WO2021027506A1 - 一种显示屏、电子设备 - Google Patents

一种显示屏、电子设备 Download PDF

Info

Publication number
WO2021027506A1
WO2021027506A1 PCT/CN2020/103368 CN2020103368W WO2021027506A1 WO 2021027506 A1 WO2021027506 A1 WO 2021027506A1 CN 2020103368 W CN2020103368 W CN 2020103368W WO 2021027506 A1 WO2021027506 A1 WO 2021027506A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
hole
region
sub
display screen
Prior art date
Application number
PCT/CN2020/103368
Other languages
English (en)
French (fr)
Inventor
张吉和
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021027506A1 publication Critical patent/WO2021027506A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes

Definitions

  • This application relates to the field of display technology, in particular to a display screen and electronic equipment.
  • the above-mentioned electronic devices not only need to have a larger screen-to-body ratio, but also need to integrate a camera.
  • a small transparent area can be provided on the display screen of the electronic device, and the camera can be installed under the display screen, so that external light can pass through the transparent area and enter the camera to realize the shooting function.
  • the above-mentioned display screen is a liquid crystal display (LCD)
  • a plurality of spacers photospacer, PS
  • PS spacer
  • the liquid crystal cell is no longer provided with PS at the position corresponding to the transparent region 103, but only supported by liquid crystal (LC).
  • the center of the transparent area 103 will be recessed due to atmospheric pressure, the weight of the upper cover 101, the lower cover 102, etc., so that the cell gap H at the center of the transparent area 103 and the transparent area
  • the thickness H of the box at the edge of 103 varies greatly, which affects the shooting effect of the camera.
  • the embodiments of the present application provide a display screen and an electronic device, which are used to reduce the box thickness difference between the center position and the edge position of the area corresponding to the camera in the display screen.
  • the first aspect of the embodiments of the present application provides a display screen.
  • the display screen has a display area.
  • the display area includes at least one through hole area and a non-opening area arranged around the through hole area.
  • the display screen includes an array substrate, a cell-aligned substrate, a liquid crystal layer, and a plurality of main spacers.
  • the array substrate includes a first transparent substrate.
  • the counter substrate includes a second transparent substrate.
  • the liquid crystal layer is located between the array substrate and the aligning substrate. In the through hole area, the liquid crystal layer is in contact with the first transparent substrate and the second transparent substrate.
  • a plurality of main spacers are in the non-opening area and located between the array substrate and the box substrate.
  • the main spacer is in contact with the array substrate and the counter substrate. On this basis, a portion of the non-opening area close to the through hole area is divided into a plurality of regulators that are sequentially close to the through hole area.
  • the distribution density of the main spacers of the adjustment sub-area decreases sequentially.
  • the description is made by taking as an example that each main spacer is cut at the same horizontal position, and the obtained cross-sectional area is the same.
  • the cross section is parallel to the base substrate of the array substrate.
  • the decrease in the distribution density of the main spacers refers to the decrease in the number of main spacers per unit area on the surface of the array substrate facing the counter substrate.
  • the portion close to the through hole area is divided into a plurality of adjusting sub-areas that are sequentially close to the through hole area. And along the direction toward the through hole region, the distribution density of the main spacers of the plurality of adjustment sub-regions is sequentially reduced. That is, for the plurality of adjustment sub-areas, the closer the adjustment sub-areas to the through hole area, the smaller the number of main spacers per unit area. In this case, on the one hand, since the main spacer is not provided in the through hole area, and the liquid crystal layer is only supported, so along the direction toward the through hole area, the support of the plurality of adjustment sub-areas gradually approaches the through hole area.
  • each part in the non-perforated area such as the plurality of adjustment sub-areas and the non-aperture area except for the aforementioned adjustment sub-areas and the through-hole area, has basically the same laminated structure to the box substrate.
