WO2021039805A1 - 建設機械 - Google Patents
建設機械 Download PDFInfo
- Publication number
- WO2021039805A1 WO2021039805A1 PCT/JP2020/032072 JP2020032072W WO2021039805A1 WO 2021039805 A1 WO2021039805 A1 WO 2021039805A1 JP 2020032072 W JP2020032072 W JP 2020032072W WO 2021039805 A1 WO2021039805 A1 WO 2021039805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow path
- charge
- flow rate
- traveling
- pump
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2225—Control of flow rate; Load sensing arrangements using pressure-compensating valves
- E02F9/2228—Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
- E02F3/435—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2004—Control mechanisms, e.g. control levers
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2203—Arrangements for controlling the attitude of actuators, e.g. speed, floating function
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2232—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
- E02F9/2235—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2264—Arrangements or adaptations of elements for hydraulic drives
- E02F9/2271—Actuators and supports therefor and protection therefor
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2264—Arrangements or adaptations of elements for hydraulic drives
- E02F9/2275—Hoses and supports therefor and protection therefor
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2289—Closed circuit
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/18—Combined units comprising both motor and pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20546—Type of pump variable capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20561—Type of pump reversible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20576—Systems with pumps with multiple pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/3056—Assemblies of multiple valves
- F15B2211/3059—Assemblies of multiple valves having multiple valves for multiple output members
- F15B2211/30595—Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41509—Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/426—Flow control characterised by the type of actuation electrically or electronically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/61—Secondary circuits
- F15B2211/611—Diverting circuits, e.g. for cooling or filtering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6313—Electronic controllers using input signals representing a pressure the pressure being a load pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7053—Double-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7058—Rotary output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
- F15B2211/7135—Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
- F15B2211/7142—Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/78—Control of multiple output members
- F15B2211/781—Control of multiple output members one or more output members having priority
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/785—Compensation of the difference in flow rate in closed fluid circuits using differential actuators
Definitions
- the present invention relates to a construction machine using a hydraulic closing circuit that directly drives a hydraulic actuator by a hydraulic pump, and particularly to a construction machine that drives a hydraulic cylinder by a hydraulic closing circuit.
- Patent Document 1 describes a configuration in which a hydraulic closed circuit system is mounted and good operability can be ensured even if a plurality of actuators are simultaneously operated in combination. There is.
- the hydraulic drive system described in Patent Document 1 is configured to drive a single-rod type hydraulic cylinder by using a closed circuit pump and an open circuit pump in pairs, and a traveling hydraulic motor to be driven only by the open circuit pump.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a construction machine in which traveling operability is not impaired during a combined operation of driving a single-rod type hydraulic cylinder during traveling operation.
- the present invention comprises a traveling body, a working device, a traveling hydraulic motor for driving the traveling body, at least one single-rod hydraulic cylinder for driving the working device, and the traveling.
- the rod-side flow path to be connected, the open circuit pump, the traveling flow control valve for controlling the flow rate supplied from the open circuit pump to the traveling hydraulic motor, and the discharge port of the opening circuit pump are connected to the traveling flow rate.
- the discharge direction and discharge flow rate of the closed circuit pump are controlled according to the operation of the traveling operation lever and the working operation lever, and the traveling switching valve and the assist switching valve are opened and closed to open and close the opening circuit pump.
- the controller is a switching valve for assist when the operation lever for traveling is operated, regardless of whether or not the operation lever for work is operated. Shall be held in the closed position.
- the present invention configured as described above, in a construction machine having a configuration in which a single-rod hydraulic cylinder is driven by a combination of a closed circuit pump and an open circuit pump, when the single-rod hydraulic cylinder is driven during traveling operation, by limiting the single-rod hydraulic cylinder to be driven only by the closed circuit pump, the open circuit pump is occupied by the driving of the traveling hydraulic motor. As a result, even if the single-rod type hydraulic cylinder is driven during the traveling operation, the traveling speed does not decrease, so that the traveling operability is not impaired.
- FIG. 1 It is a side view of the hydraulic excavator which concerns on embodiment of this invention. It is a hydraulic circuit diagram of the hydraulic excavator shown in FIG. It is a functional block diagram of a conventional controller. It is a functional block diagram of the controller shown in FIG. It is a flowchart of the controller shown in FIG. It is a figure which shows the charge relief valve pressure override characteristic shown in FIG.
- FIG. 1 is a side view of the hydraulic excavator according to the present embodiment.
- the hydraulic excavator 100 includes a lower traveling body 101 having crawler-type traveling devices on both left and right sides, and an upper rotating body 102 rotatably mounted on the lower traveling body 101.
- the lower traveling body 101 is driven by traveling hydraulic motors 16a and 16b (shown in FIG. 2).
- the upper swing body 102 is driven by a swing hydraulic motor (not shown).
- a front device 103 as a work device for performing excavation work or the like is attached to the front side of the upper swivel body 102.
- the front device 103 includes a boom 1 rotatably connected to the front side of the upper swing body 102 in the vertical direction, an arm 2 rotatably connected to the tip of the boom 1 in the vertical and front-rear directions, and an arm 2.
- the tip of the bucket 3 is provided with a bucket 3 rotatably connected in the vertical and front-back directions.
- the boom 1, arm 2, and bucket 3 are each driven by a boom cylinder 4, an arm cylinder 5, and a bucket cylinder 6, which are single-rod hydraulic cylinders.
- a cab 104 on which the operator is boarded is provided on the upper swivel body 102.
- a traveling operation lever 25b (shown in FIG. 2) for instructing the operation of the lower traveling body 101, a boom 1, an arm 2, a bucket 3, and an upper rotating body 102 for instructing the operation
- a working operation lever 25a (shown in FIG. 2) and the like are arranged.
- FIG. 2 is a hydraulic circuit diagram of the hydraulic excavator 100.
- FIG. 2 only the parts related to the driving of the hydraulic cylinders 4, 5 and 6 (represented by the hydraulic cylinders 13 in the figure) and the traveling hydraulic motors 16a and 16b are shown, and other actuators can be driven. The related parts are omitted.
- the closed circuit pump 7 which is a double tilt variable capacitance pump
- the open circuit pumps 8 and 9 which are single tilt variable capacitance pumps
- the charge pump 10 which is a single tilt fixed capacitance pump are from the power source 11. It receives power and is driven via the transmission device 12.
- one discharge port is connected to the cap side chamber 13a of the hydraulic cylinder 13 via the cap side flow path 41, and the other discharge port is connected to the rod side chamber 13b of the hydraulic cylinder 13 via the rod side flow path 42. It is connected to and constitutes a closed circuit.
- the closed circuit pump 7 sucks oil from one of the cap side flow path 41 and the rod side flow path 42 and discharges it to the other.
- the open circuit pumps 8 and 9 suck oil from the oil tank 14 and discharge it to the cap side chamber 13a of the hydraulic cylinder 13 via the assist flow paths 43 and 45 and the assist switching valves 15a and 15c, and also for traveling. It is discharged to the traveling hydraulic motors 16a and 16b via the roads 44 and 46 and the traveling switching valves 15b and 15d.
- the traveling flow rate control valves 17a and 17b are provided on the flow path connecting the traveling switching valves 15b and 15d and the traveling hydraulic motors 16a and 16b, and are provided from the open circuit pumps 8 and 9 to the traveling hydraulic motors 16a and 16b. Control the flow rate supplied.
- the relief valves 18a, 18b, 18c, 18d are provided on the flow path connecting the traveling hydraulic motors 16a, 16b and the traveling flow rate control valves 17a, 17b, and have two ports of the traveling hydraulic motors 16a, 16b, respectively.
- the pressure difference exceeds a predetermined pressure, oil is released from the high-pressure side flow path to the low-pressure side flow path to protect the circuit.
