WO2021052071A1 - 一种表面接枝聚合物的聚烯烃材料及其制备方法与应用 - Google Patents

一种表面接枝聚合物的聚烯烃材料及其制备方法与应用 Download PDF

Info

Publication number
WO2021052071A1
WO2021052071A1 PCT/CN2020/108781 CN2020108781W WO2021052071A1 WO 2021052071 A1 WO2021052071 A1 WO 2021052071A1 CN 2020108781 W CN2020108781 W CN 2020108781W WO 2021052071 A1 WO2021052071 A1 WO 2021052071A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
polyolefin
acrylate
methacrylate
free radical
Prior art date
Application number
PCT/CN2020/108781
Other languages
English (en)
French (fr)
Inventor
应淑妮
陈国贵
郑思珣
李蕾
Original Assignee
浙江伟星新型建材股份有限公司
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江伟星新型建材股份有限公司, 上海交通大学 filed Critical 浙江伟星新型建材股份有限公司
Publication of WO2021052071A1 publication Critical patent/WO2021052071A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • the invention belongs to the technical field of polymer material synthesis and modification, and relates to a polyolefin material grafted with a polymer on the surface, and a preparation method and application thereof.
  • Polyolefin materials such as polyethylene, polypropylene, etc.
  • surface modification is usually required.
  • one is to directly use polyolefin profiles (pipes, plates, etc.) for surface modification; the other is to prepare functional modifiers first, and then use the modifiers Blended with polyolefin materials and processed into shapes.
  • the first method is not suitable for large-scale industrial production due to the limitation of material size and processing technology.
  • the second method is simple to operate and suitable for industrial production.
  • Plasma technology is an important surface treatment method for polymer materials. Compared with other types of treatment methods such as chemical reagent treatment, corona discharge treatment, and irradiation-induced surface grafting treatment, plasma treatment technology has the characteristics of energy saving, low pollution, low cost, high efficiency, and simple process. It is widely used. Applied to the surface treatment of polymer materials. There is no literature report on the study of combining plasma surface treatment technology with graft polymerization to prepare copolymers containing polyolefin and modifier components, and using them as modifiers in the modification of commercial polyolefin materials. .
  • Cide patent CN103183781A discloses a plasma-induced method for preparing vinyl monomer-polyolefin graft copolymers.
  • the dielectric barrier discharge (DBD) method is used to ionize the gas into plasma, and at the same time, the plasma is used to treat the surface of polymer solid particles. After treatment, after a short period of time, active radicals such as peroxy groups are generated on the surface of the polymer.
  • the polymer particles after the treatment are immediately transferred to a flask containing vinyl monomers such as styrene, and the grafting reaction is carried out under the protection of nitrogen.
  • vinyl monomers such as styrene are grafted onto the surface of the polymer to form a grafted polymer on the one hand, and on the other hand, it also undergoes a homopolymerization reaction. After a certain period of time, use a specific cleaning solution to wash away the homopolymer, and only the remaining product is the target product polymer graft copolymer.
  • the grafting raw material is industrial pellets with a larger diameter and a smaller specific surface area (about 12.6-63.2 cm 2 /g) Therefore, the grafting efficiency is not high, and other ingredients such as antioxidants and anti-aging agents are often added in the process of preparing pellets. The presence of these ingredients may affect the graft polymerization.
  • the graft polymerized monomer in the patent is a styrene monomer, and more widely used functional monomers such as (meth)acrylate and vinyl-containing monomers are not mentioned in the patent; 3)
  • the purpose of the present invention is to provide a preparation method and application thereof in order to overcome the defect of poor bonding performance between traditional modifiers and polyolefins.
  • a method for surface grafting of polyolefin includes the following steps:
  • the polymer powder is washed twice with a solvent to remove the homopolymer, and is fully dried in a vacuum oven at 40°C for 24 hours to obtain a polyolefin powder with a surface grafted polymer.
  • the polyolefin powder is one of polyethylene powder, polypropylene powder, ethylene propylene copolymer powder or polyvinylidene fluoride powder;
  • the inert gas is One of helium or argon.
  • step 3 according to the grafting rate set in the experiment, the added amount of the polyolefin powder containing peroxide on the surface is 5-95% of the mass of the polymerized monomer;
  • the concentration of the polymerized monomer in the solvent is 0.1-1 g/mL, so that the polyolefin powder is fully dispersed in the solvent;
  • the solvent must be able to dissolve the reaction monomers and the resulting polymer, such as 1,4-dioxane, toluene, xylene, N-methylpyrrolidone, N-methylacetamide, N,N-dimethyl One of methyl formamide or N,N-dimethylacetamide.
  • the radical polymerization reaction includes ordinary radical polymerization reaction or living radical polymerization reaction
  • the free radical polymerization reaction is an ordinary free radical polymerization reaction
  • the polyolefin powder containing peroxide on the surface is directly added to the solvent containing the polymerized monomer as a free radical initiator;
  • the polyolefin powder containing peroxide on the surface first reacts with diisopropyl xanthate or dithiobenzoic anhydride to form the surface of the polyolefin powder Xanthates or dithioesters are added to the solvent containing polymerized monomers.
  • the polyolefin powder containing xanthogenate or dithioester on the surface can be used as a chain transfer agent for living radical polymerization, that is, RAFT reagent, so it can be grafted with acrylic polymer by RAFT polymerization.
  • RAFT polymerization can make the polymerization reaction controllable: that is, by adjusting the reactant feed ratio and reaction time, the molecular weight of the grafted polymer can be accurately controlled, and the molecular weight distribution of the grafted polymer is narrow.
  • the feed ratio of polyolefin powder with peroxide on the surface to diisopropyl xanthate or dithiobenzoic anhydride is 1:1-1:10 to make it peroxygen
  • the radical fully participates in the reaction to transform into a chain transfer agent.
  • the reaction time is: 2-12 hours, the reaction temperature: 50-80°C (the temperature is too low, it is not easy to react, and the temperature is too high, it is easy to destroy the xanthate group or the dithioester group).
  • the polymerized monomers include hydrophobic polymerized monomers or hydrophilic polymerized monomers.
  • the hydrophobic polymerizable monomer includes trifluoroethyl methacrylate, hexafluorobutyl methacrylate, octafluoropentyl methacrylate, tridecafluorooctyl methacrylate, methacryloyloxy Propyl propyl trimethoxy silane, methacryloxy propyl triethoxy silane, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate or methyl One of glycidyl acrylate and vinyl caprolactam;
  • the hydrophilic polymerizable monomers include acrylic acid, methacrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, isopropylacrylamide, acrylamide, ethylene One of pyrrolidone and vinylimidazole.
  • the polymerized monomer is a monomer that can improve mechanical properties, such as one of silsesquioxane (POSS) containing acrylate groups and polydimethylsiloxane containing (meth)acrylate groups .
  • PES silsesquioxane
  • the polymerizable monomer can also be a monomer with other properties, such as a monomer containing a light-emitting group: one of anthracene (meth)acrylate, fluorenate (meth)acrylate, and vinyl carbazole.
