WO2021039493A1 - 原料ガス供給システム及び原料ガス供給方法 - Google Patents

原料ガス供給システム及び原料ガス供給方法 Download PDF

Info

Publication number
WO2021039493A1
WO2021039493A1 PCT/JP2020/031087 JP2020031087W WO2021039493A1 WO 2021039493 A1 WO2021039493 A1 WO 2021039493A1 JP 2020031087 W JP2020031087 W JP 2020031087W WO 2021039493 A1 WO2021039493 A1 WO 2021039493A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
vaporizer
solution
material gas
gas supply
Prior art date
Application number
PCT/JP2020/031087
Other languages
English (en)
French (fr)
Inventor
庸之 岡部
成幸 大倉
栄一 小森
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US17/636,430 priority Critical patent/US20220396873A1/en
Priority to CN202080058420.9A priority patent/CN114269965A/zh
Priority to KR1020227008324A priority patent/KR20220046648A/ko
Publication of WO2021039493A1 publication Critical patent/WO2021039493A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • This disclosure relates to a raw material gas supply system and a raw material gas supply method.
  • a solid raw material is sublimated in a raw material container, a carrier gas is discharged into the raw material container from a carrier gas introduction path, and the sublimated raw material is supplied to the film forming processing section together with the carrier gas through a raw material gas flow path.
  • the raw material gas supply device to be used is disclosed.
  • the raw material container is configured to be capable of accommodating 5 kg to 60 kg of solid raw materials, and when the remaining amount of the raw material container becomes low, the raw material container is replaced.
  • the technology according to the present disclosure is to replenish the raw material gas supply system that supplies the raw material gas generated by vaporizing the solid raw material to the processing apparatus in a form that does not adversely affect the processing in the processing apparatus. To be able to.
  • One aspect of the present disclosure is a raw material gas supply system that supplies a raw material gas generated by vaporizing a solid raw material to a processing apparatus, the vaporizing device that vaporizes the solid raw material to generate the raw material gas, and the above.
  • the raw material gas supply system that supplies the raw material gas generated by vaporizing the solid raw material to the processing apparatus can be supplied with the solid raw material in a form that does not adversely affect the processing in the processing apparatus. it can.
  • a film forming process for forming a desired film such as a metal film are repeatedly performed on a substrate such as a semiconductor wafer (hereinafter referred to as “wafer”).
  • wafer a substrate
  • a solid raw material may be heated and vaporized to be a raw material gas.
  • a solid raw material is sublimated in a raw material container, a carrier gas is discharged into the raw material container from a carrier gas introduction path, and the sublimated raw material is transferred to a raw material gas flow path together with the carrier gas.
  • the raw material gas supply device to be supplied to the film forming processing unit is disclosed. In this raw material gas supply device, when the remaining amount of the solid raw material in the raw material container becomes low, the raw material is replenished by exchanging the raw material container.
  • the raw material container When the solid raw material is sublimated in the raw material container and supplied to the film forming apparatus in this way, the raw material container is usually installed in the vicinity of the film forming apparatus. However, in the method of replenishing the raw material container by exchanging the raw material container as described above, if the raw material container is installed in the vicinity of the film forming apparatus, the exchange work may adversely affect the film forming process.
  • the technique according to the present disclosure replenishes the raw material gas supply system that supplies the raw material gas generated by vaporizing the solid raw material to the processing apparatus in a form that does not adversely affect the processing in the processing apparatus. To be able to.
  • FIG. 1 is a system configuration diagram schematically showing an outline of the configuration of the raw material gas supply system according to the present embodiment.
  • the raw material gas supply system 1 of this example supplies the raw material gas to the film forming apparatus 500 as a processing apparatus for processing the substrate.
  • the film forming apparatus 500 includes a processing container 501 configured to be depressurized, a mounting table 502 provided in the processing container 501 on which the wafer W as a substrate is horizontally placed, and a raw material gas. It has a gas introduction unit 503 that introduces the above into the processing container 501.
  • a tungsten (W) film is ALD on the surface of the wafer W heated by the heater (not shown) of the mounting table 502 by supplying the raw material gas from the raw material gas supply system 1. It is formed by the (Atomic Layer Deposition) method.
  • the film forming apparatus 500 is configured so that a reaction gas (reducing gas) that reacts with the raw material gas and an inert gas can be supplied from a gas supply source (not shown).
  • the raw material gas supply system 1 is a raw material gas generated by vaporizing a solid raw material such as tungsten chloride (WCl x : for example, WCl 6). Is supplied to the film forming apparatus 500.
  • a solid raw material such as tungsten chloride (WCl x : for example, WCl 6).
  • the raw material gas supply system 1 includes, for example, two vaporizers 10 (10A, 10B), a solution source 20, a carrier gas supply source 30, and a decompression mechanism 40.
  • the solid raw material is separated from the solution in which the solid raw material is dissolved in the solvent, and the solid raw material is vaporized (sublimated) to generate a raw material gas.
  • the vaporizers 10A and 10B are connected to the film forming apparatus 500 in parallel with each other.
  • the solution in which the solid raw material is melted is supplied to the vaporizer 10 (10A, 10B).
  • the solution source 20 stores the solution.
  • a solvent having a higher vapor pressure than that of the solid raw material is used.
  • the solid raw material is WCl 6
  • ethanol, hexane, toluene or the like is used as the solvent.
  • the pressurized gas supply pipe 100 and the solution supply pipe 110 are connected to the solution source 20.
  • the pressurized gas supply pipe 100 connects a supply source (not shown) of a pressurized gas such as N 2 gas and a solution source 20.
  • a pressurized gas such as N 2 gas
  • the solution supply pipe 110 connects the solution source 20 and the vaporizer 10 (10A, 10B).
  • the solution supply pipe 110 has a common pipe 111 for a solution whose upstream end is connected to the solution source 20, and branch pipes 112 and 113 for a solution that branch from the downstream end of the common pipe 111. Then, the downstream end of the branch pipe 112 is connected to the vaporizer 10A, and the downstream end of the branch pipe 113 is connected to the vaporizer 10B.
  • the common pipe 111 is provided with a pump 51 for delivering a solution to the vaporizer 10 (10A, 10B), and the branch pipes 112 and 113 are provided with on-off valves 52 and 53, respectively.
  • the pressurized gas supply pipe, the pump 51, the solution supply pipe 110, and the like constitute a delivery mechanism, and this delivery mechanism delivers the solution from the solution source 20 to the vaporizer 10 (10A, 10B). If the solution can be sent from the solution source 20 to the vaporizer 10 (10A, 10B) only by introducing the pressurized gas from the pressurized gas supply pipe, the pump 51 may be omitted. ..
  • the carrier gas supply source 30 stores the carrier gas and supplies the stored carrier gas to the vaporizer 10 (10A, 10B).
  • the carrier gas supplied from the carrier gas supply source 30 to the vaporizer 10 (10A, 10B) is the raw material gas supply pipe described later together with the raw material gas generated by vaporizing the solid raw material in the vaporizer 10 (10A, 10B). It is supplied to the film forming apparatus 500 via. Further, a carrier gas supply pipe 120 is connected to the carrier gas supply source 30.
  • the carrier gas supply pipe 120 connects the carrier gas supply source 30 and the vaporizer 10 (10A, 10B).
  • the carrier gas supply pipe 120 has a common pipe 121 for carrier gas whose upstream end is connected to the carrier gas supply source 30, and branch pipes 122 and 123 for carrier gas that branch from the downstream end of the common pipe 121.
  • the downstream end of the branch pipe 122 is connected to the vaporizer 10A, and the downstream end of the branch pipe 123 is connected to the vaporizer 10B.
  • the branch pipes 122 and 123 are provided with on-off valves 54 and 55, which are carrier gas supply valves, respectively.
  • the decompression mechanism 40 decompresses the inside of the vaporizer 10 (10A, 10B).
  • the decompression mechanism 40 includes an exhaust pump 41 that exhausts the inside of the vaporizer 10 (10A, 10B), and an exhaust pipe 42 that connects the exhaust pump 41 and the vaporizer 10 (10A, 10B).
  • the exhaust pipe 42 has a common pipe 43 for exhaust whose downstream end is connected to the exhaust pump 41, and branch pipes 44 and 45 for exhaust that gather at the upstream end of the common pipe 43.
  • the upstream end of the branch pipe 44 is connected to the vaporizer 10A, and the upstream end of the branch pipe 45 is connected to the vaporizer 10B.
  • the branch pipes 44 and 45 are provided with on-off valves 56 and 57, respectively.
  • the depressurizing mechanism 40 constitutes an evaporation mechanism in which the solvent is evaporated from the solution of the solid raw material and the solid raw material is separated in the vaporizer 10 (10A, 10B).
  • the vaporization device 10 (10A, 10B) and the film forming device 500 are connected by the raw material gas supply pipe 70.
  • the raw material gas supply pipe 70 has a common pipe 71 for the raw material gas whose downstream end is connected to the film forming apparatus 500, and branch pipes 72 and 73 for the raw material gas which branch from the upstream end of the common pipe 71.
  • the upstream end of the branch pipe 72 is connected to the vaporizer 10A, and the upstream end of the branch pipe 73 is connected to the vaporizer 10B.
  • the common pipe 71 is provided with a mass flow meter 58 and a flow rate control valve 59 in this order from the upstream side, and the branch pipes 72 and 73 are provided with on-off valves 60 and 61 as raw material gas supply valves, respectively. ing.
  • the control device U is provided in the raw material gas supply system 1 configured as described above.
  • the control device U is composed of, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown).
  • the program storage unit also stores a program for controlling various mechanisms, various valves, and the like to realize a film forming process including a raw material gas supply process using the raw material gas supply system 1.
  • the program may be recorded on a computer-readable storage medium and may be installed on the control device U from the storage medium. Further, a part or all of the program may be realized by dedicated hardware (circuit board).
  • FIG. 2 is a cross-sectional view showing an outline of the configuration of the vaporizer 10A.
  • the vaporizer 10A has a container 201 as a housing.
  • the container 201 once contains the solution delivered from the solution source 20 by a delivery mechanism composed of a pump 51 or the like. Further, in the container 201, only the solvent is vaporized (evaporated) from the contained solution to separate the solid raw material. The separation method will be described later.
