WO2021043175A1 - 一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池 - Google Patents

一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池 Download PDF

Info

Publication number
WO2021043175A1
WO2021043175A1 PCT/CN2020/113076 CN2020113076W WO2021043175A1 WO 2021043175 A1 WO2021043175 A1 WO 2021043175A1 CN 2020113076 W CN2020113076 W CN 2020113076W WO 2021043175 A1 WO2021043175 A1 WO 2021043175A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
electrolyte
lithium ion
sultone
substituted
Prior art date
Application number
PCT/CN2020/113076
Other languages
English (en)
French (fr)
Inventor
廖帅玲
熊得军
陈虎
廖鹏
Original Assignee
孚能科技(赣州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孚能科技(赣州)股份有限公司 filed Critical 孚能科技(赣州)股份有限公司
Priority to CN202080061972.5A priority Critical patent/CN114342143B/zh
Publication of WO2021043175A1 publication Critical patent/WO2021043175A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a silicon cyano sultone compound, a lithium ion battery electrolyte and a lithium ion secondary battery.
  • Lithium-ion batteries are widely used in portable electronic products such as mobile phones, notebooks, and digital cameras because of their high voltage, small size, light weight, high specific energy, no memory effect, no pollution, low self-discharge, and long life. .
  • lithium-ion batteries are required to have higher discharge capacity, energy density, excellent high and low temperature performance and storage performance.
  • Batteries with high energy density are the current research hotspot.
  • Increasing the voltage of lithium-ion batteries can increase the energy density of the battery.
  • the electrode potential of the positive electrode material is usually increased, which may lead to The electrolyte is oxidized and decomposed on the positive electrode, which seriously affects the cycle life and storage life of the battery.
  • the purpose of the present invention is to overcome the disadvantages of poor cycle performance and storage performance of lithium-ion batteries in the prior art under high pressure and high temperature.
  • the present invention provides a silicocyano sultone compound, which has a structure represented by formula (I):
  • R 1 and R 2 are each independently selected from -H, C 1-6 alkyl, C 1-6 alkoxy group, a halogen-substituted 1-10 C 1-6 of Haloalkyl, C 1-6 haloalkoxy substituted with 1-10 halogens;
  • R 3 and R 4 are each independently selected from -H, C 1-4 alkyl, C 1-4 alkoxy, or R 3 and R 4 together form an intra-ring double bond;
  • n is selected from a positive integer of 1-5;
  • m 0 or 1.
  • the present invention provides an electrolyte for a lithium ion battery, which contains the silicon cyano sultone compound described in the first aspect; preferably, the electrolyte further contains an organic solvent and a lithium salt. And selected from fluoroethylene carbonate, vinyl sulfate, vinyl sulfite, propylene sulfate, propylene sulfite, 1,3-propane sultone, adiponitrile, succinonitrile, vinylene carbonate and At least one substance in ethylene ethylene carbonate.
  • the present invention provides a lithium ion secondary battery, which includes a positive electrode sheet, a negative electrode sheet, a separator, a battery casing, and the electrolyte according to the second aspect of the invention.
  • the lithium ion secondary battery prepared by using the electrolyte of the present invention has excellent cycle performance and storage performance under high temperature and high pressure.
  • the capacity retention rate of the battery is 92.02-94.85% under the condition of 1C cycle 400 weeks in an environment of 45°C. In a 60°C environment, storage for 30 days, the capacity retention rate is 92.00-94.76%, and the capacity recovery rate is 96.20-98.98%.
  • the first aspect of the present invention provides a silicocyano sultone compound, which has a structure represented by formula (I):
  • R 1 and R 2 are each independently selected from -H, C 1-6 alkyl, C 1-6 alkoxy group, a halogen-substituted 1-10 C 1-6 of Haloalkyl, C 1-6 haloalkoxy substituted with 1-10 halogens;
  • R 3 and R 4 are each independently selected from -H, C 1-4 alkyl, C 1-4 alkoxy, or R 3 and R 4 together form an intra-ring double bond;
  • n is selected from a positive integer of 1-5;
  • m 0 or 1.
  • C 1-6 alkyl groups include but are not limited to methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, cyclopropyl Butyl, n-pentyl, isopentyl, neopentyl, cyclopentyl, n-hexyl, isohexyl, cyclohexyl, etc.
  • C 1-6 alkoxy groups include but are not limited to methoxy, ethoxy, n-propoxy, isopropoxy, cyclopropoxy, n-butoxy, sec-butoxy, iso Butoxy, tert-butoxy, cyclobutoxy, n-pentyloxy, isopentyloxy, neopentyloxy, cyclopentyloxy, n-hexyloxy, isohexyloxy, cyclohexyloxy, etc.
  • the alkoxy group of C 1-6 is -OCH 3 , -OCH 2 CH 3 , -OCH 2 CH 2 CH 3 , -OCH 2 CH 2 CH 2 CH 3 , -OCH 2 CH 2 CH 2 CH 3, etc. .
  • a C 1-6 haloalkyl group substituted with 1-10 halogens refers to a group formed by replacing 1-10 hydrogen atoms in the C 1-6 alkyl group with halogen atoms.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • a C 1-6 haloalkyl group substituted with 1-10 halogens is -CF 3 , -CH 2 CF 3 , -CH 2 CF 2 H, -CF 2 CF 3 , -CF 2 CH 2 CF 2 H,- CH 2 CF 2 CF 2 H, -CH 2 CH 2 CH 2 Cl, -CH 2 CH 2 CH 2 Br, etc.
  • a C 1-6 halogenated alkoxy group substituted with 1-10 halogens refers to a group formed by substituting 1-10 hydrogen atoms in the C 1-6 alkoxy group with halogen atoms.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • a C 1-6 haloalkoxy substituted by 1-10 halogens is -OCH 2 F, -OCF 3 , -OCH 2 CF 3 , -OCH 2 CH 2 CF 3 , -OCH 2 CH 2 CH 2 Cl, -OCH 2 CH 2 CH 2 Br and so on.
  • C 1-4 alkyl groups include but are not limited to methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, cyclopropyl Butyl.
  • C 1-4 alkoxy groups include but are not limited to methoxy, ethoxy, n-propoxy, isopropoxy, cyclopropoxy, n-butoxy, sec-butoxy, iso Butoxy, tert-butoxy, cyclobutoxy.
  • n may be 1, 2, 3, 4, or 5, for example.
  • the silicon cyano sultone compound is prepared by the following method:
  • the sultone is added to the dimethyl carbonate solvent, and then added to the substituted silane containing the cyano group for reaction to obtain the silicocyano sultone compound.
  • reaction is a reflux reaction at 100°C, preferably for 4 hours.
  • the substituted silane containing a cyano group may be, for example, 1-ethylcyano-1-chlorosilane, 1-ethylcyano-1-methyl-1-chlorosilane, 1-ethylcyano-1, 1 -Dimethyl-1-chlorosilane, 1-propcyano-1-methyl-1-chlorosilane, 1-propcyano-1,1-dimethyl-1-chlorosilane, 1-ethcyano -1-Trifluoromethyl-1-chlorosilane, 1-ethylcyano-1,1-ditrifluoromethyl-1-chlorosilane, 1-ethylcyano-1-methyl-1-n-pentyl -1-chlorosilane and so on.
  • the silicon cyano sultone compound is at least one of the following compounds:
  • R 1 and R 2 are each independently selected from -H, C 1-6 alkyl, C 1-6 alkoxy group, a halo-substituted 1-10 C 1-6 haloalkyl of from one to ten halogen substituted C 1-6 haloalkoxy, n is a positive integer selected from 1-5.
  • R 1 is selected from -H, C 1-4 alkyl, C 1 -4 alkoxy, halo substituted by a 1-5 C 1-4 haloalkyl, and halogen-substituted with from 1-5 C 1-4 haloalkoxy
  • R 2 is selected from -H, C 1- 6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl substituted with 1-10 halogens, C 1-6 haloalkoxy substituted with 1-10 halogens
  • n is 1 , 2 or 3.
  • the second aspect of the present invention provides an electrolyte for a lithium ion battery, which contains the silicon cyano sultone compound described in the first aspect; preferably, the electrolyte further contains an organic solvent and a lithium salt. And selected from fluoroethylene carbonate, vinyl sulfate, vinyl sulfite, propylene sulfate, propylene sulfite, 1,3-propane sultone, adiponitrile, succinonitrile, vinylene carbonate and At least one substance in ethylene ethylene carbonate.
  • the content of the silicon cyano sultone compound is 0.1-10% by weight, more preferably 0.5-5% by weight.
  • the inventors of the present invention have found that the When the content of the silicon cyano sultone compound is 0.5 to 5% by weight, the lithium ion battery electrolyte of the present invention can further improve the cycle performance and storage performance of the lithium ion battery using the electrolyte under high temperature and high pressure.
  • the content of the silicon cyano sultone compound may be, for example, 0.1% by weight, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, 2.5% by weight, or 3% by weight. %, 3.5% by weight, 4% by weight, 4.5% by weight, 5% by weight, 5.5% by weight, 6% by weight, 6.5% by weight, 7% by weight, 8.5% by weight, 9% by weight, 9.5% by weight, 10% by weight, etc. .