  • the main spacers everywhere in the display screen have the same original height (in the same direction as the thickness of the liquid crystal cell) before pressure is applied. Therefore, the original cell thickness difference of the liquid crystal cell before applying pressure is small. Therefore, it is possible to avoid the problem that the compression resistance is too different from the surrounding area due to the lack of main spacer support in the through-hole area, which causes a large difference between the cell thickness at the center of the through-hole area and the cell thickness at the edge of the through-hole area.
  • the display screen includes a through hole area.
  • Each adjustment sub-area is set around one circle of the through-hole area. Therefore, the support of the peripheral edge position of the through hole area is close to the support of the center position.
  • the display screen includes two spaced through hole regions, namely a first through hole region and a second through hole region.
  • the adjustment sub-areas that are sequentially close to the first through-hole area are the first adjustment sub-areas, and at least one first adjustment sub-area is arranged around a circumference of the first through-hole area.
  • the adjustment sub-areas that are sequentially close to the second through-hole area are the second adjustment sub-areas; and at least one second adjustment sub-area is arranged around a circumference of the second through-hole area.
  • the portion of the non-opening area between the first through-hole area and the second through-hole area is divided into at least one third regulator located between the adjacent first and second regulator sub-zones Area.
  • the distribution density of the main spacers in the third regulating subregion is greater than the distribution density of the main spacers in the first regulating subregion and the second regulating subregion. Thereby, the distribution density of the main spacers of the third adjusting sub-area and the first adjusting sub-area can be gradually reduced along the direction toward the first through hole area. Similarly, along the direction toward the second through hole area, the distribution density of the main spacers of the third adjusting subarea and the first adjusting subarea gradually decreases.
  • the part of the non-opening area between the first through-hole area and the second through-hole area is divided into s third adjustment sub-areas; 3 ⁇ s; s is a positive integer.
  • the distribution density of the main spacers of the part of the third adjusting sub-area close to the first through-hole area decreases sequentially.
  • the distribution density of the main spacers of the part of the third adjusting sub-area close to the second through-hole area decreases sequentially.
  • s is an even number
  • the distribution density of the main spacers of the s/2 third adjustment sub-regions close to the first through-hole region decreases in order along the direction toward the first through-hole region.
  • the distribution density of the main spacers of the s/2 third adjustment sub-regions close to the second through-hole region decreases sequentially.
  • the distribution density of the main spacers of the [(s-1)/2]+1 third adjustment sub-regions close to the first through-hole region decreases sequentially along the direction toward the first through-hole region;
  • the distribution density of the main spacers of the [(s-1)/2]+1 third adjustment sub-regions close to the second through hole region decreases sequentially. Therefore, the distribution of the main spacers of the plurality of third adjustment sub-areas can be determined according to the number of third adjustment sub-areas arranged between the first through-hole area and the second via-hole area.
  • s is an even number
  • the distribution density of the main spacers of each third adjusting sub-region is symmetrical with respect to the center position of the first through-hole area
  • the distribution density of the main spacers of a first regulating sub-region is the same.
  • the transition effect of the supporting force on the left and right sides of the first through hole area is close.
  • the distribution density of the main spacers of each third adjusting sub-area is symmetrical with respect to the center of the second through-hole area.
  • the distribution density of the spacers is the same.
  • the transition effect of the supporting force on the left and right sides of the second through hole area is close.
  • s is an odd number.
  • the distribution density of the main spacers in each third adjustment sub-area is relative to the first through-hole area
  • the distribution density of the main spacers of a first adjusting sub-region with a symmetric center position is the same.
  • the transition effect of the supporting force on the left and right sides of the first through hole area is close.
  • the main spacer distribution density of each third adjustment sub-area is symmetrical with respect to the center position of the second through-hole area
  • the distribution density of the main spacers of a second regulating sub-region is the same.
  • the non-opening area between the first through hole area and the second through hole area is the effective display area.
  • the portion between the first through hole area and the second through hole area can be displayed.
