WO2021049416A1 - 硫化物固体電解質、電極合剤、固体電池及び硫化物固体電解質の製造方法 - Google Patents
硫化物固体電解質、電極合剤、固体電池及び硫化物固体電解質の製造方法 Download PDFInfo
- Publication number
- WO2021049416A1 WO2021049416A1 PCT/JP2020/033444 JP2020033444W WO2021049416A1 WO 2021049416 A1 WO2021049416 A1 WO 2021049416A1 JP 2020033444 W JP2020033444 W JP 2020033444W WO 2021049416 A1 WO2021049416 A1 WO 2021049416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- sulfide solid
- sulfide
- solid
- acid
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims description 38
- 239000003792 electrolyte Substances 0.000 title abstract description 9
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title abstract 6
- 238000004519 manufacturing process Methods 0.000 title description 4
- 239000011149 active material Substances 0.000 claims abstract description 26
- 230000004580 weight loss Effects 0.000 claims abstract description 24
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 14
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 9
- 150000002367 halogens Chemical class 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 239000011593 sulfur Substances 0.000 claims abstract description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 239000011574 phosphorus Substances 0.000 claims abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 3
- 239000001301 oxygen Substances 0.000 claims abstract description 3
- 239000007784 solid electrolyte Substances 0.000 claims description 65
- 239000002203 sulfidic glass Substances 0.000 claims description 58
- 239000000460 chlorine Substances 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 13
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052794 bromium Inorganic materials 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims 1
- 229910052740 iodine Inorganic materials 0.000 claims 1
- 239000011630 iodine Substances 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- 238000002425 crystallisation Methods 0.000 abstract description 5
- 230000008025 crystallization Effects 0.000 abstract description 5
- 238000002411 thermogravimetry Methods 0.000 abstract description 3
- 150000003839 salts Chemical class 0.000 description 43
- 239000013078 crystal Substances 0.000 description 33
- 239000010410 layer Substances 0.000 description 16
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 13
- -1 lithium halide Chemical class 0.000 description 10
- 229910001416 lithium ion Inorganic materials 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 150000004677 hydrates Chemical class 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910018091 Li 2 S Inorganic materials 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- OCVXZQOKBHXGRU-UHFFFAOYSA-N iodine(1+) Chemical compound [I+] OCVXZQOKBHXGRU-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- LWBHHRRTOZQPDM-UHFFFAOYSA-N undecanedioic acid Chemical compound OC(=O)CCCCCCCCCC(O)=O LWBHHRRTOZQPDM-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 1
- HAFWELDDNUXLCK-TYYBGVCCSA-N (e)-but-2-enedioic acid;hydrate Chemical compound O.OC(=O)\C=C\C(O)=O HAFWELDDNUXLCK-TYYBGVCCSA-N 0.000 description 1
- HAFWELDDNUXLCK-ODZAUARKSA-N (z)-but-2-enedioic acid;hydrate Chemical compound O.OC(=O)\C=C/C(O)=O HAFWELDDNUXLCK-ODZAUARKSA-N 0.000 description 1
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ODBLHEXUDAPZAU-ZAFYKAAXSA-N D-threo-isocitric acid Chemical compound OC(=O)[C@H](O)[C@@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-ZAFYKAAXSA-N 0.000 description 1
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- ODBLHEXUDAPZAU-FONMRSAGSA-N Isocitric acid Natural products OC(=O)[C@@H](O)[C@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-FONMRSAGSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- VVYPUTBDXWGGIK-UHFFFAOYSA-N O.OC(C(=O)O)CCCCCCCCCCCCCCCC Chemical compound O.OC(C(=O)O)CCCCCCCCCCCCCCCC VVYPUTBDXWGGIK-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- SXDQRQUWNQKZBL-UHFFFAOYSA-N butanedioic acid;hydrate Chemical compound O.OC(=O)CCC(O)=O SXDQRQUWNQKZBL-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- UDAADYHCNRLOMG-UHFFFAOYSA-N hexanedioic acid;hydrate Chemical compound O.OC(=O)CCCCC(O)=O UDAADYHCNRLOMG-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- ZDYUUBIMAGBMPY-UHFFFAOYSA-N oxalic acid;hydrate Chemical compound O.OC(=O)C(O)=O ZDYUUBIMAGBMPY-UHFFFAOYSA-N 0.000 description 1
- JWMRSHRQMASEPT-UHFFFAOYSA-N pentanedioic acid;hydrate Chemical compound O.OC(=O)CCCC(O)=O JWMRSHRQMASEPT-UHFFFAOYSA-N 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- ODBLHEXUDAPZAU-UHFFFAOYSA-N threo-D-isocitric acid Natural products OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/10—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/88—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a sulfide solid electrolyte.
- the present invention also relates to an electrode mixture having the sulfide solid electrolyte and a solid battery. Furthermore, the present invention relates to a method for producing the sulfide solid electrolyte.