  • Container 201 finally houses the separated solid raw material.
  • the container 201 is formed of, for example, a metal material having high thermal conductivity in a cylindrical shape.
  • a supply port 201a to which the downstream end of the branch pipe 112 for the solution is connected is formed.
  • the solution delivered from the solution source 20 is introduced into the vaporizer 10A, that is, into the container 201 via the supply port 201a.
  • a supply valve 201b for opening and closing the supply port 201a is provided for the supply port 201a.
  • a plurality of shelves 211 for accommodating the solution S are provided inside the container 201.
  • the plurality of shelves 211 are stacked in the vertical direction.
  • the shelves 211 adjacent to each other in the vertical direction are provided so as to project in alternating directions. More specifically, each of the shelves 211 has a shape in which the edge of a circle is cut out in a plan view, and the shelves 211 adjacent to each other in the vertical direction are notched as described above in a plan view. The portions face each other with the center of the container 201 in between.
  • a carrier gas flow path having a maze structure (labyrinth structure) is formed in the container 201. Further, since the shelves 211 are provided as described above, the solution S supplied from the supply port 201a can be supplied to all the shelves 211 in order from above. In this example, the solution S is also contained on the bottom wall of the container 201.
  • the container 201 is connected to the carrier gas introduction port 201c, which is connected to the downstream end of the branch pipe 122 for the carrier gas and leads to the carrier gas supply source 30, and the upstream end of the branch pipe 72 for the raw material gas.
  • a gas supply port 201d leading to 500 is provided.
  • the carrier gas introduction port 201c is provided below the side wall on one side in the horizontal direction of the container 201, while the gas supply port 201d is provided above the side wall on the other side in the horizontal direction of the container 201. ing. That is, in this example, the carrier gas introduction port 201c and the gas supply port 201d are provided at diagonal positions in the container 201.
  • the carrier gas introduction port 201c is provided at a position between the shelf 211 and the bottom wall of the container on the side wall of the container on the root side of the lowermost shelf 211, and the gas supply port 201d is the uppermost shelf 211. It is provided at a position between the shelf 211 and the container top wall on the side wall of the container on the root side.
  • the container 201 is connected to the exhaust port 201e to which the upstream end of the branch pipe 44 for exhaust is connected.
  • the inside of the container 201 is exhausted through the exhaust port 201e. Exhaust in the container 201 is performed when the solvent of the solution contained in the container 201 is evaporated.
  • a heating mechanism 203 such as a jacket heater is provided around the side wall of the container 201.
  • the heating mechanism 203 heats the container 201 and promotes the vaporization of the solid raw material in the container 201. Further, the heating mechanism 203 may be used when evaporating the solvent of the solution in the container 201.
  • the configuration of the vaporizer 10B is the same as that of the vaporizer 10A.
  • the container, the replenishment valve, and the heating mechanism included in the vaporizer 10B may be described as the container 201, the replenishment valve 201b, and the heating mechanism 203, as in the case of the vaporizer 10A.
  • FIGS. 3 to 6 the valve in the open state is painted in white, the valve in the closed state is painted in black, and the pipe through which the solution, the carrier gas, and the raw material gas are distributed is shown by a thick line.
  • the description of the open / closed state of the above will be omitted.
  • the vaporizer 10B is in a state where the solid raw material needs to be replenished and the vaporizer 10A is in a state where the solid raw material needs to be replenished at the start of the treatment.
  • the branch pipe 123 for the carrier gas is opened and closed.
  • the on-off valve 61 of the valve 55 and the branch pipe 73 for the raw material gas is opened.
  • the solid raw material in the container 201 of the vaporizer 10B that communicates with the film forming apparatus 500 and is depressurized is vaporized to generate a raw material gas, and the inside of the container 201 is pressurized by the carrier gas through the branch pipe 73.
  • the on-off valve 53 of the branch pipe 113 for the solution and the on-off valve 57 of the branch pipe 45 for the exhaust are closed.
  • the raw material gas is supplied to the film forming apparatus 500, the raw material is adsorbed on the surface of the wafer W heated by the heater (not shown) of the mounting table 502. Then, after a predetermined time has elapsed, the on-off valve 61 of the branch pipe 73 for the raw material gas is closed, and the supply of the raw material gas to the film forming apparatus 500 is stopped. Next, an inert gas as a replacement gas is supplied to the film forming apparatus 500 from a gas supply source (not shown), and after the gas in the processing container 501 is replaced, a reaction gas such as H 2 gas is released from the gas supply source (not shown). It is supplied to the film forming apparatus 500.
  • a gas supply source not shown
  • the raw material adsorbed on the wafer W is reduced, and for example, a tungsten film having a single atomic layer is formed.
  • the replacement gas is supplied to the film forming apparatus 500 from a gas supply source (not shown), and the gas in the processing container 501 is replaced.
  • the on-off valve 61 of the branch pipe 73 for the raw material gas is opened, and the supply of the raw material gas is restarted.
  • the solid raw material is replenished to the vaporizer 10A.
  • the solution is sent from the solution source 20 to the vaporizer 10A, and the solid raw material is separated from the solution in the vaporizer 10A. ..
  • the on-off valve 53 of the branch pipe 113 for the solution is in the closed state
  • the on-off valve 52 of the branch pipe 112 is in the open state
  • the supply valve 201b of the vaporizer 10A is in the open state. Will be done.
  • the pressurized gas is introduced into the solution source 20 via the pressurized gas supply pipe 100, and the pump 51 is driven.
  • the solution in the solution source 20 is supplied to the vaporizer 10A via the common pipe 111 for the solution and the branch pipe 112.
  • the on-off valve 54 of the branch pipe 122 for carrier gas and the on-off valve 56 of the branch pipe 44 for exhaust are closed.
  • the timing when the desired amount of solution is contained in the container 201 of the vaporizer 10A specifically, it is determined in advance after the introduction of the pressurized gas into the solution source 20 and the driving of the pump 51 are started. When the time has elapsed, the introduction of the pressurized gas and the driving of the pump 51 are stopped.
  • the solvent of the solution contained in the container 201 of the vaporizer 10A is evaporated.
  • the on-off valve 52 of the branch pipe 112 for the solution and the supply valve 201b (see FIG. 2) of the vaporizer 10A are closed, and the branch pipe 44 for exhaust is closed.
  • the on-off valve 56 is opened. In this state, the exhaust pump 41 is driven and the inside of the container 201 of the vaporizer 10A is depressurized, so that the solvent of the solution in the container 201 evaporates, and the solid raw material is precipitated and remains in the container 201.
  • the pressure in the container 201 is adjusted to be lower than the vapor pressure of the solvent and higher than the vapor pressure of the solid raw material.
  • the on-off valve 56 is closed at the timing when the evaporation of the solvent is completed, specifically, at the timing when a predetermined time elapses after the on-off valve 56 of the branch pipe 44 for exhaust is opened. .. As a result, the supply of the solid raw material to the vaporizer 10A is completed.
  • the vaporizer Since the amount of solid raw material in 10B is reduced, the supply source of the raw material gas is switched to the vaporizer 10A.
  • the on-off valve 61 of the branch pipe 73 for the raw material gas and the on-off valve 55 of the branch pipe 123 for the carrier gas connected to the vaporizer 10B are closed.
  • the on-off valve 54 of the branch pipe 122 for the carrier gas and the branch pipe 72 for the raw material gas are opened and closed.
  • the valve 60 is opened.
  • the solid raw material in the container 201 of the vaporizer 10A that communicates with the film forming apparatus 500 and is depressurized is sublimated to generate a raw material gas, and the inside of the container 201 is pressurized by the carrier gas through the branch pipe 72. Is supplied to the film forming apparatus 500. Then, in the same manner as described above, the supply of the raw material gas, the supply of the replacement gas, the supply of the reaction gas, and the supply of the replacement gas are repeated a plurality of times to form a desired film having a desired thickness on the wafer W.
  • the solid raw material is replenished to the vaporizer 10B.
  • the solution is sent from the solution source 20 to the vaporizer 10B, and the solid raw material is separated from the solution in the vaporizer 10B. ..
  • the on-off valve 52 of the branch pipe 112 for the solution is in the closed state
  • the on-off valve 53 of the branch pipe 113 is in the open state
  • the supply valve 201b of the vaporizer 10B is in the open state. Will be done.
  • the pressurized gas is introduced into the solution source 20 via the pressurized gas supply pipe 100, and the pump 51 is driven.
  • the solution in the solution source 20 is supplied to the vaporizer 10B via the common pipe 111 for the solution and the branch pipe 113.
  • the introduction of the pressurized gas into the solution source 20 and the driving of the pump 51 are stopped.
  • the solvent of the solution in the container 201 of the vaporizer 10B is evaporated.
  • the on-off valve 52 of the branch pipe 112 for the solution and the supply valve 201b (see FIG. 2) of the vaporizer 10B are closed, and the branch pipe 45 for exhaust is closed.
  • the on-off valve 57 is opened.
  • the exhaust pump 41 is driven and the inside of the container 201 of the vaporizer 10B is depressurized, so that the solvent of the solution in the container 201 evaporates, and the solid raw material is precipitated and remains in the container 201.
  • the on-off valve 57 of the branch pipe 45 for exhaust is closed.
  • the supply of the solid raw material to the vaporizer 10B is completed.
  • the heating of the vaporizer 10A by the heating mechanism 203 is stopped.
  • the container 201 is kept at a predetermined temperature (for example, from the sublimation temperature of WCl 6) from the supply of the solid raw material to the vaporizer 10A to the start of gas supply from the vaporizer 10A.
  • Preheating may be performed by heating with the heating mechanism 203 to a low temperature of 120 ° C. to 130 ° C.). The same applies to the vaporizer 10B.
  • the amount of raw material gas in the gas supplied from the vaporizers 10A and 10B to the film forming apparatus 500 decreases, the state in which the vaporizers 10A and 10B are not vaporized.
  • the solid raw material of the above may be discharged.
  • a method of discharging this solid raw material for example, there are the following methods. That is, by performing at least one of depressurization in the container 201 by the depressurizing mechanism 40 and heating of the solid raw material by the heating mechanism 203 to vaporize the solid raw material and exhausting the solid raw material through the film forming apparatus 500 or the depressurizing mechanism 40. is there.
