WO2016051579A1 - 作業機械の油圧駆動システム - Google Patents

作業機械の油圧駆動システム Download PDF

Info

Publication number
WO2016051579A1
WO2016051579A1 PCT/JP2014/076470 JP2014076470W WO2016051579A1 WO 2016051579 A1 WO2016051579 A1 WO 2016051579A1 JP 2014076470 W JP2014076470 W JP 2014076470W WO 2016051579 A1 WO2016051579 A1 WO 2016051579A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
pressure
flow rate
bottom side
regeneration
Prior art date
Application number
PCT/JP2014/076470
Other languages
English (en)
French (fr)
Inventor
聖二 土方
石川 広二
大木 孝利
井村 進也
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to KR1020177008109A priority Critical patent/KR101945644B1/ko
Priority to JP2016551440A priority patent/JP6453898B2/ja
Priority to CN201480082317.2A priority patent/CN107076181B/zh
Priority to PCT/JP2014/076470 priority patent/WO2016051579A1/ja
Priority to EP14902957.1A priority patent/EP3203087B1/en
Priority to US15/516,089 priority patent/US10301793B2/en
Publication of WO2016051579A1 publication Critical patent/WO2016051579A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • F15B2011/0246Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits with variable regeneration flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3144Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/355Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/413Flow control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41527Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
    • F15B2211/41545Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve being connected to multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/46Control of flow in the return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/611Diverting circuits, e.g. for cooling or filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/613Feeding circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/632Electronic controllers using input signals representing a flow rate
    • F15B2211/6326Electronic controllers using input signals representing a flow rate the flow rate being an output member flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7121Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a hydraulic drive system for a work machine, and in particular, pressure oil discharged from a hydraulic actuator due to inertial energy of a driven member, such as falling of a driven member (for example, a boom) by its own weight, is used to drive another hydraulic actuator.
  • the present invention relates to a hydraulic drive system for a work machine such as a hydraulic excavator provided with a recycling circuit for reuse (regeneration).
  • a hydraulic drive system for a work machine having a regeneration circuit that reuses (regenerates) pressure oil discharged from a boom cylinder due to a drop in the weight of the boom for driving an arm cylinder is known.
  • the hydraulic drive system disclosed in Patent Document 1 when the oil discharged from the boom cylinder is regenerated to the arm cylinder, the discharge flow rate of the hydraulic pump that supplies the pressure oil to the arm cylinder is reduced accordingly, and the fuel consumption of the engine is improved. I am trying.
  • the pressure on the bottom side of the boom cylinder is often lower than the discharge pressure of the hydraulic pump that supplies the hydraulic oil to the arm cylinder and the load pressure of the arm cylinder, and the oil has a high pressure. Because of the nature of flowing from low to high, the frequency of regeneration is actually low, and it is difficult to achieve sufficient energy saving.
  • An object of the present invention is to provide a hydraulic drive system for a work machine that can increase the frequency of regeneration and further save energy when the pressure oil discharged from the hydraulic actuator is regenerated to drive another hydraulic actuator. It is to be.
  • the present invention provides a hydraulic pump device, a first hydraulic actuator that is supplied with pressure oil from the hydraulic pump device to drive a first driven body, and a pressure from the hydraulic pump device.
  • a second hydraulic actuator that is supplied with oil to drive a second driven body, a first control valve that controls a flow of pressure oil supplied from the hydraulic pump device to the first hydraulic actuator, and a hydraulic pump device
  • a second control valve that controls the flow of pressure oil supplied to the second hydraulic actuator, and a first operating device that outputs an operation signal that commands the operation of the first driven body and switches the first control valve.
  • a second operating device that outputs an operation signal for instructing the operation of the second driven body and switches the second control valve, and the first hydraulic actuator is configured such that the first operating device is the first driven device.
  • the hydraulic drive system for a work machine which is a hydraulic cylinder that discharges pressure oil from the bottom side and sucks pressure oil from the rod side when the first driven body is dropped in its own weight fall direction.
  • a regeneration passage connecting the bottom side of the hydraulic cylinder between the hydraulic pump device and the second hydraulic actuator, and at least a part of the pressure oil discharged from the bottom side of the hydraulic cylinder passes through the regeneration passage through the hydraulic pressure.
  • a regeneration circuit having a regeneration control valve to be supplied between a pump device and the second hydraulic actuator; a communication passage connecting a bottom side of the hydraulic cylinder to a rod side of the hydraulic cylinder; and the communication passage.
  • the valve is opened based on the operation signal in the direction of falling weight of the first driven body of the first operating device, and the bottom side of the hydraulic cylinder is connected to the rod side.
  • the booster circuit having a communication booster valve that boosts the pressure on the bottom side of the hydraulic cylinder, and the first operating device are operated in the direction in which the first driven body falls, and at the same time, the second operation is performed.
  • the regeneration control valve When the device is operated, when the pressure on the bottom side of the hydraulic cylinder is higher than the pressure between the hydraulic pump device and the second hydraulic actuator, the regeneration control valve is opened and the bottom of the hydraulic cylinder is opened. And a control device that controls the flow rate of the pressure oil supplied between the hydraulic pump device and the second hydraulic actuator from the side.
  • the bottom of the hydraulic cylinder (first hydraulic actuator) is expressed by the boosting circuit.
  • Side pressure can be increased up to about 1 / (1-k) times (about 2 times when the pressure receiving area ratio k is 2), so that the hydraulic pump device and the second pressure can be increased from the bottom side of the hydraulic cylinder.
  • the energy of the pressure oil regenerated between the hydraulic actuators (on the second hydraulic actuator side) increases, and further energy saving is possible.
  • the hydraulic drive system further includes a discharge throttle valve provided between a bottom side of the hydraulic cylinder and a tank, and the control device includes the first operating device.
  • the discharge throttle valve is controlled based on the operation amount of the first driven body in the direction of falling of its own weight, the pressure on the bottom side of the hydraulic cylinder, and the pressure between the hydraulic pump device and the second hydraulic actuator. Control.
  • the discharge throttle valve is controlled to an appropriate opening degree, and the target speed of the hydraulic cylinder (first hydraulic actuator) is secured while the flow rate discharged from the bottom side of the hydraulic cylinder is regenerated to the second hydraulic actuator side. Can do.
  • the control device is configured such that the hydraulic cylinder is based on an operation signal of the first driven body of the first operating device in a falling direction of its own weight.
  • the target bottom flow rate to be discharged from the bottom side of the engine is calculated, the regenerative flow rate required by the second control valve is calculated, and the smaller one of the target bottom flow rate and the regenerative flow rate is set as the target regeneration flow rate.
  • the target discharge flow is calculated by subtracting the target regeneration flow from the target bottom flow, and the regeneration control valve is adjusted so that the flow rate of pressure oil regenerated to the second hydraulic actuator side matches the target regeneration flow. And controlling the discharge throttle valve so that the flow rate returned to the tank matches the target discharge flow rate.
  • the regeneration control valve and the discharge throttle valve are controlled to appropriate opening degrees, and the flow rate discharged from the bottom side of the hydraulic cylinder is regenerated to the second hydraulic actuator side to ensure the target speed of the second hydraulic actuator,
  • the target speed of the hydraulic cylinder (first hydraulic actuator) can be ensured.
  • the regeneration control valve includes a first throttle that controls a flow rate of pressure oil discharged from a bottom side of the hydraulic cylinder to a tank; A second throttle for controlling a flow rate of pressure oil supplied between the hydraulic pump device and the second hydraulic actuator from a bottom side of the hydraulic cylinder, and the control device includes the first throttle of the first operating device.
  • the regeneration control valve is controlled based on the operation amount of the driven body in the direction of falling of its own weight, the pressure on the bottom side of the hydraulic cylinder, and the pressure between the hydraulic pump device and the second hydraulic actuator. .
  • a single valve (regeneration control valve) can perform both control for regenerating a part of the flow rate discharged from the bottom side of the hydraulic cylinder to the second hydraulic actuator side and control for returning the remaining flow rate to the tank.
  • the hydraulic drive system can be realized with a simple configuration, and the cost can be reduced and the mountability can be improved.
  • the hydraulic pump device includes at least one variable displacement hydraulic pump
  • the control device includes the regeneration unit.
  • the second hydraulic actuator is controlled to a desired speed according to the operation signal of the second operating device, and energy can be saved by reducing the discharge flow rate of the hydraulic pump by the regenerative flow rate.
  • the pressure on the bottom side of the hydraulic cylinder (first hydraulic actuator) is increased by the boost circuit. It is possible to increase the pressure up to about 1 / (1-k) times (about twice when the pressure receiving area ratio k is 2), so that between the hydraulic pump device and the second hydraulic actuator from the bottom side of the hydraulic cylinder. The energy of the pressure oil regenerated on the (second hydraulic actuator side) increases, and further energy saving becomes possible.
  • FIG. 1 is a diagram showing a hydraulic drive system according to a first embodiment of the present invention.
  • the hydraulic drive system of the present embodiment includes a pump device 50 including a main hydraulic pump 1 and a pilot pump 2, and a hydraulic excavator that is supplied with pressure oil from the hydraulic pump 1 and is a first driven body.
  • the boom cylinder 4 first hydraulic actuator
  • pressure oil is supplied from the hydraulic pump 1 to drive the arm 206 (see FIG. 2) of the hydraulic excavator that is the second driven body.
  • Arm cylinder 8 (second hydraulic actuator), control valve 3 (first control valve) for controlling the flow (flow rate and direction) of pressure oil supplied from hydraulic pump 1 to boom cylinder 4, and hydraulic pump 1
  • a control valve 7 (second control valve) that controls the flow (flow rate and direction) of pressure oil supplied to the arm cylinder 8 and a first operating device that outputs a boom operation command and switches the control valve 3. 5, and a second operating device 6 to switch the control valve 7 outputs an operation command of the arm.
  • the hydraulic pump 1 is also connected to a control valve (not shown) so that pressure oil is supplied to other actuators (described later) (not shown), but their circuit portions are omitted.
  • the hydraulic pump 1 is of a variable displacement type and includes a regulator 1a.
  • the tilt angle (capacity) of the hydraulic pump 1 is controlled by controlling the regulator 1a by a control signal from a controller 15 (described later), and the discharge flow rate is controlled. Is done.
  • the regulator 1a is provided with a tilt angle (capacity) of the hydraulic pump 1 so that the discharge pressure of the hydraulic pump 1 is guided and the absorption torque of the hydraulic pump 1 does not exceed a predetermined maximum torque, as is well known. ) Is limited.
  • the hydraulic pump 1 is connected to the control valves 3 and 7 via the pressure oil supply lines 9a and 10a, and the discharge oil of the hydraulic pump 1 is supplied to the control valves 3 and 7.
  • the control valves 3 and 7 are connected to the bottom side or the rod side of the boom cylinder 4 and the arm cylinder 8 via the bottom side pipe lines 23 and 28 or the rod side pipe lines 24 and 29, respectively.
  • the oil discharged from the hydraulic pump 1 flows from the control valves 3 and 7 through the bottom side pipes 23 and 28 or the rod side pipes 24 and 29 to the bottom side or the rod side of the boom cylinder 4 and the arm cylinder 8.
  • At least a part of the pressure oil discharged from the boom cylinder 4 is circulated from the control valve 3 to the tank via the tank conduit 9b. All of the pressure oil discharged from the arm cylinder 8 is circulated from the control valve 7 to the tank via the tank conduit 10.
  • the first and second operation devices 5 and 6 have operation levers 5a and 6a and pilot valves 5b and 6b, respectively.
  • the pilot valves 5b and 6b are respectively pilot lines 5c and 5d and a pilot line 6c. , 6d are connected to the operation portions 3a, 3b of the control valve 3 and the operation portions 7a, 7b of the control valve 7.
  • the pilot valve 5b When the operation lever 5a is operated in the boom raising direction BU (left direction in the figure), the pilot valve 5b generates an operation pilot pressure Pbu corresponding to the operation amount of the operation lever 5a, and this operation pilot pressure Pbu is the pilot line 5c.
  • the control valve 3 is switched to the boom raising direction (right side position in the figure).
  • the pilot valve 5b When the operation lever 5a is operated in the boom lowering direction BD (right direction in the figure), the pilot valve 5b generates an operation pilot pressure Pbd corresponding to the operation amount of the operation lever 5a, and this operation pilot pressure Pbd is the pilot line 5d.
  • the control valve 3 is switched to the boom lowering direction (the position on the left side in the figure).
  • the pilot valve 6b When the operation lever 6a is operated in the arm cloud direction AC (right direction in the figure), the pilot valve 6b generates an operation pilot pressure Pac corresponding to the operation amount of the operation lever 6a, and this operation pilot pressure Pac is the pilot line 6c.
  • the control valve 7 is switched in the arm cloud direction (the position on the left side in the figure).
  • the pilot valve 6b When the operating lever 6a is operated in the arm dump direction AD (left direction in the figure), the pilot valve 6b generates an operating pilot pressure Pad corresponding to the operating amount of the operating lever 6a, and this operating pilot pressure Pad is the pilot line 6d. Is transmitted to the operation portion 7b of the control valve 7, and the operation valve 7 is switched in the arm dump direction (right position in the figure).
  • the overload relief valve 20 with make-up is provided between the bottom side pipe line 23 and the rod side pipe line 24 of the boom cylinder 4 and between the bottom side pipe line 28 and the rod side pipe line 29 of the arm cylinder 8, respectively. , 22 are connected.
  • the overload relief valves 20 and 22 with make-up have a function of preventing the hydraulic circuit equipment from being damaged due to excessive pressure in the bottom side pipe lines 23 and 28 and the rod side pipe lines 24 and 29, and the bottom side pipe line.
  • 23 and 28 and the rod side pipe lines 24 and 29 have a function of reducing the occurrence of cavitation due to negative pressure.
  • the pump device 50 includes one main pump (hydraulic pump 1).
  • the pump device 50 includes a plurality of (for example, two) main pumps, the control valve 3, 7 may be connected to separate main pumps to supply pressure oil to the boom cylinder 4 and the arm cylinder 8 from separate main pumps.
  • the hydraulic drive system of the present embodiment includes a pump device 50 including a main hydraulic pump 1 and a pilot pump 2, and a hydraulic excavator that is supplied with pressure oil from the hydraulic pump 1 and is a first driven body.
  • the boom cylinder 4 first hydraulic actuator
  • pressure oil is supplied from the hydraulic pump 1 to drive the arm 206 (see FIG. 2) of the hydraulic excavator that is the second driven body.
  • Arm cylinder 8 (second hydraulic actuator), control valve 3 (first control valve) for controlling the flow (flow rate and direction) of pressure oil supplied from hydraulic pump 1 to boom cylinder 4, and hydraulic pump 1
  • a control valve 7 (second control valve) that controls the flow (flow rate and direction) of pressure oil supplied to the arm cylinder 8 and a first operating device that outputs a boom operation command and switches the control valve 3. 5, and a second operating device 6 to switch the control valve 7 outputs an operation command of the arm.
  • the hydraulic pump 1 is connected to a control valve (not shown) so that pressure oil is supplied to other actuators (described later) (not shown), but their circuit portions are omitted.
  • FIG. 2 is a diagram showing the external appearance of a hydraulic excavator that is a work machine (construction machine) on which the hydraulic drive system according to the present embodiment is mounted.
  • the hydraulic excavator includes a lower traveling body 201, an upper swing body 202, and a front work machine 203.
  • the lower traveling body 201 has left and right crawler traveling devices 201a and 201a (only one side is shown), and is driven by left and right traveling motors 201b and 201b (only one side is shown).
  • the upper turning body 202 is mounted on the lower traveling body 201 so as to be turnable, and is turned by a turning motor 202a.