  • the lithium salt is selected from at least one of LiPF 6 , LiClO 4 , LiBOB, LiBF 4 , LiPF 2 O 2 , LiODFB, LiTFSI, LiFSI, and LiC(CF 3 SO 2 ) 3 .
  • the concentration of the lithium salt is 0.5-2 mol/L, more preferably 0.8-1.5 mol/L.
  • the concentration of the lithium salt may be 0.5mol/L, 0.6mol/L, 0.7mol/L, 0.8mol/L, 0.9mol/L, 1.0mol/L, 1.1mol/L, 1.2mol/L, 1.3mol/L, 1.4mol/L, 1.5mol/L, 1.6mol/L, 1.7mol/L, 1.8mol/L, 1.9mol/L, 2mol/L, etc.
  • the organic solvent is selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, propionic acid At least one of propyl ester, ethyl propionate, and butyl propionate.
  • the organic solvent is further preferably ethylene carbonate, ethyl methyl carbonate, propylene carbonate and diethyl carbonate in a weight ratio of 30:50:16:4.
  • the free acid of the electrolyte is less than 20 ppm, and the water content is less than 15 ppm.
  • the free acid of the electrolyte may be 19 ppm, 18 ppm, 17 ppm, 16 ppm, 15 ppm, 14 ppm, 13 ppm, 12 ppm, 11 ppm, 10 ppm, 9 ppm, 8 ppm, 7 ppm, 6 ppm, 5 ppm, 4 ppm, 3 ppm, 2 ppm, 1 ppm, 0 Wait.
  • the moisture can be 14ppm, 13ppm, 12ppm, 11ppm, 10ppm, 9ppm, 8ppm, 7ppm, 6ppm, 5ppm, 4ppm, 3ppm, 2ppm, 1ppm, 0, etc.
  • the third aspect of the present invention provides a lithium ion secondary battery
  • the lithium ion secondary battery includes a positive electrode sheet, a negative electrode sheet, a separator, a battery case, and the electrolyte according to the second aspect of the invention .
  • the positive electrode sheet preferably includes a positive electrode current collector, a positive electrode active material for attaching to the positive electrode current collector, a positive electrode binder, and a positive electrode conductive agent.
  • the positive electrode active material is selected from LiCoO 2 , LiMn 2 O 4 , LiNi x Mn 2-x O 4 , LiNi x Co y Mn 1-xy O 2 , LiNi x Co y Al 1-xy At least one of O 2.
  • x is greater than 0 and less than 2.
  • x is greater than 0 and less than 1
  • y is greater than 0 and less than 1.
  • x is greater than 0 and less than 1
  • y is greater than 0 and less than 1.
  • the content of the positive electrode active material is 90-98% by weight.
  • the content of the positive electrode active material may be 90% by weight, 91% by weight, 92% by weight, 93% by weight, 94% by weight, 95% by weight, 96% by weight, 97% by weight. %, 98% by weight, etc.
  • the positive electrode binder includes but is not limited to at least one of polytetrafluoroethylene, polyvinylidene fluoride, and styrene butadiene rubber.
  • the content of the positive electrode binder is 0.01-8% by weight.
  • the content of the positive electrode binder may be 0.01% by weight, 0.05% by weight, 0.1% by weight, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, 2.5% by weight. Weight%, 3% by weight, 3.5% by weight, 4% by weight, 4.5% by weight, 5% by weight, 5.5% by weight, 6% by weight, 6.5% by weight, 7% by weight, 7.5% by weight, 8% by weight, etc.
  • the positive electrode conductive agent includes but is not limited to at least one of SP, acetylene black, KS-6, and carbon nanotubes.
  • the content of the positive electrode conductive agent is 1-8% by weight.
  • the content of the positive electrode conductive agent may be 1% by weight, 1.5% by weight, 2% by weight, 2.5% by weight, 3% by weight, 3.5% by weight, 4% by weight, 4.5% by weight. %, 5% by weight, 5.5% by weight, 6% by weight, 6.5% by weight, 7% by weight, 7.5% by weight, 8% by weight, etc.
  • the current collector of the positive electrode is aluminum foil.
  • the positive electrode sheet is prepared by dispersing the active material, the conductive agent, and the binder in the dispersant to prepare the positive electrode slurry, and then the positive electrode slurry is coated on the current collector and dried to obtain the positive electrode sheet , Then the dried positive electrode sheet is rolled, slit, punched, and then vacuum-dried at a high temperature to obtain it.
  • the dispersant used in the preparation of the positive electrode slurry in the present invention includes, but is not limited to, N-methylpyrrolidone, N,N-dimethylformamide, N,N-diethylformamide, dimethylsulfoxide, tetrahydrofuran, water And at least one of alcoholic dispersants.
  • the amount of the positive electrode dispersant is such that the solid content of the active material in the positive electrode slurry is 40-90% by weight, more preferably 50-85% by weight. Therefore, the dispersion of the positive electrode slurry can be made more uniform, and the coating performance can be better.
  • the positive electrode dispersant is used in an amount such that the solid content of the active material in the positive electrode slurry can be 40% by weight, 45% by weight, 50% by weight, 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by weight, 85% by weight, 90% by weight, etc.
  • the drying conditions of the positive electrode sheet are selected according to the type of dispersant used, and the dispersant in the positive electrode slurry can be removed without affecting the performance of the electrode sheet.
  • the negative electrode sheet preferably includes a negative electrode current collector and a negative electrode active material for adhering to the negative electrode current collector, a negative electrode binder, a negative electrode conductive agent, and a thickener.
  • the negative electrode active material is selected from at least one of graphite (artificial graphite and/or natural graphite), mesocarbon microspheres, soft carbon, hard carbon, lithium titanate, silicon, and silicon carbon alloy. kind.
  • the content of the negative electrode active material is 90-98% by weight.
  • the content of the negative electrode active material may be 90% by weight, 91% by weight, 92% by weight, 93% by weight, 94% by weight, 95% by weight, 96% by weight, 97% by weight. %, 98% by weight, etc.
  • the negative electrode binder includes but is not limited to at least one of styrene-butadiene rubber, polyvinyl alcohol, and polytetrafluoroethylene.
  • the content of the negative electrode binder is 0.1-8% by weight.
  • the content of the negative electrode binder may be 0.1% by weight, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, 2.5% by weight, 3% by weight, 3.5% by weight.
  • the negative electrode conductive agent includes but is not limited to at least one of Super P, acetylene black, KS-6, and carbon nanotubes.
  • the content of the negative electrode conductive agent is 0.1-8% by weight.
  • the content of the negative electrode conductive agent may be 0.1% by weight, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, 2.5% by weight, 3% by weight, 3.5% by weight. %, 4% by weight, 4.5% by weight, 5% by weight, 5.5% by weight, 6% by weight, 6.5% by weight, 7% by weight, 7.5% by weight, 8% by weight, etc.
  • the thickener is sodium carboxymethyl cellulose, and the content of the thickener is 0.1 to 5% by weight based on the total weight of the negative electrode dry material.
  • the content of the thickener may be 0.1% by weight, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, 2.5% by weight, 3% by weight, 3.5% by weight. %, 4% by weight, 4.5% by weight, 5% by weight, etc.
  • the current collector of the negative electrode is preferably copper foil.
  • the negative electrode is prepared by dispersing active material, conductive agent, binder, and thickener in a dispersant to prepare negative electrode slurry, and then coating the negative electrode slurry on a current collector and proceeding
  • the negative electrode sheet is obtained by drying, and then the dried negative electrode sheet is subjected to rolling, slitting, punching, and vacuum high-temperature drying to obtain it.
  • the dispersant used in the preparation of the negative electrode slurry in the present invention includes, but is not limited to, N-methylpyrrolidone, N,N-dimethylformamide, N,N-diethylformamide, dimethylsulfoxide, tetrahydrofuran, water And at least one of alcoholic dispersants.
  • the amount of the negative electrode dispersant is such that the solid content of the active material in the negative electrode slurry is 40-90% by weight, more preferably 50-85% by weight.
  • the negative electrode slurry is more uniformly dispersed and has better coating performance.
  • the negative electrode dispersant is used in such an amount that the solid content of the active material in the negative electrode slurry can be 40% by weight, 45% by weight, 50% by weight, 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by weight, 85% by weight, 90% by weight, etc.
