WO2021044721A1 - 流量制御弁又は流量制御装置 - Google Patents

流量制御弁又は流量制御装置 Download PDF

Info

Publication number
WO2021044721A1
WO2021044721A1 PCT/JP2020/026251 JP2020026251W WO2021044721A1 WO 2021044721 A1 WO2021044721 A1 WO 2021044721A1 JP 2020026251 W JP2020026251 W JP 2020026251W WO 2021044721 A1 WO2021044721 A1 WO 2021044721A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
flow path
valve
rate control
control valve
Prior art date
Application number
PCT/JP2020/026251
Other languages
English (en)
French (fr)
Inventor
プライス アンドリュー
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Priority to KR1020227005504A priority Critical patent/KR20220058536A/ko
Priority to US17/637,900 priority patent/US12025999B2/en
Priority to JP2021543634A priority patent/JP7569791B2/ja
Priority to CN202080060691.8A priority patent/CN114364907B/zh
Publication of WO2021044721A1 publication Critical patent/WO2021044721A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0647Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/007Piezoelectric stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/005Electrical or magnetic means for measuring fluid parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/48Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by a capillary element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves

Definitions

  • the present invention relates to a flow rate control valve or a flow rate control device.
  • a throttle flow path is formed in the middle of an external flow path through which a fluid flowing out from a flow control valve flows, and an upstream side and a downstream side of the throttle flow path are formed.
  • a differential pressure type configured to measure the flow rate of the fluid flowing out from the flow rate control valve based on the pressure difference between the two.
  • the main object of the present invention is to obtain a flow rate control valve capable of improving the responsiveness of the flow rate control in the differential pressure type flow rate control device.
  • the flow control valve includes a pair of valve members having seat surfaces that come into contact with each other, and the inside of the valve members is inserted into at least one of the valve members to open toward the seat surface.
  • An internal flow path is provided, and the flow rate of the fluid flowing out through the internal flow path is controlled by adjusting the separation distance of the seating surface.
  • a throttle flow path is formed in the internal flow path, and a differential pressure is generated on the upstream side and the downstream side of the throttle flow path.
  • the valve member in which the throttle flow path is formed from the throttle flow path is compared with the one having the conventional structure.
  • the flow path volume (dead volume) to the seat surface becomes smaller.
  • the pressure in the dead volume changes from the pressure according to the valve opening degree before the change to the pressure according to the valve opening degree after the change in a short time.
  • the flow rate control valve is used in a differential pressure type flow rate control device, after changing the valve opening, the flow rate according to the changed valve opening is measured in a shorter time than the conventional structure. This makes it possible to improve the responsiveness of flow control.
  • the throttle flow path may be formed from the opening on the seat surface side of the internal flow path.
  • the capacity of the dead volume can be minimized.
  • the flow rate control valve when used in a differential pressure type flow rate control device, the flow rate according to the changed valve opening can be measured in a shorter time after the valve opening is changed, and the flow rate can be measured. The responsiveness of the control is further improved.
  • the internal flow path may flow out the fluid after the flow rate is controlled by the pair of valve members.
  • the pressure in the dead volume changes from the pressure according to the valve opening before the change to the valve opening after the change in a short time. It changes to the corresponding pressure.
  • the throttle flow path may be a member different from the valve member provided with the internal flow path and formed on the fitting member to be inserted into the internal flow path.
  • the throttle flow path can be formed by simply inserting the fitting member into the internal flow path without changing the structure of the conventional flow control valve, so that the manufacturing cost can be reduced.
  • fitting member may be made of ceramics.
  • the drawing flow path can be easily formed by using a ceramic firing step. Specifically, the rod body melted by firing is passed through the molded body before firing. After that, when the molded body is fired, the rod body is melted and a drawn flow path is formed in the molded body (fitting member) after firing. As a result, the throttle flow path can be easily formed in the fitting member regardless of machining.
  • throttle flow path may be formed in the same member as the valve member provided with the internal flow path.
  • the flow rate control device includes the flow rate control valve and a flow rate calculation unit that calculates the flow rate of the fluid flowing out from the flow rate control valve based on the pressures on the upstream side and the downstream side of the throttle flow path.
  • the valve opening control unit that controls the valve opening degree of the flow rate control valve so that the flow rate of the fluid flowing out from the flow rate control valve approaches a predetermined set flow rate based on the flow rate calculated by the flow rate calculation unit. It is characterized by having and.
  • the dead volume is small as compared with the conventional flow rate control device in which the restrictor is provided in the external flow path. Become.
  • the pressure in the dead volume changes from the pressure according to the valve opening before the change to the pressure according to the valve opening after the change in a short time.
  • a second flow rate control valve may be further provided on the upstream side of the flow rate control valve.
  • the second flow rate control valve since the second flow rate control valve is provided on the primary side of the flow rate control valve, the pressure on the primary side of the flow rate control valve can be reduced by the second flow rate control valve. As a result, the pressure difference generated between the upstream side and the downstream side of the flow rate control valve is reduced, and the flow rate control valve facilitates control of the low flow rate fluid.
  • the dead volume is compared with that of the conventional structure in which the restrictor is provided in the external flow path. Becomes smaller.
  • the pressure in the dead volume changes from the pressure according to the valve opening degree before the change to the pressure according to the valve opening degree after the change in a short time.
  • the flow rate control valve is used in a differential pressure type flow rate control device, after changing the valve opening, the flow rate according to the changed valve opening is measured in a shorter time than the conventional structure. This makes it possible to improve the responsiveness of flow control.
  • FIG. 5 is a sectional view taken along the line AA showing a valve seat member of the flow control valve according to the first embodiment. It is BB sectional view which shows the valve seat member of the flow rate control valve which concerns on 1st Embodiment.
  • MFC flow control device B Main body block 11 External inflow path 12 External outflow path V Flow control valve 20 Valve seat member (valve member) 21 Valve seat surface (seat surface) L Internal flow path L1 Upstream side internal flow path L2 Downstream side internal flow path R Squeezing flow path 30 Valve body member (valve member) 31 Seating surface (seat surface) 50 Insertion member P1 First pressure sensor P2 Second pressure sensor C Control unit C1 Flow rate calculation unit C2 Set flow rate storage unit C3 Valve opening control unit V2 Second flow rate control valve
  • the flow rate control device incorporating the flow rate control valve according to the present embodiment is used, for example, to control the flow rate of the material gas supplied to the film forming chamber in the semiconductor manufacturing process.
  • the flow rate control device MFC of the present embodiment includes a main body block B, a flow rate control valve V installed on one surface of the main body block B, a first pressure sensor P1, and , A second pressure sensor P2 and a control unit C connected to these devices are provided.
  • the main body block B has an upstream side connection port B1 and a downstream side connection port B2, and has an external inflow path 11 (external flow path) connected to the upstream side connection port B1 and an external outflow path connected to the downstream side connection port B2. It has a 12 (external flow path) and a storage recess 13 provided between the external inflow path 11 and the external outflow path 12.
  • the downstream end of the external inflow passage 11 is open to the inner surface of the accommodating recess 13, and the upstream end of the external outflow passage 12 is open to the inner surface of the accommodating recess 13.
  • the downstream end of the external inflow passage 11 is open to the side surface of the accommodating recess 13