  • the non-opening area between the first through-hole area and the second through-hole area is an ineffective display area
  • the rest of the non-opening area is an effective display area.
  • the ineffective display area is divided into at least one fourth adjustment sub-area. A part of the plurality of third regulating sub-regions is located between the first through hole region and the fourth regulating sub-region, and another part of the plurality of third regulating sub-regions is located between the second through hole region and the fourth regulating sub-region.
  • the distribution density of main spacers in the fourth adjustment sub-area is greater than that of the third adjustment sub-area adjacent to the fourth adjustment sub-area.
  • the distribution density of the main spacers in the fourth and third adjustment sub-regions can be gradually reduced along the direction toward the first through-hole area.
  • the distribution density of the main spacers of the fourth and third adjustment sub-regions can be gradually reduced.
  • each The distribution density of main spacers in the third regulating sub-region gradually decreases. Therefore, it can be beneficial to reduce the support difference between the non-effective display area and the AA area adjacent to the non-effective display area.
  • each fourth adjustment sub-area and each third adjustment sub-area in a portion close to the edge of the effective display area , the distribution density of the main spacer is zero. In this way, the non-effective display area is closer to or the same in support at the junction with the AA area.
  • the box-matching substrate includes a second base substrate, a black matrix, a color filter layer, and a cover layer.
  • the black matrix is arranged on the side surface of the second base substrate facing the array substrate, and is located in the non-opening area, and is used to shield the traces on the array substrate and light-shielding components such as TFTs.
  • the color filter layer is arranged on the side surface of the black matrix facing the array substrate, and is located in the non-opening area, and is used to filter the light emitted by the backlight.
  • the cover layer is arranged on a surface of the color filter layer facing the array substrate, and is located in the display area. It is used to make the side surface of the box substrate facing the array substrate have good flatness.
  • the cover layer is in contact with the second base substrate in the through hole area, and the second transparent substrate includes the second base substrate and the cover layer.
  • the black matrix is arranged in the part of the adjustment sub-area closest to the through-hole area around a circumference of the through-hole area. Since the traces on the array substrate need to be routed to the periphery of the through hole area at the position of the through hole area, the black matrix on the mating substrate is arranged around the through hole area in order to align the holes on the array substrate. The surrounding traces are shielded.
  • the display screen includes a first through hole area and a second through hole area.
  • a part of the black matrix covers the ineffective display area between the first through hole area and the second through hole area.
  • the part of the black matrix in the non-effective display area is connected to the part of the black matrix in the first adjustment sub-area closest to the first through hole area, and is arranged around a circumference of the first through hole area.
  • the part of the black matrix in the ineffective display area is connected to the part of the black matrix in the second adjustment sub-area closest to the second through-hole area, and is arranged around a circumference of the second through-hole area.
  • the area between the first through hole area and the second through hole area is shielded by the black matrix, so that this part of the area does not need to be displayed.
  • the display screen includes a first through hole area and a second through hole area.
  • the color filter layer includes a plurality of first color photoresist blocks arranged at intervals.
  • the cover layer is in contact with the first color photoresist block and the black matrix.
  • the black matrix has a monolithic structure in the non-effective display area without a hollow area, because only a plurality of spaced first color photoresist blocks are provided in the color filter layer in the non-effective display area.
  • the cover layer fabricated on the side of the black matrix facing the array substrate can enter the gap between two adjacent first color photoresist blocks, so that the cover layer and the first color photoresist block and the first color photoresist block The black matrix below touches.
  • the thickness of the cover layer can be reduced.
  • the purpose of reducing the cell thickness difference between the ineffective display area and the AA area adjacent to the ineffective display area is achieved.
  • the display screen further includes a plurality of liquid crystal barrier walls arranged at intervals.
  • the liquid crystal barrier wall is located on the side surface of the covering layer facing the array substrate and arranged on the periphery of the through hole area.
  • the density of the main spacers of the adjustment sub-area is successively decreased.