  • the drying conditions of the negative electrode sheet are selected according to the type of dispersant used, and the dispersant in the negative electrode slurry can be removed without affecting the performance of the electrode sheet.
  • the separator is arranged between the positive electrode and the negative electrode, and the material of the separator includes but is not limited to at least one of polypropylene, polyethylene or polyethylene, and a polypropylene composite separator.
  • the lithium ion secondary battery includes but is not limited to the following steps:
  • S2 vacuum-bakes the battery cell prepared by S1, places it in the battery casing, injects the electrolyte of the present invention, and then seals the battery casing.
  • the battery performance is measured by the following method:
  • the lithium-ion battery At 45°C, charge the lithium-ion battery to 4.35V with a constant current of 1C, then charge to 0.05C with a constant voltage of 4.35V, and then discharge to 2.75V with a constant current of 1C, as a cycle.
  • the discharge capacity this time is the first time
  • the discharge capacity of the cycle taking the first cycle discharge capacity as 100%, the lithium ion battery is subjected to 400 cycles of charge/discharge test according to the above method, and the discharge capacity of the 400th cycle is detected.
  • the lithium-ion battery was charged to 4.35V at a constant current of 1C, and then charged to 0.05C at a constant voltage of 4.35V. After being fully charged, the volume of the lithium-ion battery was measured by the drainage method and recorded as V0. Then the battery was stored at 60°C for 30 days, and the volume after 30 days of storage was recorded as V1.
  • Thickness expansion rate (%) (V1/V0) ⁇ 100%-1
  • the positive electrode active material nickel cobalt manganese lithium LiNi 0.5 Co 0.2 Mn 0.3 O 2 , conductive agent SP, and binder polyvinylidene fluoride PVDF are dissolved in the solvent N-methylpyrrolidone at a mass ratio of 96:2:2 and mixed uniformly.
  • the positive electrode slurry is evenly coated on the current collector aluminum foil, the coating amount is 0.040g/cm 2 , and then it is dried at 120°C and then cold pressed, cut, slit, and punched. Afterwards, it was dried for 4 hours under vacuum at 85°C, and the tabs were welded to form a positive electrode sheet for a lithium-ion battery that satisfies the requirements.
  • the negative electrode active material, artificial graphite, conductive agent SP, thickener sodium carboxymethyl cellulose CMC, and binder styrene butadiene rubber SBR are dissolved in deionized water at a mass ratio of 95.5:1:1:2.5 to make a negative electrode slurry.
  • the negative electrode slurry was uniformly coated on the copper foil of the current collector, the coating amount was 0.020g/cm 2 , and then dried at 85 °C, cold pressing, cutting, slitting, punching, and then Dry for 4 hours under vacuum at 110°C, and weld the tabs to make the negative electrode sheet of the lithium ion battery that meets the requirements.
  • the electrolyte of the lithium ion battery uses LiPF 6 as the lithium salt, the concentration of the lithium salt is 1 mol/L, and the mixture of ethylene carbonate EC, ethyl methyl carbonate EMC, propylene carbonate PC, and diethyl carbonate DEC as the non-aqueous solvent.
  • the weight ratio of EC:EMC:PC:DEC is 20:40:16:4.
  • Add 1% by weight 1% by weight of vinyl sulfate DTD and 1% by weight of 1,3-propane sultone PS were uniformly stirred to obtain the lithium ion battery electrolyte of Example 1.
  • the above-prepared positive pole piece, negative pole piece and separator are laminated into soft-packed batteries, packaged in polymer, and baked in a vacuum at 85°C for 24 hours, injected with the above-prepared electrolyte, and after chemical conversion and other processes A lithium-ion battery with a capacity of 2000mAh was produced.
  • the prepared lithium-ion secondary battery was first charged and formed according to the following steps: charged with a constant current of 0.1C to 3.6V, charged with a constant current of 0.2C to 3.95V, sealed a second time, and then charged with a constant current of 0.2C to 4.35 V, after being left at room temperature for 24 hours, discharge to 3.0V at a constant current of 0.2C to obtain a 4.35V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite lithium ion secondary battery.
  • the lithium ion battery positive electrode, negative electrode, electrolyte and lithium ion battery were prepared by the same method as in Example 1, except that in step (3) the preparation of lithium ion battery electrolyte, the silicon cyano sultone used
  • the structure or content of the compounds are different, as shown in Table 1.
  • Example 2 Prepared by the following method:
  • the lithium ion battery positive electrode, negative electrode, electrolyte and lithium ion battery were prepared by the same method as in Example 3. The difference is that in step (3) the preparation of lithium ion battery electrolyte, the silicon cyano sultone used The content of the compound is different. The content of the silicon cyano sultone compound used in this example is 0.1% by weight, and the rest are the same as in Example 3, and the details are shown in Table 1.
  • Example 19 the structural formula of the silicocyano sultone used in Example 19 is the same as that of Example 3.
  • the lithium ion battery positive electrode, negative electrode, electrolyte and lithium ion battery were prepared by the same method as in Example 3. The difference is that in step (3) the preparation of lithium ion battery electrolyte, the silicon cyano sultone used The content of the compound is different. The content of the silicon cyano sultone compound used in this example is 10% by weight, and the rest are the same as in Example 3, and the details are shown in Table 1.
  • Example 20 the structural formula of the silicocyano sultone used in Example 20 is the same as that of Example 3.
  • the lithium ion battery positive electrode, negative electrode, electrolyte and lithium ion battery were prepared by the same method as in Example 3. The difference is that in step (3) the preparation of lithium ion battery electrolyte, the silicon cyano sultone used The structure of the compound is different, and the rest are the same as in Example 3, and the details are shown in Table 1.
  • Example 21 Prepared by the following method:
  • the lithium ion battery positive electrode, negative electrode, electrolyte and lithium ion secondary battery were prepared by the same method as in Example 3. The difference is that in step (3) the preparation of the lithium ion battery electrolyte, silicon cyanosulfonic acid was not added.
  • the ester compound, the rest are the same as in Example 3, and the details are shown in Table 1.
  • the lithium ion battery positive electrode, negative electrode, electrolyte and lithium ion secondary battery were prepared by the same method as in Example 3, except that in the preparation of the electrolyte in step (3), the example was replaced by LiODFB with an amount of 0.5% by weight.
  • the 1% by weight of the silicon cyano sultone compound in 3 is the same as in Example 3, and the details are shown in Table 1.
  • Example 1-21 and Comparative Example 1-2 are shown in Table 1
  • the first cycle coulombic efficiency of the lithium ion secondary battery prepared from the lithium ion battery electrolyte of the present invention is 89.00-91.15%, and the capacity retention rate of 1C cycle 400 weeks at 45°C is 92.02-94.85%.
  • the capacity retention rate after being left for 30 days at 60°C is 92.00-94.76%, the capacity recovery rate is 96.20-98.98%, and the thickness expansion rate is 10.30-14.89%; while the coulombic efficiency of the lithium ion secondary battery of Comparative Example 1-2 is 85.15-88.25%, the capacity retention rate of 1C cycle 400 weeks at 45°C is 86.80-88.20%, the capacity retention rate of storage at 60°C for 30 days is 88.31-90.13%, the capacity recovery rate is 91.62-93.33%, and the thickness expansion rate is 19.40-21.80%.
  • the lithium ion secondary battery prepared by using the lithium ion battery electrolyte of the present invention has excellent cycle performance and storage performance under high temperature and high pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及锂离子电池技术领域,公开了一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池,所述硅氰基磺酸内酯化合物具有式(I)所示的结构。该电解液中含有有机溶剂、锂盐以及添加剂,所述添加剂中含有上述所述的硅氰基磺酸内酯化合物和选自氟代碳酸乙烯酯、硫酸乙烯酯、亚硫酸乙烯酯、硫酸丙烯酯、亚硫酸丙烯酯、1,3-丙磺酸内酯、己二腈、丁二腈、碳酸亚乙烯酯和碳酸乙烯亚乙酯中的至少一种物质。采用本发明的锂离子电解液制备的锂离子二次电池在高温和高压下具有优异的循环性能和存储性能。

