表面相互垂直。
在一些实施例中,每个第一进气通道2的中心及每个第二进气通道3的中心与待加工表面在第三方向Y上的距离相同,即,每个第一进气通道2及每个第二进气通道3相对于待加工表面位于同一高度。
在一些实施例中,第一处理气体包括载气、用于外延反应的气体以及掺杂气体。其中,载气包括氮(N2)、氢(H2)中的至少一种。用于外延反应的气体包括硅烷(SiH4)、二氯二氢硅(SiH2Cl2)、三氯氢硅(SiHCl3)、四氯化硅(SiCl4)中的至少一种。掺杂气体包括磷化氢(PH3)、二硼烷(B2H6)、砷化氢(AsH3)中的至少一种。
在一些实施例中,第二处理气体包括载气、用于外延反应的气体、掺杂气体中的至少一种。第二处理气体中用于外延反应的气体的含量低于第一处理气体中用于外延反应的气体的含量。载气包括氮(N2)、氢(H2)中的至少一种。用于外延反应的气体包括硅烷(SiH4)、二氯二氢硅(SiH2Cl2)、三氯氢硅(SiHCl3)、四氯化硅(SiCl4)中的至少一种。掺杂气体包括磷化氢(PH3)、二硼烷(B2H6)、砷化氢(AsH3)中的至少一种。
上述第二处理气体用于调节调整区域61的用于外延反应的气体的浓度。举例来说,第二处理气体能够稀释调整区域61的用于外延反应的气体,使得调整区域61的用于外延反应的气体的浓度降低。在一些实施例中,在第一处理气体的组成及流量固定的条件下,通过调整第二处理气体的载气浓度及每个第二进气通道3的位置,可以改变用于外延反应的气体的浓度及其被稀释的区域。
在一些实施例中,若需要对调整区域61的用于外延反应的气体进行稀释,则可以利用每个第二进气通道3向对应的调整区域61提供气流稳定的第二处理气体,例如使自每个第二进气通道3的出气口流出的第二处理气体的流量固定。
在一些实施例中,随着工艺条件的不同,在第二处理气体的流量固定的情况下,通过调节第二处理气体中的载气浓度,可以适当地稀释第一处理气体。在一些实施例中,第二处理气体的载气用于稀释第一处理气体中用于外延反应的气体。在一些实施例中,为使在被稀释的区域,第一处理气体中用 于外延反应的气体的浓度不会突然降得过低,应保证第二处理气体中所包含的载气和用于外延反应的气体的占比合适。在一些实施例中,第二处理气体包括载气及掺杂气体,而不含有用于外延反应的气体。
在一些实施例中,第一处理气体中用于外延反应的气体的占比为a%,载气的占比为(100-a)%(掺杂气体另计);第二处理气体中用于外延反应的气体的占比为b%,载气的占比为(100-b)%(掺杂气体另计),其中a是小于100且大于b的正数。基于此,当含量为m的第一处理气体与含量为n的第二处理气体混合,假设混合后的用于外延反应的气体的浓度为x%,则x%等于(am+bn)/(m+n),且x介于a与b之间。由前述可知,当第二处理气体中用于外延反应的气体的含量低于第一处理气体中用于外延反应的气体的含量,第二处理气体会稀释第一处理气体中用于外延反应的气体,进而改善整个待加工表面上所形成的外延层的厚度均匀性。
图3是本发明一实施例提供的进气结构的示意图。如图3所示,在一些实施例中,第二进气通道3的孔径小于第一进气通道2的孔径,这样,由第二进气通道3流出的第二处理气体的分布区域在第二方向X2上的宽度较窄,不会占用由第一进气通道2流出的第一处理气体的分布区域,以保证第一处理气体能够与待加工表面进行外延反应。在一些实施例中,第一进气通道2的孔径与第二进气通道3的孔径的比例范围为60至6。