  • the distribution density of the main spacers in the part except for the plurality of adjustment sub-regions is the first density.
  • the main spacer distribution density of the adjustment sub-areas farthest from the through hole area is the first density. Therefore, the supporting performance of the main spacers of the plurality of adjustment sub-regions can be slowly reduced, and finally approach the supporting performance of the through hole region.
  • the main spacer distribution density of the adjustment sub-region closest to the through hole region is less than or equal to 0.01%.
  • the supportability of the adjustment sub-area closest to the through-hole area can be closer to that of the through-hole area, which further reduces the gap between the box thickness at the center of the through-hole area and the edge of the through-hole area. The difference.
  • the unit area is 1-100 mm 2 .
  • the space for arranging the main spacer is limited due to the small unit area. Therefore, it is not conducive to dividing a plurality of adjusting sub-regions with gradually changing spacer distribution density.
  • the above unit area is greater than 100 mm 2 , due to the limitation of the size of the display area, the number of divided adjustment sub-areas is small, so that the supportability of the non-opening area to the through-hole area cannot be slowly transitioned, and the supportability is reduced. The effect of reducing the difference between the cell thickness at the center of the through hole area and the cell thickness at the edge of the through hole area.
  • the display screen further includes a plurality of auxiliary spacers located between the array substrate and the box substrate.
  • the auxiliary spacer is located in the non-opening area.
  • one end of the auxiliary spacer is in contact with the box substrate, and the other end has a gap with the array substrate.
  • the end of the auxiliary spacer facing the array substrate can be in contact with the array substrate, so that the array substrate can be further aligned.
  • the substrate and the cell substrate are supported to avoid large changes in the cell thickness of the liquid crystal cell in the pressed state, thereby destroying the main spacer and causing display dark spots and other phenomena that affect the display effect.
  • an electronic device including a photosensitive device and any one of the above-mentioned display screens.
  • the display screen has a display surface for displaying images and a back surface away from the display surface; the photosensitive device is located on the back surface of the display screen and corresponds to the position of the through hole area.
  • the light-receiving surface of the photosensitive device faces the display screen.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by some embodiments of the application.
  • Figure 2a is a schematic diagram of the explosive structure of the electronic device in Figure 1;
  • 2b is a schematic diagram of a structure of a display surface of an electronic device provided by some embodiments of the application.
  • FIG. 2c is a schematic diagram of another structure of the display surface of the electronic device provided by some embodiments of the application.
  • FIG. 3 is a schematic diagram of another structure of an electronic device provided by an embodiment of the application.
  • 4a is a schematic diagram of a structure of a display screen array substrate provided by an embodiment of the application.
  • Figure 4b is a cross-sectional view taken along O1-O1 in Figure 4a;
  • FIG. 5 is a schematic diagram of a part of the structure of a black matrix provided by an embodiment of the application.
  • Figure 6a is a cross-sectional view of a display screen provided by an embodiment of the application.
  • Figure 6b is a schematic diagram of a part of the structure of the box substrate in Figure 6a;
  • FIG. 7 is another cross-sectional view of the display screen provided by the embodiment of the application.
  • FIG. 8 is a schematic diagram of the size of a unit area provided by an embodiment of the application.
  • FIG. 9a is a schematic diagram of an arrangement of the adjustment sub-regions around the through hole region provided by an embodiment of the application.
  • Fig. 9b is a schematic diagram of the density distribution of main spacers in the regulating sub-region in Fig. 9a;
  • FIG. 10a is a schematic diagram of another setting method of the adjustment sub-region around the through hole region provided by an embodiment of the application.
  • Fig. 10b is a schematic diagram of the density distribution of main spacers in the regulating sub-region in Fig. 10a;
  • FIG. 11a is a schematic diagram of another setting method of the adjustment sub-region around the through hole region provided by an embodiment of the application.
