WO2021042577A1 - 显示面板及其制备方法 - Google Patents

显示面板及其制备方法 Download PDF

Info

Publication number
WO2021042577A1
WO2021042577A1 PCT/CN2019/120015 CN2019120015W WO2021042577A1 WO 2021042577 A1 WO2021042577 A1 WO 2021042577A1 CN 2019120015 W CN2019120015 W CN 2019120015W WO 2021042577 A1 WO2021042577 A1 WO 2021042577A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
transport layer
planarization
display panel
Prior art date
Application number
PCT/CN2019/120015
Other languages
English (en)
French (fr)
Inventor
张树仁
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/622,917 priority Critical patent/US11716866B2/en
Publication of WO2021042577A1 publication Critical patent/WO2021042577A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present invention relates to the field of display technology, in particular to a display panel and a preparation method thereof.
  • Quantum-dot light-emitting diode is a self-luminous technology that does not require a backlight. Due to the solution processing characteristics of quantum dots, the light-emitting layer of quantum dots can be spin-coated, scratch-coated, ink-jet printing, etc. One way to prepare. Compared with the previous methods, the inkjet printing technology can accurately deposit the quantum dot luminescent material in the appropriate position according to the required amount, so that the semiconductor material is uniformly deposited to prepare the thin film layer, the utilization rate of the material is very high, and the production cost can be reduced and simplified The production process is expected to achieve mass production. Inkjet printing technology is currently recognized as an effective method to solve the manufacturing problems of large-size QLED screens.
  • the uniformity of the film surface after inkjet printing is mainly affected by the "coffee ring” effect.
  • the uniformity of the prepared film surface directly affects the efficiency and life of the device. Therefore, the "coffee ring” effect needs to be minimized during the printing process.
  • the printing of quantum dot films not only faces the problem of "coffee ring", but at the same time, due to the large volume and easy agglomeration, the quantum dot film will show ups and downs. Since the resistance at low places is relatively low, more current will flow in low places, so the low places are brighter, and the uniformity of thin film light emission is poor.
  • the purpose of the present invention is to provide a display panel and a preparation method thereof, which can effectively solve the problem of uneven light emission caused by uneven film thickness.
  • a display panel which includes: a substrate; an organic functional layer disposed on the substrate and surrounded by a pixel defining layer; the organic functional layer includes: a first electrode disposed on the substrate The hole injection layer is provided on the side of the first electrode away from the organic functional layer; the hole transport layer is provided on the side of the hole injection layer away from the first electrode; the light emitting layer is provided On the side of the hole transport layer away from the hole injection layer; a planarization layer is provided on the side of the light-emitting layer away from the hole transport layer; the electron transport layer is provided on the planarization layer The side away from the light-reflecting layer; the electron injection layer is provided on the side of the electron transport layer away from the planarization layer; the second electrode is provided on the side of the electron injection layer away from the electron transport layer Wherein, there is at least one notch on the side of the light-emitting layer attached to the planarization layer, and at least one protrusion on the side of the planar
  • the notches are continuously distributed on the light-emitting layer; the protrusions are continuously distributed on the side of the planarization layer close to the light-emitting layer.
  • the thickness of the planarization layer is 5-20 nm.
  • the material of the planarization layer includes polymethyl methacrylate, polyvinylpyrrolidone, and polystyrene.
  • the material of the planarization layer is the same as the material of the electron transport layer.