  • the upstream end of the external outflow passage 12 is open to the bottom surface of the accommodating recess 13.
  • the flow control valve V includes a valve seat member 20 (valve member) having a valve seat surface 21, a valve body member 30 (valve member) having a seating surface 31 seated on the valve seat surface 21, and a valve body member.
  • An actuator 40 for driving the 30 to the valve seat member 20 in the contacting / separating direction is provided, and these are arranged in series in this order.
  • the flow rate control valve V is configured to adjust the separation distance between the valve seat surface 21 and the seating surface 31 by driving the valve body member 30 by the actuator 40.
  • the flow rate control valve V of the present embodiment is a so-called normally open type, and the valve body member 30 is separated from the valve seat member 20 by a leaf spring 50 (see FIG. 2) supported by the valve seat member 20. Is being urged to.
  • FIG. 3 is a plan view of the valve seat member 20 as viewed from the valve seat surface 21 side, and the dotted line indicates the upstream side internal flow path L1 and the like, which will be described later.
  • FIG. 4 is a bottom view of the valve seat member 20 as viewed from the side opposite to the valve seat surface 21.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 6 is a cross-sectional view taken along the line BB of FIG.
  • the valve seat member 20 has a substantially rotating body shape, is housed in the accommodating recess 13, and one end surface (upper surface in FIG. 2) facing the opening direction of the accommodating recess 13 serves as the valve seat surface 21. There is.
  • the valve seat member 20 is formed with an internal flow path L that passes through the inside and opens toward the valve seat surface 21. Specifically, in the valve seat member 20, the space (gap) formed between the valve seat surface 21 and the seating surface 31 in a state where the valve seat surface 21 and the seating surface 31 are separated from each other.
  • a plurality of upstream internal flow paths L1 (internal flow path L) for flowing in the fluid and a plurality of downstream internal flow paths L2 (internal flow path L) for flowing out the fluid from the space are formed.
  • each of the upstream internal flow paths L1 communicates with a partial road (vertical road) L1 m extending from the valve seat surface 21 along the axial direction to a predetermined position and a vertical road L1 m. It is composed of a partial road (horizontal road) L1n extending along the radial direction to the side peripheral surface 22. Further, each downstream internal flow path L2 extends linearly from the valve seat surface 21 to the bottom surface 23 along the axial direction.
  • each upstream internal flow path L1 opens toward the side peripheral surface 22, and the downstream end thereof opens toward the valve seat surface 21. Further, the upstream end of each downstream internal flow path L2 opens toward the valve seat surface 21, and the downstream end thereof opens toward the bottom surface 23.
  • valve seat surface 21 is formed with a plurality of annular concave grooves 21M formed concentrically and a plurality of annular ridges 21T for partitioning the concave grooves 21M.
  • the upper surface of each ridge 21T of the valve seat surface 21 comes into contact with the seating surface 31 of the valve body member 30.
  • the upstream end of the downstream internal flow path L2 is opened at the center of the valve seat surface 21, and three concave grooves 21M are formed so as to be concentric with the opening, and three ridges 21T are formed. Is formed.
  • each upstream internal flow path L1 is open to the bottom surface 21s of the concave groove 21M
  • the upstream end of each downstream internal flow path L2 is the downstream end of the upstream internal flow path L1. Is open on the bottom surface 21s of the concave groove 21M which is different from the concave groove 21M which is opened.
  • the upstream internal flow path L1 and the downstream internal flow path L2 communicate with each other while the valve seat surface 21 and the seating surface 31 are separated from each other, while the valve seat surface 21 and the seating surface 31 come into contact with each other.
  • the upstream internal flow path L1 and the downstream internal flow path L2 are configured so as not to communicate with each other.
  • the fluid flowing into the accommodating recess 13 from the external inflow passage 11 branches through the plurality of upstream side internal flow paths L1 and then rejoins through the plurality of downstream side internal flow paths L2. It is designed to flow out to the external outflow path 12.
  • a throttle flow path R is formed in the internal flow path L, and a differential pressure is generated between the upstream side and the downstream side of the throttle flow path R.
  • the throttle flow path R is formed in the downstream internal flow path L2. That is, in the present embodiment, the throttle flow path R is formed in the portion of the internal flow path L where the fluid flows after the flow rate is controlled by the valve seat member 20 and the valve body member 30.
  • the throttle flow path R has at least an inner diameter smaller than the inner diameter of the inner flow path L.
  • the throttle flow path R of the present embodiment is formed in the fitting member 60 shown in FIG. 7 inserted into the downstream internal flow path L2.
  • the fitting member 60 is a columnar one, and in a state of being inserted into the downstream internal flow path L2, from one end surface 60a (upper surface in FIGS. 5 to 7) facing the upstream side.
  • a plurality of throttle flow paths R penetrating the other end surface 60b (lower surface in FIGS. 5 to 7) facing the downstream side are formed.
  • the fitting member 60 has an outer peripheral surface 60c that is in close contact with the inner peripheral surface of the downstream internal flow path L2 in a state of being inserted into the downstream internal flow path L2.
  • the plurality of throttle flow paths R extend linearly from one end surface 60a of the fitting member 60 to the other end surface 60b. Further, the plurality of throttle flow paths R are arranged so as to form an annular row surrounding the central axis of the fitting member 60 when viewed from the one end surface 60a side of the fitting member 60. Further, the plurality of throttle flow paths R are arranged at equal intervals along the circumferential direction when viewed from the one end surface 60a side of the fitting member 60. In the present embodiment, the plurality of throttle flow paths R are arranged so as to form a row of multiple annulars (specifically, double annulars) surrounding the central axis of the fitting member 60.
  • the fitting member 60 is inserted so that one end surface 60a of the downstream internal flow path L2 facing the valve seat surface 21 side is flush with the bottom surface 21s of the concave groove 21M. ing.
  • the throttle flow path R extends from the opening facing the valve seat surface 21 (seat surface) side of the downstream side internal flow path L2 (internal flow path) toward the other opening of the downstream side internal flow path L2. It is formed like this.
  • dead volume D the flow path volume from the throttle flow path R to the valve seat surface 21 (seat surface) of the valve seat member 20 (valve member) on which the throttle flow path R is formed
  • the fitting member 60 of the present embodiment is made of ceramics. Specifically, first, the rod body melted by firing is passed through the molded body before firing. After that, when the molded body is fired, the rod body is melted and a through hole serving as a drawing flow path R is formed inside the molded body (fitting member 60) after firing.
  • the actuator 40 connects a piezo stack 41 formed by stacking a plurality of piezo elements that expand and deform when a voltage is applied, and the piezo stack 41 to a valve body member 30.
  • the connection mechanism 42 and the like are provided.
  • the actuator 40 is configured to transmit the extension of the piezo stack 41 to the valve body member 30 via the connecting mechanism 42 and press the valve body member 30 toward the valve seat member 20.
  • the actuator 40 is housed in a storage case 70 installed on one surface of the main body block B together with the valve body member 30.
  • connection mechanism 42 is interposed between the diaphragm 42a that contacts the seating surface 31 of the valve body member 30, the plunger 42b that extends from the diaphragm 42a toward the piezo stack 41, and the plunger 42b and the piezo stack 41. It is equipped with a true sphere 43c. Further, the connection mechanism 42 is urged toward the piezo stack 41 by the coil spring 71 supported in the accommodating case 70 while being pressed by the piezo stack 41.
  • the first pressure sensor P1 is installed on one surface of the main body block B and is connected to an external inflow path 11 formed inside the main body block B. As a result, the first pressure sensor P1 measures the pressure on the upstream side of the throttle flow path R.
  • the second pressure sensor P2 is installed on one surface of the main body block B like the first pressure sensor P1 and is connected to an external outflow path 12 formed inside the main body block B. As a result, the second pressure sensor P2 measures the pressure on the downstream side of the throttle flow path R.
