WO2021039965A1 - パルブアルブミン陽性神経細胞の製造方法、細胞、及び分化誘導剤 - Google Patents

パルブアルブミン陽性神経細胞の製造方法、細胞、及び分化誘導剤 Download PDF

Info

Publication number
WO2021039965A1
WO2021039965A1 PCT/JP2020/032606 JP2020032606W WO2021039965A1 WO 2021039965 A1 WO2021039965 A1 WO 2021039965A1 JP 2020032606 W JP2020032606 W JP 2020032606W WO 2021039965 A1 WO2021039965 A1 WO 2021039965A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
mirna
cell
cells
microrna
Prior art date
Application number
PCT/JP2020/032606
Other languages
English (en)
French (fr)
Inventor
充 石川
岡野 栄之
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2021543041A priority Critical patent/JPWO2021039965A1/ja
Priority to EP20858676.8A priority patent/EP4023748A4/en
Priority to CN202080067399.9A priority patent/CN114514314A/zh
Priority to US17/637,862 priority patent/US20220282210A1/en
Publication of WO2021039965A1 publication Critical patent/WO2021039965A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/65MicroRNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Definitions

  • the present invention relates to a method for producing a parvalbumin-positive nerve cell, a cell, and a differentiation inducer.
  • the present application claims priority based on Japanese Patent Application No. 2019-157194 filed in Japan on August 29, 2019, the contents of which are incorporated herein by reference.
  • Parvalbumin-positive neurons are one of the important neurons involved in diseases of the cranial nerve system, and it is thought that the abundance and functional decline of parvalbumin-positive neurons cause various neuropsychiatric disorders and neurodevelopmental disorders.
  • Non-Patent Document 1 Non-Patent Document 2. Therefore, attention has been paid to the elucidation of its function for many years, and in recent years, a technique for producing parvalbumin-positive neurons from pluripotent stem cells such as human iPS cells has been strongly desired.
  • Non-Patent Document 4 reports a method in which the appearance rate of parvalbumin-positive neurons is the most efficient among the conventional induction methods, but this method involves a plurality of differentiation induction steps. After it takes about 80 days for the parvalbumin-positive neurons to be produced, the positive rate of the parvalbumin-positive neurons produced is about 20 to 30%.
  • the present invention has a method for producing parbualbumin-positive neurons with high efficiency in a short period of time with few differentiation-inducing steps, cells capable of inducing parbu-albumin-positive neurons, and differentiation-inducing into parbu-albumin-positive neurons. It is an object of the present invention to provide a differentiation-inducing agent for causing differentiation.
  • the present invention includes the following aspects.
  • a method for producing a palbualbumin-positive nerve cell including.
  • the expression induction step simultaneously expresses at least one selected from the group consisting of microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124), and BclxL gene.
  • the expression induction step can express at least one selected from the group consisting of microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL gene.
  • the microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes are tetracycline-regulated (Tet-ON) [5] or [ 6]
  • the manufacturing method according to. [8] The production method according to any one of [1] to [7], wherein the cell is a fibroblast or a pluripotent stem cell.
  • microRNA-9 / 9 * miRNA-9 / 9 *
  • microRNA-124 miRNA-124
  • BclxL gene is introduced so as to be expressible.
  • the microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes are tetracycline-regulated (Tet-ON), according to [13].
  • a differentiation-inducing agent for inducing differentiation of cells into parvalbumin-positive neurons which contains the Ascl1 gene, the Dlx2 gene and the MEF2C gene, or their gene products as active ingredients.
  • Tet-ON tetracycline-regulated
  • at least one selected from the group consisting of microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL gene, or a gene product thereof is effective.
  • the differentiation-inducing agent according to [16] or [17] which is contained as an ingredient.
  • microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes are tetracycline-regulated (Tet-ON), according to [18].
  • Differentiation inducer [20] The differentiation inducer according to any one of [16] to [19], wherein the cell is a fibroblast or a pluripotent stem cell.
  • a method for producing a palbualbumin-positive nerve cell with high efficiency in a short period of time with few differentiation-inducing steps, a cell that can induce the palbualbumin-positive nerve cell, and the palbualbumin-positive nerve cell can be provided.
  • the time course of piggyBac vector introduction into human pluripotent stem cells and cloning by drug selection is shown.
  • the time course of infection of human pluripotent stem cells with a lentiviral vector and Tet-driven nerve induction by doxycycline is shown.
  • MC indicates medium exchange
  • Neurobasal Plus B27 Plus indicates medium for nerve cells
  • Dox indicates doxycycline.
  • CMV, PGK, CAG, and EF1a indicate constitutive expression gene promoters.
  • Puro. R is a puromycin resistance gene, Hygro.
  • R is a hygromycin resistance gene, Neo.
  • R is a G418 resistance gene
  • Blast. R indicates a blastisidin resistance gene
  • Tet indicates a Tet operator DNA repetitive element
  • HyPBase indicates a transposase
  • rtTA3G indicates a reverse tetracycline-regulated transactivator
  • ITR indicates an inverted repeat sequence. It is a figure which showed the production scheme of the parvalbumin gene (PVALB) reporter cell line. It is a figure which showed the immunostaining image of the cell 20 days after nerve induction (expression induction 5 days, differentiation 15 days).
  • PVALB parvalbumin gene
  • PV-GFP shows an immunostaining image with Anti-PV antibody
  • GFP / Phase shows a bright field image
  • Hoechst shows a nuclear staining image
  • Anti-GFP shows an immunostaining image with Anti-GFP antibody. + Indicates gene transfer and-indicates no gene transfer.
  • miRNA-9/9 * If you did not transient expression of miRNA-124, BclxL genes, right figure, miRNA-9/9 *, transient expression of miRNA-124, BclxL gene
  • the immunostaining images of the cells are shown.
  • + Indicates gene transfer and-indicates no gene transfer. Arrows indicate typical cells of cells stained with Anti-PV and Anti-GFP antibodies. It is a graph which showed the analysis of the parvalbumin mRNA expression level by the quantitative PCR method. In the figure, + indicates gene transfer and-indicates no gene transfer.
  • the present invention comprises an expression induction step of inducing the expression of Ascl1 gene, Dlx2 gene and MEF2C gene in a cell, and culturing the cell after the expression induction, and palbualbumin-positive nerve cell from the cell.
  • a method for producing a palbualbumin-positive nerve cell hereinafter, also referred to as PV + nerve cell, which comprises a differentiation step for differentiating.
  • the production method of the present embodiment can provide a method for producing PV + nerve cells with high efficiency in a short period of time with few differentiation induction steps.
  • the conventional method for inducing differentiation of PV + nerve cells has many differentiation induction steps, and the content of PV + nerve cells is about 20 to 30% at the maximum. Moreover, the period for inducing differentiation into PV + nerve cells was as long as about 60 to 80 days.
  • there are few differentiation induction steps and it is possible to produce a cell population in which 85% or more are PV + nerve cells in 20 days.
  • the cells used in the production method of the present embodiment are not particularly limited as long as they can be induced into PV + nerve cells, and examples thereof include fibroblasts, mesenchymal stem cells, and pluripotent stem cells. Fibroblasts and mesenchymal stem cells are preferred.
  • pluripotent stem cells include embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).
  • the pluripotent stem cell may be a human-derived cell or a non-human animal-derived cell such as a mouse, rat, pig, goat, sheep, or monkey.
  • the pluripotent stem cell described above may be an artificial pluripotent stem cell derived from a healthy person or an artificial pluripotent stem cell derived from a neurological disease patient.
  • the obtained PV + nerve cells can be used as a model for neurological disease.
  • Such PV + nerve cells are useful for elucidating the mechanism of neurological diseases.
  • Ascl1 is a transcription factor belonging to the bHLH family that works in the early stage of neural development.
  • Dlx2 is expressed in cells derived from the basal ganglia primordium and is an important transcription factor in the production of GABAergic neurons in the cerebrum.
  • MEF2C is a transcription factor that is particularly highly expressed in muscle and nerve cells. Examples of NCBI accession numbers for human and mouse Ascl1, Dlx2 and MEF2C proteins and mRNAs are shown in Tables 1 and 2 below.
  • Each of the Ascl1, Dlx2 and MEF2C factors may have a mutation as long as it has an activity to induce differentiation in PV + nerve cells.
  • the factor has 80% or more sequence identity with respect to the protein or mRNA identified by the NCBI accession number exemplified in Table 1 or Table 2. It is preferably having sex, more preferably 90% or more of sequence identity, and even more preferably 95% or more of sequence identity.
  • sequence identity of the amino acid sequence is a value indicating the ratio of the target amino acid sequence (target amino acid sequence) to the reference amino acid sequence (reference amino acid sequence).
  • the factor that induces differentiation into PV + nerve cells may be a protein or a gene (nucleic acid) encoding the protein. Further, the gene (nucleic acid) may be mRNA or DNA. When the above factor is DNA, the DNA may be contained in an expression vector.
  • the Ascl1 gene, Dlx2 gene and MEF2C gene are introduced so that they can be expressed from the outside even if they are endogenous to the cell as long as the expression can be induced. There may be.
  • the expression induction step includes a gene transfer step of introducing the Ascl1 gene and the Dlx2 gene so that they can be expressed.
  • the gene transfer step may further include a gene transfer step of introducing the MEF2C gene so that it can be expressed.
  • an expression vector containing the Ascl1 gene, the Dlx2 gene and the MEF2C gene can be constructed and introduced into the cell.
  • the expression of the Ascl1 gene, the Dlx2 gene and the MEF2C gene can be controlled by an expression cassette whose expression can be adjusted according to the response of an external stimulus.
  • an expression cassette is a nucleic acid construct containing at least the Ascl1, Dlx2 and MEF2C genes whose expression is regulated by a promoter capable of inducing the expression of a downstream gene in response to an external stimulus.
  • the promoter is not particularly limited as long as it can induce the expression of downstream genes in response to an external stimulus.
  • the external stimulus is the presence of a tetracycline antibiotic (tetracycline or a tetracycline derivative such as doxicycline).
  • a promoter capable of inducing the expression of a downstream gene by binding of a complex of a tetracycline antibiotic and a tetracycline transactivator can be mentioned.
  • the external stimulus is the absence of a tetracycline antibiotic