  • the present invention also provides a method for manufacturing a display panel, including the following steps: providing a substrate, the substrate having a functional area; preparing a pixel defining layer on the substrate, the pixel defining layer surrounding the functional area; A first electrode is prepared in the pixel defining layer and attached to the substrate; the hole injection material ink is printed on the first electrode, and the hole injection material ink is vacuum dried to remove the solvent of the hole injection material ink and then baked Preparing a hole injection layer; printing a hole transport material ink on the hole injection layer, vacuum drying to remove the solvent of the hole transport material ink, and baking to prepare a hole transport layer; adding a quantum dot luminescent material ink Print on the hole transport layer, vacuum dry to remove the solvent of the quantum dot luminescent material ink, and bake to prepare the luminescent layer; print the planarization layer material ink on the luminescent layer, and vacuum dry to remove the luminescent layer. After the solvent of the planarization layer material ink is baked to prepare a planarization
  • the preparation method is evaporation; in the step of preparing an electron injection layer on the electron transport layer , The preparation method is evaporation.
  • the preparation method is inkjet printing, which specifically includes: printing the electron transport layer material ink onto the planarization layer, And vacuum drying to remove the solvent of the electron transport layer material ink and baking to prepare the electron transport layer.
  • the preparation method is inkjet printing, which specifically includes: printing an electron injection layer material ink onto the electron transport layer, And vacuum drying to remove the solvent of the electron injection layer material ink and baking to prepare the electron injection layer.
  • the invention provides a display panel and a preparation method thereof.
  • a hole injection layer, a hole transport layer, a light emitting layer and a planarization layer are prepared by an inkjet printing method, and the hole injection layer material and the hole transport layer are specifically dried by vacuum Material, the solvent in the light-emitting layer material and the planarization layer material evaporates to make the entire surface of the film uniform and improve the uniformity of light emission.
  • the gap in the light-emitting layer can be effectively filled, and a uniform film surface can be formed, which can reduce the current collected at the gap, thereby improving the uniformity of the display panel's light emission, and at the same time reducing Risk of leakage current at small gaps.
  • FIG. 1 is a schematic structural diagram of one embodiment of a display panel provided by the present invention.
  • FIG. 2 is a schematic diagram of a part of the structure of one embodiment of the display panel provided by the present invention.
  • Gap 110 protrusion 120.
  • the present invention provides a display panel 100 including a substrate 101 and an organic functional layer 102.
  • the organic functional layer 102 is disposed on the substrate 101 and is surrounded by a pixel defining layer 103.
  • the organic functional layer 102 includes a first electrode 1021, a hole injection layer 1022, a hole transport layer 1023, a light emitting layer 1024, a planarization layer 1025, an electron transport layer 1026, an electron injection layer 1027, and a second electrode 1028.
  • the first electrode 1021 is disposed on the substrate 101; the first electrode 1021 is an anode.
  • the hole injection layer 1022 is provided on the side of the first electrode 1021 away from the organic functional layer 102; the hole transport layer 1023 is provided on the side of the hole injection layer 1022 away from the first electrode 1021 .
  • the light-emitting layer 1024 is disposed on a side of the hole transport layer 1023 away from the hole injection layer 1022; the light-emitting layer 1024 has a plurality of quantum dots.