- Sulfide solid electrolyte is being studied as one of the solid electrolytes used in solid batteries.
- a solid-state battery containing a sulfide solid electrolyte has a problem that when it is charged and discharged, the reaction resistance between the electrode active material and the sulfide solid electrolyte becomes high, and the movement of lithium ions is restricted. It is believed that the reason for this is that a resistance layer is formed at the interface between the active material and the sulfide solid electrolyte due to the reaction.
- Patent Documents 1 to 3 attempts have been made to suppress an increase in reaction resistance by coating the surface of the active material with a specific compound.
- an object of the present invention is to provide a sulfide solid electrolyte capable of suppressing an increase in reaction resistance with an active material.
- the present invention is a sulfide solid electrolyte having a weight loss rate of 2.7% or more and 9.6% or less when heated from 25 ° C. to 400 ° C. in a thermogravimetric measurement performed at a heating rate of 10 ° C./min. Is to provide.
- the present invention relates to a solid electrolyte.
- the solid electrolyte of the present invention contains a sulfide solid electrolyte.
- the sulfide solid electrolyte (hereinafter, also simply referred to as “solid electrolyte”) has lithium ion conductivity. The degree of lithium ion conductivity of the solid electrolyte of the present invention will be described later.
- the solid electrolyte of the present invention contains a sulfur (S) element as a constituent element thereof.
- the lithium ion conductivity of the solid electrolyte of the present invention is due to the sulfide solid electrolyte.
- Various sulfide solid electrolytes having lithium ion conductivity are known in the art, and in the present invention, these various sulfide solid electrolytes can be used without particular limitation.
- the sulfide solid electrolyte must contain a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element, a halogen (X) element and an oxygen (O) element, and the reaction resistance with the active material. It is advantageous in terms of reducing.
- halogen (X) element for example, it is possible to use at least one of fluorine (F) element, chlorine (Cl) element, bromine (Br) element and iodine (I) element for the reaction resistance with the active material. It is advantageous in terms of further reduction.
- a sulfide solid electrolyte may contain elements other than lithium element, phosphorus element, sulfur element and halogen element.
- a part of the lithium element can be replaced with another alkali metal element
- a part of the phosphorus element can be replaced with another punictogen element
- a part of the sulfur element can be replaced with another chalcogen element.
- the solid electrolyte of the present invention is observed to lose weight when it is thermogravimetrically measured. Specifically, weight loss is observed when the solid electrolyte of the present invention is heated from 25 ° C to 400 ° C.
- the solid electrolyte in which such a weight loss is observed has a lower reaction resistance with the active material than the conventional sulfide solid electrolyte. As a result, the solid-state battery containing the solid electrolyte of the present invention has a high discharge capacity and a good discharge rate characteristic.
- the solid electrolyte of the present invention can reduce the reaction resistance with the active material is unknown, but the following can be considered, for example.
- the sulfide solid electrolyte will contain substances that can lose weight under predetermined conditions. Examples of such substances include hydrates.
- the case where the hydrate is derived from the weight loss observed in the temperature range described above will be described.
- the weight loss rate when heated from 25 ° C. to 400 ° C. is 2.7% or more and 9.6% or less.
- the weight loss rate when heated in a predetermined temperature range is 2.7% or more and 9.6%.
- the "predetermined temperature range” is preferably a temperature range in which the hydrate volatilizes, and may be, for example, 50 ° C. or higher, or 100 ° C. or higher.
- the "predetermined temperature range” may be, for example, 300 ° C. or lower, 250 ° C. or lower, 200 ° C. or lower, or 170 ° C. or lower.
- the weight loss of the hydrate becomes remarkable especially when heated from 100 ° C. to 170 ° C.
- the solid electrolyte of the present invention has a weight loss rate of 1.0% or more and 4.7% or less when heated from 100 ° C. to 170 ° C. in a thermogravimetric measurement performed at a heating rate of 10 ° C./min. preferable.
- the weight loss rate is, for example, preferably 1.5% or more, and more preferably 1.8% or more.
- the weight reduction rate is more preferably 4.6% or less, for example.
- the solid electrolyte of the present invention has a weight loss rate when heated from 25 ° C. to 400 ° C. in thermogravimetric analysis (the unit is "% by weight”). However, it is 2.7% or more and 9.6% or less.
- the weight loss rate is, for example, preferably 3.0% or more, particularly preferably 4.0% or more, particularly preferably 5.0% or more, and particularly preferably 6.0% or more. It is preferable to have.
- the weight loss rate is, for example, preferably 9.0% or less, particularly preferably 8.5% or less, and particularly preferably 8.0% or less.
- Weight loss rate (weight%) (W 25- W 400 ) / W 25 x 100 (1)
- W 25 represents the weight (g) of the sample at 25 ° C.
- W 400 represents the weight (g) of the sample at 400 ° C.
- Thermogravimetric measurement is performed at a heating rate of 10 ° C./min.
