WO2021040278A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2021040278A1
WO2021040278A1 PCT/KR2020/010651 KR2020010651W WO2021040278A1 WO 2021040278 A1 WO2021040278 A1 WO 2021040278A1 KR 2020010651 W KR2020010651 W KR 2020010651W WO 2021040278 A1 WO2021040278 A1 WO 2021040278A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
organic light
formula
Prior art date
Application number
PCT/KR2020/010651
Other languages
English (en)
French (fr)
Inventor
황민호
이지영
이호규
서석재
김광현
배재순
이재철
신지연
이근수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200097983A external-priority patent/KR102376145B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/614,848 priority Critical patent/US20220238804A1/en
Priority to CN202080035928.7A priority patent/CN113841265B/zh
Publication of WO2021040278A1 publication Critical patent/WO2021040278A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to an organic light emitting device.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light-emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure made of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. When it falls back to the ground, it glows.
  • the present invention provides a novel organic light-emitting device material that can be used in an organic light-emitting device and at the same time can be used in a solution process, and an organic light-emitting device using the same.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light-emitting device having a low driving voltage, high luminous efficiency, and excellent lifespan.
  • the present invention includes an anode, a hole injection layer, a hole transport layer, a light emitting layer, and a cathode,
  • the hole injection layer includes a cured product of the compound represented by the following formula (1),
  • the hole transport layer comprises a cured product of a polymer comprising a repeating unit represented by the following formula 2-1 and a repeating unit represented by the following formula 2-2,
  • L 1 is substituted or unsubstituted C 6-60 arylene; Or substituted or unsubstituted C 2-60 heteroarylene including any one or more heteroatoms selected from the group consisting of N, O and S,
  • Ar 1 is each independently, substituted or unsubstituted C 6-60 aryl
  • Ar 2 is each independently a substituted or unsubstituted C 6-60 aryl
  • Each L 2 is independently a single bond, a substituted or unsubstituted C 1-10 alkylene, or a substituted or unsubstituted C 6-60 arylene,
  • Each R 1 is independently hydrogen or deuterium; halogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 1-60 alkoxy; Substituted or unsubstituted C 6-60 aryl; Or C 2-60 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S,
  • n is each independently an integer of 0 to 3
  • Each R is independently a photocurable group; Or a thermosetting group,
  • R '1 to R' 3 are each independently hydrogen, or C 1-10 alkyl
  • L' 1 is substituted or unsubstituted C 6-60 arylene; -(Substituted or unsubstituted C 6-60 arylene)-O-(substituted or unsubstituted C 6-60 arylene)-; -(Substituted or unsubstituted C 6-60 arylene)-(substituted or unsubstituted C 1-10 alkylene)-(substituted or unsubstituted C 6-60 arylene)-; -(Substituted or unsubstituted C 6-60 arylene)-O-(substituted or unsubstituted C 1-10 alkylene)-O-; Or -(substituted or unsubstituted C 6-60 arylene)-(substituted or unsubstituted C 1-10 alkylene)-O-(substituted or unsubstituted C 1-10 alkylene)-(substit
  • L' 2 and L' 3 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; Or substituted or unsubstituted C 2-60 heteroarylene including any one or more selected from the group consisting of N, O and S,
  • Ar' 1 to Ar' 4 are each independently a substituted or unsubstituted C 6-60 aryl, or a substituted or unsubstituted C 2- including any one or more selected from the group consisting of N, O and S 60 heteroaryl or Ar' 1 and Ar' 2 ; Or Ar' 3 and Ar' 4 are bonded to each other to form a C 6-60 aromatic ring; Or to form a C 2-60 heteroaromatic ring comprising any one or more selected from the group consisting of N, O and S,
  • Ra is hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 3-60 cycloalkyl; Substituted or unsubstituted C 2-60 alkenyl; Substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl including any one or more selected from the group consisting of N, O and S,
  • x is the mole fraction of the repeating unit represented by Formula 2-1 in the polymer
  • R '4 to R' 6 are each independently hydrogen, or C 1-10 alkyl
  • L' 4 is a single bond
  • R' is a photocurable group; Or a thermosetting group,
  • y is the mole fraction of the repeating unit represented by Formula 2-2 in the polymer.
  • the organic light-emitting device may manufacture a hole injection layer and a hole transport layer by a solution process, and also improve the efficiency, low driving voltage, and/or lifetime characteristics of the organic light-emitting device.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a light-emitting layer 5, and a cathode 6.
  • a substrate 1 is a substrate 1, an anode (2), a hole injection layer (3), a hole transport layer (4), a light emitting layer (5), an electron transport layer (7), an electron injection layer (8) and a cathode (6). It shows an example of an organic light-emitting device.
  • substituted or unsubstituted refers to deuterium; Halogen group; Cyano group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means substituted or unsubstituted with one or more substituents selected from the group consisting of heteroaryl containing one or more of N, O, and S atoms, or substituted or unsubstituted with two or more substituents selected from the group consisting of heteroary
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with a C1-C25 linear, branched or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms in the oxygen of the ester group.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, and the like, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, Can be, etc. However, it is not limited thereto.
  • heteroaryl is a heteroaryl containing at least one of O, N, Si, and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably 2 to 60 carbon atoms.
  • heteroaryl include xanthene, thioxanthen, thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, Pyrimidyl group, triazine group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino Pyrazinyl group, iso
  • an aryl group in an aralkyl group, an aralkenyl group, an alkylaryl group, an arylamine group, and an arylsilyl group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group.
  • the heteroaryl among the heteroarylamines may be described above for heteroaryl.
  • the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the above-described heteroaryl may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heteroaryl is not a monovalent group, and the description of the above-described heteroaryl may be applied except that the heterocycle is formed by bonding of two substituents.
  • the term "deuterated” means that at least one available hydrogen in each formula is substituted with deuterium.
  • being at least 10% deuterated in each formula means that at least 10% of the available hydrogen has been replaced by deuterium.
  • the organic light-emitting device includes an anode and a cathode.
  • the cathode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive compounds such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; There are multilayered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the organic light-emitting device includes a hole injection layer on the anode, and uses the compound represented by Formula 1 as a material for the hole injection layer, and specifically, the cured product of the compound represented by Formula 1 is hole injected. Use as a layer.
  • L 1 is phenylene, biphenyldiyl, terphenyldiyl, phenylnaphthalenediyl, binapthyldiyl, phenanthrendiyl, spirobifluorenediyl, dimethylfluorenediyl, diphenylflu Orendiyl, or tetraphenylfluorenediyl, and L 1 is unsubstituted or substituted with 1 or 2 C 1-10 alkyl.
  • L 1 is any one selected from the group consisting of:
  • Ar 1 is each independently phenyl, biphenylyl, naphthyl, phenanthrenyl, or dimethylfluorenyl, and Ar 1 is unsubstituted, or 1 to 5 deuterium, or halogen Is substituted.
  • Ar 2 is each independently phenyl, biphenylyl, or naphthyl, and Ar 2 is unsubstituted or -R; 1 to 5 deuterium; 1 or 2 C 1-10 alkyl; 1 to 5 halogens; C 1-10 alkoxy; C 1-10 alkoxy substituted with C 1-10 alkoxy; C 1-10 haloalkyl; Or it is substituted with phenoxy, and the definition of R is as defined above.
  • each L 2 is independently a single bond, butylene, pentylene, hexylene, heptylene, or phenylene.
  • n is 1 and each R 1 is independently hydrogen or phenyl.
  • R is -L 3 -R 2
  • L 3 is a single bond, -O-, -S-, -CH 2 -, -CH 2 O-, -OCH 2 -, -CH 2 OCH 2- , -N(phenyl)-, or -O(CH 2 ) 6 -
  • R 2 is any one selected from the group consisting of:
  • the compound represented by Formula 1 may be at least 10% deuterated.
  • the compound represented by Formula 1 may be at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% deuterated.
  • reaction Scheme 1 the rest except for X are as defined above, and X is halogen and more preferably bromo or chloro.
  • the reaction is an amine substitution reaction, and is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction may be changed as known in the art.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • the hole injection layer according to the present invention may further include a compound represented by the following formula (3):
  • n1 and n2 are each independently an integer of 1 to 3, provided that n1+n2 is 4,
  • Ar" 1 is ego
  • R" is a photocurable group; or a thermosetting group
  • Each R" 1 is independently hydrogen, halogen, or C 1-60 haloalkyl
  • n3 is an integer from 1 to 4,
  • Each R" 2 is independently hydrogen, halogen, C 1-60 haloalkyl, a photocurable group, or a thermosetting group,
  • n4 is an integer from 1 to 5.
  • the photocurable group of R"; or the thermosetting group, the content of R defined in Formula 1 above may be applied.
  • each R" 1 is independently hydrogen, fluoro, or CF 3 .
  • Ar" 1 is any one selected from the group consisting of:
  • R" 2 is each independently hydrogen, fluoro, CF 3 , CF(CF 3 ) 2 , CF 2 CF 2 CF 2 CF 3 , a photocurable group, or a thermosetting group.
  • the content of R defined in Formula 1 may be applied to the thermosetting group.
  • Ar" 2 is any one selected from the group consisting of:
  • n1 and n2 are as defined in Chemical Formula 3.
  • the compound represented by Formula 3 may be at least 10% deuterated.
  • the compound represented by Formula 3 may be at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% deuterated.
  • the hole injection layer according to the present invention may further include a cationic compound in addition to the compound represented by Formula 3 above.
  • a cationic compound examples are as follows:
  • ionic compounds may be at least 10% deuterated.
  • the ionic compound may be at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% deuterated.
  • the method of forming the hole injection layer according to the present invention is to prepare a cured product by heat treatment or light treatment of the compound represented by Formula 1 (or with the compound represented by Formula 3 and/or cationic compound), This will be described later.
  • the organic light emitting device comprises a hole transport layer between the hole injection layer and the light emitting layer, and a polymer including a repeating unit represented by Formula 2-1 and a repeating unit represented by Formula 2-2 is used in the hole transport layer. Used as a material. Specifically, the cured product of the polymer is used as a hole transport layer.
  • Formula 2-1 may be represented by the following Formula 2-1-1:
  • R '1 to R' 3, L '1 to L' 3, Ar '1 to Ar' 4 and a description of the Ra is as defined in the formula 2-1.
  • R '1 to R' 3 is hydrogen, or methyl, each independently, all of which are more preferably hydrogen.
  • L' 1 is substituted or unsubstituted C 6-20 arylene; -(Substituted or unsubstituted C 6-20 arylene)-O-(substituted or unsubstituted C 6-20 arylene)-; -(Substituted or unsubstituted C 6-20 arylene)-(substituted or unsubstituted C 1-10 alkylene)-(substituted or unsubstituted C 6-20 arylene)-; -(Substituted or unsubstituted C 6-20 arylene)-O-(substituted or unsubstituted C 1-10 alkylene)-O-; Or -(substituted or unsubstituted C 6-20 arylene)-(substituted or unsubstituted C 1-10 alkylene)-O-(substituted or unsubstituted C 1-10 alkylene)-(
  • L′ 1 is phenylene, -(phenylene)O(phenylene)-, -(phenylene)(CH 2 ) 6 (phenylene)-; -(Phenylene)O(CH 2 ) 6 O-; Or -(phenylene)CH 2 OCH 2 (phenylene)-,
  • L' 1 is any one selected from the group consisting of:
  • L' 2 and L' 3 are each independently a single bond; Substituted or unsubstituted C 6-20 arylene, more preferably, L' 2 and L' 3 are each independently a single bond or phenylene, and most preferably, L' 2 and L' 3 are Each independently, a single bond or 1,4-phenylene.
  • Ar' 1 to Ar' 4 each independently include any one or more selected from the group consisting of substituted or unsubstituted C 6-20 aryl, or substituted or unsubstituted N, O, and S. Or C 2-20 heteroaryl, Ar' 1 and Ar' 2 ; Or Ar' 3 and Ar' 4 are bonded to each other to form a C 6-20 aromatic ring; Or to form a C 2-20 heteroaromatic ring comprising any one or more selected from the group consisting of N, O and S,
  • Ar' 1 to Ar' 4 are each independently phenyl, biphenylyl, biphenylyl substituted with N,N-diphenylamino, or dimethylfluorenyl, or Ar' 1 and Ar' 2 ; Or Ar' 3 and Ar' 4 are combined with each other To form,
  • Ar' 1 to Ar' 4 are each independently, any one selected from the group consisting of, Ar' 1 and Ar' 2 ; Or Ar' 3 and Ar' 4 are combined with each other Forms:
  • Ar' 1 and Ar' 3 are phenyl or biphenylyl, and Ar' 2 and Ar' 4 are any one selected from the group consisting of; Ar' 1 and Ar' 2 , and Ar' 3 and Ar' 4 are combined with each other Forms:
  • Ra is hydrogen, C 1-10 alkyl, or C 6-20 aryl, and more preferably, Ra is hydrogen, methyl, or phenyl.
  • Formula 2-1 is any one selected from the group consisting of repeating units represented by:
  • the repeating unit represented by Formula 2-1 may be deuterated by at least 10%.
  • the repeating unit represented by Formula 2-1 is at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% deuterated. I can.
  • R '1 to R' 3, L '1 to L' 3, Ar '1 to Ar' 4 and a description of the Ra is as defined in the formula 2-1.
  • the compound represented by Formula 2-1' can be prepared by the same method as in Scheme 2-1-1 below, and in the compound represented by Formula 2-1', L' 1 is -(phenylene)CH In the case of 2 OCH 2 (phenylene)-, for example, it can be prepared by the same production method as in Reaction Scheme 2-1-2, and other compounds can be prepared similarly.
  • X 'rest was defined except 1 is as defined above, X' 1 is a halogen or -OTf, preferably, iodo, bromo, chloro, or -OTf.
  • Step 1 of Scheme 2-1-1 is an amine substitution reaction, and it is preferable to react in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction may be changed as known in the art.
  • step 2 is a Wittig reaction, in which a ketone or an aldehyde is reacted with inylide to form an alkene.
  • the reactor for the Wittig reaction can be changed according to what is known in the art.
  • Step 1 of Reaction Scheme 2-1-2 is a reduction reaction of an aldehyde to which hydrogen is added, and NaBH 3 , LiAlH 4 , H 2 in the presence of a metal catalyst may be used, and a reactor for the aldehyde reduction reaction is known in the art. It can be changed according to the bar.
