WO2021052019A1 - 壳体、二次电池、电池包、车辆及二次电池的制造方法 - Google Patents

壳体、二次电池、电池包、车辆及二次电池的制造方法 Download PDF

Info

Publication number
WO2021052019A1
WO2021052019A1 PCT/CN2020/105558 CN2020105558W WO2021052019A1 WO 2021052019 A1 WO2021052019 A1 WO 2021052019A1 CN 2020105558 W CN2020105558 W CN 2020105558W WO 2021052019 A1 WO2021052019 A1 WO 2021052019A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
secondary battery
coating
insulating film
area
Prior art date
Application number
PCT/CN2020/105558
Other languages
English (en)
French (fr)
Inventor
于晶晶
杜杰
陈智明
韩睿琪
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2021553389A priority Critical patent/JP7254953B2/ja
Priority to EP20865575.3A priority patent/EP3944354A4/en
Publication of WO2021052019A1 publication Critical patent/WO2021052019A1/zh
Priority to US17/563,077 priority patent/US20220123406A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the technical field of energy storage equipment, and in particular to a manufacturing method of a casing, a secondary battery, a battery pack, a vehicle, and a secondary battery.
  • lithium-ion electronics industry With the rapid development of consumer electronics and electric vehicles, the lithium-ion electronics industry has attracted widespread attention from all walks of life. The requirements for batteries are becoming more and more stringent. As the core part of new energy vehicles, lithium-ion batteries are strictly required to have safety, reliability and stability.
  • a lithium ion battery is composed of an electrode assembly and a metal shell containing the electrode assembly.
  • the shell is usually an aluminum shell.
  • the cover plate and the shell are welded by laser to realize the structural connection and sealing of the battery.
  • Lithium-ion batteries need to be insulated during use to achieve the safety and reliability of battery modules and battery pack levels during use.
  • lithium-ion batteries generally meet the insulation requirements in the process of battery assembly into battery modules and battery packs by pasting an insulating film on the surface.
  • the insulating film is easily scratched and damaged by foreign substances, hard particles, etc. during production or operation, resulting in insulation failure and affecting the safety performance of the battery.
  • the present application provides a method for manufacturing a casing, a secondary battery, a battery pack, a vehicle, and a secondary battery, which aims to improve the safety performance of the secondary battery.
  • the first aspect of the present application provides a casing for a secondary battery.
  • the casing includes a bottom wall and a side wall, and the bottom wall and the side wall define an electrode assembly with an opening at one end for accommodating the electrode assembly of the secondary battery.
  • the accommodating cavity wherein the outer surface of the side wall has a coating area on which an insulating coating is coated, and the coating area extends from the side of the side wall close to the bottom wall in the height direction of the side wall to one side of the side wall close to the opening Near the side edge to reserve a non-coated area with a predetermined height on the outer surface of the side wall near the edge of the opening.
  • the area of the coating area is 70%-85% of the total area of the outer surface of the side wall;
  • the extension height of the coating area in the height direction is 70%-85% of the total height of the side wall.
  • the extension height of the non-coating area in the height direction is greater than or equal to 3 mm.
  • the insulating coating contains: relative to the total weight of the insulating coating, 80-97% by weight of the insulating film-forming resin, 3-12% by weight of additives, and 0-8% by weight of pigments.
  • the pigment is selected from toner;
  • the insulating film-forming resin is selected from epoxy resin, polyurethane, acrylic resin, phenolic resin, polyester resin and combinations thereof;
  • the auxiliary agent is selected from at least one of a light stabilizer, a heat stabilizer, an antioxidant, a defoamer, a leveling agent, a flame retardant, and a plasticizer.
  • the insulating film-forming resin is obtained by photocuring acrylic functionalized prepolymers and acrylic monomers in the presence of a photoinitiator, wherein the acrylic functionalized prepolymers are selected from polyester acrylate prepolymers, cyclic At least one of oxyacrylate prepolymer, urethane acrylate and pure acrylate prepolymer, and the acrylic monomer is selected from the group consisting of monoalkyl acrylate, diol diacrylate and triol triacrylate At least one
  • the insulating film-forming resin is obtained by curing reaction of epoxy resin, polyurethane, polyester or acrylic resin and curing agent.
  • the thickness of the insulating coating is 80 ⁇ m to 160 ⁇ m.
  • a second aspect of the present application provides a secondary battery, including: the above-mentioned casing; an electrode assembly placed in the accommodating cavity; a cover plate covering the opening; and an insulating film covering at least the non-coated area.
  • the insulating film includes successively distributed bonding sections and superimposing sections in the height direction, the bonding sections are disposed in the non-coated area, and the superimposing sections extend from the bonding section to the outer surface of the insulating coating.
  • the extension height of the superimposed section in the height direction is 1.5 mm-6 mm.
  • a third aspect of the present application provides a battery pack, including: a box; the above-mentioned secondary battery, the secondary battery is contained in the box.
  • the secondary battery and the inner wall surface of the box are bonded by adhesive glue.
  • the fourth aspect of the present application provides a vehicle including the above-mentioned battery pack.
  • the fifth aspect of the present application also provides a method for manufacturing a secondary battery, including:
  • An insulating film is attached to the outside of the side wall, and the insulating film covers at least the non-coated area.
  • the case includes a bottom wall, a side wall, and a coating area and a non-coating area on the outer surface of the side wall, and the coating area is coated with an insulating coating.
  • the accommodating cavity with an opening is formed together, and the electrode assembly of the secondary battery can be disposed in the accommodating cavity from the opening.
  • the coated area extends in the height direction from the side of the side wall close to the bottom wall to the side close to the opening, so as to reserve the non-coated area on the outer surface near the edge of the opening, so that the cover plate of the secondary battery is in the opening
  • the high temperature caused by welding will not affect the stability of the insulating coating on the coated area.
  • the outer surface of the side wall is coated with an insulating coating, and the adhesion between the insulating coating and the side wall is relatively large, which can ensure the flatness and good insulation performance of the outer surface of the side wall. Therefore, during the production and use of the housing, the insulating coating can be well bonded to the coating area for a long time, which better realizes the long-term safety and reliability of the housing.
  • FIG. 1 is a schematic structural diagram of a secondary battery provided by an embodiment of the first aspect of the present application
  • FIG. 2 is a top view of a secondary battery provided by an embodiment of the first aspect of the present application.
  • Figure 3 is a partial cross-sectional view at A-A in Figure 2;
  • FIG. 4 is a schematic flowchart of a method for manufacturing a secondary battery provided by an embodiment of the fifth aspect of the present application.
  • FIG. 5 is a schematic structural diagram of a casing provided in a method for manufacturing a secondary battery provided by an embodiment of the fifth aspect of the present application;
  • FIG. 6 is a schematic structural diagram of a casing having a coating area and a non-coating area in a method for manufacturing a secondary battery provided by an embodiment of the fifth aspect of the present application;
  • FIG. 7 is a schematic structural diagram of a casing with an insulating coating in a method for manufacturing a secondary battery provided by an embodiment of the fifth aspect of the present application;
  • FIG. 8 is a schematic structural diagram of a secondary battery with a cover plate welded in a method for manufacturing a secondary battery provided by an embodiment of the fifth aspect of the present application.
  • the battery pack includes a box and a secondary battery contained in the box.
  • the secondary battery includes: a casing 10 having a bottom wall 100 and a side wall 200.
  • the bottom wall 100 and the side wall 200 define a battery with an opening 300 at one end.
  • the containing cavity 400; the electrode assembly (not shown in the figure), located in the containing cavity 400, the electrode assembly is formed by winding the positive pole piece, the negative pole piece and the separator, or by the positive pole piece, the negative pole piece and the separator It is formed by stacking, the containing cavity 400 is also filled with electrolyte; the cover plate 500 is sealed at the opening 300.
  • the housing 10 and the cover plate 500 There are many ways to connect the housing 10 and the cover plate 500.
  • the housing 10 and the cover plate 500 are connected to each other by welding to ensure the stability and connection of the relative position between the housing 10 and the cover plate 500. Reliability of the seal.
  • the casing 10 of the secondary battery is made of a metal material, such as metal such as aluminum or steel.
  • the metal casing 10 is generally Positive electricity.
  • the outer surface of the cover plate 500 away from the receiving cavity 400 is provided with a first insulating film 510.
  • the arrangement of the first insulating film 510 is not limited.
  • the cover plate 500 is also provided with a protruding structure such as an electrode terminal 520.
  • the electrode terminal 520 may include a positive electrode terminal and a negative electrode terminal.