- the atmosphere is preferably an Ar atmosphere.
- TG-DTA2000SA (trade name) manufactured by MAC science Co., Ltd. can be used.
- the sulfide solid electrolyte before measurement is stored in an environment with a dew point of ⁇ 50 ° C. or lower for the purpose of suppressing an increase in the amount of weight loss.
- the solid electrolyte of the present invention contains a Li element, a P element, an S element and a halogen (X) element.
- X halogen
- the solid electrolyte of the present invention contains a hydrate of lithium halide
- the elements of the X element that is a constituent element of the sulfide solid electrolyte and the type of the X element that is a constituent element of the hydrate of lithium halide? May be the same or different.
- the element X which is a constituent element of the hydrate of lithium halide, is preferably one or more of, for example, F element, Cl element, Br element and I element.
- the number of hydrated water contained in the hydrate of lithium halide may be, for example, 1 or 2 or more.
- the method for obtaining the solid electrolyte of the present invention is not particularly limited as long as it is a method for obtaining a sulfide solid electrolyte that can lose weight under the predetermined conditions specified in the present invention.
- a method of obtaining a sulfide solid electrolyte containing a compound that volatilizes by heating under predetermined conditions can be mentioned.
- Specific examples thereof include a method for obtaining a sulfide solid electrolyte containing a compound having water of crystallization.
- a pulverization step may be performed if necessary.
- the crushing means is not particularly limited, but known crushing means such as a ball mill or a bead mill can be used.
- the compound having water of crystallization is not particularly limited, and various compounds can be used as long as the characteristics of the sulfide solid electrolyte are not impaired.
- the hydrous salt of the organic compound is not particularly limited as long as it is a hydrous salt of a general organic compound.
- a carboxylic acid hydrous salt can be mentioned.
- the carboxylic acid hydrous salt include dicarboxylic acid hydrous salt, acetic acid hydrous salt, propionic acid hydrous salt, butyric acid hydrous salt, valeric acid hydrous salt, caproic acid hydrous salt, enantic acid hydrous salt, capric acid hydrous salt, and pelargonic acid hydrous salt.
- Lauric acid hydrated salt myristic acid hydrated salt, palmitic acid hydrated salt, stearic acid hydrated salt, ecoic acid hydrated salt, behenic acid hydrated salt, montanic acid hydrated salt, triaconic acid hydrated salt and other linear saturated fatty acids; Fatty acid derivatives such as 2-hydroxystearic acid hydrate; oxalic acid hydrate, fumaric acid hydrate, maleic acid hydrate, succinic acid hydrate, glutaric acid hydrate, adipic acid hydrate, pimeric acid hydrate, siberic acid hydrate An aliphatic dicarboxylic acid such as salt, azelaic acid hydrous salt, sebacic acid hydrous salt, undecanedioic acid hydrous salt, dodecanedioic acid hydrous salt; glycolic acid hydrous salt, lactic acid hydrous salt, hydroxybutyric acid hydrous salt, tartrate acid hydrous salt, malic acid Hydroxy acids such as hydrous salts, citric acid hydrohydrates,
- the hydrous salt of the inorganic compound is not particularly limited as long as it is a hydrous salt of a general inorganic compound.
- halide hydrates, oxide hydrates, nitride hydrates, carbide hydrates, boride hydrates, etc. among which these hydrates contain alkali metals. It is preferable to contain it, and it is particularly preferable that the hydrate of the halide contains an alkali metal.
- these compounds may be used alone or in combination of two or more.
- the content ratio of the compound having water of crystallization is preferably a ratio capable of effectively reducing the reaction resistance.
- the content ratio is, for example, preferably larger than 0% by mass, particularly preferably 5% by mass or more, and particularly preferably 10% by mass or more.
- the content ratio is, for example, preferably less than 50% by mass, particularly preferably 45% by mass or less, and particularly preferably 40% by mass or less.
- a particularly preferable sulfide solid electrolyte used in the present invention is a material containing a crystal phase having an algyrodite type crystal structure from the viewpoint of further reducing the reaction resistance with the active material.
- the algyrodite type crystal structure is a crystal structure possessed by a group of compounds derived from a mineral represented by the chemical formula: Ag 8 GeS 6. It is particularly preferable that the sulfide solid electrolyte having an algyrodite type crystal structure has a crystal structure belonging to cubic crystals from the viewpoint of further reducing the reaction resistance with the active material.
- halogen element contained therein for example, one or more elements of F element, Cl element, Br element and I element are used. be able to. From the viewpoint of improving ionic conductivity, it is particularly preferable to use a combination of Cl element and Br element as the halogen element.
- the sulfide solid electrolyte containing a crystal phase having an algyrodite type crystal structure is, for example, composition formula (I): Li a PS b X c (X is a fluorine (F) element, a chlorine (Cl) element, a bromine (Br)). It is particularly preferable that the compound is represented by (at least one of the element and the iodine (I) element)) from the viewpoint of further improving the ionic conductivity. X is preferably one or two of chlorine (Cl) element and bromine (Br) element.