  • a promoter capable of inducing the expression of a downstream gene by dissociation of a tetracycline repressor can be mentioned.
  • the binding of the ecdysteroid with the ecdysone receptor-retinoid receptor complex causes the downstream gene.
  • Examples include promoters capable of inducing expression.
  • the binding of FKCsA to the Gal4 DNA binding domain fused to FKBP12-the VP16 activator domain complex fused to cyclophilin can induce the expression of downstream genes. Promoters can be mentioned.
  • the expression cassette may contain an enhancer, a silencer, a selectable marker gene (for example, a drug resistance gene such as a neomycin resistance gene), an SV40 origin of replication, or the like, if necessary. Further, a person skilled in the art can obtain a desired expression level by appropriately selecting and combining enhancers, silencers, selection marker genes, terminators, etc. from known ones in consideration of the type of the promoter to be used. An expression cassette capable of inducing the expression of the Ascl1 gene, the Dlx2 gene and the MEF2C gene can be constructed.
  • external stimuli include culturing in the presence or absence of the drug.
  • a tetracycline expression induction system eg, Takara, etc.
  • the Ascl1 gene, Dlx2 gene and MEF2C gene can be vectorized so that they can be expressed under the control of a tetracycline-controlled (Tet-On) promoter. That is, in the production method of the present embodiment, the Ascl1 gene, the Dlx2 gene and the MEF2C gene may be tetracycline-regulated (Tet-ON).
  • the Ascl1 gene, Dlx2 gene and MEF2C gene expression vector are transfected into cells to prepare transgenic cells.
  • a Tet-On regulatory plasmid expressing a reverse tetracycline-controlled transactivating factor (rtTA) is prepared, and the regulatory plasmid is introduced into the cells.
  • rtTA reverse tetracycline-controlled transactivating factor
  • tetracycline control expression system a commercially available one (for example, Knockout TM Tet RNAi System P (manufactured by Clontech)) may be used, or Dickins RA. et al. , (Nature Genetics, 39 (7): 914-921 (2007)).
  • microRNA-9 / 9 * miRNA-9 / 9 *
  • microRNA-124 miRNA-124
  • BclxL genes BclxL genes, and all of microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes. Is more preferably expressed at the same time.
  • microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes have been introduced so that they can be expressed externally, even if they are endogenous. There may be.
  • the expression induction step is performed from the microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes.
  • an expression cassette can be constructed and introduced into cells in the same manner as the Ascl1 gene, Dlx2 gene and MEF2C gene.
  • microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes are vectored so that they can be expressed under the control of a tetracycline-regulated (Tet-On) promoter. Can be produced. That is, the microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes may be tetracycline regulated (Tet-ON).
  • the NCBI accession numbers of the nucleic acid sequences of human miRNA-9 / 9 * and human miRNA-124 are NR_029692.1 and NR_029669.1, respectively.
  • the NCBI accession numbers of the nucleic acid sequences of mouse miRNA-9 / 9 * and mouse miRNA-124 are NR_029818.1 and NR_029814.1, respectively.
  • the NCBI accession numbers for human BclxL protein and mRNA are NP_001309169.1 and NM_001322240.2, respectively.
  • the NCBI accession numbers for the mouse BclxL protein and mRNA are NP_001341982.1 and NM_001355053.1.
  • the method for introducing the expression cassette into cells is not particularly limited, and a known method can be appropriately selected and used.
  • the expression cassette is inserted into an appropriate expression vector, and viral infection using a viral vector such as a retrovirus vector or an adenovirus vector, lipofection method, liposome method, electroporation method, calcium phosphate method, DEAE dextran method, micro It can be carried out by a known transformation method such as an injection method.
  • the expression vector is not particularly limited as long as these genes can be expressed in cells, and may be a plasmid vector, a viral vector, or a transposon vector.
  • Viral vectors have high gene transfer efficiency and are easy to use.
  • the viral vector include a retrovirus vector, a lentiviral vector, an adeno-associated virus vector, and an adenovirus vector.
  • the Ascl1 gene, Dlx2 gene, MEF2C gene, microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL gene are used. Multiple copies can be inserted on the genome.
  • the state of tetracycline-controlled (Tet-On) nerve-inducing cells can be maintained. Furthermore, by the above-mentioned external stimulus, cells in which the genome such as a gene has not been inserted can be eliminated, and only cells capable of inducing differentiation into PV + nerve cells can be maintained.
  • the transposon vector can be completely removed from the cell if necessary. Examples of such a transposon vector include a Piggybac transposon vector.
  • the external stimulus a person skilled in the art can appropriately adjust the amount to be added to the medium described later in consideration of the type of the promoter to be used and the like.
  • the preferred concentration of doxycycline added is 0.1 to 10 ⁇ g / ml, more preferably 1 to 2 ⁇ g / ml.
  • a medium for nerve cells for example, Neurobasal Plus Medium (Thermo Fisher) (Manufactured by Scientific) and the like.
  • the culture broth may contain additives normally added to the culture.
  • the additive include a ⁇ -selectase inhibitor, a ROCK inhibitor such as dibutyryl cAMP (dbcAMP) and Y27632.
  • the ⁇ -selectase inhibitor include DAPT ( ⁇ -secretase inhibitor IX), Compound E, ⁇ -secretase inhibitor XI, and ⁇ -secretase inhibitor III.
  • serum in the expression induction step and the subsequent differentiation step, and in one aspect of the production method of the present embodiment, differentiation induction into PV + nerve cells is performed in the absence of serum.
  • cells may be dissociated into single cells and reseeded before the expression of the Ascl1 gene, Dlx2 gene and MEF2C gene is induced.
  • dissociating into a single cell means dissociating the cells adhering to the culture vessel one by one.
  • Dissociation into a single cell can be performed by performing enzyme treatment such as acutase, trypsin, collagenase, triple select [TrypLE (registered trademark) Select], which is usually used for cell dissociation, and pipetting. ..
  • the expression induction step is carried out for 1 to 8 days, preferably 1 to 5 days. ..
  • the external stimulus is present for 1-8 days, preferably 1-5 days.
  • the cells are subsequently differentiated into PV + nerve cells as a result of a differentiation step of culturing after completing the expression induction step. After completion of the expression induction step, the cells are cultured for 10 days or longer, preferably 20 days or longer.
  • Examples of the medium used in the differentiation step include a medium for nerve cells, for example, Neurobasal Plus Medium (manufactured by Thermo Fisher Scientific) and the like.
  • additives usually added to the culture may be contained.
  • Examples of the additive include dibutyryl cAMP (dbcAMP), BDNF, GDNF, alcorbic acid and the like.
  • the cells containing the gene are differentiated into PV + nerve cells.
  • the differentiation into PV + nerve cells can be confirmed, for example, by the expression of PV in the nerve cells within a certain period (for example, 40 days) after the end of the expression induction step.
  • it can be confirmed by the expression of the nerve cell marker TUBB3 and genes such as GRIA4, SYT1 and NRXN2a which are considered to be elevated in PV + nerve cells.
  • a population of cells into which the Ascl1 gene, Dlx2 gene and MEF2C gene have been introduced plus the microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes.
  • the microRNA-9 / 9 * miRNA-9 / 9 *
  • microRNA-124 miRNA-124
  • BclxL BclxL genes.
  • the present invention provides cells into which the Ascl1 gene, Dlx2 gene and MEF2C gene have been introduced so that they can be expressed.
  • the cells of the present embodiment can be differentiated into PV + nerve cells by introducing the MEF2C gene into the Ascl1 gene and the Dlx2 gene so that they can be expressed.
  • the cells of this embodiment are further at least one selected from the group consisting of microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and the BclxL gene, preferably.
  • microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL genes may be introduced for expression.
  • MEF2C gene By further introducing the MEF2C gene into the Ascl1 gene and Dlx2 gene, it becomes a precursor cell with high differentiation efficiency, and in addition, microRNA-9 / 9 * (miRNA-9 / 9 * ) and microRNA-124 (miRNA-).
  • At least one selected from the group consisting of 124) and the BclxL gene preferably microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL gene can be expressed.
  • the Ascl1 gene, Dlx2 gene and MEF2C gene may be tetracycline-regulated (Tet-ON). Further, the cells of the present embodiment are further preferably at least one selected from the group consisting of microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL gene.
  • microRNA-9 / 9 * miRNA-9 / 9 *
  • microRNA-124 miRNA-124
  • BclxL genes may be tetracycline regulatory (Tet-ON).
  • the cells for inducing differentiation of PV + nerve cells of the present embodiment can be produced by the method described in the expression induction step of the above-mentioned production method.
  • the Ascl1 gene, Dlx2 gene and MEF2C gene can be expressed as cells into which the Ascl1 gene and the Dlx2 gene are further introduced so that the MEF2C gene can be expressed, and the PV + nerve cells can be expressed.
  • the cells can be differentiated without particular limitation, and examples thereof include fibroblasts, mesenchymal stem cells, and pluripotent stem cells, but fibroblasts and pluripotent stem cells are preferable.
  • the present invention provides a differentiation-inducing agent containing the Ascl1 gene, the Dlx2 gene and the MEF2C gene, or a gene product thereof as an active ingredient for inducing differentiation of cells into PV + nerve cells.
  • the differentiation inducer of the present embodiment can impart the ability to differentiate into PV + nerve cells to the undifferentiated cells having no ability to differentiate into PV + nerve cells.
  • the differentiation-inducing agent of the present embodiment is preferably at least one selected from the group consisting of microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL gene.
  • microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and the BclxL gene as active ingredients.
  • microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL gene are contained as active ingredients.
  • the differentiation-inducing agent of the present invention includes the Ascl1 gene, Dlx2 gene and MEF2C gene, and further microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL gene. At least one selected from the gene group consisting of, preferably, the Ascl1 gene, the Dlx2 gene and the MEF2C gene, and further microRNA-9 / 9 * (miRNA-9 / 9 * ) and microRNA-124 (miRNA-124). ) And a differentiation inducer containing the BclxL gene.
  • the Ascl1 gene, the Dlx2 gene and the MEF2C gene may be tetracycline-regulated (Tet-ON).
  • the differentiation-inducing agent of the present embodiment is at least one selected from the group consisting of microRNA-9 / 9 * (miRNA-9 / 9 * ), microRNA-124 (miRNA-124) and BclxL gene.