Description

一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池 技术领域
本发明涉及锂离子电池技术领域,具体涉及一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池。
背景技术
锂离子电池由于其具有电压高、体积小、质量轻、比能量高、无记忆效应、无污染、自放电小、寿命长等优点,在手机、笔记本、数码相机等便携式电子产品中得到广泛应用。
随着经济发展和科技进步,环境和能源问题已经成为全球关注的重点。化石能源的衰竭和新能源技术的发展,锂离子电池应用于汽车动力上的技术迅速发展,这就对锂离子电池的性能提出了更高的要求。为了满足电动汽车长时间工作、高续航里程、高低温环境使用、快速充电和长使用寿命的要求,需要锂离子电池具有更高的放电容量、能量密度、优异的高低温性能和存储性能。
具有高能量密度的电池是当前研究的热点,提高锂离子电池的电压可以提高电池的能量密度,然而,随着锂离子电池电压的提高,通常会提高正极材料的电极电位,这就可能会导致电解液在正极发生氧化分解,严重影响电池的循环寿命和存储寿命。
此外,高温会造成电池内部电极材料的活性增强,副反应增多,电池的循环性能下降。在现有技术中,研究者们采用一系列方法对材料表界面进行改性,通过改善电极表面膜的组成和结构等,提高电极材料在高电压以及高温下的循环性能。这些改性手段包括对材料的改性包覆、机械研磨、表面成膜等,但这些方法工艺复杂,重复性低,成本较高。
目前,采用合适的添加剂改善电解液的组分操作简单且作用明显,比较 有利于工业化应用。
但常用添加剂如PS、VC等具有较高的电化学阻抗,无法兼顾锂离子电池在高温和高压下的循环性能和存储性能。
因此,需要开发一种兼顾高电压和高温条件下电池性能的锂离子电池电解液。
发明内容
本发明的目的是为了克服现有技术中的锂离子电池存在的在高压和高温下循环性能和存储性能差的缺陷。
为了实现上述目的,第一方面,本发明提供了一种硅氰基磺酸内酯化合物,其具有式(I)所示的结构:
Figure PCTCN2020113076-appb-000001
在式(I)中,R 1和R 2各自独立地选自-H、C 1-6的烷基、C 1-6的烷氧基、由1-10个卤素取代的C 1-6的卤代烷基、由1-10个卤素取代的C 1-6的卤代烷氧基;
R 3和R 4各自独立地选自-H、C 1-4的烷基、C 1-4的烷氧基,或者R 3和R 4一起形成环内双键;
n选自1-5的正整数;
m为0或1。
第二方面,本发明提供了一种锂离子电池电解液,该电解液中含有第一方面所述的硅氰基磺酸内酯化合物;优选的,所述电解液还含有有机溶剂、锂盐以及选自氟代碳酸乙烯酯、硫酸乙烯酯、亚硫酸乙烯酯、硫酸丙烯酯、 亚硫酸丙烯酯、1,3-丙磺酸内酯、己二腈、丁二腈、碳酸亚乙烯酯和碳酸乙烯亚乙酯中的至少一种物质。
第三方面,本发明提供了一种锂离子二次电池,该锂离子二次电池包括正极片、负极片、隔膜、电池壳体以及本发明第二方面所述的电解液。
采用本发明的电解液制备的锂离子二次电池在高温和高压下具有优异的循环性能和存储性能,电池在45℃环境中,1C循环400周条件下容量保持率为92.02-94.85%,在60℃环境中,存储30天,容量保持率为92.00-94.76%,容量恢复率为96.20-98.98%。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
如前所述,本发明的第一方面提供了一种硅氰基磺酸内酯化合物,其具有式(I)所示的结构:
Figure PCTCN2020113076-appb-000002
在式(I)中,R 1和R 2各自独立地选自-H、C 1-6的烷基、C 1-6的烷氧基、由1-10个卤素取代的C 1-6的卤代烷基、由1-10个卤素取代的C 1-6的卤代烷氧基;
R 3和R 4各自独立地选自-H、C 1-4的烷基、C 1-4的烷氧基,或者R 3和R 4一起形成环内双键;
n选自1-5的正整数;
m为0或1。
本发明中,C 1-6的烷基包括但不限于甲基、乙基、正丙基、异丙基、环丙基、正丁基、仲丁基、异丁基、叔丁基、环丁基、正戊基、异戊基、新戊基、环戊基、正己基、异己基、环己基等。
本发明中,C 1-6的烷氧基包括但不限于甲氧基、乙氧基、正丙氧基、异丙氧基、环丙氧基、正丁氧基、仲丁氧基、异丁氧基、叔丁氧基、环丁氧基、正戊氧基、异戊氧基、新戊氧基、环戊氧基、正己氧基、异己氧基、环己氧基等。例如C 1-6的烷氧基为-OCH 3、-OCH 2CH 3、-OCH 2CH 2CH 3、-OCH 2CH 2CH 2CH 3、-OCH 2CH 2CH 2CH 2CH 3等。
本发明中,由1-10个卤素取代的C 1-6的卤代烷基是指C 1-6的烷基中的1-10个氢原子被卤素原子取代而形成的基团。所述卤素原子为氟原子、氯原子、溴原子或碘原子。例如由1-10个卤素取代的C 1-6的卤代烷基为-CF 3、-CH 2CF 3、-CH 2CF 2H、-CF 2CF 3、-CF 2CH 2CF 2H、-CH 2CF 2CF 2H、-CH 2CH 2CH 2Cl、-CH 2CH 2CH 2Br等。
本发明中,由1-10个卤素取代的C 1-6的卤代烷氧基是指C 1-6的烷氧基中的1-10个氢原子被卤素原子取代而形成的基团,所述卤素原子为氟原子、氯原子、溴原子或碘原子。例如由1-10个卤素取代的C 1-6的卤代烷氧基为-OCH 2F、-OCF 3、-OCH 2CF 3、-OCH 2CH 2CF 3、-OCH 2CH 2CH 2Cl、-OCH 2CH 2CH 2Br等。
本发明中,C 1-4的烷基包括但不限于甲基、乙基、正丙基、异丙基、环丙基、正丁基、仲丁基、异丁基、叔丁基、环丁基。
本发明中,C 1-4的烷氧基包括但不限于甲氧基、乙氧基、正丙氧基、异 丙氧基、环丙氧基、正丁氧基、仲丁氧基、异丁氧基、叔丁氧基、环丁氧基。
本发明中,n例如可以为1、2、3、4或5。
优选的,所述硅氰基磺酸内酯化合物通过下述方法制备:
将磺酸内酯加入到碳酸二甲酯溶剂中,然后加入含有氰基的取代硅烷中进行反应得到所述的硅氰基磺酸内酯化合物。
在本发明优选的一种具体实施方式中,其中,所述反应为在100℃下进行回流反应,优选反应4小时。
优选的,所述含有氰基的取代硅烷例如可以为1-乙氰基-1-氯硅烷、1-乙氰基-1-甲基-1-氯硅烷、1-乙氰基-1,1-二甲基-1-氯硅烷、1-丙氰基-1-甲基-1-氯硅烷、1-丙氰基-1,1-二甲基-1-氯硅烷、1-乙氰基-1-三氟甲基-1-氯硅烷、1-乙氰基-1,1-二三氟甲基-1-氯硅烷、1-乙氰基-1-甲基-1-正戊基-1-氯硅烷等。
进一步优选地,所述硅氰基磺酸内酯化合物为以下化合物中的至少一种:
Figure PCTCN2020113076-appb-000003
且在所述式(I1)、所述式(I2)和所述式(I3)中,R 1和R 2各自独立地选自-H、C 1-6的烷基、C 1-6的烷氧基、由1-10个卤素取代的C 1-6的卤代烷基、由1-10个卤素取代的C 1-6的卤代烷氧基,n选自1-5的正整数。
根据一种更优选的具体实施方式,在所述式(I1)、所述式(I2)和所述式(I3)中,R 1选自-H、C 1-4的烷基、C 1-4的烷氧基、由1-5个卤素取代的C 1-4的卤代烷基、由1-5个卤素取代的C 1-4的卤代烷氧基,R 2选自-H、C 1-6 的烷基、C 1-6的烷氧基、由1-10个卤素取代的C 1-6的卤代烷基、由1-10个卤素取代的C 1-6的卤代烷氧基,n为1、2或3。
本发明的第二方面提供了一种锂离子电池电解液,该电解液中含有第一方面所述的硅氰基磺酸内酯化合物;优选的,所述电解液还含有有机溶剂、锂盐以及选自氟代碳酸乙烯酯、硫酸乙烯酯、亚硫酸乙烯酯、硫酸丙烯酯、亚硫酸丙烯酯、1,3-丙磺酸内酯、己二腈、丁二腈、碳酸亚乙烯酯和碳酸乙烯亚乙酯中的至少一种物质。
优选地,以电解液的总重量为基准,所述硅氰基磺酸内酯化合物的含量为0.1-10重量%,进一步优选为0.5-5重量%,本发明的发明人发现,限定所述硅氰基磺酸内酯化合物的含量为0.5-5重量%时,本发明的锂离子电池电解液能够进一步改善采用该电解液的锂离子电池在高温和高压下的循环性能和存储性能。
以电解液的总重量为基准,所述硅氰基磺酸内酯化合物的含量例如可以为0.1重量%、0.5重量%、1重量%、1.5重量%、2重量%、2.5重量%、3重量%、3.5重量%、4重量%、4.5重量%、5重量%、5.5重量%、6重量%、6.5重量%、7重量%、8.5重量%、9重量%、9.5重量%、10重量%等。
优选地,所述锂盐选自LiPF 6、LiClO 4、LiBOB、LiBF 4、LiPF 2O 2、LiODFB、LiTFSI、LiFSI和LiC(CF 3SO 2) 3中的至少一种。
优选地,所述锂盐的浓度为0.5-2mol/L,进一步优选为0.8-1.5mol/L。
例如,所述锂盐的浓度可以为0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1.0mol/L、1.1mol/L、1.2mol/L、1.3mol/L、1.4mol/L、1.5mol/L、1.6mol/L、1.7mol/L、1.8mol/L、1.9mol/L、2mol/L等。
优选地,所述有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸丙酯、丙酸乙酯、丙酸丁酯中的至少一种。
本发明中,所述有机溶剂进一步优选为重量比为30:50:16:4的碳酸乙烯酯、碳酸甲乙酯、碳酸丙烯酯和碳酸二乙酯。
本发明中,所述电解液的游离酸小于20ppm,水分小于15ppm。
例如,所述电解液的游离酸可以为19ppm、18ppm、17ppm、16ppm、15ppm、14ppm、13ppm、12ppm、11ppm、10ppm、9ppm、8ppm、7ppm、6ppm、5ppm、4ppm、3ppm、2ppm、1ppm、0等。
水分可以为14ppm、13ppm、12ppm、11ppm、10ppm、9ppm、8ppm、7ppm、6ppm、5ppm、4ppm、3ppm、2ppm、1ppm、0等。
如前所述,本发明的第三方面提供了一种锂离子二次电池,该锂离子二次电池包括正极片、负极片、隔膜、电池壳体以及本发明第二方面所述的电解液。
所述电解液的组成和制备已在前文中进行了详细的说明,此处不再赘述。
本发明中,所述正极片优选包括正极集流体以及用于附着在所述正极集流体上的正极活性物质、正极粘结剂和正极导电剂。
优选地,本发明中,所述正极活性物质选自LiCoO 2、LiMn 2O 4、LiNi xMn 2-xO 4、LiNi xCo yMn 1-x-yO 2、LiNi xCo yAl 1-x-yO 2中的至少一种。
在LiNi xMn 2-xO 4中,x大于0且小于2。
在LiNi xCo yMn 1-x-yO 2中,x大于0且小于1,y大于0且小于1。
在LiNi xCo yAl 1-x-yO 2中,x大于0且小于1,y大于0且小于1。
优选地,以正极干料总重量为基准,所述正极活性物质的含量为90-98重量%。
例如,以正极干料总重量为基准,所述正极活性物质的含量可以为90重量%、91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%等。
本发明中,所述正极粘结剂包括但不限于聚四氟乙烯、聚偏二氟乙烯、丁苯橡胶中的至少一种。
优选地,以正极干料总重量为基准,所述正极粘结剂的含量为0.01-8重量%。
例如,以正极干料总重量为基准,所述正极粘结剂的含量可以为0.01重量%、0.05重量%、0.1重量%、0.5重量%、1重量%、1.5重量%、2重量%、2.5重量%、3重量%、3.5重量%、4重量%、4.5重量%、5重量%、5.5重量%、6重量%、6.5重量%、7重量%、7.5重量%、8重量%等。
本发明中,所述正极导电剂包括但不限于SP、乙炔黑、KS-6、碳纳米管中的至少一种。
优选地,以正极干料总重量为基准,所述正极导电剂的含量为1-8重量%。
例如,以正极干料总重量为基准,所述正极导电剂的含量可以为1重量%、1.5重量%、2重量%、2.5重量%、3重量%、3.5重量%、4重量%、4.5重量%、5重量%、5.5重量%、6重量%、6.5重量%、7重量%、7.5重量%、8重量%等。
优选地,本发明中,所述正极的集流体为铝箔。
优选地,本发明中,所述正极片通过将活性物质、导电剂、粘结剂分散在分散剂中制成正极浆料,然后将正极浆料涂覆在集流体上并进行干燥得到正极片,接着将干燥后的正极片经过辊压、分条、冲片后真空高温干燥而得到。
本发明中配制正极浆料采用的分散剂包括但不限于N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、二甲基亚砜、四氢呋喃、水和醇类分散剂中的至少一种。
优选地,在所述正极浆料中,所述正极分散剂的用量以使得正极浆料中 活性物质的固含量为40-90重量%,更优选为50-85重量%为准。由此能够使得正极浆料分散更加均匀,具有更好涂覆性能。
例如,在所述正极浆料中,所述正极分散剂的用量以使得正极浆料中活性物质的固含量可以为40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量%等。
所述正极片的干燥条件根据采用的分散剂的种类进行选择,以不影响极片性能的前提下能将正极浆料中的分散剂脱除为准。
本发明中,所述负极片优选包括负极集流体以及用于附着在所述负极集流体上的负极活性物质、负极粘结剂、负极导电剂和增稠剂。
