WO2021044997A1 - 検出装置、検出方法およびプログラム - Google Patents

検出装置、検出方法およびプログラム Download PDF

Info

Publication number
WO2021044997A1
WO2021044997A1 PCT/JP2020/032842 JP2020032842W WO2021044997A1 WO 2021044997 A1 WO2021044997 A1 WO 2021044997A1 JP 2020032842 W JP2020032842 W JP 2020032842W WO 2021044997 A1 WO2021044997 A1 WO 2021044997A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
temperature
melting point
copper concentration
detection
Prior art date
Application number
PCT/JP2020/032842
Other languages
English (en)
French (fr)
Inventor
哲郎 久保田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US17/634,549 priority Critical patent/US20220283104A1/en
Priority to EP20861439.6A priority patent/EP4026641A4/en
Priority to KR1020227001697A priority patent/KR20220019831A/ko
Priority to CN202080056193.6A priority patent/CN114270183A/zh
Publication of WO2021044997A1 publication Critical patent/WO2021044997A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • B23K1/085Wave soldering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/04Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0646Solder baths
    • B23K3/0653Solder baths with wave generating means, e.g. nozzles, jets, fountains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/044Solder dip coating, i.e. coating printed conductors, e.g. pads by dipping in molten solder or by wave soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3468Applying molten solder