- the bleed-off valves 19a and 19b are provided in a flow path branched from the discharge flow path of the open circuit pumps 8 and 9, and the oil discharged by the open circuit pumps 8 and 9 is discharged to the oil tank 14 according to the opening degree.
- the charge pump 10 sucks oil from the oil tank 14 and discharges it to the charge flow path 40.
- the check valves 20a and 20b are provided between the cap side flow path 41 and the rod side flow path 42 and the charge flow path 40, and oil is replenished from the charge flow path 40 to the cap side flow path 41 and the rod side flow path 42. To do.
- the flushing valve 21 is provided between the cap side flow path 41, the rod side flow path 42, and the charge flow path 40, and charges excess oil on the low pressure side of either the cap side flow path 41 or the rod side flow path 42. Discharge to road 40.
- the main relief valves 22a and 22b are provided between the cap side flow path 41 and the rod side flow path 42 and the charge flow path 40, and set the maximum pressure of the cap side flow path 41 and the rod side flow path 42.
- the charge relief valve 23 is provided between the charge flow path 40 and the oil tank 14 to set the maximum pressure of the charge pump 10.
- the pressure sensors 51 and 52 are provided in the cap side flow path 41 and the rod side flow path 42, respectively, and detect the pressures in the cap side chamber 13a and the rod side chamber 13b of the hydraulic cylinder 13 and output the pressure sensors to the controller 24.
- the controller 24 includes a closed circuit pump 7, an open circuit pump 8, 9, a switching valve 15a, 15b, 15c, 15d, and a traveling flow rate based on the operation amount of the operating levers 25a and 25b and the pressure information of the pressure sensors 51 and 52.
- the commands to the control valves 17a and 17b and the bleed-off valves 19a and 19b are calculated and output.
- the switching valves 15a, 15b, 15c, 15d and the traveling flow rate control valves 17a, 17b are in the closed position in the standby state to hold the pressure in the circuit. Further, the bleed-off valves 19a and 19b are in the open position, and the standby flow rates of the open circuit pumps 8 and 9 are released to the oil tank 14 to prevent the pressure from rising.
- FIG. 3 is a functional block diagram of a conventional controller.
- the conventional controller 24X includes a pump / valve command generator 26.
- the pump / valve command generation unit 26 calculates a command (pump / valve command) for each pump and each valve according to the input information of the operating levers 25a and 25b, and outputs the command to each pump and each valve.
- FIG. 4 is a functional block diagram of the controller 24 according to the present embodiment.
- the controller 24 in the present embodiment includes a traveling combined command calculation unit 27 in addition to the pump / valve command generation unit 26.
- the traveling combined command calculation unit 27 corrects the pump valve command calculated by the pump valve command generation unit 26 based on the operation lever information and the pressure information of the hydraulic cylinder 13, and outputs the pump / valve command to each pump and each valve.
- the traveling combined command calculation unit 27 includes a pump / valve command correction unit 28, a charge flow rate calculation unit 29, a charge relief valve passing flow rate calculation unit 30, a pump flow rate command correction unit 31, and a threshold storage unit 32. There is.
- the pump valve command correction unit 28 detects the operation of the traveling operation lever 25b, the pump valve command corrects the commands of the assist switching valves 15a and 15c among the pump valve commands to the closed position, and the corrected pump valve.
- the command is output to the charge flow rate calculation unit 29, the charge relief valve passing flow rate calculation unit 30, and the pump flow rate command correction unit 31.
- the charge flow rate calculation unit 29 calculates the charge flow rate based on the pump valve command and the pressure information of the hydraulic cylinder 13, and outputs the charge flow rate to the pump flow rate command correction unit 31.
- the charge flow rate referred to here is a flow rate obtained by subtracting the flow rate discharged by the hydraulic cylinder 13 (4,5,6) into the charge flow path 40 from the flow rate absorbed by the hydraulic cylinder 13 (4,5,6) from the charge flow path 40 ( The flow rate absorbed by the hydraulic cylinders 13 (4, 5, 6) from the charge flow path 40 as a whole).
- the charge relief valve passing flow rate calculation unit 30 calculates the charge relief valve passing flow rate based on the pump valve command and the pressure information of the hydraulic cylinder 13, and outputs it to the pump flow rate command correction unit 31.
- the flow rate passing through the charge relief valve referred to here is a flow rate discharged to the oil tank 14 via the charge relief valve 23, and the discharge flow rate of the charge pump 10 and the hydraulic cylinder 13 (4,5,6) are the charge flow paths 40. This is the flow rate obtained by subtracting the flow rate absorbed by the hydraulic cylinder 13 (4, 5, 6) from the charge flow path 40 from the total flow rate discharged to.
- the pump flow rate command correction unit 31 corrects the discharge flow rate of the closed circuit pump 7 of the pump valve commands to the decreasing side when the charge flow rate exceeds the threshold value or the charge relief valve passing flow rate exceeds the threshold value. Then, the corrected pump / valve command is output to each pump and each valve.
- Each threshold value referred to here is stored in the threshold value storage unit 32.
- FIG. 5 is a flowchart showing processing in one control cycle of the traveling compound command calculation unit 27. Hereinafter, each process will be described in order.
- process F3 it is determined whether or not the cylinder is extended based on the input information of the work operation lever 25a (process F3).
- the discharge flow rate of 7 is limited, and the flow is terminated.
- process F7 If it is determined in the process F3 that the cylinder extension operation is not performed (NO), the flow rate passing through the charge relief valve is calculated (process F7). Following the process F7, it is determined whether or not the flow rate passing through the charge relief valve is equal to or less than the threshold value (process F8). The method of setting the threshold value will be described later.
- the discharge flow rate of the closed circuit pump 7 driving the hydraulic cylinder 13 is limited so that the charge relief flow rate is equal to or less than the threshold value. And end the flow.
- the discharge flow rate of the closed circuit pump 7 is Qcp
- the discharge flow rate of the open circuit pump 8 is Qop
- the pressure receiving area of the cap side chamber of the hydraulic cylinder 13 is Cap
- the pressure receiving area of the rod side chamber is Arod
- the flow rate ratio of the pump (Qcp + Pump): Qcp and Qop are determined so that Qcp is equal to the pressure receiving area ratio Acap: Arod.
- the controller 24 controls so that the discharge flow rate ratio of the closed circuit pump 7 and the open circuit pump 8 changes while maintaining Qcp: Qop. In this way, when driving the hydraulic cylinder 13, the closed circuit pump 7 and the open circuit pump 8 are used in combination.
- the controller 24 is a circuit-opening pump 8 and 9 according to the operation amount of the traveling operation lever 25b.
- the flow rate command, the opening command of the traveling switching valves 15b and 15d, the closing command of the bleed-off valves 19a and 19b, and the opening command of the traveling flow rate control valves 17a and 17b are output to drive the traveling hydraulic motors 16a and 16b, respectively. .. In this way, only the open circuit pumps 8 and 9 are used during the traveling operation.
- the hydraulic cylinder 13 is operated by the closed circuit pump 7 and the open circuit pump 8 at the same time, and the traveling is simultaneously operated by the open circuit pump 9 to ensure the combined operability.
- the traveling hydraulic motors 16a and 16b were originally driven by the two open circuit pumps 8 and 9
- the hydraulic cylinder 13 was operated, so that the open circuit pump 8 used for traveling became a hydraulic cylinder. 13 is used to drive.
- the only pump that can be used in traveling is the open circuit pump 9, the traveling speed is greatly reduced, and the traveling operability is significantly impaired.
- processing is performed by the traveling compound command calculation unit 27 provided in the controller 24 according to the present embodiment shown in FIG.
- the traveling compound command calculation unit 27 provided in the controller 24 according to the present embodiment shown in FIG.