  • step 2 is a nucleophilic substitution reaction, which is a kind of substitution reaction in which an alcohol is alkoxylated through the addition of a base to generate a nucleophile and then reacted with a halogen substituent as a leaving group.
  • the reactor for the nucleophilic substitution reaction can be changed as known in the art.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • the repeating unit represented by Formula 2-2 includes R', which is a curable reactive group.
  • a photocurable group of R' Preferably, a photocurable group of R'; Alternatively, the content of R defined in Formula 1 may be applied to the thermosetting group.
  • R '4 to R' 6 is hydrogen, or methyl, each independently, all of which are more preferably hydrogen.
  • L' 4 is a single bond, a substituted or unsubstituted C 6-20 arylene, more preferably a single bond, or phenylene, most preferably a single bond or 1,4-phenyl It's Len.
  • Formula 2-2 is any one selected from the group consisting of repeating units represented by:
  • the repeating unit represented by Formula 2-2 may be at least 10% deuterated. Or the repeating unit represented by Formula 2-2 is at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% deuterated. I can.
  • At least one of Formula 1, Formula 2-1, and Formula 2-2 may be deuterated by at least 10%.
  • the repeating unit of Formula 2-2 is derived from a monomer represented by Formula 2-2':
  • R' Formula 2-2 4 to R '6 and L' 4 are as defined in Formula 2-2.
  • the compound represented by Chemical Formula 2-2' can be prepared by a manufacturing method as shown in Scheme 2-2 below.
  • Reaction Scheme 2-2 is a Suzuki coupling reaction, in which a palladium catalyst and a base are reacted to prepare a compound represented by Formula 2-2'.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • the polymer according to the present invention can be prepared by polymerizing the monomer represented by Formula 2-1' and the monomer represented by Formula 2-2'.
  • the polymer according to the present invention is a random copolymer containing the repeating unit.
  • x and y are mole fractions of the repeating unit of Formula 2-1 and the repeating unit of Formula 2-2 in the polymer, and x: y is 0.5 to 0.99: 0.01 to 0.5, preferably , 0.5 ⁇ 0.9: 0.1 ⁇ 0.5.
  • the weight average molecular weight of the polymer is 5,000 to 300,000 g/mol, more preferably 5,000 to 100,000 g/mol.
  • weight average molecular weight (Mw) and “number average molecular weight (Mn)” are converted values for standard polystyrene measured using a gel permeation chromatograph (GPC).
  • molecular weight means a weight average molecular weight unless otherwise specified.
  • the molecular weight is measured using an Agilent PL-GPC 220 instrument equipped with a 300 mm long PLgel MIXED-B column (Polymer Laboratories). The measurement temperature was 35°C, THF was used as a solvent, and the flow rate was measured at a rate of 1 mL/min. The sample is prepared to a concentration of 10 mg/10 mL, and then supplied in an amount of 200 ⁇ L. The values of Mw and Mn are derived with reference to the calibration curve formed using the polystyrene standard. The molecular weight (g/mol) of the polystyrene standard is 2,000/ 10,000/ 30,000/ 70,000/ 200,000/ 700,000/ 2,000,000/ 4,000,000/ 10,000,000.
  • the method of forming the hole transport layer according to the present invention is to prepare a cured product by heat treatment or light treatment of the polymer, which will be described later.
  • the emission layer may include a host material and a dopant material.
  • Host materials include condensed aromatic ring derivatives or heterocyclic-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene and the like having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene and the like having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from
  • styrylamine styryldiamine
  • styryltriamine examples of the metal complex
  • styryltetraamine examples of the metal complex include, but are not limited to, an iridium complex and a platinum complex.
  • the organic light-emitting device according to the present invention may include an electron transport layer on the emission layer.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the emission layer.
  • an electron transport material a material capable of injecting electrons from the cathode and transferring them to the emission layer, and a material having high mobility for electrons is suitable. Do. Specific examples include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum layer or a silver layer. Specifically, they are cesium, barium, calcium, ytterbium, and samarium, and in each case an aluminum layer or a silver layer follows.
  • the organic light emitting device may include an electron injection layer between an electron transport layer (or a light emitting layer) and a cathode, if necessary.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect for the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer
  • a compound that prevents migration to the layer and is excellent in thin film forming ability is preferable.
  • Complex compounds and nitrogen-containing 5-membered ring derivatives but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited to this.
  • the organic light-emitting device according to the present invention may be a normal type organic light-emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light-emitting device according to the present invention may be an inverted type organic light-emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light-emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • the hole injection layer includes a compound represented by Formula 1
  • the hole transport layer includes a repeating unit represented by Formula 2-1, a repeating unit represented by Formula 2-2, and the formula It includes a polymer containing a repeating unit represented by 2-3.
  • the hole injection layer includes a compound represented by Formula 1
  • the hole transport layer includes a repeating unit represented by Formula 2-1, a repeating unit represented by Formula 2-2, and the formula It includes a polymer containing a repeating unit represented by 2-3.
  • the organic light-emitting device according to the present invention can be manufactured by materials and methods known in the art, except for using the above-described materials.
  • the organic light emitting device may be manufactured by sequentially laminating an anode, an organic material layer, and a cathode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or a conductive metal oxide or an alloy thereof is deposited on the substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the organic light-emitting device according to the present invention may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • the hole injection layer and the hole transport layer according to the present invention may be formed by a solution process, respectively.
  • the present invention is a coating composition for forming a hole injection layer comprising a compound represented by Formula 1 and a solvent; And it provides a coating composition for forming a hole transport layer comprising a polymer including the repeating unit represented by the formula 2-1 and the repeating unit represented by the formula 2-2.
  • the solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing the compound according to the present invention, and examples include chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o -Chlorine solvents such as dichlorobenzene; Ether solvents such as tetrahydrofuran and dioxane; Aromatic hydrocarbon solvents such as toluene, xylene, trimethylbenzene, and mesitylene; Aliphatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; Ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; Ester solvents such as e
  • Alcohol and its derivatives Alcohol solvents such as methanol, ethanol, propanol, isopropanol, and cyclohexanol; Sulfoxide solvents such as dimethyl sulfoxide; And amide solvents such as N-methyl-2-pyrrolidone and N,N-dimethylformamide; Benzoate solvents such as butyl benzoate and methyl-2-methoxybenzoate; Tetralin; Solvents, such as 3-phenoxy-toluene, are mentioned.
  • the above-described solvent may be used alone or in combination of two or more solvents.
  • the solvent of the coating composition for forming the hole injection layer and the solvent of the coating composition for forming the hole transport layer are different from each other.
  • the viscosity of the coating composition is preferably 1 cP to 10 cP, and coating is easy within the above range.
  • the concentration of the compound according to the present invention in the coating composition is 0.1 wt/v% to 20 wt/v%.
  • the coating composition may further include one or two or more additives selected from the group consisting of a thermal polymerization initiator and a photopolymerization initiator.
  • methyl ethyl ketone peroxide methyl isobutyl ketone peroxide, acetylacetone peroxide, methyl cyclohexanone peroxide, cyclohexanone peroxide, isobutyryl peroxide, 2,4-dichlorobenzoyl peroxide Peroxides such as oxide, bis-3,5,5-trimethyl hexanoyl peroxide, lauryl peroxide, and benzoyl peroxide, or azobis isobutylnitrile, azobisdimethylvaleronitrile, and azobiscyclohexyl nitrile.
  • azo system is an azo system, but it is not limited thereto.
  • photoinitiator diethoxy acetophenone, 2,2-dimethoxy-1,2-diphenyl ethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 4-(2-hydroxyethoxy ) Phenyl-(2-hydroxy-2-propyl) ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl) butanone-1,2-hydroxy-2-methyl-1- Phenyl propan-1-one, 2-methyl-2-morpholino (4-methyl thiophenyl) propan-1-one, 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl) Acetophenone-based or ketal-based photopolymerization initiators such as oxime; Benzoin ether photopolymerization initiators such as benzoin, benzoin methyl ether, and benzoin ethyl ether; Benzophenone photopolymerization initiators such as benzo
  • photopolymerization accelerating effect can also be used individually or in combination with the said photoinitiator.
  • the present invention provides a method of forming a hole injection layer and a hole injection layer using the above-described coating composition. Specifically, coating the above-described hole injection layer-forming coating composition on the anode by a solution process; And heat-treating or light-treating the coated coating composition. In addition, coating the above-described hole transport layer-forming coating composition on the hole injection layer by a solution process; And heat-treating or light-treating the coated coating composition.
  • the solution process is to use the coating composition according to the present invention described above, and means spin coating, dip coating, doctor blading, ink jet printing, screen printing, spray method, roll coating, etc., but is not limited thereto.
  • the heat treatment temperature is preferably 150 to 230°C.
  • the heat treatment time is 1 minute to 3 hours, more preferably 10 minutes to 1 hour.
  • the heat treatment is preferably performed in an inert gas atmosphere such as argon or nitrogen. In addition, it may further include evaporating the solvent between the coating step and the heat treatment or light treatment step.
  • 2,2'-dibromo-9,9'-spirobifluorene 50 g, 105.4 mmol, 1.0 eq
  • 4-vinylphenylboronic acid 31.2 g, 211 mmol, 2.0 eq
  • K 2 CO 3 37.89 g, 274 mmol, 2.60 eq
  • Pd catalyst 3.66 g, 3.2 mmol, 0.03 eq
  • the number average molecular weight of the prepared Comparative Polymer 1 was 37,100 g/mol, and the weight average molecular weight was 78,600 g/mol. At this time, the molecular weight was measured by GPC using PS Standard using the Agilent 1200 series.
  • the glass substrate on which ITO was deposited to a thickness of 1500 ⁇ was ultrasonically cleaned for 10 minutes using an acetone solvent. Then, the detergent was added to the dissolved distilled water, washed for 10 minutes with ultrasonic waves, and then repeated twice with distilled water to perform ultrasonic cleaning for 10 minutes. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol for 10 minutes and then dried. The substrate was then transported to a glove box.
  • a 2 wt% cyclohexanone solution containing the previously prepared compound 1-2 and compound 3-3 in a weight ratio of 8:2 was spin-coated and heat-treated at 230° C. for 30 minutes to a thickness of 600 ⁇ .
  • a hole injection layer was formed.
  • a toluene solution containing 0.8 wt% of the previously prepared polymer C2 was spin-coated on the hole injection layer to form a hole transport layer having a thickness of 1400 ⁇ .
  • the following Compound A and the following Compound B were vacuum-deposited at a weight ratio of 9:1 on the hole transport layer to form a light emitting layer having a thickness of 300 ⁇ .
  • the following Compound C was vacuum-deposited on the emission layer to form an electron injection and transport layer having a thickness of 400 ⁇ .
  • LiF having a thickness of 5 ⁇ and aluminum having a thickness of 1000 ⁇ were sequentially deposited on the electron injection and transport layer to form a cathode.
  • the deposition rate of organic materials was maintained at 0.4 ⁇ 1.0 ⁇ /sec
  • the deposition rate of LiF of the cathode was 0.3 ⁇ /sec
  • the deposition rate of aluminum was 2 ⁇ /sec
  • the vacuum degree during deposition was 2 * 10 -8 ⁇ Maintained 5 * 10 -6 torr.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Table 1 below were used instead of Compound 1-2, Compound 3-3, and/or Polymer C2.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Table 1 below were used instead of Compound 1-2, Compound 3-3, and/or Polymer C2.
  • LT90 means the time (hr) that the luminance becomes 90% compared to the initial luminance.
  • the cured product of the compound represented by Formula 1 was used as a host material for the hole injection layer, and the repeating unit represented by Formula 2-1 and the repeating unit represented by Formula 2-2 were used.
  • the organic light-emitting device of the embodiment of the present invention uses a compound instead of a polymer as a material for the hole transport layer, or a compound not including a curing group as a host material for the hole injection layer. It shows improved properties, and in particular, it can be seen that the lifespan is remarkably improved.
  • substrate 2 anode
  • hole injection layer 4 hole transport layer

Abstract

본 발명은 유기 발광 소자를 제공한다.

Description

유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2019년 8월 26일자 한국 특허 출원 제10-2019-0104638호 및 2020년 8월 5일자 한국 특허 출원 제10-2020-0097983호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
한편, 최근에는 공정 비용 절감을 위하여 기존의 증착 공정 대신 용액 공정, 특히 잉크젯 공정을 이용한 유기 발광 소자가 개발되고 있다. 초창기에는 모든 유기 발광 소자 층을 용액 공정으로 코팅하여 유기 발광 소자를 개발하려 하였으나 현재 기술로는 한계가 있어, 정구조 형태에서 HIL, HTL, EML만을 용액 공정으로 진행하고 추후 공정은 기존의 증착 공정을 활용하는 하이브리드(hybrid) 공정이 연구 중이다.
이에 본 발명에서는 유기 발광 소자에 사용될 수 있으면서 동시에 용액 공정에 사용 가능한 신규한 유기 발광 소자의 소재 및 이를 이용한 유기 발광 소자를 제공한다.
선행기술문헌
특허문헌
(특허문헌 1) 한국특허 공개번호 제10-2000-0051826호
본 발명은 구동 전압이 낮고, 발광 효율이 높으며, 수명이 우수한 유기 발광 소자에 관한 것이다.