优选地,本发明中,所述负极活性物质选自石墨(人造石墨和/或天然石墨)、中间相碳微球、软碳、硬碳、钛酸锂、硅、硅碳合金中的至少一种。
优选地,以负极干料总重量为基准,所述负极活性物质的含量为90-98重量%。
例如,以负极干料总重量为基准,所述负极活性物质的含量可以为90重量%、91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%等。
本发明中,所述负极粘结剂包括但不限于丁苯橡胶、聚乙烯醇、聚四氟乙烯中的至少一种。
优选地,以负极干料总重量为基准,所述负极粘结剂的含量为0.1-8重量%。
例如,以负极干料总重量为基准,所述负极粘结剂的含量可以为0.1重量%、0.5重量%、1重量%、1.5重量%、2重量%、2.5重量%、3重量%、3.5重量%、4重量%、4.5重量%、5重量%、5.5重量%、6重量%、6.5重量%、7重量%、7.5重量%、8重量%等。
本发明中,所述负极导电剂包括但不限于Super P、乙炔黑、KS-6、碳纳米管中的至少一种。
优选地,以负极干料总重量为基准,所述负极导电剂的含量为0.1-8重量%。
例如,以负极干料总重量为基准,所述负极导电剂的含量可以为0.1重量%、0.5重量%、1重量%、1.5重量%、2重量%、2.5重量%、3重量%、3.5重量%、4重量%、4.5重量%、5重量%、5.5重量%、6重量%、6.5重量%、7重量%、7.5重量%、8重量%等。
优选地,本发明中,所述增稠剂为羧甲基纤维素钠,以负极干料总重量为基准,所述增稠剂的含量为0.1-5重量%。
例如,以负极干料总重量为基准,所述增稠剂的含量可以为0.1重量%、0.5重量%、1重量%、1.5重量%、2重量%、2.5重量%、3重量%、3.5重量%、4重量%、4.5重量%、5重量%等。
本发明中,所述负极的集流体优选为铜箔。
优选地,本发明中,所述负极是通过将活性物质、导电剂、粘结剂、增稠剂分散在分散剂中制成负极浆料,然后将负极浆料涂覆在集流体上并进行干燥得到负极片,接着将干燥后的负极片经过辊压、分条、冲片后真空高温干燥而得到。
本发明中配制负极浆料采用的分散剂包括但不限于N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、二甲基亚砜、四氢呋喃、水和醇类分散剂中的至少一种。
优选地,在所述负极浆料中,所述负极分散剂的用量以使得负极浆料中活性物质的固含量为40-90重量%,更优选为50-85重量%为准。由此,使得负极浆料分散更加均匀,具有更好的涂覆性能。
例如,在所述负极浆料中,所述负极分散剂的用量以使得负极浆料中活 性物质的固含量可以为40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量%等。
所述负极片的干燥条件根据采用的分散剂的种类进行选择,以不影响极片性能的前提下能将负极浆料中的分散剂脱除为准。
本发明中,所述隔膜设置于正极和负极之间,所述隔膜的材质包括但不限于聚丙烯、聚乙烯或聚乙烯、聚丙烯复合隔膜中的至少一种。
本发明中,所述锂离子二次电池包括但不限于采用以下步骤制备:
S1将上述锂离子电池正极片、负极片和隔膜以叠片方式制成电芯;
S2将S1制备的电芯进行真空烘烤后,置于电池壳体中,注入本发明的电解液,然后将电池壳体密封。
以下将通过实例对本发明进行详细描述。以下实例中,电池性能通过以下方法测得:
库伦效率(%)=(放电容量/充电容量)×100%
(1)锂离子电池高温循环性能测试
在45℃下,将锂离子电池以1C恒流充电到4.35V,然后以4.35V恒压充电至0.05C,然后用1C恒流放电至2.75V,作为一个循环,此次的放电容量为首次循环的放电容量,以首次循环放电容量为100%,将锂离子电池按照上述方法进行400次循环充电/放电测试,检测得到第400次循环的放电容量。
45℃循环400次后容量保持率(%)=第400次循环放电容量/首次循环放电容量×100%
(2)锂离子电池高温存储性能测试
室温条件下,将锂离子电池以1C恒流充电至4.35V,再以4.35V恒压充电至0.05C,满充后,采用排水法测试锂离子电池的体积,并记为V0。然 后将电池放在60℃下存储30天,存储30天的体积记为V1。
厚度膨胀率(%)=(V1/V0)×100%-1
室温条件下,将锂离子电池以1C恒流充电至4.35V,然后以4.35V恒压充电至0.05C,记录充电容量C0,接着以1C恒流放电至2.75V,记录放电容量D0,按照上述充电方式对电池满充后置于60℃下存储30天,存储结束后,以1C恒流放电至2.75V,记录放电容量D1,再以1C恒流充电至4.35V,然后以4.35V恒压充电至0.05C,记录充电容量C1。
容量保持率(%)=(D1/D0)×100%
容量恢复率(%)=(C1/C0)×100%
实施例1
(1)锂离子电池正极片的制备
将正极活性材料镍钴锰锂LiNi 0.5Co 0.2Mn 0.3O 2、导电剂SP、粘结剂聚偏二氟乙烯PVDF按质量比96:2:2溶于溶剂N-甲基吡咯烷酮中混合均匀制成正极浆料,之后将正极浆料均匀涂布在集流体铝箔上,涂布量为0.040g/cm 2,随后在120℃下烘干后进行冷压、裁片、分条、冲片,之后在85℃真空条件下干燥4h,焊接极耳,制成满足要求的锂离子电池的正极片。
(2)锂离子电池负极片的制备
将负极活性材料人造石墨、导电剂SP,增稠剂羧甲基纤维素钠CMC、粘结剂丁苯橡胶SBR按质量比95.5:1:1:2.5溶于去离子水中混合均匀制成负极浆料,之后将负极浆料均匀涂布在集流体铜箔上,涂布量为0.020g/cm 2,随后在85℃下烘干后进行冷压、裁片、分条、冲片,之后在110℃真空条件下干燥4h,焊接极耳,制成满足要求的锂离子电池的负极片。
(3)锂离子电池电解液的制备
锂离子电池的电解液以LiPF 6为锂盐,锂盐浓度为1mol/L,以碳酸乙烯 酯EC、碳酸甲乙酯EMC、碳酸丙烯酯PC、碳酸二乙酯DEC的混合物为非水溶剂,其中EC:EMC:PC:DEC的重量比为20:40:16:4。加入1重量%的
Figure PCTCN2020113076-appb-000004
1重量%的硫酸乙烯酯DTD和1重量%的1,3-丙磺酸内酯PS,搅拌均匀后得到实施例1的锂离子电池电解液。
其中,
Figure PCTCN2020113076-appb-000005
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.6g(0.12mol)1,3-丙磺酸内酯液体,然后向烧瓶中缓慢滴加10.55g(0.1mol)1-乙氰基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.15g(收率为53%)。
其反应方程式如下:
Figure PCTCN2020113076-appb-000006
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=4.28(2H),3.63(2H),2.95(1H),2.38(2H),1.87(2H)。
(4)锂离子电池的制备
将上述制备的正极极片、负极极片和隔膜以叠片方式制成软包电芯,采用聚合物包装,在85℃下真空烘烤24h,注入上述制备的电解液,经化成等工艺后制成容量为2000mAh的锂离子电池。
按以下步骤对制备的锂离子二次电池进行首次充电化成:用0.1C的恒定电流充电至3.6V,0.2C恒定电流充电至3.95V,二次真空封口,然后以0.2C恒定电流充电至4.35V,常温搁置24h后,以0.2C恒定电流放电至3.0V, 得到一种4.35V的LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨锂离子二次电池。
实施例2-18
采用与实施例1相同的方法制备锂离子电池正极、负极、电解液和锂离子电池,不同的是在步骤(3)锂离子电池电解液的制备中,所采用的硅氰基磺酸内酯化合物的结构或含量不同,具体如表1中所示。
其中,实施例2中的
Figure PCTCN2020113076-appb-000007
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.6g(0.12mol)1,3-丙磺酸内酯液体,然后向烧瓶中缓慢滴加11.95g(0.1mol)1-乙氰基-1-甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.46g(收率为51%)。
其反应方程式如下:
Figure PCTCN2020113076-appb-000008
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=4.27(2H),3.72(1H),2.95(1H),2.38(2H),1.87(2H),0.10(3H)。
实施例3中的
Figure PCTCN2020113076-appb-000009
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.6g(0.12mol)1,3-丙磺酸内酯液体,然后向烧瓶中缓慢滴加12.95g(0.1mol)1-乙氰基-1,1-二甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶 剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.84g(收率为49.5%)。
其反应方程式如下:
Figure PCTCN2020113076-appb-000010
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=4.27(2H),2.95(1H),2.38(2H),1.84(2H),0.25(6H)。
实施例4中的
Figure PCTCN2020113076-appb-000011
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.6g(0.12mol)1,3-丙磺酸内酯液体,然后向烧瓶中缓慢滴加12.95g(0.1mol)1-丙氰基-1-甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯11.21g(收率为51.2%)。
其反应方程式如下:
Figure PCTCN2020113076-appb-000012
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=4.27(2H),3.72(1H),2.95(1H),2.38(2H),2.21(2H),0.99(2H),0.09(3H)。
实施例5中的
Figure PCTCN2020113076-appb-000013
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.6g(0.12mol)1,3-丙磺酸内酯液体,然后向烧瓶中缓慢滴加14.15g(0.1mol)1-丙氰基-1,1-二甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.79g(收率为46.3%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000014
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=4.27(2H),2.95(1H),2.38(2H),2.21(2H),0.99(2H),0.25(6H)
实施例6中的
Figure PCTCN2020113076-appb-000015
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.6g(0.12mol)1,3-丙磺酸内酯液体,然后向烧瓶中缓慢滴加17.05g(0.1mol)1-乙氰基-1-三氟甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.80g(收率为41.7%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000016
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=4.27(2H),3.79(1H),2.97(1H),2.38(2H),2.22(2H)。
实施例7中的
Figure PCTCN2020113076-appb-000017
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.6g(0.12mol)1,3-丙磺酸内酯液体,然后向烧瓶中缓慢滴加23.55g(0.1mol)1-乙氰基-1,1-二三氟甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯11.05g(收率为34.1%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000018
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=4.27(2H),2.99(1H),2.38(2H),2.25(2H)。
实施例8中的
Figure PCTCN2020113076-appb-000019