- the pump that drives the hydraulic cylinder 13 is limited to the closed circuit pump 7.
- the open circuit pumps 8 and 9 can be occupied by the driving of the traveling hydraulic motors 16a and 16b during the traveling operation, and the traveling speed is lowered even if the hydraulic cylinder 13 is operated during the traveling operation. There is no loss of driving operability.
- the pressure of the charge flow path 40 (hereinafter referred to as the charge pressure) may decrease, causing cavitation and damaging the equipment, resulting in a decrease in reliability.
- the process F4 calculates the charge flow rate from the operation amount of the work operation lever 25a and the pressure information of the pressure sensors 51 and 52, and the process F5 charges the charge flow rate (hydraulic cylinder 13 (4,5,6) as a whole. It is determined whether or not the flow rate absorbed from the flow path 40) is equal to or less than the charge pump discharge flow rate.
- the discharge flow rate of the closed circuit pump 7 is limited in the process F6 until the charge flow rate becomes equal to or less than the charge pump discharge flow rate. As a result, it is possible to suppress a decrease in the charge pressure and prevent a decrease in reliability.
- the process F8 determines whether the flow rate passing through the charge relief valve is equal to or less than the threshold value, and if the flow rate exceeds the threshold value, the process F9 adjusts the discharge flow rate of the closed circuit pump 7 so that the flow rate passing through the charge relief valve is equal to or less than the threshold value.
- the threshold value here is determined based on the pressure override characteristic of the charge relief valve 23 shown in FIG. Specifically, it is set to a value equal to or less than the charge relief valve passing flow rate Fmax when the charge pressure reaches the maximum allowable pressure Pmax.
- the maximum permissible pressure Pmax is set within a range that does not affect fuel efficiency and operability. For example, when the target value of the charge pressure is 2 MPa, it is set to about 3 MPa.
- 25a, a closed circuit pump 7 connected to the single rod type hydraulic cylinder 13 (4,5,6) in a closed circuit, and one discharge port of the closed circuit pump 7 are connected to the single rod type hydraulic cylinder 13 (4,5,6).
- the other discharge port of the closed circuit pump 7 are connected to the rod side chamber 13b of the single rod type hydraulic cylinder 13 (4,5,6), and the rod side flow path 42 is connected to the cap side chamber 13a.
- the traveling switching valves 15b and 15d that can open and close the traveling flow paths 44 and 46 that connect the ports to the traveling flow control valves 17a and 17b, and the discharge ports of the open circuit pumps 8 and 9 are connected to the cap side flow path 41.
- the discharge direction and discharge flow rate of the closed circuit pump 7 are controlled according to the operations of the assist switching valves 15a and 15c capable of opening and closing the assist flow paths 43 and 45, the traveling operation lever 25b, and the work operation lever 25a.
- the controller 24 In the hydraulic excavator 100 provided with the controller 24 for opening and closing the traveling switching valves 15b and 15d and the assist switching valves 15a and 15c to control the discharge flow rate of the open circuit pumps 8 and 9, the controller 24 travels.
- the assist switching valves 15a and 15c are held in the closed position regardless of whether the operation lever 25a is operated or not.
- the single-rod type hydraulic cylinder 13 (4,5,6) is driven by a combination of the closed circuit pump 7 and the open circuit pumps 8 and 9.
- the single-rod type hydraulic cylinder 13 (4,5,6) is restricted to be driven only by the closed circuit pump 7.
- the open circuit pumps 8 and 9 are occupied by the driving of the traveling hydraulic motors 16a and 16b.
- the traveling speed does not decrease, so that the traveling operability is not impaired.