상기 과제를 해결하기 위하여, 본 발명은, 양극, 정공주입층, 정공수송층, 발광층, 및 음극을 포함하고,
상기 정공주입층은 하기 화학식 1로 표시되는 화합물의 경화물을 포함하고,
상기 정공수송층은 하기 화학식 2-1로 표시되는 반복단위 및 하기 화학식 2-2로 표시되는 반복단위를 포함하는 고분자의 경화물을 포함하는,
유기 발광 소자:
[화학식 1]
Figure PCTKR2020010651-appb-img-000001
상기 화학식 1에서,
L 1은 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴렌이고,
Ar 1은 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴이고,
Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴이고,
L 2는 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C 1-10 알킬렌, 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
R 1은 각각 독립적으로 수소, 중수소; 할로겐; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 1-60 알콕시; 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
n은 각각 독립적으로 0 내지 3의 정수이고,
R은 각각 독립적으로, 광경화성기; 또는 열경화성기이고,
[화학식 2-1]
Figure PCTKR2020010651-appb-img-000002
상기 화학식 2-1에 있어서,
R' 1 내지 R' 3는 각각 독립적으로, 수소, 또는 C 1-10 알킬이고,
L' 1은 치환 또는 비치환된 C 6-60 아릴렌; -(치환 또는 비치환된 C 6-60 아릴렌)-O-(치환 또는 비치환된 C 6-60 아릴렌)-; -(치환 또는 비치환된 C 6-60 아릴렌)-(치환 또는 비치환된 C 1-10 알킬렌)-(치환 또는 비치환된 C 6-60 아릴렌)-; -(치환 또는 비치환된 C 6-60 아릴렌)-O-(치환 또는 비치환된 C 1-10 알킬렌)-O-; 또는 -(치환 또는 비치환된 C 6-60 아릴렌)-(치환 또는 비치환된 C 1-10 알킬렌)-O-(치환 또는 비치환된 C 1-10 알킬렌)-(치환 또는 비치환된 C 6-60 아릴렌)-이고,
L' 2 및 L' 3는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴렌이고,
Ar' 1 내지 Ar' 4는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이거나, Ar' 1 및 Ar' 2; 또는 Ar' 3 및 Ar' 4가 서로 결합하여 C 6-60 방향족 고리; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로방향족 고리를 형성하고,
Ra는 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
x는 상기 고분자에서 화학식 2-1로 표시되는 반복단위의 몰분율이고,
[화학식 2-2]
Figure PCTKR2020010651-appb-img-000003
상기 화학식 2-2에서,
R' 4 내지 R' 6는 각각 독립적으로, 수소, 또는 C 1-10 알킬이고,
L' 4는 단일 결합; 치환 또는 비치환된 C 6-60 아릴렌이고,
R'은 광경화성기; 또는 열경화성기이고,
y는 상기 고분자에서 화학식 2-2로 표시되는 반복단위의 몰분율이다.
본 발명에 따른 유기 발광 소자는 용액 공정으로 정공주입층 및 정공수송층을 제조할 수 있으며, 또한 유기 발광 소자의 효율 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
도 1은 기판(1), 양극(2), 정공주입층(3), 정공수송층(4), 발광층(5), 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(3), 정공수송층(4), 발광층(5), 전자수송층(7), 전자주입층(8) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
(용어의 정의)
본 명세서에서,
Figure PCTKR2020010651-appb-img-000004
Figure PCTKR2020010651-appb-img-000005
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐이기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020010651-appb-img-000006
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020010651-appb-img-000007
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020010651-appb-img-000008
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐이기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난쓰레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020010651-appb-img-000009
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 잔텐(xanthene), 티오잔텐(thioxanthen), 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
본 명세서에서 용어 "중수소화된"은 각 화학식에서 적어도 하나의 이용가능한 수소가 중수소로 치환된 것을 의미한다. 일례로, 각 화학식에서 적어도 10% 중수소화된다는 것은, 이용가능한 수소의 적어도 10%가 중수소에 의해 치환된 것을 의미한다. 일례로, 각 화학식에서 적어도 20%, 적어도 30%, 적어도 40%, 적어도 50%, 적어도 60%, 적어도 70%, 적어도 80% 중수소, 또는 적어도 90% 중수소화된다.
(양극 및 음극)
본 발명에 따른 유기 발광 소자는 양극 및 음극을 포함한다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 화합물 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
(정공주입층)
본 발명에 따른 유기 발광 소자는 양극 상에 정공주입층을 포함하며, 상기 화학식 1로 표시되는 화합물을 정공주입층의 소재로 사용하며, 구체적으로 상기 화학식 1로 표시되는 화합물의 경화물을 정공주입층으로 사용한다.
상기 화학식 1에서, 바람직하게는, L 1은 페닐렌, 비페닐디일, 터페닐디일, 페닐나프탈렌디일, 비나프틸디일, 페난쓰렌디일, 스피로비플루오렌디일, 디메틸플루오렌디일, 디페닐플루오렌디일, 또는 테트라페닐플루오렌디일이고, 상기 L 1은 비치환되거나, 또는 1개 또는 2개의 C 1-10 알킬로 치환된다.
바람직하게는, L 1은 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020010651-appb-img-000010
.
바람직하게는, Ar 1은 각각 독립적으로, 페닐, 비페닐릴, 나프틸, 페난쓰레닐, 또는 디메틸플루오레닐이고, 상기 Ar 1은 비치환되거나, 또는 1개 내지 5개의 중수소, 또는 할로겐으로 치환된다.
바람직하게는, Ar 2는 각각 독립적으로, 페닐, 비페닐릴, 또는 나프틸이고, 상기 Ar 2는 비치환되거나, 또는 -R; 1개 내지 5개의 중수소; 1개 또는 2개의 C 1-10 알킬; 1개 내지 5개의 할로겐; C 1-10 알콕시; C 1-10 알콕시로 치환된 C 1-10 알콕시; C 1-10 할로알킬; 또는 페녹시로 치환되고, 상기 R의 정의는 앞서 정의한 바와 같다.
바람직하게는, L 2는 각각 독립적으로, 단일 결합, 부틸렌, 펜틸렌, 헥실렌, 헵틸렌, 또는 페닐렌이다.
바람직하게는, n은 1이고, R 1은 각각 독립적으로 수소, 또는 페닐이다.
바람직하게는, R은 -L 3-R 2이고, L 3는 단일 결합, -O-, -S-, -CH 2-, -CH 2O-, -OCH 2-, -CH 2OCH 2-, -N(페닐)-, 또는 -O(CH 2) 6-이고, R 2는 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020010651-appb-img-000011
.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2020010651-appb-img-000012
Figure PCTKR2020010651-appb-img-000013
Figure PCTKR2020010651-appb-img-000014
Figure PCTKR2020010651-appb-img-000015
Figure PCTKR2020010651-appb-img-000016
Figure PCTKR2020010651-appb-img-000017
Figure PCTKR2020010651-appb-img-000018
Figure PCTKR2020010651-appb-img-000019
Figure PCTKR2020010651-appb-img-000020
Figure PCTKR2020010651-appb-img-000021
Figure PCTKR2020010651-appb-img-000022
Figure PCTKR2020010651-appb-img-000023
Figure PCTKR2020010651-appb-img-000024
Figure PCTKR2020010651-appb-img-000025
Figure PCTKR2020010651-appb-img-000026
Figure PCTKR2020010651-appb-img-000027
Figure PCTKR2020010651-appb-img-000028
Figure PCTKR2020010651-appb-img-000029
Figure PCTKR2020010651-appb-img-000030
Figure PCTKR2020010651-appb-img-000031
Figure PCTKR2020010651-appb-img-000032
Figure PCTKR2020010651-appb-img-000033
Figure PCTKR2020010651-appb-img-000034
Figure PCTKR2020010651-appb-img-000035
Figure PCTKR2020010651-appb-img-000036
Figure PCTKR2020010651-appb-img-000037
Figure PCTKR2020010651-appb-img-000038
Figure PCTKR2020010651-appb-img-000039
Figure PCTKR2020010651-appb-img-000040
Figure PCTKR2020010651-appb-img-000041
Figure PCTKR2020010651-appb-img-000042
Figure PCTKR2020010651-appb-img-000043
Figure PCTKR2020010651-appb-img-000044
Figure PCTKR2020010651-appb-img-000045
Figure PCTKR2020010651-appb-img-000046
Figure PCTKR2020010651-appb-img-000047
Figure PCTKR2020010651-appb-img-000048
Figure PCTKR2020010651-appb-img-000049
Figure PCTKR2020010651-appb-img-000050
Figure PCTKR2020010651-appb-img-000051
Figure PCTKR2020010651-appb-img-000052
Figure PCTKR2020010651-appb-img-000053
.
이러한, 상기 화학식 1로 표시되는 화합물은 적어도 10% 중수소화될 수 있다. 또는 상기 화학식 1로 표시되는 화합물은 적어도 20%, 적어도 30%, 적어도 40%, 적어도 50%, 적어도 60%, 적어도 70%, 적어도 80%, 적어도 90%, 또는 100% 중수소화될 수 있다.
또한, 본 발명은 하기 반응식 1과 같은 상기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:
[반응식 1]
Figure PCTKR2020010651-appb-img-000054
상기 반응식 1에서, X를 제외한 나머지는 앞서 정의한 바와 같고, X는 할로겐이고 보다 바람직하게는 브로모, 또는 클로로이다. 상기 반응은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
또한, 본 발명에 따른 정공주입층은 하기 화학식 3으로 표시되는 화합물을 추가로 포함할 수 있다:
[화학식 3]
Figure PCTKR2020010651-appb-img-000055
상기 화학식 3에서,
n1 및 n2는 각각 독립적으로 1 내지 3의 정수이고, 단 n1+n2는 4이고,
Ar" 1
Figure PCTKR2020010651-appb-img-000056
이고,
R"은 광경화성기; 또는 열경화성기이고,
R" 1은 각각 독립적으로, 수소, 할로겐, 또는 C 1-60 할로알킬이고,
n3은 1 내지 4의 정수이고,
Ar" 2
Figure PCTKR2020010651-appb-img-000057
이고,
R" 2는 각각 독립적으로, 수소, 할로겐, C 1-60 할로알킬, 광경화성기, 또는 열경화성기이고,
n4는 1 내지 5의 정수이다.
바람직하게는, R"의 광경화성기; 또는 열경화성기는, 앞서 화학식 1에서 정의한 R의 내용을 적용할 수 있다.
바람직하게는, R" 1은 각각 독립적으로, 수소, 플루오로, 또는 CF 3이다.
바람직하게는, Ar" 1은 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020010651-appb-img-000058
.
바람직하게는, R" 2는 각각 독립적으로, 수소, 플루오로, CF 3, CF(CF 3) 2, CF 2CF 2CF 2CF 3, 광경화성기, 또는 열경화성기이다. 이때 상기 광경화성기; 또는 열경화성기는, 앞서 화학식 1에서 정의한 R의 내용을 적용할 수 있다.
바람직하게는, Ar" 2는 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020010651-appb-img-000059
.
상기 화학식 3으로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2020010651-appb-img-000060
Figure PCTKR2020010651-appb-img-000061
상기 군에서,
n1 및 n2는 상기 화학식 3에서 정의한 바와 같다.
이러한, 상기 화학식 3으로 표시되는 화합물은 적어도 10% 중수소화될 수 있다. 또는 상기 화학식 3으로 표시되는 화합물은 적어도 20%, 적어도 30%, 적어도 40%, 적어도 50%, 적어도 60%, 적어도 70%, 적어도 80%, 적어도 90%, 또는 100% 중수소화될 수 있다.
또한, 본 발명에 따른 정공주입층은 상기 화학식 3으로 표시되는 화합물과 함께, 양이온성 화합물을 추가로 포함할 수 있다. 상기 양이온성 화합물의 예는 하기와 같다:
Figure PCTKR2020010651-appb-img-000062
Figure PCTKR2020010651-appb-img-000063
.
이러한 이온성 화합물은 적어도 10% 중수소화될 수 있다. 바람직하게는, 상기 이온성 화합물은 적어도 20%, 적어도 30%, 적어도 40%, 적어도 50%, 적어도 60%, 적어도 70%, 적어도 80%, 적어도 90%, 또는 100% 중수소화될 수 있다.
한편, 본 발명에 따른 정공주입층의 형성 방법은 상기 화학식 1로 표시되는 화합물(또는 상기 화학식 3으로 표시되는 화합물 및/또는 양이온성 화합물과 함께)을 열처리 또는 광처리하여 경화물을 제조하는 것이며, 이에 대해서는 후술하기로 한다.
(정공수송층)
본 발명에 따른 유기 발광 소자는 정공주입층과 발광층 사이에 정공수송층을 포함하며, 상기 화학식 2-1로 표시되는 반복단위 및 상기 화학식 2-2로 표시되는 반복단위를 포함하는 고분자를 정공수송층의 소재로 사용한다. 구체적으로 상기 고분자의 경화물을 정공수송층으로 사용한다.
상기 화학식 2-1은 하기 화학식 2-1-1로 표시될 수 있다:
[화학식 2-1-1]
Figure PCTKR2020010651-appb-img-000064
상기 화학식 2-1-1에서,
R' 1 내지 R' 3, L' 1 내지 L' 3, Ar' 1 내지 Ar' 4 및 Ra에 대한 설명은 상기 화학식 2-1에서 정의한 바와 같다.
상기 화학식 2-1에서, 바람직하게는, R' 1 내지 R' 3는 각각 독립적으로 수소, 또는 메틸이고, 보다 바람직하게는 모두 수소이다.
바람직하게는, L' 1은 치환 또는 비치환된 C 6-20 아릴렌; -(치환 또는 비치환된 C 6-20 아릴렌)-O-(치환 또는 비치환된 C 6-20 아릴렌)-; -(치환 또는 비치환된 C 6-20 아릴렌)-(치환 또는 비치환된 C 1-10 알킬렌)-(치환 또는 비치환된 C 6-20 아릴렌)-; -(치환 또는 비치환된 C 6-20 아릴렌)-O-(치환 또는 비치환된 C 1-10 알킬렌)-O-; 또는 -(치환 또는 비치환된 C 6-20 아릴렌)-(치환 또는 비치환된 C 1-10 알킬렌)-O-(치환 또는 비치환된 C 1-10 알킬렌)-(치환 또는 비치환된 C 6-20 아릴렌)-이고,
보다 바람직하게는 L' 1은 페닐렌, -(페닐렌)O(페닐렌)-, -(페닐렌)(CH 2) 6(페닐렌)-; -(페닐렌)O(CH 2) 6O-; 또는 -(페닐렌)CH 2OCH 2(페닐렌)-이고,
가장 바람직하게는, L' 1은 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020010651-appb-img-000065
.
바람직하게는, L' 2 및 L' 3는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C 6-20 아릴렌이고, 보다 바람직하게는, L' 2 및 L' 3는 각각 독립적으로, 단일결합 또는 페닐렌이고, 가장 바람직하게는, L' 2 및 L' 3는 각각 독립적으로, 단일결합 또는 1,4-페닐렌이다.
바람직하게는, Ar' 1 내지 Ar' 4는 각각 독립적으로, 치환 또는 비치환된 C 6-20 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴이거나, Ar' 1 및 Ar' 2; 또는 Ar' 3 및 Ar' 4가 서로 결합하여 C 6-20 방향족 고리; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로방향족 고리를 형성하고,
보다 바람직하게는, Ar' 1 내지 Ar' 4는 각각 독립적으로, 페닐, 비페닐릴, N,N-디페닐아미노로 치환된 비페닐릴, 또는 디메틸플루오레닐이거나, Ar' 1 및 Ar' 2; 또는 Ar' 3 및 Ar' 4가 서로 결합하여
Figure PCTKR2020010651-appb-img-000066
을 형성하고,
가장 바람직하게는, Ar' 1 내지 Ar' 4는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나이거나, Ar' 1 및 Ar' 2; 또는 Ar' 3 및 Ar' 4가 서로 결합하여
Figure PCTKR2020010651-appb-img-000067
을 형성한다:
Figure PCTKR2020010651-appb-img-000068
.