  • a through hole is provided on the first insulating film 510 so that the electrode terminal 520 extends from the through hole. Out.
  • the structure for preventing protrusions creates a gap between the first insulating film 510 and the cover plate 500, and increases the contact area between the cover plate 500 and the first insulating film 510, thereby increasing the relative distance between the cover plate 500 and the first insulating film 510.
  • the stability of the location and the reliability of the connection creates a gap between the first insulating film 510 and the cover plate 500, and increases the contact area between the cover plate 500 and the first insulating film 510, thereby increasing the relative distance between the cover plate 500 and the first insulating film 510.
  • the first insulating film 510 can be arranged in various ways.
  • the first insulating film 510 includes polyethylene terephthalate, polyimide, polycarbonate, polyethylene, polyvinylidene fluoride, and polytetrafluoroethylene.
  • One or more of ethylene is one or more of ethylene.
  • the casing 10 can be arranged in various ways, for example, the casing 10 is covered with an insulating film.
  • the outer surface of the side wall 200 has a coating area on which the insulating coating 210 is coated, and the coating area extends from the side of the side wall 200 close to the bottom wall 100 along the side of the side wall 200.
  • the height direction (the Z direction in FIG. 1) extends to the vicinity of one side edge of the side wall 200 near the opening 300 to reserve a non-coated area with a predetermined height on the outer surface of the side wall 200 near the edge of the opening 300.
  • the coating area does not extend to the edge of the opening 300 in the height direction, and the insulating coating 200 does not completely cover the outer surface of the side wall 200.
  • the coating area is close to the edge of the opening 300 in the height direction and is separated from the edge of the opening 300 by a predetermined distance.
  • the outer surface of the side wall 200 defined by the predetermined distance is the non-coated area, and the insulating coating 210 is not coated in the non-coated area. That is, the outer surface of the side wall 200 has a coated area and a non-coated area successively distributed along the height direction, the coated area is closer to the bottom wall 100 than the non-coated area, and the non-coated area is closer to the opening 300 than the coated area.
  • the outer surface of the side wall 200 refers to the surface of the side wall 200 away from the receiving cavity 400.
  • the side of the side wall 200 close to the bottom wall 100 is specifically the junction of the side wall 200 and the bottom wall 100.
  • the insulating coating 210 can be arranged in a variety of ways. Generally, the insulating coating 210 is coated with an organic paint in the coating area. The paint is sensitive to temperature. If the ambient temperature of the insulating coating 210 is too high and higher than the melting point of the paint, the insulating coating 210 is likely to melt, which affects the stability and insulation protection performance of the insulating coating 210.
  • the coating area extends in the height direction from the side of the side wall 200 close to the bottom wall 100 to the side close to the opening 300, so that the side wall 200 is located near the edge of the opening 300.
  • the outer surface retains uncoated areas. In this way, when the cover plate 500 of the secondary battery and the casing 10 are welded to each other at the opening 300, the high temperature caused by the welding will not affect the stability of the insulating coating 210 on the coating area.
  • the outer surface of the side wall 200 is coated with an insulating coating 210, the adhesion of the insulating coating 210 is relatively large, and the adhesive force between the insulating coating 210 and the side wall 200 is relatively large, which can ensure the insulation coating 210 and the side wall 200
  • the stability of the bonding between them ensures the flatness of the outer surface of the side wall 200 and good insulation performance. Therefore, during the production and use of the housing 10, the insulating coating 210 can be well adhered to the coating area for a long time, and the long-term safety and reliability of the housing 10 are better realized.
  • the outer surface of the bottom wall 100 away from the receiving cavity 400 is also coated with an insulating coating 210.
  • the insulation performance between the bottom wall 100 of the secondary battery and the bottom plate of the box can be ensured.
  • the insulating coating 210 coated on the outer surface of the side wall 200 and the insulating coating 210 coated on the outer surface of the bottom wall 100 are integrated.
  • the outer surface of the secondary battery casing 10 When the outer surface of the secondary battery casing 10 is coated with the insulating coating 210, the secondary battery and the inner wall surface of the box body are bonded by adhesive glue. Since the outer surface of the casing 10 is provided with an insulating coating 210, the relative position between the insulating coating 210 and the bottom wall 100 or the side wall 200 is more stable. When the secondary battery and the inner wall surface of the box are adhered to each other, The relative movement of the insulating coating 210 and the casing 10 will not affect the stability of the relative position between the secondary battery and the casing.
  • the inner wall surface of the box body is not limited.
  • the box body includes a bottom plate, a plurality of side plates connected to the peripheral side of the bottom plate, a receiving space enclosed by the bottom plate and the plurality of side plates, and
  • the opening of the box body communicating with the accommodating space and the upper cover provided at the opening of the box body are arranged oppositely in the height direction of the box body.
  • the inner wall surface of the box body may be the surface of the bottom plate facing the accommodating space, or the surface of the side plate or the upper cover facing the accommodating space.
  • the inner wall surface of the box body is the surface of the bottom plate facing the accommodating space, and the secondary battery is adhesively connected to the bottom plate through adhesive glue, thereby fixing the secondary battery to the bottom plate of the box body.
  • the area and shape of the coating area is not limited here.
  • the area of the coating area is the side wall 200. 70%-85% of the total area of the outer surface. Further, the area of the coating area is 80% of the total area of the outer surface of the side wall 200.
  • the shell 10 is usually called a prismatic or cylindrical shape.
  • the extension height h of the coating area in the height direction and the total height H of the side wall 200 should meet the following relationship:
  • the extension height of the coating area in the height direction is 70%-85% of the total height of the side wall 200. It can also ensure that the insulating coating 210 occupies a large area on the outer surface of the side wall 200, and a good adhesion performance between the insulating coating 210 and the side wall 200 can be ensured.
  • the extension height m of the non-coating area in the height direction is greater than or equal to 3 mm.
  • the high temperature area caused by welding is limited. Setting the height m of the non-coated area near the opening 300 to be greater than or equal to 3mm can effectively ensure that the welding process produces The high temperature will not affect the coating area and affect the stability of the insulating coating 210.
  • the edge of the coating area close to the opening 300 and the edge of the side wall 200 close to the opening 300 are arranged in parallel. It is ensured that the non-coated area has the same height at different positions in the circumferential direction of the casing 10, and it is ensured that the stability of the insulating coating 210 is not affected on the circumferential side of the opening 300 during the welding process of the cover plate 500 and the casing 10.
  • the insulating coating 210 needs to be coated with a certain thickness.
  • the thickness of the insulating coating 210 is 80 ⁇ m to 160 ⁇ m. Further, the thickness of the insulating coating 210 is 100 ⁇ m to 140 ⁇ m.
  • the thickness of the insulating coating 210 is within the above-mentioned thickness range, it can not only ensure that the insulation performance of the insulating coating 210 meets the requirements, but also can prevent the case 10 from being too large due to the excessive thickness of the insulating coating 210. Excessive thickness will also lead to waste of paint of the insulating coating 210 and reduce the energy density of the secondary battery.
  • the thickness of the insulating coating 210 refers to the distance between the outer surface of the insulating coating 210 away from the receiving cavity 400 and the outer surface of the side wall 200. There may be a certain error in the thickness of the insulating coating 210 in the coating area.
  • the thickness of the insulating coating 210 can be the average of the thickness of the insulating coating 210 in the coating area, or the thickness of the insulating coating 210 can be taken as The minimum value of the thickness of the insulating coating 210 everywhere in the coating area.
  • the insulating coating 210 is formed by applying organic paint to the coating area.
  • the insulating coating 210 includes: relative to the total weight of the insulating coating 210, 80-97% by weight of the insulating film-forming resin, 3-12% by weight of additives, and 0-8% by weight of pigments.
  • the insulating coating 210 contains 1-8% by weight of pigment.
  • the pigment can be selected from a designated color, such as blue, yellow, or red. Pigment is added to the insulating coating 210.
  • the pigment is selected from toner.
  • blue powder and titanium dioxide the blue powder may be phthalocyanine blue powder, for example.
  • the ratio between blue powder and titanium dioxide is not limited here, for example, the ratio between blue powder and titanium dioxide is 1:10.