  • microRNA-9 / 9 * miRNA-9 / 9 *
  • microRNA-124 miRNA-124
  • BclxL gene tetracycline regulatory
  • the active ingredient that induces differentiation in PV + nerve cells may be the Ascl1 gene, the Dlx2 gene, the MEF2C gene, or a gene product thereof.
  • the gene product may be in the form of a fusion gene product of the protein and other proteins or peptides, in addition to the protein itself produced from the gene.
  • a fusion protein with green fluorescent protein (GFP) or a fusion gene product with a peptide such as a histidine tag can also be used.
  • GFP green fluorescent protein
  • a method for preparing such a fusion gene product is known, and those skilled in the art can easily design and prepare an appropriate fusion gene product according to the purpose.
  • the gene may be contained in an expression vector. That is, the differentiation inducer of the present embodiment may be an expression vector introduced so that the gene that induces differentiation in PV + nerve cells can be expressed.
  • the expression vector the expression vector or the like mentioned in the expression induction step of the above-mentioned production method is used.
  • the cells By introducing the differentiation inducer of the present embodiment into cells, the cells can be induced to differentiate into PV + nerve cells.
  • the differentiation-inducing agent of the present embodiment is a protein, RNA or the like
  • examples of the method for introducing the differentiation-inducing agent into cells include contact with cells, microinjection, a method using virus-like particles, a lipofection method, and the like. Combinations and the like can be mentioned.
  • the differentiation-inducing agent of the present embodiment is a vector or the like, as a method for introducing the differentiation-inducing agent into cells, for example, contact with cells, lipofection method, electroporation method, microinjection method, DEAE-dextran Examples include the method, the calcium phosphate method, and a combination thereof.
  • the vector is a viral vector, it can be introduced into cells by infecting the cells.
  • the introduction of the differentiation inducer of the present embodiment into cells may be carried out in vitro or in vivo.
  • one type of differentiation inducer may be used alone, or two or more types may be mixed and used.
  • the cells that the differentiation-inducing agent of the present embodiment induces differentiation are not particularly limited as long as they can induce PV + nerve cells, and examples thereof include fibroblasts, mesenchymal stem cells, and pluripotent stem cells. However, fibroblasts and pluripotent stem cells are preferred.
  • examples of the cell species to be induced by the differentiation-inducing agent of the present embodiment include humans, mice, rats, rabbits, dogs, monkeys, pigs, goats, sheep and the like.
  • AK02N manufactured by Ajinomoto Co., Ltd.
  • AK02N was poured at 1.5 ml / well, and the cells were cultured according to a known cell culture method published by the iPS Research Institute of Kyoto University, except for direct cell seeding.
  • a mixture of 0.5 M EDTA (pH 8.0) in a corresponding volume] was added at 0.5 ml / well and incubated at 37 ° C. and 5% CO 2 for about 5 minutes to reduce cell-cell adhesion. After confirming that the contours of the cells were visible to some extent, the cells were washed with PBS ( ⁇ ) at 1 ml / well.
  • the cells were rapidly detached, transferred to a 15 ml or 50 ml conical tube, and thoroughly stirred. After that, 10 ⁇ l of the cell suspension and the trypan blue staining solution were mixed and added to the hemocytometer, the number of viable cells was calculated, and the viable cell density of the suspension was calculated. The cell suspension was allowed to stand at 4 ° C. or on ice, and some cells were seeded on a 6-well plate at 1.5 ⁇ 10 4 cells as a substitute for maintenance culture.
  • Stem Fit AK02N, manufactured by Ajinomoto Co., Ltd.
  • 10 ⁇ g / ml Y27632 manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • the transposase expression vector (pCMV-HyPBase-PGK-Puro) shown in the upper part of FIG. 1C
  • the PiggyBac vector for rtTA expression (pG-PB-CAG-rtTA3G-IH) shown in the middle part of FIG. 1C
  • the PiggyBac for Tet-induced hAscl1 gene expression (pCMV-HyPBase-PGK-Puro) shown in the upper part of FIG. 1C
  • the PiggyBac vector for rtTA expression (pG-PB-CAG-rtTA3G-IH) shown in the middle part of FIG. 1C
  • the PiggyBac for Tet-induced hAscl1 gene expression pCMV-HyPBase-PGK-Puro
  • the cell suspension equivalent to 3 ⁇ 10 5 cells in (2) was transferred to a 1.5 ml tube, centrifuged at 200 G ⁇ 5 minutes, and after 15 minutes had passed. After centrifugation, the supernatant was removed, and the vector lipofection reagent cocktail prepared above was added to the pellet, pipetted, and allowed to stand at room temperature for 5 minutes.
  • the obtained cells were evenly seeded in each well at 15 to 20 ⁇ l / well on a cell culture plate previously incubated in (1), and incubated at 37 ° C. and 5% CO 2 for about 3 hours.
  • Stem Fit (AK02N, manufactured by Ajinomoto Co., Inc.) containing 20 ⁇ g / ml Y27632 (manufactured by Fujifilm Wako Junyaku Co., Ltd.) was heated at 37 ° C., and the medium was completely replaced for all wells at 2 ml / well.
  • Hygromycin Hygromycin B Solution, # 09287-84, manufactured by Nakarai
  • 100 ⁇ g / ml G418 G418 Disulfate, # 08973-14, manufactured by Nakarai
  • 5 ⁇ g / ml puromycin 5 ⁇ g / ml puromycin.
  • Total medium exchange 1.5 ml / well) with Stem Fit (AK02N, manufactured by Ajinomoto Co., Ltd.) to which (# anti-pr-1, manufactured by INVIVOGEN, # 1486-171, manufactured by Nakarai) was added, and cultured for 2 days. ..
  • the whole medium was exchanged (1.5 ml / well) with Stem Fit (AK02N, manufactured by Ajinomoto Co., Inc.) supplemented with 200 ⁇ g / ml hygromycin, 100 ⁇ g / ml G418, and 10 ⁇ g / ml puromycin, and cultured for 2 days. ..
  • the whole medium was exchanged (1.5 ml / well) with Stem Fit (AK02N, manufactured by Ajinomoto Co., Inc.), cultured for 1 day without adding antibiotics, and the surviving iPS cells were subcultured as necessary. Alternatively, cryopreservation was performed.
  • PBS PBS
  • HEK293T cells cultured semiconfluently in DMEM medium (# D5996, manufactured by Sigma) containing 10% FBS and 2 mM L-glutamine were packaged in 500 ⁇ l HBSS and 3 ⁇ g per dish.
  • pCAG-HIVgp 3 ⁇ g envelope generation vector / Rev expression vector (VSV-G, REV expression vector, pCMV-VSV-G-RSV-Rev), 6 ⁇ g SIN vector (Tet-sensitive miRNA-9 / 9 * , miRNA) -124, BclxL gene expression vector, CSIV-124-9-BClxL-TRE-EF-BsdT), 6 ⁇ g SIN vector (Tet-sensitive MEF2C gene expression vector, pLV-TRE3G-HA-hMEF2C-mPGK-Zeo) and polyethyleneimine (Molecular weight: 25000, # 23966, manufactured by Polysciences) [Milli-Q (registered trademark) 1 mg / ml in water] 24 ⁇ l was mixed well, and the mixture was allowed to stand at room temperature for 15 minutes and further added dropwise to the dish.
  • the medium was replaced with DMEM (# D5796, manufactured by Sigma) containing 10 ⁇ M forskolin, and the mixture was incubated again at 37 ° C. and 5% CO 2.
  • DMEM # D5796, manufactured by Sigma
  • the cell culture supernatant is taken out, passed through a 0.45 ⁇ m syringe filter to remove suspended cells, etc., and then a trace pellet obtained after centrifugation at 50,000 ⁇ G for 2 hours using an ultracentrifuge is used as PBS (PBS). After recovery in-), the virus titer was estimated.
  • the whole medium was exchanged with Stem Fit (AK02N, manufactured by Ajinomoto Co., Ltd.) at 1.5 ml / well, and the above 20 ⁇ g / ml Blasticidin (Blasticidin S, Hydrochloride, # KK-400, manufactured by Funakoshi) or 200 ⁇ g. / Ml Zeocin (Zeocin solution, # anti-zn-1, manufactured by INVIVOGEN, # 61843-26, manufactured by Nakarai) was added in the same manner and cultured for 1 day. Then, the whole amount of the medium was exchanged with Stem Fit (AK02N, manufactured by Ajinomoto Co., Inc.) containing no antibiotic, and the surviving iPS cells were passaged or cryopreserved as necessary.
  • Stem Fit AK02N, manufactured by Ajinomoto Co., Inc.
  • Poly-L-Lycine solution was aspirated and removed 1 hour before seeding of iPS cells for neural differentiation, and washed 3 times with PBS ( ⁇ ).
  • the 6-well plate was washed at 1 ml / well and the 96-well plate was washed at about 100 ⁇ l / well, and after washing 3 times, the residual liquid was sufficiently sucked and removed.
  • a 50 ml conical tube or the like a 50-fold diluted Growth Factor Reduced Material (# 354230, manufactured by Corning) with PBS (-) was prepared, and 6-well plates were 1.5 ml / well and 96, respectively.
  • Well plates were coated with 100 ⁇ l / well each.
  • iPS cells for neural differentiation were single-celled by the same method as in Experimental Example 2 (2), and the cell density of the cell suspension was calculated.
  • iMatrix-511 manufactured by Nippi
  • the 6-well plate was poured at 2.0 ml / well and the 96-well plate was poured at 100 ⁇ l / well.
  • the iPS cell suspension prepared in Experimental Example 3 was uniformly seeded at 6.0 ⁇ 10 5 cells / well for a 6-well plate and 3.0 ⁇ 10 4 cells / well for a 96-well plate.
  • the culture was carried out by exchanging half of the medium having the above composition every 5 days, and after the 10th day of the culture, RNA purification by cell recovery, immunostaining by cell fixation, etc. were performed.
  • FIG. 2 shows a scheme for producing a parvalbumin gene (PVALB) reporter cell line.
  • a parvalbumin gene (PVALB) reporter cell line was prepared as follows.
  • CRISPR / Cas9 a puromycin resistance gene driven by a constitutively expressed promoter sandwiched between EGFP and secretory luciferase (SNLuc) and PiggyBac ITR was inserted into the stop codon site of the human Parvalbumin gene (PVALB).
  • homozygous PVALB knock-in cells were obtained by drug selection, and then the sequence inside the ITR was removed by transposase to obtain a reporter cell line of EGFP and SNLuc expressed under 2A peptide downstream of the PVALB gene.
  • PV + neurons were confirmed in the MEF2C induction group. Further, as shown in FIGS. 3 and 4, it was confirmed that in the miRNA-9 / 9 * , miRNA-124, and BclxL gene non-inducible groups, PV + nerve cells were induced to differentiate in the MEF2C-induced group.
  • Example 7 (Analysis of parvalbumin mRNA expression level by quantitative PCR method) For each combination of miRNA-9 / 9 * , miRNA-124 and BclxL gene introduction, and MEF2C gene introduction under inhibitory nerve cell induction by Ascl1 gene and Dlx2 gene, 10, 20, and 40 days after expression induction. , And cells were collected over time at 60 days, and quantitative PCR of parbualbumin mRNA was performed. The result is shown in FIG. As shown in FIG. 5, 20 days (Day 20), 40 days (Day 40), and 60 days (Day 60) after the induction of expression, both miRNA-9 / 9 * , miRNA-124, BclxL gene and MEF2C gene were used together. When expressed, parvalbumin gene expression levels were synergistically elevated compared to single expression.
  • the present invention there are few differentiation-inducing steps, and a production method for producing parbualbumin-positive nerve cells with high efficiency in a short period of time, for inducing differentiation into the PV + nerve cells and the PV + nerve cells. Differentiation inducer can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Neurology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Neurosurgery (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