바람직하게는, Ar' 1 및 Ar' 3는 페닐 또는 비페닐릴이고, Ar' 2 및 Ar' 4는 하기로 구성되는 군으로부터 선택되는 어느 하나이거나; Ar' 1 및 Ar' 2, 그리고 Ar' 3 및 Ar' 4가 서로 결합하여
Figure PCTKR2020010651-appb-img-000069
을 형성한다:
Figure PCTKR2020010651-appb-img-000070
.
바람직하게는, Ra는 수소, C 1-10 알킬, 또는 C 6-20 아릴이고, 보다 바람직하게는, Ra는 수소, 메틸, 또는 페닐이다.
바람직하게는, 상기 화학식 2-1은 하기로 표시되는 반복단위로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020010651-appb-img-000071
Figure PCTKR2020010651-appb-img-000072
.
이러한, 상기 화학식 2-1로 표시되는 반복단위는 적어도 10% 중수소화될 수 있다. 또는 상기 화학식 2-1로 표시되는 반복단위는 적어도 20%, 적어도 30%, 적어도 40%, 적어도 50%, 적어도 60%, 적어도 70%, 적어도 80%, 적어도 90%, 또는 100% 중수소화될 수 있다.
한편, 상기 화학식 2-1로 표시되는 화합물은 하기 화학식 2-1'로 표시되는 단량체로부터 유래된다:
[화학식 2-1']
Figure PCTKR2020010651-appb-img-000073
상기 화학식 2-1'에서,
R' 1 내지 R' 3, L' 1 내지 L' 3, Ar' 1 내지 Ar' 4 및 Ra에 대한 설명은 상기 화학식 2-1에서 정의한 바와 같다.
상기 화학식 2-1'로 표시되는 화합물은 하기 반응식 2-1-1과 같은 제조 방법으로 제조할 수 있고, 상기 화학식 2-1'로 표시되는 화합물 중, L' 1이 -(페닐렌)CH 2OCH 2(페닐렌)-인 경우, 일례로 하기 반응식 2-1-2와 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 2-1-1]
Figure PCTKR2020010651-appb-img-000074
[반응식 2-1-2]
Figure PCTKR2020010651-appb-img-000075
상기 반응식 2-1-1에서, X' 1을 제외한 나머지 정의는 앞서 정의한 바와 같으며, X' 1은 할로겐 또는 -OTf이고, 바람직하게는 아이오도, 브로모, 클로로, 또는 -OTf이다. 상기 반응식 2-1-1의 단계 1은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재하에 반응시키는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 또한, 단계 2는 Wittig 반응으로서, 케톤 또는 알데하이드를 인일리드와 반응시켜 알켄을 형성하는 반응이다. Wittig 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다.
상기 반응식 2-1-2에서, X' 2를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X' 2는 할로겐 또는 -OTf이고, 바람직하게는 아이오도, 브로모, 클로로, 또는 -OTf이다. 상기 반응식 2-1-2의 단계 1은 수소가 첨가되는 알데하이드의 환원 반응으로서, NaBH 3, LiAlH 4, 금속 촉매 존재 하의 H 2 등을 이용할 수 있으며, 알데하이드 환원 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 또한, 단계 2는 친핵성 치환반응으로서, 염기 첨가를 통해 알코올을 알콕시화하여 친핵체를 생성한 뒤 이탈기인 할로겐 치환기와 반응시키는 치환 반응의 한 종류이다. 친핵성 치환반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다.
상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
상기 화학식 2-2로 표시되는 반복단위는, 경화 가능한 반응기인 R'을 포함한다.
바람직하게는, R'의 광경화성기; 또는 열경화성기는, 앞서 화학식 1에서 정의한 R의 내용을 적용할 수 있다.
바람직하게는, R' 4 내지 R' 6는 각각 독립적으로 수소, 또는 메틸이고, 보다 바람직하게는 모두 수소이다.
바람직하게는, L' 4는 단일 결합, 치환 또는 비치환된 C 6-20 아릴렌이고, 보다 바람직하게는, 단일결합, 또는 페닐렌이고, 가장 바람직하게는, 단일결합 또는 1,4-페닐렌이다.
바람직하게는, 상기 화학식 2-2는 하기로 표시되는 반복단위로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020010651-appb-img-000076
.
이러한, 상기 화학식 2-2로 표시되는 반복단위는 적어도 10% 중수소화될 수 있다. 또는 상기 화학식 2-2로 표시되는 반복단위는 적어도 20%, 적어도 30%, 적어도 40%, 적어도 50%, 적어도 60%, 적어도 70%, 적어도 80%, 적어도 90%, 또는 100% 중수소화될 수 있다.
바람직하게는, 상기 화학식 1, 상기 화학식 2-1 및 상기 화학식 2-2 중 적어도 하나는 적어도 10% 중수소화될 수 있다.
한편, 상기 화학식 2-2의 반복단위는 하기 화학식 2-2'로 표시되는 단량체로부터 유래된다:
[화학식 2-2']
Figure PCTKR2020010651-appb-img-000077
상기 화학식 2-2'에서, R' 4 내지 R' 6 및 L' 4는 상기 화학식 2-2에서 정의한 바와 같다.
상기 화학식 2-2'로 표시되는 화합물은 하기 반응식 2-2와 같은 제조 방법으로 제조할 수 있다.
[반응식 2-2]
Figure PCTKR2020010651-appb-img-000078
상기 반응식 2-2에서, X' 3를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X' 3는 할로겐이고, 바람직하게는 브로모, 또는 클로로이다. 상기 반응식 2-2는 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재하에 반응시켜, 상기 화학식 2-2'로 표시되는 화합물을 제조하는 반응이다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
본 발명에 따른 고분자는 상술한 화학식 2-1'로 표시되는 단량체 및 화학식 2-2'로 표시되는 단량체를 중합하여 제조할 수 있다. 바람직하게는, 본 발명에 따른 고분자는 상기 반복단위를 포함하는 랜덤 공중합체이다.
본 발명에 따른 고분자에서, x 및 y는 상기 고분자 내 상기 화학식 2-1의 반복단위 및 화학식 2-2의 반복단위의 몰분율로서, x : y는 0.5~0.99 : 0.01~0.5이고, 바람직하게는, 0.5~0.9 : 0.1~0.5이다. 상술한 화학식 2-1'로 표시되는 단량체 및 화학식 2-2'로 표시되는 단량체의 반응 몰비를 조절하여, 상기 고분자의 몰비를 조절할 수 있다.
바람직하게는, 상기 고분자의 중량평균분자량은 5,000 내지 300,000 g/mol이고, 보다 바람직하게는 5,000 내지 100,000 g/mol이다.
본 명세서에 있어서 용어 "중량 평균 분자량(Mw)" 및 "수 평균 분자량(Mn)"은, GPC(gel permeation chromatograph)를 사용하여 측정한 표준 폴리스티렌에 대한 환산 수치이다. 본 명세서에서 용어 "분자량"은 특별히 달리 규정하지 않는 한 중량 평균 분자량을 의미한다.
예를 들어, 분자량은 길이 300mm의 PLgel MIXED-B 칼럼(Polymer Laboratories)이 장착된 Agilent PL-GPC 220 기기를 이용하여 측정한다. 측정 온도는 35℃이며, THF를 용매로써 사용하였고 유속은 1 mL/min의 속도로 측정한다. 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급한다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 참고로 Mw 및 Mn 의 값을 유도한다. 폴리스티렌 표준의 분자량(g/mol)은 2,000/ 10,000/ 30,000/ 70,000/ 200,000/ 700,000/ 2,000,000/ 4,000,000/ 10,000,000의 9 종을 사용한다.
한편, 본 발명에 따른 정공수송층의 형성 방법은 상기 고분자를 열처리 또는 광처리하여 경화물을 제조하는 것이며, 이에 대해서는 후술하기로 한다.
(발광층)
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
(전자수송층)
본 발명에 따른 유기 발광 소자는 상기 발광층 상에 전자수송층을 포함할 수 있다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
(전자주입층)
본 발명에 따른 유기 발광 소자는 필요에 따라 전자수송층(또는 발광층) 및 음극 사이에 전자주입층을 포함할 수 있다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
(유기 발광 소자)
본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 정공주입층(3), 정공수송층(4), 발광층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 정공주입층은 상기 화학식 1로 표시되는 화합물을 포함하고, 상기 정공수송층은 상기 화학식 2-1로 표시되는 반복단위, 상기 화학식 2-2로 표시되는 반복단위 및 상기 화학식 2-3으로 표시되는 반복단위를 포함하는 고분자를 포함한다.
도 2는 기판(1), 양극(2), 정공주입층(3), 정공수송층(4), 발광층(5), 전자수송층(7), 전자주입층(8) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 정공주입층은 상기 화학식 1로 표시되는 화합물을 포함하고, 상기 정공수송층은 상기 화학식 2-1로 표시되는 반복단위, 상기 화학식 2-2로 표시되는 반복단위 및 상기 화학식 2-3으로 표시되는 반복단위를 포함하는 고분자를 포함한다.
본 발명에 따른 유기 발광 소자는, 상술한 소재를 사용하는 것을 제외하고는, 당 기술분야에 알려져 있는 재료와 방법으로 제조할 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층 및 전자수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 본 발명에 따른 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
(코팅 조성물)
한편, 본 발명에 따른 정공주입층 및 정공수송층은, 각각 용액 공정으로 형성할 수 있다. 이를 위하여, 본 발명은 상기 화학식 1로 표시되는 화합물 및 용매를 포함하는 정공주입층 형성용 코팅 조성물; 및 상기 화학식 2-1로 표시되는 반복단위 및 상기 화학식 2-2로 표시되는 반복단위를 포함하는 고분자를 포함하는 정공수송층 형성용 코팅 조성물을 제공한다.
상기 용매는 본 발명에 따른 화합물을 용해 또는 분산시킬 수 있는 용매이면 특별히 제한되지 않으며, 일례로 클로로포름, 염화메틸렌, 1,2-디클로로에탄, 1,1,2-트리클로로에탄, 클로로벤젠, o-디클로로벤젠 등의 염소계 용매; 테트라하이드로퓨란, 디옥산 등의 에테르계 용매; 톨루엔, 크실렌, 트리메틸벤젠, 메시틸렌 등의 방향족 탄화수소계 용매; 시클로헥산, 메틸시클로헥산, n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸 등의 지방족 탄화수소계 용매; 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤계 용매; 아세트산에틸, 아세트산부틸, 에틸셀로솔브아세테이트 등의 에스테르계 용매; 에틸렌글리콜, 에틸렌글리콜모노부틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 디메톡시에탄, 프로필렌글리콜, 디에톡시메탄, 트리에틸렌글리콜모노에틸에테르, 글리세린, 1,2-헥산디올 등의 다가 알코올 및 그의 유도체; 메탄올, 에탄올, 프로판올, 이소프로판올, 시클로헥산올 등의 알코올계 용매; 디메틸술폭사이드 등의 술폭사이드계 용매; 및 N-메틸-2-피롤리돈, N,N-디메틸포름아미드 등의 아미드계 용매; 부틸벤조에이트, 메틸-2-메톡시벤조에이트 등의 벤조에이트계 용매; 테트랄린; 3-phenoxy-toluene 등의 용매를 들 수 있다. 또한, 상술한 용매를 1종 단독으로 사용하거나 2종 이상의 용매를 혼합하여 사용할 수 있다.
바람직하게는, 상기 정공주입층 형성용 코팅 조성물의 용매와 상기 정공수송층 형성용 코팅 조성물의 용매가 서로 상이하다.
또한, 상기 코팅 조성물의 점도는 1 cP 내지 10 cP가 바람직하며, 상기의 범위에서 코팅이 용이하다. 또한, 상기 코팅 조성물 내 본 발명에 따른 화합물의 농도는 0.1 wt/v% 내지 20 wt/v%인 것이 바람직하다.
또한, 상기 코팅 조성물은 열중합 개시제 및 광중합 개시제로 이루어진 군에서 선택되는 1종 또는 2종 이상의 첨가제를 추가로 포함할 수 있다.
상기 열중합 개시제로, 메틸 에틸 케톤퍼옥사이드, 메틸 이소부틸 케톤퍼옥사이드, 아세틸아세톤퍼옥사이드, 메틸사이클로헥사논 퍼옥사이드, 시클로헥사논 퍼옥사이드, 이소부티릴 퍼옥사이드, 2,4-디클로로벤조일 퍼옥사이드, 비스-3,5,5-트리메틸 헥사노일 퍼옥사이드, 라우릴 퍼옥사이드, 벤조일 퍼옥사이드 등의 과산화물, 또는 아조비스 이소부틸니트릴, 아조비스디메틸발레로니트릴, 및 아조비스 시클로헥실 니트릴 등의 아조계가 있으나, 이에 한정되지 않는다.
상기 광중합 개시제로, 디에톡시 아세토페논, 2,2-디메톡시-1,2-디페닐 에탄-1-온, 1-하이드록시-사이클로헥실-페닐-케톤, 4-(2-히드록시에톡시)페닐-(2-하이드록시-2-프로필) 케톤, 2-벤질-2-디메틸아미노-1-(4-모르폴리노페닐) 부타논-1,2-하이드록시-2-메틸-1-페닐 프로판-1-온, 2-메틸-2-모르폴리노(4-메틸 티오 페닐) 프로판-1-온, 1-페닐-1,2-프로판디온-2-(o-에톡시카르보닐) 옥심 등의 아세토페논계 또는 케탈계 광중합 개시제; 벤조인, 벤조인 메틸 에테르, 벤조인 에틸 에테르 등의 벤조인에테르계 광중합 개시제; 벤조페논, 4-하이드록시벤조페논, 2-벤조일나프탈렌, 4-벤조일비페닐, 4-벤조일 페닐 에테르, 등의 벤조페논계 광중합 개시제; 2-이소프로필티옥산톤, 2-클로로티옥산톤, 2,4-디메틸 티옥산톤, 2,4-디에틸티옥산톤, 2,4-디클로로티옥산톤 등의 티옥산톤계 광중합 개시제; 및 에틸 안트라퀴논, 2,4,6-트리메틸벤조일 디페닐 포스핀옥사이드, 2,4,6-트리메틸벤조일 페닐 에톡시 포스핀옥사이드, 비스(2,4,6-트리메틸벤조일) 페닐 포스핀옥사이드, 비스(2,4-디메톡시 벤조일)-2,4,4-트리메틸 펜틸포스핀 옥사이드 등의 기타 광중합 개시제가 있으나, 이에 한정되지 않는다.