  • the particle size of the pigment powder in the pigment is less than or equal to 25 ⁇ m. It is prevented that the particle size of the pigment powder is too large to affect the performance of the insulating coating 210.
  • the insulating film-forming resin is selected from epoxy resin, polyurethane, acrylic resin, phenolic resin, polyester resin and combinations thereof. It can not only ensure that the insulating coating 210 has good insulation performance, but also can ensure that the insulation performance has good adhesion, resistivity, and the like.
  • the auxiliary agent is selected from at least one of a light stabilizer, a heat stabilizer, an antioxidant, a defoamer, a leveling agent, a flame retardant, and a plasticizer. It is beneficial to the curing and molding of the insulating coating 210 in the later stage.
  • the insulating coating 210 can be light-cured or heat-cured.
  • the insulating film-forming resin is obtained by photocuring acrylic functionalized prepolymers and acrylic monomers in the presence of a photoinitiator, wherein the acrylic functionalized prepolymers are selected from polyester acrylate prepolymers, epoxy acrylics At least one of ester prepolymer, urethane acrylate and pure acrylate prepolymer, and the acrylic monomer is selected from at least one of monoalkyl acrylate, glycol diacrylate and triol triacrylate By.
  • the insulating film-forming resin is obtained by curing reaction of epoxy resin, polyurethane, polyester or acrylic resin and curing agent.
  • the insulating coating 210 when the insulating coating 210 is formed by light curing, contains, for example, 5-8% by weight of pigment, 60-80% by weight of prepolymer, and 10-30% by weight of monomer. , 2-10% by weight of photoinitiator and 1-3% by weight of auxiliary agent.
  • the prepolymer includes, for example, a polyester acrylate prepolymer, which has fast curing speed, high gloss and good adhesion; or the prepolymer includes an epoxy acrylate prepolymer, which is resistant to chemicals and heat Good performance, fullness and adhesion; or, the prepolymer contains urethane acrylate, which has the advantages of low energy, low shrinkage, good leveling, and improved toughness, or the prepolymer contains pure acrylate. Prepolymer has the advantages of low viscosity and good leveling appearance.
  • Monomer is a kind of organic small molecule containing polymerizable tube energy group, which is easy to dissolve and dilute, and can adjust the viscosity of the system.
  • the monomers include, for example, alkyl acrylates, which have the characteristics of low viscosity, strong diluting ability, low light curing speed, low crosslinking density, and low volume shrinkage.
  • the monomer contains dipropylene glycol diacrylate, which can effectively improve the adhesion of the insulating coating.
  • the monomer contains trihydroxymethylpropane triacrylate, which has fast light curing speed, high crosslinking density, high film hardness and brittleness, good resistance, large molecular weight, high viscosity, etc.
  • the photoinitiator After the photoinitiator absorbs light energy, it can jump to the excited singlet state, and jump to the excited triplet state through intersystem. When the excited singlet state or the triplet state, the molecular structure is unstable. The weak bond in the photoinitiator is homogenized, generating active free radicals, and initiating the polymerization and crosslinking of oligomers and monomers. The absorption spectrum of the photoinitiator matches the emission spectrum of the light source.
  • the photoinitiator can be, for example, an ITX photoinitiator or a TPO photoinitiator suitable for colored systems. Or the photoinitiator is 907 photoinitiator and 1173 photoinitiator which can be dried quickly.
  • the auxiliary agent can be, for example, a chain transfer agent, a light or heat stabilizer, a plasticizer, an oxygen inhibitor, or a free radical co-trapping agent.
  • the insulating coating 210 when the insulating coating 210 is thermally cured, contains, for example, 2 to 3% by weight of pigment, 40 to 55% by weight of the host resin, and 30 to 50% by weight of curing. Agent, 1-15% by weight of auxiliary agent.
  • the host resin may include, for example, epoxy resin, which has the characteristics of strong adhesion, strong mechanical properties, low curing shrinkage, and good chemical stability.
  • the curing agent may include, for example, a phenolic resin, which has the characteristics of good wear resistance, high strength, and good corrosion resistance.
  • the curing agent may also include dicyandiamide and the like.
  • the auxiliary agent may include, for example, a defoamer, a leveling agent, a flame retardant, a plasticizer, and the like.
  • the secondary battery further includes a second insulating film 220, the second insulating film 220 covers at least the non-coated area to ensure the insulation of the non-coated area.
  • the second insulating film 220 only covers the non-coated area.
  • the second insulating film 220 includes a bonding section 221 and a stacking section 222 that are successively distributed in the height direction.
  • the bonding section 221 is attached to the non-coating area, and the stacking section 222 is attached to the non-coating area.
  • the section 221 extends to the outer surface of the insulating coating 210.
  • the second insulating film 220 and the insulating coating 210 can be superimposed on each other, preventing a gap between the second insulating film 220 and the insulating coating 210 from affecting the housing 10 Insulation properties of the outer surface.
  • the overlapping height between the second insulating film 220 and the insulating coating 210 is not limited, that is, the extension height of the overlapping section 222 in the height direction is not limited.
  • the extension height of the superimposed section 222 in the height direction is 1.5 mm-6 mm.
  • the extension height of the superimposed section 222 in the height direction is 3 mm to 5 mm.
  • the thickness of the second insulating film 220 is 100 ⁇ m ⁇ 120 ⁇ m.
  • the thickness of the second insulating film 220 is 110 ⁇ m.
  • the thickness of the second insulating film 220 is within the above numerical range, it can prevent the second insulating film 220 from being too thick and increase the volume of the secondary battery, and it can also ensure a certain wear resistance of the second insulating film 220, and improve the second insulating film 220. Second, the service life of the insulating film 220 and the insulating performance of the housing 10.
  • the second insulating film 220 and the first insulating film 510 are integrally provided, which can improve the assembly efficiency of the secondary battery.
  • the material of the second insulating film 220 is the same as the material of the first insulating film 510, which will not be repeated here.
  • the second aspect of the present application also provides a method for manufacturing a secondary battery, including:
  • Step S001 Provide a housing.
  • the casing may be the casing in any of the above-mentioned embodiments.
  • Step S002 Dispose of the electrode assembly from the opening into the accommodating cavity.
  • Step S003 Set the cover plate to the opening, and weld the cover plate and the side wall to each other.
  • Step S004 Stick an insulating film outside the sidewalls, and the insulating film covers at least the non-coated area.
  • step S003 that is, before the cover plate 500 and the housing 10 are welded, the operation of coating the insulating coating 210 is performed before the electrode assembly and the cover plate 500 are placed.
  • the weight of the casing is relatively light, and the structure is simple, which facilitates the coating of the insulating coating 210.
  • step S003 due to the existence of the non-coated area, it is possible to prevent the high temperature caused by welding from affecting the stability of the insulating coating 210.
  • step S004 the insulation performance of the outer surface of the side wall 200 can be further improved, and safety accidents caused by electrification of the non-coating area can be prevented.
  • step S001 includes:
  • Step S011 Provide a shell base.
  • the shell base has a side wall 200, a bottom wall 100, a receiving cavity 400 and an opening 300.
  • Step S012 cleaning the shell matrix.
  • Cleaning methods include but are not limited to: ethanol cleaning, acetone cleaning, methyl ethyl ketone cleaning, isoacetone cleaning, laser cleaning, plasma cleaning, etc. After cleaning, the surface energy of the shell substrate is greater than 36N/m.
  • the outer surface of the side wall 200 of the shell substrate is divided into a coated area and a non-coated area.
  • the boundary between the coated area and the non-coated area is shown by a dotted line in FIG. 6. It can be understood that the dotted line does not constitute a limitation on the structure of the shell base.
  • the portion with an extension of m in the height direction is a non-coated area
  • the portion with an extension of h in the height direction is a coated area
  • the non-coated area is located on the side of the coated area close to the opening 300.
  • Step S013 Coating the insulating coating 210 in the coating area to form the housing as described in any of the above embodiments.
  • the coating area of the side wall 200 is coated with an insulating coating 210.
  • the electrode assembly is placed in the housing according to step S002; then, as shown in FIG. 8, the cover plate 500 is covered at the opening 300 by step S003. Finally, the cover plate 500 and the side wall 200 are welded to each other in the non-coated area. Finally, the second insulating film 220 is attached to the non-coated area of the side wall 200 so that the second insulating film 220 covers at least part of the insulating coating 210. A first insulating film 510 is attached to the top of the cover plate 500 to form the secondary battery described in any of the above embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种壳体、二次电池、电池包、车辆及二次电池的制造方法,壳体包括:底壁和侧壁,底壁和侧壁限定出一端具有开口的、用于容纳二次电池电极组件的容纳腔;其中,侧壁的外表面具有其上涂覆有绝缘涂层的涂覆区,涂覆区从侧壁靠近底壁的一侧沿侧壁的高度方向延伸至侧壁靠近开口的一侧边缘附近,以在侧壁位于开口边缘附近的外表面保留具有预定高度的非涂覆区。在壳体的生产和使用过程中,绝缘涂层能够长期良好的粘接于涂覆区内,更好的实现了壳体长期的安全可靠性。