細胞内で、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子の発現を誘導する発現誘導工程と、前記発現誘導後の細胞を培養して、前記細胞からパルブアルブミン陽性神経細胞を分化させる分化工程と、を含む、パルブアルブミン陽性神経細胞の製造方法、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、発現可能なように導入された細胞、及び、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子、又はそれらの遺伝子産物を有効成分として含有する、細胞をパルブアルブミン陽性神経細胞に分化誘導させるための、分化誘導剤。

Description

パルブアルブミン陽性神経細胞の製造方法、細胞、及び分化誘導剤
 本発明は、パルブアルブミン陽性神経細胞の製造方法、細胞、及び分化誘導剤に関する。
 本願は、2019年8月29日に、日本に出願された特願2019-157194号に基づき優先権を主張し、その内容をここに援用する。
 パルブアルブミン(Parvalbumin)陽性神経細胞は脳神経系の疾患に関与する重要な神経細胞のひとつであり、パルブアルブミン陽性神経細胞の存在量や機能低下は種々の精神神経疾患や神経発達障害を引き起こすと考えられている(非特許文献1、非特許文献2)。そのため長年その機能解明には注目がなされており、特に近年、ヒトiPS細胞などの多能性幹細胞からのパルブアルブミン陽性神経細胞の作出技術は強く望まれていた。
 しかしながら、パルブアルブミン陽性神経細胞などを一部に含む抑制性神経細胞の特異的な分化誘導方法は報告されているものの、パルブアルブミン陽性神経細胞自体の誘導効率は極めて低いものであった(非特許文献3)。また、非特許文献4には、パルブアルブミン陽性神経細胞の出現率が、従来の誘導法の中では最も高効率である方法が報告されているが、この方法は、複数の分化誘導工程を介し、パルブアルブミン陽性神経細胞が産生されるのに80日程度を要した後、産生されるパルブアルブミン陽性神経細胞の陽性率は20~30%程度である。
Lewis DA et al., Trends Neurosci. 2012 Jan;35(1):57-67. Rodriguez RA et al., Front Mol Neurosci. 2018 Apr 24;11:132. Yang N. et al., Nat Methods. 2017 Jun;14(6):621-628. Yuan F. et al., eLIFE. 2018 Sep 25;7. pii: e37382.
 本発明は、分化誘導工程が少なく、短期間で、パルブアルブミン陽性神経細胞を高効率で製造する製造方法、前記パルブアルブミン陽性神経細胞に誘導可能な細胞、及び前記パルブアルブミン陽性神経細胞に分化誘導させるための分化誘導剤を提供することを目的とする。
 本発明は以下の態様を含む。
[1] 細胞内で、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子の発現を誘導する発現誘導工程と、前記発現誘導後の細胞を培養して、前記細胞からパルブアルブミン陽性神経細胞を分化させる分化工程と、を含む、パルブアルブミン陽性神経細胞の製造方法。
[2] 前記発現誘導工程が、前記細胞内に、Ascl1遺伝子及びDlx2遺伝子を発現可能なように導入する遺伝子導入工程を含む、[1]に記載のパルブアルブミン陽性神経細胞の製造方法。
[3] 前記発現誘導工程が、さらにMEF2C遺伝子を発現可能なように導入する遺伝子導入工程を含む、[2]に記載のパルブアルブミン陽性神経細胞の製造方法。
[4] 前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、テトラサイクリン制御性(Tet-ON)である、[1]~[3]のいずれか一項に記載の製造方法。
[5] 前記発現誘導工程が、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種を、同時に発現誘導する工程を含む、[1]~[4]のいずれか一項に記載の製造方法。
[6] 前記発現誘導工程が、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種を、発現可能なように導入する遺伝子導入工程を含む、[5]に記載の製造方法。
[7] 前記マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が、テトラサイクリン制御性(Tet-ON)である、[5]または[6]に記載の製造方法。
[8] 前記細胞が線維芽細胞又は多能性幹細胞である、[1]~[7]のいずれか一項に記載の製造方法。
[9] 前記発現誘導工程を1~5日間行う、[1]~[8]のいずれか一項に記載の製造方法。
[10] 前記分化工程を10日間以上行う、[1]~[9]のいずれか一項に記載の製造方法。
[11] Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、発現可能なように導入された細胞。
[12] 前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、テトラサイクリン制御性(Tet-ON)である、[11]に記載の細胞。
[13] さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種が、発現可能なように導入された[11]又は[12]に記載の細胞。
[14] 前記マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が、テトラサイクリン制御性(Tet-ON)である、[13]に記載の細胞。
[15] 前記細胞が線維芽細胞又は多能性幹細胞である、[11]~[14]のいずれか一項に記載の細胞。
[16] Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子、又はそれらの遺伝子産物を有効成分として含有する、細胞をパルブアルブミン陽性神経細胞に分化誘導させるための、分化誘導剤。
[17] 前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、テトラサイクリン制御性(Tet-ON)である、[16]に記載の分化誘導剤。
[18] さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種、又はそれらの遺伝子産物を有効成分として含有する、[16]又は[17]に記載の分化誘導剤。
[19] 前記マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が、テトラサイクリン制御性(Tet-ON)である、[18]に記載の分化誘導剤。
[20] 前記細胞が線維芽細胞又は多能性幹細胞である、[16]~[19]のいずれか一項に記載の分化誘導剤。
 本発明によれば、分化誘導工程が少なく、短期間で、パルブアルブミン陽性神経細胞を高効率で製造する製造方法、前記パルブアルブミン陽性神経細胞に誘導可能な細胞、及び前記パルブアルブミン陽性神経細胞に分化誘導させるための分化誘導剤を提供することができる。
ヒト多能性幹細胞へのpiggyBacベクター導入と薬剤選択によるクローニングのタイムコースを示す。 ヒト多能性幹細胞へのレンチウイルスベクターの感染とドキシサイクリンによるTet駆動性神経誘導のタイムコースを示す。図中、MCは培地交換、Neurobasal Plus B27 Plusは神経細胞用培地、Doxはドキシサイクリンをそれぞれ示す。 遺伝子導入に用いているプラスミドベクターおよびレンチウイルスベクターを示した図である。図中、CMV、PGK、CAG、EF1aは、恒常発現遺伝子プロモーターを示す。Puro.Rは、ピューロマイシン耐性遺伝子、Hygro.Rは、ハイグロマイシン耐性遺伝子、Neo.Rは、G418耐性遺伝子、Blast.Rは、ブラストサイジン耐性遺伝子、Tetは、TetオペレーターDNA反復エレメント、HyPBaseは、トランスポゼース、rtTA3Gは、リバーステトラサイクリン制御性トランス活性化因子、ITRは、逆向き反復配列をそれぞれ示す。 パルブアルブミン遺伝子(PVALB)レポーター細胞株の作製スキームを示した図である。 神経誘導後20日(発現誘導5日、分化15日)経過後の細胞の免疫染色像を示した図である。図中、PV-GFPはAnti-PV抗体での免疫染色像、GFP/Phaseは明視野像、Hoechstは核染色像、Anti-GFPは、Anti-GFP抗体での免疫染色像をそれぞれ示す。+は遺伝子導入、-は遺伝子導入なしをそれぞれ示す。 発現誘導後20日(発現誘導5日、分化15日)経過後の細胞の免疫染色像を示した図である。左図は、miRNA-9/9、miRNA-124、BclxL遺伝子の一過性発現を行わなかった場合、右図は、miRNA-9/9、miRNA-124、BclxL遺伝子の一過性発現を行った場合の細胞の免疫染色像をそれぞれ示す。+は遺伝子導入、-は遺伝子導入なしをそれぞれ示す。矢印はAnti-PV抗体およびAnti-GFP抗体で染色される細胞の典型的な細胞を示している。 定量PCR法によるパルブアルブミンmRNA発現レベルの解析を示したグラフである。図中、+は遺伝子導入、-は遺伝子導入なしをそれぞれ示す。
[パルブアルブミン陽性神経細胞の製造方法]
 1実施形態において、本発明は、細胞内で、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子の発現を誘導する発現誘導工程と、前記発現誘導後の細胞を培養して、前記細胞からパルブアルブミン陽性神経細胞を分化させる分化工程と、を含む、パルブアルブミン陽性神経細胞(以下、PV+神経細胞とも称する)の製造方法を提供する。
 実施例において後述するように、本実施形態の製造方法により、分化誘導工程が少なく、短期間で、PV+神経細胞を高効率で製造する方法を提供することができる。従来のPV+神経細胞の分化誘導方法は、分化誘導工程が多く、PV+神経細胞の含量は、最大でも20~30%程度である。しかも、PV+神経細胞に分化誘導する期間が60~80日程度と長期間を要していた。これに対し、本実施形態の方法によれば、分化誘導工程が少なく、20日間で85%以上がPV+神経細胞である細胞集団を製造することができる。
 本実施形態の製造方法に用いられる細胞としては、PV+神経細胞に誘導可能な細胞であれば特に制限はなく、例えば、線維芽細胞、間葉系幹細胞、多能性幹細胞等が挙げられるが、線維芽細胞及び多能性幹細胞が好ましい。
 本明細書において、多能性幹細胞としては、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)等が挙げられる。多能性幹細胞はヒト由来の細胞であってもよく、マウス、ラット、ブタ、ヤギ、ヒツジ、サル等の非ヒト動物由来の細胞であってもよい。
 また、上記の多能性幹細胞は、健常人由来の人工多能性幹細胞であってもよく、神経疾患患者由来の人工多能性幹細胞であってもよい。神経疾患患者由来の人工多能性幹細胞からPV+神経細胞を製造した場合、得られたPV+神経細胞を神経疾患のモデルとして用いることができる。このようなPV+神経細胞は、神経疾患のメカニズムの解明等に有用である。
 本実施形態の製造方法において、Ascl1は、神経発生初期に働くbHLHファミリーに属する転写因子である。Dlx2は、大脳基底核原基由来の細胞で発現し、大脳のGABA作動性神経細胞の産生において重要な転写因子である。MEF2Cは、筋細胞及び神経細胞で特に高い発現を示す転写因子である。ヒト及びマウスのAscl1、Dlx2及びMEF2Cの蛋白質及びmRNAのNCBIアクセッション番号の例を下記表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 前記Ascl1、Dlx2及びMEF2Cの各因子は、PV+神経細胞に分化誘導させる活性を有する限り変異を有していてもよい。PV+神経細胞に分化誘導させる前記各因子が変異を有する場合、当該因子は、表1又は表2に例示されるNCBIアクセッション番号により特定されるタンパク質又はmRNAに対して、80%以上の配列同一性を有することが好ましく、90%以上の配列同一性を有することがより好ましく、95%以上の配列同一性を有することが更に好ましい。
 ここで、アミノ酸配列の配列同一性は、対象のアミノ酸配列(対象アミノ酸配列)が、基準となるアミノ酸配列(基準アミノ酸配列)に対して一致している割合を示す値である。基準アミノ酸配列に対する、対象アミノ酸配列の配列同一性は、例えば次のようにして求めることができる。まず、基準アミノ酸配列及び対象アミノ酸配列をアラインメントする。ここで、各アミノ酸配列には、配列同一性が最大となるようにギャップを含めてもよい。続いて、基準アミノ酸配列及び対象アミノ酸配列において、一致したアミノ酸の数を算出し、下記式(1)にしたがって、配列同一性を求めることができる。
 配列同一性(%)=一致したアミノ酸の数/対象アミノ酸配列の総アミノ酸数×100 …(1)