  • the solution source 20 that stores the solution in which the solid raw material is dissolved in the vaporizer 10 (10A, 10B) that vaporizes the solid raw material to generate the raw material gas. It is sent by the sending mechanism from. Then, the solid raw material is separated from the solution in the vaporizer 10 (10A, 10B) by the evaporation mechanism including the decompression mechanism 40 and the like. Therefore, according to the present embodiment, even if the vaporizer 10 (10A, 10B) is installed in the vicinity of the film forming apparatus 500, when the solid raw material is replenished to the vaporizer 10 (10A, 10B), Work in the vicinity of the film forming apparatus 500 becomes unnecessary.
  • the solid raw material can be replenished to the vaporizing device 10 (10A, 10B) in a form that does not adversely affect the film forming process in the film forming apparatus 500.
  • the solution source 20 to be replaced does not also serve as a vaporizer and the degree of freedom of its installation location is high, the solution source 20 is placed in a position where the replacement work is easy. Can be installed. It should be noted that, unlike the gas raw material and the liquid raw material, the solid raw material cannot be expected to transfer heat by convection heat conduction, so that it takes a long time to heat the raw material itself.
  • the configuration is such that the solution in which the solid raw material is dissolved is supplied by the delivery mechanism to replenish the solid raw material as in the present embodiment, the solid raw material is alternately replenished to the two vaporizers 10 (10A and 10B).
  • the configuration can be adopted. In this configuration in which the solid raw material is alternately replenished, the solid raw material is replenished to the other vaporizer and the solid raw material is heated by the other vaporizer while the raw material gas is being supplied from one vaporizer. be able to. Therefore, even when a solid raw material that requires a long time for heating is used, it is possible to prevent the throughput of the film forming process from being lowered due to the waiting time until the solid raw material is heated to a desired temperature.
  • a method in which a liquid raw material in which a solid raw material is dissolved in a solvent is supplied to a vaporizer, and the liquid raw material is vaporized by the vaporizer to generate and supply a raw material gas can be considered.
  • the liquid raw material contains carbon as a solvent, the quality of the film formed by the raw material gas may deteriorate.
  • the solvent and the solid raw material are separated, in other words, the solid raw material is precipitated and then the raw material gas is generated, so that a high-quality film is formed. can do.
  • the solvent needs to have substantially the same vapor pressure as the solid raw material, and the type of solvent is limited.
  • the type of the solvent is not limited because the solvent basically needs to have a higher vapor pressure than the solid raw material.
  • the carrier gas introduction port 201c and the gas supply port 201d are provided at diagonal positions in the container 201. Therefore, since the flow path of the carrier gas in the container 201 is long, a high pickup amount can be surely obtained.
  • the raw material gas supply system 1 has two vaporizers 10A and 10B connected in parallel to each other. Then, when one of the vaporizers 10A and 10B is in a state where the raw material gas can be supplied to the film forming apparatus 500, the solution is sent from the solution source 20 to the other of the vaporizers 10A and 10B to replenish the solid raw material. ing. Therefore, it is not necessary to stop the raw material gas supply system 1 when replenishing the solid raw material, and the supply of the raw material gas can be continued. Therefore, the throughput of the film forming process can be improved.
  • the raw material container when the raw material is replenished by exchanging the vaporizer, that is, the raw material container, the time for stopping the raw material gas supply system at the time of replenishment is shortened.
  • the raw material container may be enlarged and a large amount of solid raw material may be filled in the container.
  • a large amount of a very expensive solid raw material such as WCl 6 is filled in one container to be replaced, a large loss will be incurred when a problem occurs in the container due to an accident or the like during the replacement work. It will be.
  • the solid raw material replenishment method according to the present embodiment can be easily introduced by the semiconductor manufacturer.
  • the solution supply pipe 110 and the vaporizer 10 (10A, 10B) are supplied.
  • a supply valve 201b that cuts off communication with the 10B) is provided. Therefore, it is possible to prevent unnecessary gas components from being mixed in the raw material gas.
  • the heating by the heating mechanism 203 may be performed together with the depressurization of the container 201 or instead of the decompression of the container 201. That is, the evaporation mechanism that evaporates the solvent of the solution contained in the vaporizer 10 and separates the solid raw material has at least one of the depressurizing mechanism 40 and the heating mechanism 203.
  • the start and stop of the supply of the raw material gas from the vaporizer 10A to the film forming apparatus 500 was switched by using the on-off valve 60 provided in the branch pipe 72 for the raw material gas.
  • the on-off valve 60 of the branch pipe 72 is provided. May be kept open at all times, and the start and stop of the supply of the raw material gas may be switched by the on-off valve of the common pipe 71. The same applies to the supply of raw material gas from the vaporizer 10B.
  • FIGS. 7 to 9 are views showing another example of the vaporizer.
  • FIG. 7 is a perspective view showing a part of the vaporizer of this example broken
  • FIGS. 8 and 9 are perspective views showing the first member and the second member of the tray assembly described later.
  • the vaporizer 300 of the examples of FIGS. 7 to 9 also has a plurality of shelves in the container like the vaporizer 10A of FIG. However, in the vaporizer 300, the flow path of the carrier gas is formed in a spiral shape, and a plurality of shelves are provided along the flow path.
  • the flow path of the carrier gas is formed in a spiral shape, and a plurality of shelves are provided along the flow path.
  • the vaporizer 300 has a tray assembly 302 in the container 301, as shown in FIG.
  • the container 301 has the same structure as the container 201 of FIG. 2, and is provided with a supply port 201a and the like.
  • the container 301 is also provided with a carrier gas introduction port 201c, a gas supply port 201d, and an exhaust port 201e.
  • the tray assembly 302 has a first member 303 and a second member 304.
  • the first member 303 has a cylindrical side wall 303a, a disk-shaped bottom wall 303b, and a columnar columnar portion 303c extending upward from the bottom wall 303b.
  • a gap G is provided between the side wall 303a and the inner peripheral surface of the side wall of the container 301.
  • a plurality of through holes 303d arranged at equal intervals along the circumferential direction are formed on the side wall 303a.
  • the through hole 303d is provided at a position corresponding to the shelf so that the carrier gas is supplied to the shelf provided at the lowermost position among the plurality of shelves described later.
  • the second member 304 of the tray assembly 302 is arranged between the side wall 303a and the columnar portion 303c of the first member 303 and at a position on the bottom wall 303b of the first member.
  • the second member 304 and the first member 303 form the following (a) and (b).
  • the carrier gas supplied into the container 301 through the carrier gas introduction port 201c flows into the lowermost shelf 302a through the gap G and the through hole 303d, and the flow path of the carrier gas. It flows along and reaches the inside of the uppermost shelf 302a. Since the upper part of the uppermost shelf 302a is open in the container 301, the carrier gas that reaches the uppermost shelf 302a is output from the gas supply port 201d (see FIG. 2) together with the raw material gas. According to the vaporizer 300, since the carrier gas flow path is formed in a spiral shape and is long, a high pickup amount can be obtained. Further, since the shelves 302a are provided as described above, the solution supplied from the supply port 201a can be sequentially supplied to all the shelves 302a from above.
  • the solution was sent from the solution source 20 to the vaporizer 10 (10A, 10B) by pumping.
  • the solution is delivered from the solution source 20 to the vaporizer (10A, 10B) by arranging the solution source 20 above the vaporizer 10 (10A, 10B) and using gravity acting on the solution. You may.
  • the carrier gas is introduced into the container so as to flow from the lower side to the upper side in the container of the vaporizer, but it may be introduced so as to flow from the upper side to the lower side.
  • the carrier gas introduction port 201c, the gas supply port 201d, and the exhaust port 201e are provided independently of the supply port 201a, but the carrier gas introduction port 201c, the gas supply port 201d, and the exhaust port 201e are provided. And the supply port 201a may be shared.
  • the branch pipes 44 and 45 for the gas may be connected to the branch pipes 112 and 113 for the solution.
  • a raw material gas supply system that supplies a raw material gas generated by vaporizing a solid raw material to a processing apparatus.
  • a vaporizer that vaporizes the solid raw material to generate the raw material gas
  • a delivery mechanism for delivering the solution to the vaporizer from a solution source for storing the solution in which the solid raw material is dissolved in a solvent.
  • An evaporation mechanism that evaporates the solvent of the solution that is sent out from the delivery mechanism and is contained in the vaporizer to separate the solid raw material.
  • a raw material gas supply system equipped with According to the above (1), the solid raw material can be replenished to the raw material gas supply system in a form that does not adversely affect the processing in the processing apparatus.
  • the carrier gas flow path is formed in a spiral shape.
  • a plurality of the vaporizers connected in parallel to each other and When a part of the plurality of vaporizers is in a state where the raw material gas can be supplied to the processing apparatus, the solution is sent from the solution source to the other vaporizers, and the solid raw material is sent from the solution in the vaporizer.
  • the raw material gas supply system according to any one of (1) to (6) above, comprising a control device configured to output a control signal so as to be separated from each other. According to the above (7), the ratio of the solid raw material in the suspension supplied to the vaporizer can be made uniform.
  • a raw material gas supply method for supplying a raw material gas generated by vaporizing a solid raw material to a processing apparatus A step of delivering the solution from a solution source for storing a solution of the solid raw material dissolved in a solvent to a vaporizer, In the vaporizer, a step of separating the solid raw material from the solution and In the vaporizer, a step of vaporizing the separated solid raw material to generate a raw material gas, and A method for supplying a raw material gas, which comprises a step of supplying the generated raw material gas to the processing apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