  • the control unit C is connected to each of the flow control valve V, the first pressure sensor P1, and the second pressure sensor P2.
  • the control unit C is composed of a so-called computer provided with a CPU, a memory, an input / output means, and the like, and a program stored in the memory is executed, and the flow rate calculation unit C1 shown in FIG. 1
  • the functions as the set flow rate storage unit C2, the valve opening degree control unit C3, and the like are realized.
  • the flow rate calculation unit C1 calculates the flow rate of the fluid flowing out from the flow rate control valve V based on each pressure measured by the first pressure sensor P1 and the second pressure sensor P2.
  • the set flow rate storage unit C2 stores the set flow rate, which is the target flow rate.
  • the set flow rate storage unit C2 is connected to an input means (not shown) so that input can be performed by the input means.
  • the valve opening degree control unit C3 controls the valve opening degree of the flow rate control valve V so that the measured flow rate calculated by the flow rate calculation unit C1 approaches the set flow rate stored in the set flow rate storage unit C2. .. Specifically, the valve opening control unit C3 drives the actuator 40 by the opening control signal derived based on the measured flow rate and the set flow rate, and controls the valve opening according to the value of the opening control signal. It controls the flow rate of the fluid.
  • the flow control valve V of the present embodiment is a normally open type, and when a driving voltage is not applied to the piezo stack 41 of the actuator 40, the valve seat surface 21 and the seating surface 31 are separated from each other. .. As a result, the upstream side internal flow path L1 and the downstream side internal flow path L2 are in a state of communication. Then, the fluid flowing through the external inflow path 11 flows to the external outflow path 12 via the internal flow path L.
  • the volume of the dead volume D is small, the amount of fluid in the dead volume D that causes a delay in the pressure fluctuation in the dead volume D due to the change in the valve opening is small. Therefore, when the valve opening is changed so that the flow rate becomes smaller, the pressure in the dead volume D changes to the pressure according to the changed valve opening in a short time, and after changing the valve opening, the flow rate is changed. The time until the calculation unit C1 calculates the flow rate according to the changed valve opening is shortened. As a result, the responsiveness of the flow rate control in the flow rate control device MFC is improved.
  • the flow rate control device MFC since the throttle flow path R is formed in the downstream internal flow path L2, the volume of the dead volume D becomes small. As a result, when the valve opening is controlled so that the flow rate becomes small, the pressure in the dead volume D changes from the pressure according to the valve opening before the change to the pressure according to the valve opening after the change in a short time. Change. As a result, the flow rate according to the valve opening after the change can be measured in a short time, and the responsiveness of the flow rate control is improved. Further, since the throttle flow path R is formed in the fitting member 60 to be inserted into the downstream internal flow path L2, the throttle flow path R is provided in the internal flow path L without changing the structure of the conventional flow control valve V. Can be formed. Further, since the fitting member 60 is made of ceramics, the throttle flow path R can be easily formed.
  • a flow rate control device MFC having a configuration as shown in FIG. 8 can be mentioned.
  • the flow rate control device MFC shown in FIG. 8 has a configuration in which a flow rate control valve V0 on the upstream side is further provided on the upstream side of the first pressure sensor P1 of the flow rate control device MFC of the embodiment.
  • the upstream flow rate control valve V0 corresponds to the second flow rate control valve in the claim.
  • the upstream side flow rate control valve V0 is provided on the primary side of the flow rate control valve V, the pressure on the primary side of the flow rate control valve V can be reduced by the upstream side flow rate control valve V0.
  • the pressure difference generated between the upstream side and the downstream side of the flow rate control valve V becomes small, and the range of the flow rate with respect to the valve opening degree of the flow rate control valve V is lowered.
  • the resolution when the flow rate control valve V controls the low flow rate fluid is increased, and the flow rate control valve V makes it easier to control the low flow rate fluid.
  • the flow rate control valve V is illustrated as a normally open type, but the present invention can also be applied to a normally closed type.
  • pressure sensors are installed on the upstream side and the downstream side of the throttle flow path R, respectively.
  • the upstream side of the throttle flow path R is installed.
  • the pressure sensor may be installed only on the other side.
  • a differential pressure gauge for detecting the pressure difference between the upstream side and the downstream side of the throttle flow path R may be installed.
  • the throttle flow path R is formed in the fitting member 60 to be inserted into the internal flow path L formed in the valve member, but the throttle flow path R is directly formed in the valve member. May be good. That is, the throttle flow path R may be formed in the same member as the valve member provided with the internal flow path.
  • a throttle in order to measure the flow rate of the fluid flowing from the flow rate control valve, a throttle may be installed in the external flow path on the upstream side of the flow rate control valve.
  • the valve opening is controlled so as to increase the flow rate, it takes time for the pressure in the dead volume D to change from the pressure according to the valve opening before the change to the pressure according to the valve opening after the change. Needs. Therefore, in this case, if the throttle flow path R is formed in the internal flow path L at the portion (upstream side internal flow path L1) through which the fluid flows before the flow rate is controlled by the pair of valve members 20 and 30. Good. Further, if the throttle flow path R is formed so as to extend from the opening facing the seat surface side of the internal flow path L to the other opening of the internal flow path L, the capacity of the dead volume D can be minimized. it can.
  • valve seat member 20 is formed with the upstream internal flow path L1 and the downstream side internal flow path L2, but the valve body member 30 is formed with the upstream side internal flow path L1 and the downstream side internal flow path L1. L2 may be formed. Further, the upstream internal flow path L1 may be formed on one of the pair of valve members 20 and 30, and the downstream internal flow path L2 may be formed on the other side. In these cases, the throttle flow path R may be formed in either the upstream side internal flow path L1 or the downstream side internal flow path L2. Further, only one of the upstream internal flow path L1 and the downstream internal flow path L2 may be formed on either one of the pair of valve members 20 and 30.
  • the valve seat member 20 when applied to a normally closed type flow control valve V, as shown in FIG. 9, the valve seat member 20 has an upstream internal flow path L1 communicating with an external inflow path 11 formed in the main body block B. Is formed, and a downstream internal flow path L2 communicating with the external outflow passage 12 formed in the main body block B is formed in the valve body member 30. Then, the throttle flow path R may be formed in the downstream internal flow path L2 of the valve body member 30.
  • the valve body member 30 In the flow control valve V, the valve body member 30 is urged toward the valve seat member 20, and the valve seat surface 21 is pressed by the actuator 40 penetrating the valve seat member 20. It is configured to adjust the separation distance between the seat and the seating surface 31.
  • the flow control valve V of the present invention includes, for example, as shown in FIG. 10, a housing block b for accommodating the valve seat member 20 and the valve body member 30, and the accommodating block b includes the valve seat surface 21 and the seating surface 31.
  • the structure is such that the upstream side flow path L3 for flowing the fluid into the space formed between the valve body member 30 is formed, and the downstream side internal flow path L2 for flowing the fluid from the space is formed in the valve body member 30.
  • the throttle flow path R is formed in the downstream internal flow path L2. It may be in such a form.
  • the throttle flow path R is formed so as to extend from the opening on the seat surface side of the internal flow path L to the other opening of the internal flow path L, but the seat surface of the internal flow path L is formed. It may be formed so as to extend from the inside of the side opening to the other opening of the internal flow path L.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Flow Control (AREA)
  • Lift Valve (AREA)