  • the front work machine 203 is attached to the front part of the upper swing body 202 so as to be able to be raised and lowered.
  • the upper swing body 202 is provided with a cabin (operator's cab) 202b, and operating devices such as the first and second operating devices 5 and 6 and a travel operating pedal device (not shown) are arranged in the cabin 202b. .
  • the front work machine 203 has an articulated structure having a boom 205 (first driven body), an arm 206 (second driven body), and a bucket 207.
  • the boom 205 is expanded and contracted by the boom cylinder 4 with respect to the upper swinging body 202.
  • the arm 206 rotates up and down and back and forth with respect to the boom 205 by the expansion and contraction of the arm cylinder 8, and the bucket 207 moves up and down and front and back with respect to the arm 206 by the expansion and contraction of the bucket cylinder 208. Rotate.
  • circuit portions related to hydraulic actuators such as the left and right traveling motors 201 b and 201 b, the turning motor 202 a, and the bucket cylinder 208 are omitted.
  • the boom cylinder 4 is the weight of the front work machine 203 including the boom 205 when the operation lever 5a of the first operating device 5 is operated in the boom lowering direction (the first weight falling direction of the first driven body) BD.
  • This is a hydraulic cylinder that discharges pressure oil from the bottom side and sucks pressure oil from the rod side due to falling by its own weight.
  • the hydraulic drive system of the present invention branches from the bottom side pipe line 23 of the boom cylinder 4, and the bottom side pipe line 23 is connected to the pressure oil supply line on the arm cylinder 8 side.
  • 10a is connected to the regeneration passage 27 and the regeneration passage 27, the flow rate of the pressure oil can be adjusted, and at least a part of the pressure oil discharged from the bottom side of the boom cylinder 4 is supplied to the arm cylinder 8 side.
  • the regeneration circuit 35 having the regeneration control valve 11 to be supplied to the conduit 10a, the bottom side conduit 23 and the rod side conduit 24 of the boom cylinder 4 are respectively branched, and the bottom side conduit 23 and the rod side conduit 24 are connected.
  • the communication passage 26 and the communication passage 26 to be connected are opened based on the operation pilot pressure Pbd (operation signal) in the boom lowering direction BD of the first operating device 5, and the bottom side of the boom cylinder 4 A part of the discharged oil is regenerated and supplied to the rod side of the boom cylinder 4, and the bottom side pressure of the boom cylinder 4 (the pressure of the bottom side pipe line 23 is established by connecting the bottom side of the boom cylinder 4 to the rod side.
  • a booster circuit 36 having a communication booster valve 12, a proportional solenoid valve 13, 17, pressure sensors 14, 19, 21, 41, a regeneration controller 16, and a vehicle body controller 42.
  • the communication booster valve 12 has an operation part 12a, and opens when the operation pilot pressure Pbd in the boom lowering direction BD of the first operation device 5 is transmitted to the operation part 12a.
  • FIG. 3 is a diagram showing the opening area characteristics of the communication booster valve 12.
  • the opening area of the communication booster valve 12 quickly increases to the maximum opening area Amax;
  • the opening area characteristic is set so that the increase in the flow rate is smooth and does not cause a shock.
  • the communication booster valve 12 is set to have a sufficiently wide maximum opening area Amax when fully opened so that the pressures of the bottom side conduit 23 and the rod side conduit 24 of the boom cylinder 4 are substantially equal when fully opened. Has been.
  • the pressure in the bottom side pipe line 23 of the boom cylinder 4 can be increased at a magnification according to the pressure receiving area ratio between the bottom side and the rod side of the boom cylinder 4.
  • the boosting principle of the communication booster valve 12 is as follows.
  • the pressure receiving area ratio k on the rod side with respect to the bottom side of the boom cylinder 4 is 1 ⁇ 2.
  • the pressure of the bottom side pipe line 23 of the boom cylinder 4 can be increased to about twice by opening the communication booster valve 12.
  • the meter-out opening area of the control valve 3 is set on the assumption that the pressure of the bottom side pipe line 23 of the boom cylinder 4 is increased to about twice when the boom cylinder 4 is lowered. .
  • the pressure sensor 14 is connected to the pilot line 5d to detect the operation pilot pressure Pbd in the boom lowering direction BD of the first operating device 5, and the pressure sensor 19 is connected to the bottom line 23 of the boom cylinder 4, 4 is detected, and the pressure sensor 21 is connected to the pressure oil supply pipe 10a on the arm cylinder 8 side and detects the discharge pressure Pp of the hydraulic pump 1.
  • the pressure sensor 41 is connected to the shuttle valve 43 connected to the pilot pipes 6c and 6d of the second operating device 6, and the operating pilot pressure Pac in the arm cloud direction and the operating pilot pressure in the arm dump direction of the second operating device 6.
  • the pressure Pa on the high pressure side of the Pad is detected as the operation pilot pressure of the second operating device 6.
  • the vehicle body controller 42 has various functions. As one of the functions, the detection signal 141 from the pressure sensor 41 for detecting the operation pilot pressure of the second operation device 6, the first operation device 5, and not shown. A detection signal from a pressure sensor that detects an operation pilot pressure of another operation device is input, and a flow rate of pressure oil required to drive each actuator is calculated as a pump request flow rate. When the vehicle body controller 42 simultaneously lowers the boom and drives the arm, it is assumed that the pressure oil supplied to the rod side of the boom cylinder 4 is covered by the discharged oil from the bottom side of the boom cylinder 4. The flow rate of the pressure oil required to drive 8 is calculated as the pump request flow rate. The vehicle body controller 42 outputs the calculated pump request flow rate to the regeneration controller 25 as a pump request flow rate signal 104.
  • the regeneration controller 15 receives the detection signals 114, 119, 121 from the pressure sensors 14, 19, 21 and the pump request flow rate signal 104 from the vehicle body controller 42, performs predetermined arithmetic processing based on those signals, and performs electromagnetic processing.
  • a control command is output to the proportional valves 13 and 17 and the regulator 1a.
  • the electromagnetic proportional valves 13 and 17 operate according to a control command from the controller 15. At this time, the electromagnetic proportional valve 13 reduces the operation pilot pressure Pbd in the boom lowering direction BD generated by the pilot valve 5b of the first operating device 5 to a desired pressure and outputs it to the operation unit 3b of the control valve 3. 3 is controlled to control the opening degree (opening area) of the control valve 3.
  • the electromagnetic proportional valve 17 converts the pressure oil supplied from the pilot pump 2 into a desired pressure, outputs it to the operation unit 11a of the regeneration control valve 11, and controls the stroke of the regeneration control valve 11 to control the opening degree (opening area). ) To control.
  • the regulator 1a operates according to a control command from the controller 15, and controls the tilt angle (capacity) of the hydraulic pump 1 to control the discharge flow rate.
  • the operated pilot pressure Pbd is input to the operating portion 3 b of the control valve 3 and the operating portion 12 a of the communication booster valve 12 through the electromagnetic proportional valve 13.
  • the control valve 3 is switched to the position on the left side of the figure, and the bottom pipe line 23 communicates with the tank pipe line 9b, whereby the pressure oil is discharged from the bottom side of the boom cylinder 4 to the tank, and the boom cylinder 4 is contracted. (Boom lowering operation) is performed.
  • the bottom side conduit 23 of the boom cylinder 4 is communicated with the rod side conduit 24, and a part of the drained oil on the bottom side of the boom cylinder 4 is partly connected.
  • the pressure on the bottom side of the boom cylinder 4 is increased to about twice.
  • the meter-out opening area of the control valve 3 is set on the premise that the pressure on the bottom side is increased up to about twice, so no special control is required, and the control valve 3 is controlled according to the operating pilot pressure Pbd. By controlling the opening (opening area) of the meter-out by switching operation, the boom cylinder 4 can be operated at a favorable operation speed desired by the operator.
  • the operating pilot pressure Pad generated from the pilot valve 6 b of the second operating device 6 is input to the operating unit 7 b of the control valve 7.
  • the control valve 7 is switched, and the bottom line 28 communicates with the tank line 10b and the rod line 29 communicates with the pressure oil supply line 10a.
  • the arm cylinder 8 performs a reduction operation.
  • a detection signal 141 from a pressure sensor 41 that detects an operation pilot pressure Pa of the second operating device 6 is input to the vehicle body controller 42, and a required pump flow rate required to drive the arm cylinder 8 is calculated.
  • the regeneration controller 15 receives detection signals 114, 119, 121 from the pressure sensors 14, 19, 21 and a pump request flow rate signal 104 from the vehicle body controller 42, and controls the electromagnetic proportional valves 13, 17 and the hydraulic pressure by a control logic described later. A control command is output to the regulator 1a of the pump 1.
  • the electromagnetic proportional valve 17 generates a control pressure according to the control command, and the regeneration control valve 11 is controlled by this control pressure, and a part or all of the pressure oil discharged from the bottom side of the boom cylinder 4 is regenerated. Is regenerated and supplied to the arm cylinder 28.
  • the electromagnetic proportional valve 13 reduces the operating pilot pressure Pbd of the pilot valve 5b according to the control command, and controls the opening degree of the control valve 3 so as to keep the boom cylinder 4 at the target speed.
  • the regulator 1a of the hydraulic pump 1 controls the tilt angle of the hydraulic pump 1 based on the control command, and appropriately controls the pump flow rate so as to maintain the target speed of the arm cylinder 8.
  • the playback controller 15 generally has the following three functions.
  • the regeneration controller 15 operates when the first operating device 5 is operated in the boom lowering direction BD, which is the direction in which the boom 205 (first driven body) falls, and at the same time, the second operating device 6 is operated.
  • the regeneration control valve 11 is opened and pressure oil is sent from the bottom side of the boom cylinder 4.
  • the flow rate of the pressure oil supplied to the supply line 10a is controlled (first function).
  • the regeneration controller 15 operates the operation amount of the first operating device 5 in the boom lowering direction BD, the pressure on the bottom side of the boom cylinder 4, and the pressure oil supply line 10 a between the hydraulic pump 1 and the arm cylinder 8. Based on the pressure (of the flow discharged from the bottom side of the boom cylinder 4, the flow that is not supplied to either the rod side of the boom cylinder 4 or the pressure oil supply line 10 a is calculated, and this flow is returned to the tank. ) Control the control valve 3 (discharge throttle valve) (second function).
  • the regeneration controller 15 calculates the target bottom flow rate to be discharged from the bottom side of the boom cylinder 4 based on the operation pilot pressure Pbd that is the operation signal in the boom lowering direction BD of the first operating device 5.
  • the regenerative flow rate required by the control valve 7 of the arm cylinder 8 is calculated, the smaller one of the target bottom flow rate and the regenerative flow rate is set as the target regenerative flow rate, and the target regenerative flow rate is subtracted from the target bottom flow rate.
  • the discharge flow rate is calculated, the regeneration control valve 11 is controlled so that the flow rate of the pressure oil regenerated to the arm cylinder 8 side matches the target regeneration flow rate, and the control valve 3 so that the flow rate returned to the tank matches the target discharge flow rate. (Drain throttle valve) is controlled.
  • the regeneration controller 15 opens the regeneration control valve 11 and supplies pressure oil to the pressure oil supply line 10 a between the hydraulic pump 1 and the arm cylinder 8 from the bottom side of the boom cylinder 4, 4 is controlled so as to reduce the capacity of the hydraulic pump 1 by the regenerative flow rate supplied to the pressure oil supply line 10a from the bottom side (third function).
  • FIG. 4 is a block diagram showing the control logic of the playback controller 15 that executes the above three functions.
  • the regeneration controller 15 includes an adder 105, a pump minimum flow rate setting unit 106, a function generator 109, a minimum value selector 111, an adder 112, an output conversion unit 115, an adder 123, and an output conversion unit. 124, an output conversion unit 126, a gain generator 131, a function generator 132, an integrator 133, and an adder 130.
  • a detection signal 114 is a signal (lever operation signal) obtained by detecting the operation pilot pressure Pbd in the boom lowering direction of the operation lever 5 a of the first operation device 5 by the pressure sensor 14, and the detection signal 119 is the signal of the boom cylinder 4.
  • This is a signal (bottom pressure signal) obtained by detecting the pressure on the bottom side (pressure in the bottom side pipe line 23) by the pressure sensor 19, and the detection signal 121 indicates the discharge pressure of the hydraulic pump 1 (pressure in the pressure oil supply line 10a). It is a signal (pump pressure signal) detected by the pressure sensor 21.
  • the lever generator signal 114 and the bottom pressure signal 119 are input to the function generator 109, and the target bottom flow rate is calculated.
  • the calculation characteristic of the target bottom flow rate in the function generator 109 is that the target bottom flow rate increases in proportion to the lever operation signal 114 (operation pilot pressure Pbd), and the bottom pressure signal 119 (the pressure on the bottom side of the boom cylinder 4) increases. It is set so that the rate of increase of the target bottom flow rate with respect to the lever operation signal 114 increases (inclination becomes steeper) as it goes on.
  • the output of the function generator 109 is input to the gain generator 131.
  • the gain generator 131 calculates the flow rate of the return oil discharged to the bottom side pipeline 23 of the boom cylinder 4 that is not sent to the rod side pipeline 24 and flows to the control valve 3 and / or the regeneration control valve 11. .
  • the area ratio times the flow rate discharged from the bottom side of the boom cylinder 4 flows to the rod side of the boom cylinder 4. That is, as described above, when the pressure receiving area ratio Ar / Ab of the rod side pressure receiving area Ar to the bottom side pressure receiving area Ab of the boom cylinder 4 is k, the gain of the gain generator 131 is (1 ⁇ k).
  • the pump required flow rate signal 104 output from the vehicle body controller 42 and the minimum flow rate of the hydraulic pump 1 preset in the pump minimum flow rate setting unit 106 are input to the adder 105, and the pump minimum flow rate is subtracted from the pump required flow rate. A reproducible flow rate is calculated.
  • the hydraulic pump 1 is kept at the minimum tilt angle even when all the operation levers are in the neutral position for the purpose of improving the response at the start of actuator driving and ensuring lubricity when the actuator is not driven.
  • the minimum flow rate is discharged, and the minimum flow rate is set in the minimum flow rate setting unit 106.
  • the target bottom flow rate output from the gain generator 131 and the reproducible flow rate output from the adder 105 are input to the minimum value selector 111, and the smaller input value is selected and output as the target regeneration flow rate.
  • the adder 130 receives the bottom pressure signal 119 and the pump pressure signal 121, and the deviation between the bottom pressure signal 119 and the pump pressure signal 121 (the difference between the pressure on the bottom side of the boom cylinder 4 and the discharge pressure of the hydraulic pump 1). And the deviation (differential pressure) is input to the function generator 132.
  • the function generator 132 outputs 1 indicating that reproduction is possible when the deviation (differential pressure) obtained by the adder 130 is equal to or larger than a predetermined threshold value, and when the deviation is less than the threshold value, reproduction is impossible. 0 is output.
  • the threshold value a small value close to zero is set so that it can be determined whether the pressure on the bottom side of the boom cylinder 4 is higher than the discharge pressure of the hydraulic pump 1 and can be regenerated.
  • the target regeneration flow determined by the minimum value selection unit 111 and the output of the function generator 132 are input, and when the function generator 132 outputs 1, the target determined by the minimum value selection unit 111.
  • the regeneration flow rate is output and the function generator 132 outputs 0, the target regeneration flow rate of zero is output.
  • the deviation (differential pressure) between the bottom pressure signal 119 calculated by the adder 130 and the pump pressure signal 121 and the target regeneration flow rate calculated by the accumulator 133 are input to the output conversion unit 115, and the regeneration control valve is calculated from the orifice equation. 11 target opening areas are calculated and output to the electromagnetic proportional valve 17 as the electromagnetic valve command 117.
  • the function generator 132 when the discharge pressure of the hydraulic pump 1 is higher than the pressure on the bottom side of the boom cylinder 4 and cannot be regenerated, the function generator 132 outputs 0 and the integrator 133 sets the target regeneration flow rate to 0. By outputting, the output conversion unit 115 sends an electromagnetic valve command 117 to the electromagnetic proportional valve 17 so as not to operate the regeneration control valve 11.