 同様に、基準塩基配列に対する、対象塩基配列の配列同一性は、例えば次のようにして求めることができる。まず、基準塩基配列及び対象塩基配列をアラインメントする。ここで、各塩基配列には、配列同一性が最大となるようにギャップを含めてもよい。続いて、基準塩基配列及び対象塩基配列において、一致した塩基の数を算出し、下記式(2)にしたがって、配列同一性を求めることができる。
 配列同一性(%)=一致した塩基の数/対象塩基配列の総塩基数×100 …(2)
 本実施形態の製造方法において、PV+神経細胞に分化誘導させる因子はタンパク質であってもよく、当該タンパク質をコードする遺伝子(核酸)であってもよい。また、遺伝子(核酸)はmRNAであってもよいし、DNAであってもよい。上記の因子がDNAである場合、当該DNAは、発現ベクターに含まれていてもよい。
 本実施形態の製造方法において、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子は、発現を誘導することができる限り、細胞内に内在するものであっても、外部から発現可能なように導入されたものであってもよい。前記遺伝子を外部から発現可能なように導入する場合は、前記発現誘導工程は、Ascl1遺伝子及びDlx2遺伝子を発現可能なように導入する遺伝子導入工程を含む。前記遺伝子導入工程は、さらに、MEF2C遺伝子を発現可能なように導入する遺伝子導入工程を含んでいてもよい。前記遺伝子導入工程においては、例えば、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子を含む発現ベクターを構築して、細胞内に導入することができる。
 本実施形態の製造方法において、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子は、外的刺激の応答に応じて発現調整可能な発現カセットにより発現制御することができる。そのような発現カセットは、外的刺激に応答して下流の遺伝子の発現を誘導できるプロモーターと、当該プロモーターによって発現が制御される、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子を少なくとも含む核酸コンストラクトである。
 プロモーターとしては、外的刺激に応答して下流の遺伝子の発現を誘導できるプロモーターであれば特に制限はなく、例えば、外的刺激がテトラサイクリン系抗生物質(テトラサイクリン、またはドキシサイクリン等のテトラサイクリン誘導体)の存在である場合には、テトラサイクリン系抗生物質とテトラサイクリントランスアクチベーターとの複合体の結合によって、下流の遺伝子の発現を誘導できるプロモーターが挙げられる。一方、外的刺激がテトラサイクリン系抗生物質の非存在である場合には、テトラサイクリンリプレッサーの解離によって、下流の遺伝子の発現を誘導できるプロモーターが挙げられる。また、外的刺激がエクジステロイド(エクジソン、ムリステロンA、ポナステロンA等)の存在である場合には、エクジステロイドと、エクジソン受容体-レチノイド受容体複合体との結合によって、下流の遺伝子の発現を誘導できるプロモーターが挙げられる。さらに、外的刺激がFKCsAの存在である場合には、FKCsAと、FKBP12に融合したGal4 DNA結合ドメイン-シクロフィリンに融合したVP16アクチベータードメイン複合体との結合によって、下流の遺伝子の発現を誘導できるプロモーターが挙げられる。
 発現カセットは、必要に応じて、エンハンサー、サイレンサー、選択マーカー遺伝子(例えば、ネオマイシン耐性遺伝子等の薬剤耐性遺伝子)、SV40複製起点等を含んでいても良い。また、当業者であれば、利用する前記プロモーターの種類等を考慮して、エンハンサー、サイレンサー、選択マーカー遺伝子およびターミネーター等を、公知のものから適宜選択して組み合わせることにより、所望の発現レベルにてAscl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子の発現を誘導することが可能な発現カセットを構築することができる。
 このように、外的刺激は、薬物の存在または非存在下での培養が含まれる。例えば、テトラサイクリン発現誘導システム(例えば、タカラなど)用いて、ドキシサイクリン存在下で目的遺伝子の発現を制御する。例えば、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子は、テトラサイクリン制御性(Tet-On)のプロモーター制御下で発現できるようにベクターを作製することができる。すなわち、本実施形態の製造方法において、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子は、テトラサイクリン制御性(Tet-ON)であってもよい。
 次に、前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子発現ベクターを細胞にトランスフェクションして、トランスジェニック細胞を作製する。一方で、リバーステトラサイクリン制御性トランス活性化因子(rtTA)を発現するTet-On調節プラスミドを作製し、当該調節プラスミドを前記細胞に導入する。培地中にドキシサイクリンを添加すると、rtTAはテトラサイクリン応答因子と結合して、下流の遺伝子発現が誘導される。また、培地中にドキシサイクリンが存在しないと、下流の目的遺伝子の発現は誘導されない。
 テトラサイクリン制御性発現システムは、市販のもの(例えば、KnockoutTM Tet RNAi System P(Clontech社製))を用いてもよく、またはDickins RA. et al.,(Nature Genetics, 39(7): 914-921 (2007))に記載の方法で作製してもよい。
 本実施形態の製造方法において、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子の発現誘導と同時に、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種を、発現誘導することが好ましく、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子の全てを同時に発現することがより好ましい。マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子は、内在性のものであっても、外部から発現可能なように導入したものであってもよい。前記遺伝子を外部から発現可能なように導入する場合は、前記発現誘導工程は、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種を発現可能なように導入する遺伝子導入工程を含む。外部から発現可能なように導入する場合は、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子と同様に、発現カセットを構築して、細胞に導入することができる。また、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子は、テトラサイクリン制御性(Tet-On)のプロモーター制御下で発現できるようにベクターを作製することができる。すなわち、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子は、テトラサイクリン制御性(Tet-ON)であってもよい。
 ヒトmiRNA-9/9、ヒトmiRNA-124の核酸配列のNCBIアクセッション番号は、それぞれ、NR_029692.1、NR_029669.1である。また、マウスmiRNA-9/9、マウスmiRNA-124の核酸配列のNCBIアクセッション番号は、それぞれ、NR_029818.1、NR_029814.1である。また、ヒトBclxLの蛋白質、mRNAのNCBIアクセッション番号は、それぞれNP_001309169.1、NM_001322240.2である。マウスBclxLの蛋白質、mRNAのNCBIアクセッション番号は、それぞれNP_001341982.1、NM_001355053.1である。
 本実施形態の製造方法において、前記発現カセットを細胞に導入する方法としては、特に制限はなく、公知の手法を適宜選択して用いることができる。例えば、前記発現カセットを適当な発現ベクターに挿入し、レトロウイルスベクターやアデノウイルスベクター等のウイルスベクターを用いたウイルス感染、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム法、DEAEデキストラン法、マイクロインジェクション法等の公知の形質転換方法により行うことができる。
 発現ベクターとしては、細胞中でこれらの遺伝子を発現させることができる限り特に制限されず、プラスミドベクターであってもよく、ウイルスベクターであってもよく、トランスポゾンベクターであってもよい。ウイルスベクターは遺伝子の導入効率が高く使いやすい。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター、アデノ随伴ウイルスベクター、アデノウイルスベクター等が挙げられる。トランスポゾンベクターやレンチウイルスベクターを用いた場合は、Ascl1遺伝子、Dlx2遺伝子、MEF2C遺伝子、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子をゲノム上に複数コピー挿入することができる。これによって、テトラサイクリン制御性(Tet-On)の神経誘導用細胞としての状態を維持できる。さらには上述の外的刺激によって、遺伝子等のゲノム挿入がなされなかった細胞を排除し、PV+神経細胞に分化誘導可能な細胞のみを維持することができる。また、トランスポゾンベクターは、必要に応じて細胞から完全に除去することができる。このようなトランスポゾンベクターとしては、例えばPiggybacトランスポゾンベクター等が挙げられる。
 また、前記外的刺激に関しては、当業者であれば、利用する前記プロモーターの種類等を考慮して、後述の培地への添加量を適宜調製することができる。例えば、外的刺激がドキシサイクリンの存在である場合には、ドキシサイクリンの好適な添加濃度としては、0.1~10μg/ml、より好ましくは1~2μg/mlである。
 細胞内で、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子の発現を誘導する発現誘導工程のために、前記外的刺激が添加される培養液としては、神経細胞用培地、例えば、Neurobasal Plus Medium(Thermo Fisher Scientific社製)等が挙げられる。培養液には、培養に通常添加される添加物が含まれていてもよい。前記添加物としては、γ-セレクターゼ阻害剤、ジブチリルcAMP(dbcAMP)、Y27632等のROCK阻害剤等が挙げられる。γ-セレクターゼ阻害剤としては、DAPT(γ-secretase inhibitor IX)、Compound E、γ-secretase inhibitor XI、γ-secretase inhibitor III等が挙げられる。ただし、発現誘導工程及びそれに続く分化工程においては、血清を加える必要はなく、本実施形態の製造方法の一態様においては、PV+神経細胞への分化誘導は、血清非存在下で行われる。
 本実施形態の製造方法において、前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子を発現誘導する前に、細胞を単一細胞に解離させて播種しなおしてもよい。ここで、単一細胞に解離させるとは、培養容器に接着している細胞を1個ずつばらばらに解離させることを意味する。単一細胞への解離は、通常、細胞の解離に用いられる、アキュターゼ、トリプシン、コラゲナーゼ、トリプルセレクト[TrypLE(登録商標)Select]等の酵素処理を行い、ピペッティングすること等により行うことができる。
 Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子を含む細胞、又は、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が発現可能なように導入された細胞は、発現誘導工程を1~8日間、好ましくは1~5日間行う。ドキシサイクリンなどの外的刺激の場合は、外的刺激を1~8日間、好ましくは1~5日間存在させる。前記細胞は、続いて発現誘導工程を終了させて培養する分化工程の結果、PV+神経細胞に分化される。発現誘導工程終了後、前記細胞は10日以上、好ましくは20日以上培養する。前記分化工程に用いられる培地としては、神経細胞用培地、例えば、Neurobasal Plus Medium(Thermo Fisher Scientific社製)等が挙げられる。前記分化工程においては、培養に通常添加される添加物が含まれていてもよい。前記添加物としては、ジブチリルcAMP(dbcAMP)、BDNF、GDNF、アルコルビン酸等が挙げられる。