  • At least one notch 110 is provided on the side of the light-emitting layer 1024 attached to the planarization layer 1025, and the notch 110 is continuously distributed on the light-emitting layer 1024 to form an uneven structure.
  • the planarization layer 1025 is disposed on the side of the light-emitting layer 1024 away from the hole transport layer 1023; the thickness of the planarization layer 1025 is 5-20 nm.
  • the material of the planarization layer 1025 includes polymethyl methacrylate, polyvinylpyrrolidone, and polystyrene. In other embodiments, the material of the planarization layer 1025 may also be an insulating material. The material of the planarization layer may also be the same as the material of the electron transport layer 1026, and has a similar quantum dot carrier mobility.
  • protrusion 120 on the side of the planarization layer 1025 attached to the light-emitting layer 1024, and the protrusions 120 are continuously distributed on the side of the planarization layer 1025 close to the light-emitting layer 1024.
  • the protrusion 120 is clamped to the notch 110 to make the surface of the light-emitting layer 1024 flat.
  • the surface uniformity of the other side of the planarization layer 1025 is greater than 90%.
  • the electron transport layer 1026 is provided on the side of the planarization layer 1025 away from the light-emitting layer 1024; the electron injection layer 1027 is provided on the side of the electron transport layer 1026 away from the planarization layer 1025; The second electrode 1028 is disposed on a side of the electron injection layer 1027 away from the electron transport layer 1026.
  • the present invention provides a display panel 100.
  • a planarization layer 1025 on the light-emitting layer 1024, the gap 110 of the light-emitting layer 1024 can be effectively filled, and a uniform film surface can be formed.
  • the current collected at the notch 110 improves the uniformity of light emission of the display panel 100 and at the same time reduces the risk of leakage current at the notch 110.
  • the present invention provides a method for manufacturing a display panel, including the following steps:
  • a substrate 101 is provided, and the substrate 101 has a functional area 130.
  • a pixel defining layer 103 is prepared on the substrate 101, and the pixel defining layer 103 surrounds the functional area 130.
  • planarization layer 1025 Print the material ink of the planarization layer 1025 on the light-emitting layer 1024, vacuum dry to remove the solvent of the material ink of the planarization layer 1025, and bake to prepare the planarization layer 1025.
  • the planarization layer 1025 can be filled with more A gap 110 and ensure that the surface is uniform.
  • the preparation method includes evaporation or inkjet printing.
  • the specific steps include: printing the electron transport layer 1026 material ink on the planarization layer 1025, and vacuum drying to remove the electron transport layer 1026 material ink
  • the electron transport layer 1026 is prepared by post-solvent baking.
  • the preparation method includes evaporation or inkjet printing.
  • the specific steps include: printing the material ink of the electron injection layer 1027 on the electron transport layer 1026, and vacuum drying to remove the material ink of the electron injection layer 1027
  • the electron injection layer 1027 is prepared by post-solvent baking.
  • the present invention also provides a method for preparing a display panel.
  • the hole injection layer 1022, the hole transport layer 1023, the light emitting layer 1024 and the planarization layer 1025 are prepared by an inkjet printing method, and the hole injection layer 1022 is specifically dried by vacuum drying.
  • the solvent in the hole transport layer 1023 material, the light-emitting layer 1024 material and the planarization layer 1025 material evaporates to make the entire film surface uniform and improve the uniformity of light emission.
  • the gap 110 of the light-emitting layer 1024 can be effectively filled, and a uniform film surface can be formed, which can reduce the current collected at the gap 110, thereby improving the uniform light emission of the display panel 100 It can reduce the risk of leakage current at the gap 110 at the same time.