Description

壳体、二次电池、电池包、车辆及二次电池的制造方法
相关申请的交叉引用
本申请要求享有于2019年09月19日提交的名称为“壳体、二次电池、电池包、车辆及二次电池的制造方法”的中国专利申请第201910884725.4号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及储能设备技术领域,尤其涉及一种壳体、二次电池、电池包、车辆及二次电池的制造方法。
背景技术
随着消费类电子以及电动汽车的迅猛发展,锂离子电子行业引起了各行各业的广泛关注。对于电池的要求也越来越严格,作为新能源汽车的核心部分,锂离子电池被严格要求兼具安全性、可靠性和稳定性。
锂离子电池是由电极组件和容纳电极组件的金属壳体组成,壳体通常为铝壳,当电极组件装入壳体后,盖板与壳体通过激光焊接来实现电池的结构连接与密封。锂离子电池在使用过程中需保证绝缘来实现电池模组、电池包层级在使用过程的安全可靠性。目前锂离子电池一般通过在表面粘贴绝缘膜来实现电池组装成电池模组、电池包过程中的绝缘要求。但是,绝缘膜在生产或运转过程中易被外界物质、硬质颗粒等划伤、破坏,导致绝缘失效,影响电池的安全性能。
因此,亟需一种新的壳体、二次电池、电池包、车辆及二次电池的制造方法。
发明内容
本申请提供一种壳体、二次电池、电池包、车辆及二次电池的制造方 法,旨在提高二次电池的安全性能。
本申请第一方面提供了一种壳体,用于二次电池,壳体包括:底壁和侧壁,底壁和侧壁限定出一端具有开口的、用于容纳二次电池的电极组件的容纳腔;其中,侧壁的外表面具有其上涂覆有绝缘涂层的涂覆区,涂覆区从侧壁靠近底壁的一侧沿侧壁的高度方向延伸至侧壁靠近开口的一侧边缘附近,以在侧壁位于开口的边缘附近的外表面保留具有预定高度的非涂覆区。
可选地,涂覆区的面积为侧壁外表面总面积的70%~85%;
和/或,涂覆区在高度方向上的延伸高度为侧壁总高度的70%~85%。
可选地,非涂覆区在高度方向上的延伸高度大于或等于3mm。
可选地,绝缘涂层包含:相对于绝缘涂层总重计,80-97重量%的绝缘成膜树脂,3-12重量%的助剂,和0-8重量%的颜料。
可选地,颜料选自色粉;
和/或,绝缘成膜树脂选自:环氧树脂、聚氨酯、丙烯酸类树脂、酚醛树脂、聚酯树脂及其组合;
和/或,助剂选自:光稳定剂、热稳定剂、抗氧化剂、消泡剂、流平剂、阻燃剂及增塑剂中的至少一者。
可选地,绝缘成膜树脂由丙烯酸官能化预聚物和丙烯酸类单体在光引发剂的存在下光固化获得,其中,丙烯酸官能化预聚物选自聚酯丙烯酸酯预聚物、环氧丙烯酸酯预聚物、聚氨酯丙烯酸酯及纯丙烯酸酯预聚物中的至少一者,丙烯酸类单体选自丙烯酸单烷基酯、二元醇二丙烯酸酯及三元醇三丙烯酸酯中的至少一者;
或者,绝缘成膜树脂由环氧树脂、聚氨酯、聚酯或丙烯酸树脂与固化剂固化反应获得。
可选地,绝缘涂层的厚度为80μm~160μm。
本申请第二方面提供一种二次电池,包括:上述的壳体;电极组件,置于容纳腔;盖板,盖设于开口处;绝缘膜,至少覆盖非涂覆区。
可选地,绝缘膜在高度方向上包括相继分布的贴合段及叠加段,贴合段贴合于非涂覆区设置,叠加段由贴合段延伸至绝缘涂层的外表面。
可选地,叠加段在高度方向上的延伸高度为1.5mm~6mm。
本申请第三方面提供了一种电池包,包括:箱体;上述的二次电池,二次电池容纳于箱体内。
可选地,二次电池和箱体的内壁面之间通过粘接胶粘接。
本申请第四方面提供了一种车辆,包括上述的电池包。
本申请第五方面还提供一种二次电池的制造方法,包括:
提供上述的壳体;
将电极组件由开口处置入容纳腔内;
将盖板盖设于开口处,并将盖板和侧壁相互焊接连接;
在侧壁外贴合设置绝缘膜,绝缘膜至少覆盖非涂覆区。
在本申请的壳体中,壳体包括底壁、侧壁和位于侧壁外表面的涂覆区及非涂覆区,且涂覆区上涂覆有绝缘涂层,底壁和侧壁围合形成具有开口的容纳腔,二次电池的电极组件能够从开口处置于容纳腔内。其中,涂覆区从侧壁靠近底壁的一侧沿高度方向延伸至其靠近开口的一侧附近,以在开口边缘附近的外表面保留非涂覆区,这样二次电池的盖板在开口处和壳体相互焊接时,焊接导致的高温不会影响涂覆区上绝缘涂层的稳定性。侧壁的外表面涂覆绝缘涂层,绝缘涂层和侧壁之间的粘接力较大,能够保证侧壁外表面的平整性和良好的绝缘性能。因此在壳体的生产和使用过程中,绝缘涂层能够长期良好的粘接于涂覆区内,更好的实现了壳体长期的安全可靠性。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果,其中的附图并未按照实际的比例绘制。
图1是本申请第一方面的实施例提供的一种二次电池的结构示意图;
图2是本申请第一方面的实施例提供的一种二次电池的俯视图;
图3是图2中A-A处的局部剖视图;
图4是本申请第五方面的实施例提供的一种二次电池的制造方法的流程示意图;
图5是本申请第五方面的实施例提供的一种二次电池的制造方法中提供的一种壳体的结构示意图;
图6是本申请第五方面的实施例提供的一种二次电池的制造方法中具有涂覆区和非涂覆区的壳体的结构示意图;
图7是本申请第五方面的实施例提供的一种二次电池的制造方法中具有绝缘涂层的壳体的结构示意图;
图8是本申请第五方面的实施例提供的一种二次电池的制造方法中焊接有盖板的二次电池的结构示意图。
附图标记说明:
10、壳体;
100、底壁;
200、侧壁;210、绝缘涂层;220、第二绝缘膜;221、贴合段;222、叠加段;
300、开口;
400、容纳腔;
500、盖板;510、第一绝缘膜;520、电极端子;
Z、高度方向。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等 指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的实施例的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图8对本申请实施例的壳体、二次电池、电池包、车辆及二次电池的制造方法进行详细描述。
本申请首先提供了一种车辆,车辆上设置有电池包。电池包包括箱体和容纳于箱体内的二次电池。
图1为本申请实施例提供的一种二次电池的结构示意图,二次电池包括:壳体10,具有底壁100和侧壁200,底壁100和侧壁200限定出一端具有开口300的容纳腔400;电极组件(图中未示出),位于容纳腔400内,电极组件由正极极片、负极极片和隔离膜卷绕而成,或者由正极极片、负极极片和隔离膜层叠而成,容纳腔400内还注入有电解液;盖板500,密封盖设于开口300处。
壳体10和盖板500之间的连接方式有多种,可选的,壳体10和盖板500通过焊接相互连接,以保证壳体10和盖板500之间相对位置的稳定性和连接密封的可靠性。
在一些可选的实施例中,二次电池的壳体10由金属材料制成,如铝或钢等金属,为了防止金属壳体10发生电化学腐蚀,一般情况下会使金属壳体10带正电。在二次电池组装成电池模组、电池包的过程中,可能会存在金属颗粒掉落在二次电池上,将二次电池的壳体10与负极电连接,造成二次电池的外部短路,影响二次电池的安全性能。因此需要对二次电池进行绝缘防护。