  • the function generator 132 When the pressure on the bottom side of the boom cylinder 4 is higher than the discharge pressure of the hydraulic pump 1 and can be regenerated, the function generator 132 outputs 1 and the integrator 133 is determined by the minimum value selection unit 111.
  • the output conversion unit 115 By outputting the target regeneration flow rate, the output conversion unit 115 opens the regeneration control valve 11 and sends an electromagnetic valve command 117 to the electromagnetic proportional valve 17 so as to obtain the target regeneration flow rate (first function).
  • the target regeneration flow calculated by the integrator 133 and the target bottom flow output from the gain generator 131 are input to the adder 112, and the target discharge flow is calculated by subtracting the target regeneration flow from the target bottom flow.
  • the calculated target discharge flow rate and the bottom pressure signal 119 are input to the output conversion unit 124, the meter-out throttle opening of the control valve 3 is calculated from the orifice equation, and is output to the electromagnetic proportional valve 13 as the electromagnetic valve command 113.
  • the control valve 3 discharge throttle valve
  • the control valve 3 discharge throttle valve
  • the pump request flow rate signal 104 output from the vehicle body controller 42 and the target regeneration flow rate calculated by the integrator 133 are input to the adder 123, and the target pump flow rate is calculated by subtracting the target regeneration flow rate from the pump request flow rate. .
  • the target pump flow rate output from the adder 123 is converted into the tilt command 101 of the hydraulic pump 1 by the output conversion unit 126 and output to the regulator 1a.
  • the hydraulic pump 1 is controlled to reduce the capacity by the regeneration flow rate supplied from the bottom side of the boom cylinder 4 to the pressure oil supply conduit 10a (third function).
  • the signal of the operating pilot pressure Pbd detected by the pressure sensor 14 is input to the controller 15 as the lever operating signal 114.
  • the bottom pressure signal of the boom cylinder 4 and the discharge pressure signal of the hydraulic pump 1 detected by the pressure sensors 19 and 21 are input to the regeneration controller 15 as a bottom pressure signal 119 and a pump pressure signal 121.
  • the lever operation signal 114 and the bottom pressure signal 119 are input to the function generator 109, the target bottom flow rate is calculated, and the flow rate flowing through the control valve 3 and the regeneration control valve 11 is calculated by the gain generator 131.
  • the signal 141 of the operating pilot pressure Pad detected by the pressure sensor 41 is input to the vehicle body controller 42 to drive the arm cylinder 8.
  • the required pump flow rate required for this is calculated.
  • This pump request flow rate is sent to the regeneration controller 15 as a pump request flow rate signal 104, and the regeneration controller 15 subtracts the pump minimum flow rate from the pump request flow rate to calculate the regenerative flow rate, and the calculated regenerative flow rate and target bottom flow rate. Is input to the minimum value selector 111, and the smaller input value is selected and output as the target regeneration flow rate.
  • the pressure of the bottom pressure signal 119 (the pressure on the bottom side of the boom cylinder 4) is higher than the pressure of the pump pressure signal 121 (the discharge pressure of the hydraulic pump 1) by the adder 130, the function generator 132, and the integrator 133
  • the target regeneration flow determined by the minimum value selection unit 111 is output, and the pressure of the pump pressure signal 119 is higher In this case (when regeneration is impossible), a target regeneration flow rate of 0 is output from the integrator 133.
  • the calculated target regeneration flow, bottom pressure signal 119, and pump pressure signal 121 are input to the output conversion unit 115, the opening area of the regeneration control valve 11 is calculated based on the orifice equation, and an electromagnetic proportional valve is used as the solenoid valve command 117. 17 (function 1).
  • the pressure oil discharged from the boom cylinder 4 is controlled to a target flow rate via the regeneration control valve 11 and regenerated to the arm cylinder 8 side.
  • the communication booster valve 12 is opened and the pressure on the bottom side of the boom cylinder 4 is increased to about twice, the pressure oil regenerated from the bottom side of the boom cylinder 4 to the arm cylinder 8 side is increased. Energy increases and further energy saving is possible.
  • the difference between the target bottom flow rate and the target regeneration flow rate is calculated by the adder 112 to obtain the target discharge flow rate, the obtained target discharge flow rate and the bottom pressure signal 119 are input to the output conversion unit 124, and the orifice equation is used.
  • the meter-out opening area of the control valve 3 is calculated and output to the electromagnetic proportional valve 13 as an electromagnetic valve command 113 (second function).
  • control valve 3 is controlled to an appropriate opening degree, and the target speed of the boom cylinder 4 can be secured while the flow rate is regenerated to the arm cylinder 8 side.
  • the target regeneration flow rate is input to the adder 123 together with the reproducible flow rate, and the target pump flow rate is calculated.
  • the calculated target pump flow rate is input to the output converter 126, and the tilt angle of the hydraulic pump 1 is controlled (third function).
  • FIG. 5 is a diagram showing a hydraulic drive system according to the second embodiment of the present invention.
  • description is abbreviate
  • the hydraulic drive system of the present embodiment includes a regeneration circuit 35A having a regeneration control valve 44 instead of the regeneration control valve 11 in the first embodiment shown in FIG.
  • the regeneration control valve 44 is disposed at a branch portion between the bottom side pipe line 23 and the regeneration passage 27, and allows the discharged oil from the bottom side of the boom cylinder 4 to flow to the tank side (control valve 3 side) and the regeneration passage 27 side.
  • the tank side passage (first throttle) and the regeneration side passage (second throttle) are provided so as to be able to do so.
  • the stroke of the regeneration control valve 44 is controlled by the electromagnetic proportional valve 17.
  • FIG. 6 is a diagram showing the opening area characteristics of the regeneration control valve 44.
  • the horizontal axis in FIG. 5 indicates the spool stroke of the regeneration control valve 44, and the vertical axis indicates the opening area.
  • the regeneration control valve 44 is increased to increase the opening area of the regeneration side passage so that the regeneration flow rate is increased.
  • the opening area characteristic of the regeneration control valve 44 may be adjusted so that the drained oil on the bottom side of the boom cylinder 4 at this time is equivalent to the case where the oil is not regenerated.
  • the flow rate discharged to the tank side and the regenerated flow rate cannot be controlled individually and finely, but only one solenoid valve is required. Therefore, a simple configuration is sufficient, cost can be reduced, and mountability is improved.
  • the boom lowering and the arm dumping operation are performed well mainly in the gravel stacking operation and the horizontal pulling operation, and the pressure on the bottom side of the boom cylinder 4 is higher than the pressure on the rod side of the arm cylinder 8 and can be regenerated.
  • the lever operation amounts of the first and second operation devices 5 and 6 are constant to some extent. From this, it is possible to set the optimum opening area characteristics of the regeneration control valve 44 by analyzing the gravel stacking operation and the horizontal pulling operation, and the energy saving that is almost equivalent to the first embodiment with a simple configuration. An effect can be achieved.
  • the hydraulic drive system of the present embodiment includes a regeneration controller 15A instead of the regeneration controller 15 in the first embodiment shown in FIG.
  • the controller 15A has the aforementioned first to third functions that the controller 15 has.
  • the controller 15 ⁇ / b> A also controls the operation amount of the first operating device 5 in the boom lowering direction BD, the pressure on the bottom side of the boom cylinder 4, and the pressure in the pressure oil supply line 10 a between the hydraulic pump 1 and the arm cylinder 8. Based on the above, the regeneration control valve 44 is controlled (fourth function).
  • FIG. 7 is a block diagram showing the control logic of the playback controller 15A in the second embodiment. Note that description of control elements similar to those in FIG. 2 is omitted.
  • the reproduction controller 15A includes a function generator 109, a minimum value selector 111, an adder 112, an adder 123, an output converter 124, and a gain generator 131 in the first embodiment of FIG.
  • function generators 141, 142, 144, accumulators 145, 146, 147, 148, and an adder 149 are provided.
  • the function generator 141 calculates the opening area of the regeneration side passage of the regeneration control valve 44 according to the lever operation amount signal 114 of the first operating device 5, and the regeneration side of the regeneration control valve 44 shown in FIG. The same characteristics as the opening area characteristics of the passage are set.
  • the function generator 142 calculates a reduced flow rate of the hydraulic pump 1 (hereinafter referred to as a pump reduced flow rate) in accordance with the lever operation amount signal 114.
  • the function generator 142 is preferably set according to the opening area characteristic set by the function generator 141. That is, the larger the opening area calculated by the function generator 141, the larger the regeneration flow rate. Therefore, it is necessary to set a larger pump reduction flow rate according to the opening area calculated by the function generator 141.
  • the function generator 142 has the same characteristics as the opening area characteristics of the function generator 141.
  • the adder 130 calculates the deviation between the bottom pressure signal 119 and the pump pressure signal 121 (the differential pressure between the bottom pressure of the boom cylinder 4 and the discharge pressure of the hydraulic pump 1).
  • the deviation (differential pressure) is calculated and input to the function generator 132.
  • the function generator 132 outputs 1 indicating that reproduction is possible when the deviation (differential pressure) obtained by the adder 130 is equal to or larger than a predetermined threshold value, and when the deviation is less than the threshold value, reproduction is impossible. 0 is output.
  • the threshold value a small value close to zero is set so that it can be determined whether the pressure on the bottom side of the boom cylinder 4 is higher than the discharge pressure of the hydraulic pump 1 and can be regenerated.
  • the accumulator 145 receives the opening area calculated by the function generator 141 and the value calculated by the function generator 132, and when the function generator 132 outputs 1 (when the differential pressure is equal to or greater than the threshold value). When the function generator 132 outputs 0 and the function generator 132 outputs 0 (when the differential pressure is smaller than the threshold value), it is determined that regeneration is not possible. 0 is output as the opening area of the side passage.
  • the accumulator 146 inputs the pump reduction flow rate calculated by the function generator 142 and the value calculated by the function generator 132, and when the function generator 132 outputs 1 like the function generator 145 (difference) If the pressure is equal to or greater than the threshold value), it is determined that regeneration is possible, the pump reduced flow rate calculated by the function generator 142 is output, and the function generator 132 outputs 0 (when the differential pressure is smaller than the threshold value). Determines that regeneration is impossible, and outputs 0 as the pump reduction flow rate.
  • the pump required flow rate signal 104 and the minimum flow rate of the hydraulic pump 1 preset in the pump minimum flow rate setting unit 106 are input to the adder 105, and the regenerative flow rate is calculated by subtracting the pump minimum flow rate from the pump required flow rate.
  • the regenerative flow rate is input to the function generator 144.
  • the function generator 144 outputs 1 indicating that the reproducible flow rate is reproducible when the regenerative flow rate is equal to or greater than a predetermined threshold value. Outputs 0 indicating that playback is impossible.
  • the meter-in opening of the control valve 7 seems to be closed, and even when the opening area of the regeneration side passage of the regeneration control valve 44 is opened, almost all of the pressure oil flows to the rod side of the arm cylinder 8. Absent.
  • the function generator 144 determines whether or not reproduction is possible, and a small value that enables such determination is set as the threshold value.
  • the accumulator 147 receives the output of the accumulator 145 and the output of the function generator 144. When the function generator 144 outputs 1, the output of the function generator 145 (the function generator 132 outputs 1). If the function generator 144 outputs 0, a zero aperture area is output.
  • the output of the accumulator 146 and the output of the function generator 144 are input.
  • the function generator 147 when the function generator 144 outputs 1, the output of the function generator 146 (function generation)
  • the generator 132 When the generator 132 outputs 1, the pump reduced flow rate calculated by the function generator 142 is output, and when the function generator 144 outputs 0, the pump reduced flow rate of zero is output.
  • the output of the integrator 147 is input to the output conversion unit 115 and output to the electromagnetic proportional valve 17 as the electromagnetic valve command 117, and the stroke (opening area) of the regeneration control valve 44 is controlled.
  • the pump request flow rate signal 104 output from the vehicle body controller 42 and the output (pump reduction flow rate) of the accumulator 148 are input to the adder 149, and the adder 149 subtracts the pump reduction flow rate from the pump request flow rate.
  • the flow rate is calculated.
  • This target pump flow rate is converted into a tilt command 101 of the hydraulic pump 1 by the output conversion unit 126 and output to the regulator 1a.
  • the hydraulic pump 1 is controlled to reduce the capacity by the regeneration flow rate supplied from the bottom side of the boom cylinder 4 to the pressure oil supply pipe 10a.
  • the function generator 141 and the function generator 142 output the opening area of the regeneration side passage of the regeneration control valve 44 and the pump reduction flow rate, respectively. Further, the adder 130 calculates the differential pressure between the bottom pressure of the boom cylinder 4 and the discharge pressure of the hydraulic pump 1 from the bottom pressure signal 119 and the pump pressure signal 121, and the function generator 132 determines whether or not regeneration is possible. To do.
  • the pump request flow rate signal 104 is input to the adder 105, a value obtained by subtracting the pump minimum flow rate from the pump request flow rate is calculated as a reproducible flow rate, and the regenerator determination is performed by the function generator 144.
  • the opening area of the regeneration side passage output from the function generator 141 is converted into the electromagnetic valve command 117 by the output conversion unit 115,
  • the stroke of the regeneration control valve 44 is controlled by being output to the electromagnetic proportional valve 17.
  • the regeneration control valve 44 is set to an opening area corresponding to the lever operation signal 114, and the drained oil on the bottom side of the boom cylinder 4 is regenerated to the rod of the arm cylinder 8.
  • the pump reduction flow rate output from the function generator 142 is calculated as a value obtained by subtracting the pump reduction flow rate from the flow rate of the pump request flow rate signal 104 by the adder 149 and output as the tilt command 101 by the output conversion unit 126. Is done.
  • the hydraulic pump 1 can reduce the discharge flow rate by the regenerative flow rate, reduce the fuel consumption of the engine that drives the hydraulic pump 1, and save energy.
  • both the control for regenerating a part of the flow rate discharged from the bottom side of the boom cylinder 4 to the arm cylinder 8 side and the control for returning the remaining flow rate to the tank are performed by one valve (regeneration control). Since the valve 44) can be used and only one solenoid valve (electromagnetic proportional valve 17) for electrically controlling the valve is required, the hydraulic drive system can be realized with a simple configuration and the cost can be reduced. Further, it becomes possible to improve the mountability.
  • the meter-out throttle of the boom control valve 3 is used as a discharge throttle valve, and the rod side of the boom cylinder 4 and the arm actuator 8 side of the flow rate discharged from the bottom side of the boom cylinder 4 are used.
  • a dedicated discharge throttle valve may be provided separately from the control valve 3, and the discharge throttle valve may be returned to the tank.
  • the communication passage 26 is connected between the bottom side pipe line 23 and the rod side pipe line 24, and the communication booster valve 12 is disposed in the communication path 26, but the communication path 26 is connected to the control valve 3. It may be formed as an internal passage and the communication booster valve 12 may be disposed in the control valve 3.
  • the two controllers of the regeneration controller 15 and the vehicle body controller 42 are used. However, these two controllers may be combined into one controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 油圧アクチュエータから排出された圧油を他の油圧アクチュエータの駆動に再生する場合に、再生頻度を増加させ、更なる省エネルギー化を図ることができるようにするため、ブームシリンダ4のボトム側管路23とロッド側管路24とを接続する連通通路26に昇圧連通弁12を配置した昇圧回路36を設け、第1操作装置5がブーム下げ方向(ブームの自重落下方向)に操作され、これと同時に第2操作装置6が操作されたとき、ブームシリンダ4のボトム側の圧力が圧油の再生先であるアームシリンダ側の圧力よりも高いときのみ再生制御弁11を開いてブームシリンダ4のボトム側から排出した流量をアームシリンダ側に再生するよう再生制御弁11を制御する。