Abstract

一种显示面板(100)及其制备方法,通过喷墨打印方法制备空穴注入层(1022),空穴传输层(1023),发光层(1024)和平坦化层(1025),具体通过真空干燥将空穴注入层(1022)材料,空穴传输层(1023)材料,发光层(1024)材料和平坦化层(1025)材料中的溶剂蒸发,使整个膜层表面均一,提高发光均匀性。并且通过在发光层(1024)上设置一平坦化层(1025),可有效填满发光层(1024)的缺口,并形成均一的膜面,可以减小在缺口处聚集的电流,从而改善显示面板(100)发光均匀性,同时还能减小缺口处漏电流的风险。

Description

显示面板及其制备方法 技术领域
本发明涉及显示技术领域,尤其是涉及一种显示面板及其制备方法。
背景技术
量子点发光二极管(Quantum-dot light-emitting diode, QLED)是不需要背光源的自发光技术,由于量子点的溶液处理特性,量子点发光层可以通过旋涂、刮涂、喷墨打印等多种方式制备。相对前面几种方法,喷墨打印技术可以精确地按所需量将量子点发光材料沉积在适当位置,让半导体材料均匀沉积制备薄膜层,对材料的利用率非常高,可以降低生产成本,简化制作工艺,有望实现量产。喷墨打印技术是目前公认的可以解决大尺寸QLED屏制造难题的有效方法。
技术问题
喷墨打印成膜后的膜面均一性主要受到“咖啡环”效应影响,制备膜面的均一性直接影响器件的效率和寿命,因此打印过程中需要尽量减弱“咖啡环”效应。而量子点打印成膜不但面临“咖啡环”问题,同时由于具有较大的体积和容易团聚等问题,量子点薄膜会呈现高低起伏的形貌。由于在低处的电阻比较低,在低处会流过更多的电流,因此低处更亮,薄膜发光均匀性较差。
因此急需提供一种新的显示面板,用以解决膜厚不均而引起的发光不均等问题。
技术解决方案
本发明的目的在于,提供显示面板及其制备方法,可以有效解决膜厚不均而引起的发光不均等问题。
为解决上述技术问题,提供一种显示面板,包括:基板;有机功能层,设于所述基板上被一像素界定层包围;所述有机功能层包括:第一电极,设于所述基板上;空穴注入层,设于所述第一电极远离所述有机功能层的一侧;空穴传输层,设于所述空穴注入层远离所述第一电极的一侧;发光层,设于所述空穴传输层远离所述空穴注入层的一侧;平坦化层,设于所述发光层远离所述空穴传输层的一侧;电子传输层,设于所述平坦化层远离所述反光层的一侧;电子注入层,设于所述电子传输层远离所述平坦化层的一侧;第二电极,设于所述电子注入层远离所述电子传输层的一侧;其中,在所述发光层的贴附于所述平坦化层的一侧具有至少一缺口,在所述平坦化层的贴附于所述发光层一侧具有至少一凸起,所述凸起卡接至所述缺口处。
进一步地,所述缺口连续分布于所述发光层上;所述凸起连续分布于所述平坦化层靠近所述发光层的一侧。
进一步地,所述平坦化层的厚度为5~20nm。
进一步地,所述平坦化层的材料包括聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮、聚苯乙烯。
进一步地,所述平坦化层的材料与所述电子传输层的材料相同。
进一步地,所述发光层中具有多个量子点。
本发明还提供一种显示面板的制备方法,包括如下步骤:提供一基板,所述基板具有一功能区;制备一像素界定层于所述基板上,所述像素界定层包围所述功能区;制备一第一电极于所述像素界定层内并贴附所述基板;将空穴注入材料墨水打印到所述第一电极上,并真空干燥除去所述空穴注入材料墨水的溶剂后烘烤制备空穴注入层;将空穴传输材料墨水打印到所述空穴注入层上,并真空干燥除去所述空穴传输材料墨水的溶剂后烘烤制备空穴传输层;将量子点发光材料墨水打印到所述空穴传输层上,并真空干燥除去所述量子点发光材料墨水的溶剂后烘烤制备发光层;将平坦化层材料墨水打印到所述发光层上,并真空干燥除去所述平坦化层材料墨水的溶剂后烘烤制备平坦化层;制备一电子传输层于所述平坦化层上;制备一电子注入层于所述电子传输层上;制备一第二电极与所述电子注入层上。