固体原料を気化して生成された原料ガスを処理装置に供給する原料ガス供給システムであって、前記固体原料を気化して前記原料ガスを生成する気化装置と、前記固体原料が溶媒中に溶解した溶液を貯留する溶液源から前記気化装置へ前記溶液を送出する送出機構と、前記送出機構から送出され前記気化装置内に収容された前記溶液の溶媒を蒸発させ前記固体原料を分離する蒸発機構と、を備える。

Description

原料ガス供給システム及び原料ガス供給方法
 本開示は、原料ガス供給システム及び原料ガス供給方法に関する。
 特許文献1には、原料容器にて固体原料を昇華させると共に、原料容器にキャリアガス導入路からキャリアガスを吐出し、昇華した原料をキャリアガスと共に原料ガス流路にて成膜処理部に供給する原料ガス供給装置が開示されている。この原料ガス供給装置では、原料容器が5kg~60kgの固体原料を収容可能に構成されており、この原料容器の残量が少なくなると、原料容器の交換が行われる。
特開2016-191140号公報
 本開示にかかる技術は、固体原料を気化して生成された原料ガスを処理装置に供給する原料ガス供給システムに、処理装置での処理に悪影響を及ぼすおそれがない形態で固体原料を補給することができるようにする。
 本開示の一態様は、固体原料を気化して生成された原料ガスを処理装置に供給する原料ガス供給システムであって、前記固体原料を気化して前記原料ガスを生成する気化装置と、前記固体原料が溶媒中に溶解した溶液を貯留する溶液源から前記気化装置へ前記溶液を送出する送出機構と、前記送出機構から送出され前記気化装置内に収容された前記溶液の溶媒を蒸発させ前記固体原料を分離する蒸発機構と、を備える。
 本開示によれば、固体原料を気化して生成された原料ガスを処理装置に供給する原料ガス供給システムに、処理装置での処理に悪影響を及ぼすおそれがない形態で固体原料を補給することができる。
本実施形態にかかる原料ガス供給システムの構成の概略を模式的に示すシステム構成図である。 気化装置の構成の概略を示す断面図である。 原料ガス供給システムを用いた原料ガス供給処理を含む成膜処理の一工程の説明図である。 原料ガス供給システムを用いた原料ガス供給処理を含む成膜処理の他の工程の説明図である。 原料ガス供給システムを用いた原料ガス供給処理を含む成膜処理の他の工程の説明図である。 原料ガス供給システムを用いた原料ガス供給処理を含む成膜処理の他の工程の説明図である。 気化装置の他の例の一部を破断して示す斜視図である。 図7の気化装置のトレイアセンブリの第1部材を示す斜視図である。 図7の気化装置のトレイアセンブリの第2部材を示す斜視図である。
 例えば、半導体デバイスの製造工程では、半導体ウェハ(以下、「ウェハ」という。)等の基板に対して、金属膜等の所望の膜を形成する成膜処理等の各種処理が繰り返し行われ、これにより、ウェハ上に所望の半導体デバイスが製造される。
 ところで、成膜処理では、固体原料を加熱して気化させ、原料ガスとすることがある。
 例えば、特許文献1には、前述のように、原料容器にて固体原料を昇華させると共に、原料容器にキャリアガス導入路からキャリアガスを吐出し、昇華した原料をキャリアガスと共に原料ガス流路にて成膜処理部に供給する原料ガス供給装置が開示されている。この原料ガス供給装置では、原料容器内の固体原料の残量が少なくなると、原料容器の交換により原料の補給が行われる。
 このように原料容器で固体原料を昇華させ成膜装置に供給する場合、通常、成膜装置の近傍に原料容器が設置される。しかし、前述のように原料容器の交換により原料容器に原料を補給する方法では、成膜装置の近傍に原料容器が設置されていると、交換作業が成膜処理に悪影響を及ぼすおそれがある。
 そこで、本開示にかかる技術は、固体原料を気化して生成された原料ガスを処理装置に供給する原料ガス供給システムに、処理装置での処理に悪影響を及ぼすおそれがない形態で固体原料を補給することができるようにする。
 以下、本実施形態にかかる原料ガス供給システム及び原料ガス供給方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。
 図1は、本実施形態にかかる原料ガス供給システムの構成の概略を模式的に示すシステム構成図である。本例の原料ガス供給システム1は、基板を処理する処理装置としての成膜装置500に原料ガスを供給する。
 図1に示すように、成膜装置500は、減圧可能に構成された処理容器501と、処理容器501内に設けられ基板としてのウェハWが水平に載置される載置台502と、原料ガス等を処理容器501内に導入するガス導入部503とを有する。この成膜装置500では、原料ガス供給システム1から原料ガスが供給されることにより、載置台502のヒータ(図示せず)で加熱されたウェハWの表面に、例えばタングステン(W)膜がALD(Atomic Layer Deposition)法によって形成される。なお、成膜装置500は、原料ガス以外に、原料ガスと反応する反応ガス(還元ガス)や、不活性ガスがガス供給源(図示せず)から供給可能に構成されている。
 上述のように成膜装置500にてW膜を形成する場合、原料ガス供給システム1は、例えば、塩化タングステン(WCl:例えば、WCl)等の固体原料を気化して生成された原料ガスを成膜装置500に供給する。
 原料ガス供給システム1は、例えば、二台の気化装置10(10A、10B)と、溶液源20と、キャリアガス供給源30と、減圧機構40とを備える。
 気化装置10(10A、10B)は、当該装置内において、固体原料が溶媒中に溶解した溶液から固体原料が分離され、その固体原料を気化(昇華)して原料ガスを生成する。気化装置10A、10Bは、成膜装置500に対し、互いに並列に接続されている。原料ガス供給システム1では、気化装置10(10A、10B)への固体原料の補給の際、固体原料が溶融した溶液が気化装置10(10A、10B)に供給される。
 溶液源20は、溶液を貯留する。溶液の溶媒としては、固体原料より高い蒸気圧を有するものが用いられる。固体原料がWClの場合、溶媒としては例えばエタノール、ヘキサン、トルエンなどが用いられる。
 また、溶液源20には、加圧ガス供給管100と、溶液供給管110が接続されている。
 加圧ガス供給管100は、Nガス等の加圧ガスの供給源(図示せず)と溶液源20とを接続する。加圧ガス供給管100を介して溶液源20内に導入された加圧ガスによって、溶液源20内の溶液の液面が押圧され、当該溶液が溶液供給管110に供給される。
 溶液供給管110は、溶液源20と気化装置10(10A、10B)とを接続する。溶液供給管110は、上流端が溶液源20に接続される溶液用の共通管111と、共通管111の下流端から分岐する溶液用の分岐管112、113とを有する。そして、分岐管112の下流端が気化装置10Aに接続され、分岐管113の下流端が気化装置10Bに接続されている。共通管111には、溶液を気化装置10(10A、10B)に送出するポンプ51が設けられ、分岐管112、113には、それぞれ開閉弁52、53が設けられている。
 本実施形態では、加圧ガス供給管、ポンプ51、溶液供給管110等が送出機構を構成し、この送出機構が、溶液源20から気化装置10(10A、10B)へ溶液を送出する。なお、加圧ガス供給管からの加圧ガスの導入のみによって、溶液源20から気化装置10(10A、10B)への溶液の送出を行うことができる場合は、ポンプ51を省略してもよい。
 キャリアガス供給源30は、キャリアガスを貯留し、貯留したキャリアガスを気化装置10(10A、10B)に供給する。キャリアガス供給源30から気化装置10(10A、10B)に供給されたキャリアガスは、気化装置10(10A、10B)において固体原料が気化して生成された原料ガスと共に、後述の原料ガス供給管を介して、成膜装置500に供給される。
 また、キャリアガス供給源30には、キャリアガス供給管120が接続されている。
 キャリアガス供給管120は、キャリアガス供給源30と、気化装置10(10A、10B)と、を接続する。キャリアガス供給管120は、上流端がキャリアガス供給源30に接続されるキャリアガス用の共通管121と、共通管121の下流端から分岐するキャリアガス用の分岐管122、123とを有する。そして、分岐管122の下流端が気化装置10Aに接続され、分岐管123の下流端が気化装置10Bに接続されている。なお、分岐管122、123には、それぞれキャリアガス供給弁である開閉弁54、55が設けられている。