또한, 광중합 촉진 효과를 가지는 것을 단독 또는 상기 광 중합개시제와 병용해 이용할 수도 있다. 예를 들면, 트리에탄올아민, 메틸디에탄올아민, 4-디메틸아미노안식향산 에틸, 4-디메틸아미노 안식향산 이소아밀, 안식향산(2-디메틸아미노) 에틸, 4,4'-디메틸아미노벤조페논 등이 있으나, 이에 한정되지 않는다.
또한, 본 발명은 상술한 코팅 조성물을 사용하여 정공주입층 및 정공주입층을 형성하는 방법을 제공한다. 구체적으로, 양극 상에, 상술한 정공주입층 형성용 코팅 조성물을 용액 공정으로 코팅하는 단계; 및 상기 코팅된 코팅 조성물을 열처리 또는 광처리하는 단계를 포함한다. 또한, 사아기 정공주입층 상에, 상술한 정공수송층 형성용 코팅 조성물을 용액 공정으로 코팅하는 단계; 및 상기 코팅된 코팅 조성물을 열처리 또는 광처리하는 단계를 포함한다.
상기 용액 공정은 상술한 본 발명에 따른 코팅 조성물을 사용하는 것으로, 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
상기 열처리 단계에서 열처리 온도는 150 내지 230℃가 바람직하다. 또한, 상기 열처리 시간은 1분 내지 3시간이고, 보다 바람직하게는 10분 내지 1시간이다. 또한, 상기 열처리는 아르곤, 질소 등의 불활성 기체 분위기에서 수행하는 것이 바람직하다. 또한, 상기 코팅 단계와 상기 열처리 또는 광처리 단계 사이에 용매를 증발시키는 단계를 추가로 포함할 수 있다.
상술한 본 발명에 따른 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
[제조예-HIL Host]
제조예 1-1: 화합물 1-1의 제조
Figure PCTKR2020010651-appb-img-000079
화합물 1-1'(1.58 g, 3.74 mmol), N4,N4'-디페닐-[1,1'-비페닐]-4,4'-디아민(572 mg. 1.7 mmol), 및 소듐 터트-부톡사이드(980 mg, 10.2 mmol)가 든 플라스크에 톨루엔을 넣었다. 반응물이 든 플라스크를 90 ℃ 오일 배쓰(oil bath)에 담근 뒤, Pd(P(tBu) 3) 2(43 mg, 0.085 mmol)를 넣고 1시간 동안 돌려주었다. 물을 넣어 반응을 중지시키고 디클로로메탄으로 추출한 뒤 MgSO 4로 유기층을 건조하였다. 유기 용매를 진공 회전 농축기를 사용하여 제거한 후, 잔여물을 컬럼 정제하여 화합물 1-1(950 mg, 수율 55 %, HPLC 순도 99.5 %)를 제조하였다.
1H NMR (500 MHz, CDCl 3): δ 7.71 (d, 2H), 7.65 (d, 2H), 7.42 (d, 4H), 7.35 (d, 4H), 7.27-7.20 (m, 18H), 7.17-7.13 (m, 4H), 7.11-7.06 (m, 14H), 7.03 (t, 2H), 6.70-6.64 (dd, 2H), 5.69 (d, 2H), 5.19 (d, 2H)
제조예 1-2: 화합물 1-2의 제조
Figure PCTKR2020010651-appb-img-000080
화합물 1-2'(1.37 g, 3.03 mmol), N4,N4'-디페닐-[1,1'-비페닐]-4,4'-디아민(464 mg. 1.38 mmol), 및 소듐 터트-부톡사이드(769 mg, 8.3 mmol)가 든 플라스크에 톨루엔을 넣었다. 반응물이 든 플라스크를 90 ℃ 오일 배쓰(oil bath)에 담근 뒤, Pd(P(tBu) 3) 2(36 mg, 0.085 mmol)를 넣고 1 시간 동안 돌려주었다. 물을 넣어 반응을 중지시키고 디클로로메탄으로 추출한 뒤 MgSO 4로 유기층을 건조하였다. 유기 용매를 진공 회전 농축기를 사용하여 제거한 후, 잔여물을 컬럼 정제하여 화합물 1-2(500 mg, 수율 34 %, HPLC 순도 99.8 %)를 제조하였다.
1H NMR (500 MHz, CDCl 3): δ 7.70 (d, 2H), 7.63 (d, 2H), 7.43 (d, 4H), 7.37 (t, 2H), 7.30-7.20 (m, 14H), 7.15-7.05 (m, 14H), 7.02 (t, 2H), 6.93 (s, 4H), 6.86 (s, 2H), 6.71-6.65 (dd, 2H), 5.70 (d, 2H), 5.20 (d, 2H), 2.15 (s, 6H), 1.57 (s, 6H)
제조예 1-3: 화합물 1-3의 제조
Figure PCTKR2020010651-appb-img-000081
화합물 1-3'(2.32 g, 5.0 mmol), 2,2'-디브로모-9,9'-스파이로바이(플루오렌)(948 mg. 2.0 mmol), 및 소듐 터트-부톡사이드(960 mg, 10.0 mmol)가 든 플라스크에 톨루엔을 넣었다. 반응물이 든 플라스크를 90 ℃ 오일 배쓰에 담근 뒤, Pd(P(tBu) 3) 2(72 mg, 0.14 mmol)를 넣고 1 시간 동안 돌려주었다. 물을 넣어 반응을 중지시키고 디클로로메탄으로 추출한 뒤 MgSO 4로 유기층을 건조하였다. 유기 용매를 진공 회전 농축기를 사용하여 제거한 후, 잔여물을 컬럼 정제하여 화합물 1-3(1.46 g, 수율 59 %, HPLC 순도 99.2 %)를 제조하였다.
1H NMR (500 MHz, CDCl 3): δ 7.74-7.69 (m, 4H), 7.68-7.63 (m, 2H), 7.62-7.56 (m, 2H), 7.39 (td, 2H), 7.33 (ddddd, 4H), 7.26 (tdd, 6H), 7.19-7.04 (m, 12H), 7.04-6.90 (m, 14H), 6.85 (d, 2H), 6.76-6.68 (m, 4H), 6.65-6.55 (m, 2H), 5.78-5.70 (m, 2H), 5.25 (dq, 2H), 2.16 (s, 6H), 1.57 (s, 6H)
제조예 1-4: 화합물 1-4의 제조
Figure PCTKR2020010651-appb-img-000082
화합물 1-4'(1.6 g, 4.2 mmol), N4,N4'-디(나프탈렌-1-일)-[1,1'-비페닐]-4,4'-디아민(873 mg, 2.0 mmol), 및 소듐 터트-부톡사이드(769 mg, 8.0 mmol)가 든 플라스크에 톨루엔을 넣고 질소로 bubbling 하였다. 반응물이 든 플라스크를 100 ℃ 오일 배쓰에 담근 뒤, Pd(P(tBu) 3) 2(82 mg, 0.16 mmol)를 넣고 12 시간 동안 돌려주었다. 물을 넣어 반응을 중지시키고 디클로로메탄으로 추출한 뒤 MgSO 4로 유기층을 건조하였다. 유기 용매를 진공 회전 농축기를 사용하여 제거한 후, 잔여물을 컬럼 정제하여 화합물 1-4(1.2 g, 수율 53 %, HPLC 순도 99.1 %)를 제조하였다.
1H NMR (500 MHz, CDCl 3): δ 7.90-7.88 (m, 2H), 7.87 (dd, 2H), 7.79-7.75 (m, 2H), 7.64 (dt, 2H), 7.59 (dd, 2H), 7.49-7.41 (m, 4H), 7.37-7.30 (m, 12H), 7.22-7.11 (m, 8H), 7.09-7.03 (m, 4H), 7.02-6.96 (m, 6H), 6.64 (dd, 2H), 5.67 (dd, 2H), 5.18 (dd, 2H)
[제조예-HTL]
제조예 2-1: 화합물 2-1의 제조
단계 1) 중간체 a1의 제조
Figure PCTKR2020010651-appb-img-000083
4-(비페닐-4-일(9,9-디메틸-9H-플루오렌-2-일)아미노)페닐 보로닉 산(12 g, 25 mmol), Pd(PPh 3) 4(578 mg, 0.5 mmol)과 K 2CO 3(6.9 g, 50 mmol)을 둥근바닥플라스크에 넣은 뒤, 질소로 치환하였다. 1,3-디브로모-5-플루오로벤젠[1,3-dibromo-5-fluorobenzene](1.26 mL, 10 mmol), THF(Tetrahydrofuran, 40 mL)와 H 2O(10 mL)를 넣어준 뒤 90 ℃에서 12 시간 교반하였다. 반응 종료 후 에틸아세테이트와 물로 추출하였다. 유기층을 모은 뒤 MgSO 4를 사용하여 유기층을 건조시키고 여과하였다. 여과액을 진공회전농축기로 건조하여 유기용매를 제거한 후, 잔여물을 컬럼 정제하여 중간체 a1을 9.5 g(수율: 98 %) 얻었다.
단계 2) 중간체 a2의 제조
Figure PCTKR2020010651-appb-img-000084
NaH(60 wt%, 420 mg, 10.5 mmol)을 둥근바닥플라스크에 담은 뒤 질소 치환하였다. NMP(N- Methylpyrrolidone, 8.8 mL)를 넣어준 뒤 0 ℃로 냉각하였다. 3-bromocarbazole(2.6 g, 10.5 mmol)을 NMP (8.8 mL)에 녹인 용액을 반응 혼합물에 천천히 첨가한 뒤, 0 ℃에서 30 분 동안 교반하였다. 중간체 a1(6.8 g, 7 mmol)을 NMP(17 mL)에 녹인 용액을 반응 혼합물에 첨가한 뒤 220 ℃에서 2 시간 동안 교반하였다. 반응 종료 후 에틸아세테이트와 물로 추출하였다. 유기층을 모은 뒤 MgSO 4를 사용하여 유기층을 건조시키고 여과하였다. 여과액을 진공회전농축기로 건조하여 유기용매를 제거한 후, 잔여물을 컬럼 정제하여 중간체 a2을 5 g(수율: 60 %) 얻었다.
단계 3) 중간체 a3의 제조
Figure PCTKR2020010651-appb-img-000085
중간체 a2(4 g, 3.35 mmol), 4-포밀페닐 보로닉 산(750 mg, 5 mmol), Pd(PPh 3) 4(196 mg, 0.17 mmol)과 K 2CO 3(1.4 g, 10 mmol)을 둥근바닥플라스크에 넣은 뒤, 질소로 치환하였다. THF(13.4 mL)와 H 2O(3.4 mL)를 넣어준 뒤 90 ℃에서 4 시간 교반하였다. 반응 종료 후 에틸아세테이트와 물로 추출하였다. 유기층을 모은 뒤 MgSO 4를 사용하여 유기층을 건조시키고 여과하였다. 여과액을 진공회전농축기로 건조하여 유기용매를 제거한 후, 잔여물을 컬럼 정제하여 중간체 a3을 2.87 g(수율: 70 %) 얻었다.
단계 4) 화합물 2-1의 제조
Figure PCTKR2020010651-appb-img-000086
CH 3PPh 3Br(1.57g, 4.4 mmol)와 THF(12 mL)를 둥근바닥플라스크에 담은 뒤 질소로 치환하고 0 ℃로 냉각하였다. KOtBu(494 mg, 4.4 mmol)를 반응 혼합물에 넣은 뒤 질소로 치환하고 0 ℃에서 20 분간 교반하였다. 중간체 a3(2.68 g, 2.2 mmol)을 THF(10 mL)에 녹인 용액을 반응 혼합물에 천천히 투입한 뒤 0 ℃에서 40 분 동안 교반하였다. 반응 종료 후 에틸아세테이트와 물로 추출하였다. 유기층을 모은 뒤 MgSO 4를 사용하여 유기층을 건조시키고 여과하였다. 여과액을 진공회전농축기로 건조하여 유기용매를 제거한 후, 잔여물을 컬럼 정제하여 화합물 2-1을 2.25 g(수율: 84 %) 얻었다.
1H NMR (500 MHz, CD 2Cl 2): δ 8.40 (s, 1H), 8.21 (d, 1H), 7.95 (s, 1H), 7.77 (s, 2H), 7.71 (d, 3H) 7.66 - 7.50 (m, 20H), 7.46 - 7.38 (m, 7H), 7.33 - 7.20 (m, 17H), 7.11 (d, 2H), 6.78 (dd, 1H), 5.80 (d, 1H), 5.26 (d, 2H), 1.41 (s, 12H)
제조예 2-2: 화합물 2-2의 제조
단계 1) 중간체 b1의 제조
Figure PCTKR2020010651-appb-img-000087
중간체 a3(2.44 g, 2 mmol)을 둥근바닥플라스크에 넣은 뒤 MeOH(5 mL)와 THF(5 mL)에 녹인다. 반응 혼합물을 상온으로 유지하면서 소듐보로하이드라이드(227 mg, 6 mmol)을 조금씩 넣어 준 뒤 상온에서 30 분 교반하였다. 반응 종료 후 에틸아세테이트와 물로 추출하였다. 유기층을 모은 뒤 MgSO 4를 사용하여 유기층을 건조시키고 여과하였다. 여과액을 진공회전농축기로 건조하여 중간체 b1을 2.1 g(수율: 86 %) 얻었다.
단계 2) 화합물 2-2의 제조
Figure PCTKR2020010651-appb-img-000088
소듐하이드라이드(60 wt%, 112 mg, 2.8 mmol)를 둥근바닥플라스크에 담은 후 질소 분위기로 치환하였다. 무수 DMF(3.5 mL)를 넣은 후 0 ℃로 냉각하였다. 중간체 b1(1.71 g, 1.4 mmol)을 무수 DMF(3.5 mL)에 녹인 용액을 반응 혼합물에 천천히 넣어준 뒤 0 ℃에서 1 시간 교반하였다. 4-비닐벤질 클로라이드 (0.39 mL, 2.8 mmol)를 넣어준 뒤 60 ℃로 승온하고 4 시간 교반하였다. 반응 종료 후 에틸아세테이트 물로 추출하였다. 유기층을 모은 뒤 MgSO 4를 사용하여 유기층을 건조시키고 여과하였다. 여과액을 진공회전농축기로 건조하여 유기용매를 날려주었고, 잔여물을 컬럼 정제하여 화합물 2-2를 1.22 g(수율: 65 %) 얻었다.