进一步地,在所述的制备一电子传输层于所述平坦化层上的步骤中,所述制备方式为蒸镀;在所述的制备一电子注入层于所述电子传输层上的步骤中,所述制备方式为蒸镀。
进一步地,在所述的制备一电子传输层于所述平坦化层上的步骤中,所述制备方式为喷墨打印,具体包括:将电子传输层材料墨水打印到所述平坦化层上,并真空干燥除去所述电子传输层材料墨水的溶剂后烘烤制备所述电子传输层。
进一步地,在所述的制备一电子注入层于所述电子传输层上的步骤中,所述制备方式为喷墨打印,具体包括:将电子注入层材料墨水打印到所述电子传输层上,并真空干燥除去所述电子注入层材料墨水的溶剂后烘烤制备所述电子注入层。
有益效果
本发明提供一种显示面板及其制备方法,通过喷墨打印方法制备空穴注入层,空穴传输层,发光层和平坦化层,具体通过真空干燥将空穴注入层材料,空穴传输层材料,发光层材料和平坦化层材料中的溶剂蒸发,使整个膜层表面均一,提高发光均匀性。并且通过在发光层上设置一平坦化层,可有效填满发光层的缺口,并形成均一的膜面,可以减小在缺口处聚集的电流,从而改善显示面板发光均匀性,同时还能减小缺口处漏电流的风险。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的显示面板的其中一实施例的结构示意图;
图2为本发明提供的显示面板的其中一实施例的部分结构示意图;
显示面板100;
基板101;有机功能层102;像素界定层103;
第一电极1021;空穴注入层1022;空穴传输层1023;
发光层1024;平坦化层1025;电子传输层1026;
电子注入层1027;第二电极1028;功能区130;
缺口110;凸起120。
本发明的实施方式
以下是各实施例的说明是参考附加的图式,用以例示本发明可以用实施的特定实施例。本发明所提到的方向用语,例如上、下、前、后、左、右、内、外、侧等,仅是参考附图式的方向。本发明提到的元件名称,例如第一、第二等,仅是区分不同的元部件,可以更好的表达。在图中,结构相似的单元以相同标号表示。
本文将参照附图来详细描述本发明的实施例。本发明可以表现为许多不同形式,本发明不应仅被解释为本文阐述的具体实施例。本发明提供实施例是为了解释本发明的实际应用,从而使本领域其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改方案。
如图1所示,在一实施例中,本发明提供一种显示面板100,包括:基板101以及有机功能层102。
所述有机功能层102设于所述基板101上且被一像素界定层103包围。
所述有机功能层102包括:第一电极1021、空穴注入层1022、空穴传输层1023、发光层1024、平坦化层1025、电子传输层1026、电子注入层1027以及第二电极1028。
所述第一电极1021设于所述基板101上;所述第一电极1021为阳极。
所述空穴注入层1022设于所述第一电极1021远离所述有机功能层102的一侧;所述空穴传输层1023设于所述空穴注入层1022远离第一电极1021的一侧。
所述发光层1024设于所述空穴传输层1023远离所述空穴注入层1022的一侧;所述发光层1024中具有多个量子点。
在所述发光层1024的贴附于所述平坦化层1025的一侧具有至少一缺口110,所述缺口110连续分布于所述发光层1024上形成一凹凸不平的结构。
所述平坦化层1025设于所述发光层1024远离所述空穴传输层1023的一侧;所述平坦化层1025的厚度为5~20nm。
在一实施例中,所述平坦化层1025的材料包括聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮、聚苯乙烯。在其他实施例中,所述平坦化层1025的材料也可以为绝缘材料。所述平坦化层的材料还可以与所述电子传输层1026的材料相同,具有相似的量子点载流子迁移率。