Description

作業機械の油圧駆動システム
 本発明は、作業機械の油圧駆動システムに係わり、特に、被駆動部材(例えばブーム)の自重落下等、被駆動部材の慣性エネルギーにより油圧アクチュエータから排出された圧油を他の油圧アクチュエータの駆動に再利用(再生)する再生回路を備えた油圧ショベルなどの作業機械の油圧駆動システムに関する。
 ブームの自重落下によりブームシリンダから排出された圧油をアームシリンダの駆動に再利用(再生)する再生回路を備えた作業機械の油圧駆動システムが知られており、その一例が特許文献1に記載されている。この特許文献1の油圧駆動システムでは、ブームシリンダからの排出油をアームシリンダに再生するとき、その分、アームシリンダに圧油を供給する油圧ポンプの吐出流量を減少させ、エンジンの燃費の向上を図っている。
特開2010-190261号公報
 特許文献1の油圧駆動システムでは、ブームシリンダからアームシリンダへの圧油の再生分、油圧ポンプの吐出流量を減少させ燃費向上を図るため、省エネルギー化を図ることができる。
 しかし、通常、一連の掘削作業においてはブームシリンダのボトム側の圧力はアームシリンダに圧油を供給する油圧ポンプの吐出圧やアームシリンダの負荷圧よりも低いことが多く、油は圧力が高い所から低い所に流れるという性質上、実際には再生する頻度が少なくなり、十分な省エネルギー化を図ることが難しい。
 本発明の目的は、油圧アクチュエータから排出された圧油を他の油圧アクチュエータの駆動に再生する場合に、再生頻度を増加させ、更なる省エネルギー化を図ることができる作業機械の油圧駆動システムを提供することである。
 (1)上記目的を達成するために、本発明は、油圧ポンプ装置と、この油圧ポンプ装置から圧油が供給され第1被駆動体を駆動する第1油圧アクチュエータと、前記油圧ポンプ装置から圧油が供給され第2被駆動体を駆動する第2油圧アクチュエータと、前記油圧ポンプ装置から前記第1油圧アクチュエータに供給される圧油の流れを制御する第1制御弁と、前記油圧ポンプ装置から前記第2油圧アクチュエータに供給される圧油の流れを制御する第2制御弁と、前記第1被駆動体の動作を指令する操作信号を出力し前記第1制御弁を切り換える第1操作装置と、前記第2被駆動体の動作を指令する操作信号を出力し前記第2制御弁を切り換える第2操作装置とを備え、前記第1油圧アクチュエータは、前記第1操作装置が前記第1被駆動体の自重落下方向に操作されたときに、前記第1被駆動体の自重落下によりボトム側から圧油を排出しロッド側から圧油を吸入する油圧シリンダである作業機械の油圧駆動システムにおいて、前記油圧シリンダのボトム側を前記油圧ポンプ装置と前記第2油圧アクチュエータとの間に接続する再生通路及び前記油圧シリンダのボトム側から排出される圧油の少なくとも一部を前記再生通路を介して前記油圧ポンプ装置と前記第2油圧アクチュエータの間に供給する再生制御弁を有する再生回路と、前記油圧シリンダのボトム側を前記油圧シリンダのロッド側に接続する連通通路及び前記連通通路に配置され、前記第1操作装置の前記第1被駆動体の自重落下方向の操作信号に基づいて開弁し、前記油圧シリンダのボトム側をロッド側に連通させることで前記油圧シリンダのボトム側の圧力を昇圧させる連通昇圧弁を有する昇圧回路と、前記第1操作装置が前記第1被駆動体の自重落下方向に操作され、これと同時に前記第2操作装置が操作されたとき、前記油圧シリンダのボトム側の圧力が前記油圧ポンプ装置と前記第2油圧アクチュエータとの間の圧力よりも高い場合に前記再生制御弁を開弁して前記油圧シリンダのボトム側から前記油圧ポンプ装置と前記第2油圧アクチュエータとの間に供給される圧油の流量を制御する制御装置とを備えるものとする。
 このように構成した本発明においては、油圧シリンダ(第1油圧アクチュエータ)のボトム側受圧面積に対するロッド側受圧面積の比をkで表した場合、昇圧回路により油圧シリンダ(第1油圧アクチュエータ)のボトム側の圧力を約1/(1-k)倍(受圧面積比kを2とした場合は約2倍)まで昇圧することが可能となり、これにより油圧シリンダのボトム側から油圧ポンプ装置と第2油圧アクチュエータの間(第2油圧アクチュエータ側)に再生される圧油のエネルギーが増加し、更なる省エネルギー化が可能となる。
 (2)上記(1)作業機械の油圧駆動システムにおいて、好ましくは、前記油圧シリンダのボトム側とタンクとの間に設けられた排出絞り弁を更に備え、前記制御装置は、前記第1操作装置の前記第1被駆動体の自重落下方向の操作量と、前記油圧シリンダのボトム側の圧力と、前記油圧ポンプ装置と前記第2油圧アクチュエータとの間の圧力とに基づいて前記排出絞り弁を制御する。
 これにより排出絞り弁は適切な開度に制御され、油圧シリンダのボトム側から排出される流量を第2油圧アクチュエータ側に再生しながら、油圧シリンダ(第1油圧アクチュエータ)の目標速度を確保することができる。
 (3)上記(2)の作業機械の油圧駆動システムにおいて、また好ましくは、前記制御装置は、前記第1操作装置の前記第1被駆動体の自重落下方向の操作信号に基づいて前記油圧シリンダのボトム側から排出されるべき目標ボトム流量を算出するとともに、前記第2制御弁が要求する再生可能流量を算出し、前記目標ボトム流量と前記再生可能流量のうち、小さい方を目標再生流量として設定し、前記目標ボトム流量から前記目標再生流量を差し引いて目標排出流量を算出し、前記第2油圧アクチュエータ側に再生される圧油の流量が前記目標再生流量に一致するよう前記再生制御弁を制御し、前記タンクに戻される流量が前記目標排出流量に一致するよう前記排出絞り弁を制御する。
 これにより再生制御弁と排出絞り弁は適切な開度に制御され、油圧シリンダのボトム側から排出される流量を第2油圧アクチュエータ側に再生して第2油圧アクチュエータの目標速度を確保しながら、油圧シリンダ(第1油圧アクチュエータ)の目標速度を確保することができる。
 (4)上記(1)の作業機械の油圧駆動システムにおいて、好ましくは、前記再生制御弁は、前記油圧シリンダのボトム側からタンクに排出される圧油の流量を制御する第1絞りと、前記油圧シリンダのボトム側から前記油圧ポンプ装置と前記第2油圧アクチュエータの間に供給される圧油の流量を制御する第2絞りとを有し、前記制御装置は、前記第1操作装置の前記第1被駆動体の自重落下方向の操作量と、前記油圧シリンダのボトム側の圧力と、前記油圧ポンプ装置と前記第2油圧アクチュエータとの間の圧力とに基づいて、前記再生制御弁を制御する。
 これにより油圧シリンダのボトム側から排出される流量の一部を第2油圧アクチュエータ側に再生する制御と、残りの流量をタンクに戻す制御の両方を1つのバルブ(再生制御弁)で行えるようになり、バルブを電気的に制御するための電磁弁が1つで済むことから、油圧駆動システムを簡易的な構成で実現可能であり、コスト低減、さらに搭載性を向上させることが可能となる。
 (5)上記(1)~(4)のいずれかの作業機械の油圧駆動システムにおいて、好ましくは、前記油圧ポンプ装置は少なくとも1つの可変容量型の油圧ポンプを含み、前記制御装置は、前記再生制御弁を開弁して前記油圧シリンダのボトム側から前記油圧ポンプと前記第2油圧アクチュエータとの間に圧油を供給するとき、前記油圧シリンダのボトム側から前記油圧ポンプと前記第2油圧アクチュエータとの間に供給される再生流量分、前記油圧ポンプの容量を減少させるよう制御する。
 これにより第2油圧アクチュエータは第2操作装置の操作信号に応じた所望の速度に制御されるとともに、再生流量分油圧ポンプの吐出流量を低減することにより省エネルギー化を図ることが可能となる。
 本発明によれば、油圧シリンダ(第1油圧アクチュエータ)のボトム側受圧面積に対するロッド側受圧面積の比をkで表した場合、昇圧回路により油圧シリンダ(第1油圧アクチュエータ)のボトム側の圧力を約1/(1-k)倍(受圧面積比kを2とした場合は約2倍)まで昇圧することが可能となり、これにより油圧シリンダのボトム側から油圧ポンプ装置と第2油圧アクチュエータの間(第2油圧アクチュエータ側)に再生される圧油のエネルギーが増加し、更なる省エネルギー化が可能となる。
本発明の第1の実施の形態における油圧駆動システムを示す図である。 本発明の油圧駆動システムが搭載される作業機械(建設機械)である油圧ショベルの外観を示す図である。 連通昇圧弁の開口面積特性を示す図である。 第1の実施の形態における再生コントローラの制御ロジックを示すブロック図である。 本発明の第2の実施の形態における油圧駆動システムを示す図である。 第2の実施の形態における再生制御弁の開口面積特性を示す図である。 第2の実施の形態における再生コントローラの制御ロジックを示すブロック図である。
 以下、本発明の実施の形態を図面を用いて説明する。
<第1の実施の形態>
 図1は本発明の第1の実施の形態における油圧駆動システムを示す図である。
 図1において、本実施の形態の油圧駆動システムは、メインの油圧ポンプ1及びパイロットポンプ2を含むポンプ装置50と、油圧ポンプ1から圧油が供給され、第1被駆動体である油圧ショベルのブーム205(図2参照)を駆動するブームシリンダ4(第1油圧アクチュエータ)と、油圧ポンプ1から圧油が供給され、第2被駆動体である油圧ショベルのアーム206(図2参照)を駆動するアームシリンダ8(第2油圧アクチュエータ)と、油圧ポンプ1からブームシリンダ4に供給される圧油の流れ(流量と方向)を制御する制御弁3(第1制御弁)と、油圧ポンプ1からアームシリンダ8に供給される圧油の流れ(流量と方向)を制御する制御弁7(第2制御弁)と、ブームの動作指令を出力し制御弁3を切り換える第1操作装置5と、アームの動作指令を出力し制御弁7を切り換える第2操作装置6とを備えている。油圧ポンプ1は図示しない他のアクチュエータ(後述)にも圧油が供給されるように図示しない制御弁にも接続されているが、それらの回路部分は省略している。
 油圧ポンプ1は可変容量型であり、レギュレータ1aを備え、コントローラ15(後述)からの制御信号によってレギュレータ1aを制御することで油圧ポンプ1の傾転角(容量)が制御され、吐出流量が制御される。また、図示はしないが、レギュレータ1aは公知の如く、油圧ポンプ1の吐出圧が導かれ、油圧ポンプ1の吸収トルクが予め定めた最大トルクを超えないように油圧ポンプ1の傾転角(容量)を制限するトルク制御部を有している。油圧ポンプ1は圧油供給管路9a,10aを介してを介して制御弁3,7に接続され、油圧ポンプ1の吐出油は制御弁3,7に供給される。
 制御弁3,7は、それぞれ、ボトム側管路23,28又はロッド側管路24,29を介してブームシリンダ4及びアームシリンダ8のボトム側或いはロッド側に接続され、制御弁3,7の切換位置に応じて、油圧ポンプ1の吐出油は制御弁3,7からボトム側管路23,28又はロッド側管路24,29を介してブームシリンダ4及びアームシリンダ8のボトム側或いはロッド側に供給される。ブームシリンダ4から排出された圧油は、少なくともその一部が制御弁3からタンク管路9bを介してタンクに環流される。アームシリンダ8から排出された圧油は、その全てが制御弁7からタンク管路10を介してタンクに環流される。
 第1及び第2操作装置5,6は、それぞれ、操作レバー5a,6aとパイロット弁5b,6bとを有し、パイロット弁5b,6bは、それぞれ、パイロット管路5c,5d及びパイロット管路6c,6dを介して制御弁3の操作部3a,3b及び制御弁7の操作部7a,7bに接続されている。
 操作レバー5aがブーム上げ方向BU(図示左方向)に操作されると、パイロット弁5bは操作レバー5aの操作量に応じた操作パイロット圧Pbuを生成し、この操作パイロット圧Pbuはパイロット管路5cを介して制御弁3の操作部3aに伝えられ、制御弁3はブーム上げ方向(図示右側の位置)に切り換えられる。操作レバー5aがブーム下げ方向BD(図示右方向)に操作されると、パイロット弁5bは操作レバー5aの操作量に応じた操作パイロット圧Pbdを生成し、この操作パイロット圧Pbdはパイロット管路5dを介して制御弁3の操作部3bに伝えられ、制御弁3はブーム下げ方向(図示左側の位置)に切り換えられる。
 操作レバー6aがアームクラウド方向AC(図示右方向)に操作されると、パイロット弁6bは操作レバー6aの操作量に応じた操作パイロット圧Pacを生成し、この操作パイロット圧Pacはパイロット管路6cを介て制御弁7の操作部7aに伝えられ、制御弁7はアームクラウド方向(図示左側の位置)に切り換えられる。操作レバー6aがアームダンプ方向AD(図示左方向)に操作されると、パイロット弁6bは操作レバー6aの操作量に応じた操作パイロット圧Padを生成し、この操作パイロット圧Padはパイロット管路6dを介して制御弁7の操作部7bに伝えられ、操作弁7はアームダンプ方向(図示右側の位置)に切り換えられる。