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.36g(0.12mol)1, 3-丙烯基磺酸内酯液体,然后向烧瓶中缓慢滴加10.55g(0.1mol)1-乙氰基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯8.47g(收率为44.8%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000020
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.63(2H),3.42(1H),1.84(2H)。
实施例9中的
Figure PCTCN2020113076-appb-000021
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.36g(0.12mol)1,3-丙烯基磺酸内酯液体,然后向烧瓶中缓慢滴加11.95g(0.1mol)1-乙氰基-1-甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.23g(收率为50.6%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000022
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.72(1H),3.42(1H),1.86(2H),0.10(3H)。
实施例10中的
Figure PCTCN2020113076-appb-000023
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.36g(0.12mol)1,3-丙烯基磺酸内酯液体,然后向烧瓶中缓慢滴加17.05g(0.1mol)1-乙氰基-1-三氟甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯8.89g(收率为43.8%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000024
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.91(1H),3.45(1H),1.86(2H)。
实施例11中的
Figure PCTCN2020113076-appb-000025
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.36g(0.12mol)1,3-丙烯基磺酸内酯液体,然后向烧瓶中缓慢滴加12.95g(0.1mol)1-乙氰基-1,1-二甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯8.59g(收率为39.6%)。
其反应方程式如下:
Figure PCTCN2020113076-appb-000026
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.72(1H),3.42(1H),1.86(2H),0.22(6H)
实施例12中的
Figure PCTCN2020113076-appb-000027
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.36g(0.12mol)1,3-丙烯基磺酸内酯液体,然后向烧瓶中缓慢滴加23.55g(0.1mol)1-乙氰基-1,1-二三氟甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.69g(收率为32.9%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000028
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.49(1H),1.89(2H)。
实施例13中的
Figure PCTCN2020113076-appb-000029
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.36g(0.12mol)1,3-丙烯基磺酸内酯液体,然后向烧瓶中缓慢滴加12.95g(0.1mol)1-丙氰基-1-甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯9.03g(收率为41.6%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000030
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.72(1H),3.42(1H),2.38(2H),0.99(2H),0.10(3H)。
实施例14中的
Figure PCTCN2020113076-appb-000031
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.36g(0.12mol)1,3-丙烯基磺酸内酯液体,然后向烧瓶中缓慢滴加14.15g(0.1mol)1-丙氰基-1,2-二甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯7.90g(收率为34.2%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000032
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.42(1H),2.38(2H),0.99(2H),0.22(6H)。
实施例15中的
Figure PCTCN2020113076-appb-000033
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入16.04g(0.12mol)1,4-丁烯基磺酸内酯液体,然后向烧瓶中缓慢滴加10.55g(0.1mol)1-乙氰基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.58g(收率为52.1%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000034
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.68(2H),3.05(2H),1.88(1H),1.75(2H)。
实施例16中的
Figure PCTCN2020113076-appb-000035
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入16.04g(0.12mol)1,4-丁烯基磺酸内酯液体,然后向烧瓶中缓慢滴加11.95g(0.1mol)1-乙氰基 -1-甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.76g(收率为49.6%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000036
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.65(1H),3.05(2H),1.88(1H),1.75(2H),0.09(3H)
实施例17中的
Figure PCTCN2020113076-appb-000037
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入16.04g(0.12mol)1,4-丁烯基磺酸内酯液体,然后向烧瓶中缓慢滴加12.95g(0.1mol)1-乙氰基-1,1-二甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯10.19g(收率为44.1%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000038
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.05(2H),1.88(1H),1.75(2H),0.19(6H)。
实施例18中的
Figure PCTCN2020113076-appb-000039
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入16.04g(0.12mol)1,4-丁烯基磺酸内酯液体,然后向烧瓶中缓慢滴加17.05g(0.1mol)1-乙氰基-1-三氟甲基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯11.60g(收率为42.8%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000040
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.42(1H),5.71(1H),3.73(1H),3.05(2H),1.91(1H),1.79(2H)。
实施例19
采用与实施例3相同的方法制备锂离子电池正极、负极、电解液和锂离子电池,不同的是在步骤(3)锂离子电池电解液的制备中,所采用的硅氰基磺酸内酯化合物的含量不同,本实施例中采用的硅氰基磺酸内酯化合物的含量为0.1重量%,其余均与实施例3相同,具体如表1中所示。
其中,实施例19中所使用的硅氰基磺酸内酯的结构式与实施例3的结构式相同。
实施例20
采用与实施例3相同的方法制备锂离子电池正极、负极、电解液和锂离子电池,不同的是在步骤(3)锂离子电池电解液的制备中,所采用的硅氰基磺酸内酯化合物的含量不同,本实施例中采用的硅氰基磺酸内酯化合物的含量为10重量%,其余均与实施例3相同,具体如表1中所示。
其中,实施例20中的所使用的硅氰基磺酸内酯的结构式与实施例3的结构式相同。
实施例21
采用与实施例3相同的方法制备锂离子电池正极、负极、电解液和锂离子电池,不同的是在步骤(3)锂离子电池电解液的制备中,所采用的硅氰基磺酸内酯化合物的结构不同,其余均与实施例3相同,具体如表1中所示。
其中,实施例21中的
Figure PCTCN2020113076-appb-000041
通过下述方法制备:
向烧瓶中加入100g碳酸二甲酯作为溶剂,再加入14.6g(0.12mol)1,3-丙磺酸内酯液体,然后向烧瓶中缓慢滴加18.95g(0.1mol)1-乙氰基-1-甲基-1-正戊基-1-氯硅烷,然后在100℃回流反应4小时,反应结束后蒸馏除去溶剂及未反应的原料,再重结晶得到目标产物硅氰基磺酸内酯8.50g(收率为30.9%)
其反应方程式如下:
Figure PCTCN2020113076-appb-000042
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=4.32(2H),2.94(1H),2.48(2H),1.74(2H),1.29(2H).1.28(2H),1.23(2H),0.88(3H),0.60(2H),0.21(3H)。
对比例1
采用与实施例3相同的方法制备锂离子电池正极、负极、电解液和锂离子二次电池,不同的是在步骤(3)锂离子电池电解液的制备中,不加入硅氰基磺酸内酯化合物,其余均与实施例3相同,具体如表1中所示。
对比例2
采用与实施例3相同的方法制备锂离子电池正极、负极、电解液和锂离子二次电池,不同的是在步骤(3)电解液的制备中,用用量为0.5重量%的LiODFB替换实施例3中的1重量%的硅氰基磺酸内酯化合物,其余均与实施例3相同,具体如表1中所示。
实施例1-21和对比例1-2的具体参数,如表1所示
表1
Figure PCTCN2020113076-appb-000043
Figure PCTCN2020113076-appb-000044
Figure PCTCN2020113076-appb-000045
测试上述制备得到的锂离子二次电池的首次循环库伦效率、高温循环性能和高温存储性能,结果见表2。
表2
Figure PCTCN2020113076-appb-000046
Figure PCTCN2020113076-appb-000047
通过上述结果可以看出,本发明的锂离子电池电解液制备的锂离子二次电池的首次循环库伦效率为89.00-91.15%,45℃下1C循环400周的容量保持率为92.02-94.85%,60℃下搁置30天的容量保持率为92.00-94.76%,容量恢复率为96.20-98.98%,厚度膨胀率为10.30-14.89%;而对比例1-2的锂离子二次电池的库伦效率为85.15-88.25%,45℃下1C循环400周的容量保持率为86.80-88.20%,60℃下搁置30天的容量保持率为88.31-90.13%,容量恢复率91.62-93.33%,厚度膨胀率为19.40-21.80%。
由此可知,采用本发明的锂离子电池电解液制备的锂离子二次电池在高温和高压下具有优异的循环性能和存储性能。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (11)