在所述平坦化层1025贴附于所述发光层1024一侧具有至少一凸起120,所述凸起120连续分布于所述平坦化层1025靠近所述发光层1024的一侧,所述凸起120卡接至所述缺口110处使所述发光层1024变的表面平整。并且所述平坦化层1025另一侧的表面均一性大于90%。
所述电子传输层1026设于所述平坦化层1025远离所述发光层1024的一侧;所述电子注入层1027设于所述电子传输层1026远离所述平坦化层1025的一侧;所述第二电极1028设于所述电子注入层1027远离所述电子传输层1026的一侧。
在本实施例中,本发明提供了一种显示面板100,通过在发光层1024上设置一平坦化层1025,可有效填满发光层1024的缺口110,并形成均一的膜面,可以减小在缺口110处聚集的电流,从而改善显示面板100发光均匀性,同时还能减小缺口110处漏电流的风险。
本发明提供一种显示面板的制备方法,包括如下步骤:
S1)如图2所示,提供一基板101,所述基板101具有一功能区130。
S2)制备一像素界定层103于所述基板101上,所述像素界定层103包围所述功能区130。
S3)制备一第一电极1021于所述像素界定层103内并贴附所述基板101。
S4)将空穴注入材料墨水打印到所述第一电极1021上,并真空干燥除去所述空穴注入材料墨水的溶剂后烘烤制备空穴注入层1022。
S5)将空穴传输材料墨水打印到所述空穴注入层1022上,并真空干燥除去所述空穴传输材料墨水的溶剂后烘烤制备空穴传输层1023。
S6)将量子点发光材料墨水打印到所述空穴传输层1023上,并真空干燥除去所述量子点发光材料墨水的溶剂后烘烤制备发光层1024;所述发光层1024受到“团聚”效应的影响,发光层1024上表面会凹凸不平,具有连续的多个缺口110。
S7)将平坦化层1025材料墨水打印到所述发光层1024上,并真空干燥除去所述平坦化层1025材料墨水的溶剂后烘烤制备平坦化层1025,所述平坦化层1025可以填充多个缺口110并保证本身的表面均一。
S8)制备一电子传输层1026于所述平坦化层1025上;在所述制备一电子传输层1026于所述平坦化层1025上的步骤中,所述制备方式包括蒸镀或者喷墨打印。
如果所述电子传输层1026是通过喷墨打印制得,则具体步骤包括:将电子传输层1026材料墨水打印到所述平坦化层1025上,并真空干燥除去所述电子传输层1026材料墨水的溶剂后烘烤制备电子传输层1026。
S9)制备一电子注入层1027于所述电子传输层1026上;在所述制备一电子注入层1027于所述电子传输层1026上的步骤中,所述制备方式包括蒸镀或者喷墨打印。
如果所述电子注入层1027是通过喷墨打印制备得到,则具体步骤包括:将电子注入层1027材料墨水打印到所述电子传输层1026上,并真空干燥除去所述电子注入层1027材料墨水的溶剂后烘烤制备电子注入层1027。
S10)制备一第二电极1028与所述电子注入层1027上,并形成所述有机功能层102。
本发明还提供一种显示面板的制备方法,通过喷墨打印方法制备空穴注入层1022,空穴传输层1023,发光层1024和平坦化层1025,具体通过真空干燥将空穴注入层1022材料,空穴传输层1023材料,发光层1024材料和平坦化层1025材料中的溶剂蒸发,使整个膜层表面均一,提高发光均匀性。并且通过在发光层1024上设置一平坦化层1025,可有效填满发光层1024的缺口110,并形成均一的膜面,可以减小在缺口110处聚集的电流,从而改善显示面板100发光均匀性,同时还能减小缺口110处漏电流的风险。
本发明的技术范围不仅仅局限于所述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对所述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (10)