在一些实施例中,每个第一进气通道2的出口的中心与每个第二进气通道3的出口的中心位于同一平面,例如每一个第一进气通道2的出口的中心与每个第二进气通道3的出口的中心均位于平面P1,该平面P1与待加工平面相互平行。在一些实施例中,两个第二进气通道3在第二方向X2上的总分布距离Dg1与待加工表面的直径Ds的比例范围为0.8至1.4。总分布距离Dg1是指最外侧的两个第二进气通道3之间在第二方向X2上的最大距离。
在一些实施例中,两个第二进气通道3在第二方向X2上的总分布距离 Dg1是待加工表面的直径Ds±50mm。在一些实施例中,两个第二进气通道3在第二方向X2上的总分布距离Dg1小于多个第一进气通道2在第二方向X2上的总分布距离Dg2。
需要注意的是,在图3所示的实施例中,每个第一进气通道2以及每个第二进气通道3可以分别与独立的管线连接,各个独立的管线分别独立地向各个第一进气通道2和第二进气通道3提供第一处理气体及第二处理气体。然而,此并非本发明实施例的一限制。在其他实施例中,多个第一进气通道2可以与同一管线连接,该管线同时向各个第一进气通道2提供第一处理气体,而两个第二进气通道3可以与同一管线连接,该管线同时向各个第二进气通道3提供第二处理气体。只要分别自各个第一进气通道2及各个第二进气通道3的出口流出的第一处理气体及第二处理气体的流速相同,皆应隶属于本发明实施例的范畴。
图4是本发明一实施例提供的进气结构的示意图。如图4所示,在一些实施例中,分散第二处理气体的气流,有利于保持第一处理气体的气流平顺。具体做法例如但不限于,每个第二进气通道3具有多个出气口,其中,每个第二进气通道3可以包括一个辅助进气管,且该辅助进气管具有多个出气口,或者每个第二进气通道3可以包括多个辅助进气管,每个辅助进气管具有单个出气口。例如,如图4所示,每个第二进气通道3可以包括三个辅助进气管31,每个辅助进气管31均具有单个出气口,只要自每个出气口流出的第二处理气体的流速相同,皆应隶属于本发明的范畴。
在一些实施例中,多个辅助进气管排列形成等边多边形的径向截面形状,例如但不限于以等边三角形,且等边多边形的一边与第一进气通道2的径向截面的最低点位于同一平面,例如等边多边形的一边与第一进气通道2的径向截面的最低点均位于平面P2,例如,如图4所示,三个辅助进气管31排列形成等边三角形的径向截面形状,且该等边三角形的底边与第一进气 通道2的径向截面的最低点例如但不限于位于同一平面P2。
在实际应用中,外延装置还可以具有其他必要的装置与组件以对待加工工件6进行加工。举例来说,外延装置应具有加热装置,用以将承载于基台5的待加工工件6的温度调整致预定的加工温度。举例来说,加热装置设置于基台5中。为求图式简洁,图1及图2仅描绘与本发明实施例的发明精神相关的装置与组件。
图5是本发明一实施例提供的外延装置的俯视图。如图5所示,在一些实施例中,两个第二进气通道3在第二方向X2上的总分布距离Dg1大于多个第一进气通道2在第二方向X2上的总分布距离Dg2。也就是说,在图5中,以俯视方向观察进气结构1,多个第一进气通道2均设置在两个第二进气通道3之间。在此情况下,进气结构1所提供的第一处理气体全部被限制在由第二处理气体在待加工表面两侧所形成的气幕之间。在一些实施例中,两个第二进气通道3沿第二方向X2的总分布距离Dg1大于待加工表面的直径Ds。在一些实施例中,两个第二进气通道3在第二方向X2上的总分布距离Dg1大于多个第一进气通道2在第二方向X2上的总分布距离Dg2,且多个第一进气通道2沿第二方向X2的总分布距离Dg2大于待加工表面的直径Ds。