 ブームシリンダ4のボトム側管路23とロッド側管路24との間、アームシリンダ8のボトム側管路28とロッド側管路29との間には、それぞれ、メイクアップ付きオーバーロードリリーフ弁20,22が接続されている。メイクアップ付きオーバーロードリリーフ弁20,22は、ボトム側管路23,28及びロッド側管路24,29の圧力が上がりすぎることにより油圧回路機器が損傷することを防ぐ機能と、ボトム側管路23,28及びロッド側管路24,29が負圧になることによりキャビテーションが発生することを低減する機能を有している。
 なお、本実施の形態は、ポンプ装置50が1つのメインポンプ(油圧ポンプ1)を含む場合のものであるが、ポンプ装置50は複数(例えば2つ)のメインポンプを含み、制御弁3,7に別々のメインポンプを接続し、ブームシリンダ4とアームシリンダ8に別々のメインポンプから圧油を供給するようにしてもよい。
 図1において、本実施の形態の油圧駆動システムは、メインの油圧ポンプ1及びパイロットポンプ2を含むポンプ装置50と、油圧ポンプ1から圧油が供給され、第1被駆動体である油圧ショベルのブーム205(図2参照)を駆動するブームシリンダ4(第1油圧アクチュエータ)と、油圧ポンプ1から圧油が供給され、第2被駆動体である油圧ショベルのアーム206(図2参照)を駆動するアームシリンダ8(第2油圧アクチュエータ)と、油圧ポンプ1からブームシリンダ4に供給される圧油の流れ(流量と方向)を制御する制御弁3(第1制御弁)と、油圧ポンプ1からアームシリンダ8に供給される圧油の流れ(流量と方向)を制御する制御弁7(第2制御弁)と、ブームの動作指令を出力し制御弁3を切り換える第1操作装置5と、アームの動作指令を出力し制御弁7を切り換える第2操作装置6とを備えている。油圧ポンプ1は図示しない他のアクチュエータ(後述)にも圧油が供給されるように図示しない制御弁に接続されているが、それらの回路部分は省略している。
 図2は、本実施の形態における油圧駆動システムが搭載される作業機械(建設機械)である油圧ショベルの外観を示す図である。
 油圧ショベルは下部走行体201と上部旋回体202とフロント作業機203を備えている。下部走行体201は左右のクローラ式走行装置201a,201a(片側のみ図示)を有し、左右の走行モータ201b,201b(片側のみ図示)により駆動される。上部旋回体202は下部走行体201上に旋回可能に搭載され、旋回モータ202aにより旋回駆動される。フロント作業機203は上部旋回体202の前部に俯仰可能に取り付けられている。上部旋回体202にはキャビン(運転室)202bが備えられ、キャビン202b内には上記第1及び第2操作装置5,6や図示しない走行用の操作ペダル装置等の操作装置が配置されている。
 フロント作業機203はブーム205(第1被駆動体)、アーム206(第2被駆動体)、バケット207を有する多関節構造であり、ブーム205はブームシリンダ4の伸縮により上部旋回体202に対して上下方向に回動し、アーム206はアームシリンダ8の伸縮によりブーム205に対して上下及び前後方向に回動し、バケット207はバケットシリンダ208の伸縮によりアーム206に対して上下及び前後方向に回動する。
 図1では、左右の走行モータ201b,201b、旋回モータ202a、バケットシリンダ208等の油圧アクチュエータに係わる回路部分を省略して示している。
 ここで、ブームシリンダ4は、第1操作装置5の操作レバー5aがブーム下げ方向(第1被駆動体の自重落下方向)BDに操作されたときに、ブーム205を含むフロント作業機203の重量に基づく自重落下により、ボトム側から圧油を排出しロッド側から圧油を吸入する油圧シリンダである。
 図1に戻り、本発明の油圧駆動システムは、上述した構成要素に加えて、ブームシリンダ4のボトム側管路23から分岐し、ボトム側管路23をアームシリンダ8側の圧油供給管路10aに接続する再生通路27及び再生通路27に配置され、圧油の流量を調整可能であり、ブームシリンダ4のボトム側から排出される圧油の少なくとも一部をアームシリンダ8側の圧油供給管路10aに供給する再生制御弁11を有する再生回路35と、ブームシリンダ4のボトム側管路23及びロッド側管路24からそれぞれ分岐し、ボトム側管路23及びロッド側管路24とを接続する連通通路26及び連通通路26に配置され、第1操作装置5のブーム下げ方向BDの操作パイロット圧Pbd(操作信号)に基づいて開弁し、ブームシリンダ4のボトム側の排出油の一部をブームシリンダ4のロッド側に再生して供給するとともに、ブームシリンダ4のボトム側をロッド側に連通させることでブームシリンダ4のボトム側の圧力(ボトム側管路23の圧力)を昇圧させる連通昇圧弁12を有する昇圧回路36と、電磁比例弁13,17と、圧力センサ14,19,21,41と、再生コントローラ16と、車体コントローラ42とを備えている。
 連通昇圧弁12は操作部12aを有し、第1操作装置5のブーム下げ方向BDの操作パイロット圧Pbdが操作部12aに伝えられることにより開弁する。
 図3は、連通昇圧弁12の開口面積特性を示す図である。第1操作装置5の操作レバー5aがブーム下げ方向BDに操作され、操作パイロット圧Pbd(レバー操作信号)が増大するとき、連通昇圧弁12の開口面積が速やかに最大開口面積Amaxまで増大しかつ流量の増加が滑らかでショックを生じさせないように開口面積特性が設定されている。また、連通昇圧弁12は、全開したときにブームシリンダ4のボトム側管路23とロッド側管路24の圧力が概略同圧となるように、全開したときの最大開口面積Amaxが十分広く設定されている。これによりブームシリンダ4のボトム側管路23の圧力をブームシリンダ4のボトム側とロッド側の受圧面積比に応じた倍率で昇圧させることが可能となる。
 連通昇圧弁12の昇圧原理は次のようである。
 連通昇圧弁12の開弁前と開弁後のそれぞれにおいて、ブームシリンダ4がブームを支持しているときの力の釣り合いを考える。そのときのブームシリンダ4に関連するパラメータを以下のようにシンボルで表す。
 W:ブームシリンダ4が支持するブーム等の負荷の大きさ(荷重)
 Pb1:連通昇圧弁12の開弁前のブームシリンダ4のボトム側圧力
 Pr1:連通昇圧弁12の開弁前のブームシリンダ4のロッド側圧力
 Pb2:連通昇圧弁12の開弁後のブームシリンダ4のボトム側圧力
 Pr2:連通昇圧弁12の開弁後のブームシリンダ4のロッド側圧力
 Ab:ブームシリンダ4のボトム側受圧面積
 Ar:ブームシリンダ4のロッド側受圧面積
 k:ブームシリンダ4のボトム側受圧面積に対するロッド側受圧面積の比(受圧面積比Ar/Ab)
 また、ブームシリンダ4が負荷を支持するとき、連通昇圧弁12の開弁前のブームシリンダ4のロッド側圧力Pr1は概略タンク圧であり、このタンク圧を0と仮定する。連通昇圧弁12の開弁後は、上述した如く、ロッド側圧力Pr2はボトム側圧力Pb2に等しくなる(Pr2≒Pb2)。
 連通昇圧弁12の開弁前の負荷Wとブームシリンダ4との力の釣り合いは以下の式で表される。
 W=Pb1×Ab  ・・・(1)
 また、連通昇圧弁12の開弁後の負荷Wとブームシリンダ4との力の釣り合いは以下の式で表される。
 W=Pb2×Ab-Pr2×Ar=Pb2×Ab-Pb2×k×Ab
  =Pb2×Ab(1-k)  ・・・(2)
 (2)式を変形し、(1)式のWを代入すると、次のようになる。
 Pb2=W/Ab(1-k)
   =(Pb1×Ab)/(Ab(1-k))
   =Pb1/(1-k)  ・・・(3)
 (3)式より、連通昇圧弁12の開弁後のブームシリンダ4のボトム側圧力Pb2は連通昇圧弁12の開弁前のブームシリンダ4のボトム側圧力Pb1の1/(1-k)倍に昇圧される。
 本実施の形態では、ブームシリンダ4のボトム側に対するロッド側の受圧面積比kは1/2である。この場合、連通昇圧弁12が開弁することでブームシリンダ4のボトム側管路23の圧力を約2倍まで昇圧させることができる。また、制御弁3のメータアウトの開口面積は、ブームシリンダ4の下げ動作時にブームシリンダ4のボトム側管路23の圧力が約2倍まで昇圧することを想定して開口面積が設定されている。
 圧力センサ14はパイロット管路5dに接続され、第1操作装置5のブーム下げ方向BDの操作パイロット圧Pbdを検出し、圧力センサ19はブームシリンダ4のボトム側管路23に接続され、ブームシリンダ4のボトム側の圧力Pbを検出し、圧力センサ21はアームシリンダ8側の圧油供給管路10aに接続され、油圧ポンプ1の吐出圧Ppを検出する。圧力センサ41は、第2操作装置6のパイロット管路6c,6dに接続されたシャトル弁43に接続され、第2操作装置6のアームクラウド方向の操作パイロット圧Pacとアームダンプ方向の操作パイロット圧Padの高圧側の圧力Paを第2操作装置6の操作パイロット圧として検出する。
 車体コントローラ42は種々の機能を有しており、その機能の1つとして、第2操作装置6の操作パイロット圧を検出する圧力センサ41からの検出信号141と、第1操作装置5及び図示しないその他の操作装置の操作パイロット圧を検出する圧力センサからの検出信号を入力し、各アクチュエータを駆動するのに必要な圧油の流量をポンプ要求流量として算出する。車体コントローラ42は、ブーム下げとアームの駆動を同時に行う場合、ブームシリンダ4のロッド側に供給される圧油はブームシリンダ4のボトム側からの排出油で賄うことを前提としているため、アームシリンダ8を駆動するのに必要な圧油の流量をポンプ要求流量として算出する。車体コントローラ42は算出したポンプ要求流量をポンプ要求流量信号104として再生コントローラ25に出力する。
 再生コントローラ15は、圧力センサ14,19,21からの検出信号114,119,121と車体コントローラ42からのポンプ要求流量信号104を入力し、それらの信号に基づいて所定の演算処理を行い、電磁比例弁13,17とレギュレータ1aに制御指令を出力する。
 電磁比例弁13,17はコントローラ15からの制御指令により動作する。このとき電磁比例弁13は第1操作装置5のパイロット弁5bによって生成されたブーム下げ方向BDの操作パイロット圧Pbdを所望の圧力に減圧して制御弁3の操作部3bに出力し、制御弁3のストロークを制御することで制御弁3の開度(開口面積)を制御する。電磁比例弁17はパイロットポンプ2から供給された圧油を所望の圧力に変換して再生制御弁11の操作部11aに出力し、再生制御弁11のストロークを制御することで開度(開口面積)を制御する。レギュレータ1aはコントローラ15からの制御指令により動作し、油圧ポンプ1の傾転角(容量)を制御し吐出流量を制御する。
 次に、ブーム下げとアームの駆動を同時に行う場合の動作の概要について説明する。なお、原理としてはアームダンプをする場合とクラウドする場合で同様のため、アームダンプ動作を例に説明する。
 第1操作装置5の操作レバー5aがブーム下げ方向BDに操作され、同時に第2操作装置6の操作レバー6aがアームダンプ方向ADに操作された場合、第1操作装置5のパイロット弁5bから発生した操作パイロット圧Pbdは電磁比例弁13を介して制御弁3の操作部3bと連通昇圧弁12の操作部12aに入力される。それにより制御弁3は図示左側の位置に切換られ、ボトム管路23がタンク管路9bと連通することにより、ブームシリンダ4のボトム側から圧油がタンクに排出され、ブームシリンダ4が縮小動作(ブーム下げ動作)を行う。さらに連通昇圧弁12が図示下側の連通位置に切換られることにより、ブームシリンダ4のボトム側管路23をロッド側管路24に連通し、ブームシリンダ4のボトム側の排出油の一部をブームシリンダ4のロッド側に供給するとともに、ブームシリンダ4のボトム側の圧力を約2倍まで昇圧させる。制御弁3のメータアウトの開口面積は、ボトム側の圧力が約2倍まで昇圧することを前提に設定しているため、特別な制御が必要なく、制御弁3を操作パイロット圧Pbdに応じて切換操作してメータアウトの開度(開口面積)を制御することにより、ブームシリンダ4をオペレータの望む良好な操作速度で動作させることができる。
 第2操作装置6のパイロット弁6bから発生した操作パイロット圧Padは制御弁7の操作部7bに入力される。それにより制御弁7は切換られ、ボトム管路28がタンク管路10bと連通しかつロッド管路29が圧油供給管路10aと連通することにより、アームシリンダ8のボトム側の圧油はタンクに排出され、油圧ポンプ1からの吐出油がアームシリンダ8のロッド側に供給されることにより、アームシリンダ8は縮小動作を行う。
 車体コントローラ42には第2操作装置6の操作パイロット圧Paを検出する圧力センサ41からの検出信号141が入力され、アームシリンダ8を駆動するのに必要なポンプ要求流量が算出される。
 再生コントローラ15には圧力センサ14,19,21からの検出信号114,119,121と車体コントローラ42からのポンプ要求流量信号104が入力され、後述する制御ロジックによって、電磁比例弁13,17と油圧ポンプ1のレギュレータ1aに制御指令を出力する。
 電磁比例弁17は制御指令に応じた制御圧力を生成し、この制御圧力により再生制御弁11は制御され、ブームシリンダ4のボトム側から排出された圧油の一部或いは全部が再生制御弁11を介しアームシリンダ28に再生して供給される。
 電磁比例弁13は、制御指令に応じてパイロット弁5bの操作パイロット圧Pbdを減圧し、ブームシリンダ4を目標速度に保つよう制御弁3の開度を制御する。