 減圧機構40は、気化装置10(10A、10B)内を減圧させる。この減圧機構40は、気化装置10(10A、10B)内を排気する排気ポンプ41と、排気ポンプ41と気化装置10(10A、10B)とを接続する排気管42とを有する。排気管42は、下流端が排気ポンプ41に接続される排気用の共通管43と、共通管43の上流端に集合する排気用の分岐管44、45とを有する。そして、分岐管44の上流端が気化装置10Aに接続され、分岐管45の上流端が気化装置10Bに接続されている。なお、分岐管44、45には、それぞれ開閉弁56、57が設けられている。減圧機構40は、気化装置10(10A、10B)内において、固体原料の溶液から溶媒を蒸発させ固体原料を分離する蒸発機構を構成する。
 さらに、原料ガス供給システム1では、気化装置10(10A、10B)と成膜装置500とが、原料ガス供給管70により接続されている。原料ガス供給管70は、下流端が成膜装置500に接続される原料ガス用の共通管71と、共通管71の上流端から分岐する原料ガス用の分岐管72、73とを有する。そして、分岐管72の上流端が気化装置10Aに接続され、分岐管73の上流端が気化装置10Bに接続されている。なお、共通管71には、上流側から順に、マスフローメータ58、流量制御弁59が設けられており、分岐管72、73には、それぞれ原料ガス供給弁としての開閉弁60、61が設けられている。
 以上のように構成される原料ガス供給システム1には、制御装置Uが設けられている。制御装置Uは、例えばCPUやメモリ等を備えたコンピュータにより構成され、プログラム格納部(図示せず)を有している。プログラム格納部には、各種機構や各種弁等を制御して、原料ガス供給システム1を用いた原料ガス供給処理を含む成膜処理等を実現するためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から制御装置Uにインストールされたものであってもよい。また、プログラムの一部または全ては専用ハードウェア(回路基板)で実現してもよい。
 続いて、気化装置10(10A、10B)について、気化装置10Aを例にして図2を用いて説明する。図2は、気化装置10Aの構成の概略を示す断面図である。
 気化装置10Aは、図2に示すように、筐体としての容器201を有する。容器201には、ポンプ51等から構成される送出機構によって溶液源20から送出された溶液が一旦収容される。また、容器201内では、収容された溶液から溶媒のみが気化(蒸発)され固体原料が分離される。分離方法については後述する。容器201は、この分離された固体原料を最終的に収容する。容器201は例えば熱伝導性の高い金属材料で円柱形状に形成される。
 容器201の天壁中央には、溶液用の分岐管112の下流端が接続される補給口201aが形成されている。溶液源20から送出された溶液は、補給口201aを介して気化装置10A内すなわち容器201内に導入される。また、補給口201aに対して、当該補給口201aを開閉する補給弁201bが設けられている。
 また、容器201の内部には、溶液Sを収容する棚211が複数設けられている。棚211に収容された溶液Sの溶媒が蒸発すると当該棚211内に固体原料が残る。
 複数の棚211は、上下方向に積層されている。また、上下方向に隣接する棚211は、互い違いの方向に張り出すように設けられている。より具体的には、棚211はそれぞれ、平面視において円の縁部を切り欠いた形状を有しており、互いに上下方向に隣接する棚211では、平面視において、上述のように切り欠いた部分が容器201の中心を間に挟んで対向する。
 上述のように棚211が設けられていることにより、容器201内には、迷路構造(ラビリンス構造)のキャリアガスの流路が形成されている。
 また、上述のように棚211が設けられていることにより、補給口201aから供給された溶液Sを、全ての棚211へ、上方から順に供給することができる。
 なお、本例では、容器201の底壁上にも溶液Sが収容される。
 さらに、容器201には、キャリアガス用の分岐管122の下流端が接続されキャリアガス供給源30に通ずるキャリアガス導入口201cと、原料ガス用の分岐管72の上流端が接続され成膜装置500に通ずるガス供給口201dと、が設けられている。本例では、キャリアガス導入口201cは、容器201の水平方向一方側の側壁の下部に設けられており、一方、ガス供給口201dは、容器201の水平方向他方側の側壁の上部に設けられている。つまり、この例では、キャリアガス導入口201cとガス供給口201dとは容器201内の対角位置に設けられている。なお、キャリアガス導入口201cは、最下方の棚211の根元側の容器側壁における、当該棚211と容器底壁との間の位置に設けられ、ガス供給口201dは、最上方の棚211の根元側の容器側壁における、当該棚211と容器天壁との間の位置に設けられている。
 また、容器201には、排気用の分岐管44の上流端が接続された排気口201eが接続されている。この排気口201eを介して、容器201内の排気が行われる。容器201内の排気は、当該容器201内に収容された溶液の溶媒を蒸発させるとき等に行われる。
 容器201の側壁の周囲にはジャケットヒータ等の加熱機構203が設けられている。加熱機構203は、容器201を加熱し、容器201内の固体原料の気化を促進させるものである。また、加熱機構203を、容器201内の溶液の溶媒を蒸発させるときに用いてもよい。
 なお、詳細な説明は省略するが、気化装置10Bの構成は気化装置10Aと同様である。以下では、気化装置10Bが有する容器、補給弁、加熱機構について、気化装置10Aと同様、容器201、補給弁201b、加熱機構203と記載することがある。
 次に、原料ガス供給システム1を用いた原料ガス供給処理を含む成膜処理の一例について図3~図6を用いて説明する。なお、図3~図6では、開状態の弁を白塗りで、閉状態の弁を黒塗りで、溶液やキャリアガス、原料ガスが流通している管を太線で示すことで、その他の弁の開閉状態については説明を省略する。また、以下の説明では、処理開始時において、気化装置10Bが固体原料の補給が不要な状態であり、気化装置10Aが固体原料の補給が必要な状態であるものとする。
 まず、気化装置10Bの補給弁201b(図2参照)等が閉状態とされ気化装置10Bが加熱機構203により加熱された状態で、図3に示すように、キャリアガス用の分岐管123の開閉弁55及び原料ガス用の分岐管73の開閉弁61が開状態とされる。これにより、成膜装置500と連通し減圧された気化装置10Bの容器201内の固体原料が気化して、原料ガスが生成され、キャリアガスによって容器201内が昇圧されつつ、分岐管73を介して成膜装置500に供給される。このとき、溶液用の分岐管113の開閉弁53や、排気用の分岐管45の開閉弁57は閉状態とされている。
 成膜装置500に原料ガスが供給されると、載置台502のヒータ(図示せず)で加熱されたウェハWの表面に原料が吸着される。
 そして、予め定められた時間が経過した後に、原料ガス用の分岐管73の開閉弁61が閉状態とされ、成膜装置500への原料ガスの供給が停止される。次いで、図示されないガス供給源から置換ガスとしての不活性ガスが成膜装置500へ供給され、処理容器501内のガスが置換された後、図示されないガス供給源からHガス等の反応ガスが成膜装置500に供給される。これにより、ウェハWに吸着されている原料が還元されて、例えば1原子層のタングステン膜が成膜される。
 続いて、反応ガスの供給が停止された後、図示されないガス供給源から置換ガスが成膜装置500へ供給され、処理容器501内のガスが置換される。その後、原料ガス用の分岐管73の開閉弁61が開状態とされ、原料ガスの供給が再開される。
 上述のような原料ガスの供給、置換ガスの供給、反応ガスの供給、置換ガスの供給を複数回繰り返すことにより、所望の厚さの所望の膜がウェハW上に形成される。
 上述のような気化装置10Bからの原料ガスを用いた成膜と並行して、気化装置10Aへの固体原料の補給が行われる。言い換えると、気化装置10Bから成膜装置500へ原料ガスを供給可能な状態のときに、溶液源20から気化装置10Aへ溶液が送出され当該気化装置10A内において当該溶液から固体原料が分離される。
 具体的には、まず、溶液用の分岐管113の開閉弁53が閉状態とされ分岐管112の開閉弁52が開状態とされている状態で、気化装置10Aの補給弁201bが開状態とされる。そして、加圧ガス供給管100を介して溶液源20内に加圧ガスが導入されると共に、ポンプ51が駆動される。これにより、溶液源20内の溶液が、溶液用の共通管111及び分岐管112を介して、気化装置10Aへ供給される。このとき、キャリアガス用の分岐管122の開閉弁54及び排気用の分岐管44の開閉弁56は閉状態とされている。