  • step 4 in the washing process, the detergent used and the solvent used in step 3) are the same reagents, and the unreacted polymerized monomers are removed by washing and the reaction generated and not grafted on the polyolefin powder Homopolymer on the surface of the material.
  • a polyolefin powder with a surface grafted polymer is prepared by the method described above.
  • the above-mentioned surface-grafted polymer polyolefin powder can be used as a blending modifier for blending modification of existing polyolefin products to obtain materials with improved surface hydrophobicity, surface oleophobicity, mechanical properties and other properties.
  • the invention provides an amphiphilic copolymer containing high-molecular-weight polyolefin and surface modifier components.
  • the amphiphilic copolymer can be used as a modifier and polyolefin raw materials for blending processing and molding. This method does not need to change the processing route of the existing polyolefin materials, and at the same time can overcome the shortcomings of poor adhesion between the traditional modifier and the polyolefin surface, so that a polyolefin material with stable surface properties can be obtained.
  • the present invention has the following characteristics:
  • the present invention has simple synthesis steps, readily available raw materials, low economic cost, mild reaction conditions, good repeatability, and low requirements for solvent and environmental dryness;
  • the present invention can control the grafting rate of the polymer on the surface, and can control the type of surface grafted polymer, that is, within a limited range of conditions, by increasing the atmospheric pressure of the plasma treatment, increasing the plasma power and prolonging the time Increased grafting rate.
  • the surface-modified polyolefin powder prepared by the present invention can be mixed with the existing polyolefin powder in any ratio to obtain materials with improved surface hydrophobicity, surface oleophobicity, mechanical properties and other properties, which have a wide range of applications prospect.
  • the present invention first proposes the surface modification of polyolefin powder.
  • the diameter of polyolefin powder is small, the specific surface area is large (about 1260-12600cm 2 /g), and there are no other additives, which are all conducive to grafting. Control of the grafting rate of the polymer; and after graft polymerization, it can be directly blended with commercial polyolefin powder for molding;
  • polyolefin of the present invention is not only applicable to styrene monomers, but also applicable to more widely used (meth)acrylate and vinyl monomers; it can be designed and synthesized according to the properties of the required materials.
  • grafted polymer Of grafted polymer;
  • the polyolefin prepared by the method reported in the present invention can be used as a modifier of commercial polyolefin materials to improve its surface properties, mechanical properties, etc., taking the fluorine/silicon modifier as an example, the modified polyolefin When olefin is blended with commercial polyethylene powder, the surface hydrophobic and oleophobic properties of the obtained composite material are improved.
  • Figure 1 is an infrared spectrogram of a polyethylene powder grafted with polyhexafluorobutyl acrylate on the surface prepared in Example 1;
  • Example 2 is a DSC curve diagram of the polyethylene powder grafted with polyhexafluorobutyl acrylate on the surface prepared in Example 1;
  • Figure 3 is a photograph of the water contact angle of commercial PE powder after hot pressing
  • Figure 4 is a photograph of the water contact angle of 2.5 wt% of the polyethylene powder grafted with polyhexafluorobutyl acrylate on the surface prepared in Example 1 and commercial PE powder after being blended and thermocompressed;
  • Example 5 is a photograph of the water contact angle of the polyethylene powder grafted with polyhexafluorobutyl acrylate on the surface prepared in Example 1 and the commercial PE powder prepared in Example 1 by blending and hot pressing;
  • Fig. 6 is a photograph of the water contact angle of the polyethylene powder grafted with polyhexafluorobutyl acrylate on the surface prepared in Example 1 and the commercial PE powder prepared in Example 1 by blending and thermoforming with a water contact angle of 7.5 wt%;
  • FIG. 7 is a photograph of the water contact angle of 10 wt% of the polyethylene powder grafted with polyhexafluorobutyl acrylate on the surface prepared in Example 1 and the commercial PE powder after being blended and thermocompressed;
  • FIG. 8 is a photograph of the water contact angle of the polyethylene powder grafted with polytrifluorobutyl acrylate on the surface prepared in Example 21 and the commercial PE powder prepared in Example 21 after being blended and thermocompressed;
  • FIG. 9 is a water contact angle photograph of 10 wt% of the polyethylene powder grafted with polytrifluorobutyl acrylate on the surface prepared in Example 21 and commercial PE powder after being blended and thermocompressed;
  • Figure 10 is a schematic diagram of a polyolefin surface grafting method containing a common free radical polymerization reaction process
  • Figure 11 is a schematic diagram of a polyolefin surface grafting method containing a living radical polymerization reaction process.
  • the polymerized product is washed with the solvent 1,4-dioxane to remove unreacted monomers and homopolymers formed by the reaction, and dried in a vacuum oven at 40°C for 24 hours to obtain polyethylene grafted with polymer on the surface. Powder.
  • Figure 1 and Figure 2 are the infrared spectrogram and DSC curve of the polyethylene powder grafted with polyhexafluorobutyl acrylate.
  • the appearance of the stretching vibration peak of the ester group at 1757 cm -1 in Figure 1 indicates the presence of polyhexafluorobutyl acrylate in the product.
  • the enthalpy of fusion of polyethylene before grafting is 185.0 J/g
  • the enthalpy of fusion of polyethylene after grafting is 175.1 J/g.
  • the grafting rate can be calculated to be 5.4%. 1 and 2 illustrate that this example successfully obtained polyethylene powder grafted with polyhexafluorobutyl acrylate.
  • the obtained poly(hexafluorobutyl acrylate) grafted polyethylene powder is used as a modifier and is blended with commercial polyethylene powder and molded by hot pressing.
  • the poly(hexafluorobutyl acrylate) grafted polyethylene powder The content of the material is 2.5, 5, 7.5, and 10wt% respectively.
  • Figures 3-7 are photographs of water contact angles of commercial polyethylene powders and blends of polyhexafluorobutyl acrylate grafted polyethylene powders and commercial polyethylene powders in different blending ratios. It can be seen from the figure that, compared with the contact angle of pure polyethylene (90.7°), the contact angle of the blend increases with the increase in the proportion of modifier. When the blend ratio is 10%, the contact angle increases to 98.3°.
  • a surface grafting method of polypropylene as shown in Figure 10 includes the following steps:
  • An ethylene propylene copolymer surface grafting method including the following steps:
  • the polymer powder is washed with N,N-dimethylacetamide to remove unreacted trifluoroethyl methacrylate and polymethacrylic acid that is formed by the reaction and is not grafted on the surface of the ethylene propylene copolymer powder.
  • the fluoroethyl ester is then dried in a vacuum oven at 40° C. for 24 hours to obtain an ethylene propylene copolymer powder with polytrifluoroethyl methacrylate grafted on the surface.
  • a surface grafting method of polyvinylidene fluoride includes the following steps:
  • the polymer powder is washed with xylene to remove unreacted hydroxypropyl methacrylate and the homopolymer formed by the reaction and not grafted on the surface of the polyvinylidene fluoride powder, and then dried in a vacuum oven at 40°C for 24 hours , To obtain polyvinylidene fluoride powder grafted with polyhydroxypropyl methacrylate on the surface.