 前記発現誘導工程終了後の分化工程により、前記遺伝子を含む細胞は、PV+神経細胞に分化される。PV+神経細胞に分化されたことは、例えば、発現誘導工程の終了後から一定期間(例えば40日間)中に、神経細胞中のPVの発現により確認することができる。また、神経細胞マーカーTUBB3や、PV+神経細胞で上昇すると考えられているGRIA4、SYT1、NRXN2a等の遺伝子の発現により確認することができる。例えば、細胞の集団が、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が導入され、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が導入され、ドキシサイクリンの外的刺激が与えられる場合、集団の少なくとも70%、少なくとも85%が、外的刺激終了後から5~20日、好ましくは10~40日の期間のうちにPV+神経細胞へと分化したことを確認することができる。
[発現誘導細胞]
 1実施形態において、本発明は、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、発現可能なように導入された細胞を提供する。本実施形態の細胞は、Ascl1遺伝子、Dlx2遺伝子に、さらにMEF2C遺伝子が、発現可能なように導入されていることにより、PV+神経細胞に分化することができる。本実施形態の細胞は、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種、好ましくは、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が、発現可能なように導入されていてもよい。Ascl1遺伝子、Dlx2遺伝子にさらにMEF2C遺伝子を導入することによって、分化効率の高い前駆細胞とし、さらに加えて、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種、好ましくは、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が、発現可能なように導入されることにより、短期間、高効率でPV+神経細胞を得ることができる。
 本実施形態の発現誘導細胞において、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子は、テトラサイクリン制御性(Tet-ON)であってもよい。また、本実施形態の細胞が、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種、好ましくは、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が、発現可能なように導入されている場合、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子は、テトラサイクリン制御性(Tet-ON)であってもよい。
 本実施形態のPV+神経細胞を分化誘導させるための細胞は、上述した製造方法の発現誘導工程において記載した方法により製造することができる。
 本実施形態の細胞において、Ascl1遺伝子、Dlx2遺伝子に、さらにMEF2C遺伝子が、発現可能なように導入される細胞としては、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、発現可能であり、PV+神経細胞に分化できる細胞であれば特に制限はなく、例えば、線維芽細胞、間葉系幹細胞、多能性幹細胞等が挙げられるが、線維芽細胞及び多能性幹細胞が好ましい。
[分化誘導剤]
 1実施形態において、本発明は、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子、又はそれらの遺伝子産物を有効成分として含有する、細胞をPV+神経細胞に分化誘導させるための、分化誘導剤を提供する。本実施形態の分化誘導剤は、前記PV+神経細胞への分化能を有さない未分化細胞に、PV+神経細胞への分化能を付与することができる。本実施形態の分化誘導剤は、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種、好ましくは、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子を、有効成分として含有していてもよい。Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子に加えて、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種、好ましくは、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子に加えて、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子を、有効成分として含有することにより、さらに短期間、高効率でPV+神経細胞を得ることができる。したがって、本発明の分化誘導剤は、前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子に、さらにマイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる遺伝子群から選ばれる少なくとも1種、好ましくは、前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子に、さらにマイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子を含む分化誘導剤である。
 本実施形態の分化誘導剤において、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子は、テトラサイクリン制御性(Tet-ON)であってもよい。また、本実施形態の分化誘導剤が、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種、好ましくは、さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子を有効成分として含有する場合、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子は、テトラサイクリン制御性(Tet-ON)であってもよい。
 本実施形態の分化誘導剤において、PV+神経細胞に分化誘導させる有効成分は、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子であっても、それらの遺伝子産物であってもよい。前記遺伝子産物としては、前記遺伝子から産生される蛋白質自体のほか、前記蛋白質とその他の蛋白質又はペプチドなどとの融合遺伝子産物の形態であってもよい。例えば、緑色蛍光タンパク質(GFP)との融合蛋白質やヒスチジンタグなどのペプチドとの融合遺伝子産物を用いることもできる。このような融合遺伝子産物の調製方法は公知であり、当業者は目的に応じて適宜の融合遺伝子産物を容易に設計して調製することが可能である。
 前記遺伝子は、発現ベクターに含まれていてもよい。すなわち、本実施形態の分化誘導剤は、PV+神経細胞に分化誘導させる前記遺伝子を発現可能なように導入された発現ベクターであってもよい。前記発現ベクターは、上述した製造方法の発現誘導工程において挙げた発現ベクター等が用いられる。
 本実施形態の分化誘導剤を細胞に導入することにより、細胞をPV+神経細胞に分化誘導させることができる。本実施形態の分化誘導剤がタンパク質、RNA等である場合、分化誘導剤を細胞に導入する方法としては、例えば、細胞への接触、マイクロインジェクション、ウイルス様粒子を用いる方法、リポフェクション法、これらの組み合わせ等が挙げられる。
 また、本実施形態の分化誘導剤がベクター等である場合、分化誘導剤を細胞に導入する方法としては、例えば、細胞への接触、リポフェクション法、エレクトロポレーション法、マイクロインジェクション法、DEAE-デキストラン法、リン酸カルシウム法、これらの組み合わせ等が挙げられる。また、ベクターがウイルスベクターである場合には、細胞に感染させることにより細胞に導入することもできる。
 本実施形態の分化誘導剤の細胞への導入は、インビトロで行われてもよいし、インビボで行われてもよい。また、分化誘導剤は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 本実施形態の分化誘導剤が分化誘導させる細胞としては、PV+神経細胞に誘導可能な細胞であれば特に制限はなく、例えば、線維芽細胞、間葉系幹細胞、多能性幹細胞等が挙げられるが、線維芽細胞及び多能性幹細胞が好ましい。
 また、本実施形態の分化誘導剤が分化誘導させる対象とする細胞の種としては、ヒト、マウス、ラット、ウサギ、イヌ、サル、ブタ、ヤギ、ヒツジ等が挙げられる。
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[実験例1]
(iPS細胞の維持培養)
 iPS細胞(1210B2株)を、細胞継代時のiPS細胞播種密度を、6ウェルプレートで1.5×10cells/wellとし、細胞継代時の事前プレートコーティングは行わず、細胞播種直前に、6ウェルプレートに、1.5mLの10μg/ml ROCK阻害剤Y27632(フジフィルム和光純薬社製)及び1.5μg/ml iMatrix-511(ニッピ社製)を含む未分化細胞用培地Stem Fit(AK02N、味の素社製)を1.5ml/wellで注ぎ、直接細胞播種を行う以外は、京都大学iPS研究所が公開している公知の細胞培養法に準じて培養した。
[実験例2]
(iPS細胞へのAscl1遺伝子及びDlx2遺伝子導入)
 iPS細胞へのAscl1遺伝子及びDlx2遺伝子導入のスキームを、図1Aに示した。具体的には以下のようにして、iPS細胞へAscl1遺伝子及びDlx2遺伝子導入行った。
(1)遺伝子導入操作後の細胞播種用のプレートの培地準備とコーティング準備
 6ウェルプレートに、Stem Fit(AK02N、味の素社製)に20μg/ml、Y27632(フジフィルム和光純薬社製)および2.5μg/ml iMatrix-511(ニッピ社製)を添加したものを、2ml/wellで6ウェル分(1プレート)入れて、37℃、5%COでインキュベートした。
(2)iPS細胞のシングルセル化
 6ウェルプレートに約1.5×10cells/wellとなるように播種されたiPS細胞を、Stem Fit(AK02N、味の素社製)で約1週間程度培養し、培地をアスピレーターで除去後、PBS(-)を用いて1ml/wellで細胞洗浄した。次に、PBS(-)を除去後、0.5×TrypLE(登録商標)Select[TrypLE Select(ThemoFisher社製):PBS(-)=1:1で混合したものに全量の1/2000量に相当する容量の0.5M EDTA(pH8.0)を混合したもの]を0.5ml/well加え、37℃、5%COで約5分間インキュベートし、細胞間接着が低下し、一つ一つの細胞の輪郭がある程度見えていることを確認後、PBS(-)を用いて1ml/wellで細胞を洗浄した。
 次に、10μg/ml Y27632(フジフィルム和光純薬社製)を含むStem Fit (AK02N、味の素社製)1mlを用いて、迅速に細胞剥離し、15ml又は50mlコニカルチューブに移し、十分に攪拌した後、10μlの細胞懸濁液とトリパンブルー染色液を混合させ、血球計算板に加え、生細胞数を算定し、懸濁液の生細胞密度を算出した。細胞懸濁液は4℃又は氷上に静置し、一部は維持培養するための継代用として1.5×10cellsで、6ウェルプレートに細胞播種した。
(3)Ascl1遺伝子及びDlx2遺伝子が導入されたベクターのiPS細胞への導入
 リポフェクション法による遺伝子導入試薬Gene Juice(#70967、Merck Millipore社製)を、室温に戻し、ボルテックスミキサー等で良く攪拌した後、4.5μlを1.5mLチューブ内の100μl Opti-MEM(#31985088、Thermo Fisher Scientific社製)に加え、よく攪拌し、5分間室温で静置し、リポフェクション試薬カクテルを調製した。
 図1C上段に示す、トランスポゼース発現ベクター(pCMV-HyPBase-PGK-Puro)、図1C中段に示す、rtTA発現用PiggyBacベクター(pG-PB-CAG-rtTA3G-IH)、Tet誘導性hAscl1遺伝子発現用PiggyBacベクター(PB-P(tetO)-hAscl1-pAPGK-PuroTK-pA)、Tet誘導性hDlx2遺伝子発現用PiggyBacベクター(PB-p(tetO)-hDlx2-pA-floxPGKneo-pA)の各0.4μgを上記で調製したリポフェクション試薬カクテルに加え、よく攪拌し、15分間室温で静置し、ベクター・リポフェクションクション試薬を調製した。
 15分間の静置の間に、(2)でシングルセル化した細胞懸濁液3×10cells相当を1.5mlチューブに移し、200G×5分間で遠心分離し、15分間が経過した後、遠心分離後の後の上澄みを除去し、上記で調製したベクター・リポフェクション試薬カクテルをペレットに加え、ピペッティングし、5分間室温で静置した。