本公开内容还提供一种进气方法,特别是用于外延装置的一种进气方法。示例性的进气方法如图6所示,其绘示了本发明一实施例提供的进气方法。倘若大体上能得到相同的结果,图6所示的步骤不需依所描述的顺序执行,且可实行其他顺序或同时进行。进气方法8包括以下步骤:
步骤81,在第一方向X1上向待加工工件6的整个待加工表面提供一第一处理气体。
步骤82,在第一方向X1上分别向与邻近待加工表面两侧边缘的两个调整区域61提供第二处理气体。在一些实施例中,进气方法8是在如图1、2 或5所绘示的外延装置中进行。
在一些实施例中,第一处理气体及第二处理气体是同时提供,第二处理气体用于调整流经调整区域61的用于外延反应的气体的浓度,例如稀释第一处理气体中的用于外延反应的气体。
在一些实施例中,第一方向X1平行于待加工表面的一个径向方向,且位于待加工表面上方。第一处理气体与第二处理气体能够对待加工表面进行外延反应。在一些实施例中,为使腔室1中的总体气流保持平顺,第一处理气体通过待加工表面的流速与第二处理气体通过调整区域61的流速相同。
本发明将就以下实施例来作进一步说明,但应了解的是,该等实施例仅为例示说明之用,而不应被解释为本发明实施之限制。
<实施例1>
将第一处理气体由第一进气通道2沿第一方向X1通入腔室4,以使第一处理气体与腔室4中被基台5承载的待加工工件6的待加工表面进行外延反应,其中,第一处理气体的流量为50SLM;第一处理气体所包含的用于外延反应的气体的浓度为4%;同时,将不含用于外延反应的气体的第二处理气体由两个第二进气通道3沿第一方向X1通入腔室4,以向待加工表面两侧的调整区域61提供第二处理气体。其中,第二处理气体的流量为3SLM。
上述用于外延反应的气体包括硅源。
待加工工件6为晶圆,流经上述调整区域61的用于外延反应的气体的平均浓度为3.5%。经外延生长后,距离外延层边缘3mm处的外延层厚度比距离外延层边缘10mm处的外延层厚度厚1%。
<对照例1>
将第一处理气体由第一进气通道2沿第一方向X1通入腔室4,以使第一处理气体与腔室4中被基台5承载的待加工工件6的待加工表面进行外延反应,其中,第一处理气体的流量为50SLM;第一处理气体所包含的用于外 延反应的气体的浓度为4%;两个第二进气通道3未通入气体。
上述用于外延反应的气体包括硅源。
待加工工件6为晶圆。经外延生长后,距离外延层边缘3mm处的外延层厚度比距离外延层边缘10mm处的外延层厚度厚4%。
通过对比上述实施例1及对照例1后可知,在由第一进气通道2通入第一处理气体的同时,由两个第二进气通道3通入包含或不含用于外延反应的气体的第二处理气体,可以显着改善在待加工工件6的整个待加工表面上形成的外延层的厚度分布均匀性。
简单归纳本发明,本发明实施例提供一种进气结构及相关外延装置,利用本发明实施例提供的进气结构,其包括的多个第一进气通道2及两个第二进气通道3,多个第一进气通道2能够向待加工工件6的待加工表面提供第一处理气体;两个第二进气通道3能够沿与第一进气通道2相同方向向位于待加工表面两侧的外围区域提供第二处理气体。其中,第一处理气体包含用于外延反应的气体,第二处理气体包含或不含用于外延反应的气体,第二处理气体中用于外延反应的气体的含量低于第一处理气体中用于外延反应的气体的含量。本发明实施例提供的进气结构使得第一处理气体及第二处理气体的气流平顺,进而改善整个待加工表面上所形成的外延层的厚度分布均匀性。