- the hydraulic excavator 100 includes a charge pump 10, a charge flow path 40 connected to the discharge port of the charge pump 10, a charge relief valve 23 provided in the charge flow path 40, and a cap side.
- Check valves 20a and 20b provided between the flow path 41 and the rod-side flow path 42 and the charge flow path 40, and provided between the cap-side flow path 41 and the rod-side flow path 42 and the charge flow path 40.
- the controller 24 is provided with a flushing valve 21 and is charged by the single-rod hydraulic cylinder 13 (4,5,6) from the flow rate absorbed by the single-rod hydraulic cylinder 13 (4,5,6) from the charge flow path 40.
- the discharge flow rate of the closed circuit pump 7 is corrected so that the charge flow rate obtained by subtracting the flow rate discharged to the flow path 40 is equal to or less than the discharge flow rate of the charge pump 10. As a result, the decrease in charge pressure is suppressed, so that it is possible to prevent the decrease in reliability due to cavitation.
- the controller 24 is based on the sum of the flow rate discharged from the single-rod hydraulic cylinder 13 (4,5,6) to the charge flow path 40 and the discharge flow rate of the charge pump 10, and the single-rod hydraulic cylinder 13 (4,5,6).
- the discharge flow rate of the closed circuit pump 7 is corrected so that the passing flow rate of the charge relief valve 23 obtained by subtracting the flow rate absorbed from the charge flow path 40 by 6) is equal to or less than a predetermined flow rate.
- the increase in the charge pressure is suppressed, so that it is possible to prevent deterioration of operability due to a decrease in the thrust of the hydraulic cylinder 13 (4,5,6) and deterioration of fuel efficiency due to an increase in the load of the charge pump 10. ..
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
走行動作中に片ロッド式油圧シリンダを駆動する複合動作時に走行操作性が損なわれない建設機械を提供する。 油圧ショベルは、走行用操作レバーおよび作業用操作レバーの操作に応じて、閉回路ポンプの吐出方向および吐出流量を制御すると共に、走行用切換弁およびアシスト用切換弁を開閉し、開回路ポンプの吐出流量を制御するコントローラを備え、前記コントローラは、前記走行用操作レバーが操作された場合には、前記作業用操作レバーの操作の有無に関わらず、前記アシスト用切換弁を閉位置に保持する。
Description
本発明は、油圧ポンプにより直接に油圧アクチュエータを駆動する油圧閉回路を用いた建設機械に関し、特に油圧シリンダを油圧閉回路で駆動する建設機械に関する。
近年、油圧ショベルやホイールローダなどの建設機械において、省エネ化が重要な開発項目になっている。建設機械の省エネ化には油圧システム自体の省エネ化が重要であり、油圧ポンプにより油圧アクチュエータを閉回路接続して直接に制御する油圧閉回路システムの適用が検討されている。このシステムは、制御弁による圧損がなく、必要な流量のみをポンプが吐出するため流量損失もない。また、アクチュエータの位置エネルギや減速時のエネルギを回生することもできる。このため省エネ化が可能となる。
油圧閉回路を組み合わせた建設機械の背景技術として、特許文献1には、油圧閉回路システムを搭載し、複数のアクチュエータを同時に複合動作させても、良好な操作性を確保できる構成が記載されている。
特許文献1に記載の油圧駆動システムでは、片ロッド式油圧シリンダを駆動させる際、閉回路ポンプと開回路ポンプを組み合わせて使用することで良好な操作性が得られるとなっているが、走行用油圧モータを開回路ポンプで駆動している際に片ロッド式油圧シリンダを駆動することで生じる走行操作性への影響については言及されていない。
特許文献1に記載の油圧駆動システムは、片ロッド式油圧シリンダを閉回路ポンプと開回路ポンプを対で使用することで駆動し、走行用油圧モータは開回路ポンプのみで駆動する構成としている。
この構成で、走行用油圧モータを複数の開回路ポンプで駆動している最中に、片ロッド式油圧シリンダを駆動した場合、走行用油圧モータを駆動していた開回路ポンプの一部が片ロッド式油圧シリンダを駆動するために使用されるため、走行速度が大きく低下してしまい、走行操作性に悪影響が生じてしまう課題がある。
本発明は、上記課題に鑑みてなされたものであり、その目的は、走行動作中に片ロッド式油圧シリンダを駆動する複合動作時に走行操作性が損なわれない建設機械を提供することにある。
上記目的を達成するために、本発明は、走行体と、作業装置と、前記走行体を駆動する走行用油圧モータと、前記作業装置を駆動する少なくとも1つの片ロッド式油圧シリンダと、前記走行用油圧モータの動作を指示するための走行用操作レバーと、前記片ロッド式油圧シリンダの動作を指示するための作業用操作レバーと、前記片ロッド式油圧シリンダに閉回路接続された閉回路ポンプと、前記閉回路ポンプの一方の吐出ポートを前記片ロッド式油圧シリンダのキャップ側室に接続するキャップ側流路と、前記閉回路ポンプの他方の吐出ポートを前記片ロッド式油圧シリンダのロッド側室に接続するロッド側流路と、開回路ポンプと、前記開回路ポンプから前記走行用油圧モータに供給される流量を制御する走行用流量制御弁と、前記開回路ポンプの吐出ポートを前記走行用流量制御弁に接続する走行用流路を開閉可能な走行用切換弁と、前記開回路ポンプの吐出ポートを前記キャップ側流路に接続するアシスト用流路を開閉可能なアシスト用切換弁と、前記走行用操作レバーおよび前記作業用操作レバーの操作に応じて、前記閉回路ポンプの吐出方向および吐出流量を制御すると共に、前記走行用切換弁および前記アシスト用切換弁を開閉し、前記開回路ポンプの吐出流量を制御するコントローラとを備えた建設機械において、前記コントローラは、前記走行用操作レバーが操作された場合には、前記作業用操作レバーの操作の有無に関わらず、前記アシスト用切換弁を閉位置に保持するものとする。
以上のように構成した本発明によれば、片ロッド式油圧シリンダを閉回路ポンプと開回路ポンプの組み合わせで駆動する構成の建設機械において、走行動作中に片ロッド式油圧シリンダを駆動する際に、片ロッド式油圧シリンダを閉回路ポンプのみで駆動するように制限することにより、開回路ポンプが走行用油圧モータの駆動に占有される。これにより、走行動作中に片ロッド式油圧シリンダを駆動しても走行速度は低下しないため、走行操作性が損なわれることがなくなる。
本発明によれば、片ロッド式油圧シリンダを閉回路ポンプと開回路ポンプの組み合わせで駆動する構成の建設機械において、走行動作中に片ロッド式油圧シリンダを駆動する複合動作時に走行操作性が損なわれることがなくなる。
以下、建設機械として大型の油圧ショベルを例にとって、本発明の実施の形態を図面を参照して説明する。なお、各図中、同等の部材には同一の符号を付し、重複した説明は適宜省略する。
図1は、本実施の形態に係る油圧ショベルの側面図である。
図1において、油圧ショベル100は、左右両側にクローラ式の走行装置を有する下部走行体101と、下部走行体101上に旋回可能に取り付けられた上部旋回体102とを備えている。下部走行体101は、走行用油圧モータ16a,16b(図2に示す)によって駆動される。上部旋回体102は、旋回用油圧モータ(図示せず)によって駆動される。
