WO2021036666A1 - 陶瓷后盖及其制作方法、壳体及移动终端 - Google Patents

陶瓷后盖及其制作方法、壳体及移动终端 Download PDF

Info

Publication number
WO2021036666A1
WO2021036666A1 PCT/CN2020/105674 CN2020105674W WO2021036666A1 WO 2021036666 A1 WO2021036666 A1 WO 2021036666A1 CN 2020105674 W CN2020105674 W CN 2020105674W WO 2021036666 A1 WO2021036666 A1 WO 2021036666A1
Authority
WO
WIPO (PCT)
Prior art keywords
green body
back cover
light
layer
ceramic
Prior art date
Application number
PCT/CN2020/105674
Other languages
English (en)
French (fr)
Inventor
赵岩峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021036666A1 publication Critical patent/WO2021036666A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0279Improving the user comfort or ergonomics
    • H04M1/0283Improving the user comfort or ergonomics for providing a decorative aspect, e.g. customization of casings, exchangeable faceplate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Definitions

  • This application relates to the technical field of mobile terminals, and in particular to a ceramic back cover and a manufacturing method thereof, a casing and a mobile terminal.
  • the back cover which occupies a larger portion of the outer surface of the mobile terminal, has a dominant effect on the overall appearance and texture of the electronic device.
  • the texture layer is formed on the ceramic surface by spraying paint or PVD coating. Although it can enrich the appearance of ceramics, it is restricted by the binding force of ceramics, paint and PVD coating. In this way, the surface of the back cover has poor wear resistance. And, because the surface of the ceramic is covered by the texture layer, the ceramic feel and gloss are lost.
  • the decorative texture in this way is pre-designed during silk-screen printing, and its shape is single and lacks natural beauty.
  • this application provides a method for manufacturing a ceramic back cover, which includes the following steps:
  • a base layer green body, an intermediate layer green body, and a light-transmitting layer green body are provided.
  • the intermediate layer green body and the base layer green body have different thermal expansion coefficients, and the light-transmitting layer green body and the intermediate layer green body have thermal expansion coefficients different;
  • the green stack is sintered and cooled.
  • the present application provides a ceramic back cover, which is prepared by using the above-mentioned manufacturing method of the ceramic back cover.
  • the present application provides a ceramic back cover, including a base layer, an intermediate layer, and a light-transmitting layer that are formed by sintering and cooling; the intermediate layer is formed between the base layer and the light-transmitting layer to form a
  • the thermal expansion coefficient of the ceramic material of the base layer is different from the thermal expansion coefficient of the ceramic material forming the intermediate layer, and the thermal expansion coefficient of the ceramic material forming the intermediate layer is different from the thermal expansion coefficient of the ceramic material forming the light-transmitting layer.
  • the present application provides a housing, including a frame and the ceramic back cover as described above, and the frame and the ceramic back cover are sintered and integrally formed.
  • the present application provides a mobile terminal, the mobile terminal includes the above-mentioned ceramic back cover or, the mobile terminal includes the above-mentioned housing.
  • FIG. 1 is a schematic diagram of a layer structure of a ceramic back cover of a mobile terminal according to an embodiment
  • FIG. 2 is a schematic flow chart of the steps of a method for manufacturing a ceramic back cover of a mobile terminal according to an embodiment
  • Fig. 3 is a schematic flow diagram of the processing steps of a base layer green body, an intermediate layer green body or a light-transmitting layer green body in an embodiment.
  • mobile terminal refers to, but is not limited to, a device capable of receiving and/or sending communication signals connected via any one or several of the following connection methods:
  • connection methods via wired lines such as public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections;
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • wireless interface methods such as cellular networks, wireless local area networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters.
  • WLAN wireless local area networks
  • DVB-H digital television networks
  • satellite networks AM-FM broadcast transmitters.
  • a mobile terminal set to communicate through a wireless interface may be referred to as a "mobile terminal”.
  • mobile terminals include but are not limited to the following electronic devices:
  • Satellite phone or cellular phone (1) Satellite phone or cellular phone
  • PCS Personal Communications System
  • an embodiment of the present application provides a ceramic back cover.
  • the ceramic back cover includes a base layer 10, an intermediate layer 20 and a light-transmitting layer 30 formed integrally by sintering and cooling.
  • the intermediate layer 20 is formed between the base layer 10 and the light-transmitting layer 30, the thermal expansion coefficient of the ceramic material forming the base layer 10 is different from the thermal expansion coefficient of the ceramic material forming the intermediate layer 20, and the thermal expansion coefficient of the ceramic material forming the intermediate layer 20 is the same as The thermal expansion coefficient of the ceramic material forming the light-transmitting layer 30 is different. Therefore, during sintering and cooling molding, the ceramic material of the intermediate layer 20 has a different thermal expansion coefficient from the ceramic materials of the base layer 10 and the light-transmitting layer 30. Therefore, the light-transmitting layer 30 and the base layer 10 generate expansion and contraction stress on the intermediate layer 20, thereby making Cracks are generated in the middle layer 20 to obtain a natural cracked ceramic crack decoration effect, which effectively improves the overall texture of the ceramic back cover.
  • the intermediate layer 20 is formed between the base layer 10 and the light-transmitting layer 30, cracks generated on the intermediate layer 20 will pass through the light-transmitting layer 30, so that the appearance of the ceramic back cover can exhibit a cracking effect.
  • the middle layer 20 is sandwiched between the base layer 10 and the light-transmitting layer 30, so that the middle layer 20 will not form cracks and affect the overall strength of the ceramic back cover. That is, under this structure, the ceramic back cover can maintain Strong structural strength.
  • the light-transmitting layer 30 is covered on the cracked middle layer 20, and the barrier effect of the light-transmitting layer 30 can be used to prevent the cracks from causing a bad experience of hand rest. In this way, the ceramic back cover can obtain a crack decoration effect. , While maintaining the better ceramic feel of the ceramic back cover.
  • the thickness of the light-transmitting layer 30 is 0.05 mm to 0.3 mm, such as 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm, 0.25 mm, or 0.3 mm. With this thickness, the light-transmitting layer 30 is thin enough to improve its transmission performance, and the thinner light-transmitting layer 30 does not significantly affect the decorative effect of the cracks when the cracks of the intermediate layer 20 are transmitted through.
  • the transparent layer 30 is used to maintain the surface ceramic feel of the ceramic back cover, and at the same time, the cracks in the middle layer 20 can better improve the surface texture decoration of the ceramic back cover.
  • the transmittance of the light-transmitting layer 30 is more than 70%.
  • the transmittance of the light-transmitting layer 30 is controlled at 70%, 80%, or 90%.
  • the light-transmitting layer 30 with higher transmittance can satisfy the need for the cracks formed on the intermediate layer 20 to be transmitted to the surface of the ceramic back cover, thereby adding a natural cracking ceramic crack decoration effect to the overall texture of the ceramic back cover. .
  • the thickness of the intermediate layer 20 is smaller than the thickness of the base layer 10, and the thickness of the intermediate layer 20 is smaller than the thickness of the light-transmitting layer 30.
  • the thickness of the intermediate layer 20 is smaller than that of the base layer 10 and the light-transmitting layer 30, and the structural strength of the ceramic materials used in them is not much different. Therefore, when the sintering cooling molding is performed, the coefficient of thermal expansion is However, under the expansion and contraction stresses formed between each other, the intermediate layer 20 with a smaller thickness is more susceptible to cracks due to the expansion and contraction stress, and then the intermediate layer 20 naturally cracks and forms cracks during the sintering and cooling molding process.
  • the thermal expansion coefficient in this application is the thermal expansion coefficient obtained by the method based on JIS R-3102.
  • the thermal expansion coefficient refers to the phenomenon of expansion and contraction of an object due to temperature changes. Its ability to change is the change in the value of the length caused by the unit temperature change under equal pressure (constant pressure).
  • the thermal expansion coefficient of each structure is different.
  • the unit of the thermal expansion coefficient of the ceramic materials used in the base layer 10, the intermediate layer 20 and the light-transmitting layer 30 is 1/K. Based on this application, different thermal expansion coefficients are used to cause cracks in the intermediate layer 20.
  • the expansion and contraction stress of the base layer 10, the intermediate layer 20, and the light-transmitting layer 30 contributes more to the crack generation.
  • This coefficient of linear expansion refers to the ratio of the change in the length of a solid substance in a certain direction when the temperature changes by 1°C and its length at 20°C (ie a standard laboratory environment).
  • the absolute value of the difference between the thermal expansion coefficient of the ceramic material forming the base layer 10 and the ceramic material forming the intermediate layer 20 is 1.4 ⁇ 10 -6 (1/K) to 3.6 ⁇ 10 -6 (1/K) In the range.
  • the difference in thermal expansion coefficient between the ceramic material of the base layer 10 and the ceramic material of the intermediate layer 20 is more appropriate, so that the cracks formed on the intermediate layer 20 are more delicate, and the overall aesthetics of the ceramic back cover is greatly improved.
  • an excessive thermal expansion coefficient exerts excessive expansion and contraction stress on the intermediate layer 20, which may cause the intermediate layer 20 to naturally crack locally and excessively fragment to form bright spots, which affects the overall aesthetics of the ceramic back cover.
  • this relatively suitable difference in expansion coefficient also avoids that the thermal expansion coefficient of the ceramic material of the intermediate layer 20 and the ceramic material of the base layer 10 is too small, and it is difficult to form a clearly visible crack effect.
  • the absolute value of the difference between the thermal expansion coefficients of the ceramic material forming the intermediate layer 20 and the ceramic material forming the light-transmitting layer 30 is 1.4 ⁇ 10 -6 (1/K) to 3.6 ⁇ 10 -6 Within the range of (1/K), the difference in the thermal expansion coefficients of the ceramic materials used in the light-transmitting layer 30 and the intermediate layer 20 is utilized, so that when the intermediate layer 20 naturally cracks to form cracks, the resulting cracks are more delicate, and Will not oversplit and cause local bright spots.
  • the thermal expansion coefficients of the ceramic material forming the base layer 10 and the ceramic material forming the light-transmitting layer 30 may be approximately equal, so that during the sintering and cooling molding process, the base layer 10 and the light-transmitting layer 30 affect the expansion and contraction of the intermediate layer 20.