  1.   一种显示面板,其中,包括:
    基板;
    有机功能层,设于所述基板上被一像素界定层包围;
    所述有机功能层包括:
    第一电极,设于所述基板上;
    空穴注入层,设于所述第一电极远离所述有机功能层的一侧;
    空穴传输层,设于所述空穴注入层远离所述第一电极的一侧;
    发光层,设于所述空穴传输层远离所述空穴注入层的一侧;
    平坦化层,设于所述发光层远离所述空穴传输层的一侧;
    电子传输层,设于所述平坦化层远离所述发光层的一侧;
    电子注入层,设于所述电子传输层远离所述平坦化层的一侧;
    第二电极,设于所述电子注入层远离所述电子传输层的一侧;
    其中,在所述发光层的贴附于所述平坦化层的一侧具有至少一缺口,在所述平坦化层的贴附于所述发光层的一侧具有至少一凸起,所述凸起卡接至所述缺口处。
  2.   根据权利要求1所述的显示面板,其中,
    所述缺口连续分布于所述发光层上;
    所述凸起连续分布于所述平坦化层靠近所述发光层的一侧。
  3.   根据权利要求1所述的显示面板,其中,
    所述平坦化层的厚度为5~20nm。
  4.   根据权利要求1所述的显示面板,其中,
    所述平坦化层的材料包括聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮、聚苯乙烯。
  5.   根据权利要求1所述的显示面板,其中,
    所述平坦化层的材料与所述电子传输层的材料相同。
  6.   根据权利要求1所述的显示面板,其中,
    所述发光层中具有多个量子点。
  7.   一种显示面板的制备方法,其中,包括如下步骤:
    提供一基板,所述基板具有一功能区;
    制备一像素界定层于所述基板上,所述像素界定层包围所述功能区;
    制备一第一电极于所述功能区并贴附于所述基板上;
    将空穴注入材料墨水打印到所述第一电极上,并真空干燥除去所述空穴注入材料墨水的溶剂后烘烤制备一空穴注入层;
    将空穴传输材料墨水打印到所述空穴注入层上,并真空干燥除去所述空穴传输材料墨水的溶剂后烘烤制备一空穴传输层;
    将量子点发光材料墨水打印到所述空穴传输层上,并真空干燥除去所述量子点发光材料墨水的溶剂后烘烤制备一发光层;
    将平坦化层材料墨水打印到所述发光层上,并真空干燥除去所述平坦化层材料墨水的溶剂后烘烤制备一平坦化层;
    制备一电子传输层于所述平坦化层上;
    制备一电子注入层于所述电子传输层上;
    制备一第二电极于所述电子注入层上。
  8.   根据权利要求7所述的显示面板的制备方法,其中,
    在所述的制备一电子传输层于所述平坦化层上的步骤中,所述制备方式为蒸镀;
    在所述的制备一电子注入层于所述电子传输层上的步骤中,所述制备方式为蒸镀。
  9.   根据权利要求7所述的显示面板的制备方法,其中,
    在所述的制备一电子传输层于所述平坦化层上的步骤中,所述制备方式为喷墨打印,具体包括:
    将电子传输层材料墨水打印到所述平坦化层上,并真空干燥除去所述电子传输层材料墨水的溶剂后烘烤制备所述电子传输层。
  10. 根据权利要求8所述的显示面板的制备方法,其中,
    在所述的制备一电子注入层于所述电子传输层上的步骤中,所述制备方式为喷墨打印,具体包括:
    将电子注入层材料墨水打印到所述电子传输层上,并真空干燥除去所述电子注入层材料墨水的溶剂后烘烤制备所述电子注入层。
PCT/CN2019/120015 2019-09-06 2019-11-21 显示面板及其制备方法 WO2021042577A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/622,917 US11716866B2 (en) 2019-09-06 2019-11-21 Display panel including planarization layer with protrusion and method of manufacturing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910839671.XA CN110690352A (zh) 2019-09-06 2019-09-06 显示面板及其制备方法
CN201910839671.X 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021042577A1 true WO2021042577A1 (zh) 2021-03-11