- a indicating the molar ratio of the lithium element is preferably 3.0 or more and 6.5 or less, more preferably 3.5 or more and 6.3 or less, still more preferably 4.0 or more and 6 or less. It is less than or equal to 0.0.
- a is in this range, the cubic algyrodite type crystal structure near room temperature (25 ° C.) is stable, and the conductivity of lithium ions can be enhanced.
- b is a value indicating the Li 2 S component with respect to the stoichiometric composition how much less. From the viewpoint that the algyrodite type crystal structure is stable near room temperature (25 ° C.) and the conductivity of lithium ions is high, b is preferably 3.5 or more and 5.5 or less, and more preferably 4.0 or more and 5. It is 3 or less, more preferably 4.2 or more and 5.0 or less.
- c is preferably 0.1 or more and 3.0 or less, more preferably 0.5 or more and 2.5 or less, and even more preferably 1.0 or more and 1.8 or less.
- the sulfide solid electrolyte containing a crystal phase having an algyrodite type crystal structure may be, for example, a compound represented by the composition formula (II): Li 7-d PS 6-d X d.
- the composition represented by the composition formula (II) is the stoichiometric composition of the algyrodite type crystal phase.
- X is synonymous with composition formula (I).
- d is preferably 0.4 or more and 2.2 or less, more preferably 0.8 or more and 2.0 or less, and even more preferably 1.2 or more and 1.8 or less.
- the sulfide solid electrolyte containing a crystal phase having an algyrodite type crystal structure may be, for example, a compound represented by the composition formula (III): Li 7-d-2e PS 6-d-e Xd. .. Arujirodaito type crystal phase having a composition represented by the formula (III), for example, produced by the reaction of Arujirodaito type crystal phase and the P 2 S 5 with a composition represented by the formula (II) (diphosphorus pentasulfide) To do.
- the reaction formula is as follows. Li 7-d PS 6-d X d + y / 3P 2 S 5 ⁇ Li 7-d-2e PS 6-d-e X d + 2y / 3Li 3 PS 4
- composition formula (III) As shown in the reaction formula, a Li 3 PS 4 phase is formed together with the algyrodite type crystal phase represented by the composition formula (III).
- a trace amount of LiX phase (X is at least one of fluorine (F) element, chlorine (Cl) element, bromine (Br) element, and iodine (I) element) may be generated.
- X and d are synonymous with composition formula (II).
- e is a value indicating the deviation of the Li 2 S component from the stoichiometric composition represented by the composition formula (II).
- e is preferably ⁇ 0.9 or more ( ⁇ d + 2) or less, more preferably ⁇ 0.6 or more ( ⁇ d + 1.6) or less, and even more preferably ⁇ 0.3 or more ( ⁇ d + 1.0). It is as follows.
- a part of P is at least one or more of Si, Ge, Sn, Pb, B, Al, Ga, As, Sb and Bi. It may be replaced with the element of.
- the composition formula (I), Li a (P 1-y M y) S b X c , and the formula (II) is, Li 7-d (P 1 -y M y) S 6-d X It becomes d, and the composition formula (III) becomes Li 7-d-2e (P 1- y My ) S 6-d-e X d .
- M is one or more elements selected from Si, Ge, Sn, Pb, B, Al, Ga, As, Sb and Bi.
- y is preferably 0.01 or more and 0.7 or less, more preferably 0.02 or more and 0.4 or less, and even more preferably 0.05 or more and 0.2 or less.
- the sulfide solid electrolyte has a crystal phase having an algyrodite type structure as a main phase.
- the "main phase” refers to the phase having the largest proportion of the total amount of all crystalline phases constituting the sulfide solid electrolyte.
- the content ratio of the crystal phase of the algyrodite type structure contained in the sulfide solid electrolyte is preferably, for example, 60% by mass or more, particularly 70% by mass or more, with respect to the total crystal phase constituting the sulfide solid electrolyte. , 80% by mass or more, more preferably 90% by mass or more.
- the ratio of the crystal phase can be confirmed by, for example, XRD.
- the solid electrolyte of the present invention consists of a powder as an aggregate of particles.
- the solid electrolyte of the present invention preferably has a volume cumulative particle size D 50 of, for example, 0.1 ⁇ m or more at a cumulative volume of 50% by volume measured by a laser diffraction / scattering particle size distribution measurement method. It is more preferably 3 ⁇ m or more, and even more preferably 0.5 ⁇ m or more.