上部旋回体102の前側には、掘削作業等を行う作業装置としてのフロント装置103が取り付けられている。フロント装置103は、上部旋回体102の前側に上下方向に回動可能に連結されたブーム1と、ブーム1の先端部に上下、前後方向に回動可能に連結されたアーム2と、アーム2の先端部に上下、前後方向に回動可能に連結されたバケット3とを備えている。ブーム1、アーム2、およびバケット3は、片ロッド式油圧シリンダであるブームシリンダ4、アームシリンダ5、およびバケットシリンダ6によってそれぞれ駆動される。
上部旋回体102上には、オペレータが搭乗するキャブ104が設けられている。キャブ104内には、下部走行体101の動作を指示するための走行用操作レバー25b(図2に示す)、ブーム1、アーム2、バケット3、および上部旋回体102の動作を指示するための作業用操作レバー25a(図2に示す)等が配設されている。
図2は、油圧ショベル100の油圧回路図である。なお、図2では、油圧シリンダ4,5,6(図中、油圧シリンダ13で代表して示す)および走行用油圧モータ16a,16bの駆動に関わる部分のみを図示し、その他のアクチュエータの駆動に関わる部分は省略している。
図2において、両傾転可変容量ポンプである閉回路ポンプ7、片傾転可変容量ポンプである開回路ポンプ8,9、および片傾転固定容量ポンプであるチャージポンプ10は、動力源11から伝達装置12を介して動力を受け、駆動される。
閉回路ポンプ7は、一方の吐出ポートがキャップ側流路41を介して油圧シリンダ13のキャップ側室13aに接続され、他方の吐出ポートがロッド側流路42を介して油圧シリンダ13のロッド側室13bに接続され、閉回路を構成する。閉回路ポンプ7は、キャップ側流路41およびロッド側流路42の一方から油を吸い込み、他方に吐出する。
開回路ポンプ8,9は、油タンク14から油を吸い込み、アシスト用流路43,45およびアシスト用切換弁15a,15cを介して油圧シリンダ13のキャップ側室13aに吐出し、また、走行用流路44,46および走行用切換弁15b,15dを介して走行用油圧モータ16a,16bに吐出する。
走行用流量制御弁17a,17bは、走行用切換弁15b,15dと走行用油圧モータ16a,16bとを接続する流路上に設けられ、開回路ポンプ8,9から走行用油圧モータ16a,16bに供給される流量を制御する。
リリーフ弁18a,18b,18c,18dは、走行用油圧モータ16a,16bと走行用流量制御弁17a,17bを接続する流路上に設けられ、走行用油圧モータ16a,16bがそれぞれ有する2つのポートの圧力差が所定の圧力以上になったときに、油を高圧側の流路から低圧側の流路へ逃がし回路を保護する。
ブリードオフ弁19a,19bは、開回路ポンプ8,9の吐出流路から分岐した流路に設けられ、開度に応じて開回路ポンプ8,9が吐出した油を油タンク14に排出する。
チャージポンプ10は、油タンク14から油を吸い込み、チャージ流路40に吐出する。
チェック弁20a,20bは、キャップ側流路41およびロッド側流路42とチャージ流路40との間に設けられ、チャージ流路40からキャップ側流路41およびロッド側流路42に油を補充する。
フラッシング弁21は、キャップ側流路41およびロッド側流路42とチャージ流路40との間に設けられ、キャップ側流路41およびロッド側流路42のいずれか低圧側の余剰油をチャージ流路40に排出する。
メインリリーフ弁22a,22bは、キャップ側流路41およびロッド側流路42とチャージ流路40との間に設けられ、キャップ側流路41およびロッド側流路42の最大圧力を設定する。
チャージリリーフ弁23は、チャージ流路40と油タンク14との間に設けられ、チャージポンプ10の最大圧力を設定する。
圧力センサ51,52は、キャップ側流路41およびロッド側流路42にそれぞれ設けられ、油圧シリンダ13のキャップ側室13aおよびロッド側室13bの圧力を検出し、コントローラ24に出力する。
コントローラ24は、操作レバー25a,25bの操作量や圧力センサ51,52の圧力情報などに基づき、閉回路ポンプ7、開回路ポンプ8、9、切換弁15a,15b,15c,15d、走行用流量制御弁17a,17b、およびブリードオフ弁19a,19bへの指令を演算し、出力する。
図2に示す通り、待機状態において切換弁15a,15b,15c,15dおよび走行用流量制御弁17a,17bは閉位置にあり、回路内の圧力を保持する。また、ブリードオフ弁19a,19bは開位置にあり、開回路ポンプ8,9の待機流量を油タンク14に逃がして圧力の上昇を防止する。
図3は、従来のコントローラの機能ブロック図である。図3に示すように、従来のコントローラ24Xは、ポンプ・バルブ指令生成部26を備えている。ポンプ・バルブ指令生成部26は、操作レバー25a,25bの入力情報に応じて各ポンプおよび各バルブの指令(ポンプ・バルブ指令)を演算し、各ポンプおよび各バルブに出力する。
図4は、本実施の形態におけるコントローラ24の機能ブロック図である。図4に示すように、本実施の形態におけるコントローラ24は、ポンプ・バルブ指令生成部26に加えて、走行複合指令演算部27を備えている。走行複合指令演算部27は、ポンプ・バルブ指令生成部26が演算したポンプ・バルブ指令を操作レバー情報および油圧シリンダ13の圧力情報に基づいて補正し、各ポンプおよび各バルブに出力する。走行複合指令演算部27は、ポンプ・バルブ指令補正部28と、チャージ流量演算部29と、チャージリリーフ弁通過流量演算部30と、ポンプ流量指令補正部31と、閾値記憶部32とを備えている。
ポンプ・バルブ指令補正部28は、走行用操作レバー25bの操作を検出した場合に、ポンプ・バルブ指令のうちアシスト用切換弁15a,15cの指令を閉位置に補正し、補正後のポンプ・バルブ指令をチャージ流量演算部29、チャージリリーフ弁通過流量演算部30、およびポンプ流量指令補正部31に出力する。
チャージ流量演算部29は、ポンプ・バルブ指令および油圧シリンダ13の圧力情報に基づいてチャージ流量を演算し、ポンプ流量指令補正部31に出力する。ここでいうチャージ流量は、油圧シリンダ13(4,5,6)がチャージ流路40から吸収する流量から油圧シリンダ13(4,5,6)がチャージ流路40に吐き出す流量を差し引いた流量(油圧シリンダ13(4,5,6)が全体としてチャージ流路40から吸収する流量)である。
チャージリリーフ弁通過流量演算部30は、ポンプ・バルブ指令および油圧シリンダ13の圧力情報に基づいてチャージリリーフ弁通過流量を演算し、ポンプ流量指令補正部31に出力する。ここでいうチャージリリーフ弁通過流量は、チャージリリーフ弁23を介して油タンク14に排出される流量であり、チャージポンプ10の吐出流量と油圧シリンダ13(4,5,6)がチャージ流路40に吐き出す流量との合計から油圧シリンダ13(4,5,6)がチャージ流路40から吸収する流量を差し引いた流量である。
ポンプ流量指令補正部31は、チャージ流量が閾値を超えた場合、または、チャージリリーフ弁通過流量が閾値を超えた場合に、ポンプ・バルブ指令のうち閉回路ポンプ7の吐出流量を減少側に補正し、補正後のポンプ・バルブ指令を各ポンプおよび各バルブに出力する。ここでいう各閾値は、閾値記憶部32に記憶されている。
図5は、走行複合指令演算部27の一制御周期における処理を示すフローチャートである。以下、各処理を順に説明する。
まず、走行用操作レバー25bの入力情報に基づいて走行動作中が否かを判定する(処理F1)。
処理F1で走行動作中でない(NO)と判定した場合は、フローを終了する。
処理F1で走行動作中である(YES)と判定した場合は、アシスト用切換弁15a,15cを閉じる(処理F2)。
処理F2に続き、作業用操作レバー25aの入力情報に基づいてシリンダ伸長動作か否かを判定する(処理F3)。
処理F3でシリンダ伸長動作である(YES)と判定した場合は、チャージ流量を演算する(処理F4)。
処理F4に続き、チャージ流量がチャージポンプ10の吐出流量以下であるか否かを判定する(処理F5)。
処理F5でチャージ流量がチャージポンプ10の吐出流量以下である(YES)と判定した場合は、フローを終了する。
処理F5でチャージ流量がチャージポンプ10の吐出流量よりも大きい(NO)と判定した場合は、チャージ流量がチャージポンプ10の吐出流量以下となるように、油圧シリンダ13を駆動している閉回路ポンプ7の吐出流量を制限し、フローを終了する。
処理F3でシリンダ伸長動作でない(NO)と判定した場合は、チャージリリーフ弁通過流量を演算する(処理F7)
処理F7に続き、チャージリリーフ弁通過流量が閾値以下であるか否かを判定する(処理F8)。閾値の設定方法については後述する。
処理F7に続き、チャージリリーフ弁通過流量が閾値以下であるか否かを判定する(処理F8)。閾値の設定方法については後述する。
処理F8でチャージリリーフ弁通過流量が閾値以下である(YES)と判定した場合は、フローを終了する。
処理F8でチャージリリーフ弁通過流量が閾値よりも大きい(NO)と判定した場合は、チャージリリーフ流量が閾値以下となるように、油圧シリンダ13を駆動している閉回路ポンプ7の吐出流量を制限し、フローを終了する。
次に図2ないし図5を用いて、油圧ショベル100の基本動作および本発明の効果について説明する。
(シリンダ単独駆動)