Definitions

  • This disclosure relates to a detection device, a detection method and a program.
  • solder drawn from the solder bath is poured into a mold to prepare an ingot-shaped sample, and titration method or spectrophotometric method (fluorescent X-ray analysis, ICP (Inductivity coupled plasma) emission spectroscopic analysis, etc.) is used.
  • titration method or spectrophotometric method fluorescent X-ray analysis, ICP (Inductivity coupled plasma) emission spectroscopic analysis, etc.
  • Patent Document 1 discloses a method for estimating the copper concentration of solder without using an analyzer.
  • the estimation method disclosed in Patent Document 1 uses the relationship between the copper concentration of the solder and the copper solubility of the lead portion of the electronic component and the exposed electrode portion of the substrate, and the relationship between the dross removal time interval and the amount of dross generated. To estimate the change over time in the copper concentration of the solder in the solder bath.
  • the copper concentration cannot be measured frequently, for example, it is measured only once a month.
  • the frequency of soldering defects increases, so it is preferable to measure the copper concentration with high frequency.
  • the present disclosure has focused on the above problems, and an object of the present disclosure is to provide a detection device, a detection method, and a program capable of easily and frequently detecting fluctuations in the copper concentration of solder. ..
  • the detection device measures the melting point of the solder from the acquisition unit for acquiring the temperature of the solder in the solder bath and the time change of the temperature in at least one of the temperature raising process and the temperature lowering process.
  • a measuring unit and a detecting unit for detecting fluctuations in the copper concentration of the solder based on fluctuations in the melting point are provided.
  • fluctuations in the copper concentration of the solder can be easily detected based on the time change of the solder temperature in at least one of the temperature raising process and the temperature lowering process. Fluctuations in the copper concentration of the solder can be detected during the heating or cooling process. Therefore, fluctuations in the copper concentration of the solder can be detected with high frequency. In this way, fluctuations in the copper concentration of the solder can be easily and frequently detected.
  • the detection unit detects an abnormality in the copper concentration when the melting point exceeds the first threshold value.
  • an abnormality in copper concentration can be easily detected by comparing the melting point with the first threshold value. As a result, the worker can carry out maintenance and the like at an appropriate timing.
  • the detection unit detects an abnormal sign of copper concentration when the melting point exceeds the second threshold value smaller than the first threshold value.
  • an abnormal sign of copper concentration can be easily detected by comparing the melting point with the second threshold value.
  • the worker can perform preparations such as maintenance in advance.
  • the acquisition unit acquires the temperature at predetermined intervals after the start of energization of the heater for heating the solder in the solder bath.
  • the measuring unit can measure the melting point from the time change of the temperature in the temperature raising process.
  • the acquisition unit acquires the temperature at predetermined intervals after the energization of the heater for heating the solder in the solder bath is stopped.
  • the measuring unit can measure the melting point from the time change of the temperature in the temperature lowering process.
  • the detection method includes a step of acquiring the temperature of the solder in the solder bath, a step of measuring the melting point of the solder from the time change of the temperature in at least one of the temperature raising process and the temperature lowering process, and the melting point. It is provided with a step of detecting the fluctuation of the copper concentration of the solder based on the fluctuation of the solder.
  • the program causes a computer to perform the above detection method.
  • FIG. 1 is a schematic view showing the overall configuration of the soldering system according to the present embodiment.
  • the soldering system 1 includes a transport device 10 for transporting the substrate W and a jet-type soldering device 20 for ejecting molten solder S onto the substrate W to perform soldering. , A controller 30, a detection device 40, and a display device 50.
  • the jet type soldering apparatus 20 includes a solder tank 21, ducts 22, 23, pumps 24, 25, a primary jet nozzle 26, a secondary jet nozzle 27, a heater 28, and a thermometer 29.
  • the solder tank 21 accommodates the solder S.
  • a heater 28 for heating the solder in the solder tank 21 is installed in the solder tank 21. By energizing the heater 28, the solder S in the solder tank 21 is heated and melted.
  • thermometer 29 is attached to the solder tank 21.
  • the thermometer 29 is composed of, for example, a thermocouple, and measures the temperature of the solder S housed in the solder tank 21 at predetermined cycles (for example, 1 second).
  • the ducts 22 and 23 are installed in the solder tank 21.
  • the pumps 24 and 25 pump the molten solder S into the ducts 22 and 23, respectively.
  • the pump 24 has, for example, a motor 24a and an impeller 24b rotated by the motor 24a.
  • the pump 25 has, for example, a motor 25a and an impeller 25b rotated by the motor 25a.
  • the primary jet nozzle 26 is connected to the duct 22.
  • the primary jet nozzle 26 changes the flow of the solder S pumped in the duct 22 upward in the vertical direction, and ejects the solder S from the opening at the upper end.
  • the primary jet nozzle 26 produces a primary jet with a wavy surface.
  • the secondary jet nozzle 27 is connected to the duct 23.
  • the secondary jet nozzle 27 changes the flow of the solder S pumped in the duct 23 upward in the vertical direction, and ejects the solder S from the opening at the upper end.
  • the secondary jet nozzle 27 produces a secondary jet with a flat surface.
  • the transport device 10 transports the substrate W to be soldered toward the upper side of the primary jet nozzle 26 and the secondary jet nozzle 27.
  • the transport device 10 includes a transport belt 11, a plurality of preheating devices (preheaters) 12, a frame 13, and a cooling device 14.
  • the transport belt 11 transports the substrate W along the transport direction D at a constant speed.
  • the plurality of preheating devices 12 are arranged on the upstream side of the primary jet nozzle 26 and the secondary jet nozzle 27 of the transport belt 11 on the upstream side, and preheat the substrate W.
  • the frame 13 is installed above the primary jet nozzle 26 and the secondary jet nozzle 27.
  • An observation window 13a is formed in the frame 13, and the primary jet from the primary jet nozzle 26 and the secondary jet from the secondary jet nozzle 27 can be observed from above through the observation window 13a.
  • the cooling device 14 is arranged on the downstream side of the transport belt 11 from above the primary jet nozzle 26 and the secondary jet nozzle 27 to cool the substrate W.
  • the controller 30 is a temperature control device that controls the jet type soldering device 20.
  • the controller 30 starts energizing the heater 28 so that the temperature measured by the hygrometer 29 becomes the set temperature.
  • the controller 30 rotates the motors 24a and 25a at the timing when the temperature measured by the thermometer 29 reaches the set temperature or when the jet start instruction is input, and solders from the primary jet nozzle 26 and the secondary jet nozzle 27. S is ejected.
  • the controller 30 stops the rotation of the motors 24a and 25a and stops the energization of the heater 28.
  • the controller 30 outputs the temperature measured by the hygrometer 29 at predetermined intervals to the detection device 40.
  • the detection device 40 detects fluctuations in the copper concentration of the solder S in the solder tank 21.