 得られた細胞を、(1)で事前にインキュベートしていた細胞培養用プレートに15~20μl/wellで各ウェル内にまんべんなく播種し、37℃、5%COで約3時間インキュベートした。その後、20μg/ml Y27632(フジフィルム和光純薬社製)を含むStem Fit(AK02N、味の素社製)を37℃で加温し、2ml/wellで全ウェルについて全量培地交換した。
(4)抗生物質によるPV+神経細胞に誘導可能なiPS細胞の選抜
 (3)の遺伝子導入1日後に、50μg/mlハイグロマイシンおよび100μg/ml G418を添加したStem Fit(AK02N、味の素社製)で全量培地交換(1.5ml/well)し、2日間培養した。
 2日間培養後、100μg/mlハイグロマイシン(Hygromycin B Solution、#09287-84、ナカライ社製)、100μg/ml G418(G 418 Disulfate、#08973-14、ナカライ社製)、および5μg/mlピューロマイシン(#ant-pr-1、INVIVOGEN社製、#14861-71、ナカライ社製)を添加したStem Fit (AK02N、味の素社製)で全量培地交換(1.5ml/well)し、2日間培養した。
 2日間培養後、200μg/mlハイグロマイシン、100μg/mlG418、および10μg/mlピューロマイシンを添加したStem Fit(AK02N、味の素社製)で全量培地交換(1.5ml/well)し、2日間培養した。
 2日間培養後、Stem Fit(AK02N、味の素社製)で全量培地交換(1.5ml/well)し、抗生物質は加えず1日間培養し、生き残ったiPS細胞については、必要に応じ、継代又は凍結保存を行った。
[実験例3]
(iPS細胞へのMEF2C遺伝子、miRNA-9/9、miRNA-124及びBclxL遺伝子の導入)
 iPS細胞へのMEF2C遺伝子、miRNA-9/9、miRNA-124及びBclxL遺伝子導入のスキームを、図1Bに示した。具体的には以下のようにして、iPS細胞へMEF2C遺伝子、miRNA-9/9、miRNA-124及びBclxL遺伝子を導入した。
(1)MEF2C遺伝子、miRNA-9/9、miRNA-124及びBclxL遺伝子が導入されたレンチウイルスの精製
 常法に従い、図1C下段に示す、MEF2C遺伝子、miRNA-9/9、miRNA-124及びBclxL遺伝子が導入されたレンチウイルスを精製した。具体的には以下のようにして、MEF2C遺伝子、miRNA-9/9、miRNA-124及びBclxL遺伝子が導入されたレンチウイルスを精製した。
 0.01%Poly-L-Lysine溶液(0.01%、#P4832、Sigma社製)をPBS(-)で1:100に混合した溶液を用いてコーティングした細胞・組織培養用100mmディッシュをPBS(-)で洗浄後に、10%FBS、2mM L-グルタミンを含むDMEM培地(#D5796、Sigma社製)でセミコンフルエントに培養したHEK293T細胞を、ディッシュ1枚分に対し、500μl HBSS、3μgパッケージングベクター(pCAG-HIVgp)、3μgエンベロープ生成ベクター/Rev発現ベクター(VSV-G、REV発現ベクター、pCMV-VSV-G-RSV-Rev)、6μgのSINベクター(Tet感受性miRNA-9/9、miRNA-124、BclxL遺伝子発現ベクター、CSIV-124-9-BClxL-TRE-EF-BsdT)、6μgのSINベクター(Tet感受性MEF2C遺伝子発現ベクター、pLV-TRE3G-HA-hMEF2C-mPGK-Zeo)及びポリエチレンイミン(分子量:25000、#23966、Polysciences社製)[Milli-Q(登録商標)水中1mg/ml]24μlをよく混合させ、15分間室温静置したものをディッシュにまんべんなく滴下した。
 37℃、5%COで12時間インキュベートした後に、10μMフォルスコリンを含むDMEM(#D5796、Sigma社製)に培地交換し、再度37℃、5%COでインキュベートした。48時間後に細胞培養上清を取り出し、0.45μmシリンジフィルターを通し、浮遊細胞等を取り除いた後、超遠心器を用い、50,000×Gで2時間遠心分離後に得られる微量ペレットをPBS(-)で回収後、ウイルス力価を概算した。
(2)miRNA-9/9、miRNA-124、BclxL遺伝子導入用レンチウイルスベクター及びMEF2C遺伝子導入用レンチウイルスベクターのiPS細胞への感染
 6-ウェルプレートに、10μg/ml Y27632(フジフィルム和光純薬社製)、1.5μg/ml iMatrix-511(ニッピ社製)を含むStem Fit(AK02N、味の素社製)を入れ、実験例2で調製したiPS細胞を1.5×10cells/wellで、播種し、1日間培養した。
 次に、Y27632やiMatrix-511は添加していないStem Fit(AK02N、味の素社製)を1.5ml/wellで全量培地交換した後、(1)で調製したウイルス懸濁液を添加(各MOI=2.0)で感染させ、2日間培養した。
(3)抗生物質によるレンチウイルス感染済みiPS細胞の選抜
 (2)のウイルス懸濁液の添加2日後に、培地をStem Fit(AK02N、味の素社製)に1.5ml/wellで全量培地交換し、20μg/ml ブラストサイジン(Blastcidin)又は200μg/ml ゼオシン(Zeocin)を添加し、2日間培養した。
 2日間培養後、Stem Fit(AK02N、味の素社製)に1.5ml/wellで全量培地交換し、上記20μg/ml ブラストサイジン(Blasticidin S,Hydrochloride、#KK-400、Funakoshi社製)又は200μg/mlゼオシン(Zeocin溶液、#ant-zn-1、INVIVOGEN社製、#61483-26、ナカライ社製)を同様に添加し、1日間培養した。
 その後、上記抗生物質を含まないStem Fit(AK02N、味の素社製)に全量培地交換し、生き残ったiPS細胞について、必要に応じ、継代又は凍結保存を行った。
[実験例4]
(遺伝子導入済みiPS細胞のPV+神経細胞への分化)
(1)細胞培養プレートのプレコーティング
 Poly-L-Lysine solution(0.01%、#P4832、Sigma社製)をPBS(-)で100倍希釈し、プレートに注ぎ6時間以上コーティングした。RNA解析などの細胞回収用のプレートとして、6ウェルプレートを用い、1.5ml/wellでコーティングした。免疫染色やイメージング用のプレートとして、ガラス底96ウェルプレートを用い、100μl/wellでコーティングした。なお、コーティングの際は細胞培養用のCOインキュベーターなどに入れ、乾燥させないように一定の湿度を保っておいた。
 神経分化用のiPS細胞を播種する1時間前にPoly-L-Lysine solutionを吸引除去し、PBS(-)で3回洗浄した。6ウェルプレートは各1ml/well、96ウェルプレートは各100μl/well程度で洗浄を行い、3回洗浄後は十分に残存液体を吸引除去した。
 次に、50mlコニカルチューブなどを用いて、Growth Factor Reduced Matrigel(#354230、Corning社製)をPBS(-)で50倍希釈したものを作成し、6ウェルプレートは各1.5ml/well、96ウェルプレートは各100μl/wellでコーティングした。
 上記のマトリゲルコーティング中に、実験例2の(2)と同様の方法により神経分化用iPS細胞をシングルセル化し、細胞懸濁液の細胞密度を算出した。
(2)PV+神経細胞への分化
 分化用培地として下記を混合させた培地を準備した。
・Neurobasal Plus Medium(#A3582901、Thermo Fisher Scientific社製、基礎培地として下記を混合)
・B27 Plus Supplement(50×、#A3582801、Thermo Fisher Scientific社製)(1:50)
・Glutamax(Thermo Fisher Scientific社製)(1:100)
・dbcAMP(N6,2’-O-Dibutyryladenosine-3’,5’-cyclic Monophosphate Sodium Salt、#11540-61、ナカライ社製)(100μM)
・DAPT[N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-(S)-phenylglycine t-butyl ester、#D5942-5MG、Sigma社製)(10μM)
・ドキシサイクリン(#D4116、東京化成社製)(2.0μg/ml)
・Y27632(#030-24026、フジフィルム和光純薬社製)(20μg/ml)
 プレートに注ぐ直前にiMatrix-511(ニッピ社製)1.0μg/mlを上記分化用培地に添加し、6ウェルプレートは2.0ml/well、96ウェルプレートは100μl/wellで注いだ。
 次に、実験例3で調製したiPS細胞懸濁液を6ウェルプレートは6.0×10cells/well、96ウェルプレートは3.0×10cells/wellで均等に播種した。
(3)PV+神経細胞の培養
 (2)で分化させたiPS細胞を、培養開始後5日目で以下の培地に全量交換した。6ウェルプレートは2.0ml/well、96ウェルプレートは各100μl/wellで注いだ。
・Neurobasal Plus Medium(#A3582901、Thermo Fisher Scientific社製、基礎培地として下記を混合)
・B27 Plus Supplement(50×、#A3582801、Thermo Fisher Scientific社製)(1:50)
・Glutamax(Thermo Fisher Scientific社製)(1:100)
・dbcAMP(N6,2’-O-Dibutyryladenosine-3’,5’-cyclic Monophosphate Sodium Salt、#11540-61、ナカライ社製)(100μM)
・BDNF(Recombinant human BDNF protein、#B-250、alomone labs社製)(10ng/ml)
・GDNF(Recombinant human GDNF protein、#G-240、allomone labs社製)(10 ng/ml)
・L-Ascorbic Acid(#016-04805、フジフィルム和光純薬社製)(200 μM)
 培養は、5日ごとに上記組成の培地を半量ずつ交換して行い、培養10日目以降は細胞回収によるRNA精製、細胞固定による免疫染色などを行った。
[実験例5]
(パルブアルブミン遺伝子(PVALB)レポーター細胞株の作製)
 図2にパルブアルブミン遺伝子(PVALB)レポーター細胞株の作製のスキームを示す。具体的には以下のようにして、パルブアルブミン遺伝子(PVALB)レポーター細胞株を作製した。
 CRISPR/Cas9により、ヒトParvalbumin遺伝子(PVALB)の終止コドン部位に、EGFPおよび分泌型ルシフェラーゼ(SNLuc)、及びPiggyBac ITRで挟まれた恒常発現性プロモーターで駆動されるピューロマイシン耐性遺伝子を挿入させた。遺伝子導入後、薬剤選択によって、ホモ型PVALBノックイン細胞を取得し、その後、トランスポゼースによってITR内部の配列を除去し、PVALB遺伝子下流に2Aペプチド下で発現するEGFP、SNLucのレポーター細胞株を取得した。
[実験例6]
(発現誘導後20日(発現誘導5日、分化15日)後の細胞の免疫染色)
 Ascl1遺伝子、Dlx2遺伝子、miRNA-9/9、miRNA-124、BclxL遺伝子の一過性発現細胞について、MEF2C遺伝子の一過性発現非誘導、および誘導を行った。発現誘導後20日(発現誘導5日、分化15日)後に細胞を固定し、Anti-Tubb3(神経細胞マーカー)抗体、Anti-パルブアルブミン(PV)抗体、Anti-GFP抗体で免疫染色を行った。また細胞核染色としてHoechst(Ho)も行った。その結果を図3及び図4に示す。
 図3及び図4に示したように、MEF2C誘導群においてPV+神経細胞が多く確認された。また、図3及び図4に示したように、miRNA-9/9、miRNA-124、BclxL遺伝子非誘導群においても、MEF2C誘導群ではPV+神経細胞が分化誘導されることが確認された。
[実験例7]
(定量PCR法によるパルブアルブミンmRNA発現レベルの解析)
 Ascl1遺伝子及びDlx2遺伝子による抑制性神経細胞誘導下で、miRNA-9/9、miRNA-124及びBclxL遺伝子を導入、MEF2C遺伝子導入、の各組み合わせについて、発現誘導後10日、20日、40日、および60日で経時的に細胞回収し、パルブアルブミンmRNAの定量PCRを行った。その結果を図5に示す。
 図5に示したように、発現誘導20日後(Day20)、40日後(Day40)、60日後(Day60)において、miRNA-9/9,miRNA-124、BclxL遺伝子とMEF2C遺伝子との両方を共発現すると、単独の発現に比較して相乗的にパルブアルブミン遺伝子発現レベルが上昇していた。
 本発明によれば、分化誘導工程が少なく、短期間で、パルブアルブミン陽性神経細胞を高効率で製造する製造方法、前記PV+神経細胞に誘導可能な細胞、及び前記PV+神経細胞に分化誘導させるための分化誘導剤を提供することができる。