  • the stress is equivalent, and the base layer 10 and the light-transmitting layer 30 can pull and compress the intermediate layer 20 with close to the same effect, so that cracks with clear lines are formed on the intermediate layer 20.
  • the thermal expansion coefficients of the ceramic materials used in the base layer 10 and the light-transmitting layer 30 are not equal, and only the thermal expansion coefficient of the ceramic material used in the intermediate layer 20 is the same as that of the ceramic materials used in the base layer 10 and the light-transmitting layer 30.
  • Different thermal expansion coefficients of the materials can make use of the expansion and contraction stress between the base layer 10 and the intermediate layer 20 and the expansion and contraction stress between the transparent layer 30 and the intermediate layer 20 to cause the intermediate layer 20 to crack.
  • the absolute value of the difference between the thermal expansion coefficient of the ceramic material forming the base layer 10 and the ceramic material forming the light-transmitting layer 30 is in the range of 0 ⁇ 0.4 ⁇ 10 -6 (1/K), so that the base layer 10
  • the difference in thermal expansion coefficient between the light-transmitting layer 30 and the light-transmitting layer 30 is more appropriate to avoid excessive thermal expansion coefficient difference between the two.
  • the intermediate layer 20 transfers the expansion and contraction stress between the two to cause the base layer 10 There is a stress difference with the light-transmitting layer 30, resulting in a poor overall molding effect of the ceramic back cover.
  • the thermal expansion coefficient of the ceramic material used in the base layer 10 and the light-transmitting layer 30 is too large, then during the sintering and cooling molding process, a part of the expansion and contraction stress of the base layer 10 to the intermediate layer 20 will be transferred to the light-transmitting layer through the intermediate layer 20.
  • a part of the expansion and contraction stress of the light-transmitting layer 30 to the intermediate layer 20 is also transferred to the base layer 10 through the intermediate layer 20.
  • the thermal expansion coefficients of the ceramic materials used in the base layer 10 and the light-transmitting layer 30 are quite different, Therefore, the expansion and contraction stress transferred to each other through the intermediate layer 20 will also be randomly amplified, which is likely to cause a relatively large relative stress to be formed between the base layer 10 and the light-transmitting layer 30 at a certain place, which may cause relative displacement or displacement. Cracking caused by stress seriously affects the final molding effect of the ceramic back cover. Therefore, in this embodiment, the difference in thermal expansion coefficient between the base layer 10 and the light-transmitting layer 30 is controlled within the range of 0 ⁇ 0.4 ⁇ 10 -6 (1/K), which can effectively avoid the base layer 10 and the light-transmitting layer. A relatively large relative stress is formed in a certain place between the layers 30, which may cause relative displacement or cracking due to the influence of stress.
  • the thermal expansion coefficient of the ceramic material forming the base layer 10 or the light-transmitting layer 30 is in the range of 11 ⁇ 10 -6 (1/K) to 11.6 ⁇ 10 -6 (1/K), forming the intermediate layer 20
  • the coefficient of thermal expansion of the ceramic material is within the range of 8 ⁇ 10 -6 (1/K) ⁇ 9.6 ⁇ 10 -6 (1/K) or 13 ⁇ 10 -6 (1/K) ⁇ 14.6 ⁇ 10 -6 (1 /K).
  • the thermal expansion coefficients of the ceramic materials forming the base layer 10 and the light-transmitting layer 30 are both in the range of 11 ⁇ 10 -6 (1/K) to 11.6 ⁇ 10 -6 (1/K) to maintain a relatively high coefficient of thermal expansion. High structural strength and good ceramic feel.
  • the crack decoration effect formed by the cracking of the middle layer 20 can be configured by the color configuration of the middle layer 20, for example, the configuration is red, yellow, green or blue, etc., to meet the needs of crack decoration in different colors.
  • a red pigment or metal oxide can be added to the ceramic material forming the intermediate layer 20, so that the ceramic material is sintered and cooled.
  • the middle layer 20 appears red, and the cracks generated are based on the red hue, and finally pass through the light-transmitting layer 30 to present a red hue cracking effect on the exterior surface of the ceramic back cover.
  • the ceramic material of the light-transmitting layer 30 may be a white ceramic material to form a crystal clear light-transmitting effect, so as to better present the decorative effect of cracks formed on the middle layer 20 and greatly enrich the overall texture of the ceramic back cover.
  • the present application also provides a method for manufacturing a ceramic back cover with a crack decoration effect showing natural cracking on the surface.
  • the manufacturing method of the ceramic back cover includes the following steps:
  • Step S101 providing a base layer green body, an intermediate layer green body, and a light-transmitting layer green body, the intermediate layer green body and the base layer green body have different thermal expansion coefficients, and the light-transmitting layer green body and the middle layer green body The coefficient of thermal expansion is different.
  • the base layer green body, the intermediate layer green body and the light-transmitting layer green body may be pre-defined by the upstream manufacturer, and then further processed by the downstream manufacturer. It is also possible to form the base layer green body, the middle layer green body and the light-transmitting layer green body through streamlined production and directly put into the next processing procedure to improve the processing efficiency and reduce the material transportation cost.
  • the following steps can be used.
  • the base layer green body, the intermediate layer green body or the light-transmitting layer green body are prepared through the following steps:
  • step S101A the white or colored ceramic slurry is formed by casting to obtain a casting blank.
  • step S101B the cast blank is stamped or cut into pieces according to the size of the ceramic back cover.
  • the casting process is to add the ceramic slurry into the hopper of the casting machine, and use a doctor blade to control the thickness of the casting blank formed by casting.
  • the ceramic slurry is a flowable viscous slurry obtained by thoroughly mixing zirconia powder with an organic binder, plasticizer, and dispersant. Put the viscous slurry into the hopper of the casting machine, and make the slurry flow from the feeding nozzle of the hopper to the conveyor belt. In the process of conveying the slurry on the conveyor belt, the slurry is smoothed by a scraper. At the same time, The scraper is used to control the thickness of the material layer of the slurry on the conveyor belt after being flattened, and after drying it through a drying device such as a drying furnace, a cast body is obtained.
  • a drying device such as a drying furnace
  • the materials of the base layer green body and the middle layer green body can be different according to the needs of different colors.
  • the white base layer green body as an example, the white zirconia ceramic material composition, the dispersant and the binder are uniformly mixed in a ball mill to obtain a ceramic slurry for making the white base layer 10.
  • the dispersant is at least one of polyacrylic acid, polyethylene glycol and glycerin
  • the binder is at least one of PVB, DOP, and DBP.
  • the white zirconia ceramic material composition is: alumina 0wt%-0.25wt%, yttrium oxide 1wt%-5wt%, and the balance is zirconia containing hafnium oxide and other trace impurities.
  • the white zirconia ceramic material composition is a powder, and the particle size of the powder D50 is 0.1 ⁇ m to 20 ⁇ m, and the mass ratio of the white ceramic material composition to the dispersant and the binder is 50:3:1 to form the structure
  • the base layer 10 with more stable mechanical properties meets the needs of the structural strength design of the base layer 10.
  • the light-transmitting layer green body can also take the form of the above-mentioned base layer green body to obtain the ceramic slurry used to make the white light-transmitting layer 30.
  • a color powder system is used to make the base layer 10 or the intermediate layer 20 with color effects.
  • the color powder can include white zirconia, yttrium oxide, alumina and colorants, and the proportion of white zirconia can range from 90% to 99%, and the proportion of yttrium oxide can range from 1% to 5%.
  • the proportion of alumina can range from 0.1% to 3%, and the proportion of colorant can range from 0.8% to 8%.
  • the colorant is used to color white zirconia.
  • the colorant can be erbium trioxide, neodymium trioxide, praseodymium trioxide, cerium oxide, iron trioxide, chromium trioxide, manganese trioxide, zinc oxide
  • the above two ball milling methods control the temperature below 30°C, and the grinding time should be 45 hours to 58 hours.
  • the ceramic slurry used to form the base layer 10 or the intermediate layer 20 of different colors is prepared by using different color ingredients, and the ceramic slurry is vacuum degassed and viscosity adjusted, and the ceramic slurry is processed afterwards.
  • Casting is performed in a casting machine, and the casting process parameters are adjusted to obtain a casting body with a thickness of 0.1mm ⁇ 1.0mm; the parameters for vacuum defoaming treatment of ceramic slurry are: vacuum degree of -0.95Mpa Vacuum defoaming is performed in a vacuum sealed stirring tank, the stirring speed is 80 rpm to 120 rpm, and the stirring time is 15 minutes to 30 minutes.
  • the ceramic slurry formulated in this form will be more delicate, so that when the base layer 10 or the intermediate layer 20 is formed in the subsequent processing, it has better structural strength and color saturation, and effectively improves the overall aesthetics of the ceramic back cover.
  • step S102 the intermediate layer green body and the light-transmitting layer green body are sequentially stacked on the base layer green body to obtain a green body stack.
  • step S103 the green laminate is sintered and cooled.
  • the base layer green body will be sintered and formed into the base layer 10
  • the intermediate layer green body will be sintered and formed into the intermediate layer 20
  • the light-transmitting layer 30 will be sintered and formed into the light-transmitting layer 30.
  • the thermal expansion coefficient of the intermediate layer green body and the base layer green body are different, and the thermal expansion coefficient of the intermediate layer green body is different from that of the light-transmitting layer green body.
  • the intermediate layer 20 will expand and contract to different degrees relative to the base layer 10 and the light-transmitting layer 30, that is, expansion and contraction stress is generated between the intermediate layer 20 and the base layer 10, and expansion and contraction stress is generated between the intermediate layer 20 and the light-transmitting layer 30.
  • the layer 20 naturally cracks under the tensile and compressive stresses of the base layer 10 and the light-transmitting layer 30 to form natural cracks, so as to penetrate the light-transmitting layer 30 to form a crack decoration effect on the surface of the ceramic back cover.
  • the ceramic back cover In the manufacturing method of the ceramic back cover, since the intermediate layer 20 is formed between the base layer 10 and the light-transmitting layer 30, the cracks generated on the intermediate layer 20 will pass through the light-transmitting layer 30 and appear cracks. On the one hand, the intermediate layer 20 is sandwiched between the base layer 10 and the light-transmitting layer 30, so that the middle layer 20 will not form cracks and affect the overall strength of the ceramic back cover, that is, with this structure setting, the ceramic back cover can maintain a strong structural strength . On the other hand, the light-transmitting layer 30 is covered on the cracked middle layer 20, and the barrier effect of the light-transmitting layer 30 can be used to prevent the cracks from causing a bad experience of hand rest. In this way, the ceramic back cover can obtain a crack decoration effect. , While maintaining the better ceramic feel of the ceramic back cover.