- the volume cumulative particle size D 50 is preferably, for example, 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
- the volume cumulative particle size D 50 of the sulfide solid electrolyte is 0.1 ⁇ m or more, it is suppressed that the surface area of the entire powder made of the sulfide solid electrolyte is excessively increased, and it is difficult to increase the resistance and mix with the active material. It is possible to effectively suppress the occurrence of problems such as
- the volume cumulative particle size D 50 of the sulfide solid electrolyte is 20 ⁇ m or less, for example, when the solid electrolyte of the present invention is used in combination with another solid electrolyte, the gaps between the other solid electrolytes and the like can be formed. The solid electrolyte of the present invention can easily enter. As a result, the contact points between the solid electrolytes increase and the contact area increases, so that the ionic conductivity can be effectively improved.
- the solid electrolyte of the present invention has a lithium ion conductivity of preferably 4.0 mS / cm or more, more preferably 4.5 mS / cm or more, still more preferably 5.0 mS / cm or more at room temperature (25 ° C.). Shows a high value. Lithium ion conductivity is measured using the method described below.
- the sulfide solid electrolyte is uniaxially pressure-molded in a ceramic cylinder (diameter 10 mm) in a glove box replaced with a sufficiently dried Ar gas (dew point ⁇ 60 ° C. or lower).
- a sample for measuring ionic conductivity having a thickness of 0.4 mm to 1.0 mm is prepared.
- the ionic conductivity of the sample is measured using a frequency response measuring device 1260A manufactured by Solartron. The measurement is performed by the AC impedance method under the conditions of a temperature of 25 ° C. and a frequency of 0.1 Hz to 1 MHz.
- the solid electrolyte of the present invention can be used, for example, as a material constituting the solid electrolyte layer or as an electrode mixture constituting the solid electrolyte layer containing an active material. Specifically, it can be used as a positive electrode mixture constituting a positive electrode layer containing a positive electrode active material or a negative electrode mixture constituting a negative electrode layer containing a negative electrode active material. Therefore, the solid electrolyte of the present invention can be used for a battery having a solid electrolyte layer, that is, a so-called solid battery. More specifically, it can be used for a lithium solid-state battery.
- the lithium solid-state battery may be a primary battery or a secondary battery, but it is particularly preferable to use the lithium secondary battery.
- the "solid-state battery” is a solid-state battery that does not contain any liquid substance or gel-like substance as an electrolyte, and for example, a liquid substance or gel-like substance of 50% by mass or less, 30% by mass or less, or 10% by mass or less is an electrolyte. Also includes aspects including as.
- the solid electrolyte layer of the present invention is, for example, a method in which a slurry containing a sulfide solid electrolyte, a binder and a solvent is dropped onto a substrate and scraped off with a doctor blade or the like, a method in which the substrate and the slurry are brought into contact with each other and then cut with an air knife, a screen. It can be produced by a method such as forming a coating film by a printing method or the like and then removing the solvent through heat drying or the like. Alternatively, the solid electrolyte powder of the present invention can be press-molded and then appropriately processed for production.
- the solid electrolyte layer in the present invention may contain other solid electrolytes in addition to the solid electrolyte of the present invention.
- the thickness of the solid electrolyte layer in the present invention is typically preferably 5 ⁇ m or more and 300 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less.
- the solid-state battery has a positive electrode layer, a negative electrode layer, and a solid electrolyte layer located between the positive electrode layer and the negative electrode layer, and has the solid electrolyte of the present invention.
- Examples of the shape of the battery include a laminated type, a cylindrical type, and a square type.
- the active material contained in the positive electrode mixture for example, the active material used as the positive electrode active material of the lithium secondary battery can be appropriately used.
- the positive electrode active material include spinel-type lithium transition metal compounds and lithium metal oxides having a layered structure.
- the particles of the positive electrode active material may have a coating layer on the surface thereof that can reduce the reaction resistance between the sulfide solid electrolyte and the positive electrode active material.
- the reaction resistance between the sulfide solid electrolyte and the active material can be reduced without forming a coating layer on the surface of the active material particles, so that the surface of the active material particles can be reduced. It is not necessary to positively form the coating layer.
- the positive electrode mixture may contain other materials such as a conductive additive in addition to the positive electrode active material.
- the active material contained in the negative electrode mixture for example, the active material used as the negative electrode active material of the lithium secondary battery can be appropriately used.
- the negative electrode active material include carbon materials such as lithium metal, artificial graphite, natural graphite and non-graphitizable carbon (hard carbon), silicon, silicon compounds, tin, and tin compounds.
- the negative electrode mixture may contain other materials such as a conductive additive in addition to the negative electrode active material.
- Example 1 (1) Production of solid electrolyte Li 2 S powder, P 2 S 5 powder, Li Cl powder, Li Br powder so as to have a composition of Li 5.4 PS 4.4 Cl 0.8 Br 0.8. Weighed so that the total amount was 75 g. These powders were pulverized and mixed using a ball mill to obtain a mixed powder. The mixed powder was fired to obtain a fired product having the above composition. Firing was performed using a tubular electric furnace. During firing, 100% pure hydrogen sulfide gas was circulated in the electric furnace at 1.0 L / min. The firing temperature was set to 500 ° C. and firing was performed for 4 hours.