在一些可选的实施例中,盖板500远离容纳腔400的外表面设置有第一绝缘膜510。第一绝缘膜510的设置方式不做限定。例如盖板500上还 设置有电极端子520等凸出结构,电极端子520可以包括正极电极端子和负极电极端子,第一绝缘膜510上设置有通孔,以使电极端子520由通孔内伸出。防止凸出的结构令第一绝缘膜510和盖板500之间产生间隙,提高盖板500和第一绝缘膜510之间的接触面积,进而提高盖板500和第一绝缘膜510之间相对位置的稳定性和连接的可靠性。
第一绝缘膜510的设置方式可以有多种,例如第一绝缘膜510包括聚对苯二甲酸乙二醇、聚酰亚胺、聚碳酸酯、聚乙烯、聚偏二氟乙烯及聚四氟乙烯中的一种或多种。
为了保证二次电池壳体10的绝缘性能,壳体10的设置方式可以有多种,例如壳体10外包覆有绝缘膜。
在另一些可选的实施例中,侧壁200的外表面具有其上涂覆有绝缘涂层210的涂覆区,涂覆区从侧壁200靠近底壁100的一侧沿侧壁200的高度方向(图1中的Z方向)延伸至侧壁200靠近开口300的一侧边缘附近,以在侧壁200位于开口300的边缘附近的外表面保留具有预定高度的非涂覆区。涂覆区未沿高度方向延伸至开口300的边缘,绝缘涂层200也未完全覆盖侧壁200的外表面,涂覆区沿高度方向靠近开口300的边缘、并与开口300的边缘相距预定距离,由该预定距离所限定出的侧壁200的外表面即为非涂覆区,在非涂覆区内未涂覆绝缘涂层210。即侧壁200的外表面具有沿高度方向相继分布的涂覆区和非涂覆区,涂覆区比非涂覆区更靠近底壁100,非涂覆区比涂覆区更靠近开口300。侧壁200的外表面是指侧壁200远离容纳腔400的表面。在一些可选的实施例中,侧壁200靠近底壁100的一侧具体为侧壁200与底壁100的连接处。
绝缘涂层210的设置方式有多种,通常的绝缘涂层210采用有机涂料涂覆于涂覆区内。涂料对温度较为敏感,如果绝缘涂层210的环境温度过高,高于涂料的熔点,则绝缘涂层210很有可能发生熔化,影响绝缘涂层210的稳定性和绝缘保护性能。
在本申请实施例的壳体10中,涂覆区从侧壁200靠近底壁100的一侧沿高度方向延伸至其靠近开口300的一侧附近,以在侧壁200位于开口300边缘附近的外表面保留非涂覆区。这样二次电池的盖板500在开口 300处和壳体10相互焊接时,焊接导致的高温不会影响涂覆区上绝缘涂层210的稳定性。侧壁200的外表面涂覆绝缘涂层210,绝缘涂层210的附着力较大,绝缘涂层210和侧壁200之间的粘接力较大,能够保证绝缘涂层210和侧壁200之间粘接的稳定性,保证侧壁200外表面的平整性和良好的绝缘性能。因此在壳体10的生产及使用过程中,绝缘涂层210均能够长期良好的粘接于涂覆区内,更好的实现了壳体10长期的安全可靠性。
进一步的,在另一些可选的实施例中,底壁100远离容纳腔400的外表面也涂覆有绝缘涂层210。这样当二次电池设置于电池包箱体内时,能够保证二次电池的底壁100与箱体的底板之间的绝缘性能。进一步的,侧壁200外表面涂覆的绝缘涂层210和底壁100外表面涂覆的绝缘涂层210一体设置。
当二次电池壳体10的外表面涂覆有绝缘涂层210时,二次电池和箱体的内壁面之间通过粘接胶粘接。由于壳体10的外表面设置的是绝缘涂层210,绝缘涂层210和底壁100或侧壁200之间的相对位置更加稳定,当二次电池和箱体的内壁面相互粘接时,不会因为绝缘涂层210和壳体10发生相对运动而影响二次电池和箱体之间相对位置的稳定性。
其中,箱体的内壁面不做限定,在一些可选的实施例中,箱体包括底板、连接于底板周侧的多个侧板、底板和多个侧板围合形成的容纳空间、与容纳空间连通的箱体开口和盖设于箱体开口处的上盖,上盖和底板在箱体的高度方向上相对设置。箱体的内壁面既可以为底板朝向容纳空间的表面,也可以为侧板或上盖朝向容纳空间的表面。
可选的,箱体的内壁面为底板朝向容纳空间的表面,二次电池通过粘接胶和底板相互粘接连接,从而将二次电池固定于箱体的底板。
涂覆区的面积形状在此不做限定,为了保证壳体10外表面良好的绝缘性能,保证绝缘涂层210和壳体10之间良好的粘接性能,涂覆区的面积为侧壁200外表面总面积的70%~85%。进一步的,涂覆区的面积为侧壁200外表面总面积的80%。
壳体10通常称棱柱或圆柱状,为了保证绝缘涂层210和壳体10之间良好的粘接性能,涂覆区在高度方向上的延伸高度h和侧壁200的总高度 H应满足以下关系:
Figure PCTCN2020105558-appb-000001
即涂覆区在高度方向上的延伸高度为侧壁200总高度的70%~85%。同样能够保证绝缘涂层210在侧壁200外表面所占的面积较大,保证绝缘涂层210和侧壁200之间良好的粘接性能。
在另一些可选的实施例中,为了保证盖板500和壳体10焊接过程中不会对绝缘涂层210造成影响,非涂覆区在高度方向上的延伸高度m大于或等于3mm。在将盖板500焊接在壳体10的开口300处时,焊接导致的高温区域有限,将位于开口300附近的非涂覆区域的高度m设置为大于或等于3mm,能够有效保证焊接过程产生的高温不会波及涂覆区而影响绝缘涂层210的稳定性。
在一些可选的实施例中,涂覆区靠近开口300的边缘与侧壁200靠近开口300的边缘平行设置。保证非涂覆区在壳体10周向上的不同位置高度相同,保证盖板500和壳体10焊接过程中在开口300周侧均不会影响绝缘涂层210的稳定性。
为了保证良好的绝缘性能,绝缘涂层210需要涂覆有一定的厚度,在一些可选的实施例中,绝缘涂层210的厚度为80μm~160μm。进一步的,绝缘涂层210的厚度为100μm~140μm。当绝缘涂层210的厚度位于上述厚度范围之内时,不仅能够保证绝缘涂层210的绝缘性能满足要求,还能够防止绝缘涂层210过厚导致的壳体10体积过大,绝缘涂层210过厚还会导致绝缘涂层210的涂料的浪费,并降低二次电池的能量密度。
绝缘涂层210的厚度是指绝缘涂层210远离容纳腔400的外表面和侧壁200的外表面之间的距离。涂覆区内各处的绝缘涂层210厚度可能存在一定的误差,绝缘涂层210的厚度可以取涂覆区内各处的绝缘涂层210厚度的平均值,或者绝缘涂层210的厚度取涂覆区内各处的绝缘涂层210厚度的最小值。
如上所述,为了提高绝缘涂层210的附着力,绝缘涂层210选用有机 涂料涂覆在涂覆区内形成。可选的,绝缘涂层210包含:相对于绝缘涂层210总重计,80-97重量%的绝缘成膜树脂,3-12重量%的助剂,和0-8重量%的颜料。
可选的,绝缘涂层210包含1-8重量%的颜料。颜料可以选用指定颜色,例如蓝色、黄色或红色等。在绝缘涂层210中添加颜料,当绝缘涂层210涂覆于侧壁200的外表面时,易于分辨,便于用户根据绝缘涂层210的颜色分辨绝缘涂层210的涂覆面积等。
在一些可选的实施例中,颜料选自色粉。例如蓝色粉和钛白粉,蓝色粉例如可以为酞青蓝色粉。蓝色粉和钛白粉之间的配比在此不做限定,例如蓝色粉和钛白粉之间的比例为1:10。
在另一些可选的实施例中,颜料中颜料粉的粒径小于或等于25μm。防止颜料粉的粒径过大影响绝缘涂层210的性能。
绝缘成膜树脂的设置方式有多种,例如绝缘成膜树脂选自:环氧树脂、聚氨酯、丙烯酸类树脂、酚醛树脂、聚酯树脂及其组合。既能够保证绝缘涂层210具有良好的绝缘性能,还能够保证绝缘性能具有良好的附着力、电阻率等。