 所望の量の溶液が気化装置10Aの容器201内に収容されたタイミングで、具体的には、溶液源20内への加圧ガスの導入及びポンプ51の駆動を開始してから予め定められた時間が経過したタイミングで、上記加圧ガスの導入及びポンプ51の駆動が停止される。
 その後、気化装置10Aの容器201内に収容された溶液の溶媒の蒸発が行われる。具体的には、例えば、図4に示すように、溶液用の分岐管112の開閉弁52及び気化装置10Aの補給弁201b(図2参照)が閉状態とされ、排気用の分岐管44の開閉弁56が開状態とされる。この状態で、排気ポンプ41が駆動され、気化装置10Aの容器201内が減圧されることで、当該容器201内の溶液の溶媒が蒸発し、固体原料が析出され当該容器201内に残る。この溶媒の蒸発の際、容器201内の圧力は、溶媒の蒸気圧より低く固体原料の蒸気圧より高い圧力に調整される。溶媒の蒸発が完了したタイミングで、具体的には、排気用の分岐管44の開閉弁56を開状態としてから予め定められた時間が経過したタイミングで、当該開閉弁56が閉状態とされる。これにより、気化装置10Aへの固体原料の補給が完了する。
 気化装置10Bからの原料ガスを用いた成膜を開始してから予め定められた時間が経過すると、具体的には、予め設定された枚数のウェハWに対し成膜が行われると、気化装置10B内の固体原料が少なくなるので、原料ガスの供給元が、気化装置10Aに切り替えられる。
 具体的には、まず、図5に示すように、気化装置10Bに接続されている原料ガス用の分岐管73の開閉弁61及びキャリアガス用の分岐管123の開閉弁55が閉状態とされる。そして、気化装置10Aの補給弁201bが閉状態とされ当該気化装置10Aが加熱機構203により加熱された状態で、キャリアガス用の分岐管122の開閉弁54及び原料ガス用の分岐管72の開閉弁60が開状態とされる。これにより、成膜装置500と連通し減圧された気化装置10Aの容器201内の固体原料が昇華して、原料ガスが生成され、キャリアガスによって容器201内が昇圧されつつ、分岐管72を介して成膜装置500に供給される。
 そして、上述と同様に、原料ガスの供給、置換ガスの供給、反応ガスの供給、置換ガスの供給を複数回繰り返すことにより、所望の厚さの所望の膜がウェハW上に形成される。
 また、上述のような気化装置10Aからの原料ガスを用いた成膜と並行して、気化装置10Bへの固体原料の補給が行われる。言い換えると、気化装置10Aから成膜装置500へ原料ガスを供給可能な状態のときに、溶液源20から気化装置10Bへ溶液が送出され当該気化装置10B内において当該溶液から固体原料が分離される。
 具体的には、まず、溶液用の分岐管112の開閉弁52が閉状態とされ分岐管113の開閉弁53が開状態とされている状態で、気化装置10Bの補給弁201bが開状態とされる。そして、加圧ガス供給管100を介して溶液源20内に加圧ガスが導入されると共に、ポンプ51が駆動される。これにより、溶液源20内の溶液が、溶液用の共通管111及び分岐管113を介して、気化装置10Bへ供給される。
 所望の量の溶液が気化装置10Bの容器201内に収容されたタイミングで、溶液源20内への加圧ガスの導入及びポンプ51の駆動が停止される。
 その後、気化装置10Bの容器201内の溶液の溶媒の蒸発が行われる。具体的には、例えば、図6に示すように、溶液用の分岐管112の開閉弁52、気化装置10Bの補給弁201b(図2参照)が閉状態とされ、排気用の分岐管45の開閉弁57が開状態とされる。この状態で、排気ポンプ41が駆動され、気化装置10Bの容器201内が減圧されることで、当該容器201内の溶液の溶媒が蒸発し、固体原料が析出され当該容器201内に残る。溶媒の蒸発が完了したタイミングで、排気用の分岐管45の開閉弁57が閉状態とされる。これにより、気化装置10Bへの固体原料の補給が完了する。
 なお、気化装置10Aへの溶液の供給の際は、加熱機構203による当該気化装置10Aの加熱は停止される。気化装置10Bについても同様である。
 稼働率を向上させる観点等から、気化装置10Aへの固体原料の補給後、当該気化装置10Aからのガス供給開始までの間、容器201を予め定められた温度(例えば、WClの昇華温度よりも低い120℃~130℃)まで加熱機構203で加熱する予備加熱を行ってもよい。気化装置10Bについても同様である。
 気化装置10A、10Bから成膜装置500へ供給されるガス中の原料ガスの量(以下、「ピックアップ量」)が低下したとき等に、当該気化装置10A、10B内の、気化されていない状態の固体原料を排出するようにしてもよい。この固体原料の排出方法としては、例えば、以下の方法がある。すなわち、減圧機構40による容器201内の減圧及び加熱機構203による固体原料の加熱の少なくともいずれか一方を行って固体原料を気化させて、成膜装置500または減圧機構40を介して排気する方法である。
 以上のように、本実施形態にかかる原料ガス供給システム1では、固体原料を気化して原料ガスを生成する気化装置10(10A、10B)に、固体原料が溶解した溶液を貯留する溶液源20から送出機構によって送出する。そして、減圧機構40等から構成される蒸発機構によって、気化装置10(10A、10B)内において、溶液から固体原料を分離する。そのため、本実施形態によれば、気化装置10(10A、10B)が成膜装置500の近傍に設置されていたとしても、当該気化装置10(10A、10B)への固体原料の補給の際、成膜装置500の近傍での作業が不要となる。したがって、成膜装置500での成膜処理に悪影響を及ぼすおそれがない形態で、気化装置10(10A、10B)に固体原料を補給することができる。
 また、本実施形態によれば、交換対象である溶液源20が、気化装置を兼ねておらず、その設置場所の自由度が高いため、当該溶液源20を、その交換作業が容易な位置に設置することができる。
 なお、固体の原料は、例えば、気体の原料や液体の原料のように対流熱伝導による伝熱が期待できないため、原料自身の加温に長時間を要する。それに対し、本実施形態のように、固体原料が溶解した溶液を送出機構によって供給し固体原料を補給する構成であれば、2つの気化装置10(10A、10B)に交互に固体原料を補給する構成を採用することができる。この交互に固体原料を補給する構成では、一方の気化装置から原料ガスを供給している間に、他方の気化装置への固体原料の補給及び当該他方の気化装置での固体原料の加熱を行うことができる。したがって、加温に長時間を要する固体原料を用いる場合でも、固体原料が所望の温度に加熱されるまでの待機時間によって成膜処理のスループットが低下するのを防ぐことができる。
 本実施形態と異なる原料ガス供給方法として、固体原料を溶媒に溶かした液体原料を気化装置に供給し、当該気化装置で液体原料を気化して原料ガスを生成し供給する方法が考えられる。この方法は、液体原料が溶媒の炭素を含有するため、原料ガスによって形成された膜の品質が悪化するおそれがある。それに対し、本実施形態にかかる原料ガス供給方法では、溶媒と固体原料を分離してから、言い換えると、固体原料を析出させてから、原料ガスを生成しているため、高品質な膜を形成することができる。
 さらに、固体原料を溶媒に溶かした液体原料を直接気化させる場合は、溶媒は固体原料と蒸気圧が略同じである必要があり、溶媒の種類が限定される。それに比べて、本実施形態のように、溶液から固体原料を析出させてから気化させる場合は、溶媒は基本的に固体原料より蒸気圧が高ければよいため、溶媒の種類が限定されない。
 また、本実施形態では、キャリアガス導入口201cとガス供給口201dとは容器201内の対角位置に設けられている。したがって、容器201内におけるキャリアガスの流路が長いため、確実に高いピックアップ量が得られる。
 さらに、本実施形態では、原料ガス供給システム1が、互いに並列に接続された2台の気化装置10A、10Bを有する。そして、気化装置10A、10Bの一方が成膜装置500へ原料ガスを供給可能な状態のときに、気化装置10A、10Bの他方へ溶液源20から溶液が送出され固体原料が補給されるようにしている。そのため、固体原料の補給に際し、原料ガス供給システム1を停止する必要がなく、原料ガスの供給を継続することができる。したがって、成膜処理のスループットを向上させることができる。また、本実施形態と異なり、原料容器も兼ねる気化装置が1台であり、原料の補給を気化装置すなわち原料容器の交換で行う場合、補給の際に原料ガス供給システムを停止する時間を短くしスループットの低下を防ぐために、原料容器を大型化し当該容器内に大量の固体原料を充填することがある。しかし、WCl等の非常に高価な固体原料を1つの交換対象の容器に大量に充填しておくと、交換作業中に事故等により容器内に問題が生じたときに、多大な損失を被ることになる。そのため、交換対象の容器に大量の固体原料を充填しておき、成膜処理のスループットの低下を防ぐ方式は半導体製造業者が導入しにくい。それに対し、本実施形態では、交換対象の容器すなわち溶液源20に大量に充填していなくても、成膜処理のスループットを向上させることができる。したがって、本実施形態にかかる固体原料の補給方式は、半導体製造業者が導入し易い。