  • the detection device 40 includes an acquisition unit 402, a measurement unit 404, and a detection unit 406.
  • the acquisition unit 402 acquires the temperature of the solder in the solder tank 21 measured at predetermined intervals by the hygrometer 29 from the controller 30.
  • the acquisition unit 402 may directly acquire the temperature measured at predetermined intervals from the thermometer 29.
  • the measuring unit 404 measures the melting point (liquidus line temperature) of the solder S from the time change of the temperature acquired by the acquiring unit 402. Specifically, the measuring unit 404 measures the melting point of the solder from the time change of the temperature in the temperature raising process after the start of energization of the heater 28. Alternatively, the measuring unit 404 measures the melting point of the solder S from the time change of the temperature in the temperature lowering process after the heating of the heater 28 is stopped.
  • the detection unit 406 detects the fluctuation of the copper concentration of the solder S based on the fluctuation of the melting point measured by the measuring unit 404.
  • the detection unit 406 displays the detection result on the display device 50.
  • the operator confirms the fluctuation of the copper concentration of the solder and performs maintenance of the solder tank 21 as necessary. For example, the operator discards part or all of the solder in the solder bath 21 and supplies new solder with an appropriate copper concentration. Alternatively, the operator may discard a part of the solder in the solder tank 21 and supply the solder having a low copper concentration.
  • the fluctuation of the copper concentration of the solder S can be easily detected based on the time change of the temperature of the solder S in at least one of the temperature raising process and the temperature lowering process.
  • the fluctuation of the copper concentration of the solder S can be detected at the timing of starting or stopping the energization of the heater 28. Therefore, for example, when the jet-type soldering apparatus 20 is started on Monday and the jet-type soldering apparatus 20 is stopped on Friday, fluctuations in the copper concentration of the solder S can be detected twice a week. In this way, fluctuations in the copper concentration of the solder S can be easily and frequently detected.
  • FIG. 2 is a schematic diagram showing the hardware configuration of the detection device.
  • the detection device 40 is realized by, for example, a general-purpose computer. As shown in FIG. 2, the detection device 40 includes a CPU (Central Processing Unit) 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a hard disk (HDD) 44, and a display interface ( The IF) 45, the input IF 46, and the communication IF 47 are included. Each of these parts is connected to each other via a bus 48 so as to be capable of data communication.
  • a bus 48 so as to be capable of data communication.
  • the CPU 41 executes various programs including the OS.
  • the ROM 42 stores the BIOS and various data.
  • the RAM 43 provides a work area for storing data necessary for executing a program in the CPU 41.
  • the HDD 44 non-volatilely stores a program or the like executed by the CPU 41.
  • the measurement unit 404 and the detection unit 406 shown in FIG. 1 are realized by the CPU 41 executing a program.
  • the display IF 45 is an interface that outputs data to the display device 50 according to the instructions of the CPU 41.
  • the input IF 46 is an interface for receiving data from an input device such as a mouse or keyboard.
  • the communication IF 47 is an interface for transmitting and receiving data to and from the controller 30 via the network according to the instructions of the CPU 41.
  • the communication IF 47 receives, for example, the temperature measured from the controller 30.
  • the acquisition unit 402 shown in FIG. 1 is realized by the communication IF47.
  • FIG. 3 is a diagram showing an example of time-dependent changes in the temperature of the solder S during the temperature raising process and the temperature lowering process.
  • FIG. 3 shows a temperature waveform when the energization of the heater 28 is started when the solder S is at room temperature, the energization of the heater 28 is stopped after holding the solder S at a set temperature of 260 ° C. for about 1 hour.
  • the temperature of the solder S is constant in the temperature raising process from the start of energization of the heater 28 to the temperature of the solder S reaching the set temperature of 260 ° C. (in the example shown in FIG. 3). There is a period of time kept at about 220 ° C.). This is because the heat generated from the heater 28 is spent melting the solder S. After the timing P1 in which all the solders S are melted, the temperature of the solders S rises again. The second derivative of the temperature waveform at timing P1 shows the maximum.
  • the timing P1 appears within a predetermined time (1 hour in the example shown in FIG. 3) within the past period from the timing when the temperature of the solder S reaches the set temperature of 260 ° C.
  • the predetermined time is determined according to the capacity of the heater 28, the capacity of the solder tank 21, and the like.
  • the measuring unit 404 extracts the time point at which the double differential value of the temperature waveform becomes maximum from the past period for a predetermined time from the timing when the temperature of the solder S first reaches the set temperature 260 ° C. as the timing P1.
  • the measuring unit 404 may determine the temperature at the extracted timing P1 as the melting point of the solder S.
  • Timing P2 appears in the period from the timing when the energization of the heater 28 is stopped to the elapse of a predetermined time (1 hour in the example shown in FIG. 3).
  • the predetermined time is determined according to the capacity of the solder tank 21 and the like.
  • the measuring unit 404 extracts the time point at which the double differential value of the temperature waveform becomes maximum from the period from the timing when the energization of the heater 28 is stopped to the elapse of a predetermined time as the timing P2.
  • the measuring unit 404 may determine the temperature at the extracted timing P2 as the melting point of the solder S.
  • the measuring unit 404 may perform a smoothing process on the temperature waveform in order to exclude the influence of a minute temperature change.
  • the measuring unit 404 may extract the timing at which the differential value becomes maximum twice from the temperature waveform subjected to the smoothing process as timing P1 or timing P2. As a result, it is possible to suppress a decrease in the measurement accuracy of the melting point due to the influence of a minute temperature change.
  • FIG. 4 is a diagram showing the relationship between the copper concentration of the solder and the melting point. As shown in FIG. 4, as the copper concentration of the solder S increases, so does the melting point of the solder S. Therefore, the detection unit 406 may detect fluctuations in the copper concentration of the solder S by comparing the melting point measured by the measurement unit 404 with a predetermined threshold value.
  • the melting point of the solder S when the copper concentration is 1.0 at% is predetermined as the threshold Th1.
  • the detection unit 406 When the detection unit 406 detects an abnormality in the copper concentration, the detection unit 406 causes the display device 50 to display a notification screen for notifying the abnormality in the copper concentration of the solder S. As a result, the operator can immediately grasp that the copper concentration is abnormal by checking the notification screen. As a result, the operator can perform maintenance such as replacement of the solder S.
  • a threshold value Th2 lower than the threshold value Th1 may be predetermined.
  • the display device 50 displays a notification screen for notifying the abnormal sign of the copper concentration of the solder S.
  • the operator can recognize that maintenance such as replacement of the solder S is required in the near future by checking the notification screen, and can prepare for the maintenance in advance.