図2において、作業用操作レバー25aを動かし、油圧シリンダ13のみを単独で動作させる場合、作業用操作レバー25aの操作量に応じて、コントローラ24は閉回路ポンプ7と開回路ポンプ8の流量指令、切換弁15aの開指令およびブリードオフ弁19aの閉指令をそれぞれ出力し、油圧シリンダ13を駆動する。このとき、閉回路ポンプ7の吐出流量をQcp、開回路ポンプ8の吐出流量をQopとし、油圧シリンダ13のキャップ側室の受圧面積をAcap、ロッド側室の受圧面積をArodとすると、ポンプの流量比(Qcp+Qop):Qcpが受圧面積比Acap:Arodと等しくなるように、QcpとQopを決定する。コントローラ24は、閉回路ポンプ7と開回路ポンプ8の吐出流量比がQcp:Qopを維持しながら変化するよう制御する。このように、油圧シリンダ13を駆動する際には、閉回路ポンプ7と開回路ポンプ8を組み合わせて使用する。
図2において、作業用操作レバー25aを動かし、油圧シリンダ13のみを単独で動作させる場合、作業用操作レバー25aの操作量に応じて、コントローラ24は閉回路ポンプ7と開回路ポンプ8の流量指令、切換弁15aの開指令およびブリードオフ弁19aの閉指令をそれぞれ出力し、油圧シリンダ13を駆動する。このとき、閉回路ポンプ7の吐出流量をQcp、開回路ポンプ8の吐出流量をQopとし、油圧シリンダ13のキャップ側室の受圧面積をAcap、ロッド側室の受圧面積をArodとすると、ポンプの流量比(Qcp+Qop):Qcpが受圧面積比Acap:Arodと等しくなるように、QcpとQopを決定する。コントローラ24は、閉回路ポンプ7と開回路ポンプ8の吐出流量比がQcp:Qopを維持しながら変化するよう制御する。このように、油圧シリンダ13を駆動する際には、閉回路ポンプ7と開回路ポンプ8を組み合わせて使用する。
(走行単独駆動)
図2において、走行用操作レバー25bを動かし、走行用油圧モータ16a,16bを駆動して走行動作させる場合、走行用操作レバー25bの操作量に応じて、コントローラ24は開回路ポンプ8,9の流量指令、走行用切換弁15b,15dの開指令およびブリードオフ弁19a,19bの閉指令、走行用流量制御弁17a,17bの開口指令をそれぞれ出力し、走行用油圧モータ16a,16bを駆動する。このように、走行動作をする際には、開回路ポンプ8,9のみを使用する。
図2において、走行用操作レバー25bを動かし、走行用油圧モータ16a,16bを駆動して走行動作させる場合、走行用操作レバー25bの操作量に応じて、コントローラ24は開回路ポンプ8,9の流量指令、走行用切換弁15b,15dの開指令およびブリードオフ弁19a,19bの閉指令、走行用流量制御弁17a,17bの開口指令をそれぞれ出力し、走行用油圧モータ16a,16bを駆動する。このように、走行動作をする際には、開回路ポンプ8,9のみを使用する。
(走行+シリンダ駆動)
図2において、走行用操作レバー25bを動かし、走行動作をしているときに、作業用操作レバー25aを動かし、油圧シリンダ13をさらに動作させる場合、従来のコントローラ24X(図3に示す)は、開回路ポンプ8の流量指令を0にし、走行用切換弁15bに閉指令、ブリードオフ弁19aに開指令を出力した後、作業用操作レバー25aの操作量に応じて、閉回路ポンプ7、開回路ポンプ8の流量指令、アシスト用切換弁15aの開指令およびブリードオフ弁19aの閉指令を出力し、油圧シリンダ13と走行用油圧モータ16a,16bの制御を行う。
図2において、走行用操作レバー25bを動かし、走行動作をしているときに、作業用操作レバー25aを動かし、油圧シリンダ13をさらに動作させる場合、従来のコントローラ24X(図3に示す)は、開回路ポンプ8の流量指令を0にし、走行用切換弁15bに閉指令、ブリードオフ弁19aに開指令を出力した後、作業用操作レバー25aの操作量に応じて、閉回路ポンプ7、開回路ポンプ8の流量指令、アシスト用切換弁15aの開指令およびブリードオフ弁19aの閉指令を出力し、油圧シリンダ13と走行用油圧モータ16a,16bの制御を行う。
このように、走行動作中にシリンダ操作を行う場合、油圧シリンダ13を閉回路ポンプ7と開回路ポンプ8で、走行を開回路ポンプ9で同時に動かすことで複合操作性を確保している。しかしながら、走行用油圧モータ16a,16bをもともと2つの開回路ポンプ8,9で駆動していたところに、油圧シリンダ13が操作されたことで、走行で使用していた開回路ポンプ8が油圧シリンダ13を駆動するために使用される。その結果、走行で使用可能なポンプが開回路ポンプ9のみとなり、走行速度が大きく低下し、走行操作性を著しく損なうことになる。
そこで、図4に示す本実施の形態に係るコントローラ24に備えられる走行複合指令演算部27による処理を行う。図5の処理F1において、走行用操作レバー25bの操作量を基に走行動作中であるかを判定する。処理F2では、処理F1で走行動作中であると判定した場合に、油圧シリンダ13を駆動するポンプを閉回路ポンプ7のみに制限する。これにより、走行動作中は開回路ポンプ8,9を走行用油圧モータ16a,16bの駆動に占有することが可能となり、走行動作中に油圧シリンダ13を動作させても、走行速度が低下することなく、走行操作性を損なうことがなくなる。
ここで、油圧シリンダ13を閉回路ポンプ7のみで駆動する場合について説明する。
油圧シリンダ13を伸長方向に動かす場合、油圧シリンダ13の受圧面積比をAcap:Arod=2:1とすると、油圧シリンダ13のキャップ側室に流入する流量Qcapとロッド側室から流出する流量Qrodの関係はQcap=2Qrodとなり、閉回路内の流量収支が取れなくなり、キャップ側流路41とロッド側流路42のどちらか低圧側の流路で流量不足が生じてしまう。このとき、流量不足が生じた流路へチャージポンプ10からチェック弁20aまたはチェック弁20bを介して油が補充されるが、補充される流量がチャージ流路40に流入する流量よりも多い場合、チャージ流路40の圧力(以下、チャージ圧力)が低下してしまい、キャビテーションが発生し機器にダメージを与えるなど、信頼性が低下してしまう恐れがある。
そこで、処理F4で作業用操作レバー25aの操作量や圧力センサ51,52の圧力情報などからチャージ流量を演算し、処理F5でチャージ流量(油圧シリンダ13(4,5,6)が全体としてチャージ流路40から吸収する流量)がチャージポンプ吐出流量以下であるか否かを判定する。処理F5でチャージ流量がチャージポンプ吐出流量よりも多いと判定された場合には、処理F6で閉回路ポンプ7の吐出流量をチャージ流量がチャージポンプ吐出流量以下になるまで制限する。これにより、チャージ圧力の低下を抑制することができ、信頼性の低下を防止することが可能となる。
油圧シリンダ13を収縮方向に動かす場合、伸長方向に動かす場合と同様に、閉回路内の流量収支が取れなくなるが、この場合は、油圧シリンダ13のキャップ側流路41とロッド側流路42のどちらか低圧側の流路で余剰油は発生し、フラッシング弁21を介して閉回路内の余剰油がチャージ流路40に排出される。このとき、チャージライン流入流量が増えることで、チャージリリーフ弁23の通過流量が増加し、チャージリリーフ弁23の圧力オーバーライド特性によりチャージ圧力が上昇してしまう。チャージ圧力が上昇すると、チャージポンプ10の負荷が増え、燃費に悪影響を及ぼすとともに、油圧シリンダ13の最大圧力はメインリリーフ弁22a、22bで規定されるので、油圧シリンダ13のキャップ側室13aとロッド側室13bの圧力差が減少するため油圧シリンダ13の推力が低下し、操作性も悪化してしまう。
そこで、処理F8でチャージリリーフ弁通過流量が閾値以下であるか判定し、閾値を超えていた場合は、処理F9で閉回路ポンプ7の吐出流量をチャージリリーフ弁通過流量が閾値以下になるように制限する。これにより、チャージ圧力の上昇を抑制し、燃費や操作性の悪化を防ぐことが可能となる。ここでの閾値は、図6に示すチャージリリーフ弁23の圧力オーバーライド特性に基づいて決定される。具体的には、チャージ圧力が最大許容圧力Pmaxに達するときのチャージリリーフ弁通過流量Fmax以下の値に設定される。最大許容圧力Pmaxは、燃費や操作性への影響が出ない範囲で定められる。例えば、チャージ圧力の目標値が2MPaであった場合は3MPa程度に設定される。
(まとめ)
本実施の形態では、走行体101と、作業装置103と、走行体101を駆動する走行用油圧モータ16a,16bと、作業装置103を駆動する少なくとも1つの片ロッド式油圧シリンダ13(4,5,6)と、走行用油圧モータ16a,16bの動作を指示するための走行用操作レバー25bと、片ロッド式油圧シリンダ13(4,5,6)の動作を指示するための作業用操作レバー25aと、片ロッド式油圧シリンダ13(4,5,6)に閉回路接続された閉回路ポンプ7と、閉回路ポンプ7の一方の吐出ポートを片ロッド式油圧シリンダ13(4,5,6)のキャップ側室13aに接続するキャップ側流路41と、閉回路ポンプ7の他方の吐出ポートを片ロッド式油圧シリンダ13(4,5,6)のロッド側室13bに接続するロッド側流路42と、開回路ポンプ8,9と、開回路ポンプ8,9から走行用油圧モータ16a,16bに供給される流量を制御する走行用流量制御弁17a,17bと、開回路ポンプ8,9の吐出ポートを走行用流量制御弁17a,17bに接続する走行用流路44,46を開閉可能な走行用切換弁15b,15dと、開回路ポンプ8,9の吐出ポートをキャップ側流路41に接続するアシスト用流路43,45を開閉可能なアシスト用切換弁15a,15cと、走行用操作レバー25bおよび作業用操作レバー25aの操作に応じて、閉回路ポンプ7の吐出方向および吐出流量を制御すると共に、走行用切換弁15b,15dおよびアシスト用切換弁15a,15cを開閉し、開回路ポンプ8,9の吐出流量を制御するコントローラ24とを備えた油圧ショベル100において、コントローラ24は、走行用操作レバー25bが操作された場合には、作業用操作レバー25aの操作の有無に関わらず、アシスト用切換弁15a,15cを閉位置に保持する。