Abstract

(課題)差圧式の流量制御装置における流量制御の応答性を向上できる流量制御弁を得る。 (解決手段)互いに接触する座面(21,31)を有した一対の弁部材(20,30)を備えており、当該弁部材(20,30)の少なくともいずれか一方にその内部を挿通して前記座面(21,31)に向かって開口する内部流路(L)が設けられているとともに、前記座面(21,31)の離間距離を調節することによって、前記内部流路(L)を通って外部に流出する流体の流量を制御するように構成されたものであって、前記内部流路(L)内に絞り流路(R)が形成され、当該絞り流路(R)の上流側及び下流側に差圧が発生するように構成する。

Description

流量制御弁又は流量制御装置
 本発明は、流量制御弁又は流量制御装置に関するものである。
 従来の流量制御装置として、例えば、特許文献1には、流量制御弁から外部へ流出された流体が流れる外部流路の途中に絞り流路を形成し、当該絞り流路の上流側及び下流側の間の圧力差に基づき当該流量制御弁から流出される流体の流量を測定するように構成した差圧式のものがある。
 ところが、前記差圧式の流量制御装置では、外部流路の途中に絞り流路が形成されているため、流量制御弁で流量制御された流体が絞り流路に至るまでの流路長が長くなり、その流路容積(デッドボリューム)が大きくなる。これにより、流量が小さくなるように弁開度を制御した場合に、デッドボリューム内の圧力が変更前の弁開度に応じた圧力から変更後の弁開度に応じた圧力に変化するまでに時間を要し、これが流量制御の応答性を低下させる要因となる。
特開2016-57319号
 そこで、本発明は、差圧式の流量制御装置における流量制御の応答性を向上できる流量制御弁を得ることをその主たる課題とするものである。
 すなわち、本発明に係る流量制御弁は、互いに接触する座面を有した一対の弁部材を備えており、当該弁部材の少なくともいずれか一方にその内部を挿通して前記座面に向かって開口する内部流路が設けられているとともに、前記座面の離間距離を調節することによって、前記内部流路を通って外部に流出する流体の流量を制御するように構成されたものであって、前記内部流路内に絞り流路が形成され、当該絞り流路の上流側及び下流側に差圧が発生するように構成されていることを特徴とするものである。
 このような構成によれば、弁部材に設けられた内部流路に絞り流路を形成したので、従来の構造のものに比べて、絞り流路から当該絞り流路が形成された弁部材の座面までの流路容積(デッドボリューム)が小さくなる。これにより、弁開度を変更した場合に、デッドボリューム内の圧力が短時間で変更前の弁開度に応じた圧力から変更後の弁開度に応じた圧力に変化する。その結果、当該流量制御弁を差圧式の流量制御装置に用いた場合、弁開度を変更した後、前記従来の構造に比べて短時間で当該変更後の弁開度に応じた流量を測定できるようになり、流量制御の応答性が向上する。
 また、前記内部流路の座面側の開口から前記絞り流路が形成されているものであってもよい。
 このような構成のものであれば、デッドボリュームの容量を最小限に止めることができる。これにより、当該流量制御弁を差圧式の流量制御装置に用いた場合、弁開度を変更した後、より短時間で当該変更後の弁開度に応じた流量を測定できるようになり、流量制御の応答性がさらに向上する。
 また、前記内部流路が、前記一対の弁部材によって流量が制御された後の流体を流出するものであってもよい。
 このような構成にすれば、流量が小さくなるように弁開度を変更した場合に、デッドボリューム内の圧力が短時間で変更前の弁開度に応じた圧力から変更後の弁開度に応じた圧力に変化する。
 さらに、前記絞り流路が、前記内部流路が設けられた弁部材と別の部材であって、前記内部流路に挿し込まれる嵌挿部材に形成されたものであってもよい。
 このような構成によれば、従来の流量制御弁の構造を変更することなく、嵌挿部材を内部流路に挿し込むだけで絞り流路を形成できるため、製造コストを削減できる。
 また、前記嵌挿部材が、セラミックスによって形成されているものであってもよい。
 このような構成によれば、例えば、嵌挿部材に絞り流路を形成する場合に、当該絞り流路をセラミックスの焼成工程を利用して簡易に形成できる。具体的には、焼成前の成形体に対し、焼成によって溶解する棒体を貫通させる。この後、当該成形体を焼成すると、棒体が溶解して焼成後の成形体(嵌挿部材)に絞り流路が形成される。これにより、機械加工によらず、嵌挿部材に絞り流路を簡易に形成できる。
 また、前記絞り流路が、前記内部流路が設けられた弁部材と同じ部材に形成されたものであってもよい。
 このような構成によれば、弁部材に直接絞り流路を形成するため、弁部材と別部材に絞り流路を形成する場合に比べて、別途嵌挿部材を形成する工程や当該嵌挿部材を内部流路に挿し込む工程等を省略することができ、製造工程を簡略化できる。
 また、本発明に係る流量制御装置は、前記流量制御弁と、前記絞り流路の上流側及び下流側の各圧力に基づき前記流量制御弁から流出される流体の流量を算出する流量算出部と、前記流量算出部で算出された流量に基づき前記流量制御弁から流出される流体の流量が予め定められた設定流量に近づくように前記流量制御弁の弁開度を制御する弁開度制御部とを備えることを特徴とするものである。
 このような構成によれば、弁部材に設けられた内部流路に絞り流路を形成したので、外部流路内にリストリクタが設けられた従来の流量制御装置に比べて、デッドボリュームが小さくなる。これにより、デッドボリューム内の圧力が短時間で変更前の弁開度に応じた圧力から変更後の弁開度に応じた圧力に変化する。その結果、従来の流量制御装置に比べて短時間で変更後の弁開度に応じた流量を測定できるようになり、流量制御の応答性が向上する。
 また、前記流量制御装置において、前記流量制御弁の上流側に第2の流量制御弁をさらに備えるものであってもよい。
 このような構成によれば、流量制御弁の一次側に第2の流量制御弁を設けたので、第2の流量制御弁により、流量制御弁の一次側の圧力を下げることができる。これにより、流量制御弁の上流側と下流側との間に生じる圧力差が小さくなり、流量制御弁によって低流量の流体が制御し易くなる。
 本発明の流量制御弁によれば、弁部材に設けられた内部流路に絞り流路を形成したので、外部流路内にリストリクタが設けられた従来の構造のものに比べて、デッドボリュームが小さくなる。これにより、弁開度を変更した場合に、デッドボリューム内の圧力が短時間で変更前の弁開度に応じた圧力から変更後の弁開度に応じた圧力に変化する。その結果、当該流量制御弁を差圧式の流量制御装置に用いた場合、弁開度を変更した後、前記従来の構造に比べて短時間で当該変更後の弁開度に応じた流量を測定できるようになり、流量制御の応答性が向上する。
第1の実施形態に係る流量制御装置を示す全体模式図である。 第1の実施形態に係る流量制御弁を示す部分拡大断面図である。 第1の実施形態に係る流量制御弁の弁座部材を示す平面図である。 第1の実施形態に係る流量制御弁の弁座部材を示す底面図である。 第1の実施形態に係る流量制御弁の弁座部材を示すA-A断面図である。 第1の実施形態に係る流量制御弁の弁座部材を示すB-B断面図である。 第1の実施形態に係る嵌挿部材を模式的に示す図である。 その他の実施形態に係る流量制御装置を示す全体模式図である。 その他の実施形態に係る流量制御弁を示す模式図である。 その他の実施形態に係る流量制御弁を示す模式図である。
MFC 流量制御装置
B 本体ブロック
11 外部流入路
12 外部流出路
V 流量制御弁
20 弁座部材(弁部材)
21 弁座面(座面)
L 内部流路
L1 上流側内部流路
L2 下流側内部流路
R 絞り流路
30 弁体部材(弁部材)
31 着座面(座面)
50 嵌挿部材
P1 第1圧力センサ
P2 第2圧力センサ
C 制御部
C1 流量算出部
C2 設定流量記憶部
C3 弁開度制御部
V2 第2の流量制御弁
 本実施形態に係る流量制御弁を組み込んだ流量制御装置は、例えば、半導体製造プロセスにおいて、成膜チャンバへ供給する材料ガスの流量を制御するために用いられるものである。
 <第1の実施形態> 本実施形態の流量制御装置MFCは、図1に示すように、本体ブロックBと、本体ブロックBの一面に設置された流量制御弁V、第1圧力センサP1、及び、第2圧力センサP2と、これらの機器に接続される制御部Cと、を備えている。
 前記本体ブロックBは、上流側接続口B1と下流側接続口B2とを有し、上流側接続口B1に繋がる外部流入路11(外部流路)と、下流側接続口B2に繋がる外部流出路12(外部流路)と、外部流入路11及び外部流出路12の間に設けられた収容凹部13と、を有している。
 前記外部流入路11は、その下流端が収容凹部13の内面に開口しており、前記外部流出路12は、その上流端が収容凹部13の内面に開口している。本実施形態では、外部流入路11の下流端が、収容凹部13の側面に開口しており、外部流出路12の上流端が、収容凹部13の底面に開口している。
 前記流量制御弁Vは、弁座面21を有した弁座部材20(弁部材)と、弁座面21に着座する着座面31を有した弁体部材30(弁部材)と、弁体部材30を弁座部材20に対して接離方向に駆動させるアクチュエータ40と、を備え、これらをこの順番で直列状に配置した構成になっている。そして、流量制御弁Vは、アクチュエータ40によって弁体部材30を駆動させることにより、弁座面21と着座面31との離間距離を調節するように構成されている。本実施形態の流量制御弁Vは、所謂ノーマルオープンタイプのものであり、弁体部材30は、弁座部材20に支持された板バネ50(図2参照)によって弁座部材20と離間する方向へ付勢されている。
 次に、前記弁座部材20の構成を図2~図6に基づき詳述する。ここで、図3は、弁座部材20を弁座面21側から視た平面図であり、点線は後述する上流側内部流路L1等を示している。図4は、弁座部材20を弁座面21と反対面側から視た底面図である。図5は、図3のA-A断面図である。図6は、図3のB-B断面図である。
 前記弁座部材20は、概略回転体形状をなすものであり、収容凹部13に収容され、当該収容凹部13の開口方向を向く一端面(図2中、上面)が弁座面21となっている。そして、弁座部材20には、その内部を挿通して弁座面21に向かって開口する内部流路Lが形成されている。具体的には、前記弁座部材20には、弁座面21と着座面31とが離間した状態で、当該弁座面21と当該着座面31との間に形成される空間(隙間)に流体を流入する上流側内部流路L1(内部流路L)と、当該空間から流体を流出する下流側内部流路L2(内部流路L)と、がそれぞれ複数形成されている。
 前記各上流側内部流路L1は、図5及び図6に示すように、弁座面21から軸方向に沿って所定位置まで延伸する部分路(垂直路)L1mと、垂直路L1mと連通し、径方向に沿って側周面22まで延伸する部分路(水平路)L1nと、からなっている。また、前記各下流側内部流路L2は、弁座面21から軸方向に沿って底面23まで直線状に延伸している。
 そして、図2に示すように、前記弁座部材20が収容凹部13に収容された状態で、弁座部材20の側周面22と収容凹部13を形成する側壁とにより、外部流入路11と弁座部材20の上流側内部流路L1とを繋げる流路が形成される。また、前記弁座部材20が収容凹部13に収容された状態で、弁座部材20の底面23と収容凹部13を形成する底壁とにより、外部流出路12と弁座部材20の下流側内部流路L2とを繋げる流路が形成される。
 すなわち、前記各上流側内部流路L1は、その上流端が側周面22に向かって開口すると共に、その下流端が弁座面21に向かって開口している。また、前記各下流側内部流路L2は、その上流端が弁座面21に向かって開口すると共に、その下流端が底面23に向かって開口している。
 また、前記弁座面21には、同心円状に形成された複数の環状凹溝21Mと、凹溝21Mを仕切る複数の環状凸条21Tと、が形成されている。そして、弁座面21は、各凸条21Tの上面が弁体部材30の着座面31と接触するようになっている。本実施形態では、弁座面21の中心に下流側内部流路L2の上流端が開口しており、当該開口と同心円状となるように3つの凹溝21Mが形成され、3つの凸条21Tが形成されている。
 ここで、前記各上流側内部流路L1の下流端は、凹溝21Mの底面21sに開口しており、前記各下流側内部流路L2の上流端は、上流側内部流路L1の下流端が開口した凹溝21Mと異なる凹溝21Mの底面21sに開口している。
 そして、前記弁座面21には、前記上流側内部流路L1の下流端が開口する凹溝21Mと、前記下流側内部流路L2の上流端が開口する凹溝21Mと、がそれぞれ交互になるように形成されている。これにより、弁座面21と着座面31とが離間した状態で、上流側内部流路L1と下流側内部流路L2とが連通し、一方、弁座面21と着座面31とが接触した状態で、上流側内部流路L1と下流側内部流路L2とが連通しないように構成されている。
 このような構成により、外部流入路11から収容凹部13に流入した流体は、複数の上流側内部流路L1を介して分岐した後、複数の下流側内部流路L2を介して再び合流して外部流出路12に流出するようになっている。
 また、前記内部流路L内には、絞り流路Rが形成されており、当該絞り流路Rの上流側と下流側との間に差圧が発生するようになっている。本実施形態では、下流側内部流路L2内に絞り流路Rが形成されている。すなわち、本実施形態では、内部流路L内における、弁座部材20及び弁体部材30によって流量が制御された後の流体が流れる部分に絞り流路Rが形成されている。絞り流路Rは、少なくとも内部流路Lの内径よりも小さい内径を有している。
 本実施形態の絞り流路Rは、下流側内部流路L2内に挿し込まれた図7に示す嵌挿部材60に形成されている。具体的には、嵌挿部材60は、円柱状のものであり、下流側内部流路L2に挿し込まれた状態で、上流側を向く一端面60a(図5~図7中、上面)から下流側を向く他端面60b(図5~図7中、下面)へ貫通する複数の絞り流路Rが形成されている。また、嵌挿部材60は、下流側内部流路L2に挿し込まれた状態で、下流側内部流路L2の内周面と密着する外周面60cを有している。そして、複数の絞り流路Rは、嵌挿部材60の一端面60aから他端面60bへ直線状に延伸している。また、複数の絞り流路Rは、嵌挿部材60の一端面60a側から視て当該嵌挿部材60の中心軸を囲む環状の列をなすように並んでいる。また、複数の絞り流路Rは、嵌挿部材60の一端面60a側から視て周方向に沿って等間隔に配置されている。本実施形態では、複数の絞り流路Rは、嵌挿部材60の中心軸を囲む多重環状(具体的には、二重環状)の列をなすように並んでいる。
 また、前記嵌挿部材60は、図5に示すように、下流側内部流路L2の弁座面21側を向く一端面60aが凹溝21Mの底面21sと面一になるように挿し込まれている。これにより、絞り流路Rが、下流側内部流路L2(内部流路)の弁座面21(座面)側を向く開口から当該下流側内部流路L2の他方の開口へ向かって延伸するように形成されている。このように構成することにより、絞り流路Rから当該絞り流路Rが形成された弁座部材20(弁部材)の弁座面21(座面)までの流路容積(以下、デッドボリュームDともいう)を最小限に止めることができる。
 また、本実施形態の嵌挿部材60は、セラミックスによって形成されている。具体的には、先ず、焼成前の成形体に対し、焼成によって溶解する棒体を貫通させる。この後、当該成形体を焼成すると、棒体が溶解して焼成後の成形体(嵌挿部材60)の内部に絞り流路Rとなる貫通孔が形成される。
 前記アクチュエータ40は、図1及び図2に示すように、電圧を印加した状態で膨張変形するピエゾ素子を複数枚積層して形成されるピエゾスタック41と、ピエゾスタック41を弁体部材30に接続する接続機構42と、を備えている。そして、アクチュエータ40は、ピエゾスタック41の伸長を接続機構42を介して弁体部材30に伝達し、当該弁体部材30を弁座部材20へ向けて押圧するように構成されている。なお、アクチュエータ40は、弁体部材30と共に本体ブロックBの一面に設置される収容ケース70内に収容されている。
 前記接続機構42は、弁体部材30の着座面31と反対面に接触するダイアフラム42aと、ダイアフラム42aからピエゾスタック41に向かって延びるプランジャ42bと、プランジャ42bとピエゾスタック41との間に介在する真球43cと、を備えている。また、接続機構42は、ピエゾスタック41に押圧された状態で、収容ケース70内に支持されたコイルバネ71によってピエゾスタック41側へ付勢されるようになっている。
 前記第1圧力センサP1は、図1に示すように、本体ブロックBの一面に設置されており、本体ブロックBの内部に形成された外部流入路11に接続されている。これにより、第1圧力センサP1は、絞り流路Rよりも上流側の圧力を測定するようになっている。
 前記第2圧力センサP2は、第1圧力センサP1と同様に本体ブロックBの一面に設置されており、本体ブロックBの内部に形成された外部流出路12に接続されている。これにより、第2圧力センサP2は、絞り流路Rよりも下流側の圧力を測定するようになっている。
 前記制御部Cは、流量制御弁V、第1圧力センサP1、第2圧力センサP2のそれぞれに接続されるものである。具体的には、制御部Cは、CPU、メモリ、入出力手段等を備えた所謂コンピュータによって構成してあり、前記メモリに格納されているプログラムが実行され、図1に示す流量算出部C1、設定流量記憶部C2、弁開度制御部C3等としての機能が実現されるようにしてある。
 前記流量算出部C1は、第1圧力センサP1及び第2圧力センサP2で測定された各圧力に基づき、流量制御弁Vから流出される流体の流量を算出するものである。
 前記設定流量記憶部C2は、目標流量である設定流量を記憶するものである。なお、設定流量記憶部C2は、図示しない入力手段に接続されており、当該入力手段によって入力できるようになっている。
 前記弁開度制御部C3は、流量算出部C1で算出された測定流量が、設定流量記憶部C2に記憶された設定流量に近づくように流量制御弁Vの弁開度を制御するものである。具体的には、弁開度制御部C3は、測定流量と設定流量とに基づき導かれる開度制御信号によってアクチュエータ40を駆動し、その開度制御信号の値に応じた弁開度に制御して流体の流量を制御するものである。
 次に、本実施形態の流量制御弁Vの動作について説明する。
 本実施形態の流量制御弁Vは、ノーマルオープンタイプのものであり、アクチュエータ40のピエゾスタック41に駆動電圧が印加されていない状態では、弁座面21と着座面31とが離間した状態となる。これにより、上流側内部流路L1と下流側内部流路L2とが連通した状態となる。そして、外部流入路11を流れる流体が、内部流路Lを介して外部流出路12へ流れる。