  • FIG. 5 is a flowchart showing the flow of the detection process of the fluctuation of the copper concentration when the energization of the heater is started.
  • the detection device 40 acquires the temperature of the solder S in the solder tank 21 measured by the hygrometer 29 at predetermined intervals (step S1). The detection device 40 acquires the temperature of the solder S at predetermined intervals in the temperature raising process until the temperature of the solder S reaches the set temperature.
  • the detection device 40 measures the melting point from the time change of the temperature of the solder S in the temperature raising process (step S2). For example, the detection device 40 determines the temperature at the time when the double differential value of the temperature waveform becomes maximum from the past period for a predetermined time from the timing when the temperature of the solder S reaches the set temperature as the melting point.
  • the detection device 40 determines whether or not the measured melting point exceeds the threshold Th1 (step S3).
  • the detection device 40 detects the abnormality of the copper concentration of the solder S and displays a notification screen notifying the abnormality of the copper concentration on the display device 50 (step S4). .. After step S4, the detection process ends.
  • the detection device 40 determines whether or not the measured melting point exceeds the threshold Th2 ( ⁇ Th1) (step S5).
  • the detection device 40 detects an abnormal sign of the copper concentration of the solder S and displays a notification screen notifying the abnormal sign of the copper concentration on the display device 50 (step). S6). After step S6, the detection process ends.
  • FIG. 6 is a flowchart showing the flow of the detection process of the fluctuation of the copper concentration when the energization of the heater is stopped.
  • the flowchart shown in FIG. 6 is different from the flowchart shown in FIG. 5 in that step S12 is included instead of step S2.
  • step S12 the detection device 40 measures the melting point from the time change of the temperature of the solder S in the temperature lowering process. For example, the detection device 40 determines the temperature at the time when the double differential value of the temperature waveform becomes maximum from the period from the timing when the energization of the heater 28 is stopped to the elapse of a predetermined time as the melting point. Then, by executing steps S3 to S6 based on the melting point measured in step S12, fluctuations in the copper concentration of the solder S are detected.
  • the detection device 40 includes an acquisition unit 402, a measurement unit 404, and a detection unit 406.
  • the acquisition unit 402 acquires the temperature of the solder S in the solder tank 21.
  • the measuring unit 404 measures the melting point of the solder S from the time change of the temperature in at least one of the temperature raising process and the temperature lowering process.
  • the detection unit 406 detects fluctuations in the copper concentration of the solder S based on fluctuations in the melting point.
  • fluctuations in the copper concentration of the solder S can be easily detected based on the time change of the temperature of the solder S in at least one of the temperature raising process and the temperature lowering process.
  • the fluctuation of the copper concentration of the solder S can be detected at the timing of starting or stopping the energization of the heater 28. Therefore, fluctuations in the copper concentration of the solder S can be detected with high frequency. In this way, fluctuations in the copper concentration of the solder S can be easily and frequently detected.
  • the detection unit 406 detects an abnormality in the copper concentration when the melting point exceeds the threshold Th1. Further, the detection unit 406 detects an abnormal sign of the copper concentration when the melting point exceeds the threshold Th2, which is smaller than the threshold Th1. In this way, an abnormality or an abnormality sign of the copper concentration can be easily detected by comparing the melting point with the threshold values Th1 and Th2. As a result, the worker can carry out maintenance and the like at an appropriate timing.
  • the acquisition unit 402 acquires the temperature at predetermined intervals after the start of energization of the heater 28 for heating the solder S in the solder tank 21. As a result, the measuring unit 404 can measure the melting point from the time change of the temperature in the temperature raising process. Alternatively, the acquisition unit 402 may acquire the temperature at predetermined intervals after the energization of the heater 28 is stopped. As a result, the measuring unit 404 can measure the melting point from the time change of the temperature in the temperature lowering process.
  • the detection device 40 determines the temperature of the timing P1 or the timing P2 (see FIG. 2) as the melting point. However, the detection device 40 may determine the average value of the temperatures in the past period from the timing P1 for a predetermined time (for example, 1 minute) as the melting point. Similarly, the detection device 40 may determine the average value of the temperatures in the period from the timing P2 to the elapse of a predetermined time (for example, 1 minute) as the melting point. As a result, the influence of measurement variation by the thermometer 29 can be suppressed.
  • the melting point is measured from the time change of the temperature in each of the temperature raising process and the temperature lowering process, and the fluctuation of the copper concentration of the solder S is detected.
  • the melting point may be measured from the time change of the temperature only in either the temperature raising process or the temperature lowering process, and the fluctuation of the copper concentration of the solder S may be detected.
  • the fluctuation of the copper concentration of the solder S may be detected by using the average value of the melting point measured from the time change of the temperature in the temperature raising process and the melting point measured from the time change of the temperature in the latest temperature lowering process. That is, the average value may be compared with the threshold values Th1 and Th2, and the fluctuation of the copper concentration may be detected according to the comparison result.
  • the detection device 40 and the controller 30 are separate bodies. However, the detection device 40 and the controller 30 may be integrated.
  • this embodiment includes the following disclosures.
  • (Structure 1) Acquiring parts (402, 47) for acquiring the temperature of the solder (S) in the solder bath (40), and A measuring unit (404, 41) for measuring the melting point of the solder (S) from the time change of the temperature in at least one of the temperature raising process and the temperature lowering process.
  • a detection device (40) including a detection unit (406, 41) for detecting a fluctuation in the copper concentration of the solder (S) based on the fluctuation in the melting point.
  • the acquisition units (402, 47) acquire the temperature at predetermined intervals after starting energization of the heater (28) for heating the solder (S) in the solder bath (21), configurations 1 to 3.
  • the detection device (40) according to any one of the above.
  • the acquisition units (402, 47) acquire the temperature at predetermined intervals after the energization of the heater (28) for heating the solder (S) in the solder tank (21) is stopped.
  • the detection device according to any one of.
  • soldering system 10 transfer device, 11 transfer belt, 12 preheating device, 13 frame, 13a observation window, 14 cooling device, 20 jet type soldering device, 21 solder tank, 22, 23 duct, 24, 25 pump, 24a, 25a motor, 24b, 25b impeller, 26 primary jet nozzle, 27 secondary jet nozzle, 28 heater, 29 thermometer, 30 controller, 40 detector, 41 CPU, 42 ROM, 43 RAM, 44 HDD, 45 display IF, 46 input IF, 47 communication IF, 48 bus, 50 display device, 402 acquisition unit, 404 measurement unit, 406 detection unit, S solder, W board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Molten Solder (AREA)