助剂的设置方式有多种,例如助剂选自:光稳定剂、热稳定剂、抗氧化剂、消泡剂、流平剂、阻燃剂、增塑剂中的至少一者。有利于绝缘涂层210后期的固化成型。
绝缘涂层210可以选用光固化或者热固化。例如,绝缘成膜树脂由丙烯酸官能化预聚物和丙烯酸类单体在光引发剂的存在下光固化获得,其中,丙烯酸官能化预聚物选自聚酯丙烯酸酯预聚物、环氧丙烯酸酯预聚物、聚氨酯丙烯酸酯及纯丙烯酸酯预聚物中的至少一者,丙烯酸类单体选自丙烯酸单烷基酯、二元醇二丙烯酸酯及三元醇三丙烯酸酯中的至少一者。
或者,在另一些可选的实施例中,绝缘成膜树脂由环氧树脂、聚氨酯、聚酯或丙烯酸树脂与固化剂固化反应获得。
作为本申请的一个实施例,当绝缘涂层210光固化成型时,绝缘涂层210例如包含5-8重量%的颜料、60-80重量%的预聚物、10-30重量%的单 体、2-10重量%的光引发剂和1-3重量%的助剂。
预聚物例如包含聚酯丙烯酸酯预聚物,该预聚物固化速度快、光泽高、附着力好;或者预聚物包含环氧丙烯酸酯预聚物,该预聚物耐化学品耐热性能好、丰满度和附着力好;或者,预聚物包含聚氨酯丙烯酸酯,该预聚物具有低能量、低收缩、流平好、提高韧性的优点,或者预聚物包含纯丙烯酸酯,该预聚物具有粘度低、流平外观好的优点。
单体是一种含有可聚合管能团的有机小分子,易于溶解和稀释,能够调节体系粘度。单体例如包含丙烯酸烷基酯,丙烯酸烷基酯具有粘度低,稀释能力强、光固化速度低、交联密度度低、体积收缩率低等特点。或者,单体包含二丙二醇类二丙烯酸酯,二丙二醇类二丙烯酸酯能够有效提高绝缘涂层的附着力。或者,单体包含三羟基甲基丙烷三丙烯酸酯,三羟基甲基丙烷三丙烯酸酯具有光固化速度快、交联密度大、漆膜硬度和脆性高,耐抗性好、分子量大,粘度高等特点。
光引发剂吸收光能后能够跃迁至激发单线态,经系间窜跃到激发三线态,在其激发单线态或三线态时,分子结构呈不稳定状态。光引发剂中的弱键发生均裂,产生活性自由基,引发低聚物和单体的聚合交联。光引发剂的吸收光谱与光源的发射光谱相匹配。光引发剂例如可以为适用于有色体系ITX光引发剂或TPO光引发剂。或者光引发剂为能够快速干燥的907光引发剂和1173光引发剂。
助剂例如可以为链转移剂、光或热稳定剂、增塑剂、氧抑制剂或自由基辅捉剂等。
作为本申请的另外一种实施例,当绝缘涂层210热固化成型时,绝缘涂层210例如包含2-3重量%的颜料、40-55重量%的主体树脂、30-50重量%的固化剂、1-15重量%的助剂。
主体树脂例如可以包含环氧树脂,环氧树脂具有附着力强、力学性能强、固化收缩低、化学稳定性好等特点。
固化剂例如可以包含酚醛树脂,酚醛树脂具有耐磨性能好、强度高、耐腐蚀性好等特点。固化剂还可以包含双氰胺等。
助剂例如可以包含消泡剂、流平剂、阻燃剂、增塑剂等。
为了保证壳体10的全面绝缘,在一些可选的实施例中,二次电池还包括第二绝缘膜220,第二绝缘膜220至少覆盖非涂覆区,保证非涂覆区的绝缘。
请一并参阅图2和图3,第二绝缘膜220的设置方式有多种,例如第二绝缘膜220仅覆盖于非涂覆区。在另一些可选的实施例中,第二绝缘膜220在高度方向上包括相继分布的贴合段221及叠加段222,贴合段221贴合于非涂覆区,叠加段222由贴合段221延伸至绝缘涂层210的外表面。在这些可选的实施例中,通过设置叠加段222,令第二绝缘膜220和绝缘涂层210能够相互叠加,防止第二绝缘膜220和绝缘涂层210之间产生间隙而影响壳体10外表面的绝缘性能。
第二绝缘膜220和绝缘涂层210之间相互叠加的高度不做限定,即叠加段222在高度方向上的延伸高度不做限定。可选的,叠加段222在高度方向上的延伸高度为1.5mm~6mm。进一步,可选的,叠加段222在高度方向上的延伸高度为3mm~5mm。当叠加段222的延伸高度位于上述范围之内时,既能够防止第二绝缘膜220和绝缘涂层210之间产生间隙而影响壳体10外表面的绝缘性能,还能够防止叠加段222的延伸高度过大导致材料的浪费。
在一些可选的实施例中,第二绝缘膜220的厚度为100μm~120μm。可选的,第二绝缘膜220的厚度为110μm。当第二绝缘膜220的厚度位于上述数值范围之内时,既能够防止第二绝缘膜220过厚增大二次电池的体积,还能够保证第二绝缘膜220一定的耐磨性能,提高第二绝缘膜220的使用寿命和壳体10的绝缘性能。
在一些可选的实施例中,第二绝缘膜220和第一绝缘膜510一体设置,可提高二次电池的装配效率。
在一些可选的实施例中,第二绝缘膜220的材质与第一绝缘膜510材质相同,在此不再赘述。
请一并参阅图4,本申请第二方面还提供一种二次电池的制造方法,包括:
步骤S001:提供一种壳体。
该壳体可以为上述任一实施例中的壳体。
步骤S002:将电极组件由开口处置入容纳腔内。
步骤S003:将盖板盖设于开口处,并将盖板和侧壁相互焊接连接。
步骤S004:在侧壁外贴合绝缘膜,绝缘膜至少覆盖非涂覆区。
在本申请实施例的方法中,步骤S002和步骤S003之前,即在盖板500和壳体10焊接之前、未放置电极组件及盖合盖板500之前进行涂覆绝缘涂层210的操作,此时壳体的质量较轻,且结构简单,便于进行绝缘涂层210的涂覆。在步骤S003中,由于非涂覆区域的存在,能够防止焊接带来的高温影响绝缘涂层210的稳定性。通过步骤S004能够进一步提高侧壁200外表面的绝缘性能,防止非涂覆区带电导致的安全事故。
在一些可选的实施例中,步骤S001包括:
步骤S011:提供一种壳基体。
如图5所示,为本申请实施例提供的一种壳基体,壳基体具有侧壁200、底壁100、容纳腔400和开口300。
步骤S012:对壳基体进行清理。
清洁方式包括但不限于:乙醇清洗、丙酮清洗、丁酮清洗、异丙酮清洗和激光清洁、等离子清洁等。清洁以后壳基体表面能大于36N/m。
如图6所示,在对壳基体进行清理以后,在壳基体的侧壁200外表面划分出涂覆区和非涂覆区。其中,为了更加明显的示出涂覆区和非涂覆区,在图6中以虚线示出涂覆区和非涂覆区的边界。可以理解的是,虚线并不构成对壳基体结构上的限定。在图6中,在高度方向上延伸尺寸为m的部分为非涂覆区,在高度方向上延伸尺寸为h的为涂覆区,非涂覆区位于涂覆区靠近开口300的一侧。
步骤S013:在涂覆区内涂覆绝缘涂层210形成上述任一实施例所述的壳体。
如图7所示,侧壁200的涂覆区内涂覆绝缘涂层210。
然后按照步骤S002将电极组件放置于壳体内;紧接着如图8所示,通过步骤S003将盖板500盖设于开口300处。最后在非涂覆区将盖板500 和侧壁200相互焊接连接最后在侧壁200的非涂覆区贴合设置第二绝缘膜220,令第二绝缘膜220至少覆盖部分绝缘涂层210,并在盖板500顶部贴合设置第一绝缘膜510以形成上述任一实施例所述的二次电池。
可以但不限于通过粘接胶等方式将绝缘涂层涂覆于涂覆区。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;物品没有使用数量词修饰时旨在包括一个/种或多个/种物品,并可以与“一个/种或多个/种物品”互换使用”;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (22)