 油圧ポンプ1のレギュレータ1aは制御指令に基づいて油圧ポンプ1の傾転角を制御し、アームシリンダ8の目標速度を保つよう適切にポンプ流量を制御する。
 次に、再生コントローラ15の制御機能について説明する。
 再生コントローラ15は、概略、以下の3つの機能を有している。
 まず、再生コントローラ15は、第1操作装置5がブーム205(第1被駆動体)の自重落下方向であるブーム下げ方向BDに操作され、これと同時に第2操作装置6が操作されたとき、ブームシリンダ4のボトム側の圧力が油圧ポンプ1とアームシリンダ8との間の圧油供給管路10aの圧力より高い場合に再生制御弁11を開弁してブームシリンダ4のボトム側から圧油供給管路10aに供給される圧油の流量を制御する(第1機能)。
 また、再生コントローラ15は、第1操作装置5のブーム下げ方向BDの操作量と、ブームシリンダ4のボトム側の圧力と、油圧ポンプ1とアームシリンダ8との間の圧油供給管路10aの圧力とに基づいて(ブームシリンダ4のボトム側から排出される流量のうちブームシリンダ4のロッド側と圧油供給管路10aのいずれにも供給されない流量を算出し、この流量をタンクに戻すよう)制御弁3(排出絞り弁)を制御する(第2機能)。
 この第2機能において、再生コントローラ15は、第1操作装置5のブーム下げ方向BDの操作信号である操作パイロット圧Pbdに基づいてブームシリンダ4のボトム側から排出されるべき目標ボトム流量を算出するとともに、アームシリンダ8の制御弁7が要求する再生可能流量を算出し、目標ボトム流量と再生可能流量のうち、小さい方を目標再生流量として設定し、目標ボトム流量から目標再生流量を差し引いて目標排出流量を算出し、アームシリンダ8側に再生される圧油の流量が目標再生流量に一致するよう再生制御弁11を制御し、タンクに戻される流量が目標排出流量に一致するよう制御弁3(排出絞り弁)を制御する。
 更に、再生コントローラ15は、再生制御弁11を開弁してブームシリンダ4のボトム側から油圧ポンプ1とアームシリンダ8との間の圧油供給管路10aに圧油を供給するとき、ブームシリンダ4のボトム側から圧油供給管路10aに供給される再生流量分、油圧ポンプ1の容量を減少させるよう制御する(第3機能)。
 図4は、上記3つの機能を実行する再生コントローラ15の制御ロジックを示すブロック図である。
 図4に示すように、再生コントローラ15は、加算器105、ポンプ最小流量設定部106、関数発生器109、最小値選択器111、加算器112、出力変換部115、加算器123、出力変換部124、出力変換部126、ゲイン発生器131、関数発生器132、積算器133、加算器130を有している。
 図4において、検出信号114は第1操作装置5の操作レバー5aのブーム下げ方向の操作パイロット圧Pbdを圧力センサ14により検出した信号(レバー操作信号)であり、検出信号119はブームシリンダ4のボトム側の圧力(ボトム側管路23の圧力)を圧力センサ19により検出した信号(ボトム圧信号)であり、検出信号121は油圧ポンプ1の吐出圧(圧油供給管路10aの圧力)を圧力センサ21により検出した信号(ポンプ圧信号)である。
 関数発生器109にはレバー操作信号114とボトム圧信号119が入力され、目標ボトム流量が算出される。関数発生器109における目標ボトム流量の算出特性は、レバー操作信号114(操作パイロット圧Pbd)に比例して目標ボトム流量が増加し、ボトム圧信号119(ブームシリンダ4のボトム側の圧力)が増加するに従って目標ボトム流量のレバー操作信号114に対する増加割合が増大する(傾きが急となる)ように設定されている。
 関数発生器109の出力はゲイン発生器131に入力される。ゲイン発生器131では、ブームシリンダ4のボトム側管路23に排出される戻り油のうち、ロッド側管路24に送られず、制御弁3及び/又は再生制御弁11に流れる流量を算出する。連通昇圧弁12を開くことにより、ブームシリンダ4のボトム側から排出される流量の面積比倍がブームシリンダ4のロッド側に流れる。すなわち、上述したようにブームシリンダ4のボトム側受圧面積Abに対するロッド側受圧面積Arの受圧面積比Ar/Abをkとすると、ゲイン発生器131のゲインは(1-k)となる。
 一方、車体コントローラ42から出力されたポンプ要求流量信号104とポンプ最小流量設定部106に予め設定した油圧ポンプ1の最小流量が加算器105に入力され、ポンプ要求流量からポンプ最小流量を差し引くことで再生可能流量が演算される。ここで、油圧ポンプ1は、アクチュエータ駆動開始時の応答性の改善やアクチュエータ非駆動時の潤滑性確保の目的などから、全ての操作レバーが中立位置にある場合でも、最小傾転角に保たれ、最小流量を吐出するようになっており、最小流量設定部106にはその最小流量が設定されている。
 ゲイン発生器131から出力される目標ボトム流量と加算器105から出力される再生可能流量が最小値選択器111に入力され、入力された値の小さい方を選択し、目標再生流量として出力する。
 加算器130にはボトム圧信号119及びポンプ圧信号121が入力され、ボトム圧信号119とポンプ圧信号121の偏差(ブームシリンダ4のボトム側の圧力と油圧ポンプ1の吐出圧との差圧)が求められ、この偏差(差圧)が関数発生器132に入力される。関数発生器132は加算器130で求められた偏差(差圧)が予め定めた閾値以上である場合は再生可能であることを意味する1を出力し、閾値未満である場合は再生不能であることを意味する0を出力する。閾値としては、ブームシリンダ4のボトム側の圧力が油圧ポンプ1の吐出圧よりも高く再生可能であるかどうかを判定できるようにするため、ゼロに近い小さめの値が設定されている。
 積算器133では、最小値選択部111において決定された目標再生流量と関数発生器132の出力が入力され、関数発生器132が1を出力する場合は、最小値選択部111において決定された目標再生流量を出力し、関数発生器132が0を出力する場合はゼロの目標再生流量を出力する。
 加算器130により算出されたボトム圧信号119とポンプ圧信号121の偏差(差圧)と積算器133により算出された目標再生流量とが出力変換部115に入力され、オリフィスの式より再生制御弁11の目標開口面積が演算され、電磁弁指令117として電磁比例弁17に出力される。
 ここで、ブームシリンダ4のボトム側の圧力よりも油圧ポンプ1の吐出圧の方が高く再生不能な場合には、関数発生器132が0を出力して積算器133が0の目標再生流量を出力することで、出力変換部115は再生制御弁11を動作させないように電磁比例弁17に電磁弁指令117を送る。また、ブームシリンダ4のボトム側の圧力が油圧ポンプ1の吐出圧よりも高く再生可能な場合には、関数発生器132が1を出力して積算器133が最小値選択部111において決定された目標再生流量を出力することで、出力変換部115は再生制御弁11を開弁し目標再生流量が得られるよう電磁比例弁17に電磁弁指令117を送る(第1機能)。
 積算器133により算出された目標再生流量とゲイン発生器131から出力された目標ボトム流量が加算器112に入力され、目標ボトム流量から目標再生流量を差し引くことで目標排出流量が算出される。算出された目標排出流量とボトム圧信号119が出力変換部124に入力され、オリフィスの式より制御弁3のメータアウトの絞り開度を演算し、電磁弁指令113として電磁比例弁13に出力される。これによりブームシリンダ4のボトム側から排出される流量のうちブームシリンダ4のロッド側と圧油供給管路10aのいずれにも供給されない流量がタンクに戻されるよう制御弁3(排出絞り弁)が制御される(第2機能)。
 車体コントローラ42から出力されたポンプ要求流量信号104と積算器133により算出された目標再生流量とが加算器123に入力され、ポンプ要求流量から目標再生流量を差し引くことで目標ポンプ流量が算出される。加算器123より出力された目標ポンプ流量は出力変換部126により油圧ポンプ1の傾転指令101に変換され、レギュレータ1aに出力される。これにより油圧ポンプ1は、ブームシリンダ4のボトム側から圧油供給管路10aに供給される再生流量分、容量を減少させるよう制御される(第3機能)。
 次に、再生コントローラ15の動作について説明する。
 第1操作装置5の操作レバー5aをブーム下げ方向BDに操作することにより、圧力センサ14により検出された操作パイロット圧Pbdの信号はレバー操作信号114としてコントローラ15に入力される。また、圧力センサ19,21により検出されたブームシリンダ4のボトム側の圧力、油圧ポンプ1の吐出圧の各信号はボトム圧信号119、ポンプ圧信号121として再生コントローラ15に入力される。
 レバー操作信号114とボトム圧信号119が関数発生器109に入力され、目標ボトム流量を算出し、ゲイン発生器131により制御弁3と再生制御弁11に流れる流量が演算される。
 一方、第2操作装置6の操作レバー6aをアームダンプ方向ADに操作することにより、圧力センサ41により検出された操作パイロット圧Padの信号141は車体コントローラ42に入力され、アームシリンダ8を駆動するのに必要なポンプ要求流量が算出される。このポンプ要求流量はポンプ要求流量信号104として再生コントローラ15に送られ、再生コントローラ15では、ポンプ要求流量からポンプ最小流量を差し引いて再生可能流量を算出し、算出された再生可能流量と目標ボトム流量が最小値選択器111に入力され、入力された値の小さい方を選択して目標再生流量として出力する。
 加算器130、関数発生器132及び積算器133によって、ボトム圧信号119の圧力(ブームシリンダ4のボトム側の圧力)がポンプ圧信号121の圧力(油圧ポンプ1の吐出圧)よりも高いかどうかが判定され、ボトム圧信号119の圧力の方が高い場合(再生可能な場合)には、最小値選択部111において決定された目標再生流量が出力され、ポンプ圧信号119の圧力の方が高い場合(再生不能な場合)には積算器133から0の目標再生流量が出力される。
 演算された目標再生流量とボトム圧信号119、ポンプ圧信号121が出力変換部115に入力され、オリフィスの式に基づいて再生制御弁11の開口面積を算出し、電磁弁指令117として電磁比例弁17に出力される(機能1)。
 このことにより、ブームシリンダ4から排出される圧油の少なくとも一部が再生制御弁11を介して目標通りの流量に制御され、アームシリンダ8側に再生される。そしてこのとき、連通昇圧弁12が開弁し、ブームシリンダ4のボトム側の圧力が約2倍まで昇圧しているため、ブームシリンダ4のボトム側からアームシリンダ8側に再生される圧油のエネルギーが増加し、更なる省エネルギー化が可能となる。
 目標ボトム流量と目標再生流量の差を加算器112で演算して目標排出流量を求め、求められた目標排出流量とボトム圧信号119が出力変換部124に入力され、オリフィスの式を用いて、制御弁3のメータアウトの開口面積を算出し、電磁比例弁13に電磁弁指令113として出力される(第2機能)。
 このことにより制御弁3は適切な開度に制御され、流量をアームシリンダ8側に再生しながらブームシリンダ4の目標速度を確保することができる。
 さらに、目標再生流量は再生可能流量と共に加算器123に入力され、目標ポンプ流量を算出する。算出された目標ポンプ流量は出力変換部126に入力され、油圧ポンプ1の傾転角を制御する(第3機能)。
 このことによりアームシリンダ8は第2操作装置6の操作信号(操作パイロット圧Pad)に応じた所望の速度に制御されるとともに、再生流量分油圧ポンプ1の吐出流量を低減することにより、油圧ポンプ1を駆動するエンジンの燃費を低減し、省エネルギー化を図ることが可能となる。
<第2の実施の形態>
 図5は本発明の第2の実施の形態における油圧駆動システムを示す図である。なお、図1と同様の箇所については説明を割愛する。
 図5において、本実施の形態の油圧駆動システムは、図1に示した第1の実施の形態における再生制御弁11に代えて再生制御弁44を有する再生回路35Aを備えている。再生制御弁44は、ボトム側管路23と再生通路27との分岐部に配置され、ブームシリンダ4のボトム側からの排出油をタンク側(制御弁3側)と再生通路27側とに流すことができるようタンク側通路(第1絞り)と再生側通路(第2絞り)とを有している。再生制御弁44のストロークは電磁比例弁17によって制御される。
 図6は再生制御弁44の開口面積特性を示す図である。図5の横軸は再生制御弁44のスプールストロークを示し、縦軸は開口面積を示している。
 図6において、スプールストロークが最小の場合(ノーマル位置にある場合)は、タンク側通路が開いており開口面積は最大であり、再生側通路が閉じ開口面積はゼロである。ストロークを徐々に増やしてゆくと、タンク側通路の開口面積が徐々に減少し、再生側通路が開いて開口面積が徐々に増加してゆく。ストロークを更に増加させると、タンク側通路が閉じ(開口面積がゼロとなり)、再生側通路の開口面積は更に増加してゆく。このように構成されている結果、スプールストロークが最小の場合は、ブームシリンダ4のボトム側から排出された圧油は再生されることなく、全量が制御弁3側に流入し、ストロークを徐々に右に動かしていくと、ブームシリンダ4のボトム側から排出された圧油の一部が再生通路27に流入する。また、ストロークを調整することにより、タンク側と再生側通路の開口面積を変化させることができ、再生流量を制御することができる。