Abstract

検出装置は、はんだ槽内のはんだの温度を取得するための取得部と、昇温過程および降温過程の少なくとも一方における温度の時間変化からはんだの融点を測定するための測定部と、融点の変動に基づいて、はんだの銅濃度の変動を検出するための検出部とを備える。これにより、はんだの銅濃度の変動を容易に高頻度で検出できる。

Description

検出装置、検出方法およびプログラム
 本開示は、検出装置、検出方法およびプログラムに関する。
 鉛フリーはんだを用いたはんだ付け工程において、電子部品のリード部および基板の露出電極部から銅がはんだ中に溶け出し、はんだ槽中のはんだの銅濃度が高くなる。はんだの銅濃度が高くなるとはんだの融点が高くなる。はんだの融点の上昇は、濡れ性の悪化を引き起こし、はんだ付け不良の発生頻度を高める。そのため、はんだの銅濃度が管理される。
 はんだの銅濃度の管理方法として各種の分析装置を用いた方法がある。例えば、はんだ槽からくみ出されたはんだを型に流してインゴット状のサンプルを作製し、滴定法または分光光度法(蛍光X線分析、ICP(Inductivity coupled plasma)発光分光分析など)を用いて、はんだの銅濃度が分析される。
 特開2007-80891号公報(特許文献1)には、分析装置を用いずに、はんだの銅濃度を推定する方法が開示されている。特許文献1に開示の推定方法は、はんだの銅濃度と電子部品のリード部および基板の露出電極部の銅の溶解率との関係やドロスの除去時間間隔とドロスの生成量との関係を用いて、はんだ槽中のはんだの銅濃度の経時変化を推定する。
特開2007-80891号公報
 分析装置を用いて銅濃度を分析する場合、通常、外部の分析メーカにサンプルを提出して分析結果を得るため、分析結果を得るまでに時間がかかるとともに、コストがかかる。そのため、頻繁に銅濃度を測定することができず、例えば1ケ月に1回だけ測定される。はんだの銅濃度が上昇するとはんだ付け不良の発生頻度が高まるため、銅濃度は高頻度で測定されることが好ましい。
 特許文献1に開示の技術では、はんだの銅濃度と電子部品のリード部および基板の露出電極部の銅の溶解率との関係やドロスの除去時間間隔とドロスの生成量との関係を予め取得しておく必要がある。さらに、複雑な計算を行なうため、計算負荷が大きくなる。
 本開示は、上記の問題点に着目してなされたもので、その目的は、はんだの銅濃度の変動を容易にかつ高頻度で検出可能な検出装置、検出方法およびプログラムを提供することである。
 本開示の一例によれば、検出装置は、はんだ槽内のはんだの温度を取得するための取得部と、昇温過程および降温過程の少なくとも一方における温度の時間変化からはんだの融点を測定するための測定部と、融点の変動に基づいて、はんだの銅濃度の変動を検出するための検出部とを備える。
 この開示によれば、昇温過程および降温過程の少なくとも一方におけるはんだの温度の時間変化に基づいて、はんだの銅濃度の変動を容易に検出できる。はんだの銅濃度の変動は、昇温過程または降温過程で検出され得る。そのため、高頻度で、はんだの銅濃度の変動を検出できる。このように、はんだの銅濃度の変動を容易にかつ高頻度で検出できる。
 上述の開示において、検出部は、融点が第1閾値を超える場合に、銅濃度の異常を検出する。
 この開示によれば、融点と第1閾値との比較により容易に銅濃度の異常を検出できる。これにより、作業者は、適切なタイミングでメンテナンス等の実施することができる。
 上述の開示において、検出部は、融点が第1閾値よりも小さい第2閾値を超える場合に、銅濃度の異常予兆を検出する。
 この開示によれば、融点と第2閾値との比較により容易に銅濃度の異常予兆を検出できる。これにより、作業者は、メンテナンス等の準備を前もって行なうことができる。
 上述の開示において、取得部は、はんだ槽内のはんだを加熱するためのヒータへの通電開始後に温度を所定周期ごとに取得する。この開示によれば、測定部は、昇温過程の温度の時間変化から融点を測定できる。
 上述の開示において、取得部は、はんだ槽内のはんだを加熱するためのヒータへの通電停止後に温度を所定周期ごとに取得する。この開示によれば、測定部は、降温過程の温度の時間変化から融点を測定できる。
 本開示の一例によれば、検出方法は、はんだ槽内のはんだの温度を取得するステップと、昇温過程および降温過程の少なくとも一方における温度の時間変化からはんだの融点を測定するステップと、融点の変動に基づいて、はんだの銅濃度の変動を検出するステップとを備える。本開示の一例によれば、プログラムは、上記の検出方法をコンピュータに実行させる。これらの開示によっても、はんだの銅濃度の変動を容易にかつ高頻度で検出できる。
 本開示によれば、はんだの銅濃度の変動を容易にかつ高頻度で検出できる。
本実施の形態に係るはんだ付けシステムの全体構成を示す模式図である。 検出装置のハードウェア構成を示す模式図である。 昇温過程および降温過程におけるはんだの温度の時間変化の一例を示す図である。 はんだの銅濃度と融点との関係を示す図である。 ヒータへの通電を開始したときにおける銅濃度の変動の検出処理の流れを示すフローチャートである。 ヒータへの通電を停止したときにおける銅濃度の変動の検出処理の流れを示すフローチャートである。
 <適用例>
 図1および図2を参照して、本発明が適用される場面の一例について説明する。図1は、本実施の形態に係るはんだ付けシステムの全体構成を示す模式図である。
 図1に示されるように、はんだ付けシステム1は、基板Wを搬送するための搬送装置10と、基板Wに対して溶融したはんだSを噴出させてはんだ付けを行なう噴流式はんだ付け装置20と、コントローラ30と、検出装置40と、表示装置50とを備える。
 噴流式はんだ付け装置20は、はんだ槽21と、ダクト22,23と、ポンプ24,25と、一次噴流ノズル26と、二次噴流ノズル27と、ヒータ28と、温度計29とを含む。
 はんだ槽21は、はんだSを収容する。はんだ槽21内には、はんだ槽21内のはんだを加熱するためのヒータ28が設置される。ヒータ28に通電することにより、はんだ槽21内のはんだSは、加熱されて融解する。
 はんだ槽21には温度計29が取り付けられている。温度計29は、例えば熱電対によって構成され、はんだ槽21に収容されるはんだSの温度を所定周期(例えば1秒)ごとに計測する。
 ダクト22,23は、はんだ槽21内に設置される。ポンプ24,25は、ダクト22,23内に溶融したはんだSをそれぞれ圧送する。ポンプ24は、例えばモータ24aと、モータ24aによって回転する羽根車24bとを有する。ポンプ25は、例えばモータ25aと、モータ25aによって回転する羽根車25bとを有する。
 一次噴流ノズル26はダクト22に接続される。一次噴流ノズル26は、ダクト22内で圧送されたはんだSの流れを鉛直方向上向きに変え、上端の開口部からはんだSを噴出させる。一次噴流ノズル26は、表面が波状の一次噴流を生成する。
 二次噴流ノズル27はダクト23に接続される。二次噴流ノズル27は、ダクト23内で圧送されたはんだSの流れを鉛直方向上向きに変え、上端の開口部からはんだSを噴出させる。二次噴流ノズル27は、表面が平坦な二次噴流を生成する。
 搬送装置10は、はんだ付けの対象となる基板Wを一次噴流ノズル26および二次噴流ノズル27の上方に向けて搬送する。搬送装置10は、搬送ベルト11と、複数の予備加熱装置(プリヒータ)12と、フレーム13と、冷却装置14とを含む。
 搬送ベルト11は、基板Wを搬送方向Dに沿って一定速度で搬送する。複数の予備加熱装置12は、搬送ベルト11における一次噴流ノズル26および二次噴流ノズル27の上方よりも上流側に配置され、基板Wを予備加熱する。
 フレーム13は、一次噴流ノズル26および二次噴流ノズル27の上方に設置される。フレーム13には観察窓13aが形成されており、観察窓13aを通して、一次噴流ノズル26からの一次噴流および二次噴流ノズル27の二次噴流を上方から観察できる。
 冷却装置14は、搬送ベルト11における一次噴流ノズル26および二次噴流ノズル27の上方よりも下流側に配置され、基板Wを冷却する。