 一方、アクチュエータ40のピエゾスタック41に所定値以上の駆動電圧を印加された状態では、弁座面21と着座面31とが接触した状態となる。これにより、上流側内部流路L1と下流側内部流路L2とが連通していない状態となる。そして、外部流入路11を流れる流体が、一対の弁部材20,30によって遮断される。
 また、本実施形態では、デッドボリュームDの容積が小さいため、弁開度の変化に伴うデッドボリュームD内の圧力変動を遅延させる要因となる当該デッドボリュームD内の流体が少ない。このため、流量が小さくなるように弁開度を変更した場合、デッドボリュームD内の圧力が短時間で変更後の弁開度に応じた圧力に変化し、弁開度を変更した後、流量算出部C1によって変更後の弁開度に応じた流量が算出されるまでの時間が短くなる。その結果、流量制御装置MFCにおける流量制御の応答性が向上する。
 このような構成した本実施形態に係る流量制御装置MFCによれば、下流側内部流路L2に絞り流路Rを形成したので、デッドボリュームDの容積が小さくなる。これにより、流量が小さくなるように弁開度を制御した場合に、デッドボリュームD内の圧力が短時間で変更前の弁開度に応じた圧力から変更後の弁開度に応じた圧力に変化する。その結果、短時間で当該変更後の弁開度に応じた流量を測定できるようになり、流量制御の応答性が向上する。また、下流側内部流路L2に挿し込まれる嵌挿部材60に絞り流路Rを形成したので、従来の流量制御弁Vの構造を変更することなく、内部流路Lに絞り流路Rを形成できる。さらに、嵌挿部材60をセラミックスによって形成したので、絞り流路Rを簡易に形成できる。
<その他の実施形態> その他の実施形態としては、図8に示すような構成の流量制御装置MFCを挙げることができる。図8に示す流量制御装置MFCは、前記実施形態の流量制御装置MFCの第1圧力センサP1よりも上流側にさらに上流側流量制御弁V0を設けた構成になっている。なお、当該上流側流量制御弁V0が、請求項における第2の流量制御弁に該当する。
 このような構成にすれば、流量制御弁Vの一次側に上流側流量制御弁V0を設けたので、上流側流量制御弁V0によって流量制御弁Vの一次側の圧力を下げることができる。これにより、流量制御弁Vの上流側と下流側との間に生じる圧力差が小さくなり、流量制御弁Vの弁開度に対する流量のレンジが下がる。これに伴って流量制御弁Vによって低流量の流体を制御する場合における分解能が上がり、流量制御弁Vによって低流量の流体が制御し易くなる。
 前記実施形態においては、流量制御弁Vとしてノーマルオープンタイプのものを例示しているが、本発明はノーマルクローズタイプのものに適用することもできる。
 また、前記実施形態においては、絞り流路Rの上流側及び下流側のそれぞれに圧力センサ(第1圧力センサP1及び第2圧力センサP2)を設置したが、例えば、絞り流路Rの上流側又は下流側の一方の圧力が既知である場合には、他方にのみ圧力センサを設置すればよい。また、絞り流路Rの上流側と下流側との圧力差を検出する差圧計を設置してもよい。
 また、前記実施形態においては、弁部材に形成された内部流路Lに挿し込まれる嵌挿部材60に絞り流路Rを形成しているが、弁部材に直接絞り流路Rを形成してもよい。すなわち、絞り流路Rを、内部流路が設けられた弁部材と同じ部材に形成してもよい。
 また、前記従来の流量制御装置において、流量制御弁から流れる流体の流量を測定するために、流量制御弁によりも上流側の外部流路に絞りを設置する場合がある。この場合、流量を大きくするように弁開度を制御すると、デッドボリュームD内の圧力が変更前の弁開度に応じた圧力から変更後の弁開度に応じた圧力に変化するのに時間を要する。そこで、この場合には、絞り流路Rを、内部流路Lにおける、一対の弁部材20,30によって流量が制御される前の流体が流れる部分(上流側内部流路L1)に形成すればよい。また、絞り流路Rは、内部流路Lの座面側を向く開口から当該内部流路Lの他方の開口へ延伸するように形成すれば、デッドボリュームDの容量を最小限に止めることができる。
 また、前記実施形態においては、弁座部材20に上流側内部流路L1及び下流側内部流路L2を形成しているが、弁体部材30に上流側内部流路L1及び下流側内部流路L2を形成してもよい。また、一対の弁部材20,30のうちで一方に上流側内部流路L1を形成し、他方に下流側内部流路L2を形成してもよい。これらの場合には、上流側内部流路L1又は下流側内部流路L2のいずれか一方に絞り流路Rを形成すればよい。さらに、一対の弁部材20,30のいずれか一方に、上流側内部流路L1又は下流側内部流路L2のいずれか一方のみを形成する構成としてもよい。
 例えば、ノーマルクローズタイプの流量制御弁Vに適用する場合には、図9に示すように、弁座部材20に、本体ブロックBに形成された外部流入路11と連通する上流側内部流路L1を形成し、弁体部材30に、本体ブロックBに形成された外部流出路12に連通する下流側内部流路L2を形成する。そして、絞り流路Rを、弁体部材30の下流側内部流路L2に形成すればよい。なお、当該流量制御弁Vは、弁体部材30が弁座部材20側へ付勢されており、弁座部材20を貫通するアクチュエータ40によって弁体部材30を押圧することにより、弁座面21と着座面31との離間距離を調節するように構成されている。
 また、本発明の流量制御弁Vは、例えば、図10に示すように、弁座部材20と弁体部材30を収容する収容ブロックbを備え、収容ブロックbに弁座面21と着座面31との間に形成される空間へ流体を流入する上流側流路L3を形成し、弁体部材30に当該空間から流体を流出する下流側内部流路L2を形成した構造になっている。そして、絞り流路Rが、下流側内部流路L2に形成されている。このような形態のものであってもよい。
 また、前記実施形態においては、絞り流路Rを、内部流路Lの座面側の開口から当該内部流路Lの他方の開口に延伸するように形成したが、内部流路Lの座面側の開口よりも内方から当該内部流路Lの他方の開口に延伸するように形成してもよい。
 その他、本発明は前記各実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
 差圧式の流量制御装置における流量制御の応答性を向上できる流量制御弁を得ることができる。