  • the sintering temperature is 1300°C to 1550°C, such as 1300°C, 1350°C, 1400°C, 1450°C, or 1550°C; the sintering time can be controlled at 0.5 h ⁇ 10h, such as 0.5h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h or 10h.
  • the sintered compact formed by the green laminate after sintering can be made to have better compactness, and the gap between the intermediate layer 20 and the base layer 10, and the intermediate layer 20 and the surface layer can be effectively improved.
  • the bonding force makes the processed ceramic back cover have strong structural strength.
  • the organic components in the laminated green can also be discharged by debinding or degreasing the laminated green.
  • the laminated blanks are placed in a debinding box for debinding or degreasing, the debinding or degreasing temperature is controlled at 300°C ⁇ 600°C, and the time is controlled at 0.5h ⁇ 4h.
  • the product After debinding or degreasing, the product has no problems such as distortion, cracking, and discoloration.
  • step S103 that is, before the step of sintering and cooling the green stack, the method further includes the following steps:
  • the green laminate is subjected to isostatic pressing.
  • the pressure is controlled within the range of 120MPa to 200MPa, and the temperature is controlled within the range of 70°C to 100°C.
  • the isostatic pressing process can meet the needs of the ceramic back cover processing shape on the one hand, for example, it can be processed into 2.5D or 3D to present a partial curved surface effect; on the other hand, this isostatic pressing process Therefore, the bonding between the various layered structures in the green laminate can be made more compact and uniform, so that the overall structure of the ceramic back cover has higher strength and better drop resistance.
  • the base layer 10, the intermediate layer 20, and the light-transmitting layer 30 will be compressed, so that the final ceramic back cover will have a higher structural strength.
  • the pressure is controlled at 120MPa ⁇ 200MPa, and the temperature is controlled at 70°C ⁇ 100°C.
  • the pressure and temperature refer to the environmental pressure and stability of the green laminate during the isostatic pressing process.
  • isostatic pressing equipment is used to isostatically press the green laminate
  • the pressure of the isostatic pressing equipment is set to 120 MPa to 200 MPa
  • the temperature of the isostatic pressing equipment is controlled at 70 to 100°C.
  • the pressure of the isostatic pressing device is set to 120MPa, 130MPa, 140MPa, 150MPa, 160MPa, 170MPa, 180MPa, 190MPa or 200MPa, and the temperature of the isostatic pressing device is controlled at 70°C, 80°C, 90°C or 100°C. °C, the green laminate is subjected to isostatic pressing in this environment, a green laminate with a denser layer structure can be obtained, and the overall structural strength of the ceramic back cover obtained by subsequent processing is effectively improved.
  • the average thickness of the base layer 10 of the obtained ceramic back cover is 0.1 mm to 1.0 mm, and the total laminated thickness of the sintered blank of the ceramic back cover is 0.5 mm to 3.0 mm.
  • the intermediate layer green body is sandwiched between the base layer green body and the light-transmitting layer green body, and is formed after isostatic pressing, debinding, debinding, and sintering of the green body lamination
  • the intermediate layer 20 will be stably combined with the base layer 10 and the light-transmitting layer 30, and when cooled, since the thermal expansion coefficient of the intermediate layer 20 is different from that of the base layer 10 and the light-transmitting layer 30, it will form an effect to The expansion and contraction force of the intermediate layer 20, and the intermediate layer 20 naturally cracks under the action of the expansion and contraction force to form cracks.
  • the ceramic back cover obtained can observe the decorative aesthetics brought about by the cracks through the light-transmitting layer 30.
  • the color of the middle layer 20 can be reasonably configured according to the requirements of the decorative effect of the ceramic back cover cracks.
  • the color of the intermediate layer 20 formed by the intermediate layer green body is different from the color of the light-transmitting layer 30 formed by the light-transmitting layer green body.
  • the light-transmitting layer 30 is made of white ceramics and the intermediate layer 20 is made of red ceramics as an example for description, but it is not a limitation to this solution.
  • a red pigment or metal oxide can be added to the ceramic slurry forming the intermediate green body, so that after sintering and cooling, the intermediate layer 20 It appears red, and the generated cracks are also based on the red hue, and finally pass through the light-transmitting layer 30 to present a crack effect in the red hue on the exterior surface of the ceramic back cover.
  • the white ceramic slurry can be used for tape casting, and the light-transmitting layer green body corresponding to the size of the ceramic back cover can be obtained through punching or cutting.
  • the light-transmitting layer 30 has a white ceramic effect, and the red cracks exhibited by the intermediate layer 20 can pass through the light-transmitting layer 30, so that the overall appearance of the ceramic back cover has a crack effect with a red hue on the surface.
  • the absolute value of the difference between the thermal expansion coefficients of the base layer green body and the intermediate layer green body is 1.4 ⁇ 10 -6 (1/K) to 3.6 ⁇ 10 -6 (1/K )In the range.
  • the difference in thermal expansion coefficient between the base layer green body and the middle layer green body is more appropriate, so that when the middle layer green body is sintered and formed into the middle layer 20, the cracks formed on the middle layer 20 are more delicate, which greatly improves the ceramic back The overall beauty of the cover.
  • the absolute value of the difference between the thermal expansion coefficient of the intermediate layer green body and the light-transmitting layer green body is 1.4 ⁇ 10 -6 (1/K) ⁇ 3.6 ⁇ 10 -6 (1/K) In the range.
  • the thermal expansion coefficients of the base layer green body and the light-transmitting layer green body can be approximately equal, so that during the sintering and cooling molding process, the expansion and contraction stresses of the base layer 10 and the light-transmitting layer 30 to the intermediate layer 20 are equal, and the base layer 10
  • the intermediate layer 20 can be pulled and compressed with nearly the same effect as the light-transmitting layer 30, so that cracks with clear lines are formed on the intermediate layer 20.
  • the absolute value of the difference between the thermal expansion coefficients of the base layer green body and the light-transmitting layer green body is in the range of 0 to 0.4 ⁇ 10 -6 (1/K), so that the base layer 10 and the light-transmitting layer 30
  • the difference in thermal expansion coefficient between the two is more appropriate to avoid too large difference in thermal expansion coefficient between the two.
  • the intermediate layer 20 transfers the expansion and contraction stress between the two, resulting in the difference between the base layer 10 and the light-transmitting layer 30. There is a stress difference between them, resulting in poor overall molding effect of the ceramic back cover.
  • the thermal expansion coefficient difference between the base layer green body and the light-transmitting layer green body is too large, the expansion and contraction stress of the base layer 10 formed by the base layer green body against the intermediate layer 20 formed by the intermediate layer green body will be A part of the light-transmitting layer 30 is transferred to the light-transmitting layer 30 through the intermediate layer 20.
  • the expansion and contraction stress of the light-transmitting layer 30 formed by the light-transmitting layer green body on the intermediate layer 20 is also transferred to the base layer 10 through the intermediate layer 20.
  • the thermal expansion coefficients of the blank and the light-transmitting layer are quite different.
  • the expansion and contraction stress transferred to each other through the intermediate layer 20 will also be randomly amplified, which may cause a certain gap between the base layer 10 and the light-transmitting layer 30.
  • a relatively large relative stress is formed in one place, which results in relative displacement or cracking due to the influence of the stress, which seriously affects the final molding effect of the ceramic back cover. Therefore, in this embodiment, the difference in thermal expansion coefficient between the base layer green body and the light-transmitting layer green body is controlled within the range of 0 ⁇ 0.4 ⁇ 10 -6 (1/K), which can effectively avoid the base layer 10 and A relatively large relative stress is formed in a certain place between the light-transmitting layers 30, which may cause relative displacement or cracking due to the influence of the stress.
  • the thermal expansion coefficient of the base layer green body and/or the light-transmitting layer green body is in the range of 11 ⁇ 10 -6 (1/K) to 11.6 ⁇ 10 -6 (1/K).
  • the thermal expansion coefficient of the ceramic material of the blank is in the range of 8 ⁇ 10 -6 (1/K) ⁇ 9.6 ⁇ 10 -6 (1/K) or 13 ⁇ 10 -6 (1/K) ⁇ 14.6 ⁇ 10 -6 ( 1/K).
  • the above-mentioned ceramic back cover and the ceramic back cover manufactured by the method of manufacturing the ceramic back cover can be used in a mobile terminal as a housing of the mobile terminal. It can also form a housing together with other structures such as a frame to be suitable for a mobile terminal.
  • the housing may be formed by sintering the frame and the ceramic back cover.
  • the frame and the ceramic back cover are made of the same material. In the process of sintering and forming the ceramic back cover, the frame and the ceramic back cover are sintered into one body.
  • the frame can also be made of a material different from the ceramic back cover, such as metal, plastic, or glass.
  • the frame can be connected to the ceramic back cover in an integrated manner during the sintering process of the ceramic back cover. Cover, so that the shell has better structural strength.
  • the present application provides a mobile terminal including the above-mentioned ceramic back cover, or the mobile terminal includes the above-mentioned housing.
  • the intermediate layer 20 is formed between the base layer 10 and the light-transmitting layer 30 in the ceramic back cover, the cracks generated on the intermediate layer 20 will pass through the light-transmitting layer 30 and appear cracks.
  • the intermediate layer 20 is covered by the base layer 10 It is sandwiched with the light-transmitting layer 30, so that the middle layer 20 will not form cracks and affect the overall strength of the ceramic back cover. That is, under this structure, the ceramic back cover can maintain a strong structural strength.
  • the light-transmitting layer 30 is covered on the cracked middle layer 20, and the barrier effect of the light-transmitting layer 30 can be used to prevent the cracks from causing a bad experience of hand rest. In this way, the ceramic back cover can obtain a crack decoration effect.
  • the mobile terminal including the ceramic back cover also has the above-mentioned advantages of achieving the surface color contrast effect, that is, the surface of the mobile terminal can obtain a crack decoration effect with natural cracking, and the structure of the ceramic back cover is stable and has better drop resistance. , It is not easy to be damaged due to the falling structure, so as to maintain a better use effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

一种陶瓷后盖及其制作方法、壳体及移动终端,陶瓷后盖包括经烧结冷却成型于一体的基层(10)、中间层(20)和透光层(30);中间层(20)形成于基层(10)与透光层(30)之间;形成基层(10)的陶瓷材料的热膨胀系数为与形成中间层(20)的陶瓷材料的热膨胀系数不同,且形成中间层(20)的陶瓷材料的热膨胀系数与形成透光层(30)的陶瓷材料的热膨胀系数不同。

Description

陶瓷后盖及其制作方法、壳体及移动终端 技术领域
本申请涉及移动终端技术领域,特别是涉及陶瓷后盖及其制作方法、壳体及移动终端。
背景技术
随着消费者对手机、平板电脑等电子设备整体外观质感的追求,占据移动终端外表面较大部分的后盖对电子设备的整体外观质感起着主导性效果。
目前,虽然尝试陶瓷后盖丰富电子设备外观质感,但始终会存在色调单一的问题。而通过喷涂油漆或PVD镀层的形式在陶瓷表面形成纹理层,虽然可以丰富陶瓷的外观美感,但受陶瓷和油漆以及PVD镀层的结合力约束,这种方式下后盖的表面耐磨性较差,而且,由于陶瓷的表面被纹理层覆盖而失去了陶瓷手感和光泽度。采用丝印色粉的方式在虽然能够在陶瓷后盖的表面形成装饰纹理,但这种方式下的装饰纹理是丝印时预先设计的,其形态单一,缺乏自然美感。
发明内容
基于此,有必要提供一种陶瓷后盖及其制作方法、壳体及移动终端。
一方面,本申请提供一种陶瓷后盖的制作方法,包括以下步骤:
提供基层生坯、中间层生坯以及透光层生坯,所述中间层生坯与所述基层生坯的热膨胀系数不同,所述透光层生坯与所述中间层生坯的热膨胀系数不同的;
将所述中间层生坯和所述透光层生坯依次层叠于所述基层生坯,以获得生坯叠层;
将所述生坯叠层进行烧结并冷却。
另一方面,本申请提供一种陶瓷后盖,所述陶瓷后盖采用上述陶瓷后盖的制作方法制备。
再一方面,本申请提供一种陶瓷后盖,包括经烧结冷却成型于一体的基层、中间层和透光层;所述中间层形成于所述基层与所述透光层之间,形成所述基层的陶瓷材料的热膨胀系数为与形成所述中间层的陶瓷材料的热膨胀系数不同,且形成所述中间层的陶瓷材料的热膨胀系数与形成所述透光层的陶瓷材料的热膨胀系数不同。
又一方面,本申请提供一种壳体,包括边框和如上所述的陶瓷后盖,所述边框与所述陶瓷后盖烧结一体成型。
又一方面,本申请提供一种移动终端,所述移动终端包括上述的陶瓷后盖或者,所述移动终端包括上述的壳体。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例提供的移动终端的陶瓷后盖的层结构示意图;
图2为一实施例提供的移动终端的陶瓷后盖制作方法的步骤流程示意图;
图3为一实施例中的基层生坯、中间层生坯或透光层生坯的加工过程步 骤流程示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
作为在此使用的“移动终端”指包括但不限于经由以下任意一种或者数种连接方式连接的能够接收和/或发送通信信号的装置:
(1)经由有线线路连接方式,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;
(2)经由无线接口方式,如蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器。
被设置成通过无线接口通信的移动终端可以被称为“移动终端”。移动终端的示例包括但不限于以下电子装置:
(1)卫星电话或蜂窝电话;
(2)可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;
(3)无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历、配备有全球定位系统(Global Positioning System,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);
(4)常规膝上型和/或掌上型接收器;
(5)常规膝上型和/或掌上型无线电电话收发器等。
结合图1所示,本申请一实施例中提供一种陶瓷后盖,该陶瓷后盖包括经烧结冷却成型于一体的基层10、中间层20和透光层30。中间层20形成于基层10与透光层30之间,形成基层10的陶瓷材料的热膨胀系数为与形成中间层20的陶瓷材料的热膨胀系数不同,且形成中间层20的陶瓷材料的热膨胀系数与形成透光层30的陶瓷材料的热膨胀系数不同。从而在烧结冷却成型时,由于中间层20的陶瓷材料与基层10和透光层30的陶瓷材料的热膨胀系数不同,因此,透光层30和基层10对中间层20产生膨胀收缩应力,进而使得中间层20产生裂纹,获得自然开裂的陶瓷裂纹装饰效果,有效提升陶瓷后盖的整体质感。
此外,由于中间层20形成在基层10与透光层30之间,因此,中间层20上产生的裂纹将透过透光层30,使得陶瓷后盖的外观能够呈现裂纹效果。一方面,中间层20被基层10和透光层30夹设在中间,这样就不会应中间层20形成裂纹而影响陶瓷后盖的整体强度,即这种结构设置下,陶瓷后盖可以维持较强的结构强度。另一方面,透光层30覆设在具有裂纹的中间层20上,能够借助透光层30的隔挡效果而防止裂纹产生搁手的不佳体验,这样陶瓷后盖既可以获得裂纹装饰效果,同时维持陶瓷后盖较佳的陶瓷手感。
为了更好的呈现中间层20所透射的裂纹效果,透光层30的厚度为0.05mm~0.3mm,比如0.05mm、0.1mm、0.15mm、0.2mm、0.25mm或0.3mm。这种厚度下,透光层30足够薄,以便提升其透射性能,且较薄的透光层30在供中间层20的裂纹透射时不会对裂纹的装饰效果产生明显的不良影响,以在利用透光层30保持陶瓷后盖的表面陶瓷手感的同时更好的通过中间层20 的裂纹提高陶瓷后盖的表面纹理装饰。
透光层30的透射率为70%以上,比如,在一些实施方式中,透光层30的透射率控制在70%、80%或90%。这种较高透射率的透光层30能够满足中间层20上所形成的裂纹透射以呈现至陶瓷后盖的表面的需要,进而使得陶瓷后盖整体质感上增添了自然开裂的陶瓷裂纹装饰效果。
在一些实施例中,中间层20的厚度小于基层10的厚度,且中间层20的厚度小于透光层30的厚度。这种结构设置下,由于中间层20的厚度相比基层10和透光层30较小,而它们所采用的陶瓷材料的结构强度相差不大,因此,在进行烧结冷却成型时,因热膨胀系数不同而在彼此之间所形成膨胀伸缩应力下,厚度较小的中间层20则更容易受到膨胀伸缩应力的影响而产生裂纹,继而中间层20烧结冷却成型过程中自然开裂形成裂纹。
需要说明的是,本申请中的热膨胀系数是采用基于JIS R-3102的方法得到的热膨胀系数。具体地,该热膨胀系数是指物体由于温度改变而有胀缩现象。其变化能力以等压(压强一定)下,单位温度变化所导致的长度量值的变化。受材料组分结构的不同,各结构的热膨胀系数不同,基层10、中间层20和透光层30所采用的陶瓷材料的热膨胀系数单位为1/K。基于本申请是利用不同的热膨胀系数使得中间层20产生裂纹,这种基层10、中间层20和透光层30层叠结构的膨胀收缩应力对产生裂纹贡献较多的则是来自沿这些层以面的形式延伸的方向上的线膨胀系数的差异。这种线膨胀系数是指固态物质当温度改变1℃度时,其某一方向上的长度的变化和它在20℃(即标准实验室环境)时的长度的比值。
在一些实施例中,形成基层10的陶瓷材料与形成中间层20的陶瓷材料的热膨胀系数之差的绝对值在1.4×10 -6(1/K)~3.6×10 -6(1/K)的范围内。这种情 况下,基层10的陶瓷材料和中间层20的陶瓷材料的热膨胀系数差异较为适宜,以使得中间层20上形成的裂纹较为细腻,极大提升陶瓷后盖的整体美感。具体地,这种设置下,避免过大的热膨胀系数对中间层20的膨胀收缩应力过大而导致中间层20自然开裂时局部过分碎裂形成亮斑,影响陶瓷后盖的整体美感。同时,这种较为适宜的膨胀系数差异,也避免了中间层20的陶瓷材料和基层10的陶瓷材料的热膨胀系数过小时,难以形成清晰可见的裂纹效果。
相应地,在一些实施例中,形成中间层20的陶瓷材料与形成透光层30的陶瓷材料的热膨胀系数之差的绝对值在1.4×10 -6(1/K)~3.6×10 -6(1/K)的范围内,从而利用透光层30和中间层20所采用陶瓷材料的热膨胀系数在范围的差异性,使得中间层20自然开裂形成裂纹时,所产生的裂纹较为细腻,且不会过分开裂而产生局部亮斑。
需要说明的是,形成基层10的陶瓷材料与形成透光层30的陶瓷材料的热膨胀系数可以大致相等,从而在烧结冷却成型的过程中,基层10和透光层30对中间层20的膨胀收缩应力相当,进而基层10和透光层30可以以接近同等效果的对中间层20进行拉压,以使得中间层20上形成纹路清晰的裂纹。
在另一些实施例中,基层10和透光层30所采用的陶瓷材料的热膨胀系数不相等,只需要中间层20所采用的陶瓷材料的热膨胀系数与基层10和透光层30所采用的陶瓷材料的热膨胀系数不同,就能够利用基层10与中间层20之间的膨胀收缩应力、透光层30与中间层20之间的膨胀收缩应力使得中间层20产生裂纹。
在一些实施例中,形成基层10的陶瓷材料与形成透光层30的陶瓷材料的热膨胀系数之差的绝对值在0~0.4×10 -6(1/K)的范围内,从而使得基层10和透光层30之间的热膨胀系数差异较为适宜,避免两者的热膨胀系数差异过 大而在烧结冷却成型的过程中,中间层20在两者之间传递彼此的膨胀收缩应力而导致基层10与透光层30之间产生应力差,导致陶瓷后盖的整体成型效果不佳。假如基层10和透光层30所采用的陶瓷材料的热膨胀系数差异过大,那么在烧结冷却成型的过程中,基层10对中间层20的膨胀收缩应力将有一部分经中间层20传递至透光层30,相应地,透光层30对中间层20的膨胀收缩应力也有一部经中间层20传递至基层10,由于基层10与透光层30所采用的陶瓷材料的热膨胀系数差异较大,因此,经过中间层20向彼此传递的膨胀收缩应力也将随机的放大,这样很可能就会导致基层10和透光层30之间在某一处形成较大的相对应力而出现相对移位或受应力影响而产生开裂,严重影响到陶瓷后盖最终的成型效果。因此,本实施例中,将基层10和透光层30之间的热膨胀系数差异控制在0~0.4×10 -6(1/K)的这一范围内,可以有效的避免基层10和透光层30之间在某一处形成较大的相对应力而出现相对移位或受应力影响而产生开裂的不良。
在一些实施例中,形成基层10或透光层30的陶瓷材料的热膨胀系数在11×10 -6(1/K)~11.6×10 -6(1/K)的范围内,形成中间层20的陶瓷材料的热膨胀系数为8×10 -6(1/K)~9.6×10 -6(1/K)的范围内或者13×10 -6(1/K)~14.6×10 -6(1/K)的范围内。这种设置下的基层10、中间层20和透光层30最终成型为陶瓷后盖后,陶瓷后盖能够维持较高的结构强度,及陶瓷后盖的表面能够获得较佳的陶瓷手感并呈现出自然开裂的裂纹装饰效果。
在一些实施例中,形成基层10和透光层30的陶瓷材料的热膨胀系数均在11×10 -6(1/K)~11.6×10 -6(1/K)的范围内,以维持较高的结构强度,并获得良好的陶瓷手感。
陶瓷后盖中,中间层20开裂形成的裂纹装饰效果,可以通过中间层20 的颜色配置,比如配置呈红色、黄色、绿色或蓝色等,以达到不同色调裂纹装饰的需要。例如,在一些实施方式中,需要在陶瓷后盖上呈现出红色色调下的开裂效果,那么可以在形成中间层20的陶瓷材料中添加呈现红色的色素或者金属氧化物,从而在经过烧结冷却成型后,中间层20呈现红色,且产生的裂纹也是基于红色的色调基础上,最终透过透光层30以在陶瓷后盖的外观表面呈现红色色调下的裂纹效果。
透光层30的陶瓷材料可以是采用白色的陶瓷材料,从而形成晶莹剔透的透光效果,以更好的呈现中间层20上所形成的裂纹装饰效果,极大丰富陶瓷后盖的整体质感。
本申请另一方面,还提供一种实现表面呈现自然开裂的裂纹装饰效果的陶瓷后盖的制作方法。
结合图2所示,陶瓷后盖的制作方法包括以下步骤:
步骤S101,提供基层生坯、中间层生坯以及透光层生坯,所述中间层生坯与所述基层生坯的热膨胀系数不同,所述透光层生坯与所述中间层生坯的热膨胀系数不同的。
该步骤S101中,基层生坯、中间层生坯和透光层生坯可以是由上游厂商预先制定,再经由下游厂商作进一步加工。也可以是通过流水化生产形成基层生坯、中间层生坯和透光层生坯并直接投入下一步加工工序,以提高加工效率且降低物料转运成本。
此外,对于基层生坯、中间层生坯和透光层生坯的制备,可以是下面这些工序制得。
结合图3所示,基层生坯、中间层生坯或透光层生坯是通过以下步骤制备得到的:
步骤S101A,将白色的或彩色的陶瓷浆料通过流延成型,得到流延坯体。
步骤S101B,根据陶瓷后盖尺寸对流延坯体进行冲压成型或裁片。
其中,流延成型工艺是将陶瓷浆料加入流延机的料斗中,利用刮刀控制流延形成的流延坯体的厚度。例如,在一些实施例中,陶瓷料浆为氧化锆粉体与有机粘结剂、增塑剂、分散剂进行充分混合后所得到的可以流动的粘稠浆料。将粘稠浆料加入流延机的料斗内,并使得浆料从料斗的加料嘴流出至传送带,在传输带输送浆料的过程中,利用刮刀对浆料进行刮平,与此同时,可以通过刮刀控制传输带上料浆经刮平后的料层厚度,并经过干燥炉等干燥装置进行干燥后,得到流延坯体。
此外,根据不同颜色的需要,基层生坯以及中间层生坯的材料可以有所不同。以基层生坯为白色为例,将白色氧化锆陶瓷材料组合物与分散剂和粘结剂在球磨机中混合均匀,以得到用于制作白色基层10的陶瓷浆料。分散剂为聚丙烯酸、聚乙二醇和甘油中的至少一种,粘结剂为PVB、DOP、DBP中的至少一种。白色氧化锆陶瓷材料组合物为:氧化铝0wt%~0.25wt%,氧化钇1wt%~5wt%,余量为含有氧化铪的氧化锆以及其他微量杂质。其中,白色氧化锆陶瓷材料组合物为粉体,且粉体D50粒度为0.1μm~20μm,白色陶瓷材料组合物与分散剂、粘结剂的质量比为50:3:1,以此形成结构力学性能更为稳定的基层10,适应基层10的结构强度设计需要。当然,透光层生坯也可以采取上述基层生坯的形式得到用于制作白色的透光层30的陶瓷浆料。
当然可以采取不同的金属氧化物使得形成的陶瓷浆料能够适应不同颜色陶瓷构件的制作需要。例如,采取彩色粉体制作出具有彩色效果的基层10或者中间层20。彩色粉体可以包括白色氧化锆、氧化钇、氧化铝和着色剂,且 白色氧化锆所占的比重范围可以为90%~99%、氧化钇所占的比重范围可以为1%~5%、氧化铝所占的比重范围可以为0.1%~3%,着色剂所占的比重范围可以为0.8%~8%。着色剂用于对白色氧化锆进行着色,着色剂可以为三氧化二铒、三氧化二钕、三氧化二镨、氧化铈、三氧化二铁、三氧化二铬、三氧化二锰、氧化锌、镁、硅、钙、钴、镍、铜、钒、镉和锡等中的一种或多种的组合。以上两种球磨方式控制温度30℃以下,研磨时间应在45小时~58小时。
在一些实施例中,通过不同颜色配料分别制备得到用于形成不同颜色的基层10或中间层20的陶瓷浆料,并且陶瓷浆料经过真空除气以及粘度调节,将处理好以后的陶瓷浆料在流延机中进行流延成型,调节流延工艺参数,制得厚度为0.1mm~1.0mm的流延坯体;陶瓷浆料进行真空除泡处理的参数为:真空度为-0.95Mpa的真空密封搅拌罐中进行真空除泡,搅拌速度为80转/分~120转/分,搅拌时间为15分~30分。通过这种形式调配的陶瓷浆料将更为细腻,以在后续加工形成基层10或中间层20等结构时,具有较佳的结构强度以及色彩饱和,有效提升陶瓷后盖的整体美感。
步骤S102,将中间层生坯和透光层生坯依次层叠于基层生坯,以获得生坯叠层。
步骤S103,将生坯叠层进行烧结并冷却。
通过步骤S103的对生坯叠层进行烧结,基层生坯将烧结成型为基层10,中间层生坯将烧结成型为中间层20,透光层30将烧结成型为透光层30。由于在生坯叠层中,中间层生坯与基层生坯的热膨胀系数不同,中间层生坯的热膨胀系数与透光层生坯的热膨胀系数不同,从而上述步骤S103进行烧结冷却的过程中,中间层20相对基层10和透光层30将发生不同程度的伸缩,也 即中间层20与基层10之间产生膨胀收缩应力、中间层20与透光层30之间产生膨胀收缩应力,继而中间层20在基层10和透光层30的拉压应力下自然开裂,形成自然的开裂纹,以透过透光层30而在陶瓷后盖的表面形成裂纹装饰效果。
该陶瓷后盖的制作方法中,由于中间层20形成在基层10与透光层30之间,因此,中间层20上产生的裂纹将透过透光层30呈现裂纹时,一方面,中间层20被基层10和透光层30夹设在中间,这样就不会应中间层20形成裂纹而影响陶瓷后盖的整体强度,即这种结构设置下,陶瓷后盖可以维持较强的结构强度。另一方面,透光层30覆设在具有裂纹的中间层20上,能够借助透光层30的隔挡效果而防止裂纹产生搁手的不佳体验,这样陶瓷后盖既可以获得裂纹装饰效果,同时维持陶瓷后盖较佳的陶瓷手感。
在一些实施例中,步骤S103中,对生坯叠层进行烧结时,烧结温度为1300℃~1550℃,比如1300℃、1350℃、1400℃、1450℃或1550℃;烧结时间可以控制在0.5h~10h,比如0.5h、2h、3h、4h、5h、6h、7h、8h、9h或10h。通过对烧结温度及烧结时间的控制,可以使得生坯叠层经烧结后所形成的烧结坯中具有较好的致密性,有效提高中间层20与基层10、中间层20与表面层之间的结合力,使得加工得到的陶瓷后盖具有较强的结构强度。
需要说明的是,在对生坯叠层进行烧结前,还可以通过对层叠素坯进行排胶或脱脂的方式,排出层叠素坯中的有机物成分。例如,将层叠素坯放到排胶箱中排胶或脱脂,排胶或脱脂温度控制在300℃~600℃,时间控制在0.5h~4h。排胶或脱脂后,产品无扭曲变形、无开裂、无异色等问题。
在一些实施例中,在步骤S103,即将生坯叠层进行烧结并冷却的步骤之前,还包括步骤:
对生坯叠层进行等静压成型,等静压成型过程中,压强控制在120MPa~200MPa的范围内、温度控制在70℃~100℃的范围内。
上述实施例中,通过等静压成型加工,一方面能够适应对陶瓷后盖加工形状的需要,例如加工成2.5D或3D等呈现局部曲面的效果;另一方面,这种等静压成型加工,可以使得生坯叠层中的各层状结构之间结合更为致密化、均匀化,进而使得陶瓷后盖的整体结构强度较高,具有较佳的抗摔性。通俗来讲,经过等静压成型,基层10、中间层20和透光层30将被压结,从而使得最终获得的陶瓷后盖的结构强度更高。
在等静压成型过程中,压强控制在120MPa~200MPa、温度控制在70℃~100℃。
需要说明的是,压强和温度指的是等静压成型过程中,生坯叠层所处的环境压强和稳定。例如,在一些实施方式中,采用等静压设备对生坯叠层进行等静压成型,等静压设备的压强设置为120MPa~200MPa,等静压设备的温度控制在70℃~100℃。
在一些实施方式中,等静压设备的压强设置为120MPa、130MPa、140MPa、150MPa、160MPa、170MPa、180MPa、190MPa或200MPa,等静压设备的温度控制在70℃、80℃、90℃或100℃,在这种环境下对生坯叠层进行等静压成型,可以获得层结构更致密的生坯叠层,有效提升经后续加工所获得的陶瓷后盖的整体结构强度。
在一些实施方式中,所获得的陶瓷后盖,基层10的平均厚度为0.1mm~1.0mm,陶瓷后盖的烧结坯总的叠层厚度为0.5mm~3.0mm。
生坯叠层中,中间层生坯被夹设在基层生坯和透光层生坯之间,经过对生坯叠层的等静压成型、排胶或脱脂、烧结等工序后,形成的烧结坯中,中 间层20将和基层10和透光层30稳定地结合在一起,并且在冷却时,由于中间层20的热膨胀系数与基层10和透光层30不同,从而将会形成作用至中间层20的膨胀收缩力,且中间层20在该膨胀收缩力的作用下自然开裂,以形成裂纹。从而所获得的陶瓷后盖可以透过透光层30观察到裂纹所带来的装饰美感。
需要说明的是,可以根据陶瓷后盖裂纹装饰效果的需要,合理配置中间层20的颜色。例如,在一些实施例中,将生坯叠层进行烧结并冷却后,中间层生坯所形成的中间层20的颜色与透光层生坯所形成的透光层30的颜色不同。
下面仅以透光层30为白色陶瓷、中间层20为红色陶瓷为例加以说明,但并非对本方案的限制。
例如,需要在陶瓷后盖上呈现出红色色调下的开裂效果,那么可以在形成中间生坯的陶瓷浆料中添加呈现红色的色素或者金属氧化物,从而在经过烧结冷却成型后,中间层20呈现红色,且产生的裂纹也是基于红色的色调基础上,最终透过透光层30以在陶瓷后盖的外观表面呈现红色色调下的裂纹效果。相应地,可以采用白色陶瓷浆料经过流延成型,并经过冲压成型或裁片获得与陶瓷后盖尺寸相适应的透光层生坯,进而在经过烧结冷却成型后,透光层生坯将为白色陶瓷效果的透光层30,中间层20所呈现的红色裂纹能够透过该透光层30,以使得陶瓷后盖整体上获得外观表面呈现红色色调下的裂纹效果。
在一些实施例中,在800℃的条件下,基层生坯与中间层生坯的热膨胀系数之差的绝对值在1.4×10 -6(1/K)~3.6×10 -6(1/K)的范围内。
这种情况下,基层生坯和中间层生坯的热膨胀系数差异较为适宜,以使 得中间层生坯烧结成型为中间层20时,中间层20上所形成的裂纹较为细腻,极大提升陶瓷后盖的整体美感。
具体地,这种设置下,避免过大的热膨胀系数对中间层20的膨胀收缩应力过大而导致中间层20自然开裂时局部过分碎裂形成亮斑,影响陶瓷后盖的整体美感。同时,这种较为适宜的膨胀系数差异,也避免了中间层生坯和基层生坯的热膨胀系数过小时,难以早烧结成型的过程中形成清晰可见的裂纹效果。
相应地,在800℃的条件下,中间层生坯与透光层生坯的热膨胀系数之差的绝对值在1.4×10 -6(1/K)~3.6×10 -6(1/K)的范围内。这种设置下,中间层生坯烧结成型中间层20时,中间层20自然开裂所形成裂纹较为细腻,且不会过分开裂而产生局部亮斑。
需要说明的是,基层生坯与透光层生坯的热膨胀系数可以大致相等,从而在烧结冷却成型的过程中,基层10和透光层30对中间层20的膨胀收缩应力相当,进而基层10和透光层30可以以接近同等效果的对中间层20进行拉压,以使得中间层20上形成纹路清晰的裂纹。
在一些实施例中,基层生坯与透光层生坯的热膨胀系数之差的绝对值在0~0.4×10 -6(1/K)的范围内,从而使得基层10和透光层30之间的热膨胀系数差异较为适宜,避免两者的热膨胀系数差异过大而在烧结冷却成型的过程中,中间层20在两者之间传递彼此的膨胀收缩应力而导致基层10与透光层30之间产生应力差,导致陶瓷后盖的整体成型效果不佳。假如基层生坯和透光层生坯的热膨胀系数差异过大,那么在烧结冷却成型的过程中,基层生坯所形成的基层10对中间层生坯所形成的中间层20的膨胀收缩应力将有一部分经中间层20传递至透光层30,相应地,透光层生坯形成的透光层30对中间层 20的膨胀收缩应力也有一部经中间层20传递至基层10,由于基层生坯与透光层生坯的热膨胀系数差异较大,因此,经过中间层20向彼此传递的膨胀收缩应力也将随机的放大,这样很可能就会导致基层10和透光层30之间在某一处形成较大的相对应力而出现相对移位或受应力影响而产生开裂,严重影响到陶瓷后盖最终的成型效果。因此,本实施例中,将基层生坯和透光层生坯之间的热膨胀系数差异控制在0~0.4×10 -6(1/K)的这一范围内,可以有效的避免基层10和透光层30之间在某一处形成较大的相对应力而出现相对移位或受应力影响而产生开裂的不良。
在800℃的条件下,基层生坯和/或透光层生坯的热膨胀系数在11×10 -6(1/K)~11.6×10 -6(1/K)的范围内,中间层生坯的陶瓷材料的热膨胀系数在8×10 -6(1/K)~9.6×10 -6(1/K)的范围内或者13×10 -6(1/K)~14.6×10 -6(1/K)的范围内。这种设置下,最终所获得的陶瓷后盖能够维持较高的结构强度,同时陶瓷后盖的表面能够获得较佳的陶瓷手感并呈现出自然开裂的裂纹装饰效果。
上述陶瓷后盖以及采用陶瓷后盖的制作方法制得的陶瓷后盖可以用于移动终端,作为移动终端的壳体。也可以与其他例如边框等结构一起构成壳体,以适用于移动终端。壳体可以是边框与陶瓷后盖烧结一体成型而成,例如,边框和陶瓷后盖采用相同的材质,在陶瓷后盖烧结成型的过程中,将边框与陶瓷后盖烧结成型于一体。或者,在其他实施方式中,边框也可以采用与陶瓷后盖不同的比如金属、塑料或玻璃等材质,同样可以在陶瓷后盖烧结成型的过程中,将边框以一体成型的方式连接于陶瓷后盖,使得壳体具有较佳的结构强度。
在此基础上,本申请提供了一种移动终端,包括上述的陶瓷后盖,或者, 移动终端包括如上的壳体。
由于陶瓷后盖中,中间层20形成在基层10与透光层30之间,因此,中间层20上产生的裂纹将透过透光层30呈现裂纹时,一方面,中间层20被基层10和透光层30夹设在中间,这样就不会应中间层20形成裂纹而影响陶瓷后盖的整体强度,即这种结构设置下,陶瓷后盖可以维持较强的结构强度。另一方面,透光层30覆设在具有裂纹的中间层20上,能够借助透光层30的隔挡效果而防止裂纹产生搁手的不佳体验,这样陶瓷后盖既可以获得裂纹装饰效果,同时维持陶瓷后盖较佳的陶瓷手感。因此,包括陶瓷后盖的移动终端也具有上述实现表面撞色效果的优点,即移动终端的表面能够获得具有自然开裂的裂纹装饰效果,且陶瓷后盖的结构稳固,具有较佳的抗摔性,不容易因掉落结构受损,以维持较好的使用效果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种陶瓷后盖的制作方法,其特征在于,包括以下步骤:
    提供基层生坯、中间层生坯以及透光层生坯,所述中间层生坯与所述基层生坯的热膨胀系数不同,所述透光层生坯与所述中间层生坯的热膨胀系数不同的;
    将所述中间层生坯和所述透光层生坯依次层叠于所述基层生坯,以获得生坯叠层;
    将所述生坯叠层进行烧结并冷却。
  2. 根据权利要求1所述的陶瓷后盖的制作方法,其特征在于,所述将所述生坯叠层进行烧结并冷却的步骤之前,还包括步骤:
    对所述生坯叠层进行等静压成型,等静压成型过程中,压强控制在120MPa~200MPa的范围内、温度控制在70℃~100℃的范围内。
  3. 根据权利要求1所述的陶瓷后盖的制作方法,其特征在于,所述基层生坯、所述中间层生坯或所述透光层是通过以下步骤制备得到的:
    将白色的或彩色的陶瓷浆料通过流延成型,得到流延坯体;
    根据陶瓷后盖尺寸对所述流延坯体进行冲压成型或裁片。
  4. 根据权利要求1所述的陶瓷后盖的制作方法,其特征在于,所述基层生坯与所述中间层生坯的热膨胀系数之差的绝对值在1.4×10 -6(1/K)~3.6×10 -6(1/K)的范围内。
  5. 根据权利要求1所述的陶瓷后盖的制作方法,其特征在于,所述中间层生坯与所述透光层生坯的热膨胀系数之差的绝对值在1.4×10 -6(1/K)~3.6×10 -6(1/K)的范围内。
  6. 根据权利要求1所述的陶瓷后盖的制作方法,其特征在于,所述基层 生坯或所述透光层生坯的热膨胀系数在11×10 -6(1/K)~11.6×10 -6(1/K)的范围内。
  7. 根据权利要求1所述的陶瓷后盖的制作方法,其特征在于,所述基层生坯在11×10 -6(1/K)~11.6×10 -6(1/K)的范围内,所述透光层生坯的热膨胀系数在11×10 -6(1/K)~11.6×10 -6(1/K)的范围内。
  8. 根据权利要求1、6或7所述的陶瓷后盖的制作方法,其特征在于,所述中间层生坯的热膨胀系数在8×10 -6(1/K)~9.6×10 -6(1/K)的范围内,或者,所述中间层生坯的热膨胀系数在13×10 -6(1/K)~14.6×10 -6(1/K)的范围内。
  9. 根据权利要求1所述的陶瓷后盖的制作方法,其特征在于,所述基层生坯与所述透光层生坯的热膨胀系数之差的绝对值在1.4×10 -6(1/K)~3.6×10 -6(1/K)的范围内。
  10. 根据权利要求1所述的陶瓷后盖的制作方法,其特征在于,所述将所述生坯叠层进行烧结并冷却后,所述中间层生坯所形成的中间层的颜色与所述透光层生坯所形成的透光层的颜色不同。
  11. 一种陶瓷后盖,其特征在于,所述陶瓷后盖采用如权利要求1至10任一项所述陶瓷后盖的制作方法制备。
  12. 一种陶瓷后盖,其特征在于,包括经烧结冷却成型于一体的基层、中间层和透光层;所述中间层形成于所述基层与所述透光层之间,形成所述基层的陶瓷材料的热膨胀系数为与形成所述中间层的陶瓷材料的热膨胀系数不同,且形成所述中间层的陶瓷材料的热膨胀系数与形成所述透光层的陶瓷材料的热膨胀系数不同。
  13. 根据权利要求12所述的陶瓷后盖,其特征在于,所述透光层的厚度为0.05mm~0.3mm,透射率为70%以上。
  14. 根据权利要求13所述的陶瓷后盖,其特征在于,所述透光层的厚度为0.05mm、0.1mm、0.15mm、0.2mm、0.25mm或0.3mm,所述透光层的透射率为70%、80%或90%。
  15. 根据权利要求12所述的陶瓷后盖,其特征在于,所述中间层的厚度小于所述基层的厚度,且所述中间层的厚度小于所述透光层的厚度。
  16. 一种壳体,其特征在于,包括边框和如权利要求11至15任一项所述的陶瓷后盖,所述边框与所述陶瓷后盖烧结一体成型。
  17. 一种移动终端,其特征在于,所述移动终端包括如权利要求11至15任一项所述的陶瓷后盖。
  18. 一种移动终端,其特征在于,所述移动终端包括如权利要求16所述的壳体。
PCT/CN2020/105674 2019-08-27 2020-07-30 陶瓷后盖及其制作方法、壳体及移动终端 WO2021036666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910796163.8A CN112441839B (zh) 2019-08-27 2019-08-27 陶瓷后盖及其制作方法、壳体及移动终端
CN201910796163.8 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021036666A1 true WO2021036666A1 (zh) 2021-03-04

Family

ID=74684654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105674 WO2021036666A1 (zh) 2019-08-27 2020-07-30 陶瓷后盖及其制作方法、壳体及移动终端

Country Status (2)

Country Link
CN (1) CN112441839B (zh)
WO (1) WO2021036666A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773055A (zh) * 2022-05-24 2022-07-22 内蒙古海特华材科技有限公司 一种高效吸收工频电磁场的氧化锆陶瓷的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115872736B (zh) * 2021-09-29 2023-11-10 Oppo广东移动通信有限公司 陶瓷壳体及其制备方法和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826743A (zh) * 2012-08-28 2012-12-19 梅玉德 一种制作装饰用冰裂纹玻璃的生产工艺
CN203167461U (zh) * 2012-07-27 2013-08-28 肖特玻璃科技(苏州)有限公司 用于电子设备外壳或边框的层状结构
CN108263141A (zh) * 2018-01-16 2018-07-10 广东欧珀移动通信有限公司 板材及其制备方法、壳体、电子设备
CN109354408A (zh) * 2018-12-05 2019-02-19 景德镇陶瓷大学 一种在陶瓷手机外壳上形成冰裂的制备工艺
US20190104627A1 (en) * 2017-10-03 2019-04-04 Corning Incorporated Glass-based articles having crack resistant stress profiles
CN109640563A (zh) * 2019-01-25 2019-04-16 Oppo广东移动通信有限公司 彩色陶瓷和壳体及其制备方法与电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2183888T3 (es) * 1994-11-25 2003-04-01 Ami Doduco Gmbh Carcasa destinada a recibir componentes electronicos y/o micromecanicos, hecha de un material sintetico, en la que penetran pistas conductoras.
KR101073873B1 (ko) * 2006-06-02 2011-10-14 가부시키가이샤 무라타 세이사쿠쇼 다층 세라믹 기판과 그 제조 방법, 및 전자 부품
CN100534958C (zh) * 2007-09-30 2009-09-02 成伟 一种低温釉下裂纹陶瓷制品的生产方法
CN102674896A (zh) * 2012-05-25 2012-09-19 广东蒙娜丽莎新型材料集团有限公司 釉下幻彩裂纹陶瓷砖的生产方法
CN106664810B (zh) * 2014-04-01 2019-10-11 三元St株式会社 电子设备用后盖
CN107337450A (zh) * 2017-06-30 2017-11-10 广东新秀新材料股份有限公司 高韧性陶瓷、其制备方法以及应用
CN109551956B (zh) * 2017-09-26 2021-11-26 昇印光电(昆山)股份有限公司 装饰片及电子设备盖板
CN109803508B (zh) * 2017-11-16 2021-04-20 比亚迪股份有限公司 一种电子设备的壳体及其制备方法和电子设备
CN108439997A (zh) * 2018-05-11 2018-08-24 东莞信柏结构陶瓷股份有限公司 多色陶瓷的制备方法及其制品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203167461U (zh) * 2012-07-27 2013-08-28 肖特玻璃科技(苏州)有限公司 用于电子设备外壳或边框的层状结构
CN102826743A (zh) * 2012-08-28 2012-12-19 梅玉德 一种制作装饰用冰裂纹玻璃的生产工艺
US20190104627A1 (en) * 2017-10-03 2019-04-04 Corning Incorporated Glass-based articles having crack resistant stress profiles
CN108263141A (zh) * 2018-01-16 2018-07-10 广东欧珀移动通信有限公司 板材及其制备方法、壳体、电子设备
CN109354408A (zh) * 2018-12-05 2019-02-19 景德镇陶瓷大学 一种在陶瓷手机外壳上形成冰裂的制备工艺
CN109640563A (zh) * 2019-01-25 2019-04-16 Oppo广东移动通信有限公司 彩色陶瓷和壳体及其制备方法与电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773055A (zh) * 2022-05-24 2022-07-22 内蒙古海特华材科技有限公司 一种高效吸收工频电磁场的氧化锆陶瓷的制备方法

Also Published As

Publication number Publication date
CN112441839A (zh) 2021-03-05
CN112441839B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2021036666A1 (zh) 陶瓷后盖及其制作方法、壳体及移动终端
EP3560703B1 (en) Ceramic shell, mobile terminal and method for manufacturing ceramic shell
CN203645934U (zh) 一种电子产品陶瓷壳体的叠层结构
WO2021068722A1 (zh) 陶瓷结构件的制备方法、陶瓷结构件及电子设备
CN112351121B (zh) 陶瓷后盖制作方法、陶瓷后盖及移动终端
CN108046797A (zh) 一种利用晶须增韧氧化锆薄板的制备方法及其产品
CN102549687A (zh) 电容器
CN112430085A (zh) 陶瓷结构件的制作方法、陶瓷结构件及移动终端
JP2016131195A (ja) Ntcサーミスタ素子の製造方法
KR101408135B1 (ko) 고밀도와 고강도를 가진 그린시트의 제조방법, 그린시트 제조용 세라믹 슬러리, 및 그린시트
CN102941730A (zh) 超薄压电陶瓷生坯膜片叠层烧结隔粘剂及其涂覆方法
JP2008069056A (ja) 誘電体磁器組成物
EP4266335A1 (en) Soft magnetic alloy magnetic sheet, preparation method therefor and use thereof
CN109719300B (zh) 手机中框、手机后盖以及手机
CN111517778B (zh) 一种低温烧结氧化锌压敏陶瓷及其制备方法
CN111646805B (zh) 陶瓷结构件的制作方法和移动终端
CN107053790B (zh) 电子设备、陶瓷构件及其制备方法
WO2021047415A1 (zh) 壳体及其制备方法和电子设备、焊接组合物及其应用
CN111902882A (zh) 导电性浆料、电子部件以及叠层陶瓷电容器
JP2011088756A (ja) 低温焼結セラミック材料、低温焼結セラミック焼結体および多層セラミック基板
US11557410B2 (en) Ceramic material, varistor, and method for producing the ceramic material and the varistor
JP2004014534A (ja) 積層チップインダクタの製造方法
CN108059455B (zh) 一种中介高品质τf近零的微波介质陶瓷及其制备方法
JP2021051912A (ja) 固体電解質スラリーとその製造方法及び全固体電池
CN116246876B (zh) 一种高磁导率高Bs柔性磁片及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856272

Country of ref document: EP

Kind code of ref document: A1