 コントローラ30は、噴流式はんだ付け装置20を制御する温度調節装置である。噴流式はんだ付け装置20の起動指示が入力されると、コントローラ30は、温度計29によって計測される温度が設定温度になるようにヒータ28への通電を開始する。コントローラ30は、温度計29によって計測される温度が設定温度に到達したタイミングまたは噴流開始指示が入力されたタイミングで、モータ24a,25aを回転させ、一次噴流ノズル26および二次噴流ノズル27からはんだSを噴出させる。噴流式はんだ付け装置20の停止指示が入力されると、コントローラ30は、モータ24a,25aの回転を停止させるとともに、ヒータ28への通電を停止する。
 コントローラ30は、温度計29によって所定周期ごとに計測された温度を検出装置40に出力する。
 検出装置40は、はんだ槽21内のはんだSの銅濃度の変動を検出する。検出装置40は、取得部402と、測定部404と、検出部406とを備える。
 取得部402は、温度計29によって所定周期ごとに計測された、はんだ槽21内のはんだの温度をコントローラ30から取得する。取得部402は、所定周期ごとに計測された温度を温度計29から直接取得してもよい。
 測定部404は、取得部402が取得した温度の時間変化からはんだSの融点(液相線温度)を測定する。具体的には、測定部404は、ヒータ28への通電開始後の昇温過程における温度の時間変化からはんだの融点を測定する。もしくは、測定部404は、ヒータ28への通電停止後の降温過程における温度の時間変化からはんだSの融点を測定する。
 検出部406は、測定部404によって測定された融点の変動に基づいて、はんだSの銅濃度の変動を検出する。検出部406は、検出結果を表示装置50に表示する。これにより、作業者は、はんだの銅濃度の変動を確認し、必要に応じて、はんだ槽21のメンテナンスを行なう。例えば、作業者は、はんだ槽21内のはんだの一部または全部を廃棄し、適切な銅濃度の新しいはんだを供給する。もしくは、作業者は、はんだ槽21内のはんだの一部を廃棄し、銅濃度の低いはんだを供給してもよい。
 本実施の形態によれば、昇温過程および降温過程の少なくとも一方におけるはんだSの温度の時間変化に基づいて、はんだSの銅濃度の変動を容易に検出できる。はんだSの銅濃度の変動は、ヒータ28への通電開始または通電停止のタイミングで検出され得る。そのため、例えば月曜日に噴流式はんだ付け装置20を起動し、金曜日に噴流式はんだ付け装置20を停止する場合、一週間に2回の頻度で、はんだSの銅濃度の変動を検出できる。このように、はんだSの銅濃度の変動を容易にかつ高頻度で検出できる。
 <具体例>
 (検出装置のハードウェア構成)
 図2は、検出装置のハードウェア構成を示す模式図である。検出装置40は、例えば汎用のコンピュータによって実現される。図2に示されるように、検出装置40は、CPU(Central Processing Unit)41と、ROM(Read Only Memory)42と、RAM(Random Access Memory)43と、ハードディスク(HDD)44と、表示インターフェース(IF)45と、入力IF46と、通信IF47とを含む。これらの各部は、バス48を介して、互いにデータ通信可能に接続される。
 CPU41は、OSを含む各種プログラムを実行する。ROM42は、BIOSや各種データを格納する。RAM43は、CPU41でのプログラムの実行に必要なデータを格納するための作業領域を提供する。HDD44は、CPU41で実行されるプログラムなどを不揮発的に格納する。図1に示す測定部404および検出部406は、CPU41がプログラムを実行することにより実現される。
 表示IF45は、CPU41の指示に従って、表示装置50へデータを出力するインターフェースである。入力IF46は、マウス、キーボードなどの入力装置からデータを受信するインターフェースである。通信IF47は、CPU41の指示に従って、ネットワークを介してコントローラ30との間でデータを送受信するインターフェースである。通信IF47は、例えばコントローラ30から計測された温度を受信する。図1に示す取得部402は、通信IF47によって実現される。
 (融点の測定方法)
 次に図3を参照して、測定部404による融点の測定方法について説明する。図3は、昇温過程および降温過程におけるはんだSの温度の時間変化の一例を示す図である。図3には、はんだSが常温であるときにヒータ28への通電を開始し、設定温度260℃で約1時間保持した後にヒータ28への通電を停止したときの温度波形が示される。
 図3に示されるように、ヒータ28への通電を開始してからはんだSの温度が設定温度260℃に到達するまでの昇温過程において、はんだSの温度が一定(図3に示す例では約220℃)に保たれる期間が存在する。これは、ヒータ28からの発熱がはんだSの融解に費やされるためである。全てのはんだSが融解したタイミングP1の後、はんだSの温度は再び上昇する。タイミングP1における温度波形の2回微分値は極大を示す。
 タイミングP1は、はんだSの温度が設定温度260℃に到達したタイミングから所定時間(図3に示す例では1時間)だけ過去の期間内に現れる。当該所定時間は、ヒータ28の能力、はんだ槽21の収容量等に応じて定められる。測定部404は、はんだSの温度が設定温度260℃に初めて到達したタイミングから所定時間だけ過去の期間の中から温度波形の2回微分値が最大となる時点をタイミングP1として抽出する。測定部404は、抽出したタイミングP1における温度をはんだSの融点として決定すればよい。
 図3に示されるように、ヒータ28への通電を停止した後の降温過程において、はんだSの温度が一定(図3に示す例では約220℃)に保たれる期間が存在する。これは、はんだSの凝固による熱(凝固熱)が放出されるためである。すなわち、ヒータ28への通電を停止するとはんだSの温度が低下するが、はんだSが凝固し始めるタイミングP2以降、はんだSの温度が一定に保たれる。タイミングP2における温度波形の2回微分値は極大を示す。
 タイミングP2は、ヒータ28への通電を停止したタイミングから所定時間(図3に示す例では1時間)経過するまでの期間に現れる。当該所定時間は、はんだ槽21の収容量等に応じて定められる。測定部404は、ヒータ28への通電を停止したタイミングから所定時間経過するまでの期間の中から温度波形の2回微分値が最大となる時点をタイミングP2として抽出する。測定部404は、抽出したタイミングP2における温度をはんだSの融点として決定すればよい。
 なお、測定部404は、微小な温度変化の影響を除外するために、温度波形に対してスムージング処理を施してもよい。測定部404は、スムージング処理が施された温度波形の中から2回微分値が最大となるタイミングをタイミングP1またはタイミングP2として抽出すればよい。これにより、微小な温度変化の影響による融点の測定精度の低下を抑制できる。
 (銅濃度の変動の検出方法)
 次に図4を参照して、検出部406による銅濃度の変動の検出方法について説明する。図4は、はんだの銅濃度と融点との関係を示す図である。図4に示されるように、はんだSの銅濃度が増加するにつれて、はんだSの融点も上昇する。そのため、検出部406は、測定部404によって測定された融点と予め定められた閾値とを比較することにより、はんだSの銅濃度の変動を検出すればよい。
 例えば、はんだSの銅濃度を1.0at%(原子パーセント)以下に管理したい場合、銅濃度が1.0at%のときのはんだSの融点が閾値Th1として予め定められる。検出部406は、測定部404によって測定された融点が閾値Th1を超える場合に、はんだSの銅濃度の異常を検出すればよい。つまり、検出部406は、銅濃度が管理基準(=1.0at%)を超えている異常状態の発生を検出する。
 検出部406は、銅濃度の異常を検出した場合に、はんだSの銅濃度の異常を通知する通知画面を表示装置50に表示させる。これにより、作業者は、通知画面を確認することにより、銅濃度が異常であることを即座に把握できる。その結果、作業者は、はんだSの入れ替え等のメンテナンスを実施することができる。
 さらに、図4に示されるように、閾値Th1よりも低い閾値Th2が予め定められてもよい。検出部406は、測定部404によって測定された融点が閾値Th2を超える場合に、はんだSの銅濃度の異常予兆を検出すればよい。つまり、検出部406は、近い将来に銅濃度が管理基準(=1.0at%)を超える予兆を検出する。