Claims (18)

  1. 一种外延装置,其特征在于,包括:
    腔室;
    设置在所述腔室中用于承载待加工工件的基台;
    进气结构,设置于所述腔室的侧壁上,用于向所述待加工工件的待加工表面提供处理气体,所述进气结构包括:
    多个第一进气通道,用于沿第一方向向整个所述待加工表面提供包含用于外延反应的气体的第一处理气体,所述第一方向平行于所述待加工表面;以及
    两个第二进气通道,沿第二方向间隔设置,且分别与邻近所述待加工表面两侧边缘的两个调整区域相对应,并且两个所述第二进气通道之间设置有至少一个所述第一进气通道;每个所述第二进气通道用于沿所述第一方向向所述调整区域提供第二处理气体,所述第二处理气体用于调整流经所述调整区域的所述用于外延反应的气体的浓度,其中,所述第二方向垂直于所述第一方向,且平行于所述待加工表面;以及
    排气结构,设置于与所述进气结构相对的所述腔室的侧壁上。
  2. 如权利要求1所述的外延装置,其特征在于,所述第二处理气体包含用于外延反应的气体,且所述第二处理气体中所述用于外延反应的气体的含量低于所述第一处理气体中所述用于外延反应的气体的含量。
  3. 如权利要求1所述的外延装置,其特征在于,所述待加工表面的半径与所述调整区域在所述第二方向上的宽度的比值大于等于15。
  4. 如权利要求1所述的外延装置,其特征在于,自所述第一进气通道的出口流出的所述第一处理气体的流速与自所述第二进气通道的出口流出的所述第二处理气体的流速相同。
  5. 如权利要求1所述的外延装置,其特征在于,所述多个第一进气通道沿所述第二方向均匀排列。
  6. 如权利要求1所述的外延装置,其特征在于,所述多个第一进气通道在所述第二方向上的总分布距离大于等于所述待加工表面的直径。
  7. 如权利要求1所述的外延装置,其特征在于,每个所述第二进气通道均包括多个辅助进气管,所述多个辅助进气管排列形成等边多边形的径向截面形状,且所述等边多边形的最低点与所述第一进气通道的径向截面的最低点位于同一平面。
  8. 如权利要求1所述的外延装置,其特征在于,两个所述第二进气通道在所述第二方向上的总分布距离与所述待加工表面的直径的比例范围为0.8至1.4。
  9. 如权利要求1所述的外延装置,其特征在于,每个所述第一进气通道和与之相邻的所述第一进气通道之间的间距范围为5mm至30mm。
  10. 如权利要求1所述的外延装置,其特征在于,所述第一进气通道的孔径大于所述第二进气通道的孔径,且所述第一进气通道的孔径与所述第二进气通道的孔径的比例范围为60至6。
  11. 如权利要求1所述的外延装置,其特征在于,所述第一处理气体包括载气、所述用于外延反应的气体以及掺杂气体,其中,所述载气包括氮、氢中的至少一种,所述用于外延反应的气体包括硅烷、二氯二氢硅、三氯氢硅、四氯化硅中的至少一种,所述掺杂气体包括磷化氢、二硼烷、砷化氢中的至少一种。
  12. 如权利要求1所述的外延装置,其特征在于,所述第二处理气体包括载气、所述用于外延反应的气体、掺杂气体中的至少一种,所述载气包括氮、氢中的至少一种,所述用于外延反应的气体包括硅烷、二氯二氢硅、三氯氢硅、四氯化硅中的至少一种,所述掺杂气体包括磷化氢、二硼烷、砷化氢中的至少一种。
  13. 一种进气结构,应用于外延装置中,其特征在于,包括:
    多个第一进气通道,用于沿第一方向向待加工工件的待加工表面提供包 含用于外延反应的气体的第一处理气体,所述第一方向平行于所述待加工表面;以及
    两个第二进气通道,沿第二方向间隔设置,且分别与邻近所述待加工表面两侧边缘的两个调整区域相对应,并且两个所述第二进气通道之间设置有至少一个所述第一进气通道;每个所述第二进气通道用于沿所述第一方向向所述调整区域提供第二处理气体,所述第二处理气体用于调整流经所述调整区域的所述用于外延反应的气体的浓度,其中,所述第二方向垂直于所述第一方向,且平行于所述待加工表面。
  14. 如权利要求13所述的进气结构,其特征在于,所述第二处理气体包含用于外延反应的气体,且所述第二处理气体中所述用于外延反应的气体的含量低于所述第一处理气体中所述用于外延反应的气体的含量。
  15. 如权利要求13所述的进气结构,其特征在于,自所述第一进气通道的出口流出的所述第一处理气体的流速与自所述第二进气通道的出口流出的所述第二处理气体的流速相同。
  16. 如权利要求13所述的进气结构,其特征在于,每个所述第二进气通道均包括多个辅助进气管,所述多个辅助进气管排列形成等边多边形的径向截面形状,且所述等边多边形的最低点与所述第一进气通道的径向截面的最低点位于同一平面。
  17. 如权利要求16所述的进气结构,其特征在于,每个所述第二进气通道均包括三个所述辅助进气管,三个所述辅助进气管排列形成等边三角形的径向截面形状。
  18. 如权利要求13所述的进气结构,其特征在于,所述第一进气通道的孔径大于所述第二进气通道的孔径,且所述第一进气通道的孔径与所述第二进气通道的孔径的比例范围为60至6。
PCT/CN2020/113708 2019-09-18 2020-09-07 外延装置及应用于外延装置的进气结构 WO2021052203A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/642,889 US20220356600A1 (en) 2019-09-18 2020-09-07 Epitaxial device and gas intake structure for epitaxial device
JP2022515557A JP7320669B2 (ja) 2019-09-18 2020-09-07 エピタキシャルデバイス及びエピタキシャルデバイス用のガス吸気構造
KR1020227006187A KR102515428B1 (ko) 2019-09-18 2020-09-07 에피택시 장치 및 에피택시 장치에 적용하는 흡기 구조
EP20865135.6A EP4033011A4 (en) 2019-09-18 2020-09-07 EPITAXY DEVICE AND GAS INLET STRUCTURE FOR EPITAXY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910882912.9 2019-09-18
CN201910882912.9A CN111455458B (zh) 2019-09-18 2019-09-18 外延装置及应用于外延装置的进气结构