  1. 一种壳体,用于二次电池,所述壳体包括:
    底壁和侧壁,所述底壁和所述侧壁限定出一端具有开口的、用于容纳二次电池的电极组件的容纳腔;
    其中,所述侧壁的外表面具有其上涂覆有绝缘涂层的涂覆区,所述涂覆区从所述侧壁靠近所述底壁的一侧沿所述侧壁的高度方向延伸至所述侧壁靠近所述开口的一侧边缘附近,以在所述侧壁位于所述开口的边缘附近的外表面保留具有预定高度的非涂覆区。
  2. 根据权利要求1所述的壳体,其中,
    所述涂覆区的面积为所述侧壁外表面总面积的70%~85%;
    和/或,所述涂覆区在所述高度方向上的延伸高度为所述侧壁总高度的70%~85%。
  3. 根据权利要求1或2所述的壳体,其中,所述非涂覆区在所述高度方向上的延伸高度大于或等于3mm。
  4. 根据权利要求1-3任一项所述的壳体,其中,所述绝缘涂层包含:相对于所述绝缘涂层总重计,80-97重量%的绝缘成膜树脂,3-12重量%的助剂,和0-8重量%的颜料。
  5. 根据权利要求4所述的壳体,其中,所述颜料中颜料粉的粒径小于或等于25μm。
  6. 根据权利要求4或5所述的壳体,其中,
    所述颜料选自色粉;
    和/或,所述绝缘成膜树脂选自:环氧树脂、聚氨酯、丙烯酸类树脂、酚醛树脂、聚酯树脂及其组合;
    和/或,所述助剂选自:光稳定剂、热稳定剂、抗氧化剂、消泡剂、流平剂、阻燃剂及增塑剂中的至少一者。
  7. 根据权利要求4-6任一项所述的壳体,其中,
    所述绝缘成膜树脂由丙烯酸官能化预聚物和丙烯酸类单体在光引发剂的存在下光固化获得,其中,所述丙烯酸官能化预聚物选自聚酯丙烯酸酯 预聚物、环氧丙烯酸酯预聚物、聚氨酯丙烯酸酯及纯丙烯酸酯预聚物中的至少一者,所述丙烯酸类单体选自丙烯酸单烷基酯、二元醇二丙烯酸酯及三元醇三丙烯酸酯中的至少一者;
    或者,所述绝缘成膜树脂由环氧树脂、聚氨酯、聚酯或丙烯酸树脂与固化剂固化反应获得。
  8. 根据权利要求7所述的壳体,其中,所述绝缘成膜树脂由丙烯酸官能化预聚物和丙烯酸类单体在光引发剂的存在下光固化获得,所述绝缘涂层包含5-8重量%的颜料、60-80重量%的所述预聚物、10-30重量%的单体、2-10重量%的光引发剂和1-3重量%的助剂。
  9. 根据权利要求7所述的壳体,其中,所述绝缘成膜树脂由环氧树脂、聚氨酯、聚酯或丙烯酸树脂与固化剂固化反应获得,所述绝缘涂层包含2-3重量%的颜料、40-55重量%的主体树脂、30-50重量%的固化剂、1-15重量%的助剂。
  10. 根据权利要求9所述的壳体,其中,所述固化剂包括酚醛树脂和双氰胺中的至少一者。
  11. 根据权利要求1-10任一项所述的壳体,其中,所述绝缘涂层的厚度为80μm~160μm。
  12. 根据权利要求1-11任一项所述的壳体,其中,所述底壁远离所述容纳腔的外表面涂覆有所述绝缘涂层。
  13. 根据权利要求1-12任一项所述的壳体,其中,所述涂覆区靠近所述开口的边缘与所述侧壁靠近所述开口的边缘平行设置。
  14. 一种二次电池,包括:
    根据权利要求1-13任一项所述的壳体;
    电极组件,置于所述容纳腔;
    盖板,盖设于所述开口处;
    绝缘膜,至少覆盖所述非涂覆区。
  15. 根据权利要求14所述的二次电池,其中,所述绝缘膜在所述高度方向上包括相继分布的贴合段及叠加段,所述贴合段贴合于所述非涂覆区设置,所述叠加段由所述贴合段延伸至所述绝缘涂层的外表面。
  16. 根据权利要求15所述的二次电池,其中,所述叠加段在所述高度方向上的延伸高度为1.5mm~6mm。
  17. 根据权利要求14-16任一项所述的二次电池,其中,所述绝缘膜的厚度为100μm~120μm。
  18. 一种电池包,包括:
    箱体;
    多个根据权利要求14-17任一项所述的二次电池,所述二次电池容纳于所述箱体内。
  19. 根据权利要求18所述的电池包,其中,所述二次电池和所述箱体的内壁面之间通过粘接胶粘接。
  20. 一种车辆,包括根据权利要求18或19所述的电池包。
  21. 一种二次电池的制造方法,包括:
    提供一种根据权利要求1-13任一项所述的壳体;
    将电极组件由所述开口处置入所述容纳腔内;
    将盖板盖设于所述开口处,并将所述盖板和所述侧壁相互焊接连接;
    在所述侧壁外贴合设置绝缘膜,所述绝缘膜至少覆盖所述非涂覆区。
  22. 根据权利要求21所述的方法,其中,所述提供一种根据权利要求1-13任一项所述的壳体包括:
    提供一种壳基体;
    对所述壳基体进行清理;
    在所述涂覆区内涂覆绝缘涂层以形成权利要求1-13任一项所述的壳体。
PCT/CN2020/105558 2019-09-19 2020-07-29 壳体、二次电池、电池包、车辆及二次电池的制造方法 WO2021052019A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021553389A JP7254953B2 (ja) 2019-09-19 2020-07-29 ケース、二次電池、電池パック、車両及び二次電池の製造方法
EP20865575.3A EP3944354A4 (en) 2019-09-19 2020-07-29 COMPARTMENT, SECONDARY BATTERY, BATTERY PACK, VEHICLE AND METHOD FOR MAKING SECONDARY BATTERY
US17/563,077 US20220123406A1 (en) 2019-09-19 2021-12-28 Case, secondary battery, battery pack, vehicle, and method for manufacturing secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910884725.4A CN112331963A (zh) 2019-09-19 2019-09-19 壳体、二次电池、电池包、车辆及二次电池的制造方法
CN201910884725.4 2019-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/563,077 Continuation US20220123406A1 (en) 2019-09-19 2021-12-28 Case, secondary battery, battery pack, vehicle, and method for manufacturing secondary battery