 検出部406は、銅濃度の異常予兆を検出した場合に、はんだSの銅濃度の異常予兆を通知する通知画面を表示装置50に表示させる。これにより、作業者は、通知画面を確認することにより、近い将来にはんだSの入れ替え等のメンテナンスが必要であることを認識でき、当該メンテナンスの準備を前もって行なうことができる。
 (検出処理の流れ)
 次に図5および図6を参照して、検出装置40における検出処理の流れについて説明する。図5は、ヒータへの通電を開始したときにおける銅濃度の変動の検出処理の流れを示すフローチャートである。
 ヒータ28への通電が開始されると、検出装置40は、温度計29によって計測されたはんだ槽21内のはんだSの温度を所定周期ごとに取得する(ステップS1)。検出装置40は、はんだSの温度が設定温度に到達するまでの昇温過程において、所定周期ごとにはんだSの温度を取得する。
 次に、検出装置40は、昇温過程におけるはんだSの温度の時間変化から融点を測定する(ステップS2)。例えば、検出装置40は、はんだSの温度が設定温度に到達したタイミングから所定時間だけ過去の期間の中から温度波形の2回微分値が最大となる時点の温度を融点として決定する。
 次に、検出装置40は、測定した融点が閾値Th1を超えるか否かを判断する(ステップS3)。融点が閾値Th1を超える場合(ステップS3でYES)、検出装置40は、はんだSの銅濃度の異常を検出し、銅濃度の異常を通知する通知画面を表示装置50に表示する(ステップS4)。ステップS4の後、検出処理は終了する。
 融点が閾値Th1を超えていない場合(ステップS3でNO)、検出装置40は、測定した融点が閾値Th2(<Th1)を超えるか否かを判断する(ステップS5)。融点が閾値Th2を超える場合(ステップS5でYES)、検出装置40は、はんだSの銅濃度の異常予兆を検出し、銅濃度の異常予兆を通知する通知画面を表示装置50に表示する(ステップS6)。ステップS6の後、検出処理は終了する。
 図6は、ヒータへの通電を停止したときにおける銅濃度の変動の検出処理の流れを示すフローチャートである。図6に示すフローチャートは、図5に示すフローチャートと比較して、ステップS2の代わりにステップS12を含む点で相違する。
 ステップS12において、検出装置40は、降温過程におけるはんだSの温度の時間変化から融点を測定する。例えば、検出装置40は、ヒータ28への通電を停止したタイミングから所定時間経過するまでの期間の中から温度波形の2回微分値が最大となる時点の温度を融点として決定する。そして、ステップS12で測定された融点に基づいて、ステップS3~S6が実行されることにより、はんだSの銅濃度の変動が検出される。
 (利点)
 以上のように、本実施の形態に係る検出装置40は、取得部402と測定部404と検出部406とを備える。取得部402は、はんだ槽21内のはんだSの温度を取得する。測定部404は、昇温過程および降温過程の少なくとも一方における温度の時間変化からはんだSの融点を測定する。検出部406は、融点の変動に基づいて、はんだSの銅濃度の変動を検出する。
 上記の構成により、昇温過程および降温過程の少なくとも一方におけるはんだSの温度の時間変化に基づいて、はんだSの銅濃度の変動を容易に検出できる。はんだSの銅濃度の変動は、ヒータ28への通電開始または通電停止のタイミングで検出され得る。そのため、高頻度で、はんだSの銅濃度の変動を検出できる。このように、はんだSの銅濃度の変動を容易にかつ高頻度で検出できる。
 検出部406は、融点が閾値Th1を超える場合に、銅濃度の異常を検出する。さらに、検出部406は、融点が閾値Th1よりも小さい閾値Th2を超える場合に、銅濃度の異常予兆を検出する。このように、融点と閾値Th1、Th2との比較により容易に銅濃度の異常または異常予兆を検出できる。これにより、作業者は、適切なタイミングでメンテナンス等の実施することができる。
 取得部402は、はんだ槽21内のはんだSを加熱するためのヒータ28への通電開始後に温度を所定周期ごとに取得する。これにより、測定部404は、昇温過程の温度の時間変化から融点を測定できる。もしくは、取得部402は、ヒータ28への通電停止後に温度を所定周期ごとに取得してもよい。これにより、測定部404は、降温過程の温度の時間変化から融点を測定できる。
 (変形例)
 上記の説明では、検出装置40は、タイミングP1またはタイミングP2(図2参照)の温度を融点として決定するものとした。しかしながら、検出装置40は、タイミングP1から所定時間(例えば1分)だけ過去の期間における温度の平均値を融点として決定してもよい。同様に、検出装置40は、タイミングP2から所定時間(例えば1分)だけ経過するまでの期間における温度の平均値を融点として決定してもよい。これにより、温度計29による計測ばらつきの影響を抑制できる。
 上記の説明では、昇温過程および降温過程の各々において、温度の時間変化から融点を測定し、はんだSの銅濃度の変動を検出するものとした。しかしながら、昇温過程および降温過程のいずれか一方においてのみ温度の時間変化から融点を測定し、はんだSの銅濃度の変動を検出してもよい。
 あるいは、昇温過程の温度の時間変化から測定した融点と直近の降温過程の温度の時間変化から測定した融点との平均値を用いて、はんだSの銅濃度の変動を検出してもよい。すなわち、平均値が閾値Th1,Th2と比較され、比較結果に応じて銅濃度の変動が検出されてもよい。
 上記の説明では、検出装置40とコントローラ30とが別体であるものとした。しかしながら、検出装置40とコントローラ30とは一体化されていてもよい。
 <付記>
 以下のように、本実施の形態は、以下のような開示を含む。
 (構成1)
 はんだ槽(40)内のはんだ(S)の温度を取得するための取得部(402,47)と、
 昇温過程および降温過程の少なくとも一方における前記温度の時間変化から前記はんだ(S)の融点を測定するための測定部(404,41)と、
 前記融点の変動に基づいて、前記はんだ(S)の銅濃度の変動を検出するための検出部(406,41)とを備える、検出装置(40)。
 (構成2)
 前記検出部(406,41)は、前記融点が第1閾値を超える場合に、前記銅濃度の異常を検出する、構成1に記載の検出装置(40)。
 (構成3)
 前記検出部(406,41)は、前記融点が前記第1閾値よりも小さい第2閾値を超える場合に、前記銅濃度の異常予兆を検出する、構成2に記載の検出装置(40)。
 (構成4)
 前記取得部(402,47)は、前記はんだ槽(21)内のはんだ(S)を加熱するためのヒータ(28)への通電開始後に前記温度を所定周期ごとに取得する、構成1から3のいずれか記載の検出装置(40)。
 (構成5)
 前記取得部(402,47)は、前記はんだ槽(21)内のはんだ(S)を加熱するためのヒータ(28)への通電停止後に前記温度を所定周期ごとに取得する、構成1から3のいずれかに記載の検出装置。
 (構成6)
 はんだ槽(21)内のはんだ(S)の温度を取得するステップと、
 昇温過程および降温過程の少なくとも一方における前記温度の時間変化から前記はんだ(S)の融点を測定するステップと、
 前記融点の変動に基づいて、前記はんだの銅濃度の変動を検出するステップとを備える、検出方法。
 (構成7)
 構成6に記載の検出方法をコンピュータに実行させるためのプログラム。
 本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 はんだ付けシステム、10 搬送装置、11 搬送ベルト、12 予備加熱装置、13 フレーム、13a 観察窓、14 冷却装置、20 噴流式はんだ付け装置、21 はんだ槽、22,23 ダクト、24,25 ポンプ、24a,25a モータ、24b,25b 羽根車、26 一次噴流ノズル、27 二次噴流ノズル、28 ヒータ、29 温度計、30 コントローラ、40 検出装置、41 CPU、42 ROM、43 RAM、44 HDD、45 表示IF、46 入力IF、47 通信IF、48 バス、50 表示装置、402 取得部、404 測定部、406 検出部、S はんだ、W 基板。