 また、本実施形態では、気化装置10(10A、10B)に対し、当該気化装置10(10A、10B)から原料ガスを供給しているときに、溶液供給管110と当該気化装置10(10A、10B)との連通を遮断する補給弁201bが設けられている。したがって、原料ガスに不要なガス成分が混入するのを防ぐことができる。
 なお、容器201内の溶液の溶媒を蒸発させるときに、加熱機構203による加熱を、容器201の減圧と共に、または、容器201の減圧に代えて行ってもよい。つまり、気化装置10内に収容された溶液の溶媒を蒸発させ固体原料を分離する蒸発機構は、減圧機構40及び加熱機構203の少なくともいずれか一方を有する。
 また、以上では、気化装置10Aから成膜装置500への原料ガスの供給の開始と停止を、原料ガス用の分岐管72に設けられた開閉弁60を用いて切り替えていた。これに代えて、原料ガス用の共通管71における流量制御弁59の下流側に切替弁を設けておき、気化装置10Aからの原料ガスを成膜に用いる場合は、分岐管72の開閉弁60は常に開状態としておき、共通管71の上記開閉弁により、原料ガスの供給の開始と停止を切り替えるようにしてもよい。気化装置10Bからの原料ガス供給についても同様である。
 図7~図9は、気化装置の他の例を示す図である。図7は、本例の気化装置を、一部を破断して示す斜視図、図8及び図9は、後述のトレイアセンブリの第1部材及び第2部材を示す斜視図である。
 図7~図9の例の気化装置300も図2の気化装置10Aと同様、容器内に複数の棚を有する。ただし、気化装置300では、キャリアガスの流路が螺旋状に形成されており、この流路に沿って複数の棚が設けられている。
 以下、具体的に説明する。
 気化装置300は、図7に示すように、容器301内に、トレイアセンブリ302を有する。
 容器301は、図2の容器201と同様な構成を有し、補給口201a等が設けられている。図示は省略するが、容器301には、キャリアガス導入口201cや、ガス供給口201d、排気口201eも設けられている。
 トレイアセンブリ302は、第1部材303及び第2部材304を有する。
 第1部材303は、図8に示すように、円筒形状の側壁303aと、円板形状の底壁303bと、底壁303bから上方に延びる円柱状の柱状部303cを有する。
 図7に示すように、側壁303aと容器301の側壁の内周面との間には隙間Gが設けられている。
 また、図8に示すように、側壁303aには、周方向に沿って等間隔で並ぶ複数の貫通孔303dが形成されている。貫通孔303dは、後述の複数の棚のうち最も下方に設けられた棚にキャリアガスが供給されるように、当該棚に対応する位置に設けられている。
 トレイアセンブリ302の第2部材304は、図9に示すように、第1部材303の側壁303aと柱状部303cとの間、且つ、第1部材の底壁303b上の位置に配置される。
 第2部材304は、第1部材303と共に、以下の(a)、(b)を形成する。
(a)矢印Mで示すような、容器301の中心軸線を中心とした螺旋状のキャリアガスの流路
(b)上記キャリアガスの経路に沿って配列される複数の、溶液が収容される棚302a
 なお、図の例では、4つのキャリアガスの流路が形成されている。
 キャリアガス導入口201c(図2参照)を介して容器301内に供給されたキャリアガスは、隙間G及び貫通孔303dを介して、最下方の棚302a内に流入し、上記キャリアガスの流路に沿って流れ、最上方の棚302a内に至る。最上方の棚302aの上方は、容器301内において開口しているため、当該最上方の棚302a内に至ったキャリアガスは原料ガスと共にガス供給口201d(図2参照)から出力される。
 気化装置300によれば、キャリアガスの流路が螺旋状に形成されており長いため、高いピックアップ量が得られる。
 また、上述のように棚302aが設けられていることにより、補給口201aから供給された溶液を、全ての棚302aへ、上方から順に供給することができる。
 以上の例では、溶液源20から気化装置10(10A、10B)への溶液の送出を圧送により行っていた。これに代えて、溶液源20から気化装置(10A、10B)への溶液の送出を、気化装置10(10A、10B)の上方に溶液源20を配設し、当該溶液に作用する重力により行ってもよい。
 また、以上の例では、キャリアガスを気化装置の容器内を下方から上方に流れるように当該容器内に導入しているが、上方から下方に流れるように導入してもよい。
 また、以上の例では、キャリアガス導入口201cやガス供給口201d、排気口201eを、補給口201aとは独立して設けているが、キャリアガス導入口201cやガス供給口201d、排気口201eと、補給口201aと、を共通化させてもよい。例えば、キャリアガス導入口201cやガス供給口201d、排気口201eと補給口201aとを共通化させる場合は、キャリアガス用の分岐管122、123や、原料ガス用の分岐管72、73、排気用の分岐管44、45を、溶液用の分岐管112、113に接続すればよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)固体原料を気化して生成された原料ガスを処理装置に供給する原料ガス供給システムであって、
前記固体原料を気化して前記原料ガスを生成する気化装置と、
前記固体原料が溶媒中に溶解した溶液を貯留する溶液源から前記気化装置へ前記溶液を送出する送出機構と、
前記送出機構から送出され前記気化装置内に収容された前記溶液の溶媒を蒸発させ前記固体原料を分離する蒸発機構と、
を備える、原料ガス供給システム。
 前記(1)によれば、処理装置での処理に悪影響を及ぼすおそれがない形態で、原料ガス供給システムに固体原料を補給することができる。
(2)前記蒸発機構は、前記気化装置内を減圧する減圧機構及び前記気化装置内に収容された溶液を加熱する加熱機構の少なくともいずれか一方を有する、前記(1)に記載の原料ガス供給システム。
(3)前記気化装置は、前記溶液を収容する棚を複数有する、前記(1)または(2)に記載の原料ガス供給システム。
(4)前記棚は、上下方向に積層されている、前記(3)に記載の原料ガス供給システム。
(5)上下方向に隣接する前記棚は、互い違いの方向に張り出すように形成されている、前記(4)に記載の原料ガス供給システム。
 前記(5)によれば、キャリアガスの流路を長くし、ピックアップ量を高くすることができる。
(6)キャリアガスの流路が螺旋状に形成され、
前記棚は、前記流路に沿って配列されている、請求項4に記載の原料ガス供給システム。
 前記(6)によれば、キャリアガスの流路を長くし、ピックアップ量を高くすることができる。
(7)互いに並列に接続された複数の前記気化装置と、
前記複数の気化装置の一部が前記処理装置へ原料ガスを供給可能な状態のときに、他の前記気化装置へ前記溶液源から前記溶液が送出され前記気化装置内において当該溶液から前記固体原料が分離されるよう、制御信号を出力するように構成された制御装置と、を備える、前記(1)~(6)のいずれか1に記載の原料ガス供給システム。
 前記(7)によれば、気化装置に供給する懸濁液内の固体原料の割合を均一にすることができる。
(8)固体原料を気化して生成された原料ガスを処理装置に供給する原料ガス供給方法であって、
前記固体原料が溶媒中に溶解した溶液を貯留する溶液源から気化装置へ前記溶液を送出する工程と、
前記気化装置において、前記溶液から前記固体原料を分離する工程と、
前記気化装置において、分離した前記固体原料を気化して原料ガスを生成する工程と、
生成された原料ガスを前記処理装置に供給する工程と、を含む、原料ガス供給方法。
1           原料ガス供給システム
10A、10B、300 気化装置
20          溶液源
40          減圧機構
51          ポンプ
100         加圧ガス供給管
201a        補給口
201b        補給弁
201c        キャリアガス導入口
201d        ガス供給口
201e        排気口
203         加熱機構
500         成膜装置
S           溶液