  • a surface grafting method of polyethylene includes the following steps:
  • Polyethylene powder containing peroxide on the surface is added as a free radical initiator to 1g/mL hydroxypropyl acrylate N-methylacetamide, and the acrylic acid hydroxypropyl acrylate is carried out at 80°C under the protection of argon. Free radical polymerization of propyl ester, after 24 hours of reaction, polymer powder is obtained, wherein the amount of polyethylene powder containing peroxide is 50% of the mass of hydroxypropyl acrylate;
  • the polymer powder is washed with N-methylacetamide to remove unreacted hydroxypropyl acrylate and the homopolymer formed by the reaction and not grafted on the surface of the polyethylene powder, and then dried in a vacuum oven at 40°C for 24 hours , The polyethylene powder with surface grafted polyhydroxypropyl acrylate is obtained.
  • a surface grafting method of polyethylene as shown in Figure 11 includes the following steps:
  • the obtained poly(trifluoroethyl acrylate) grafted polyethylene powder is used as a modifier and is blended with a commercial polyethylene powder and molded by hot pressing.
  • the poly(trifluoroethyl acrylate) grafted polyethylene powder is used.
  • the content of the material is 2.5, 5, 7.5, and 10wt% respectively.
  • Figures 8-9 are commercial polyethylene powder, and polyethylene powder grafted with polytrifluoroethyl acrylate and commercial polyethylene powder at a blending ratio of 5 and 10% by weight.
  • Contact angle photo It can be seen from the figure that, compared with the contact angle of pure polyethylene (90.7°), the contact angle of the blend increases with the increase in the proportion of modifier. When the blend ratio is 10%, the contact angle increases to 99.8°.
  • a surface grafting method of polypropylene includes the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

一种表面接枝聚合物的聚烯烃材料及其制备方法与应用,制备方法包括:1)将聚烯烃粉料置于等离子体装置中,抽真空,再通入惰性气体进行辉光放电,使聚烯烃粉料表面产生大量自由基;2)将表面含有自由基的聚烯烃粉料置于空气中,得到表面含有过氧化物的聚烯烃粉料;3)将表面含有过氧化物的聚烯烃粉料加入至聚合单体溶液中,进行自由基聚合反应,得到聚合物粉料;4)聚合物粉料经洗涤干燥后,得到表面接枝聚合物的聚烯烃粉料;该表面接枝聚合物的聚烯烃粉料作为共混改性剂,用于对聚烯烃产品进行共混改性。

Description

一种表面接枝聚合物的聚烯烃材料及其制备方法与应用 技术领域
本发明属于高分子材料合成及改性技术领域,涉及一种表面接枝聚合物的聚烯烃材料及其制备方法与应用。
背景技术
聚烯烃材料(如聚乙烯、聚丙烯等)已广泛应用于航空、航海、体育、医疗等领域。为改善聚烯烃材料的表面性能、机械性能或赋予材料其它功能物性,通常需要对其进行表面改性。一般来说,表面改性的方法有两种:一种是将聚烯烃型材(管材、板材等)直接用于表面改性;另一种是先制备功能化改性剂,再将改性剂与聚烯烃材料共混并加工成型。第一种方法受材料尺寸及加工工艺的限制不适合进行大规模工业化生产。第二种方法操作简单,适合工业生产。但由于聚烯烃与通常的改性剂相容性太差,简单的物理共混容易导致材料发生宏观相分离,表面改性剂容易脱落。近年来,一些研究者也制备了含功能性小分子的聚烯烃改性剂,但是在与聚烯烃共混时通常会出现“湿刷”效应,而导致聚烯烃与改性剂发生宏观相分离。
等离子技术是一类重要的聚合物材料表面处理方法。与其它类型的处理方式如:化学试剂处理、电晕放电处理、辐照引发表面接枝处理相比,等离子处理技术具有节省能源、污染小、成本低、效率高、工艺简单等特点,被广泛应用于聚合物材料的表面处理。关于将等离子体表面处理技术与接枝聚合结合制备含聚烯烃与改性剂组分的共聚物,并将其作为改性剂应用于商品化聚烯烃材料改性的研究,目前尚未有文献报道。
中国专利CN103183781A公开了等离子体引发制备烯类单体-聚烯烃接枝共聚物的方法,使用介质阻挡放电(DBD)的方法使气体电离成等离子体,同时利用这些等离子体对聚合物固体颗粒表面进行处理,短时间处理后聚合物表面生成过氧基等活性自由基,将处理后的聚合物颗粒立即转移至盛有苯乙烯等烯类单体的烧瓶中,氮气保护下进行接枝反应,在聚合物表面各种活性基团的引发作用下,苯乙烯 等烯类单体一方面接枝在聚合物表面形成接枝聚合物,另一方面自身也发生均聚反应。一定时间后,使用特定清洗液将均聚物洗去,只剩余产物即为目标产物聚合物接枝共聚物。该专利与本专利相比,存在着一些不同之处,如:1)该专利中,接枝原料是工业粒料,直径较大,比表面积较小(约为12.6-63.2cm 2/g),因此接枝率效率不高,而且在制备形成粒料的过程中往往会添加抗氧剂、耐老化剂等其它成分,这些成分的存在可能会对接枝聚合造成影响。2)该专利中接枝聚合的单体是苯乙烯类单体,应用更广泛的功能性单体如含(甲基)丙烯酸酯及含乙烯基的单体在该专利中未被提及;3)该专利中提到了利用等离子体处理得到接枝聚苯乙烯的制备方法,对这种方法的应用并未提及。