Family

ID=69107938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120015 WO2021042577A1 (zh) 2019-09-06 2019-11-21 显示面板及其制备方法

Country Status (3)

Country Link
US (1) US11716866B2 (zh)
CN (1) CN110690352A (zh)
WO (1) WO2021042577A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202230848A (zh) * 2020-10-22 2022-08-01 美商納諾西斯有限公司 具有有機傳輸層的電致發光裝置
CN113193130A (zh) * 2021-04-02 2021-07-30 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328824A (zh) * 2016-11-24 2017-01-11 Tcl集团股份有限公司 顶发射qled器件及其制备方法
US20170250380A1 (en) * 2016-02-25 2017-08-31 Japan Display Inc. Method of manufacturing a display device
CN107275499A (zh) * 2017-06-12 2017-10-20 广州琉芯光电科技有限公司 一种量子点发光二极管及其制备方法
CN107623076A (zh) * 2017-09-29 2018-01-23 深圳市华星光电半导体显示技术有限公司 全溶液oled器件及其制作方法
CN108447998A (zh) * 2018-03-19 2018-08-24 京东方科技集团股份有限公司 量子点发光器件及制备方法、量子点发光显示装置
CN109390476A (zh) * 2017-08-02 2019-02-26 Tcl集团股份有限公司 一种具有氧化石墨烯界面层的qled器件及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103766A (zh) * 2014-06-27 2014-10-15 京东方科技集团股份有限公司 有机电致发光器件、阵列基板及其制备方法、显示装置
US10988685B2 (en) * 2016-11-25 2021-04-27 Samsung Display Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same
US11309509B2 (en) * 2018-03-22 2022-04-19 Sharp Kabushiki Kaisha Display device and manufacturing method for same
CN110048024B (zh) * 2019-04-23 2021-10-08 北京京东方技术开发有限公司 显示基板及其制造方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170250380A1 (en) * 2016-02-25 2017-08-31 Japan Display Inc. Method of manufacturing a display device
CN106328824A (zh) * 2016-11-24 2017-01-11 Tcl集团股份有限公司 顶发射qled器件及其制备方法
CN107275499A (zh) * 2017-06-12 2017-10-20 广州琉芯光电科技有限公司 一种量子点发光二极管及其制备方法
CN109390476A (zh) * 2017-08-02 2019-02-26 Tcl集团股份有限公司 一种具有氧化石墨烯界面层的qled器件及其制备方法
CN107623076A (zh) * 2017-09-29 2018-01-23 深圳市华星光电半导体显示技术有限公司 全溶液oled器件及其制作方法
CN108447998A (zh) * 2018-03-19 2018-08-24 京东方科技集团股份有限公司 量子点发光器件及制备方法、量子点发光显示装置

Also Published As

Publication number Publication date
US11716866B2 (en) 2023-08-01
CN110690352A (zh) 2020-01-14
US20220416185A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6901631B2 (ja) 全溶液oledデバイス及びその製造方法
JP4909152B2 (ja) 蒸着装置及び蒸着方法
KR100837475B1 (ko) 증착장치 및 유기발광소자의 제조방법
CN107331788A (zh) Oled器件、oled显示装置及oled器件的制备方法
WO2021233070A1 (zh) 显示基板及其制作方法、显示面板及显示装置
CN107359274A (zh) 显示面板、显示装置及显示面板的制作方法
CN106856203B (zh) 一种顶发射显示发光器件及其制备方法
WO2021031414A1 (zh) 显示面板的制备方法及其功能层的制备方法
CN108010953B (zh) 有机发光显示背板及其制备方法、显示装置
CN108573998B (zh) 显示面板及制造方法、显示装置
US20200083488A1 (en) Manufacturing method of oled display and oled display
WO2019184387A1 (zh) 有机发光显示面板及其制作方法、显示装置
WO2021042577A1 (zh) 显示面板及其制备方法
WO2019041578A1 (zh) Oled基板及其制作方法
WO2020151057A1 (zh) 一种显示面板及其制作方法、显示装置
CN109801939B (zh) 一种显示基板及其制作方法、显示装置
WO2021077294A1 (zh) 掩模板及其制作方法、有机发光装置
US10734583B2 (en) Electroluminescent substrate plate, method for manufacturing the same and display device
US20200052062A1 (en) Oled substrate structure
CN111029476A (zh) 显示器及其制备方法
CN211654826U (zh) 一种显示基板、显示面板及显示装置
WO2021212586A1 (zh) 显示面板及显示面板的制备方法
WO2021103103A1 (zh) 显示面板及其制备方法与显示装置
CN111613649A (zh) 一种显示面板及其制备方法、显示装置
WO2021109246A1 (zh) 量子点墨水、显示面板制作方法及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944623

Country of ref document: EP

Kind code of ref document: A1