 すなわち、第1操作装置5のレバー操作量が大きい場合は、再生制御弁44のストロークを大きくし再生側通路の開口面積を大きくすることで、再生流量を多く流すように制御する。このときのブームシリンダ4のボトム側の排出油が、再生しない場合と同等となるように、再生制御弁44の開口面積特性を調整するとよい。
 次に動作について説明する。
 ブーム下げとアームダンプの動作において、ブームシリンダ4のボトム側の圧力がアームシリンダ8のロッド側の圧力よりも低い場合は、再生制御弁44をノーマル位置にすることにより、ブームシリンダ4のボトム側の排出油は、全て制御弁3のメータアウト通路を通り、タンクに排出される。これにより通常のブーム下げ動作が行われる。
 ブーム下げとアームダンプの動作において、ブームシリンダ4のボトム側の圧力がアームシリンダ8のロッド側の圧力よりも高い場合は、再生制御弁44をノーマル位置から切換えることにより、ブームシリンダ4のボトム側の排出油がアームシリンダ8のロッド側に再生され、再生流量分、油圧ポンプ1の吐出流量を低減することにより、油圧ポンプ1の出力を抑え、油圧ポンプ1を駆動するエンジンの燃費を低減し、省エネルギー化を図ることが可能となる。
 なお、本実施の形態では、第1の実施の形態と比べて、タンク側に排出される流量と再生される流量をそれぞれ独立して細かく制御できない代わりに、電磁弁が一つだけで良いことから簡易的な構成で済み、コストの低減が図れ、搭載性も向上する。
 また、通常、ブーム下げ及びアームダンプ動作は、主に砂利積み動作及び水平引き動作において良く行われ、ブームシリンダ4のボトム側の圧力がアームシリンダ8のロッド側の圧力よりも高く再生可能な場合は、第1及び第2操作装置5,6のレバー操作量がある程度一定になっていることが多い。このことから、砂利積み動作及び水平引き動作を分析することにより、最適な再生制御弁44の開口面積特性を設定することが可能となり、単純な構成で第1の実施の形態とほぼ同等の省エネルギー効果を達成することが可能となる。
 また、本実施の形態の油圧駆動システムは、図1に示した第1の実施の形態における再生コントローラ15に代えて再生コントローラ15Aを備えている。
 コントローラ15Aは、コントローラ15が有する前述した第1~第3機能を有している。また、コントローラ15Aは、第1操作装置5のブーム下げ方向BDの操作量と、ブームシリンダ4のボトム側の圧力と、油圧ポンプ1とアームシリンダ8との間の圧油供給管路10aの圧力とに基づいて再生制御弁44を制御する(第4機能)。
 図7は、第2の実施の形態における再生コントローラ15Aの制御ロジックを示すブロック図である。なお、図2と同様の制御要素については説明を割愛する。
 図7に示すように、再生コントローラ15Aは、図4の第1の実施の形態における
関数発生器109、最小値選択器111、加算器112、加算器123、出力変換部124、ゲイン発生器131、積算器133に代えて、関数発生器141,142,144、積算器145,146,147,148、加算器149を有している。
 関数発生器141は、第1操作装置5のレバー操作量信号114に応じて再生制御弁44の再生側通路の開口面積を算出するものであり、図6に示した再生制御弁44の再生側通路の開口面積特性と同じ特性が設定されている。
 関数発生器142は、レバー操作量信号114に応じて油圧ポンプ1の低減流量(以下ポンプ低減流量という)を求めるものである。関数発生器142は、関数発生器141で設定した開口面積特性に応じて設定するのが良い。すなわち、関数発生器141で算出される開口面積が広いほど、再生流量が多くなることから、関数発生器141で算出される開口面積に応じてポンプ低減流量も多く設定する必要がある。本実施の形態では、関数発生器142は、関数発生器141の開口面積特性と同じ特性が設定されている。
 加算器130は、第1の実施の形態で説明したように、ボトム圧信号119とポンプ圧信号121の偏差(ブームシリンダ4のボトム側の圧力と油圧ポンプ1の吐出圧との差圧)を算出し、この偏差(差圧)が関数発生器132に入力される。関数発生器132は加算器130で求められた偏差(差圧)が予め定めた閾値以上である場合は再生可能であることを意味する1を出力し、閾値未満である場合は再生不能であることを意味する0を出力する。閾値としては、ブームシリンダ4のボトム側の圧力が油圧ポンプ1の吐出圧よりも高く再生可能であるかどうかを判定できるようにするため、ゼロに近い小さめの値が設定されている。
 積算器145は、関数発生器141で算出された開口面積と関数発生器132で算出された値を入力し、関数発生器132が1を出力する場合(差圧が閾値以上である場合)は、再生可能と判断し、関数発生器141で算出された開口面積を出力し、関数発生器132が0を出力する場合(差圧が閾値より小さい場合)は、再生不可能と判断し、再生側通路の開口面積として0を出力する。
 積算器146は、関数発生器142で算出されたポンプ低減流量と関数発生器132で算出された値を入力し、関数発生器145と同様に、関数発生器132が1を出力する場合(差圧が閾値以上である場合)は、再生可能と判断し、関数発生器142で算出されたポンプ低減流量を出力し、関数発生器132が0を出力する場合(差圧が閾値より小さい場合)は、再生不可能と判断し、ポンプ低減流量として0を出力する。
 ポンプ要求流量信号104とポンプ最小流量設定部106に予め設定した油圧ポンプ1の最小流量が加算器105に入力され、ポンプ要求流量からポンプ最小流量を差し引くことで再生可能流量が演算される。
 再生可能流量は関数発生器144に入力され、関数発生器144は、再生可能流量が予め定めた閾値以上である場合は再生可能であることを意味する1を出力し、閾値未満である場合は再生不能であることを意味する0を出力する。再生可能流量が少ない場合は、制御弁7のメータインの開口が閉じ気味であり、再生制御弁44の再生側通路の開口面積を開いても、アームシリンダ8のロッド側へは圧油がほとんど流れない。逆に再生流量可能が十分多い場合は、制御弁8のメータインの開口が開いており、再生流量を十分流すことが可能である。そのため関数発生器144では、再生可能かどうかの判断を行っており、閾値としてはそのような判断を可能とする小さめの値が設定されている。
 積算器147では、積算器145の出力と関数発生器144の出力が入力され、関数発生器144が1を出力する場合は、関数発生器145の出力(関数発生器132が1を出力している場合は関数発生器141で算出された開口面積)を出力し、関数発生器144が0を出力する場合はゼロの開口面積を出力する。
 積算器148では、積算器146の出力と関数発生器144の出力が入力され、関数発生器147と同様に、関数発生器144が1を出力する場合は、関数発生器146の出力(関数発生器132が1を出力している場合は関数発生器142で算出されたポンプ低減流量)を出力し、関数発生器144が0を出力する場合はゼロのポンプ低減流量を出力する。
 積算器147の出力は出力変換部115に入力され、電磁弁指令117として電磁比例弁17に出力され、再生制御弁44のストローク(開口面積)が制御される。
 車体コントローラ42から出力されたポンプ要求流量信号104と積算器148の出力(ポンプ低減流量)とが加算器149に入力され、加算器149において、ポンプ要求流量からポンプ低減流量を差し引くことで目標ポンプ流量が算出される。この目標ポンプ流量は出力変換部126により油圧ポンプ1の傾転指令101に変換され、レギュレータ1aに出力される。これにより油圧ポンプ1は、ブームシリンダ4のボトム側から圧油供給管路10aに供給される再生流量分、容量を減少させるよう制御される。
 以上の制御ロジックにより、レバー操作信号114が入力されると、関数発生器141及び関数発生器142から、それぞれ、再生制御弁44の再生側通路の開口面積とポンプ低減流量が出力される。また、ボトム圧信号119とポンプ圧信号121から加算器130によりブームシリンダ4のボトム側の圧力と油圧ポンプ1の吐出圧との差圧が算出され、再生可/不可の判断を関数発生器132で行う。
 同様に、ポンプ要求流量信号104を加算器105に入力し、ポンプ要求流量からポンプ最小流量を減じた値を再生可能流量として算出し、再生可/不可の判断を関数発生器144で行う。
 演算された差圧及び再生可能流量に対してそれぞれ再生可能と判断された場合は、関数発生器141から出力された再生側通路の開口面積が出力変換部115によって電磁弁指令117に変換され、電磁比例弁17に出力され再生制御弁44のストロークが制御される。
 このことにより再生制御弁44はレバー操作信号114に応じた開口面積に設定され、ブームシリンダ4のボトム側の排出油がアームシリンダ8のロッドに再生される。
 また、関数発生器142から出力されたポンプ低減流量は、加算器149によって、ポンプ要求流量信号104の流量からポンプ低減流量を減じた値として算出され、出力変換部126によって傾転指令101として出力される。
 このことにより油圧ポンプ1は再生流量分、吐出流量を低減することができ、油圧ポンプ1を駆動するエンジンの燃費の低減し、省エネルギー化を図ることができる。
 さらに、本実施の形態では、ブームシリンダ4のボトム側から排出される流量の一部をアームシリンダ8側に再生する制御と、残りの流量をタンクに戻す制御の両方を1つのバルブ(再生制御弁44)で行えるようになり、バルブを電気的に制御するための電磁弁(電磁比例弁17)が1つで済むことから、油圧駆動システムを簡易的な構成で実現可能であり、コスト低減、さらに搭載性を向上させることが可能となる。
 <その他>
 以上において、本発明の実施の形態を説明したが、本発明の実施の形態は本発明の精神の範囲内で種々の変更が可能である。例えば、上記実施の形態では、本発明を油圧ショベルに適用した場合について説明したが、本発明は、第1操作装置が第1被駆動体の自重落下方向に操作されたときに、第1被駆動体の自重落下によりボトム側から圧油を排出しロッド側から圧油を吸入する油圧シリンダを備える作業機械であれば、油圧クレーン、ホイールローダ等、その他の作業機械にも適用することができる。
 また、上記実施の形態では、ブーム用の制御弁3のメータアウト絞りを排出絞り弁として用い、ブームシリンダ4のボトム側から排出される流量のうちブームシリンダ4のロッド側とアームアクチュエータ8側のいずれにも供給されない流量をタンクに戻したが、制御弁3とは別に専用の排出絞り弁を設け、この排出絞り弁からタンクに戻してもよい。
 また、上記実施の形態では、連通通路26をボトム側管路23とロッド側管路24間に接続し、この連通通路26に連通昇圧弁12を配置したが、連通通路26を制御弁3の内部通路として形成しかつ連通昇圧弁12を制御弁3内に配置してもよい。
 更に、上記実施の形態では、再生コントローラ15と車体コントローラ42の2つのコントローラを用いたが、これらの2つのコントローラを1つのコントローラに纏めてもよい。
1 油圧ポンプ
2 パイロットポンプ
3 制御弁
4 ブームシリンダ(第1油圧アクチュエータ)
5 第1操作装置
5a 操作レバー
5b パイロット弁
5c,5d パイロット管路
6 第1操作装置
6a 操作レバー
6b パイロット弁
6c,6d パイロット管路
7 制御弁
8 アームシリンダ(第2油圧アクチュエータ)
9a,10a 圧油供給管路
9b,10b タンク管路
11 再生制御弁
12 連通昇圧弁
13 電磁比例弁
14 圧力センサ
15,15A 再生コントローラ
16 電磁比例弁
17 電磁比例弁
18 圧力センサ
19 圧力センサ
20 メイクアップ付きオーバーロードリリーフバルブ
21 圧力センサ
22 メイクアップ付きオーバーロードリリーフバルブ
23 ボトム側管路
24 ロッド側管路
26 連通管路
27 再生側管路
28 ボトム側管路
29 ロッド側管路
31 制御弁
32 チェック弁
35,35A 再生回路
36 昇圧回路
41 圧力センサ
42 車体コントローラ
43 シャトル弁
101 傾転指令
104 ポンプ要求流量信号
105 加算器
106 ポンプ最小流量設定部
109 関数発生器
111 最小値選択器
112 加算器
113 電磁弁指令
114 レバー操作信号
115 出力変換部
117 電磁弁指令
119 ボトム圧信号
121 ポンプ圧信号
123 加算器
124 出力変換部
126 出力変換部
130 加算器
131 ゲイン発生器
132 関数発生器
133 積算器
141~143 関数発生器
145~148 積算器
149 加算器
203 フロント作業機
205 ブーム(第1被駆動体)
206 アーム(第2被駆動体)
207 バケット