Claims (8)

  1.  互いに接触する座面を有した一対の弁部材を備えており、当該弁部材の少なくともいずれか一方にその内部を挿通して前記座面に向かって開口する内部流路が設けられているとともに、前記座面の離間距離を調節することによって、前記内部流路を通って外部に流出する流体の流量を制御するように構成されたものであって、
     前記内部流路内に絞り流路が形成され、当該絞り流路の上流側及び下流側に差圧が発生するように構成されていることを特徴とする流量制御弁。
  2.  前記内部流路の座面側の開口から前記絞り流路が形成されている請求項1記載の流量制御弁。
  3.  前記内部流路が、前記一対の弁部材によって流量が制御された後の流体を流出するものである請求項1又は2のいずれかに記載の流量制御弁。
  4.  前記絞り流路が、前記内部流路が設けられた弁部材と別の部材であって、前記内部流路に挿し込まれる嵌挿部材に形成されたものである請求項1乃至3のいずれかに記載の流量制御弁。
  5.  前記嵌挿部材が、セラミックスによって形成されている請求項3記載の流量制御弁。
  6.  前記絞り流路が、前記内部流路が設けられた弁部材と同じ部材に形成されたものである請求項1乃至3のいずれかに記載の流量制御弁。
  7.  前記請求項1乃至6のいずれかに記載の流量制御弁と、
     前記絞り流路の上流側及び下流側の各圧力に基づき前記流量制御弁から流出される流体の流量を算出する流量算出部と、
     前記流量算出部で算出された流量に基づき前記流量制御弁から流出される流体の流量が予め定められた設定流量に近づくように前記流量制御弁の弁開度を制御する弁開度制御部とを備えることを特徴とする流量制御装置。
  8.  前記流量制御弁の上流側に第2の流量制御弁をさらに備える請求項7記載の流量制御装置。
PCT/JP2020/026251 2019-09-05 2020-07-03 流量制御弁又は流量制御装置 WO2021044721A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227005504A KR20220058536A (ko) 2019-09-05 2020-07-03 유량 제어 밸브 또는 유량 제어 장치
US17/637,900 US12025999B2 (en) 2019-09-05 2020-07-03 Flow rate control valve and flow rate control device
JP2021543634A JP7569791B2 (ja) 2019-09-05 2020-07-03 流量制御弁又は流量制御装置
CN202080060691.8A CN114364907B (zh) 2019-09-05 2020-07-03 流量控制阀和流量控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019162379 2019-09-05
JP2019-162379 2019-09-05

Publications (1)

Publication Number Publication Date
WO2021044721A1 true WO2021044721A1 (ja) 2021-03-11

Family

ID=74852631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026251 WO2021044721A1 (ja) 2019-09-05 2020-07-03 流量制御弁又は流量制御装置

Country Status (5)

Country Link
US (1) US12025999B2 (ja)
KR (1) KR20220058536A (ja)
CN (1) CN114364907B (ja)
TW (1) TW202125140A (ja)
WO (1) WO2021044721A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023080611A (ja) * 2021-11-30 2023-06-09 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
US12000723B2 (en) * 2022-02-18 2024-06-04 Mks Instruments, Inc. Method and apparatus for pressure based mass flow control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119265A1 (ja) * 2013-02-01 2014-08-07 株式会社フジキン ガスケット一体型セラミックオリフィスプレート
JP2015172813A (ja) * 2014-03-11 2015-10-01 アドバンス電気工業株式会社 流量制御弁及びこれを用いた流量制御装置
WO2019107215A1 (ja) * 2017-11-30 2019-06-06 株式会社フジキン 流量制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426709B1 (ko) * 2000-06-05 2004-04-14 가부시키가이샤 후지킨 오리피스 내장밸브
US6981691B2 (en) 2003-10-17 2006-01-03 Dresser, Inc. Dual segment ball valve
JP4690827B2 (ja) * 2005-08-26 2011-06-01 株式会社フジキン ガスケット型オリフィス及びこれを用いた圧力式流量制御装置
US8844901B2 (en) * 2009-03-27 2014-09-30 Horiba Stec, Co., Ltd. Flow control valve
JP5669384B2 (ja) * 2009-12-01 2015-02-12 株式会社フジキン 圧電駆動式バルブ及び圧電駆動式流量制御装置
JP5735331B2 (ja) * 2011-04-08 2015-06-17 株式会社堀場エステック 流体制御弁
WO2012178132A1 (en) * 2011-06-24 2012-12-27 Equilibar, Llc Back pressure regulator with floating seal support
JP5947505B2 (ja) * 2011-08-30 2016-07-06 株式会社堀場エステック 流体制御弁
JP6081800B2 (ja) * 2013-01-07 2017-02-15 株式会社堀場エステック 流体制御弁及びマスフローコントローラ
JP6372998B2 (ja) * 2013-12-05 2018-08-15 株式会社フジキン 圧力式流量制御装置
JP6106773B2 (ja) 2016-01-28 2017-04-05 株式会社堀場エステック 流量測定装置及び流量制御装置
CN109477586B (zh) * 2016-07-29 2020-01-14 株式会社富士金 流孔内置阀以及压力式流量控制装置
JP7140402B2 (ja) * 2017-11-30 2022-09-21 株式会社フジキン バルブ装置、このバルブ装置を用いた流体制御装置および半導体製造装置
KR102343611B1 (ko) * 2017-11-30 2021-12-27 가부시키가이샤 후지킨 유량 제어 장치의 자기 진단 방법
JP2022046924A (ja) * 2020-09-11 2022-03-24 株式会社堀場エステック 圧力式流量計、及び、流体制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119265A1 (ja) * 2013-02-01 2014-08-07 株式会社フジキン ガスケット一体型セラミックオリフィスプレート
JP2015172813A (ja) * 2014-03-11 2015-10-01 アドバンス電気工業株式会社 流量制御弁及びこれを用いた流量制御装置
WO2019107215A1 (ja) * 2017-11-30 2019-06-06 株式会社フジキン 流量制御装置

Also Published As

Publication number Publication date
KR20220058536A (ko) 2022-05-09
TW202125140A (zh) 2021-07-01
US20220276664A1 (en) 2022-09-01
CN114364907A (zh) 2022-04-15
JPWO2021044721A1 (ja) 2021-03-11
US12025999B2 (en) 2024-07-02
CN114364907B (zh) 2024-10-11

Similar Documents

Publication Publication Date Title
KR102210858B1 (ko) 유체 제어 밸브
JP6081800B2 (ja) 流体制御弁及びマスフローコントローラ
WO2021044721A1 (ja) 流量制御弁又は流量制御装置
KR101737147B1 (ko) 유량 측정 기구, 매스 플로우 콘트롤러 및 압력 센서
JP6014225B2 (ja) 測定機構
KR101902855B1 (ko) 압력식 유량 제어 장치
KR101931375B1 (ko) 유량 측정 장치 및 유량 제어 장치
US9371930B2 (en) Fluid control valve
US8967200B2 (en) Fluid control valve
JP6416529B2 (ja) 圧力式流量制御装置
JPH0863235A (ja) 差圧式質量流量コントロール装置
KR20200081235A (ko) 유체 제어 장치
KR20190104887A (ko) 유체 제어 밸브 및 유체 제어 장치
JP2020060356A (ja) 温度式膨張弁、および、それを備える冷凍サイクルシステム
JP2016014483A (ja) 流体機構及び該流体機構を構成する支持部材
JPH10110838A (ja) シャトル弁装置
JPH0331212B2 (ja)
JP2020079606A (ja) 流体制御弁及び流体制御装置
KR20230077649A (ko) 유체 제어 밸브 및 유체 제어 장치
JPH0572073A (ja) 差圧伝送器
JP2021055768A (ja) バルブ装置及びバルブ装置を用いたマスフローコントローラ
JP2021055769A (ja) バルブ装置及びバルブ装置を用いたマスフローコントローラ
JPH0536739B2 (ja)
KR20070018357A (ko) 압력센서 어셈블리를 구비한 반도체 제조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859938

Country of ref document: EP

Kind code of ref document: A1