Publications (1)

Publication Number Publication Date
WO2021052203A1 true WO2021052203A1 (zh) 2021-03-25

Family

ID=71679140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113708 WO2021052203A1 (zh) 2019-09-18 2020-09-07 外延装置及应用于外延装置的进气结构

Country Status (6)

Country Link
US (1) US20220356600A1 (zh)
EP (1) EP4033011A4 (zh)
JP (1) JP7320669B2 (zh)
KR (1) KR102515428B1 (zh)
CN (1) CN111455458B (zh)
WO (1) WO2021052203A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111455458B (zh) * 2019-09-18 2021-11-16 北京北方华创微电子装备有限公司 外延装置及应用于外延装置的进气结构
CN115029775A (zh) * 2021-03-05 2022-09-09 中国电子科技集团公司第四十八研究所 一种气体水平流动的外延生长设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110114013A1 (en) * 2009-11-19 2011-05-19 Kunihiko Suzuki Film deposition apparatus and method
CN104756231A (zh) * 2012-10-26 2015-07-01 应用材料公司 具有可定制的流动注入的外延腔室
CN110004487A (zh) * 2017-12-25 2019-07-12 胜高股份有限公司 外延生长装置和使用其的半导体外延晶片的制造方法
CN111455458A (zh) * 2019-09-18 2020-07-28 北京北方华创微电子装备有限公司 外延装置及应用于外延装置的进气结构

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221556A (en) * 1987-06-24 1993-06-22 Epsilon Technology, Inc. Gas injectors for reaction chambers in CVD systems
JP2715759B2 (ja) * 1991-12-03 1998-02-18 日本電気株式会社 化合物半導体の気相成長方法
US5551982A (en) * 1994-03-31 1996-09-03 Applied Materials, Inc. Semiconductor wafer process chamber with susceptor back coating
US7163587B2 (en) * 2002-02-08 2007-01-16 Axcelis Technologies, Inc. Reactor assembly and processing method
US6927140B2 (en) * 2002-08-21 2005-08-09 Intel Corporation Method for fabricating a bipolar transistor base
US20040050326A1 (en) * 2002-09-12 2004-03-18 Thilderkvist Karin Anna Lena Apparatus and method for automatically controlling gas flow in a substrate processing system
US20040050325A1 (en) * 2002-09-12 2004-03-18 Samoilov Arkadii V. Apparatus and method for delivering process gas to a substrate processing system
TW200809926A (en) * 2006-05-31 2008-02-16 Sumco Techxiv Corp Apparatus and method for depositing layer on substrate
US20080220150A1 (en) * 2007-03-05 2008-09-11 Applied Materials, Inc. Microbatch deposition chamber with radiant heating
JP4560575B2 (ja) * 2008-01-31 2010-10-13 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
JP5206282B2 (ja) * 2008-09-29 2013-06-12 株式会社Sumco エピタキシャルウェーハの製造方法
JP5268766B2 (ja) * 2009-04-23 2013-08-21 Sumco Techxiv株式会社 成膜反応装置及び成膜基板製造方法
US9410248B2 (en) * 2010-03-29 2016-08-09 Koolerheadz Modular gas injection device
FR2963024B1 (fr) * 2010-07-26 2016-12-23 Altatech Semiconductor Reacteur de depot chimique en phase gazeuse ameliore
WO2012128783A1 (en) * 2011-03-22 2012-09-27 Applied Materials, Inc. Liner assembly for chemical vapor deposition chamber
US9499905B2 (en) * 2011-07-22 2016-11-22 Applied Materials, Inc. Methods and apparatus for the deposition of materials on a substrate
US20130255784A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Gas delivery systems and methods of use thereof
US20140224175A1 (en) * 2013-02-14 2014-08-14 Memc Electronic Materials, Inc. Gas distribution manifold system for chemical vapor deposition reactors and method of use
JP2015173226A (ja) * 2014-03-12 2015-10-01 株式会社アルバック 真空成膜装置及びこの装置を用いた成膜方法
CN107723790B (zh) * 2016-08-12 2020-07-07 上海新昇半导体科技有限公司 一种外延设备、设备制作方法及外延方法
US10691145B2 (en) * 2016-10-03 2020-06-23 Applied Materials, Inc. Multi-channel flow ratio controller and processing chamber
US11053591B2 (en) * 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
CN110164757A (zh) * 2019-05-31 2019-08-23 中国科学院半导体研究所 化合物半导体及其外延方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110114013A1 (en) * 2009-11-19 2011-05-19 Kunihiko Suzuki Film deposition apparatus and method
CN104756231A (zh) * 2012-10-26 2015-07-01 应用材料公司 具有可定制的流动注入的外延腔室
CN110004487A (zh) * 2017-12-25 2019-07-12 胜高股份有限公司 外延生长装置和使用其的半导体外延晶片的制造方法
CN111455458A (zh) * 2019-09-18 2020-07-28 北京北方华创微电子装备有限公司 外延装置及应用于外延装置的进气结构