Claims (20)

  1.  細胞内で、Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子の発現を誘導する発現誘導工程と、前記発現誘導後の細胞を培養して、前記細胞からパルブアルブミン陽性神経細胞を分化させる分化工程と、を含む、パルブアルブミン陽性神経細胞の製造方法。
  2.  前記発現誘導工程が、前記細胞内に、Ascl1遺伝子及びDlx2遺伝子を発現可能なように導入する遺伝子導入工程を含む、請求項1に記載のパルブアルブミン陽性神経細胞の製造方法。
  3.  前記発現誘導工程が、さらにMEF2C遺伝子を発現可能なように導入する遺伝子導入工程を含む、請求項2に記載のパルブアルブミン陽性神経細胞の製造方法。
  4.  前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、テトラサイクリン制御性(Tet-ON)である、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記発現誘導工程が、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種を、同時に発現誘導する工程を含む、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記発現誘導工程が、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種を、発現可能なように導入する遺伝子導入工程を含む、請求項5に記載の製造方法。
  7.  前記マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が、テトラサイクリン制御性(Tet-ON)である、請求項5又は6に記載の製造方法。
  8.  前記細胞が線維芽細胞又は多能性幹細胞である、請求項1~7のいずれか一項に記載の製造方法。
  9.  前記発現誘導工程を1~5日間行う、請求項1~8のいずれか一項に記載の製造方法。
  10.  前記分化工程を10日間以上行う、請求項1~9のいずれか一項に記載の製造方法。
  11.  Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、発現可能なように導入された細胞。
  12.  前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、テトラサイクリン制御性(Tet-ON)である、請求項11に記載の細胞。
  13.  さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種が、発現可能なように導入された請求項11又は12に記載の細胞。
  14.  前記マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が、テトラサイクリン制御性(Tet-ON)である、請求項13に記載の細胞。
  15.  前記細胞が線維芽細胞又は多能性幹細胞である、請求項11~14のいずれか一項に記載の細胞。
  16.  Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子、又はそれらの遺伝子産物を有効成分として含有する、細胞をパルブアルブミン陽性神経細胞に分化誘導させるための、分化誘導剤。
  17.  前記Ascl1遺伝子、Dlx2遺伝子及びMEF2C遺伝子が、テトラサイクリン制御性(Tet-ON)である、請求項16に記載の分化誘導剤。
  18.  さらに、マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子からなる群から選ばれる少なくとも1種、又はそれらの遺伝子産物を有効成分として含有する、請求項16又は17に記載の分化誘導剤。
  19.  前記マイクロRNA-9/9(miRNA-9/9)、マイクロRNA-124(miRNA-124)及びBclxL遺伝子が、テトラサイクリン制御性(Tet-ON)である、請求項18に記載の分化誘導剤。
  20.  前記細胞が線維芽細胞又は多能性幹細胞である、請求項16~19のいずれか一項に記載の分化誘導剤。
PCT/JP2020/032606 2019-08-29 2020-08-28 パルブアルブミン陽性神経細胞の製造方法、細胞、及び分化誘導剤 WO2021039965A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021543041A JPWO2021039965A1 (ja) 2019-08-29 2020-08-28
EP20858676.8A EP4023748A4 (en) 2019-08-29 2020-08-28 METHOD FOR PRODUCING PARVALBUMIN POSITIVE NERVE CELLS, CELL AND DIFFERENTIATION INDUCTOR
CN202080067399.9A CN114514314A (zh) 2019-08-29 2020-08-28 小白蛋白阳性神经细胞的制造方法、细胞及分化诱导剂
US17/637,862 US20220282210A1 (en) 2019-08-29 2020-08-28 Method for producing parvalbumin-positive nerve cells, cell, and differentiation inducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019157194 2019-08-29
JP2019-157194 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039965A1 true WO2021039965A1 (ja) 2021-03-04

Family

ID=74685141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032606 WO2021039965A1 (ja) 2019-08-29 2020-08-28 パルブアルブミン陽性神経細胞の製造方法、細胞、及び分化誘導剤

Country Status (5)

Country Link
US (1) US20220282210A1 (ja)
EP (1) EP4023748A4 (ja)
JP (1) JPWO2021039965A1 (ja)
CN (1) CN114514314A (ja)
WO (1) WO2021039965A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116716342A (zh) * 2022-06-22 2023-09-08 南京艾尔普再生医学科技有限公司 一种adcc功能增强的nk细胞的制作方法、nk细胞及其组合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022583A1 (en) * 2010-01-19 2013-01-24 Marius Wernig Direct Conversion of Cells to Cells of Other Lineages
JP2018513686A (ja) * 2015-04-10 2018-05-31 シンガポール科学技術研究庁Agency for Science, Technology and Research 幹細胞からの機能性細胞の生成
JP2019157194A (ja) 2018-03-13 2019-09-19 株式会社エリアデザイン クリップ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089819A2 (en) * 2011-04-08 2013-06-20 The Board Of Trustees Of The Leland Stanford Junior University Microrna mediated neuronal cell induction
JP2017509322A (ja) * 2014-01-29 2017-04-06 ヘルムホルツ ツェントゥルム ミュンヘン ドイチェス フォルシュングスツェントゥルム フューア ゲズントハイト ウント ウムヴェルト (ゲーエムベーハー) 分化細胞の分化転換
WO2019032320A1 (en) * 2017-08-07 2019-02-14 Washington University COMPOSITIONS AND METHODS FOR GENERATING NEURONS AND USES THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022583A1 (en) * 2010-01-19 2013-01-24 Marius Wernig Direct Conversion of Cells to Cells of Other Lineages
JP2018513686A (ja) * 2015-04-10 2018-05-31 シンガポール科学技術研究庁Agency for Science, Technology and Research 幹細胞からの機能性細胞の生成
JP2019157194A (ja) 2018-03-13 2019-09-19 株式会社エリアデザイン クリップ装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DICKINS RA ET AL., NATURE GENETICS, vol. 39, no. 7, 2007, pages 914 - 921
KAMATH, S. P. ET AL.: "Myocyte Enhancer Factor 2c Regulates Dendritic Complexity and Connectivity of Cerebellar Purkinje Cells", MOL. NEUROBIOL., vol. 56, 1 October 2018 (2018-10-01), pages 4102 - 4119, XP036777360, DOI: 10.1007/s12035-018-1363-7 *
LEWIS DA ET AL., TRENDS NEUROSCI., vol. 35, no. 1, January 2012 (2012-01-01), pages 57 - 67
RODRIGUEZ RA ET AL., FRONT MOL NEUROSCI., vol. 11, 24 April 2018 (2018-04-24), pages 132
YANG N. ET AL., NAT METHODS., vol. 14, no. 6, June 2017 (2017-06-01), pages 621 - 628
YUAN F. ET AL., ELIFE, vol. 7, 25 September 2018 (2018-09-25), pages e37382

Also Published As

Publication number Publication date
CN114514314A (zh) 2022-05-17
EP4023748A4 (en) 2023-10-25
US20220282210A1 (en) 2022-09-08
EP4023748A1 (en) 2022-07-06
JPWO2021039965A1 (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6976939B2 (ja) 遺伝的プログラミングによる多系統造血前駆細胞の作製
JP6005666B2 (ja) プログラミングによる造血前駆細胞の生産
Miyagi et al. The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells
JP2018531020A6 (ja) 遺伝的プログラミングによる多系統造血前駆細胞の作製
JP5944315B2 (ja) 細胞およびそれらを得るための方法
Delaunay et al. Early neuronal and glial fate restriction of embryonic neural stem cells
Islam et al. Enhancer analysis unveils genetic interactions between TLX and SOX2 in neural stem cells and in vivo reprogramming
JP2021518365A (ja) 神経栄養因子の誘導可能な発現のための方法及び組成物
US6995011B2 (en) Vector for reversible gene integration
JP2022553953A (ja) Ipsc由来の皮質神経前駆細胞
WO2021039965A1 (ja) パルブアルブミン陽性神経細胞の製造方法、細胞、及び分化誘導剤
Abbasi et al. Lentiviral vector-mediated transduction of goat undifferentiated spermatogonia
JP2008228632A (ja) 卵巣顆粒膜細胞または卵巣夾膜細胞への分化誘導能を持つ成体体性幹細胞
Oishi Improvement of transfection efficiency in cultured chicken primordial germ cells by percoll density gradient centrifugation
JP6822837B2 (ja) 膵内分泌細胞及びその製造方法、並びに分化転換剤
US20140127169A1 (en) Induced presomitic mesoderm (ipsm) cells and their use
JP6469371B2 (ja) 人工多能性幹細胞(iPS細胞)から成る胚様体に複数の外来遺伝子を発現させる方法
JP2013240308A (ja) ヒトES/iPS細胞における遺伝子発現方法
WO2021032271A1 (en) Induction of functional astrocytes from pluripotent stem cells
JP2011177145A (ja) 高効率のミクロセル融合法
WO2014168255A1 (ja) 巨核球の成熟化促進物質
JP2011004674A (ja) 誘導多能性幹細胞(iPS細胞)の製造方法
Wong et al. STAT3-inducible mouse ESCs: a model to study the role of STAT3 in ESC maintenance and lineage differentiation
JP2021048875A (ja) 膵内分泌細胞の製造方法、及び分化転換剤
Sakai et al. Identification of NR5A1 (SF-1/AD4BP) gene expression modulators by large-scale gain and loss of function studies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858676

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021543041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020858676

Country of ref document: EP

Effective date: 20220329