1H NMR (500 MHz, CDCl 3): δ 8.40 (s, 1H), 8.21 (d, 1H), 7.95 (s, 1H), 7.77 (s, 2H), 7.71 (d, 3H) 7.66 - 7.50 (m, 22H), 7.46 - 7.38 (m, 7H), 7.33 - 7.20 (m, 19H), 7.11 (d, 2H), 6.69 (dd, 1H), 5.73 (d, 1H), 5.21 (d, 1H), 4.50 (s, 2H), 4.48 (s, 2H), 1.41 (s, 12H)
제조예 2-3: 중합체 C1의 제조
Figure PCTKR2020010651-appb-img-000089
화합물 2-1(973 mg, 0.8 mmol)과 아조비시소부티로니트릴(azobisisobutyronitrile)(1.3 mg, 0.008 mmol)을 둥근바닥플라스크에 담은 후 질소 분위기 하에서 무수 톨루엔(1.6 mL)에 녹인다. 70 ℃에서 6 시간 동안 교반하였다. 반응 종료 후 THF(5 mL)로 묽힌 뒤, 에틸아세테이트(70 mL)에 넣어준다. 침전물을 필터하고 에틸아세테이트로 씻어준다. 얻어진 고체를 말려 중합체 C1을 620 mg(수율: 64 %) 수득하였다. (Mw=102591, Mn=45941; 수평균분자량 및 중량평균분자량은 Agilent 1200 series를 이용하여 PS 스텐다드(Standard)를 이용한 GPC로 측정)
제조예 2-4: 중합체 C2의 제조
Figure PCTKR2020010651-appb-img-000090
화합물 2-1(973 mg, 0.8 mmol)과 3-(4-비닐페닐)바이시클로[4.2.0]옥타-1(6),2,4-트리엔(41 mg, 0.2 mmol), 아조비시소부티로니트릴(azobisisobutyronitrile)(1.3 mg, 0.008 mmol)을 둥근바닥플라스크에 담은 후 질소 분위기 하에서 무수 톨루엔(1.6 mL)에 녹인다. 70 ℃에서 6 시간 동안 교반하였다. 반응 종료 후 THF(5 mL)로 묽힌 뒤, 에틸아세테이트(70 mL)에 넣어준다. 침전물을 필터하고 에틸아세테이트로 씻어준다. 얻어진 고체를 말려 중합체 C2를 730 mg(수율: 72 %) 수득하였다. (Mw=90410, Mn=48393; 수평균분자량 및 중량평균분자량은 Agilent 1200 series를 이용하여 PS 스텐다드(Standard)를 이용한 GPC로 측정)
제조예 2-5: 중합체 C3의 제조
Figure PCTKR2020010651-appb-img-000091
화합물 2-2(1.07 g, 0.8 mmol)와 3-(4-비닐페닐)바이시클로[4.2.0]옥타- 1(6),2,4-트리엔(41 mg, 0.2 mmol), 아조비시소부티로니트릴(azobisisobutyronitrile)(1.3 mg, 0.008 mmol)을 둥근바닥플라스크에 담은 후 질소 분위기 하에서 무수 톨루엔(1.6 mL)에 녹인다. 70 ℃에서 6 시간 동안 교반하였다. 반응 종료 후 THF(5 mL)로 묽힌 뒤, 에틸아세테이트(70 mL)에 넣어준다. 침전물을 필터하고 에틸아세테이트로 씻어준다. 얻어진 고체를 건조시켜 중합체 C3를 689 mg (수율: 62 %) 수득하였다. (Mw=108187, Mn=78944; 수평균분자량 및 중량평균분자량은 Agilent 1200 series를 이용하여 PS 스텐다드(Standard)를 이용한 GPC로 측정)
[제조예-HIL Dopant]
제조예 3-1: 화합물 3-1의 제조
단계 1) 화합물 3-1'의 제조
Figure PCTKR2020010651-appb-img-000092
100 mL 둥근 바닥 플라스크에 질소 분위기 하에서 Mg(193 mg, 7.92 mmol), I 2(4 mg) 및 THF(10 mL)를 넣고 30 분 동안 교반하였다. 4-브로모스티렌(1.04 mL, 7.92 mmol)을 넣고 30 ℃ 물 수조를 둥근 바닥 플라스크 아래에 놓고 하루 동안 교반하였다. 반응 용액이 검은색이 되며 Mg이 녹아 들어간 것을 확인하였다. 에테르(5 mL)를 첨가하여 반응 용액을 묽게 만들어 주었다. 트리스(펜타플루오로페닐)보란(1 g, 3.96 mmol)을 에테르(5 mL)에 녹여 30 분 동안 천천히 반응 용액에 첨가하였다. 하루 동안 용액을 교반하였다. Na 2CO 3(0.1 M, 80 mL, 8.0 mmol)을 천천히 반응 용액에 첨가해 주었다. 에틸 아세테이트(20 mL * 3)를 사용하여 유기 용매를 추출하고 MgSO 4로 잔여 물을 제거하였다. 추가적으로 잔여한 물과 불순물을 제거하기 위해 딘-스탁(Dean-stock)을 이용하여 벤젠으로 증류하였다. 용매가 10 mL 정도 남았을 때 용액을 식히고 여과하여 화합물 3-1'(1.6 g, 수율 64 %)를 제조하였다.
단계 2) 화합물 3-1의 제조
Figure PCTKR2020010651-appb-img-000093
25 mL 둥근 바닥 플라스크에 화합물 3-1'(100 mg, 0.16 mmol), 증류수(10 mL) 및 Ph 2ICl(60 mg, 0.19 mmol)을 넣고 1 시간 동안 교반하였다. 반응 용액에 아세톤(15 mL)를 가하여 침전이 생기게 하고 상기 침전물을 필터하고 건조하여 화합물 3-1(140 mg, 수율 100 %)을 제조하였다.
MS: [M-H] - = 615 (negative mode)
MS: [M+H] + = 281 (positive mode)
제조예 3-2: 화합물 3-2의 제조
단계 1) 화합물 3-2'의 제조
Figure PCTKR2020010651-appb-img-000094
250 mL 둥근 바닥 플라스크에 메틸트리페닐 포타슘 브로마이드(13.90 g, 38.91 mmol)과 THF(100 mL)를 넣고 0℃에서 30 분 동안 교반하였다. 반응 용액에 n-BuLi(15.6 mL, 38.91 mmol, 2.5 M in Hexane)을 천천히 첨가해 주고 0 ℃에서 30 분 동안 교반하였다. 0 ℃에서 반응 용액에 4-포르밀-2,3,5,6-테트라플루오로 -1-브로모벤젠(5.0 g, 19.47 mmol, in 30 mL THF)를 천천히 첨가하였다. 반응 용액을 천천히 상온으로 온도를 올려주면서 교반해 주었다. 3 시간 후 반응 용액에 에테르(100 mL)와 NH 4Cl 포화 용액(400 mL)을 가하였다. 에테르(200 mL * 2)를 사용하여 유기 용매를 추출하고 MgSO 4로 잔여 물을 제거하였다. 에틸 아세테이트:헥산 = 1:9(v:v)로 컬럼하여 화합물 3-2'(1.29 g, 수율 26 %)을 제조하였다.
단계 2) 화합물 3-2"의 제조
Figure PCTKR2020010651-appb-img-000095
25 mL 둥근 바닥 플라스크에 Mg(95 mg, 3.92 mmol), THF(10 mL) 및 I 2(4 mg)을 넣어주고 교반하였다. 화합물 3-2'(1.0 g, 3.92 mmol)을 반응 용액에 넣고 상온에서 교반하였다. 10 시간 뒤 용액이 검은색으로 Mg이 완전히 녹아 들어가는 것을 확인하고 에테르(10 mL)와 BCl 3(1.3 mL, 1.3 mmol, 헥산 용액 중 1M)을 30 분에 걸쳐 첨가하였다. 하루 동안 반응 용액을 교반한 후 Na 2CO 3(30 mL, 3.0 mmol, 0.1 M in H 2O)를 첨가하였다. 에틸 아세테이트(10 mL * 3)로 합성 물질을 추출해 낸 후 MgSO 4로 잔여 물을 제거하였다. 용매를 모두 제거한 후 벤젠을 사용하여 딘-스탁(Dean-stock)으로 물을 완전히 제거하고 고체를 여과하여 화합물 3-2"(340 mg, 수율 28 %)을 제조하였다.
단계 3) 화합물 3-2의 제조
Figure PCTKR2020010651-appb-img-000096
25 mL 둥근 바닥 플라스크에 화합물 3-2"(200 mg, 0.27 mmol), 1-(4-비닐벤질)피리딘-1-이움 클로라이드(69 mg, 0.30 mmol), H 2O(10 mL), 메틸렌 클로라이드(10 mL)를 넣어주고 격렬하게 30 분 동안 교반하였다. 에테르(10 mL * 3)를 사용하여 유기 용매를 추출하고 MgSO 4로 잔여 물을 제거하였다. 용매를 제거하고 진공 건조하여 화합물 3-2(247 mg, 수율 100 %)을 제조하였다.
MS: [M-H] - = 711 (negative mode)
MS: [M+H] + = 196 (positive mode)
제조예 3-3: 화합물 3-3의 제조
단계 1) 화합물 3-3'의 제조
Figure PCTKR2020010651-appb-img-000097
50 mL 둥근 바닥 플라스크에 1-브로모-2,3,5,6-테트라플르오르-4-(1,2,2-트라이플르오르바이닐)벤젠(2 g, 7.84 mmol)을 THF(20 mL)에 넣어주고 -78 ℃에서 30 분 동안 교반하였다. 용액에 천천히 n-BuLi in hexane(3.45 mL, 8.63 mmol, 2.5 M)을 넣고 -78 ℃에서 30 분 동안 교반하였다. 반응 용액에 BCl 3(2.6 mL, 2.61 mmol, 헥산 용액 중 1 M)을 -78 ℃에서 15 분에 걸쳐 첨가하였다. 상온으로 천천히 승온하며 하루 동안 반응 용액을 교반한 후 물(30 mL)을 첨가하였다. 에틸 아세테이트(10 mL * 3)로 합성 물질을 추출해 낸 후 용매를 모두 제거하였다. 벤젠을 사용하여 딘-스탁(Dean-stock)으로 물을 완전히 제거하고 고체를 여과하여 화합물 3-3'(800 mg, 수율 43 %)을 제조하였다.
단계 2) 화합물 3-3의 제조
Figure PCTKR2020010651-appb-img-000098
25 mL 둥근 바닥 플라스크에 화합물 3-3'(400 mg, 0.56 mmol), 다이페닐아이오도늄 클로라이드(176 mg, 0.56 mmol), 물(10 mL), 아세톤(10 mL)을 넣어주고 격렬하게 30 분 동안 교반하였다. 디클로로메테인(10 mL * 3)을 사용하여 추출하여 용매를 제거하고 건조하여 화합물 3-3(552 mg, 수율 100 %)을 제조하였다.
MS: [M-H] - = 711 (negative mode)
MS: [M+H] + = 281 (positive mode)
제조예 3-4: 화합물 3-4의 제조
단계 1) 화합물 3-4'의 제조
Figure PCTKR2020010651-appb-img-000099
500 mL 둥근 바닥 플라스크에 포타슘 카보네이트(10.4 g, 75.3 mmol)을 넣고 DMF(200 ml)를 넣어주었다. 플라스크에 2,3,5,6-테트라플루오로페놀(10.0 g, 60.22 mmol)을 넣고 60 ℃에서 30 분 동안 교반하였다. 반응 용액에 4-비닐벤질클로라이드(7.66 g, 50.18 mmol)를 천천히 첨가해주고 60 ℃에서 16 시간 동안 교반하였다. 이후 물(300 mL), 에틸 아세테이트(200 ml)를 가하였다. 에틸 아세테이트(200 mL * 2)를 사용하여 유기층을 추출하고 MgSO 4로 잔여 물을 제거하였다. 에틸 아세테이트:헥산 = 1:9(v:v)로 컬럼하여 화합물 3-4'(11.2 g, 수율 79 %)를 제조하였다.
단계 2) 화합물 3-4"의 제조
Figure PCTKR2020010651-appb-img-000100
250 ml 둥근 바닥 플라스크에 화합물 3-4'(10 g, 35.43 mmol)을 넣고 에테르(130 ml)를 넣어주고 교반하였다. -78 ℃로 반응 용액을 냉각시키고 30 분 동안 교반하였다. n-BuLi(17 ml, 42.52 mmol, 2.5 M in Hexane)을 30 분에 걸쳐서 천천히 주입하였다. 이후 1 시간 동안 교반하였다. BCl 3(8.15 ml, 8.15 mmol, 1 M in Hexane)을 30 분에 걸쳐서 천천히 투입하였다. 반응 용액을 천천히 상온으로 승온시켰다. 하루 동안 반응 용액을 교반한 후 물(200 ml)을 첨가하였다. 에테르(100 mL * 3)로 합성 물질을 추출해 낸 후 용매를 모두 제거하였다. 이후 벤젠을 사용하여 딘-스탁(Dean-stock)으로 물을 완전히 제거하고 고체를 여과하여 화합물 3-4"(6.2 g, 수율 66 %)을 제조하였다.
단계 3) 화합물 3-4의 제조
Figure PCTKR2020010651-appb-img-000101
25 mL 둥근 바닥 플라스크에 화합물 3-4"(6.2 g, 5.42 mmol), 디페닐아이도오늄 클로라이드(2.57 g, 8.13 mmol), 물(50 mL), 아세톤(10 mL)을 넣어주고 격렬하게 30 분 동안 교반하였다. 메틸렌 클로라이드(20 mL * 3)를 사용하여 유기 용매를 추출하고 용매를 제거하였다. 메틸렌 클로라이드:아세톤 = 9:1(v:v)로 컬럼하여 화합물 3-4(5.0 g, 수율 65 %)를 제조하였다.