- the calcined product was crushed using a mortar and pestle, and subsequently crushed with a wet bead mill to obtain a solid electrolyte.
- this solid electrolyte has a crystal phase having an algyrodite type structure.
- the obtained solid electrolyte and LiBr ⁇ H 2 O were mixed in an Ar atmosphere to obtain a desired solid electrolyte.
- the amount of LiBr ⁇ H 2 O added was 10% by mass with respect to the total amount of the solid electrolyte and LiBr ⁇ H 2 O.
- Example 2 Except that the addition amount of LiBr ⁇ H 2 O is 20% by mass in the same manner as in Example 1 to obtain a solid electrolyte.
- Example 3 Except that the addition amount of LiBr ⁇ H 2 O is 30% by mass in the same manner as in Example 1 to obtain a solid electrolyte.
- Example 4 Except that the addition amount of LiBr ⁇ H 2 O is 40 wt% in the same manner as in Example 1 to obtain a solid electrolyte.
- positive electrodes were prepared according to a conventional method. Specifically, 60 parts of LiNi 1/3 Co 1/3 Mn 1/3 O 2 , 37 parts of a solid electrolyte, and 3 parts of a conductive carbon material are used, and these are mixed to prepare a positive electrode mixture. , This was used as the positive electrode layer. Using 47.5 parts of Si powder, 47.5 parts of solid electrolyte, and 5 parts of conductive carbon material, these were mixed to prepare a negative electrode mixture, which was used as a negative electrode layer. Next, the positive electrode, the solid electrolytes of Examples and Comparative Examples, and the negative electrode were stacked in this order and pressure-molded to prepare a solid-state battery.
- the solid-state battery was charged and discharged for the third cycle, charged to 3.7 V, and then AC impedance was measured.
- the battery cell after charging and discharging is subjected to an alternating current with the open circuit voltage of the battery cell as a DC bias using an electrochemical measurement system that combines a solartron 1280Z potentiostat manufactured by Solartron Analytical Co., Ltd. and a frequency response device Solartron 1260.
- An amplitude of 10 mV was applied, and the AC impedance having a frequency of 1.0 ⁇ 10 6 to 1.0 ⁇ 10 -1 Hz was measured.
- the diameter of the arc of the complex impedance plot obtained by the measurement was taken as the reaction resistance ( ⁇ ).
- the solid-state batteries manufactured using the solid electrolytes obtained in each example have higher reaction resistance than the solid-state batteries manufactured using the solid electrolytes obtained in the comparative examples. It turns out that it is low.
- a sulfide solid electrolyte capable of reducing the reaction resistance with an active material is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
重量減少率(重量%)=(W25-W400)/W25×100 (1)
式中、W25は25℃における試料の重量(g)を表し、W400は400℃における試料の重量(g)を表す。
Li7-dPS6-dXd+y/3P2S5
→Li7-d-2ePS6-d-eXd+2y/3Li3PS4
(1)固体電解質の製造
Li5.4PS4.4Cl0.8Br0.8の組成となるように、Li2S粉末と、P2S5粉末と、LiCl粉末と、LiBr粉末とを、全量で75gになるように秤量した。これらの粉末を、ボールミルを用いて粉砕混合して混合粉末を得た。混合粉末を焼成して、前記の組成の焼成物を得た。焼成は管状電気炉を用いて行った。焼成の間、電気炉内に純度100%の硫化水素ガスを1.0L/minで流通させた。焼成温度は500℃に設定し4時間にわたり焼成を行った。焼成物を乳鉢及び乳棒を用いて解砕し、引き続き湿式ビーズミルで粉砕し、固体電解質を得た。XRD測定の結果、この固体電解質はアルジロダイト型構造の結晶相を有するものであることが確認された。
得られた固体電解質と、LiBr・H2Oとを、Ar雰囲気下で混合し、目的とする固体電解質を得た。LiBr・H2Oの添加量は、固体電解質とLiBr・H2Oとの合計量に対して10質量%とした。
LiBr・H2Oの添加量が20質量%であること以外は実施例1と同様にして固体電解質を得た。