Claims (8)

  1. 固体原料を気化して生成された原料ガスを処理装置に供給する原料ガス供給システムであって、
    前記固体原料を気化して前記原料ガスを生成する気化装置と、
    前記固体原料が溶媒中に溶解した溶液を貯留する溶液源から前記気化装置へ前記溶液を送出する送出機構と、
    前記送出機構から送出され前記気化装置内に収容された前記溶液の溶媒を蒸発させ前記固体原料を分離する蒸発機構と、
    を備える、原料ガス供給システム。
  2. 前記蒸発機構は、前記気化装置内を減圧する減圧機構及び前記気化装置内に収容された溶液を加熱する加熱機構の少なくともいずれか一方を有する、請求項1に記載の原料ガス供給システム。
  3. 前記気化装置は、前記溶液を収容する棚を複数有する、請求項1または2に記載の原料ガス供給システム。
  4. 前記棚は、上下方向に積層されている、請求項3に記載の原料ガス供給システム。
  5. 上下方向に隣接する前記棚は、互い違いの方向に張り出すように形成されている、請求項4に記載の原料ガス供給システム。
  6. キャリアガスの流路が螺旋状に形成され、
    前記棚は、前記流路に沿って配列されている、請求項4に記載の原料ガス供給システム。
  7. 互いに並列に接続された複数の前記気化装置と、
    前記複数の気化装置の一部が前記処理装置へ原料ガスを供給可能な状態のときに、他の前記気化装置へ前記溶液源から前記溶液が送出され前記気化装置内において当該溶液から前記固体原料が分離されるよう、制御信号を出力するように構成された制御装置と、を備える、請求項1~6のいずれか1項に記載の原料ガス供給システム。
  8. 固体原料を気化して生成された原料ガスを処理装置に供給する原料ガス供給方法であって、
    前記固体原料が溶媒中に溶解した溶液を貯留する溶液源から気化装置へ前記溶液を送出する工程と、
    前記気化装置において、前記溶液から前記固体原料を分離する工程と、
    前記気化装置において、分離した前記固体原料を気化して原料ガスを生成する工程と、
    生成された原料ガスを前記処理装置に供給する工程と、を含む、原料ガス供給方法。
     
PCT/JP2020/031087 2019-08-27 2020-08-18 原料ガス供給システム及び原料ガス供給方法 WO2021039493A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/636,430 US20220396873A1 (en) 2019-08-27 2020-08-18 Raw material gas supply system and raw material gas supply method
CN202080058420.9A CN114269965A (zh) 2019-08-27 2020-08-18 原料气体供给系统和原料气体供给方法
KR1020227008324A KR20220046648A (ko) 2019-08-27 2020-08-18 원료 가스 공급 시스템 및 원료 가스 공급 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-154553 2019-08-27
JP2019154553A JP7240993B2 (ja) 2019-08-27 2019-08-27 原料ガス供給システム及び原料ガス供給方法

Publications (1)

Publication Number Publication Date
WO2021039493A1 true WO2021039493A1 (ja) 2021-03-04

Family

ID=74675494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031087 WO2021039493A1 (ja) 2019-08-27 2020-08-18 原料ガス供給システム及び原料ガス供給方法

Country Status (5)

Country Link
US (1) US20220396873A1 (ja)
JP (1) JP7240993B2 (ja)
KR (1) KR20220046648A (ja)
CN (1) CN114269965A (ja)
WO (1) WO2021039493A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421320B2 (en) * 2017-12-07 2022-08-23 Entegris, Inc. Chemical delivery system and method of operating the chemical delivery system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115831A (ja) * 2002-09-24 2004-04-15 Fujitsu Ltd 固体材料のガス化方法及び装置ならびに薄膜形成方法及び装置
JP2005535112A (ja) * 2002-07-30 2005-11-17 エーエスエム アメリカ インコーポレイテッド キャリアガスを使用した昇華システム
JP2008038211A (ja) * 2006-08-08 2008-02-21 Sekisui Chem Co Ltd Cvd原料の供給方法及び供給装置
JP2008522029A (ja) * 2004-11-29 2008-06-26 東京エレクトロン株式会社 交換式の積み重ね可能なトレイを備える固体前駆体供給システム
JP2008538158A (ja) * 2005-03-16 2008-10-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 固体原料から試薬を送出するためのシステム
JP2015110837A (ja) * 2013-11-25 2015-06-18 ラム リサーチ コーポレーションLam Research Corporation マルチトレイバラスト蒸気引き込みシステム
JP2016191140A (ja) * 2015-03-30 2016-11-10 東京エレクトロン株式会社 原料ガス供給装置及び成膜装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725225Y2 (ja) * 1989-02-20 1995-06-07 大同ほくさん株式会社 蒸発気体定量取出装置
JP2000256856A (ja) * 1999-03-11 2000-09-19 Tokyo Electron Ltd 処理装置及び処理装置用真空排気システム及び減圧cvd装置及び減圧cvd装置用真空排気システム及びトラップ装置
JP2013115208A (ja) * 2011-11-28 2013-06-10 Tokyo Electron Ltd 気化原料供給装置、これを備える基板処理装置、及び気化原料供給方法
CN103163007A (zh) * 2011-12-19 2013-06-19 中国科学院大连化学物理研究所 一种固相和液相化合物动态配气装置及配气方法
JP6477044B2 (ja) * 2014-10-28 2019-03-06 東京エレクトロン株式会社 原料ガス供給装置、原料ガス供給方法及び成膜装置
KR101901072B1 (ko) * 2017-10-31 2018-09-20 캐논 톡키 가부시키가이샤 증발원 장치, 성막 장치, 성막 방법 및 전자 디바이스의 제조 방법
JP2019131869A (ja) * 2018-02-01 2019-08-08 株式会社カネカ 蒸着装置
JP2019137908A (ja) * 2018-02-15 2019-08-22 株式会社リンテック 流体の加熱装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535112A (ja) * 2002-07-30 2005-11-17 エーエスエム アメリカ インコーポレイテッド キャリアガスを使用した昇華システム
JP2004115831A (ja) * 2002-09-24 2004-04-15 Fujitsu Ltd 固体材料のガス化方法及び装置ならびに薄膜形成方法及び装置
JP2008522029A (ja) * 2004-11-29 2008-06-26 東京エレクトロン株式会社 交換式の積み重ね可能なトレイを備える固体前駆体供給システム
JP2008538158A (ja) * 2005-03-16 2008-10-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 固体原料から試薬を送出するためのシステム
JP2008038211A (ja) * 2006-08-08 2008-02-21 Sekisui Chem Co Ltd Cvd原料の供給方法及び供給装置
JP2015110837A (ja) * 2013-11-25 2015-06-18 ラム リサーチ コーポレーションLam Research Corporation マルチトレイバラスト蒸気引き込みシステム
JP2016191140A (ja) * 2015-03-30 2016-11-10 東京エレクトロン株式会社 原料ガス供給装置及び成膜装置

Also Published As

Publication number Publication date
KR20220046648A (ko) 2022-04-14
JP2021031740A (ja) 2021-03-01
US20220396873A1 (en) 2022-12-15
JP7240993B2 (ja) 2023-03-16
CN114269965A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
KR101037962B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP2008258595A (ja) 基板処理装置
WO2021039493A1 (ja) 原料ガス供給システム及び原料ガス供給方法
KR102181122B1 (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
JP2006222265A (ja) 基板処理装置
JP2022541573A (ja) 基板上にフィルムを形成するための蒸発器チャンバ
JP2002359238A (ja) 固体原料気化装置および固体原料気化方法
JP2021050416A (ja) 原料ガス供給システム及び原料ガス供給方法
US20220333237A1 (en) Raw material gas supply system and raw material gas supply method
JP2020063476A (ja) 蒸着装置
WO2020218064A1 (ja) 原料ガス供給システム及び原料ガス供給方法
US20210388493A1 (en) Film forming apparatus and film forming method
JP2007165475A (ja) 基板処理装置
KR101349423B1 (ko) Cu막의 성막 방법
JP4404674B2 (ja) 薄膜製造装置
JP2008160081A (ja) 基板処理装置及び基板処理方法
JP2005256107A (ja) 有機金属化学気相堆積装置用原料気化器
CN113853449B (zh) 用于在基板上形成膜的方法及系统
JPS6063369A (ja) 気相成長装置における気化用固体源の供給装置
WO2020255619A1 (ja) 処理方法及び基板処理システム
JP2024058052A (ja) 気化装置、半導体製造システム及び固体原料の気化方法
KR20200108782A (ko) 성막 장치 및 성막 방법
JP5273936B2 (ja) 基板処理装置および半導体装置の製造方法
KR20110047183A (ko) 기판 처리 방법 및 기판 처리 장치
KR20170111780A (ko) 다수 종류의 증착물질의 혼합비율을 보완하여 줄 수 있는 복합증발장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008324

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20858047

Country of ref document: EP

Kind code of ref document: A1