发明内容
本发明的目的就是为了克服传统改性剂与聚烯烃粘结性能差的缺陷而提供一种及其制备方法与应用。
本发明的目的可以通过以下技术方案来实现:
一种聚烯烃的表面接枝方法,包括以下步骤:
1)将聚烯烃粉料置于等离子体装置中,进行真空度为200mTorr以下的真空处理,尽可能排空体系中的空气,再通入250-1250mTorr的氩气,保证体系中充满纯净气体。之后启动辉光放电产生等离子体,调节等离子体处理功率为10-250W(功率较低,则表面产生的自由基较少,功率较高,则样品表面的温度会提高,因此优选50-250W)使聚烯烃粉料表面产生大量自由基,根据所需接枝点的多少,控制处理时间为10-600s,得到表面含有自由基的聚烯烃粉料;
2)将表面含有自由基的聚烯烃粉料在室温下,置于空气中,空气中的氧气将表面自由基转化为表面过氧化物,从而得到表面含有过氧化物的聚烯烃粉料,置于空气中的时间为5-1440min,放置时间太久,表面过氧化物也会被空气中水气或其它杂质破坏,从而影响接枝效率;
3)将表面含有过氧化物的聚烯烃粉料作为自由基引发剂或链转移剂加入至含有聚合单体的溶剂中,并在氮气或氩气保护下于50-100℃下进行聚合单体的自由基聚合反应(50℃即可引发自由基聚合反应,温度越高,反应时间越快),根据所需接枝率的不同或接枝聚合物的链长,接枝反应控制在2-24h;
4)聚合物粉料经溶剂洗涤两次除去均聚物、并放在40℃的真空烘箱中充分干 燥24小时,得到表面接枝聚合物的聚烯烃粉料。
进一步地,步骤1)中,所述的聚烯烃粉料为聚乙烯粉料、聚丙烯粉料、乙烯丙烯共聚物粉料或聚偏氟乙烯粉料中的一种;所述的惰性气体为氦气或氩气中的一种。
进一步地,步骤3)中,根据实验所设定的接枝率,所述的表面含有过氧化物的聚烯烃粉料的加入量为聚合单体质量的5-95%;
所述的聚合单体在溶剂中的浓度为0.1-1g/mL,使聚烯烃粉料充分分散在溶剂中;
所述的溶剂需能够溶解反应单体及生成的聚合物,如1,4-二氧六环、甲苯、二甲苯、N-甲基吡咯烷酮、N-甲基乙酰胺、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺中的一种。
进一步地,步骤3)中,所述的自由基聚合反应包括普通自由基聚合反应或活性自由基聚合反应;
当自由基聚合反应为普通自由基聚合反应时,表面含有过氧化物的聚烯烃粉料作为自由基引发剂直接加入至含有聚合单体的溶剂中;
当自由基聚合反应为活性自由基聚合反应时,表面含有过氧化物的聚烯烃粉料先与连二异丙基黄原酸酯或二硫代苯甲酸酐反应,使聚烯烃粉料表面形成黄原酸酯或二硫酯,再加入至含有聚合单体的溶剂中。表面含黄原酸酯或二硫酯的聚烯烃粉料可以作为活性自由基聚合的链转移剂,即RAFT试剂,因此可以通过RAFT聚合方式接枝丙烯酸类聚合物。运用RAFT聚合方式能够使聚合反应可控:即通过调节反应物投料比及反应时间,能够精确控制接枝聚合物的分子量,并且接枝聚合物的分子量分布较窄。
在运用RAFT聚合反应过程中,表面含过氧化物的聚烯烃粉料与连二异丙基黄原酸酯或二硫代苯甲酸酐投料比为1:1-1:10,使其过氧基完全参与反应转化为链转移剂。反应时间为:2-12小时,反应温度:50-80℃(温度过低,不容易反应,而温度过高,容易破坏黄原酸酯基团或二硫酯基团)。
进一步地,步骤3)中,所述的聚合单体包括疏水性聚合单体或亲水性聚合单体。
进一步地,所述的疏水性聚合单体包括甲基丙烯酸三氟乙酯、甲基丙烯酸六氟丁酯、甲基丙烯酸八氟戊酯、甲基丙烯酸十三氟辛酯、甲基丙烯酰氧基丙基三甲氧 基硅烷、甲基丙烯酰氧基丙基三乙氧基硅烷、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸叔丁酯或甲基丙烯酸缩水甘油酯、乙烯基己内酰胺中的一种;
所述的亲水性聚合单体包括丙烯酸、甲基丙烯酸、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、丙烯酸羟丙酯、甲基丙烯酸羟丙酯、异丙基丙烯酰胺、丙烯酰胺、乙烯基吡咯烷酮、乙烯基咪唑中的一种。
所述的聚合单体为可提高机械性能的单体如:含丙烯酸酯基的倍半硅氧烷(POSS)、含(甲基)丙烯酸酯基的聚二甲基硅氧烷中的一种。
所述的聚合单体还可以为其它性能的单体如:含发光基团的单体:(甲基)丙烯酸蒽酯、(甲基)丙烯酸芴酯、乙烯基咔唑中的一种。
进一步地,步骤4)中,所述的洗涤过程中,所用洗涤剂与步骤3)中所用溶剂为同种试剂,通过洗涤除去未反应的聚合单体及反应生成且未接枝在聚烯烃粉料表面的均聚物。
一种表面接枝聚合物的聚烯烃粉料采用如上所述的方法制备而成。
上述表面接枝聚合物的聚烯烃粉料可作为共混改性剂用于对现有聚烯烃产品进行共混改性,得到表面疏水性、表面疏油性、机械性能以及其它性能提高的材料。
本发明提供一种含有高分子量的聚烯烃及表面改性剂组分的两亲性共聚物,将此两亲性共聚物可作为改性剂与聚烯烃原料进行共混加工成型。这一方法不需要改变现有聚烯烃材料的加工路线,同时又可以克服传统改性剂与聚烯烃表面粘结性能差的缺点,因此可以获得表面性能稳定的聚烯烃材料。
与现有技术相比,本发明具有以下特点:
1)本发明合成步骤简单、原料易得、经济成本低、反应条件温和、重复性好,对溶剂和环境的干燥程度要求较低;
2)本发明可以控制聚合物在表面的接枝率,并且可以控制表面接枝聚合物的类型,即限定条件范围内,通过增加等离子体处理的气氛压力,增加等离子体功率、延长时间可使接枝率提高。
3)本发明制备得到的表面改性的聚烯烃粉料可以与现有聚烯烃粉料以任意比例混合,得到表面疏水性、表面疏油性、机械性能以及其它性能提高的材料,具有广阔的应用前景。
4)本发明首先提出聚烯烃粉料的表面改性,聚烯烃粉料直径小,比表面积大 (约为1260-12600cm 2/g),且没有其它添加剂的存在,这些都有利于对接枝聚合物的接枝率的控制;并且在接枝聚合后可以直接与商品化聚烯烃粉料共混成型;
5)本发明聚烯烃的表面改性方法不仅适用于苯乙烯类单体,同样适用于使用更广泛的(甲基)丙烯酸酯及乙烯基类单体;可以根据所需材料的性能设计合成不同的接枝聚合物;
6)运用本发明报道的方法制备的聚烯烃可作为商品化聚烯烃材料的改性剂,改善其表面性能,力学性能等,以含氟/硅的改性剂为例,将改性的聚烯烃与商品化的聚乙烯粉料共混,得到的复合材料的表面疏水疏油性能都得到了提高。
附图说明
图1为实施例1中制备得到的表面接枝聚丙烯酸六氟丁酯的聚乙烯粉料的红外光谱图;
图2为实施例1中制备得到的表面接枝聚丙烯酸六氟丁酯的聚乙烯粉料的DSC曲线图;
图3为商品化PE粉料热压成型后的水接触角照片;
图4为2.5wt%的实施例1中制备得到的表面接枝聚丙烯酸六氟丁酯的聚乙烯粉料与商品化PE粉料经共混并热压成型后的水接触角照片;
图5为5wt%的实施例1中制备得到的表面接枝聚丙烯酸六氟丁酯的聚乙烯粉料与商品化PE粉料经共混并热压成型后的水接触角照片;
图6为7.5wt%的实施例1中制备得到的表面接枝聚丙烯酸六氟丁酯的聚乙烯粉料与商品化PE粉料经共混并热压成型后的水接触角照片;
图7为10wt%的实施例1中制备得到的表面接枝聚丙烯酸六氟丁酯的聚乙烯粉料与商品化PE粉料经共混并热压成型后的水接触角照片;
图8为5wt%的实施例21中制备得到的表面接枝聚丙烯酸三氟丁酯的聚乙烯粉料与商品化PE粉料经共混并热压成型后的水接触角照片;
图9为10wt%的实施例21中制备得到的表面接枝聚丙烯酸三氟丁酯的聚乙烯粉料与商品化PE粉料经共混并热压成型后的水接触角照片;
图10为含有普通自由基聚合反应过程的聚烯烃表面接枝方法示意图;
图11为一种含有活性自由基聚合反应过程的聚烯烃表面接枝方法示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
1)将1g聚乙烯粉料置于等离子体装置中,在200mTorr真空度下,通入氩气进行辉光放电,调节等离子体功率150W、气氛压力250mTorr、等离子体处理时间1min,使聚乙烯粉料表面产生自由基。
2)将处理后的聚乙烯粉料置于空气中30min使表面自由基转化为过氧化物。
3)将处理后的聚乙烯粉料1g与丙烯酸六氟丁酯3g置于3ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)将聚合后的产物经溶剂1,4-二氧六环洗涤除去未反应的单体及反应生成的均聚物,经40℃真空烘箱干燥24小时即得表面接枝聚合物的聚乙烯粉料。
图1、图2分别为接枝聚丙烯酸六氟丁酯的聚乙烯粉料的红外光谱图和DSC曲线。图1中1757cm -1处酯基的伸缩振动峰的出现说明产物中存在聚丙烯酸六氟丁酯。图2中,接枝前聚乙烯的熔融焓为185.0J/g,接枝后聚乙烯的熔融焓值为175.1J/g。根据接枝前后熔融焓值,可以计算出接枝率为5.4%。结合图1及图2说明本实施例成功得到了聚丙烯酸六氟丁酯接枝的聚乙烯粉料。
将得到的聚丙烯酸六氟丁酯接枝的聚乙烯粉料作为改性剂与商品化聚乙烯粉料共混并热压成型,共混物中聚丙烯酸六氟丁酯接枝的聚乙烯粉料的含量分别为2.5、5、7.5、10wt%。图3-7分别为商品化聚乙烯粉料、以及聚丙烯酸六氟丁酯接枝的聚乙烯粉料与商品化聚乙烯粉料以不同共混比例组成的共混物的水接触角照片。从图中可以看出,与纯聚乙烯的接触角(90.7°)相比,共混料的接触角随改性剂比例的增加而增加,在共混比例为10%时,接触角增加至98.3°。
实施例2:
1)将聚乙烯粉料1g置于等离子体装置中,在200mTorr真空度下,通入氩气进行辉光放电,调节等离子体功率50W、气氛压力250mTorr、等离子体处理时间1min,使聚乙烯粉料表面产生自由基。
2)同实施例1步骤2)。
3)同实施例1步骤3)。
4)同实施例1步骤4)。
实施例3:
1)将聚乙烯粉料1g置于等离子体装置中,在200mTorr真空度下,通入氩气进行辉光放电,调节等离子体功率100W、气氛压力250mTorr、等离子体处理时间1min,使聚乙烯粉料表面产生自由基。
2)同实施例1步骤2)。
3)同实施例1步骤3)。
4)同实施例1步骤4)。
实施例4:
1)将聚乙烯粉料1g置于等离子体装置中,在200mTorr真空度下,通入氩气进行辉光放电,调节等离子体功率200W、气氛压力250mTorr、等离子体处理时间1min,使聚乙烯粉料表面产生自由基。
2)同实施例1步骤2)。
3)同实施例1步骤3)。
4)同实施例1步骤4)。
实施例5:
1)将聚乙烯粉料1g置于等离子体装置中,在200mTorr真空度下,通入氩气进行辉光放电,调节等离子体功率150W、气氛压力500mTorr、等离子体处理时间1min,使聚乙烯粉料表面产生自由基。
2)同实施例1步骤2)。
3)同实施例1步骤3)。
4)同实施例1步骤4)。
实施例6:
1)同实施例1步骤1)。
2)同实施例1步骤2)。
3)将处理后的聚乙烯粉料1g与丙烯酸六氟丁酯1g置于2ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)同实施例1步骤4)。
实施例7:
1)同实施例1步骤1)。
2)同实施例1步骤2)。
3)将处理后的聚乙烯粉料1g与丙烯酸六氟丁酯2g置于3ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)同实施例1步骤4)。
实施例8:
1)同实施例1步骤1)。
2)同实施例1步骤2)。
3)将处理后的聚乙烯粉料1g与丙烯酸六氟丁酯4g置于3ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)同实施例1步骤4)。
实施例9:
1)同实施例1步骤1)。
2)同实施例1步骤2)。
3)将处理后的聚乙烯粉料1g与丙烯酸六氟丁酯5g置于5ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)同实施例1步骤4)。
实施例10:
1)同实施例1步骤1)。
2)同实施例1步骤2)。
3)将处理后的聚乙烯粉料1g与丙烯酸六氟丁酯10g置于10ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)同实施例1步骤4)。
实施例11:
1)同实施例1步骤1)。
2)同实施例1步骤2)。
3)将处理后的聚乙烯粉料1g与丙烯酸三氟乙酯10g置于10ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)同实施例1步骤4)。
实施例12:
1)同实施例1步骤1)。
2)同实施例1步骤2)。
3)将处理后的聚乙烯粉料1g与丙烯酸三氟乙酯5g置于5ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)同实施例1步骤4)。
实施例13:
1)同实施例1步骤1)。
2)同实施例1步骤2)。
3)将处理后的聚乙烯粉料1g与丙烯酸三氟乙酯2g置于3ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)同实施例1步骤4)。
实施例14:
1)同实施例1步骤1)。
2)同实施例1步骤2)。
3)将处理后的聚乙烯粉料1g与丙烯酸三氟乙酯1g置于2ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
4)同实施例1步骤4)。
实施例15:
1)将聚乙烯粉料1g置于等离子体装置中,在200mTorr真空度下,通入氩气进行辉光放电,调节等离子体功率100W、气氛压力250mTorr、等离子体处理时间1min,使聚乙烯粉料表面产生自由基。
2)同实施例13步骤2)。
3)同实施例13步骤3)。
4)同实施例13步骤4)。
实施例16:
1)将聚乙烯粉料1g置于等离子体装置中,在100mTorr真空度下,通入氩气进行辉光放电,调节等离子体功率200W、气氛压力250mTorr、等离子体处理时间1min,使聚乙烯粉料表面产生自由基。
2)同实施例13步骤2)。
3)同实施例13步骤3)。
4)同实施例13步骤4)。
实施例17:
如图10所示的一种聚丙烯的表面接枝方法,包括以下步骤:
1)将聚丙烯粉料置于等离子体装置中,进行真空度为100mTorr的真空处理,再通入250mTorr的氩气气,之后进行处理功率为250W的等离子体处理,使聚丙烯粉料表面产生大量自由基,处理10s后,得到表面含有自由基的聚丙烯粉料;
2)将表面含有自由基的聚丙烯粉料置于空气中60min,空气中的氧气将表面自由基转化为表面过氧化物,从而得到表面含有过氧化物的聚丙烯粉料;
3)将表面含有过氧化物的聚丙烯粉料作为自由基引发剂加入至0.1g/mL的甲基丙烯酸甲酯的甲苯溶液中,并在氮气保护下于50℃下进行聚合单体的自由基聚合反应,反应2h后,得到聚合物粉料,其中,表面含有过氧化物的聚丙烯粉料的加入量为甲基丙烯酸甲酯质量的5%;
4)聚合物粉料采用甲苯洗涤除去未反应的甲基丙烯酸甲酯及反应生成且未接枝在聚丙烯粉料表面的聚甲基丙烯酸甲酯,之后再在40℃真空烘箱中干燥24h,得到表面接枝聚甲基丙烯酸甲酯的聚丙烯粉料。
实施例18:
一种乙烯丙烯共聚物的表面接枝方法,包括以下步骤:
1)将乙烯丙烯共聚物粉料置于等离子体装置中,进行真空度为200mTorr的真空处理,再通入300mTorr的氩气,之后进行处理功率为100W的等离子体处理,使乙烯丙烯共聚物粉料表面产生大量自由基,处理120s后,得到表面含有自由基的乙烯丙烯共聚物粉料;
2)将表面含有自由基的乙烯丙烯共聚物粉料置于空气中30min,空气中的氧气将表面自由基转化为表面过氧化物,从而得到表面含有过氧化物的乙烯丙烯共聚物粉料;
3)将表面含有过氧化物的乙烯丙烯共聚物粉料作为自由基引发剂加入至0.5g/mL的甲基丙烯酸三氟乙酯的N,N-二甲基乙酰胺溶液中,并在氩气保护下于70℃下进行甲基丙烯酸三氟乙酯的自由基聚合反应,反应12h后,得到聚合物粉料,其中,含有过氧化物的乙烯丙烯共聚物粉料的加入量为甲基丙烯酸三氟乙酯质量的95%;
4)聚合物粉料采用N,N-二甲基乙酰胺洗涤除去未反应的甲基丙烯酸三氟乙酯及反应生成且未接枝在乙烯丙烯共聚物粉料表面上的聚甲基丙烯酸三氟乙酯,之后 再在40℃真空烘箱中干燥24h,得到表面接枝聚甲基丙烯酸三氟乙酯的乙烯丙烯共聚物粉料。
实施例19:
一种聚偏氟乙烯的表面接枝方法,包括以下步骤:
1)将聚偏氟乙烯粉料置于等离子体装置中,进行真空度为100mTorr的真空处理,再通入250mTorr的氩气作为保护气,之后进行处理功率为250W的等离子体处理,使聚偏氟乙烯粉料表面产生大量自由基,处理60s后,得到表面含有自由基的聚偏氟乙烯粉料;
2)将表面含有自由基的聚偏氟乙烯粉料置于空气中100min,空气中的氧气将表面自由基转化为表面过氧化物,从而得到表面含有过氧化物的聚偏氟乙烯粉料;
3)将表面含有过氧化物的聚偏氟乙烯粉料作为自由基引发剂加入至1g/mL的甲基丙烯酸羟丙酯的二甲苯中,并在氩气保护下于80℃下进行甲基丙烯酸羟丙酯的自由基聚合反应,反应24h后,得到聚合物粉料,其中,含有过氧化物的聚偏氟乙烯粉料的加入量为甲基丙烯酸羟丙酯质量的50%;
4)聚合物粉料采用二甲苯洗涤除去未反应的甲基丙烯酸羟丙酯及反应生成且未接枝在聚偏氟乙烯粉料表面的均聚物,之后再在40℃真空烘箱中干燥24h,得到表面接枝聚甲基丙烯酸羟丙酯的聚偏氟乙烯粉料。
实施例20:
一种聚乙烯的表面接枝方法,包括以下步骤:
1)将聚乙烯粉料置于等离子体装置中,进行真空度为100mTorr的真空处理,再通入250mTorr的氩气,之后进行处理功率为250W的等离子体处理,使聚乙烯粉料表面产生大量自由基,处理120s后,得到表面含有自由基的聚乙烯粉料;
2)将表面含有自由基的聚乙烯粉料置于空气中100min,空气中的氧气将表面自由基转化为表面过氧化物,从而得到表面含有过氧化物的聚乙烯粉料;
3)将表面含有过氧化物的聚乙烯粉料作为自由基引发剂加入至1g/mL的丙烯酸羟丙酯的N-甲基乙酰胺中,并在氩气保护下于80℃下进行丙烯酸羟丙酯的自由基聚合反应,反应24h后,得到聚合物粉料,其中,含有过氧化物的聚乙烯粉料的加入量为丙烯酸羟丙酯质量的50%;
4)聚合物粉料采用N-甲基乙酰胺洗涤除去未反应的丙烯酸羟丙酯及反应生成 且未接枝在聚乙烯粉料表面的均聚物,之后再在40℃真空烘箱中干燥24h,得到表面接枝聚丙烯酸羟丙酯的聚乙烯粉料。
实施例21:
如图11所示的一种聚乙烯的表面接枝方法,包括以下步骤:
1)将聚乙烯粉料1g置于等离子体装置中,在100mTorr真空度下,通入氩气进行辉光放电,调节等离子体功率200W、气氛压力250mTorr、等离子体处理时间1min,使聚乙烯粉料表面产生自由基。
2)将表面含有自由基的聚丙烯粉料置于空气中60min,空气中的氧气将表面自由基转化为表面过氧化物,从而得到表面含有过氧化物的聚乙烯粉料;
3)将表面含自由基的聚乙烯粉料1g、连二异丙基黄原酸酯2g置于2ml 1,4-二氧六环置于烧瓶中,通入惰性气体排除空气,放在60℃油浴中反应,反应结束后,用1,4-二氧六环洗掉过量的连二异丙基黄原酸酯,之后置于40℃真空烘箱中充分干燥24小时。
4)将处理后的聚乙烯粉料1g与丙烯酸三氟乙酯1g置于2ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
5)同实施例1步骤4)。
实施例22:
1)将聚乙烯粉料1g置于等离子体装置中,在100mTorr真空度下,通入氩气进行辉光放电,调节等离子体功率200W、气氛压力250mTorr、等离子体处理时间1min,使聚乙烯粉料表面产生自由基。
2)将表面含有自由基的聚丙烯粉料置于空气中60min,空气中的氧气将表面自由基转化为表面过氧化物,从而得到表面含有过氧化物的聚乙烯粉料;
3)将表面含自由基的聚乙烯粉料1g、二硫代苯甲酸酐2g置于2ml 1,4-二氧六环置于烧瓶中,通入惰性气体排除空气,放在60℃油浴中反应,反应结束后,用1,4-二氧六环洗掉过量的连二异丙基黄原酸酯,之后置于40℃真空烘箱中充分干燥24小时。
4)将处理后的聚乙烯粉料1g与丙烯酸三氟乙酯1g置于2ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
5)聚合物粉料采用四氢呋喃洗涤除去未反应的丙烯酸三氟乙酯及反应生成且未接枝在聚乙烯粉料表面的均聚物,之后再在40℃真空烘箱中干燥24h,得到表 面接枝聚丙烯酸三氟乙酯的聚乙烯粉料。
将得到的聚丙烯酸三氟乙酯接枝的聚乙烯粉料作为改性剂与商品化聚乙烯粉料共混并热压成型,共混物中聚丙烯酸三氟乙酯接枝的聚乙烯粉料的含量分别为2.5、5、7.5、10wt%。图8-9分别为商品化聚乙烯粉料、以及聚丙烯酸三氟乙酯接枝的聚乙烯粉料与商品化聚乙烯粉料以共混比例组成为5和10wt%的共混物的水接触角照片。从图中可以看出,与纯聚乙烯的接触角(90.7°)相比,共混料的接触角随改性剂比例的增加而增加,在共混比例为10%时,接触角增加至99.8°。
实施例23:
一种聚丙烯的表面接枝方法,包括以下步骤:
1)将聚丙烯粉料置于等离子体装置中,进行真空度为100mTorr的真空处理,再通入250mTorr的氩气作为保护气,之后进行处理功率为150W的等离子体处理,使聚丙烯粉料表面产生大量自由基,处理60s后,得到表面含有自由基的聚丙烯粉料;
2)将表面含有自由基的聚丙烯粉料置于空气中60min,空气中的氧气将表面自由基转化为表面过氧化物,从而得到表面含有过氧化物的聚丙烯粉料;
3)将表面含自由基的聚丙烯粉料1g、连二异丙基黄原酸酯2g置于2ml 1,4-二氧六环置于烧瓶中,通入惰性气体排除空气,放在60℃油浴中反应,反应结束后,用1,4-二氧六环洗掉过量的连二异丙基黄原酸酯,之后置于40℃真空烘箱中充分干燥24小时。
6)将处理后的聚丙烯粉料1g与丙烯酸三氟乙酯1g置于2ml 1,4-二氧六环中,通入惰性气体排除空气,放置于80℃油浴中进行聚合24小时。
7)聚合物粉料采用四氢呋喃洗涤除去未反应的丙烯酸三氟乙酯及反应生成且未接枝在聚丙烯粉料表面的均聚物,之后再在40℃真空烘箱中干燥24h,得到表面接枝聚丙烯酸三氟乙酯的聚丙烯粉料。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种聚烯烃的表面接枝方法,其特征在于,该方法包括以下步骤:
    1)以聚烯烃粉料为原料,将其置于等离子体装置中,先抽真空,然后通入惰性气体进行辉光放电,调节等离子体处理条件,使聚烯烃粉料表面产生大量自由基;
    2)将表面含有自由基的聚烯烃粉料置于空气中,空气中的氧气将表面自由基转化为表面过氧化物,得到表面含有过氧化物的聚烯烃粉料;
    3)将表面含有过氧化物的聚烯烃粉料作为自由基引发剂加入至含有聚合单体的溶剂中,并在惰性气体保护下于50-100℃下进行聚合单体的自由基聚合反应,反应2-24h后,得到聚合物粉料;
    4)聚合物粉料依次经洗涤、干燥后,得到表面接枝聚合物的聚烯烃粉料。
  2. 根据权利要求1所述的一种聚烯烃的表面接枝方法,其特征在于,步骤1)中,所述的聚烯烃粉料为聚乙烯粉料、聚丙烯粉料、乙烯丙烯共聚物粉料或聚偏氟乙烯粉料中的一种;
    所述的等离子体装置抽真空后的真空度为200mTorr以下;
    所述的惰性气体为氦气或氩气中的一种,所述的惰性气体的压力为250-1250mTorr;
    所述的等离子体处理条件为:处理功率为10-250W,处理时间为10-600s。
  3. 根据权利要求1所述的一种聚烯烃的表面接枝方法,其特征在于,步骤2)中,所述的表面含有自由基的聚烯烃粉料置于空气中的时间为5-1440min。
  4. 根据权利要求1所述的一种聚烯烃的表面接枝方法,其特征在于,步骤3)中,所述的表面含有过氧化物的聚烯烃粉料的加入量为聚合单体质量的5-95%;
    所述的聚合单体在溶剂中的浓度为0.1-1g/mL;
    所述的溶剂为1,4-二氧六环、甲苯、二甲苯、N-甲基吡咯烷酮、N-甲基乙酰胺、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺中的一种;
    所述的惰性气体为氮气或氩气中的一种。
  5. 根据权利要求1所述的一种聚烯烃的表面接枝方法,其特征在于,步骤3)中,所述的自由基聚合反应包括普通自由基聚合反应或活性自由基聚合反应;
    当自由基聚合反应为普通自由基聚合反应时,表面含有过氧化物的聚烯烃粉料 作为自由基引发剂直接加入至含有聚合单体的溶剂中;
    当自由基聚合反应为活性自由基聚合反应时,表面含有过氧化物的聚烯烃粉料先与连二异丙基黄原酸酯或二硫代苯甲酸酐反应,再作为链转移剂加入至含有聚合单体的溶剂中。
  6. 根据权利要求1所述的一种聚烯烃的表面接枝方法,其特征在于,步骤3)中,所述的聚合单体包括疏水性聚合单体或亲水性聚合单体。
  7. 根据权利要求6所述的一种聚烯烃的表面接枝方法,其特征在于,所述的疏水性聚合单体包括丙烯酸三氟乙酯、甲基丙烯酸三氟乙酯、丙烯酸六氟丁酯、甲基丙烯酸六氟丁酯、丙烯酸八氟戊酯、甲基丙烯酸八氟戊酯、丙烯酸十三氟辛酯、甲基丙烯酸十三氟辛酯、丙烯酰氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、丙烯酰氧基丙基三乙氧基硅烷、甲基丙烯酰氧基丙基三乙氧基硅烷、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸正丁酯、甲基丙烯酸正丁酯、丙烯酸叔丁酯、甲基丙烯酸叔丁酯、丙烯酸缩水甘油酯或甲基丙烯酸缩水甘油酯、苯乙烯、甲基苯乙烯、乙烯基己内酰胺中的一种;
    所述的亲水性聚合单体包括丙烯酸、甲基丙烯酸、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、丙烯酸羟丙酯、甲基丙烯酸羟丙酯、异丙基丙烯酰胺、丙烯酰胺、乙烯基吡咯烷酮、乙烯基咪唑中的一种。
  8. 根据权利要求1所述的一种聚烯烃的表面接枝方法,其特征在于,所述的聚合单体为可提高机械性能的单体,或其它性能的单体:
    其中,所述的可提高机械性能的单体包括:含丙烯酸酯基的倍半硅氧烷(POSS)、含(甲基)丙烯酸酯基的聚二甲基硅氧烷中的一种;
    所述的其它性能的单体包括:含发光基团的单体:(甲基)丙烯酸蒽酯、(甲基)丙烯酸芴酯、乙烯基咔唑中的一种。
  9. 一种表面接枝聚合物的聚烯烃粉料,其特征在于,采用如权利要求1至8任一项所述的方法制备而成。
  10. 一种如权利要求9所述的表面接枝聚合物的聚烯烃粉料作为共混改性剂在对现有聚烯烃产品进行共混改性中的应用。
PCT/CN2020/108781 2019-09-17 2020-08-13 一种表面接枝聚合物的聚烯烃材料及其制备方法与应用 WO2021052071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910877328.4A CN110698598A (zh) 2019-09-17 2019-09-17 一种表面接枝聚合物的聚烯烃材料及其制备方法与应用
CN201910877328.4 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021052071A1 true WO2021052071A1 (zh) 2021-03-25

Family

ID=69194743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108781 WO2021052071A1 (zh) 2019-09-17 2020-08-13 一种表面接枝聚合物的聚烯烃材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN110698598A (zh)
WO (1) WO2021052071A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698598A (zh) * 2019-09-17 2020-01-17 上海交通大学 一种表面接枝聚合物的聚烯烃材料及其制备方法与应用
CN111607233A (zh) * 2020-06-29 2020-09-01 南京大学 一种含硅高透明阻燃eva转光膜及其制备方法
CN112608412B (zh) * 2020-11-06 2022-11-11 临海伟星新型建材有限公司 一种含氟接枝聚烯烃材料的制备方法
CN113904058B (zh) * 2021-10-09 2023-08-29 远景动力技术(江苏)有限公司 隔膜及其制备方法和用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130494A (en) * 1975-05-08 1976-11-12 Daikin Ind Ltd Preparation of morified tetrafluoroethyelene
US4396641A (en) * 1980-09-08 1983-08-02 Shin-Etsu Chemical Co., Ltd. Method for improving surface properties of shaped articles of synthetic resins
CN101463164A (zh) * 2009-01-14 2009-06-24 天津大学 等离子表面引发烯系单体聚合制备聚合物原位合金的方法
WO2010031598A1 (en) * 2008-09-17 2010-03-25 Belenos Clean Power Holding Ag Method for producing a radiation grafted polymer
CN102120829A (zh) * 2010-12-30 2011-07-13 中国科学院等离子体物理研究所 一种聚合物碱性阴离子交换膜的制备方法
CN103183781A (zh) * 2013-04-18 2013-07-03 天津大学 等离子体引发制备烯类单体-聚烯烃接枝共聚物的方法
CN104356420A (zh) * 2014-11-18 2015-02-18 常熟市天娇塑业有限公司 常压下空气等离子体引发聚乙烯薄膜接枝丙烯酸的方法
CN110698598A (zh) * 2019-09-17 2020-01-17 上海交通大学 一种表面接枝聚合物的聚烯烃材料及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300201C (zh) * 2005-03-15 2007-02-14 华南理工大学 聚烯烃与乙烯基单体接枝共聚物的合成方法
JP5489944B2 (ja) * 2010-10-05 2014-05-14 株式会社トクヤマ 固体高分子型燃料電池用隔膜及びその製造方法
CN103724649A (zh) * 2013-12-31 2014-04-16 中国科学院等离子体物理研究所 一种等离子体接枝制备碱性阴离子交换膜的方法
CN106432614B (zh) * 2016-10-26 2019-07-05 山东省科学院能源研究所 一种促进聚烯烃接枝反应的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130494A (en) * 1975-05-08 1976-11-12 Daikin Ind Ltd Preparation of morified tetrafluoroethyelene
US4396641A (en) * 1980-09-08 1983-08-02 Shin-Etsu Chemical Co., Ltd. Method for improving surface properties of shaped articles of synthetic resins
WO2010031598A1 (en) * 2008-09-17 2010-03-25 Belenos Clean Power Holding Ag Method for producing a radiation grafted polymer
CN101463164A (zh) * 2009-01-14 2009-06-24 天津大学 等离子表面引发烯系单体聚合制备聚合物原位合金的方法
CN102120829A (zh) * 2010-12-30 2011-07-13 中国科学院等离子体物理研究所 一种聚合物碱性阴离子交换膜的制备方法
CN103183781A (zh) * 2013-04-18 2013-07-03 天津大学 等离子体引发制备烯类单体-聚烯烃接枝共聚物的方法
CN104356420A (zh) * 2014-11-18 2015-02-18 常熟市天娇塑业有限公司 常压下空气等离子体引发聚乙烯薄膜接枝丙烯酸的方法
CN110698598A (zh) * 2019-09-17 2020-01-17 上海交通大学 一种表面接枝聚合物的聚烯烃材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IDE, FUMIO, ET AL.: "Application of Low-Temperature Plasma Treatment in Polymeric Materials (Part II)", TEXTILE TECHNOLOGY OVERSEAS (FIBERS, DYEING AND FINISHING ENVIRONMENTAL PROTECTION), 21 January 1986 (1986-01-21), pages 60 - 61, XP055793158 *

Also Published As

Publication number Publication date
CN110698598A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021052071A1 (zh) 一种表面接枝聚合物的聚烯烃材料及其制备方法与应用
CN108912272B (zh) 一种接枝改性聚丙烯的制备方法及由其制得的接枝改性聚丙烯
JP5111016B2 (ja) 表面親水性ポリオレフィン成形体およびその製造方法
WO2013007095A1 (zh) 一种超临界二氧化碳协助固相接枝改性聚丙烯的方法
CN107051215B (zh) 两亲性聚合物刷碳纳米管/pvdf纳滤膜及制备方法
JPS637204B2 (zh)
JP2008514735A (ja) グラフト材料及びその製造方法
EP2894127B1 (en) Composite material, and method for producing same
CN112608412A (zh) 一种含氟接枝聚烯烃材料的制备方法
Okubo et al. Influence of the kind of end groups of polysterene on the production of hollow particles by suspension polymerization for divinylbenzene/toluene droplets dissolving them
JPWO2006059697A1 (ja) エチレン−テトラフルオロエチレン系共重合体成形物およびその製造方法
CN109679129A (zh) 一种聚烯烃材料表面改性的方法
JPH0561297B2 (zh)
JPS6086109A (ja) 気相グラフト重合方法
JP2004155884A (ja) ナノマトリックス分散天然ゴム及びその製造方法
JPH08302228A (ja) プラズマ開始重合により表面改質された有機顔料及びその製造方法
CN1392169A (zh) 聚乙烯-马来酸酐接枝共聚物溶剂热合成制备方法
JPH01167344A (ja) 多孔質ポリオレフィン架橋体の製造方法
JP2009292911A (ja) 表面親水性ポリオレフィン成形体およびその製造方法
Rao et al. Graft copolymerization of maleic anhydride/styrene onto isotactic polypropylene using supercritical CO2
CN112830997B (zh) 一种接枝改性聚丙烯的制备方法
JPS60149616A (ja) ラジカル重合開始剤含有ポリマ−組成物の製造方法
JP6066697B2 (ja) 炭素質材料−ポリマー複合材料の製造方法及び炭素質材料−ポリマー複合材料
Chauhan et al. Synthesis of graft copolymers of acrylamide and comonomers on to cellulose: A study of the effect of comonomer on polymer yields, structure and properties
Yu et al. Introducing reactive groups into polymer chains by radiation induced grafting technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865030

Country of ref document: EP

Kind code of ref document: A1