  1. 一种硅氰基磺酸内酯化合物,其具有式(I)所示的结构:
    Figure PCTCN2020113076-appb-100001
    在式(I)中,R 1和R 2各自独立地选自-H、C 1-6的烷基、C 1-6的烷氧基、由1-10个卤素取代的C 1-6的卤代烷基、由1-10个卤素取代的C 1-6的卤代烷氧基;
    R 3和R 4各自独立地选自-H、C 1-4的烷基、C 1-4的烷氧基,或者R 3和R 4一起形成环内双键;
    n选自1-5的正整数;
    m为0或1。
  2. 根据权利要求1所述的化合物,其中,所述硅氰基磺酸内酯化合物为以下化合物中的至少一种:
    Figure PCTCN2020113076-appb-100002
    在所述式(I1)、所述式(I2)和所述式(I3)中,R 1和R 2各自独立地选自-H、C 1-6的烷基、C 1-6的烷氧基、由1-10个卤素取代的C 1-6的卤代烷基、由1-10个卤素取代的C 1-6的卤代烷氧基,n选自1-5的正整数;
    优选地,在所述式(I1)、所述式(I2)和所述式(I3)中,R 1选自-H、 C 1-4的烷基、C 1-4的烷氧基、由1-5个卤素取代的C 1-4的卤代烷基、由1-5个卤素取代的C 1-4的卤代烷氧基;R 2选自-H、C 1-6的烷基、C 1-6的烷氧基、由1-10个卤素取代的C 1-6的卤代烷基、由1-10个卤素取代的C 1-6的卤代烷氧基,n为1、2或3。
  3. 一种锂离子电池电解液,其特征在于,该电解液中含有权利要求1或2所述的硅氰基磺酸内酯化合物。
  4. 根据权利要求3所述的电解液,其特征在于,该电解液中还含有有机溶剂、锂盐以及选自氟代碳酸乙烯酯、硫酸乙烯酯、亚硫酸乙烯酯、硫酸丙烯酯、亚硫酸丙烯酯、1,3-丙磺酸内酯、己二腈、丁二腈、碳酸亚乙烯酯和碳酸乙烯亚乙酯中的至少一种物质。
  5. 根据权利要求3或4所述的电解液,其中,以电解液的总重量为基准,所述硅氰基磺酸内酯化合物的含量为0.1-10重量%。
  6. 根据权利要求5所述的电解液,其中,以电解液的总重量为基准,所述硅氰基磺酸内酯化合物的含量为0.5-5重量%。
  7. 根据权利要求4所述的电解液,其中,所述锂盐选自LiPF 6、LiClO 4、LiBOB、LiBF 4、LiPF 2O 2、LiODFB、LiTFSI、LiFSI和LiC(CF 3SO 2) 3中的至少一种。
  8. 根据权利要求7所述的电解液,其中,所述电解液中锂盐的浓度为0.5-2mol/L。
  9. 根据权利要求8所述的电解液,其中,所述电解液中锂盐的浓度为0.8-1.5mol/L。
  10. 根据权利要求4所述的电解液,其中,所述有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸丙酯、丙酸乙酯、丙酸丁酯中的至少一种。
  11. 一种锂离子二次电池,其特征在于,该锂离子二次电池包括正极片、负极片、隔膜、电池壳体以及权利要求3-10中任意一项所述的电解液。
PCT/CN2020/113076 2019-09-02 2020-09-02 一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池 WO2021043175A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080061972.5A CN114342143B (zh) 2019-09-02 2020-09-02 一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910822959.6 2019-09-02
CN201910822959.6A CN110676511A (zh) 2019-09-02 2019-09-02 一种锂离子电池电解液和锂离子二次电池