Publications (1)

Publication Number Publication Date
WO2021052019A1 true WO2021052019A1 (zh) 2021-03-25

Family

ID=74319288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105558 WO2021052019A1 (zh) 2019-09-19 2020-07-29 壳体、二次电池、电池包、车辆及二次电池的制造方法

Country Status (5)

Country Link
US (1) US20220123406A1 (zh)
EP (1) EP3944354A4 (zh)
JP (1) JP7254953B2 (zh)
CN (2) CN112331963A (zh)
WO (1) WO2021052019A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663359A (zh) * 2022-09-23 2023-01-31 三一红象电池有限公司 一种电池制造方法及电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214589152U (zh) * 2021-04-30 2021-11-02 宁德时代新能源科技股份有限公司 电池及用电装置
CN114665203A (zh) * 2022-03-15 2022-06-24 东莞新能安科技有限公司 一种电池组及用电装置
WO2023216033A1 (zh) * 2022-05-07 2023-11-16 宁德时代新能源科技股份有限公司 电池单体及其制造方法、电池和用电装置
CN115472978B (zh) * 2022-08-25 2023-08-11 苏州恒悦新材料股份有限公司 一种动力电池模组侧板绝缘的绝缘膜及其粘结结构
CN115663112A (zh) * 2022-11-17 2023-01-31 湖北亿纬动力有限公司 一种包含着色绝缘涂层的电极片及其制备方法和锂离子电池
CN116769383B (zh) * 2023-08-21 2024-02-13 宁德时代新能源科技股份有限公司 环氧树脂粉末涂料、电池外壳、二次电池以及用电装置
CN117160828B (zh) * 2023-11-02 2024-04-02 宁德时代新能源科技股份有限公司 壳体制作方法及设备、壳体、电池单体、电池、用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223871A (ja) * 2002-01-29 2003-08-08 Sanyo Electric Co Ltd 電池およびこれを用いた携帯用電源装置
CN102732137A (zh) * 2012-07-17 2012-10-17 东莞大宝化工制品有限公司 一种环保光固化静电喷涂底漆
CN103050731A (zh) * 2012-12-18 2013-04-17 天津力神电池股份有限公司 一种锂离子电池壳绝缘涂层的制备方法及其锂离子电池
CN103999255A (zh) * 2012-02-07 2014-08-20 株式会社Lg化学 具有新颖的嵌入式结构的电池单元
CN106883724A (zh) * 2017-01-25 2017-06-23 江苏万达新能源科技股份有限公司 绝缘粉末涂料及其制备方法、施涂方法,涂有该绝缘粉末涂料的锂电池金属外壳
DE102017216673A1 (de) * 2017-09-20 2019-03-21 Bayerische Motoren Werke Aktiengesellschaft Elektrochemische energiespeichervorrichtung mit einem hartschalenzellgehäuse und ein verfahren zur herstellung dieser

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030008088A1 (en) * 2000-08-24 2003-01-09 Naoki Matsubara Case for electronic parts
KR100627313B1 (ko) * 2004-11-30 2006-09-25 삼성에스디아이 주식회사 이차 전지
KR100929033B1 (ko) * 2007-10-05 2009-11-26 삼성에스디아이 주식회사 캡 조립체 및 이를 구비하는 이차 전지
KR101104148B1 (ko) * 2008-01-10 2012-01-13 주식회사 엘지화학 전지케이스 제조방법
KR101365968B1 (ko) 2012-02-07 2014-02-24 주식회사 엘지화학 신규한 구조의 전지셀 제조방법
KR20140094205A (ko) * 2013-01-21 2014-07-30 삼성에스디아이 주식회사 이차 전지
KR20140121205A (ko) * 2013-04-05 2014-10-15 삼성에스디아이 주식회사 이차 전지 및 이의 외면을 절연시키는 방법
JP6191336B2 (ja) 2013-08-29 2017-09-06 株式会社Gsユアサ 蓄電素子、蓄電モジュール及び容器
KR102257679B1 (ko) * 2014-09-17 2021-05-28 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 이차 전지
WO2016075736A1 (ja) 2014-11-10 2016-05-19 株式会社東芝 電池モジュール
US10700317B2 (en) * 2015-04-13 2020-06-30 Cps Technology Holdings, Llc Cell to heat sink thermal adhesive
US10998598B2 (en) * 2016-04-01 2021-05-04 Lg Chem, Ltd. Battery module having resin layer in module case
CN109417133B (zh) * 2016-07-08 2021-10-29 大日本印刷株式会社 电池用外装材料和电池
CN107134547B (zh) * 2017-04-01 2020-05-19 乐凯胶片股份有限公司 一种新型锂离子电池用铝塑软包装膜
CN209104235U (zh) * 2018-12-29 2019-07-12 宁德时代新能源科技股份有限公司 电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223871A (ja) * 2002-01-29 2003-08-08 Sanyo Electric Co Ltd 電池およびこれを用いた携帯用電源装置
CN103999255A (zh) * 2012-02-07 2014-08-20 株式会社Lg化学 具有新颖的嵌入式结构的电池单元
CN102732137A (zh) * 2012-07-17 2012-10-17 东莞大宝化工制品有限公司 一种环保光固化静电喷涂底漆
CN103050731A (zh) * 2012-12-18 2013-04-17 天津力神电池股份有限公司 一种锂离子电池壳绝缘涂层的制备方法及其锂离子电池
CN106883724A (zh) * 2017-01-25 2017-06-23 江苏万达新能源科技股份有限公司 绝缘粉末涂料及其制备方法、施涂方法,涂有该绝缘粉末涂料的锂电池金属外壳
DE102017216673A1 (de) * 2017-09-20 2019-03-21 Bayerische Motoren Werke Aktiengesellschaft Elektrochemische energiespeichervorrichtung mit einem hartschalenzellgehäuse und ein verfahren zur herstellung dieser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944354A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663359A (zh) * 2022-09-23 2023-01-31 三一红象电池有限公司 一种电池制造方法及电池
CN115663359B (zh) * 2022-09-23 2023-06-23 三一红象电池有限公司 一种电池制造方法及电池

Also Published As

Publication number Publication date
CN115842201A (zh) 2023-03-24
US20220123406A1 (en) 2022-04-21
JP2022524390A (ja) 2022-05-02
CN112331963A (zh) 2021-02-05
EP3944354A1 (en) 2022-01-26
EP3944354A4 (en) 2022-07-06
JP7254953B2 (ja) 2023-04-10

Similar Documents

Publication Publication Date Title
WO2021052019A1 (zh) 壳体、二次电池、电池包、车辆及二次电池的制造方法
JP5346839B2 (ja) リチウムイオン二次電池
US10497965B2 (en) Battery pack and manufacturing method therefor
CN109804484B (zh) 电池组、电子设备、电动车辆、电动工具及电力存储系统
JP2011222469A (ja) 二次電池
JP2008305774A (ja) バッテリパック
KR20090110471A (ko) 슬림형의 전지팩
JP2020511747A (ja) パウチ型二次電池
US8883337B2 (en) Support foot for battery pack, battery pack with the same and method of manufacturing the same
CN101431149A (zh) 锂离子电池芯包装箔
JP2002237279A (ja) 二次電池
KR102207296B1 (ko) 형상유지 부재를 포함하는 파우치형 전지셀
CN115020632B (zh) 正极极片及其制备方法、电极组件、电池单体和电池
CN219393499U (zh) 一种电池及电池包
CN113036269B (zh) 电池及用电设备
JP2002245994A (ja) リチウム二次電池用収容部材及びそれを用いた二次電池パック
CN113745630B (zh) 电化学装置、电化学装置的制备方法及电子装置
CN113078392B (zh) 电化学装置及应用其的电子装置
CN219246814U (zh) 一种电池壳体
KR20170134114A (ko) 전지용 파우치 외장재 및 이를 포함하는 전지
JP2009004303A (ja) 非水電解質二次電池
CN112886104B (zh) 电池及用电设备
KR20010047031A (ko) 리튬 폴리머 전지 및 그 제조방법
CN219575898U (zh) 一种电池
CN216354489U (zh) 电池箱体、电池及用电设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021553389

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20865575

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020865575

Country of ref document: EP

Effective date: 20211021

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020865575

Country of ref document: EP

Effective date: 20211021

NENP Non-entry into the national phase

Ref country code: DE