MS: [M-H] - = 1135 (negative mode)
MS: [M+H] + = 281 (positive mode)
제조예 A: 비교화합물 1의 제조
Figure PCTKR2020010651-appb-img-000102
2-브로모-9,9-디페닐-9H-플루오렌(1.49 g, 3.74 mmol), N4,N4'-디페닐-[1,1'-비페닐]-4,4'-디아민(572 mg. 1.7 mmol), 및 소듐 터트-부톡사이드(980 mg, 10.2 mmol)가 든 플라스크에 톨루엔을 넣었다. 반응물이 든 플라스크를 90 ℃ 오일 배쓰(oil bath)에 담근 뒤, Pd(P(tBu) 3) 2(43 mg, 0.085 mmol)를 넣고 1 시간 동안 돌려주었다. 물을 넣어 반응을 중지시키고 디클로로메탄으로 추출한 뒤 MgSO 4로 유기층을 건조하였다. 유기 용매를 진공 회전 농축기를 사용하여 제거한 후, 잔여물을 컬럼 정제하여 비교화합물 1을(870 mg, HPLC 순도 99.0 %)를 제조하였다.
MS: [M+H] + = 969
제조예 B: 비교화합물 2의 제조
Figure PCTKR2020010651-appb-img-000103
브로모나프탈렌(774 mg, 3.74 mmol), N4,N4'-디페닐-[1,1'-비페닐]-4,4'-디아민(572 mg. 1.7 mmol), 및 소듐 터트-부톡사이드(980 mg, 10.2 mmol)가 든 플라스크에 톨루엔을 넣었다. 반응물이 든 플라스크를 90 ℃ 오일 배쓰(oil bath)에 담근 뒤, Pd(P(tBu) 3) 2(43 mg, 0.085 mmol)를 넣고 1 시간 동안 돌려주었다. 물을 넣어 반응을 중지시키고 디클로로메탄으로 추출한 뒤 MgSO 4로 유기층을 건조하였다. 유기 용매를 진공 회전 농축기를 사용하여 제거한 후, 잔여물을 컬럼 정제하여 비교화합물 2(830 mg, HPLC 순도 99.0 %)를 제조하였다.
MS: [M+H] + = 589
제조예 C: 비교고분자 1의 제조
단계 1) 화합물 d1'의 제조
Figure PCTKR2020010651-appb-img-000104
2,2'-디브로모-9,9'-스피로비플루오렌(50 g, 105.4 mmol, 1.0 eq)과 4-바이닐페닐보론산(31.2 g, 211 mmol, 2.0 eq)를 300 g의 테트라하이드로퓨란(THF)에 용해하여 80 ℃의 수조(bath)에서 10 분간 교반하였다. K 2CO 3(37.89 g, 274 mmol, 2.60 eq)를 300 mL의 물에 용해 후 10 분간 적가하였다. Pd 촉매(3.66 g, 3.2 mmol, 0.03 eq)를 환류 하에서 투입 하였다. 2 시간 교반 후 에틸아세테이트(EA)/H 2O로 수세하여 유기층을 분리하고 용매를 진공 건조 하였다. n-헥산(n-Hex)과 에틸아세테이트(EA)를 통해 컬럼크로마토그래피하여 정제 후 테트라하이드로퓨란(THF)과 에탄올로 재결정하여, 흰색 고체인 화합물 d1'(22.8 g)을 제조하였다.
MS: [M+H] + = 496
단계 2) 단량체 d1의 제조
Figure PCTKR2020010651-appb-img-000105
화합물 d1'(2.4 g, 5.0 mmol, 1.0 eq)과 화합물 d2'(2.82 g, 5.0 mmol, 1.0 eq)를 20 ml의 1,4-디옥산(1,4-Dioxane)에 용해하여 120 ℃의 수조(bath)에서 30 분간 교반하였다. K 2CO 3(5.10 g, 37 mmol, 1.75 eq)를 40 mL의 물에 용해 후 그 용액을 내부온도 90 ℃를 유지하면서 10 분간 적가하였다. Pd 촉매(0.077 g, 0.15 mmol, 0.03 eq)를 환류하에서 투입하였다. 1 시간 교반 후 에틸아세테이트(EA)/H 2O로 수세하여 유기층을 분리하고 용매를 진공 건조하였다. n-헥산(n-Hex)과 디클로로메탄(DCM)을 통해 컬럼크로마토그래피하여 정제 후 n-헥산(n-Hex)으로 재결정하여 단량체 d1을 제조하였다.
MS: [M+H] + = 854.5
단계 3) 비교고분자 1의 제조
Figure PCTKR2020010651-appb-img-000106
단량체 1(500 mg) 및 아조비스이소부티로니트릴(AIBN)(1.2 mg)을 에틸아세테이트(EA)에 넣고 질소 치환 하에 25 ℃에서 12 시간 동안 반응시켰다. 반응 후 생성된 침전물을 여과하여 비교고분자 1을 제조하였다.
제조된 비교고분자 1의 수평균분자량은 37,100 g/mol이고, 중량평균 분자량은 78,600 g/mol이었다. 이때, 분자량은 Agilent 1200 series를 사용하여 PS Standard를 이용한 GPC로 측정하였다.
[소자예]
실시예 1
ITO가 1500 Å의 두께로 박막 증착된 유리 기판을 아세톤 용제를 사용하여 10분간 초음파 세척하였다. 그 뒤 세제를 녹인 증류수에 넣고 초음파로 10 분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10 분간 진행하였다. 증류수 세척이 끝난 후 아이소프로필알콜의 용제로 초음파 세척을 10 분간 한 뒤 건조하였다. 그 뒤 상기 기판을 글러브 박스로 수송시켰다.
상기와 같이 준비된 ITO 투명 전극 위에 앞서 제조한 화합물 1-2와 화합물 3-3을 8:2의 중량비로 포함하는 2 wt% 사이클로헥사논 용액을 스핀 코팅하고 230 ℃에서 30 분간 열처리하여 두께 600 Å의 정공주입층을 형성하였다. 상기 정공주입층 위에 앞서 제조한 중합체 C2를 0.8 wt%으로 포함하는 톨루엔 용액을 스핀 코팅하여 두께 1400 Å의 정공수송층을 형성하였다.
이후 진공증착기로 이송한 후 상기 정공수송층 위에 하기 화합물 A와 하기 화합물 B를 9:1의 중량비로 진공 증착하여 두께 300 Å의 발광층을 형성하였다. 상기 발광층 위에 하기 화합물 C를 진공 증착하여 두께 400 Å의 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 두께 5 Å의 LiF와 두께 1000 Å의 알루미늄을 증착하여 캐소드를 형성하였다.
Figure PCTKR2020010651-appb-img-000107
상기의 과정에서 유기물의 증착 속도는 0.4 ~ 1.0 Å/sec를 유지하였고, 캐소드의 LiF는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며 증착시 진공도는 2 * 10 -8 ~ 5 * 10 -6 torr를 유지하였다.
실시예 2 내지 실시예 29
화합물 1-2, 화합물 3-3 및/또는 중합체 C2 대신 하기 표 1에 기재된 화합물을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 각각 제조하였다.
비교예 1 내지 비교예 6
화합물 1-2, 화합물 3-3 및/또는 중합체 C2 대신 하기 표 1에 기재된 화합물을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 각각 제조하였다.
실험예
상기 실시예에서 제조한 유기 발광 소자에 대하여, 10 mA/cm 2의 전류 밀도에서 구동 전압, 전류 효율, 전력 효율 및 수명을 측정하여 그 결과를 하기 표 1에 나타내었다. 이때, LT90는 초기 휘도 대비 휘도가 90%가 되는 시간(hr)을 의미한다.
HIL Host HIL Dopant HTL 구동전압(V) 전류효율(cd/A) 전력효율(lm/W) LT90(hr)
실시예 1 화합물 1-2 화합물 3-3 중합체 C2 4.27 5.98 4.40 530
실시예 2 화합물 1-2 화합물 3-3 중합체 C3 4.21 6.11 4.56 545
실시예 3 화합물 1-4 화합물 3-3 중합체 C3 4.09 6.20 5.55 610
실시예 4 화합물 1-1 화합물 3-1 중합체 C2 4.62 5.40 3.67 450
실시예 5 화합물 1-1 화합물 3-1 중합체 C3 4.51 5.42 3.77 435
실시예 6 화합물 1-1 화합물 3-2 중합체 C2 4.53 5.42 3.76 449
실시예 7 화합물 1-1 화합물 3-2 중합체 C3 4.49 5.44 3.80 460
실시예 8 화합물 1-1 화합물 3-3 중합체 C2 4.29 5.69 4.16 510
실시예 9 화합물 1-1 화합물 3-3 중합체 C3 4.30 5.75 4.20 521
실시예 7 화합물 1-1 화합물 3-4 중합체 C2 4.47 5.52 3.88 490
실시예 8 화합물 1-1 화합물 3-4 중합체 C3 4.53 5.56 3.85 475
실시예 9 화합물 1-2 화합물 3-1 중합체 C2 4.45 5.45 3.85 482
실시예 10 화합물 1-2 화합물 3-1 중합체 C3 4.32 5.48 3.98 477
실시예 11 화합물 1-2 화합물 3-2 중합체 C2 4.45 5.61 3.96 502
실시예 12 화합물 1-2 화합물 3-2 중합체 C3 4.43 5.65 4.00 514
실시예 13 화합물 1-2 화합물 3-4 중합체 C2 4.40 5.80 4.14 531
실시예 14 화합물 1-2 화합물 3-4 중합체 C3 4.35 5.76 4.16 520
실시예 15 화합물 1-3 화합물 3-1 중합체 C2 4.33 5.41 3.92 462
실시예 16 화합물 1-3 화합물 3-1 중합체 C3 4.35 5.35 3.86 453
실시예 17 화합물 1-3 화합물 3-2 중합체 C2 4.41 5.69 4.05 493
실시예 18 화합물 1-3 화합물 3-2 중합체 C3 4.39 5.56 3.98 478
실시예 19 화합물 1-3 화합물 3-3 중합체 C2 4.19 6.02 4.51 550
실시예 20 화합물 1-3 화합물 3-3 중합체 C3 4.25 6.05 4.47 526
실시예 21 화합물 1-3 화합물 3-4 중합체 C2 4.30 5.78 4.22 511
실시예 22 화합물 1-3 화합물 3-4 중합체 C3 4.33 5.82 4.22 531
실시예 23 화합물 1-4 화합물 3-1 중합체 C2 4.50 5.60 3.91 497
실시예 24 화합물 1-4 화합물 3-1 중합체 C3 4.39 5.53 3.96 503
실시예 25 화합물 1-4 화합물 3-2 중합체 C2 4.29 5.79 4.24 509
실시예 26 화합물 1-4 화합물 3-2 중합체 C3 4.35 5.85 4.22 513
실시예 27 화합물 1-4 화합물 3-3 중합체 C2 4.12 6.15 4.69 617
실시예 28 화합물 1-4 화합물 3-4 중합체 C2 4.21 5.98 4.46 520
실시예 29 화합물 1-4 화합물 3-4 중합체 C3 4.23 6.01 4.46 556
비교예 1 화합물 1-1 화합물 3-1 중합체 C1 4.89 5.27 4.23 430
비교예 2 화합물 1-2 화합물 3-3 중합체 C1 4.40 5.89 4.79 400
비교예 3 비교화합물 1 화합물 3-1 비교고분자 1 4.9 5.10 3.27 13
비교예 4 화합물 1-1 화합물 3-2 비교화합물 2 4.7 6.16 4.12 75
비교예 5 비교화합물 1 화합물 3-3 중합체 C2 4.6 6.2 4.23 52
비교예 6 비교화합물 1 화합물 3-3 중합체 C3 4.7 6.3 4.21 67
상기 표 1에 나타난 바와 같이, 상기 화학식 1로 표시되는 화합물의 경화물을 정공주입층의 호스트 물질로 사용하고 상기 화학식 2-1로 표시되는 반복단위 및 상기 화학식 2-2로 표시되는 반복단위를 포함하는 고분자의 경화물을 정공수송층 물질로 사용한 실시예의 유기 발광 소자는, 상기 화학식 2-1 및/또는 화학식 2-2로 표시되는 반복단위를 포함하지 않는 고분자의 경화물을 정공수송층 물질로 사용한 유기 발광 소자 대비 구동 전압, 효율 및 수명 특성 모두에서 향상된 특성을 나타내며, 특히 수명이 뚜렷이 향상되었음을 알 수 있다.
또한, 본 발명 일 실시예의 유기 발광 소자는 고분자 대신 화합물을 정공수송층 물질로 사용하거나, 경화기를 포함하지 않는 화합물을 정공주입층의 호스트 물질로 사용한 유기 발광 소자 대비 구동 전압, 효율 및 수명 특성 모두에서 향상된 특성을 나타내며, 특히 수명이 뚜렷이 향상되었음을 알 수 있다.
부호의 설명
1: 기판 2: 양극
3: 정공주입층 4: 정공수송층
5: 발광층 6: 음극
7: 전자수송층 8: 전자주입층

Claims (28)

  1. 양극, 정공주입층, 정공수송층, 발광층, 및 음극을 포함하고,
    상기 정공주입층은 하기 화학식 1로 표시되는 화합물의 경화물을 포함하고,
    상기 정공수송층은 하기 화학식 2-1로 표시되는 반복단위 및 하기 화학식 2-2로 표시되는 반복단위를 포함하는 고분자의 경화물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure PCTKR2020010651-appb-img-000108
    상기 화학식 1에서,
    L 1은 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴렌이고,
    Ar 1은 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴이고,
    Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴이고,
    L 2는 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C 1-10 알킬렌, 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
    R 1은 각각 독립적으로 수소, 중수소; 할로겐; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 1-60 알콕시; 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    n은 각각 독립적으로 0 내지 3의 정수이고,
    R은 각각 독립적으로, 광경화성기; 또는 열경화성기이고,
    [화학식 2-1]
    Figure PCTKR2020010651-appb-img-000109
    상기 화학식 2-1에 있어서,
    R' 1 내지 R' 3는 각각 독립적으로, 수소, 또는 C 1-10 알킬이고,
    L' 1은 치환 또는 비치환된 C 6-60 아릴렌; -(치환 또는 비치환된 C 6-60 아릴렌)-O-(치환 또는 비치환된 C 6-60 아릴렌)-; -(치환 또는 비치환된 C 6-60 아릴렌)-(치환 또는 비치환된 C 1-10 알킬렌)-(치환 또는 비치환된 C 6-60 아릴렌)-; -(치환 또는 비치환된 C 6-60 아릴렌)-O-(치환 또는 비치환된 C 1-10 알킬렌)-O-; 또는 -(치환 또는 비치환된 C 6-60 아릴렌)-(치환 또는 비치환된 C 1-10 알킬렌)-O-(치환 또는 비치환된 C 1-10 알킬렌)-(치환 또는 비치환된 C 6-60 아릴렌)-이고,
    L' 2 및 L' 3는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴렌이고,
    Ar' 1 내지 Ar' 4는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이거나, Ar' 1 및 Ar' 2; 또는 Ar' 3 및 Ar' 4가 서로 결합하여 C 6-60 방향족 고리; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로방향족 고리를 형성하고,
    Ra는 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
    x는 상기 고분자에서 화학식 2-1로 표시되는 반복단위의 몰분율이고,
    [화학식 2-2]
    Figure PCTKR2020010651-appb-img-000110
    상기 화학식 2-2에서,
    R' 4 내지 R' 6는 각각 독립적으로, 수소, 또는 C 1-10 알킬이고,
    L' 4는 단일 결합; 치환 또는 비치환된 C 6-60 아릴렌이고,
    R'은 광경화성기; 또는 열경화성기이고,
    y는 상기 고분자에서 화학식 2-2로 표시되는 반복단위의 몰분율이다.