LiBr・H2Oの添加量が30質量%であること以外は実施例1と同様にして固体電解質を得た。
LiBr・H2Oの添加量が40質量%であること以外は実施例1と同様にして固体電解質を得た。
LiBr・H2Oを添加しなかったこと以外は実施例1と同様にして固体電解質を得た。
LiBr・H2Oの添加量が50質量%であること以外は実施例1と同様にして固体電解質を得た。
実施例及び比較例で得られた固体電解質について、上述の方法で熱重量測定を行い、25℃から400℃まで加熱したときの重量減少率を測定した。表1には、50℃ごとの重量減少率を示す。また、表2には、上述の方法で熱重量測定を行い、100℃から170℃まで加熱したときの重量減少率を示す。更に、実施例及び比較例で得られた固体電解質を用いて以下の方法で固体電池を作製し、反応抵抗を測定した。それらの結果を表1に示す。
実施例及び比較例の固体電解質を用い、常法に従って正極を作製した。具体的には、LiNi1/3Co1/3Mn1/3O2を60部、固体電解質を37部、及び導電性炭素材料を3部用い、これらを混合して正極合剤を作製し、これを正極層とした。
Si粉末を47.5部、固体電解質を47.5部、及び導電性炭素材料を5部用い、これらを混合して負極合剤を作製し、これを負極層とした。
次に正極、実施例及び比較例の固体電解質、及び負極をこの順で重ねて加圧成型し固体電池を作製した。この固体電池について、3サイクル目の充放電を行った後に、3.7Vに充電した後、交流インピーダンス測定を行った。具体的には、充放電後の電池セルを、ソーラトロンアナリティカル社製ポテンショスタットSolartron1280Zと周波数応答装置Solartron1260を組み合わせた電気化学測定システムを用いて、電池セルの開回路電圧を直流バイアスとし、交流振幅10mVを印加して、周波数1.0×106~1.0×10-1Hzの交流インピーダンスを測定した。測定により得られた複素インピーダンスプロットの円弧の直径を反応抵抗(Ω)とした。
Claims (5)
- 昇温速度10℃/minで行った熱重量測定において、25℃から400℃まで加熱したときの重量減少率が2.7%以上9.6%以下である、硫化物固体電解質。
- リチウム(Li)元素、リン(P)元素、硫黄(S)元素、ハロゲン(X)元素及び酸素(O)元素を含む、請求項1に記載の硫化物固体電解質。
- 前記ハロゲン(X)元素が、塩素(Cl)元素、臭素(Br)元素及びI(ヨウ素)元素のうちの少なくとも一種である、請求項2に記載の硫化物固体電解質。
- 請求項1ないし3のいずれか一項に記載の硫化物固体電解質と活物質とを有する、電極合剤。
- 正極層、負極層、及び該正極層と該負極層の間に位置する固体電解質層を有し、該固体電解質層が、請求項1ないし3のいずれか一項に記載の硫化物固体電解質を含有する、固体電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217023462A KR102658300B1 (ko) | 2019-09-11 | 2020-09-03 | 황화물 고체 전해질, 전극 합제, 고체 전지 및 황화물 고체 전해질의 제조 방법 |
US17/426,418 US20220109182A1 (en) | 2019-09-11 | 2020-09-03 | Sulfide solid-state electrolyte, electrode mixture, solid-state battery and sulfide-solid-state-electrolyte manufacturing method |
EP20863483.2A EP4030509A4 (en) | 2019-09-11 | 2020-09-03 | SULFIDE SEMICONDUCTOR ELECTROLYTE, ELECTRODE MIX, SEMICONDUCTOR BATTERY AND METHOD FOR MAKING SULFIDE SEMICONDUCTOR ELECTROLYTE |
CN202080011188.3A CN113366685A (zh) | 2019-09-11 | 2020-09-03 | 硫化物固体电解质、电极合剂、固体电池和硫化物固体电解质的制造方法 |
JP2021505794A JP7335946B2 (ja) | 2019-09-11 | 2020-09-03 | 硫化物固体電解質、電極合剤、固体電池及び硫化物固体電解質の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-165782 | 2019-09-11 | ||
JP2019165782 | 2019-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021049416A1 true WO2021049416A1 (ja) | 2021-03-18 |
Family
ID=74866624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/033444 WO2021049416A1 (ja) | 2019-09-11 | 2020-09-03 | 硫化物固体電解質、電極合剤、固体電池及び硫化物固体電解質の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220109182A1 (ja) |
EP (1) | EP4030509A4 (ja) |
JP (1) | JP7335946B2 (ja) |
KR (1) | KR102658300B1 (ja) |
CN (1) | CN113366685A (ja) |
TW (1) | TW202118129A (ja) |
WO (1) | WO2021049416A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117023534B (zh) * | 2023-08-16 | 2024-05-07 | 黄冈师范学院 | 一种钠离子硫化物固态电解质的低成本制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012099323A (ja) | 2010-11-01 | 2012-05-24 | Toyota Motor Corp | 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法 |
US20140072875A1 (en) | 2011-05-17 | 2014-03-13 | Toyota Jidosha Kabushiki Kaisha | Positive-electrode active material particle for all-solid battery and method for production thereof |
JP2015201388A (ja) | 2014-04-09 | 2015-11-12 | 日亜化学工業株式会社 | 非水系二次電池用正極活物質及びその製造方法 |
WO2017159665A1 (ja) * | 2016-03-14 | 2017-09-21 | 出光興産株式会社 | ハロゲン化アルカリ金属の製造方法、及び硫化物系固体電解質の製造方法 |
WO2018131181A1 (ja) * | 2017-01-11 | 2018-07-19 | 日本特殊陶業株式会社 | イオン伝導体、リチウム電池、および、イオン伝導体の製造方法 |