本実施の形態では、走行体101と、作業装置103と、走行体101を駆動する走行用油圧モータ16a,16bと、作業装置103を駆動する少なくとも1つの片ロッド式油圧シリンダ13(4,5,6)と、走行用油圧モータ16a,16bの動作を指示するための走行用操作レバー25bと、片ロッド式油圧シリンダ13(4,5,6)の動作を指示するための作業用操作レバー25aと、片ロッド式油圧シリンダ13(4,5,6)に閉回路接続された閉回路ポンプ7と、閉回路ポンプ7の一方の吐出ポートを片ロッド式油圧シリンダ13(4,5,6)のキャップ側室13aに接続するキャップ側流路41と、閉回路ポンプ7の他方の吐出ポートを片ロッド式油圧シリンダ13(4,5,6)のロッド側室13bに接続するロッド側流路42と、開回路ポンプ8,9と、開回路ポンプ8,9から走行用油圧モータ16a,16bに供給される流量を制御する走行用流量制御弁17a,17bと、開回路ポンプ8,9の吐出ポートを走行用流量制御弁17a,17bに接続する走行用流路44,46を開閉可能な走行用切換弁15b,15dと、開回路ポンプ8,9の吐出ポートをキャップ側流路41に接続するアシスト用流路43,45を開閉可能なアシスト用切換弁15a,15cと、走行用操作レバー25bおよび作業用操作レバー25aの操作に応じて、閉回路ポンプ7の吐出方向および吐出流量を制御すると共に、走行用切換弁15b,15dおよびアシスト用切換弁15a,15cを開閉し、開回路ポンプ8,9の吐出流量を制御するコントローラ24とを備えた油圧ショベル100において、コントローラ24は、走行用操作レバー25bが操作された場合には、作業用操作レバー25aの操作の有無に関わらず、アシスト用切換弁15a,15cを閉位置に保持する。
以上のように構成した本実施の形態によれば、片ロッド式油圧シリンダ13(4,5,6)を閉回路ポンプ7と開回路ポンプ8,9の組み合わせで駆動する構成の油圧ショベル100において、走行動作中に片ロッド式油圧シリンダ13(4,5,6)を駆動する際に、片ロッド式油圧シリンダ13(4,5,6)を閉回路ポンプ7のみで駆動するように制限することにより、開回路ポンプ8,9が走行用油圧モータ16a,16bの駆動に占有される。これにより、走行動作中に片ロッド式油圧シリンダ13(4,5,6)を駆動しても走行速度は低下しないため、走行操作性が損なわれることがなくなる。
また、本実施の形態に係る油圧ショベル100は、チャージポンプ10と、チャージポンプ10の吐出ポートに接続されたチャージ流路40と、チャージ流路40に設けられたチャージリリーフ弁23と、キャップ側流路41およびロッド側流路42とチャージ流路40との間に設けられたチェック弁20a,20bと、キャップ側流路41およびロッド側流路42とチャージ流路40との間に設けられたフラッシング弁21とを備え、コントローラ24は、片ロッド式油圧シリンダ13(4,5,6)がチャージ流路40から吸収する流量から片ロッド式油圧シリンダ13(4,5,6)がチャージ流路40に排出する流量を差し引いたチャージ流量がチャージポンプ10の吐出流量以下となるように閉回路ポンプ7の吐出流量を補正する。これにより、チャージ圧力の低下が抑制されるため、キャビテーションによる信頼性の低下を防止することが可能となる。
また、コントローラ24は、片ロッド式油圧シリンダ13(4,5,6)がチャージ流路40に排出する流量とチャージポンプ10の吐出流量との合計から片ロッド式油圧シリンダ13(4,5,6)がチャージ流路40から吸収する流量を差し引いたチャージリリーフ弁23の通過流量が所定の流量以下となるように閉回路ポンプ7の吐出流量を補正する。これにより、チャージ圧力の上昇が抑制されるため、油圧シリンダ13(4,5,6)の推力低下による操作性の悪化や、チャージポンプ10の負荷増大による燃費の悪化を防ぐことが可能となる。
以上、本発明の実施の形態について詳述したが、本発明は、上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1…ブーム、2…アーム、3…バケット、4…ブームシリンダ(片ロッド式油圧シリンダ)、5…アームシリンダ(片ロッド式油圧シリンダ)、6…バケットシリンダ(片ロッド式油圧シリンダ)、7…閉回路ポンプ、8,9…開回路ポンプ、10…チャージポンプ、11…動力源、12…伝達装置、13…油圧シリンダ(片ロッド式油圧シリンダ)、13a…キャップ側室、13b…ロッド側室、14…油タンク、15a,15c…アシスト用切換弁、15b,15d…走行用切換弁、16a,16b…走行用油圧モータ、17a,17b…走行用流量制御弁、18a,18b,18c,18d…リリーフ弁、19a,19b…ブリードオフ弁、20a,20b…チェック弁、21…フラッシング弁、22a,22b…メインリリーフ弁、23…チャージリリーフ弁、24…コントローラ、25a…作業用操作レバー、25b…走行用操作レバー、28…ポンプ・バルブ指令補正部、29…チャージ流量演算部、30…チャージリリーフ弁通過流量演算部、31…ポンプ流量指令補正部、32…閾値記憶部、40…チャージ流路、41…キャップ側流路、42…ロッド側流路、43,45…アシスト用流路、44,46…走行用流路、51,52…圧力センサ、100…油圧ショベル(建設機械)、101…下部走行体(走行体)、102…上部旋回体、103…フロント装置(作業装置)、104…キャブ。
Claims (3)
- 走行体と、
作業装置と、
前記走行体を駆動する走行用油圧モータと、
前記作業装置を駆動する少なくとも1つの片ロッド式油圧シリンダと、
前記走行用油圧モータの動作を指示するための走行用操作レバーと、
前記片ロッド式油圧シリンダの動作を指示するための作業用操作レバーと、
前記片ロッド式油圧シリンダに閉回路接続された閉回路ポンプと、
前記閉回路ポンプの一方の吐出ポートを前記片ロッド式油圧シリンダのキャップ側室に接続するキャップ側流路と、
前記閉回路ポンプの他方の吐出ポートを前記片ロッド式油圧シリンダのロッド側室に接続するロッド側流路と、
開回路ポンプと、
前記開回路ポンプから前記走行用油圧モータに供給される流量を制御する走行用流量制御弁と、
前記開回路ポンプの吐出ポートを前記走行用流量制御弁に接続する走行用流路を開閉可能な走行用切換弁と、
前記開回路ポンプの吐出ポートを前記キャップ側流路に接続するアシスト用流路を開閉可能なアシスト用切換弁と、
前記走行用操作レバーおよび前記作業用操作レバーの操作に応じて、前記閉回路ポンプの吐出方向および吐出流量を制御すると共に、前記走行用切換弁および前記アシスト用切換弁を開閉し、前記開回路ポンプの吐出流量を制御するコントローラとを備えた建設機械において、
前記コントローラは、前記走行用操作レバーが操作された場合には、前記作業用操作レバーの操作の有無に関わらず、前記アシスト用切換弁を閉位置に保持する
ことを特徴とする建設機械。 - 請求項1に記載の建設機械において、
チャージポンプと、
前記チャージポンプの吐出ポートに接続されたチャージ流路と、
前記チャージ流路に設けられたチャージリリーフ弁と、
前記キャップ側流路および前記ロッド側流路と前記チャージ流路との間に設けられたチェック弁と、
前記キャップ側流路および前記ロッド側流路と前記チャージ流路との間に設けられたフラッシング弁とを備え、
前記コントローラは、前記片ロッド式油圧シリンダが前記チャージ流路から吸収する流量から前記片ロッド式油圧シリンダが前記チャージ流路に排出する流量を差し引いたチャージ流量が前記チャージポンプの吐出流量以下となるように前記閉回路ポンプの吐出流量を補正する
ことを特徴とする建設機械。 - 請求項1に記載の建設機械において、
チャージポンプと、
前記チャージポンプの吐出ポートに接続されたチャージ流路と、
前記チャージ流路に設けられたチャージリリーフ弁と、
前記キャップ側流路および前記ロッド側流路と前記チャージ流路との間に設けられたチェック弁と、
前記キャップ側流路および前記ロッド側流路と前記チャージ流路との間に設けられたフラッシング弁とを備え、
前記コントローラは、前記片ロッド式油圧シリンダが前記チャージ流路に排出する流量と前記チャージポンプの吐出流量との合計から前記片ロッド式油圧シリンダが前記チャージ流路から吸収する流量を差し引いた前記チャージリリーフ弁の通過流量が所定の流量以下となるように前記閉回路ポンプの吐出流量を補正する
ことを特徴とする建設機械。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20858546.3A EP4001666A4 (en) | 2019-08-26 | 2020-08-25 | CONSTRUCTION MACHINE |
US17/637,225 US11970838B2 (en) | 2019-08-26 | 2020-08-25 | Construction machine |
CN202080058880.1A CN114258462B (zh) | 2019-08-26 | 2020-08-25 | 工程机械 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019154133A JP7209602B2 (ja) | 2019-08-26 | 2019-08-26 | 建設機械 |