Publications (1)

Publication Number Publication Date
WO2021043175A1 true WO2021043175A1 (zh) 2021-03-11

Family

ID=69076202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113076 WO2021043175A1 (zh) 2019-09-02 2020-09-02 一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池

Country Status (2)

Country Link
CN (2) CN110676511A (zh)
WO (1) WO2021043175A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142086A (zh) * 2021-11-16 2022-03-04 合肥国轩高科动力能源有限公司 一种耐低温锂离子电池电解液及锂离子电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676511A (zh) * 2019-09-02 2020-01-10 孚能科技(赣州)股份有限公司 一种锂离子电池电解液和锂离子二次电池
KR102467447B1 (ko) * 2020-09-03 2022-11-15 주식회사 테크늄 리튬이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지
WO2022203402A1 (ko) * 2021-03-23 2022-09-29 주식회사 엘지화학 화합물, 이를 포함하는 비수 전해액 및 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428701A (zh) * 2015-12-21 2016-03-23 东莞新能源科技有限公司 一种电解液以及包括该电解液的锂离子电池
CN105481825A (zh) * 2015-12-31 2016-04-13 石家庄圣泰化工有限公司 1,3-丙烯磺酸内酯衍生物的制备方法
CN105845982A (zh) * 2016-03-31 2016-08-10 宁德时代新能源科技股份有限公司 电解液以及包括该电解液的锂离子电池
JP2018156761A (ja) * 2017-03-16 2018-10-04 三井化学株式会社 電池用非水電解液及びリチウム二次電池
CN110676511A (zh) * 2019-09-02 2020-01-10 孚能科技(赣州)股份有限公司 一种锂离子电池电解液和锂离子二次电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110625B2 (ja) * 2007-02-02 2012-12-26 パナソニック株式会社 蓄電デバイス
JP5542827B2 (ja) * 2009-09-18 2014-07-09 三井化学株式会社 不飽和スルトン化合物を含有するリチウム二次電池用非水電解液、リチウム二次電池用添加剤、及びリチウム二次電池
WO2018073694A2 (en) * 2016-10-20 2018-04-26 3M Innovative Properties Company Electrolyte solutions and electrochemical cells containing same
CN108321434A (zh) * 2018-03-23 2018-07-24 安普瑞斯(无锡)有限公司 一种高电压锂离子电池电解液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428701A (zh) * 2015-12-21 2016-03-23 东莞新能源科技有限公司 一种电解液以及包括该电解液的锂离子电池
CN105481825A (zh) * 2015-12-31 2016-04-13 石家庄圣泰化工有限公司 1,3-丙烯磺酸内酯衍生物的制备方法
CN105845982A (zh) * 2016-03-31 2016-08-10 宁德时代新能源科技股份有限公司 电解液以及包括该电解液的锂离子电池
JP2018156761A (ja) * 2017-03-16 2018-10-04 三井化学株式会社 電池用非水電解液及びリチウム二次電池
CN110676511A (zh) * 2019-09-02 2020-01-10 孚能科技(赣州)股份有限公司 一种锂离子电池电解液和锂离子二次电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142086A (zh) * 2021-11-16 2022-03-04 合肥国轩高科动力能源有限公司 一种耐低温锂离子电池电解液及锂离子电池

Also Published As

Publication number Publication date
CN114342143B (zh) 2024-04-16
CN114342143A (zh) 2022-04-12
CN110676511A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN114342143B (zh) 一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池
CN113903992A (zh) 非水电解液用添加剂、非水电解液以及蓄电设备
WO2018099097A1 (zh) 电解液及二次锂电池
CN108987808B (zh) 一种高电压锂离子电池非水电解液及锂离子电池
WO2015003560A1 (zh) 电解液添加剂及含该添加剂的电解液及锂离子电池
WO2021218267A1 (zh) 一种电解液及电化学装置
WO2023142693A1 (zh) 一种锂离子电池
WO2022001777A1 (zh) 电解液和包含电解液的电化学装置
CN109786832B (zh) 电解液添加剂、电解液及锂离子二次电池
WO2022262231A1 (zh) 非水电解液及其二次电池
WO2017185703A1 (zh) 一种高温锂离子电池电解液及其制备方法和高温锂离子电池
US20190372166A1 (en) Electrolyte and lithium-ion battery
WO2022213667A1 (zh) 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
CN108695487B (zh) 正极片及储能装置
KR20150075495A (ko) 리튬 이차전지용 전해액 및 이를 구비하는 리튬 이차전지
CN112928328A (zh) 一种含有硅烷基磺酰胺化合物的锂离子电池电解液和锂离子二次电池
US20240178454A1 (en) Electrolytic solution, secondary battery and electrical device containing same
CN109119599B (zh) 一种二次电池及其制备方法
WO2021218704A1 (zh) 丙烯酸酯、含丙烯酸酯电解液原料组合物、电解液及其应用
CN110854432B (zh) 电解液以及使用其的电化学装置和电子装置
WO2023060554A1 (zh) 电解液、二次电池和用电装置
CN112670579B (zh) 电解液、电化学装置及电子装置
WO2023123031A1 (zh) 电化学装置和电子装置
KR20160033443A (ko) 실리콘 양자점 고분자 함유하는 음극을 채용한 리튬 이차 전지
TWI771515B (zh) 非水電解液用添加劑、非水電解液及蓄電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860762

Country of ref document: EP

Kind code of ref document: A1