Claims (7)

  1.  はんだ槽内のはんだの温度を取得するための取得部と、
     昇温過程および降温過程の少なくとも一方における前記温度の時間変化から前記はんだの融点を測定するための測定部と、
     前記融点の変動に基づいて、前記はんだの銅濃度の変動を検出するための検出部とを備える、検出装置。
  2.  前記検出部は、前記融点が第1閾値を超える場合に、前記銅濃度の異常を検出する、請求項1に記載の検出装置。
  3.  前記検出部は、前記融点が前記第1閾値よりも小さい第2閾値を超える場合に、前記銅濃度の異常予兆を検出する、請求項2に記載の検出装置。
  4.  前記取得部は、前記はんだ槽内のはんだを加熱するためのヒータへの通電開始後に前記温度を所定周期ごとに取得する、請求項1から3のいずれか1項に記載の検出装置。
  5.  前記取得部は、前記はんだ槽内のはんだを加熱するためのヒータへの通電停止後に前記温度を所定周期ごとに取得する、請求項1から3のいずれか1項に記載の検出装置。
  6.  はんだ槽内のはんだの温度を取得するステップと、
     昇温過程および降温過程の少なくとも一方における前記温度の時間変化から前記はんだの融点を測定するステップと、
     前記融点の変動に基づいて、前記はんだの銅濃度の変動を検出するステップとを備える、検出方法。
  7.  請求項6に記載の検出方法をコンピュータに実行させるためのプログラム。
PCT/JP2020/032842 2019-09-06 2020-08-31 検出装置、検出方法およびプログラム WO2021044997A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/634,549 US20220283104A1 (en) 2019-09-06 2020-08-31 Detection device, detection method, and recording medium
EP20861439.6A EP4026641A4 (en) 2019-09-06 2020-08-31 DETECTION DEVICE, DETECTION METHOD AND PROGRAM
KR1020227001697A KR20220019831A (ko) 2019-09-06 2020-08-31 검출 장치, 검출 방법 및 프로그램
CN202080056193.6A CN114270183A (zh) 2019-09-06 2020-08-31 检测装置、检测方法以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-162776 2019-09-06
JP2019162776A JP7276021B2 (ja) 2019-09-06 2019-09-06 検出装置、検出方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2021044997A1 true WO2021044997A1 (ja) 2021-03-11

Family

ID=74852473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032842 WO2021044997A1 (ja) 2019-09-06 2020-08-31 検出装置、検出方法およびプログラム

Country Status (6)

Country Link
US (1) US20220283104A1 (ja)
EP (1) EP4026641A4 (ja)
JP (1) JP7276021B2 (ja)
KR (1) KR20220019831A (ja)
CN (1) CN114270183A (ja)
WO (1) WO2021044997A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935254A (ja) * 1972-08-07 1974-04-01
US5176742A (en) * 1991-09-30 1993-01-05 General Electric Company Method for filtering a molten solder bath
JP2007080891A (ja) 2005-09-12 2007-03-29 Fuji Electric Holdings Co Ltd はんだ槽中はんだの銅濃度の経時変化の推定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221670B2 (ja) * 2000-02-24 2001-10-22 株式会社日本スペリア社 ディップはんだ槽の銅濃度制御方法
DE60108684T2 (de) * 2000-06-06 2006-01-12 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren zum Einschätzen der Qualität eines bleifreien Lötmaterials und Verfahren zum Schwall-Löten
JP4935254B2 (ja) 2006-09-04 2012-05-23 株式会社ニコン 微分干渉顕微鏡
JP2008185387A (ja) 2007-01-29 2008-08-14 Mitsubishi Electric Corp 溶融はんだ中の銅濃度測定方法及びその方法に用いるプリント基板
JP5103197B2 (ja) * 2008-01-15 2012-12-19 株式会社日本スペリア社 溶融金属の監視システム
EP2221136A1 (de) * 2009-02-20 2010-08-25 Endress+Hauser GmbH+Co. KG Lötanlage und Verfahren zur Erkennung von einem Lot enthaltenen Verunreinigungen
DE102016105182A1 (de) * 2016-03-21 2017-09-21 Endress + Hauser Gmbh + Co. Kg Diagnose-Lötrahmen und Verfahren zur Erkennung von Verunreinigungen in einem Lotbad einer Lötanlage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935254A (ja) * 1972-08-07 1974-04-01
US5176742A (en) * 1991-09-30 1993-01-05 General Electric Company Method for filtering a molten solder bath
JP2007080891A (ja) 2005-09-12 2007-03-29 Fuji Electric Holdings Co Ltd はんだ槽中はんだの銅濃度の経時変化の推定方法

Also Published As

Publication number Publication date
KR20220019831A (ko) 2022-02-17
JP7276021B2 (ja) 2023-05-18
US20220283104A1 (en) 2022-09-08
EP4026641A4 (en) 2023-09-27
EP4026641A1 (en) 2022-07-13
JP2021041411A (ja) 2021-03-18
CN114270183A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2018139571A1 (ja) はんだ付けシステム、制御装置、制御方法およびプログラム
EP3102017B1 (en) Quality management apparatus and quality management method
JP5310634B2 (ja) はんだ付け装置
CN102117037A (zh) 加热装置及其异常判断方法,定影装置和图像形成装置
WO2021044997A1 (ja) 検出装置、検出方法およびプログラム
US20210397169A1 (en) Information processing apparatus and monitoring method
EP3098012A1 (en) Method for estimating carboxylic acid gas concentration, and soldering device
JP5077475B1 (ja) 加熱炉、その制御装置、その制御プログラム、および、その制御方法
JP2008227426A (ja) 基板位置ズレ検出方法及び基板位置ズレ検出装置
JP5401070B2 (ja) 処理装置の管理システム
JP2015059226A (ja) 連続ラインにおける板温制御方法及び板温制御装置
JP6481638B2 (ja) 電動機駆動システムの予防保全装置
JP2017187434A (ja) 赤外線撮影装置
JP2013087319A (ja) 直火型連続加熱炉の制御方法および制御装置
JP2011079055A (ja) リフロー炉測定用基板、リフロー炉測定用ブロック、リフロー炉測定装置、リフロー炉測定方法、および、リフロー炉測定プログラム
CN108778593B (zh) 检测焊接设备的焊料槽中的杂质的诊断焊接框架及方法
JPH10125447A (ja) 電気炉の温度制御装置
CN104249081B (zh) 风冷风机的控制方法及装置
JP6015254B2 (ja) 粉塵堆積物の検出方法及びその検出装置
JP2007075850A (ja) 熱間連続圧延機の板厚制御装置,板厚制御システム,方法,コンピュータプログラム,およびコンピュータで読み取り可能な記憶媒体
WO2022039193A1 (ja) はんだ噴流の評価装置及び評価方法、並びに、プリント基板の製造方法
JPH11162812A (ja) 基板処理装置
JP7067346B2 (ja) 情報処理装置、管理システム、制御プログラムおよび情報処理装置の制御方法
JP6546068B2 (ja) 基板処理装置及びその制御方法
CN112163694A (zh) 回流焊产品质量的监控与预测的方法、装置、设备和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227001697

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861439

Country of ref document: EP

Effective date: 20220406