JP2019-154133 | 2019-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039805A1 true WO2021039805A1 (ja) | 2021-03-04 |
Family
ID=74677137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/032072 WO2021039805A1 (ja) | 2019-08-26 | 2020-08-25 | 建設機械 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11970838B2 (ja) |
EP (1) | EP4001666A4 (ja) |
JP (1) | JP7209602B2 (ja) |
CN (1) | CN114258462B (ja) |
WO (1) | WO2021039805A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4435271A1 (en) * | 2022-02-24 | 2024-09-25 | Hitachi Construction Machinery Co., Ltd. | Work machine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11141504A (ja) * | 1997-11-11 | 1999-05-25 | Daikin Ind Ltd | 油圧回路装置 |
JP2013245787A (ja) * | 2012-05-28 | 2013-12-09 | Hitachi Constr Mach Co Ltd | 作業機械の駆動装置 |
JP2015048899A (ja) | 2013-09-02 | 2015-03-16 | 日立建機株式会社 | 作業機械の駆動装置 |
JP2015203453A (ja) * | 2014-04-14 | 2015-11-16 | 日立建機株式会社 | 油圧駆動装置 |
JP2015227544A (ja) * | 2014-05-30 | 2015-12-17 | 日立建機株式会社 | 作業機械 |
JP2016118281A (ja) * | 2014-12-23 | 2016-06-30 | 日立建機株式会社 | 作業機械 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3481674B2 (ja) * | 1994-05-31 | 2003-12-22 | 東芝機械株式会社 | 建設機械の油圧回路 |
WO1996036776A1 (fr) * | 1995-05-17 | 1996-11-21 | Komatsu Ltd. | Circuit hydraulique pour engins de travaux publics a commande hydraulique |
JP5461234B2 (ja) * | 2010-02-26 | 2014-04-02 | カヤバ工業株式会社 | 建設機械の制御装置 |
US9080310B2 (en) * | 2011-10-21 | 2015-07-14 | Caterpillar Inc. | Closed-loop hydraulic system having regeneration configuration |
US9683588B2 (en) * | 2012-01-31 | 2017-06-20 | Hitachi Construction Machinery Co., Ltd. | Hydraulic closed circuit system |
WO2014109131A1 (ja) * | 2013-01-08 | 2014-07-17 | 日立建機株式会社 | 作業機械の油圧システム |
CN203362659U (zh) * | 2013-08-05 | 2013-12-25 | 艾迪士径向钻井(烟台)有限公司 | 一种负载敏感控制的连续管液压系统 |
JP6539556B2 (ja) * | 2015-09-18 | 2019-07-03 | 株式会社神戸製鋼所 | 作業機械の油圧駆動装置 |
JP6654521B2 (ja) * | 2016-07-15 | 2020-02-26 | 日立建機株式会社 | 建設機械 |
-
2019
- 2019-08-26 JP JP2019154133A patent/JP7209602B2/ja active Active
-
2020
- 2020-08-25 US US17/637,225 patent/US11970838B2/en active Active
- 2020-08-25 WO PCT/JP2020/032072 patent/WO2021039805A1/ja unknown
- 2020-08-25 EP EP20858546.3A patent/EP4001666A4/en active Pending
- 2020-08-25 CN CN202080058880.1A patent/CN114258462B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11141504A (ja) * | 1997-11-11 | 1999-05-25 | Daikin Ind Ltd | 油圧回路装置 |
JP2013245787A (ja) * | 2012-05-28 | 2013-12-09 | Hitachi Constr Mach Co Ltd | 作業機械の駆動装置 |
JP2015048899A (ja) | 2013-09-02 | 2015-03-16 | 日立建機株式会社 | 作業機械の駆動装置 |
JP2015203453A (ja) * | 2014-04-14 | 2015-11-16 | 日立建機株式会社 | 油圧駆動装置 |
JP2015227544A (ja) * | 2014-05-30 | 2015-12-17 | 日立建機株式会社 | 作業機械 |
JP2016118281A (ja) * | 2014-12-23 | 2016-06-30 | 日立建機株式会社 | 作業機械 |
Also Published As
Publication number | Publication date |
---|---|
JP2021032361A (ja) | 2021-03-01 |
US11970838B2 (en) | 2024-04-30 |
EP4001666A4 (en) | 2023-07-26 |
EP4001666A1 (en) | 2022-05-25 |
US20230349132A1 (en) | 2023-11-02 |
CN114258462A (zh) | 2022-03-29 |
JP7209602B2 (ja) | 2023-01-20 |
CN114258462B (zh) | 2024-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9394670B2 (en) | Construction machine | |
KR101834589B1 (ko) | 선회체를 갖는 건설 기계 | |
CN110352304B (zh) | 工程机械 | |
US20170276155A1 (en) | Hydraulic Drive System for Work Machine | |
US9695842B2 (en) | Hydraulic drive system | |
WO2013099710A1 (ja) | 作業機械の動力回生装置および作業機械 | |
WO2016052209A1 (ja) | 作業機械の油圧駆動システム | |
US9777463B2 (en) | Construction machine | |
US9328480B2 (en) | Hydraulic excavator | |
JP2019031989A (ja) | 建設機械 | |
WO2016051579A1 (ja) | 作業機械の油圧駆動システム | |
JP2010078035A (ja) | 作業機械の油圧シリンダ制御回路 | |
JP6814309B2 (ja) | 建設機械 | |
JP2015227544A (ja) | 作業機械 | |
JP6013503B2 (ja) | 建設機械 | |
KR101747519B1 (ko) | 하이브리드식 건설 기계 | |
WO2021039805A1 (ja) | 建設機械 | |
JP6009388B2 (ja) | 作業機械 | |
US12110650B2 (en) | Work machine | |
JP2013044399A (ja) | 油圧駆動システム | |
WO2022054449A1 (ja) | 油圧ショベル駆動システム | |
JP6896528B2 (ja) | ショベル | |
JP2021021406A (ja) | 建設機械 | |
JP2018150744A (ja) | 油圧回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858546 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020858546 Country of ref document: EP Effective date: 20220221 |