Also Published As

Publication number Publication date
EP4033011A4 (en) 2023-09-20
KR102515428B1 (ko) 2023-03-29
CN111455458A (zh) 2020-07-28
KR20220042167A (ko) 2022-04-04
CN111455458B (zh) 2021-11-16
US20220356600A1 (en) 2022-11-10
JP7320669B2 (ja) 2023-08-03
JP2022539436A (ja) 2022-09-08
EP4033011A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
US20180230595A1 (en) Vapor phase film-forming apparatus
WO2021052203A1 (zh) 外延装置及应用于外延装置的进气结构
US20190106788A1 (en) Gas distribution system, reactor including the system, and methods of using the same
TWI523974B (zh) A CVD reactor carried by a multi-zone air cushion, and a method of controlling the temperature of the surface temperature of the substrate base
KR102586986B1 (ko) 에피택셜 성장 및 에피택셜 성장 장치를 사용하는 필름 형성 방법
JP4379585B2 (ja) 気相成長装置およびエピタキシャルウェーハの製造方法
JPH07193015A (ja) ウェハ処理チャンバ用ガス入口
CN105441904A (zh) 气体喷淋装置、化学气相沉积装置和方法
JP5018708B2 (ja) 気相処理装置、気相処理方法および基板
JP7365761B2 (ja) 気相成長装置
WO2005059980A1 (ja) 気相成長装置およびエピタキシャルウェーハの製造方法
CN110400768B (zh) 反应腔室
US20190062909A1 (en) Inject assembly for epitaxial deposition processes
JP4581868B2 (ja) エピタキシャル成長装置およびその製造方法
JP2005353665A (ja) 気相成長装置およびエピタキシャル気相成長装置用ガス導入口の仕切り部材の傾斜角度設定方法
TWI490367B (zh) 金屬有機化合物化學氣相沉積方法及其裝置
JPH0487323A (ja) Cvd装置
KR100190909B1 (ko) 화학기상증착 반응기용 다구역 샤워헤드
JP6179790B2 (ja) 気相成長装置及びエピタキシャルウェーハの製造方法
CN219326832U (zh) 辅助进气结构及半导体工艺设备的工艺腔室
JP2010040541A (ja) エピタキシャル装置
JP2000349030A (ja) 気相反応装置
CN105779970B (zh) 气体喷淋头和沉积装置
JP2011086887A (ja) エピタキシャル成長装置
CN117468086A (zh) 一种外延反应室气流分配装置及外延设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227006187

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022515557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865135

Country of ref document: EP

Effective date: 20220419