  2. 제1항에 있어서,
    L 1은 페닐렌, 비페닐디일, 터페닐디일, 페닐나프탈렌디일, 비나프틸디일, 페난쓰렌디일, 스피로비플루오렌디일, 디메틸플루오렌디일, 디페닐플루오렌디일, 또는 테트라페닐플루오렌디일이고,
    상기 L 1은 비치환되거나, 또는 1개 또는 2개의 C 1-10 알킬로 치환된,
    유기 발광 소자.
  3. 제1항에 있어서,
    L 1은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000111
    .
  4. 제1항에 있어서,
    Ar 1은 각각 독립적으로, 페닐, 비페닐릴, 나프틸, 페난쓰레닐, 또는 디메틸플루오레닐이고,
    상기 Ar 1은 비치환되거나, 또는 1개 내지 5개의 중수소, 또는 할로겐으로 치환된,
    유기 발광 소자.
  5. 제1항에 있어서,
    Ar 2는 각각 독립적으로, 페닐, 비페닐릴, 또는 나프틸이고,
    상기 Ar 2는 비치환되거나, 또는 -R; 1개 내지 5개의 중수소; 1개 또는 2개의 C 1-10 알킬; 1개 내지 5개의 할로겐; C 1-10 알콕시; C 1-10 알콕시로 치환된 C 1-10 알콕시; C 1-10 할로알킬; 또는 페녹시로 치환되고,
    상기 R의 정의는 제1항에서 정의한 바와 같은,
    유기 발광 소자.
  6. 제1항에 있어서,
    L 2는 각각 독립적으로, 단일 결합, 부틸렌, 펜틸렌, 헥실렌, 헵틸렌, 또는 페닐렌인,
    유기 발광 소자.
  7. 제1항에 있어서,
    n은 1이고,
    R 1은 각각 독립적으로 수소, 또는 페닐인,
    유기 발광 소자.
  8. 제1항에 있어서,
    R은 -L 3-R 2이고,
    L 3는 단일 결합, -O-, -S-, -CH 2-, -CH 2O-, -OCH 2-, -CH 2OCH 2-, -N(페닐)-, 또는 -O(CH 2) 6-이고,
    R 2는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000112
    .
  9. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나의 화합물인,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000113
    Figure PCTKR2020010651-appb-img-000114
    Figure PCTKR2020010651-appb-img-000115
    Figure PCTKR2020010651-appb-img-000116
    Figure PCTKR2020010651-appb-img-000117
    Figure PCTKR2020010651-appb-img-000118
    Figure PCTKR2020010651-appb-img-000119
    Figure PCTKR2020010651-appb-img-000120
    Figure PCTKR2020010651-appb-img-000121
    Figure PCTKR2020010651-appb-img-000122
    Figure PCTKR2020010651-appb-img-000123
    Figure PCTKR2020010651-appb-img-000124
    Figure PCTKR2020010651-appb-img-000125
    Figure PCTKR2020010651-appb-img-000126
    Figure PCTKR2020010651-appb-img-000127
    Figure PCTKR2020010651-appb-img-000128
    Figure PCTKR2020010651-appb-img-000129
    Figure PCTKR2020010651-appb-img-000130
    Figure PCTKR2020010651-appb-img-000131
    Figure PCTKR2020010651-appb-img-000132
    Figure PCTKR2020010651-appb-img-000133
    Figure PCTKR2020010651-appb-img-000134
    Figure PCTKR2020010651-appb-img-000135
    Figure PCTKR2020010651-appb-img-000136
    Figure PCTKR2020010651-appb-img-000137
    Figure PCTKR2020010651-appb-img-000138
    Figure PCTKR2020010651-appb-img-000139
    Figure PCTKR2020010651-appb-img-000140
    Figure PCTKR2020010651-appb-img-000141
    Figure PCTKR2020010651-appb-img-000142
    Figure PCTKR2020010651-appb-img-000143
    Figure PCTKR2020010651-appb-img-000144
    Figure PCTKR2020010651-appb-img-000145
    Figure PCTKR2020010651-appb-img-000146
    Figure PCTKR2020010651-appb-img-000147
    Figure PCTKR2020010651-appb-img-000148
    Figure PCTKR2020010651-appb-img-000149
    Figure PCTKR2020010651-appb-img-000150
    Figure PCTKR2020010651-appb-img-000151
    Figure PCTKR2020010651-appb-img-000152
    Figure PCTKR2020010651-appb-img-000153
    Figure PCTKR2020010651-appb-img-000154
    .
  10. 제1항에 있어서,
    x : y는 0.5 ~ 0.99 : 0.01 ~ 0.5인,
    유기 발광 소자.
  11. 제1항에 있어서,
    L' 1은 페닐렌, -(페닐렌)O(페닐렌)-, -(페닐렌)(CH 2) 6(페닐렌)-; -(페닐렌)O(CH 2) 6O-; 또는 -(페닐렌)CH 2OCH 2(페닐렌)-인,
    유기 발광 소자.
  12. 제1항에 있어서,
    L' 2 및 L' 3는 각각 독립적으로, 단일결합 또는 페닐렌인,
    유기 발광 소자.
  13. 제1항에 있어서,
    Ar' 1 내지 Ar' 4는 각각 독립적으로, 페닐, 비페닐릴, N,N-디페닐아미노로 치환된 비페닐릴, 또는 디메틸플루오레닐이거나, Ar' 1 및 Ar' 2; 또는 Ar' 3 및 Ar' 4가 서로 결합하여
    Figure PCTKR2020010651-appb-img-000155
    을 형성하는,
    유기 발광 소자.
  14. 제1항에 있어서,
    Ar' 1 내지 Ar' 4는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나이거나, Ar' 1 및 Ar' 2; 또는 Ar' 3 및 Ar' 4가 서로 결합하여
    Figure PCTKR2020010651-appb-img-000156
    을 형성하는,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000157
    .
  15. 제1항에 있어서,
    Ar' 1 및 Ar' 3는 페닐 또는 비페닐릴이고, Ar' 2 및 Ar' 4는 하기로 구성되는 군으로부터 선택되는 어느 하나이거나; Ar' 1 및 Ar' 2, 그리고 Ar' 3 및 Ar' 4가 서로 결합하여
    Figure PCTKR2020010651-appb-img-000158
    을 형성하는,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000159
    .
  16. 제1항에 있어서,
    Ra는 수소, 메틸, 또는 페닐인,
    유기 발광 소자.
  17. 제1항에 있어서,
    상기 화학식 2-1은 하기로 표시되는 반복단위로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000160
    Figure PCTKR2020010651-appb-img-000161
    .
  18. 제1항에 있어서,
    L' 4은 단일 결합 또는 페닐렌인,
    유기 발광 소자.
  19. 제1항에 있어서,
    상기 화학식 2-2는 하기로 표시되는 반복단위로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000162
    .
  20. 제1항에 있어서,
    상기 고분자의 중량평균분자량은 5,000 내지 1,000,000 g/mol인,
    유기 발광 소자.
  21. 제1항에 있어서,
    상기 정공주입층은 하기 화학식 3으로 표시되는 화합물을 추가로 포함하는,
    유기 발광 소자:
    [화학식 3]
    Figure PCTKR2020010651-appb-img-000163
    상기 화학식 3에서,
    n1 및 n2는 각각 독립적으로 1 내지 3의 정수이고, 단 n1+n2는 4이고,
    Ar" 1
    Figure PCTKR2020010651-appb-img-000164
    이고,
    R"은 광경화성기; 또는 열경화성기이고,
    R" 1은 각각 독립적으로, 수소, 할로겐, 또는 C 1-60 할로알킬이고,
    n3은 1 내지 4의 정수이고,
    Ar" 2
    Figure PCTKR2020010651-appb-img-000165
    이고,
    R" 2는 각각 독립적으로, 수소, 할로겐, C 1-60 할로알킬, 광경화성기, 또는 열경화성기이고,
    n4는 1 내지 5의 정수이다.
  22. 제21항에 있어서,
    R" 1은 각각 독립적으로, 수소, 플루오로, 또는 CF 3인,
    유기 발광 소자.
  23. 제21항에 있어서,
    Ar" 1은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000166
    .
  24. 제21항에 있어서,
    R" 2는 각각 독립적으로, 수소, 플루오로, CF 3, CF(CF 3) 2, CF 2CF 2CF 2CF 3, 광경화성기, 또는 열경화성기인,
    유기 발광 소자.
  25. 제21항에 있어서,
    Ar" 2는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000167
    .
  26. 제21항에 있어서,
    상기 화학식 3으로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010651-appb-img-000168
    Figure PCTKR2020010651-appb-img-000169
    상기 군에서,
    n1 및 n2는 제21항에서 정의한 바와 같다.
  27. 제1항에 있어서,
    상기 화학식 1, 상기 화학식 2-1 및 상기 화학식 2-2 중 적어도 하나는 적어도 10% 중수소화된,
    유기 발광 소자.
  28. 제21항에 있어서,
    상기 화학식 3은 적어도 10% 중수소화된,
    유기 발광 소자.
PCT/KR2020/010651 2019-08-26 2020-08-12 유기 발광 소자 WO2021040278A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/614,848 US20220238804A1 (en) 2019-08-26 2020-08-12 Organic Light Emitting Device
CN202080035928.7A CN113841265B (zh) 2019-08-26 2020-08-12 有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0104638 2019-08-26
KR20190104638 2019-08-26
KR10-2020-0097983 2020-08-05
KR1020200097983A KR102376145B1 (ko) 2019-08-26 2020-08-05 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2021040278A1 true WO2021040278A1 (ko) 2021-03-04

Family

ID=74683624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010651 WO2021040278A1 (ko) 2019-08-26 2020-08-12 유기 발광 소자

Country Status (3)

Country Link
US (1) US20220238804A1 (ko)
CN (1) CN113841265B (ko)
WO (1) WO2021040278A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074382A (ko) * 2014-12-18 2016-06-28 삼성전자주식회사 유기 발광 소자용 재료 및 이를 포함한 유기 발광 소자
KR20160093531A (ko) * 2015-01-29 2016-08-08 삼성전자주식회사 전하 수송 재료 및 이를 포함한 유기 발광 소자
WO2017031622A1 (en) * 2015-08-21 2017-03-02 Dow Global Technologies Llc Polymeric charge transfer layer and organic electronic device containing same
KR20180099446A (ko) * 2017-02-28 2018-09-05 주식회사 엘지화학 플루오렌계 화합물, 이를 이용한 유기 발광 소자 및 이의 제조방법
KR20190035513A (ko) * 2017-09-26 2019-04-03 주식회사 엘지화학 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060142520A1 (en) * 2004-12-27 2006-06-29 3M Innovative Properties Company Hole transport layers for organic electroluminescent devices
KR20070081623A (ko) * 2006-02-13 2007-08-17 삼성에스디아이 주식회사 유기 발광 소자
GB2508409B (en) * 2012-11-30 2015-11-25 Cambridge Display Tech Ltd Organic light-emitting composition, device and method
KR20150126809A (ko) * 2015-10-30 2015-11-13 삼성전자주식회사 발광 고분자 및 상기 발광 고분자를 포함한 유기 발광 소자
KR101744248B1 (ko) * 2016-09-06 2017-06-07 주식회사 엘지화학 유기발광 소자
KR102078302B1 (ko) * 2016-11-29 2020-02-18 주식회사 엘지화학 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074382A (ko) * 2014-12-18 2016-06-28 삼성전자주식회사 유기 발광 소자용 재료 및 이를 포함한 유기 발광 소자
KR20160093531A (ko) * 2015-01-29 2016-08-08 삼성전자주식회사 전하 수송 재료 및 이를 포함한 유기 발광 소자
WO2017031622A1 (en) * 2015-08-21 2017-03-02 Dow Global Technologies Llc Polymeric charge transfer layer and organic electronic device containing same
KR20180099446A (ko) * 2017-02-28 2018-09-05 주식회사 엘지화학 플루오렌계 화합물, 이를 이용한 유기 발광 소자 및 이의 제조방법
KR20190035513A (ko) * 2017-09-26 2019-04-03 주식회사 엘지화학 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법

Also Published As

Publication number Publication date
CN113841265B (zh) 2023-09-22
US20220238804A1 (en) 2022-07-28
CN113841265A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2018097661A1 (ko) 유기 발광 소자
WO2017183806A1 (ko) 카바졸 유도체 및 이를 이용한 유기 발광 소자
WO2021107359A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021182775A1 (ko) 유기 발광 소자
WO2021096228A1 (ko) 유기 발광 소자
WO2020153713A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2011145876A2 (ko) 신규 하이브리드 유기 화합물 및 이를 이용한 유기 전계 발광소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021221475A1 (ko) 유기 발광 소자
WO2022086168A1 (ko) 유기 발광 소자
WO2020141949A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021040328A1 (ko) 유기 발광 소자
WO2022080715A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2019225989A1 (ko) 화합물, 이를 포함하는 코팅 조성물 및 유기 발광 소자
WO2019066306A1 (ko) 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2020159333A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020159337A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019225987A1 (ko) 화합물, 이를 포함하는 코팅 조성물 및 유기 발광 소자
WO2019066338A1 (ko) 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2021194148A1 (ko) 신규한 고분자 및 이를 이용한 유기 발광 소자
WO2019066337A1 (ko) 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021177632A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2020159335A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858436

Country of ref document: EP

Kind code of ref document: A1