JP2018186017A (ja) * | 2017-04-27 | 2018-11-22 | 日本特殊陶業株式会社 | リチウム電池およびリチウム電池の製造方法 |
JP2018186016A (ja) * | 2017-04-27 | 2018-11-22 | 日本特殊陶業株式会社 | リチウム電池およびリチウム電池の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6380263B2 (ja) | 2015-06-29 | 2018-08-29 | トヨタ自動車株式会社 | 硫化物固体電解質の製造方法 |
JP6735096B2 (ja) * | 2015-12-28 | 2020-08-05 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 全固体電池 |
JP6730634B2 (ja) * | 2016-01-28 | 2020-07-29 | 富士通株式会社 | 固体電解質、及び全固体電池 |
EP3454405B1 (en) * | 2016-07-01 | 2021-05-12 | Mitsui Mining and Smelting Co., Ltd. | Sulfide-based solid electrolyte for lithium secondary battery |
EP3734616B1 (en) * | 2017-12-28 | 2022-10-12 | Mitsui Mining & Smelting Co., Ltd. | Solid electrolyte |
-
2020
- 2020-09-03 WO PCT/JP2020/033444 patent/WO2021049416A1/ja unknown
- 2020-09-03 JP JP2021505794A patent/JP7335946B2/ja active Active
- 2020-09-03 EP EP20863483.2A patent/EP4030509A4/en active Pending
- 2020-09-03 CN CN202080011188.3A patent/CN113366685A/zh active Pending
- 2020-09-03 US US17/426,418 patent/US20220109182A1/en active Pending
- 2020-09-03 KR KR1020217023462A patent/KR102658300B1/ko active IP Right Grant
- 2020-09-09 TW TW109130913A patent/TW202118129A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012099323A (ja) | 2010-11-01 | 2012-05-24 | Toyota Motor Corp | 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法 |
US20140072875A1 (en) | 2011-05-17 | 2014-03-13 | Toyota Jidosha Kabushiki Kaisha | Positive-electrode active material particle for all-solid battery and method for production thereof |
JP2015201388A (ja) | 2014-04-09 | 2015-11-12 | 日亜化学工業株式会社 | 非水系二次電池用正極活物質及びその製造方法 |
WO2017159665A1 (ja) * | 2016-03-14 | 2017-09-21 | 出光興産株式会社 | ハロゲン化アルカリ金属の製造方法、及び硫化物系固体電解質の製造方法 |
WO2018131181A1 (ja) * | 2017-01-11 | 2018-07-19 | 日本特殊陶業株式会社 | イオン伝導体、リチウム電池、および、イオン伝導体の製造方法 |
JP2018186017A (ja) * | 2017-04-27 | 2018-11-22 | 日本特殊陶業株式会社 | リチウム電池およびリチウム電池の製造方法 |
JP2018186016A (ja) * | 2017-04-27 | 2018-11-22 | 日本特殊陶業株式会社 | リチウム電池およびリチウム電池の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4030509A4 |
Also Published As
Publication number | Publication date |
---|---|
US20220109182A1 (en) | 2022-04-07 |
EP4030509A4 (en) | 2022-11-23 |
EP4030509A1 (en) | 2022-07-20 |
JPWO2021049416A1 (ja) | 2021-11-11 |
TW202118129A (zh) | 2021-05-01 |
KR102658300B1 (ko) | 2024-04-18 |
JP7335946B2 (ja) | 2023-08-30 |
KR20210107793A (ko) | 2021-09-01 |
CN113366685A (zh) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6293383B1 (ja) | リチウム二次電池用硫化物系固体電解質 | |
JP2023538848A (ja) | 活電極物質 | |
CN114946047A (zh) | Li/Na离子电池阳极材料 | |
WO2021049414A1 (ja) | 硫化物固体電解質 | |
JPWO2019176895A1 (ja) | 硫化物系固体電解質粒子 | |
TW202204263A (zh) | 固體電解質、電極合劑及電池 | |
WO2022190940A1 (ja) | 固体電解質及びその製造方法 | |
EP4317059A1 (en) | Solid electrolyte | |
JPWO2013146349A1 (ja) | リチウムイオン伝導体の製造法 | |
JP7335946B2 (ja) | 硫化物固体電解質、電極合剤、固体電池及び硫化物固体電解質の製造方法 | |
WO2021049415A1 (ja) | 硫化物固体電解質 | |
WO2023127736A1 (ja) | 複合活物質 | |
JP7558188B2 (ja) | 硫化物固体電解質、及びそれを用いた電極合剤、固体電解質層、固体電池 | |
WO2023157830A1 (ja) | 電極合剤、及びそれを用いた電極スラリー並びに電池 | |
KR20240128667A (ko) | 복합 활물질 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021505794 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20863483 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217023462 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020863483 Country of ref document: EP Effective date: 20220411 |