Claims (5)

  1.  油圧ポンプ装置と、この油圧ポンプ装置から圧油が供給され第1被駆動体を駆動する第1油圧アクチュエータと、前記油圧ポンプ装置から圧油が供給され第2被駆動体を駆動する第2油圧アクチュエータと、前記油圧ポンプ装置から前記第1油圧アクチュエータに供給される圧油の流れを制御する第1制御弁と、前記油圧ポンプ装置から前記第2油圧アクチュエータに供給される圧油の流れを制御する第2制御弁と、前記第1被駆動体の動作を指令する操作信号を出力し前記第1制御弁を切り換える第1操作装置と、前記第2被駆動体の動作を指令する操作信号を出力し前記第2制御弁を切り換える第2操作装置とを備え、
     前記第1油圧アクチュエータは、前記第1操作装置が前記第1被駆動体の自重落下方向に操作されたときに、前記第1被駆動体の自重落下によりボトム側から圧油を排出しロッド側から圧油を吸入する油圧シリンダである作業機械の油圧駆動システムにおいて、
     前記油圧シリンダのボトム側を前記油圧ポンプ装置と前記第2油圧アクチュエータとの間に接続する再生通路及び前記油圧シリンダのボトム側から排出される圧油の少なくとも一部を前記再生通路を介して前記油圧ポンプ装置と前記第2油圧アクチュエータの間に供給する再生制御弁を有する再生回路と、
     前記油圧シリンダのボトム側を前記油圧シリンダのロッド側に接続する連通通路及び前記連通通路に配置され、前記第1操作装置の前記第1被駆動体の自重落下方向の操作信号に基づいて開弁し、前記油圧シリンダのボトム側をロッド側に連通させることで前記油圧シリンダのボトム側の圧力を昇圧させる連通昇圧弁を有する昇圧回路と、
     前記第1操作装置が前記第1被駆動体の自重落下方向に操作され、これと同時に前記第2操作装置が操作されたとき、前記油圧シリンダのボトム側の圧力が前記油圧ポンプ装置と前記第2油圧アクチュエータとの間の圧力よりも高い場合に前記再生制御弁を開弁して前記油圧シリンダのボトム側から前記油圧ポンプ装置と前記第2油圧アクチュエータとの間に供給される圧油の流量を制御する制御装置とを備えることを特徴とする油作業機械の油圧駆動システム。
  2.  請求項1に記載の作業機械の油圧駆動システムにおいて、
     前記油圧シリンダのボトム側とタンクとの間に設けられた排出絞り弁を更に備え、
     前記制御装置は、前記第1操作装置の前記第1被駆動体の自重落下方向の操作量と、前記油圧シリンダのボトム側の圧力と、前記油圧ポンプ装置と前記第2油圧アクチュエータとの間の圧力とに基づいて前記排出絞り弁を制御することを特徴とする作業機械の油圧駆動システム。
  3.  請求項2に記載の作業機械の油圧駆動システムにおいて、
     前記制御装置は、前記第1操作装置の前記第1被駆動体の自重落下方向の操作信号に基づいて前記油圧シリンダのボトム側から排出されるべき目標ボトム流量を算出するとともに、前記第2制御弁が要求する再生可能流量を算出し、前記目標ボトム流量と前記再生可能流量のうち、小さい方を目標再生流量として設定し、前記目標ボトム流量から前記目標再生流量を差し引いて目標排出流量を算出し、前記第2油圧アクチュエータ側に再生される圧油の流量が前記目標再生流量に一致するよう前記再生制御弁を制御し、前記タンクに戻される流量が前記目標排出流量に一致するよう前記排出絞り弁を制御することを特徴とする作業機械の油圧駆動システム。
  4.  請求項1に記載の作業機械の油圧駆動システムにおいて、
     前記再生制御弁は、前記油圧シリンダのボトム側からタンクに排出される圧油の流量を制御する第1絞りと、前記油圧シリンダのボトム側から前記油圧ポンプ装置と前記第2油圧アクチュエータの間に供給される圧油の流量を制御する第2絞りとを有し、
     前記制御装置は、前記第1操作装置の前記第1被駆動体の自重落下方向の操作量と、前記油圧シリンダのボトム側の圧力と、前記油圧ポンプ装置と前記第2油圧アクチュエータとの間の圧力とに基づいて、前記再生制御弁を制御することを特徴とする作業機械の油圧駆動システム。
  5.  請求項1~4のいずれか1項に記載の作業機械の油圧駆動システムにおいて、
     前記油圧ポンプ装置は少なくとも1つの可変容量型の油圧ポンプを含み、
     前記制御装置は、前記再生制御弁を開弁して前記油圧シリンダのボトム側から前記油圧ポンプと前記第2油圧アクチュエータとの間に圧油を供給するとき、前記油圧シリンダのボトム側から前記油圧ポンプと前記第2油圧アクチュエータとの間に供給される再生流量分、前記油圧ポンプの容量を減少させるよう制御することを特徴とする作業機械の油圧駆動システム。
PCT/JP2014/076470 2014-10-02 2014-10-02 作業機械の油圧駆動システム WO2016051579A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177008109A KR101945644B1 (ko) 2014-10-02 2014-10-02 작업 기계의 유압 구동 시스템
JP2016551440A JP6453898B2 (ja) 2014-10-02 2014-10-02 作業機械の油圧駆動システム
CN201480082317.2A CN107076181B (zh) 2014-10-02 2014-10-02 作业机械的液压驱动系统
PCT/JP2014/076470 WO2016051579A1 (ja) 2014-10-02 2014-10-02 作業機械の油圧駆動システム
EP14902957.1A EP3203087B1 (en) 2014-10-02 2014-10-02 Work vehicle hydraulic drive system
US15/516,089 US10301793B2 (en) 2014-10-02 2014-10-02 Hydraulic drive system for work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076470 WO2016051579A1 (ja) 2014-10-02 2014-10-02 作業機械の油圧駆動システム

Publications (1)

Publication Number Publication Date
WO2016051579A1 true WO2016051579A1 (ja) 2016-04-07

Family

ID=55629665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076470 WO2016051579A1 (ja) 2014-10-02 2014-10-02 作業機械の油圧駆動システム

Country Status (6)

Country Link
US (1) US10301793B2 (ja)
EP (1) EP3203087B1 (ja)
JP (1) JP6453898B2 (ja)
KR (1) KR101945644B1 (ja)
CN (1) CN107076181B (ja)
WO (1) WO2016051579A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055723A1 (ja) 2016-09-23 2018-03-29 日立建機株式会社 作業機械の圧油エネルギ回生装置
CN107882100A (zh) * 2017-10-11 2018-04-06 柳州柳工挖掘机有限公司 挖掘机液压控制方法及控制系统
WO2018117029A1 (ja) * 2016-12-22 2018-06-28 川崎重工業株式会社 油圧ショベル駆動システム
EP3458727A4 (en) * 2016-05-19 2020-01-01 Flutron AB ELECTROHYDRAULIC CONTROL AND DRIVE SYSTEM

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443628B2 (en) * 2016-10-26 2019-10-15 Deere & Company Boom control with integrated variable return metering
KR102633378B1 (ko) 2019-02-13 2024-02-02 에이치디현대인프라코어 주식회사 건설 기계
CN109706997A (zh) * 2019-02-15 2019-05-03 青岛雷沃工程机械有限公司 一种挖掘机用液压控制系统及工作方法
CN110566523B (zh) * 2019-09-12 2021-06-15 上海华兴数字科技有限公司 液压系统和挖掘机
JP7379226B2 (ja) * 2020-03-17 2023-11-14 株式会社小松製作所 油圧システム
CN113789827A (zh) * 2021-08-30 2021-12-14 江苏汇智高端工程机械创新中心有限公司 一种挖掘机斗杆控制阀系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190261A (ja) * 2009-02-16 2010-09-02 Kobe Steel Ltd 作業機械の油圧制御装置及びこれを備えた作業機械
JP2013204223A (ja) * 2012-03-27 2013-10-07 Kobelco Contstruction Machinery Ltd 制御装置及びこれを備えた建設機械

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336844A (ja) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械
US7444809B2 (en) * 2006-01-30 2008-11-04 Caterpillar Inc. Hydraulic regeneration system
JP2012097670A (ja) * 2010-11-02 2012-05-24 Hitachi Constr Mach Co Ltd 作業機械
JP6138050B2 (ja) 2010-12-13 2017-05-31 イートン コーポレーションEaton Corporation ホイールローダ等のワークマシンにおけるエネルギ再生のための油圧システム
JP5572586B2 (ja) * 2011-05-19 2014-08-13 日立建機株式会社 作業機械の油圧駆動装置
EP2799727B1 (en) * 2011-12-28 2018-05-30 Hitachi Construction Machinery Co., Ltd. Power regeneration device for work machine and work machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190261A (ja) * 2009-02-16 2010-09-02 Kobe Steel Ltd 作業機械の油圧制御装置及びこれを備えた作業機械
JP2013204223A (ja) * 2012-03-27 2013-10-07 Kobelco Contstruction Machinery Ltd 制御装置及びこれを備えた建設機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203087A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3458727A4 (en) * 2016-05-19 2020-01-01 Flutron AB ELECTROHYDRAULIC CONTROL AND DRIVE SYSTEM
US10526768B2 (en) 2016-09-23 2020-01-07 Hitachi Construction Machinery Co., Ltd. Hydraulic energy regeneration system for work machine
KR20180044266A (ko) 2016-09-23 2018-05-02 히다찌 겐끼 가부시키가이샤 작업 기계의 압유 에너지 회생 장치
CN108138817A (zh) * 2016-09-23 2018-06-08 日立建机株式会社 作业机械的液压油能量回生装置
CN108138817B (zh) * 2016-09-23 2019-09-27 日立建机株式会社 作业机械的液压油能量回生装置
WO2018055723A1 (ja) 2016-09-23 2018-03-29 日立建機株式会社 作業機械の圧油エネルギ回生装置
EP3517789A4 (en) * 2016-09-23 2020-06-03 Hitachi Construction Machinery Co., Ltd. HYDRAULIC ENERGY REGENERATION SYSTEM FOR WORKING MACHINES
WO2018117029A1 (ja) * 2016-12-22 2018-06-28 川崎重工業株式会社 油圧ショベル駆動システム
JP2018105333A (ja) * 2016-12-22 2018-07-05 川崎重工業株式会社 油圧ショベル駆動システム
CN110036211A (zh) * 2016-12-22 2019-07-19 川崎重工业株式会社 油压挖掘机驱动系统
CN110036211B (zh) * 2016-12-22 2020-08-14 川崎重工业株式会社 油压挖掘机驱动系统
GB2571238B (en) * 2016-12-22 2022-01-12 Kawasaki Heavy Ind Ltd Hydraulic excavator drive system
CN107882100A (zh) * 2017-10-11 2018-04-06 柳州柳工挖掘机有限公司 挖掘机液压控制方法及控制系统

Also Published As

Publication number Publication date
EP3203087A1 (en) 2017-08-09
KR20170045306A (ko) 2017-04-26
US10301793B2 (en) 2019-05-28
JPWO2016051579A1 (ja) 2017-07-13
CN107076181A (zh) 2017-08-18
EP3203087B1 (en) 2023-03-01
KR101945644B1 (ko) 2019-02-07
CN107076181B (zh) 2018-10-02
EP3203087A4 (en) 2018-06-27
US20170298590A1 (en) 2017-10-19
JP6453898B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6453898B2 (ja) 作業機械の油圧駆動システム
JP6291394B2 (ja) 作業機械の油圧駆動システム
JP6317656B2 (ja) 作業機械の油圧駆動システム
JP6316776B2 (ja) 作業機械の油圧駆動システム
KR102062193B1 (ko) 작업 기계의 압유 에너지 회생 장치
JP6506146B2 (ja) 作業機械の油圧駆動装置
CN110352304B (zh) 工程机械
WO2014054326A1 (ja) 建設機械の油圧回路
JP2010078035A (ja) 作業機械の油圧シリンダ制御回路
JP6013503B2 (ja) 建設機械
KR101747519B1 (ko) 하이브리드식 건설 기계
JP6591370B2 (ja) 建設機械の油圧制御装置
WO2019064555A1 (ja) 作業機械の油圧駆動装置
JP2021021406A (ja) 建設機械
JP2014105541A (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177008109

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016551440

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014902957

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15516089

Country of ref document: US

Ref document number: 2014902957

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE