WO2021031478A1 - 一种水平滑台位移测量与保护装置 - Google Patents

一种水平滑台位移测量与保护装置 Download PDF

Info

Publication number
WO2021031478A1
WO2021031478A1 PCT/CN2019/126504 CN2019126504W WO2021031478A1 WO 2021031478 A1 WO2021031478 A1 WO 2021031478A1 CN 2019126504 W CN2019126504 W CN 2019126504W WO 2021031478 A1 WO2021031478 A1 WO 2021031478A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
polishing
unit
control unit
feeding unit
Prior art date
Application number
PCT/CN2019/126504
Other languages
English (en)
French (fr)
Inventor
董志刚
Original Assignee
江苏集萃精凯高端装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃精凯高端装备技术有限公司 filed Critical 江苏集萃精凯高端装备技术有限公司
Priority to JP2022511321A priority Critical patent/JP7349761B2/ja
Publication of WO2021031478A1 publication Critical patent/WO2021031478A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/02Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents designed for particular workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/20Drives or gearings; Equipment therefor relating to feed movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece

Definitions

  • the invention relates to the technical field of ultra-precision polishing, in particular to a crystal material homogenization polishing device and a use method.
  • the abrasive grains on the polishing disk form a complex movement track on the surface of the workpiece, which helps to improve the processing accuracy.
  • the movement trajectory formed by the abrasive particles on the surface of the workpiece is often regular and periodic.
  • the surface of the polishing disk may be damaged or damaged. Defects will repeatedly act on the surface of the workpiece, resulting in a decrease in the surface quality and accuracy of the workpiece. Therefore, in the polishing process, it is necessary to drive the workpiece to move along a specific trajectory through a mechanical structure.
  • the method of reciprocating feeding along the radial direction of the polishing disc or using the planetary gear mechanism to drive the workpiece revolution is often used.
  • the above methods can form a complex workpiece motion track and help improve the machining accuracy.
  • the trajectory generated by the above method is relatively single and cannot be changed at will.
  • the linear velocity of the polishing disk at the position will also change, and the removal rate will also change, which will make the processing state of the workpiece unstable and reduce the processing accuracy.
  • Chinese Invention Patent Application Publication No. CN108188865 A discloses a laser crystal polishing device that uses a driving device to drive a workpiece to move closer to or away from the vertical axis of the polishing disk, thereby changing the position of the workpiece on the polishing disk, which can be used to rough the crystal. Polishing and fine polishing can be performed.
  • the device can only realize the reciprocating movement of the workpiece along a straight line, and cannot realize more complicated movement modes, and the improvement of the processing accuracy of crystal materials is limited.
  • Chinese Invention Patent Application Publication No. CN107803723 A discloses a grinding and polishing device.
  • the grinding and polishing tool Through a planetary gear mechanism, the grinding and polishing tool not only revolves around the polishing axis, but also has a rotation around its own axis.
  • the device can provide polishing pressure. Can effectively improve processing accuracy.
  • due to the fixed structure of the planetary gear mechanism it cannot be changed at will.
  • the compound motion of the revolution around the polishing shaft and the rotation around its own axis is periodic, and the trajectory complexity is limited.
  • the polishing pressure of the device needs to be changed by adjusting the compression amount of the spring, which is not convenient in actual processing.
  • the main technical problem to be solved by the present invention is to provide a crystal material homogenization polishing device and a use method to solve the above-mentioned defects of the existing polishing device.
  • a technical solution adopted by the present invention is to provide a crystal material homogenization polishing device, including: a feeding unit, a clamping unit, a polishing unit and a control unit, the control unit is used to control the
  • the feeding unit drives the workpiece to move on the polishing unit according to the set movement trajectory to realize the polishing of the surface of the workpiece.
  • the feeding unit can send relevant information about its movement trajectory to the control unit in real time, and the control unit calculates according to the relevant information.
  • the load force required for the workpiece in the polishing process is obtained, and the clamping unit is controlled to adjust the load force of the workpiece.
  • the feeding unit and the polishing unit are arranged in parallel on the vibration isolation platform, and the clamping unit is connected with the feeding unit.
  • the polishing unit includes: a gas static pressure turntable and a polishing disk, the gas static pressure turntable is fixed on the vibration isolation platform, and the polishing disk is installed on the gas static pressure turntable .
  • the feeding unit includes: a swing arm, a telescopic arm and a support, the support is fixed on the vibration isolation platform, and the swing arm is installed on the support and The support is rotated, and the telescopic arm is installed on the swing arm and can move horizontally back and forth along the swing arm.
  • a circular grating is fixed below the arc end of the front end of the swing arm, a horizontal grating is fixed on the side wall of the telescopic arm, and a circular grating is installed on the support.
  • a position sensor for acquiring the displacement of the horizontal grating is also installed on the side wall of the telescopic arm.
  • the clamping unit includes a shift fork, a speed-regulating motor, a driving wheel, a limit wheel and a pressing device, the pressing device is fixed on the shift fork for Provide loading force to the workpiece in the shift fork; there are multiple limit wheels, which are distributed below the circumferential surface of the shift fork, and cooperate with the driving wheel to clamp and limit the workpiece in the shift fork, so
  • the speed regulating motor is used to drive the driving wheel to rotate, and the driving wheel is used to drive the workpiece to rotate.
  • the present invention also provides a method for using a crystal material homogenization polishing device, which includes the following steps:
  • the swing arm and the telescopic arm in the feed unit jointly drive the center O 3 of the workpiece to move to the initial position;
  • polishing in the polishing unit setting an angular velocity ⁇ 1, [omega] the angular velocity of the workpiece 3; workpiece trajectory equation of an input control unit, and set the running speed S of the workpiece 3; trajectory calculated by the control unit of the feeding unit;
  • the feeding unit drives the workpiece to move on the polishing disc along the movement track calculated in step S2.
  • the feeding unit sends information about its movement track to the control unit in real time ,
  • the control unit calculates the distance between the center O 3 of the workpiece and the center O 1 of the polishing disc in real time according to relevant information, and calculates the loading force on the workpiece according to the distance;
  • the control unit feeds back the calculated loading force to the clamping unit, and the pressure device in the clamping unit changes the magnitude of the loading force in real time according to the feedback result.
  • the control unit controls the operation of the workpiece constant rate of s 3.
  • the information related to the trajectory of the feed unit includes the horizontal displacement information of the telescopic arm and the rotation angle information of the swing arm, and the position sensor in the feed unit reads and fixes in real time.
  • the value of the horizontal grating mounted on the telescopic arm obtains the horizontal displacement information of the telescopic arm, and the angle sensor in the feed unit reads the value of the circular grating fixed on the swing arm in real time to obtain the rotation angle information of the swing arm.
  • the control unit calculates the loading force according to the equation: Among them, r 3 is the radius of the workpiece, ⁇ 1 is the angular velocity of the polishing disk, and I(t) is the distance from the center O 3 of the workpiece to the center O 1 of the polishing disk at time t.
  • the present invention drives the workpiece to move on the polishing unit along a complex trajectory through the feed unit, the movement process is stable, the movement rate is constant, and the movement trajectory can be set according to the workpiece movement trajectory equation, while using the clamping unit
  • the load force is provided to the workpiece, and the control unit can change the size of the load force in real time, thereby ensuring the uniformity of the removal rate of the workpiece, and improving the geometric accuracy and surface quality of the workpiece.
  • Figure 1 is a schematic diagram of the three-dimensional structure of the device of the present invention.
  • Figure 2 is a front view of the device of the present invention.
  • Figure 3 is a partial enlarged view of Figure 1;
  • Figure 4 is a top view of the device of the present invention in its initial position
  • Figure 5 is a schematic diagram of the workpiece moving along a sinusoidal trajectory
  • Figure 6 is a diagram of the relationship between the linear velocity and angular velocity of the polishing disc
  • Figure 7 is a graph showing the variation of loading force with polishing disc speed
  • Figure 8 is a graph of the load force changing with time when the workpiece moves along a sinusoidal trajectory
  • Feeding unit 11, swing arm, 12, telescopic arm, 13, support, 14, round grating, 15, horizontal grating, 16, angle sensor, 17, position sensor; 2. Clamping unit, 21, shift fork, 22, speed regulating motor, 23, driving wheel, 24, limit wheel, 25, pressure device; 3. Polishing unit, 31, gas static pressure turntable, 32, polishing disc ; 4. Vibration isolation platform.
  • the embodiments of the present invention include:
  • a crystal material homogenization polishing device includes: a feeding unit 1, a clamping unit 2, a polishing unit 3, and a control unit.
  • the control unit is used to control the feeding unit 1 to drive a workpiece to be polished according to a set motion track.
  • the surface of the unit 3 moves to realize the polishing of the surface of the workpiece.
  • the feeding unit 1 can send relevant information about its running track to the control unit in real time, and the control unit calculates the required amount of the workpiece during the polishing process according to the relevant information. Load force, and control the clamping unit 2 to adjust the load force of the workpiece.
  • the feeding unit 1 and the polishing unit 3 are arranged on the vibration isolation platform 4 in parallel, and one end of the clamping unit 2 is fixedly connected with one end of the feeding unit 1.
  • the polishing unit 3 includes: a gas static pressure turntable 31 and a polishing disk 32, the gas static pressure turntable 31 is fixed on the vibration isolation platform 4, and the polishing disk 32 is installed on the gas static pressure turntable 31 And it rotates coaxially with the gas static pressure turntable 31.
  • the feeding unit 1 includes: a swing arm 11, a telescopic arm 12, and a support 13, the support 13 is fixed on the vibration isolation platform 4, and the swing arm 11 is mounted on the support 13 and is connected to the support 13
  • the support 13 rotates coaxially, the telescopic arm 12 is mounted on the swing arm 11 and can move horizontally back and forth along the swing arm 11, a circular grating 14 is fixed below the arc end of the front end of the swing arm 11, and A horizontal grating 15 is fixed on the side wall of the telescopic arm 12, an angle sensor 16 for obtaining the rotation angle of the circular grating 14 is also installed on the support 13, and a horizontal grating is also installed on the side wall of the telescopic arm 12 15 displacement position sensor 17.
  • the clamping unit 2 includes: a shift fork 21, a speed-regulating motor 22, a driving wheel 23, a limit wheel 24, and a pressing device 25.
  • the pressing device 25 is fixed on the shift fork 21 for aligning
  • the workpiece in the shift fork 21 provides a loading force; there are multiple limit wheels 24, which are distributed below the circumferential surface of the shift fork 21, and cooperate with the driving wheel 23 to clamp and limit the workpiece at the shift fork 21
  • the speed regulating motor 22 is used to drive the driving wheel 23 to rotate
  • the driving wheel 23 is used to drive the workpiece to rotate.
  • the method of using the crystal material homogenization polishing device includes the following steps:
  • the feeding unit 1 drives the workpiece to move on the polishing disc 32 along the movement track calculated in step S2, and the position sensor 17 reads the fixed installation in real time.
  • the value of the horizontal grating 15 on the telescopic arm 12 obtains the horizontal displacement information of the telescopic arm 12, and the angle sensor 16 reads the value of the circular grating 14 fixed on the swing arm 11 in real time to obtain the rotation angle information of the swing arm 11, and respectively correlate them feedback to the control unit, the control unit calculates the actual position of the center O of the workpiece according to the horizontal displacement information and rotation angle information 3, and drawn from the center O of polishing a workpiece center O 3, and calculated based on the distance Loading force on the workpiece;
  • the control unit feeds back the calculated loading force to the clamping unit 2, and the pressing device 25 in the clamping unit 2 changes the magnitude of the loading force in real time according to the feedback result.
  • the feed unit drives the workpiece 1 is calculated in accordance with step S2 motion trajectory on the polishing platen a polishing unit 32, the control unit controls the operating speed of the workpiece s 3 constant.
  • the control unit calculates the loading force according to the equation : Among them, r 3 is the radius of the workpiece, ⁇ 1 is the angular velocity of the polishing disk, and l(t) is the distance from the center O 3 of the workpiece to the center O 1 of the polishing disk at time t.
  • the method for using a crystal material homogenization polishing device of the present invention specifically includes the following processes:
  • a rectangular coordinate system is established with the center O 1 of the polishing disk 32 as the origin; in the plane where the upper surface of the support 13 is located, a polar coordinate system is established with the center O 2 of the upper surface of the support 13 as the origin; rectangular coordinates
  • the x 1 axis of the system is in the same direction as the x 2 axis of the polar coordinate system;
  • the swing arm 11 and the telescopic arm 12 move to the initial position.
  • the coordinates of the center O 3 of the workpiece in the rectangular coordinate system are (-l 0 , 0), and the coordinates in the polar coordinate system are (r 0 , 0);
  • the control unit calculates the rectangular coordinates (x(t), y(t)) of O 3 at time t;
  • the feed unit 1 moves with the above parameters, and at the same time drives the workpiece to move along the input path, and at the same time the polishing disk 32 starts to process the workpiece;
  • the control unit calculates the distance between O 3 and O 1 in real time
  • the pressurizing device 25 changes the magnitude of the loading force in real time according to the above calculation results
  • the position sensor 17 and the angle sensor 16 respectively read the value r'(t) of the horizontal grating 15 and the value ⁇ '(t) of the circular grating 14 in real time to obtain the actual position of O 3 at time t (r'(t), ⁇ '(t));
  • the present invention uses the linkage of the swing arm and the telescopic arm to drive the workpiece to move on the surface of the polishing disc along a complex trajectory.
  • the motion process is stable, the motion rate is constant, and the motion trajectory can be set manually, and the pressure device is used to provide the workpiece Loading force, the control unit can change the loading force in real time according to the different linear speeds of the polishing disk at the position of the workpiece, so as to ensure the uniformity of the removal rate of the workpiece and improve the geometric accuracy and surface quality of the workpiece.

Abstract

一种晶体材料均一化抛光装置及使用方法,抛光装置包括:进给单元(1)、夹持单元(2)、抛光单元(3)和控制单元;进给单元(1)带动工件沿设定运动轨迹在抛光单元表面运动,并实时将其运动轨迹相关信息反馈至控制单元;夹持单元(2)夹持工件并使工件在运动过程中自转,同时用于对工件提供一定的加载力;抛光单元(3)对在其表面运动的工件进行抛光;控制单元控制进给单元(1)的运动轨迹及控制夹持单元(2)的加载力;使用方法基于抛光装置对工件进行抛光。抛光装置及方法能够保证工件去除率的均一性、提高工件的几何精度和表面质量。

Description

一种水平滑台位移测量与保护装置
本申请要求了申请日为2019年8月20日,申请号为201910767109.0,发明名称为“一种晶体材料均一化抛光装置及使用方法”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及超精密抛光技术领域,特别是涉及一种晶体材料均一化抛光装置及使用方法。
背景技术
在抛光加工过程中,随着抛光盘的转动和工件自身的转动,抛光盘上的磨粒在工件表面形成复杂的运动轨迹,有助于提高加工精度。但是,在仅有抛光盘的转动和工件自身的转动的情况下,磨粒在工件表面形成的运动轨迹往往是有规律的、周期性的,在长时间加工过程中,抛光盘表面的损伤或缺陷会重复作用于工件表面,从而造成工件表面质量和精度的降低。因此,在抛光加工过程中,通过机械结构带动工件沿特定轨迹运动是有必要的。
目前常见的抛光加工过程中,多采用沿抛光盘径向往复进给或者利用行星齿轮机构带动工件公转的方法,以上方法均可以形成复杂的工件运动轨迹,有助于提高加工精度。但以上方法产生的轨迹比较单一,不可随意更改。同时,工件在抛光盘表面运动过程中,所处位置的抛光盘线速度也随之改变,进而去除率也会改变,这会使工件的加工状态不稳定,降低加工精度。根据Preston方程γ=KPv,在Preston系数不变K的条件下,若要维持去除率γ不变,需要载荷P随抛光速度v的改变而改变。
中国发明专利申请公布号CN108188865 A公开了一种激光晶体抛光装置,使用驱动装置驱动工件向靠近或远离抛光盘竖轴线的方向移动,从而改变工件在抛光盘上的位置,既可对晶体进行粗抛光,又可进行精抛光。但是该装置只能实现工件沿直线的往复运动,不能实现更复杂的运动方式,对晶体材料加工精度的提升是有限的。
中国发明专利申请公布号CN107803723 A公开了一种研磨抛光装置,通过行星轮机构,该研磨抛光工具除了绕抛光轴公转以外,还有一个绕自身轴线回转的自转,同时该装置可提供抛光压力,可以有效提高加工精度。但是行星轮机构由于结构已经固定,后期无法随意更改。而且绕抛光轴公转与绕自身轴线回转的自转的复合运动具有周期性,轨迹复杂程度有限。该装置的抛光压力的大小需要通过调整弹簧压缩量的方式来改变,实际加工中不便利。
发明内容
本发明主要解决的技术问题是提供一种晶体材料均一化抛光装置及使用方法,以解决现有抛光装置所存在的上述缺陷。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种晶体材料均一化抛光装置,包括:进给单元、夹持单元、抛光单元和控制单元,所述控制单元用于控制所述进给单元按照设定运动轨迹带动工件在抛光单元上运动以实现对工件表面的抛光,所述进给单元能够实时将其运动轨迹相关信息发送至控制单元,由所述控制单元根据相关信息计算得出抛光过程中对工件所需的加载力,并控制夹持单元对工件的加载力进行调整。
在本发明一个较佳实施例中,所述进给单元和抛光单元平行设置在隔振平台上,所述夹持单元与进给单元的连接。
在本发明一个较佳实施例中,所述抛光单元包括:气体静压转台和抛光盘,所述气体静压转台固定在隔振平台上,所述抛光盘安装在所述气体静压转台上。
在本发明一个较佳实施例中,所述进给单元包括:摆臂、伸缩臂和支座,所述支座固定在隔振平台上,所述摆臂安装在所述支座上并在所述支座上转动,所述伸缩臂安装在所述摆臂上并能沿着摆臂前后水平移动。
在本发明一个较佳实施例中,所述摆臂的前端圆弧端下方固定有圆光栅,所述伸缩臂的侧壁上固定有水平光栅,所述支座上还安装有用于获取圆光栅旋转角度的角度传感器,所述伸缩臂的侧壁上还安装有用于获取水平光栅位移量的位置传感器。
在本发明一个较佳实施例中,所述夹持单元包括:拨叉、调速电机、主动轮、限位轮和加压装置,所述加压装置固定在所述拨叉上,用于对位于拨叉内的工件提供加载力;所述限位轮有多个,间隔分布在所述拨叉的圆周面下方、并与主动轮相互配合将工件夹持限位在拨叉内,所述调速电机用于带动主动轮转动,所述主动轮用于带动工件自转。
为解决上述技术问题,本发明还提供了一种晶体材料均一化抛光装置的使用方法,包括以下步骤:
S1、进给单元内的摆臂和伸缩臂联合带动工件圆心O 3运动到初始位置;
S2、设定抛光单元中抛光盘的角速度ω 1、工件的角速度ω 3;将工件运动轨迹方程输入控制单元,并设定工件运行速率s 3;由控制单元计算出进给单元的运动轨迹;
S3、启动抛光单元、进给单元和夹持单元,进给单元带动工件沿着步骤S2计算得出的运动轨迹在抛光盘上运动,同时进给单元实时将其运动轨迹相关信息发送至控制单元,控制单元根据相关信息实时计算得出工件圆心O 3与抛光盘圆心O 1的距离,并根据所述距离计算出对工件的加载力;
S4、控制单元将计算出的加载力反馈给夹持单元,由夹持单元内的加压装置根据反馈结果实时改变加载力的大小。
在本发明一个较佳实施例中,进给单元带动工件沿着步骤S2计算出的运动轨迹在抛光单元的抛光盘上运动中,控制单元控制工件的运行速率s 3恒定。
在本发明一个较佳实施例中,步骤S3中,所述进给单元的运动轨迹相关信息包括伸缩臂的水平位移信息和摆臂的旋转角度信息,进给单元内的位置传感器实时读取固定安装在伸缩臂上的水平光栅的数值获取伸缩臂的水平位移信息,进给单元内的角度传感器实时读取固定在摆臂上的圆光栅的数值获取摆臂的旋转角度信息。
在本发明一个较佳实施例中,步骤S3中,所述工件的去除率服从Preston方程γ=KPv,其中γ 为去除率,K为Preston系数,P为加载压强,v抛光盘线速度,所述控制单元根据所述方程计算出加载力:
Figure PCTCN2019126504-appb-000001
其中,r 3为工件半径,ω 1为抛光盘角速度,I(t)为t时刻工件圆心O 3到抛光盘圆心O 1的距离。
本发明的有益效果是:本发明通过进给单元带动工件沿复杂轨迹在抛光单元上运动,运动过程平稳,运动速率恒定,且运动轨迹可以根据工件运动轨迹方程进行设定,同时使用夹持单元向工件提供加载力,控制单元可实时改变加载力的大小,从而保证工件去除率的均一性、提高工件的几何精度和表面质量。
附图说明
图1是本发明装置的立体结构示意图;
图2是本发明装置的主视图;
图3是图1的局部放大图;
图4是本发明装置在初始位置的俯视图;
图5是工件沿正弦型轨迹运动示意图;
图6为抛光盘线速度与角速度之间的关系图;
图7为加载力随抛光盘速度变化的曲线图;
图8为工件沿正弦型轨迹运动时,加载力随时间变化的曲线图;
附图中各部件的标记如下:1、进给单元,11、摆臂,12、伸缩臂,13、支座,14、圆光栅,15、水平光栅,16、角度传感器,17、位置传感器;2、夹持单元,21、拨叉,22、调速电机,23、主动轮,24、限位轮,25、加压装置;3、抛光单元,31、气体静压转台,32、抛光盘;4、隔振平台。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
参考图1~3,本发明实施例包括:
一种晶体材料均一化抛光装置,包括:进给单元1、夹持单元2、抛光单元3和控制单元,所述控制单元用于控制所述进给单元1按照设定运动轨迹带动工件在抛光单元3表面运动以实现对工件表面的抛光,所述进给单元1能够实时将其运行轨迹相关信息发送至控制单元,由所述控制单元根据相关信息计算得出抛光过程中对工件所需的加载力,并控制夹持单元2对工件的加载力进行调整。
其中,所述进给单元1和抛光单元3平行设置在隔振平台4上,所述夹持单元2的一端与进给单元1的一端固定连接。
进一步地,所述抛光单元3包括:气体静压转台31和抛光盘32,所述气体静压转台31固定在隔振平台4上,所述抛光盘32安装在所述气体静压转台31上并与所述气体静压转台31同轴转动。
所述进给单元1包括:摆臂11、伸缩臂12和支座13,所述支座13固定在隔振平台4上,所述摆臂11安装在所述支座13上并与所述支座13同轴转动,所述伸缩臂12安装在所述摆臂11上并能沿着摆臂11前后水平移动,所述摆臂11的前端圆弧端下方固定有圆光栅14,所述伸缩臂12的侧壁上固定有水平光栅15,所述支座13上还安装有用于获取圆光栅14旋转角度的角度传感器16,所述伸缩臂12的侧壁上还安装有用于获取水平光栅15位移量的位置传感器17。
所述夹持单元2包括:拨叉21、调速电机22、主动轮23、限位轮24和加压装置25,所述加压装置25固定在所述拨叉21上,用于对位于拨叉21内的工件提供加载力;所述限位轮24有多个,间隔分布在所述拨叉21的圆周面下方、并与主动轮23相互配合将工件夹持限位在拨叉21内,所述调速电机22用于带动主动轮23转动,所述主动轮23用于带动工件自转。
所述晶体材料均一化抛光装置的使用方法,包括以下步骤:
S1、摆臂11和伸缩臂12联合带动工件圆心O 3运动到初始位置;
S2、设定抛光盘32的角速度ω 1、工件的角速度ω 3;将工件运动轨迹方程输入控制单元,并设定工件运行速率s 3;由控制单元计算出进给单元1的运动轨迹;
S3、启动抛光单元3、进给单元1和夹持单元2,进给单元1带动工件沿着步骤S2计算得出的运动轨迹在抛光盘32上运动,同时位置传感器17实时读取固定安装在伸缩臂12上的水平光栅15的数值获取伸缩臂12的水平位移信息,角度传感器16实时读取固定在摆臂11上的圆光栅14的数值获取摆臂11的旋转角度信息,并分别将相关信息反馈至控制单元,控制单元根据所述水平位移信息和旋转角度信息计算出工件圆心O 3的实际位置,得出工件圆心O 3与抛光盘圆心O 1的距离,并根据所述距离计算出对工件的加载力;
S4、控制单元将计算出的加载力反馈给夹持单元2,由夹持单元2内的加压装置25根据反馈结果实时改变加载力的大小。
其中,进给单元1带动工件按照步骤S2计算出的运动轨迹在抛光单元的抛光盘32上运动中,控制单元控制工件的运行速率s 3恒定。
进一步地,所述工件的去除率服从Preston方程γ=KPv,其中γ为去除率,K为Preston系数,P为加载压强,v抛光盘线速度,所述控制单元根据所述方程计算出加载力:
Figure PCTCN2019126504-appb-000002
其中,r 3为工件半径,ω 1为抛光盘角速度,l(t)为t时刻工件圆心O 3到抛光盘圆心O 1的距离。
继续参考图4~图8,本发明一种晶体材料均一化抛光装置的使用方法,具体包括以下过程:
在抛光盘32所在平面内,以抛光盘32圆心O 1为原点建立直角坐标系;在支座13上表面所在平面内,以支座13上表面圆心O 2为原点建立极坐标系;直角坐标系的x 1轴与极坐标系的x 2轴方向相同;
摆臂11与伸缩臂12运行到初始位置,此时工件的圆心O 3在直角坐标系内的坐标为(-l 0,0),在极坐标系内的坐标为(r 0,0);
设定抛光盘角速度ω 1以及工件角速度ω 3
将O 3运动轨迹方程f(x)=Asin(nx+φ)输入控制单元;
设置O 3运行的速率s 3
Figure PCTCN2019126504-appb-000003
可解出O 3运动轨迹的极坐标方程r=r(θ);
根据
Figure PCTCN2019126504-appb-000004
控制单元计算出t时刻O 3的直角坐标(x(t),y(t));
进而根据r=r(θ)计算出t时刻O 3的极坐标(r(t),θ(t))、以及t时刻摆臂11的角速度ω 2(t)和伸缩臂12的速度v 2(t);
启动气体静压转台32;
启动调速电机22、加压装置25和进给单元1;
进给单元1以上述参数运动,同时带动工件沿所输入轨迹运动,同时抛光盘32开始对工件加工;
控制单元实时计算O 3与O 1之间的距离
Figure PCTCN2019126504-appb-000005
由抛光盘32上任一点的线速度v 1与角速度ω 1的关系v 1=ω 1R;
得O 3处的抛光盘线速度v 3=ω 1l(t);
由Preston方程γ=KPv 3,其中γ为去除率,K为Preston系数,P为加载压强,得t时刻加载力
Figure PCTCN2019126504-appb-000006
其中r 3为工件半径;
加压装置25根据以上计算结果实时改变加载力的大小;
位置传感器17和角度传感器16分别实时读取水平光栅15的数值r’(t)和圆光栅14的数值θ’(t),从而得到t时刻O 3的实际位置(r’(t),θ’(t));
将(r’(t),θ’(t))与(r(t),θ(t))对比,当误差大于容许值时,控制单元予以补偿,从而保证工件运行轨迹准确。
综上所述,本发明通过摆臂和伸缩臂联动来带动工件沿复杂轨迹在抛光盘表面运动,运动过程平稳,运动速率恒定,且运动轨迹可以人为设定,同时使用加压装置向工件提供加载力,控制单元可根据工件所处位置的抛光盘线速度的不同实时改变加载力的大小,从而保证工件去除率的均一性、提高工件的几何精度和表面质量。
在本发明的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种晶体材料均一化抛光装置,其特征在于,包括:进给单元、夹持单元、抛光单元和控制单元;
    所述进给单元,用于带动工件沿设定运动轨迹在抛光单元上运动,并实时将其运动轨迹相关信息反馈至控制单元;
    所述夹持单元,用于夹持工件并使工件在运动过程中自转,同时用于对工件提供加载力;
    所述抛光单元,用于对工件进行抛光;
    所述控制单元,用于控制所述进给单元的运动轨迹及控制夹持单元的加载力。
  2. 根据权利要求1所述的晶体材料均一化抛光装置,其特征在于,所述进给单元和抛光单元平行设置,所述夹持单元与进给单元连接。
  3. 根据权利要求2所述的晶体材料均一化抛光装置,其特征在于,所述抛光单元包括:气体静压转台和抛光盘,所述抛光盘安装在所述气体静压转台上。
  4. 根据权利要求2所述的晶体材料均一化抛光装置,其特征在于,所述进给单元包括:摆臂、伸缩臂和支座,所述支座固定在隔振平台上,所述摆臂安装在所述支座上并在所述支座上转动,所述伸缩臂安装在所述摆臂上并能沿着摆臂前后水平移动。
  5. 根据权利要求4所述的晶体材料均一化抛光装置,其特征在于,所述摆臂的前端圆弧端下方固定有圆光栅,所述伸缩臂的侧壁上固定有水平光栅,所述支座上还安装有用于获取圆光栅旋转角度的角度传感器,所述伸缩臂的侧壁上还安装有用于获取水平光栅位移量的位置传感器。
  6. 根据权利要求2所述的晶体材料均一化抛光装置,其特征在于,所述夹持单元包括:拨叉、调速电机、主动轮、限位轮和加压装置,所述加压装置固定在所述拨叉上,用于对位于拨叉内的工件提供加载力;所述限位轮有多个且间隔分布在所述拨叉的圆周面下方,所述限位轮与主动轮相互配合将工件夹持限位在拨叉内,所述调速电机用于带动主动轮转动,所述主动轮用于带动工件自转。
  7. 一种如权利要求1所述的晶体材料均一化抛光装置的使用方法,其特征在于,包括以下步骤:
    S1、进给单元带动工件圆心O 3运动到初始位置;
    S2、设定抛光单元中抛光盘的角速度ω 1、工件的角速度ω 3;将工件运动轨迹方程输入控制单元,并设定工件运行速率s 3;由控制单元计算出进给单元的运动轨迹;
    S3、启动抛光单元、进给单元和夹持单元,进给单元带动工件沿着步骤S2中控制单元计算出的运动轨迹在抛光盘上运动,同时进给单元实时将其运动轨迹相关信息反馈至控制单元,由控制单元计算出工件圆心O 3与抛光盘圆心O 1的距离以及对工件的加载力;
    S4、夹持单元内的加压装置根据步骤S3中控制单元的计算结果实时改变对工件的加载力大小。
  8. 根据权利要求7所述的晶体材料均一化抛光装置的使用方法,其特征在于,所述工件在抛光盘上运动的过程中,控制单元控制工件的运行速率s 3恒定。
  9. 根据权利要求7所述的晶体材料均一化抛光装置的使用方法,其特征在于,步骤S3中,所述进 给单元的运动轨迹相关信息包括伸缩臂的水平位移信息和摆臂的旋转角度信息,进给单元内的位置传感器实时读取固定安装在伸缩臂上的水平光栅的数值获取伸缩臂的水平位移信息,进给单元内的角度传感器实时读取固定在摆臂上的圆光栅的数值获取摆臂的旋转角度信息。
  10. 根据权利要求7所述的晶体材料均一化抛光装置的使用方法,其特征在于,所述工件的去除率服从Preston方程γ=KPv,其中γ为去除率,K为Preston系数,P为加载压强,v抛光盘线速度,所述控制单元根据所述方程计算出加载力:
    Figure PCTCN2019126504-appb-100001
    其中,r 3为工件半径,ω 1为抛光盘角速度,l(t)为t时刻工件圆心O 3到抛光盘圆心O 1的距离。
PCT/CN2019/126504 2019-08-20 2019-12-19 一种水平滑台位移测量与保护装置 WO2021031478A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511321A JP7349761B2 (ja) 2019-08-20 2019-12-19 水平スライドテーブルの変位測定及び保護装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910767109.0A CN110315421B (zh) 2019-08-20 2019-08-20 一种晶体材料均一化抛光装置及使用方法
CN201910767109.0 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021031478A1 true WO2021031478A1 (zh) 2021-02-25

Family

ID=68126231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126504 WO2021031478A1 (zh) 2019-08-20 2019-12-19 一种水平滑台位移测量与保护装置

Country Status (3)

Country Link
JP (1) JP7349761B2 (zh)
CN (1) CN110315421B (zh)
WO (1) WO2021031478A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505772A (zh) * 2022-01-21 2022-05-17 上海博仪计量设备有限公司 一种色谱仪取样阀阀瓣的再生修复装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315421B (zh) * 2019-08-20 2023-12-26 江苏集萃精凯高端装备技术有限公司 一种晶体材料均一化抛光装置及使用方法
CN110842742A (zh) * 2019-11-21 2020-02-28 苏州亮宇模具科技有限公司 能够形成高效高平面度的研磨抛光设备及研磨抛光方法
CN112917311A (zh) * 2021-01-19 2021-06-08 朱爱萍 一种机械加工零件打磨装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW480207B (en) * 1999-08-30 2002-03-21 Lam Res Corp Spindle assembly for force controlled polishing
CN1803398A (zh) * 2005-01-13 2006-07-19 罗门哈斯电子材料Cmp控股股份有限公司 具有径向交替凹槽段结构的化学机械抛光垫
US7156717B2 (en) * 2001-09-20 2007-01-02 Molnar Charles J situ finishing aid control
US7537511B2 (en) * 2006-03-14 2009-05-26 Micron Technology, Inc. Embedded fiber acoustic sensor for CMP process endpoint
CN101870085A (zh) * 2007-03-19 2010-10-27 硅电子股份公司 同时研磨多个半导体晶片的方法
DE102016113500A1 (de) * 2016-07-21 2018-01-25 Infineon Technologies Ag Vorrichtung zum Steuern einer Bewegung einer Schleifscheibe, Halbleiterwafer-Schleifsystem und Verfahren zum Bilden von Halbleiterbauelementen
US20190126427A1 (en) * 2017-10-31 2019-05-02 Ebara Corporation Substrate processing apparatus
CN109807739A (zh) * 2017-11-22 2019-05-28 台湾积体电路制造股份有限公司 化学机械研磨设备
CN110315421A (zh) * 2019-08-20 2019-10-11 江苏集萃精凯高端装备技术有限公司 一种晶体材料均一化抛光装置及使用方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657387B2 (ja) * 1985-12-10 1994-08-03 日本電気株式会社 化合物結晶の加工方法
JPH07299732A (ja) * 1994-05-11 1995-11-14 Mitsubishi Materials Corp ウエハの研磨方法および研磨装置
JP2000084842A (ja) * 1998-09-14 2000-03-28 Speedfam-Ipec Co Ltd 鏡面研磨方法
JP2005066783A (ja) * 2003-08-26 2005-03-17 Sanshin Co Ltd 板状部材研磨方法及びその装置
JP2005212069A (ja) * 2004-01-30 2005-08-11 Hiihaisuto Seiko Kk ラップ盤
JP2006332550A (ja) * 2005-05-30 2006-12-07 Asahi Sunac Corp 研磨パッドのドレッシング性評価方法及び研磨パッドのドレッシング方法
JP2010017808A (ja) * 2008-07-10 2010-01-28 Nikon Corp 研磨装置および研磨方法
CN101670541B (zh) * 2009-09-15 2012-05-23 厦门大学 大口径平面光学元件的快速抛光横移式加工方法
JP5750877B2 (ja) * 2010-12-09 2015-07-22 株式会社Sumco ウェーハの片面研磨方法、ウェーハの製造方法およびウェーハの片面研磨装置
CN102615555B (zh) * 2012-04-16 2014-02-05 大连理工大学 基于超声雾化水汽的kdp晶体微纳潮解超精密抛光方法
CN104669074A (zh) * 2015-03-13 2015-06-03 江西农业大学 变轨迹—超声椭圆振动辅助固结磨粒抛光机
JP7098311B2 (ja) * 2017-12-05 2022-07-11 株式会社荏原製作所 研磨装置、及び研磨方法
CN210435923U (zh) * 2019-08-20 2020-05-01 江苏集萃精凯高端装备技术有限公司 一种晶体材料均一化抛光装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW480207B (en) * 1999-08-30 2002-03-21 Lam Res Corp Spindle assembly for force controlled polishing
US7156717B2 (en) * 2001-09-20 2007-01-02 Molnar Charles J situ finishing aid control
CN1803398A (zh) * 2005-01-13 2006-07-19 罗门哈斯电子材料Cmp控股股份有限公司 具有径向交替凹槽段结构的化学机械抛光垫
US7537511B2 (en) * 2006-03-14 2009-05-26 Micron Technology, Inc. Embedded fiber acoustic sensor for CMP process endpoint
CN101870085A (zh) * 2007-03-19 2010-10-27 硅电子股份公司 同时研磨多个半导体晶片的方法
DE102016113500A1 (de) * 2016-07-21 2018-01-25 Infineon Technologies Ag Vorrichtung zum Steuern einer Bewegung einer Schleifscheibe, Halbleiterwafer-Schleifsystem und Verfahren zum Bilden von Halbleiterbauelementen
US20190126427A1 (en) * 2017-10-31 2019-05-02 Ebara Corporation Substrate processing apparatus
CN109807739A (zh) * 2017-11-22 2019-05-28 台湾积体电路制造股份有限公司 化学机械研磨设备
CN110315421A (zh) * 2019-08-20 2019-10-11 江苏集萃精凯高端装备技术有限公司 一种晶体材料均一化抛光装置及使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505772A (zh) * 2022-01-21 2022-05-17 上海博仪计量设备有限公司 一种色谱仪取样阀阀瓣的再生修复装置及方法

Also Published As

Publication number Publication date
CN110315421B (zh) 2023-12-26
JP2022545477A (ja) 2022-10-27
CN110315421A (zh) 2019-10-11
JP7349761B2 (ja) 2023-09-25

Similar Documents

Publication Publication Date Title
WO2021031478A1 (zh) 一种水平滑台位移测量与保护装置
US20090247050A1 (en) Grinding method for grinding back-surface of semiconductor wafer and grinding apparatus for grinding back-surface of semiconductor wafer used in same
KR101143290B1 (ko) 판상체의 연마 방법 및 그 장치
JP2010105158A (ja) ボイスコイルを用いた線形加圧搬送研削
CN106903560A (zh) 加工圆弧刃金刚石刀具刀尖圆弧的微摆研抛装置
JPS5973272A (ja) 数値制御研磨装置
TW201416176A (zh) 研削加工裝置及其控制方法
JP5688280B2 (ja) 平板状ワークの周縁加工装置
JP2602293B2 (ja) 非球面形状物体の加工方法及び加工装置
CN210435923U (zh) 一种晶体材料均一化抛光装置
KR102506342B1 (ko) 웨이퍼의 가공 방법
JPS591147A (ja) 自動磨き装置
JP2019198899A (ja) 面取り研削装置
JP5154884B2 (ja) レンズの連続加工方法
JPH09174427A (ja) 三次元微傾斜装置
JPH02131851A (ja) 曲面研摩装置
JPH09174422A (ja) 研磨装置
JPH029572A (ja) ラッピング装置
JPH08229792A (ja) 研削加工装置および研削加工方法
JPH0623663A (ja) 超平滑化非接触研磨方法および装置
JP2006231443A (ja) 小径工具による加工物の表面形状加工方法
JPS61274863A (ja) 研摩装置
JPS59161266A (ja) 機外砥石修正機
JPH08336753A (ja) 被加工物の研磨方法及びその研磨装置
JPH08505327A (ja) 眼鏡レンズ研磨加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942133

Country of ref document: EP

Kind code of ref document: A1