  • Fig. 11b is a schematic diagram of the density distribution of main spacers in the regulating sub-region in Fig. 11a;
  • FIG. 12a is a schematic diagram of an arrangement of a first adjustment sub-area around the first through hole area and a second adjustment sub-area around the second through hole area provided by an embodiment of the application;
  • Figure 12b is a schematic diagram of the density distribution of the main spacers in the regulating sub-region in Figure 12a;
  • FIG. 13 is a schematic diagram of another arrangement of the first adjustment sub-region around the first through-hole area and the second adjustment sub-region around the second through-hole area according to an embodiment of the application;
  • FIG. 14a is a schematic diagram of the area between the first through hole area and the second through hole area as an ineffective display area according to an embodiment of the application;
  • Fig. 14b is a schematic diagram of the density distribution of main spacers in the regulating sub-region in Fig. 14a;
  • Fig. 14c is another cross-sectional view of the display screen provided by the embodiment of the application.
  • 100-liquid crystal cell 101-upper cover; 102-lower bottom; 103-transparent area; 01-electronic equipment; 10-display screen; 11-middle frame; 12-shell; 14-display area; 140-through hole area 141-non-opening area; 15-peripheral area; 110-array substrate; 111-on-cell substrate; 112-sealing glue; 113-liquid crystal layer; 20-photosensitive device; 21-sub-pixel; 201-pixel electrode; 200-first base substrate; 202-common electrode; 300-second base substrate; 312-color filter layer; 302a-first color photoresist block; 302b-second color photoresist block; 302c-third Color photoresist block; 303-covering layer; 30-main spacer; 31-auxiliary spacer; 32-liquid crystal retaining wall.
  • connection should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or a whole; it can be directly connected or Can be indirectly connected through an intermediary.
  • the embodiment of the application provides an electronic device.
  • the electronic equipment includes, for example, a TV, a mobile phone, a tablet computer, a personal digital assistant (PDA), a vehicle-mounted computer, and the like.
  • PDA personal digital assistant
  • the embodiments of the present application do not impose special restrictions on the specific form of the above electronic equipment. For the convenience of description, the following description takes the electronic device as a mobile phone as an example.
  • the aforementioned electronic device 01 mainly includes a display screen 10, a middle frame 11, and a housing 12.
  • the display screen 10 is installed on the middle frame 11, and the middle frame 11 is connected with the housing 12.
  • the display screen 10 has a display surface A1 for displaying images and a back surface A2 away from the display surface A1.
  • the housing 12 is close to the back A2 of the display screen 10.
  • the display surface A1 of the display screen 10, as shown in FIG. 2b (a top view taken along the arrow B shown in FIG. 2a), includes a display area 14 and a peripheral area 15 located around the display area 14.
  • the image displayed on the display screen 10 is located in the display area 14.
  • a driving circuit for controlling the display area 14 to perform image display such as a gate driving circuit or a source driving circuit, is provided in the peripheral area 15.
  • the peripheral area 15 is not used for display, so the width of the peripheral area 15 is the width of the screen frame of the display screen 10. The smaller the width of the peripheral area 15 is, the larger the screen-to-body ratio of the display screen 10 is.
  • the above-mentioned electronic device 01 further includes a photosensitive device 20 as shown in FIG. 3.
  • the photosensitive device 20 can receive external light and convert the received light signal into an electrical signal.
  • the above-mentioned photosensitive device 20 may be a camera or a fingerprint recognition device.
  • the following embodiments are all described by taking the photosensitive device 20 as a camera as an example.
  • the photosensitive device 20 can be arranged under the display screen 10, that is, the display The side of the back of the screen 10 where A2 is located.
  • the light-receiving surface of the photosensitive device 20, that is, the surface for receiving light faces the back surface A2 of the display screen 10.
  • the above-mentioned display screen 10 may be an LCD.
  • the display screen 10 includes an array substrate 110, an aligning substrate 111, and a sealant 112 and a liquid crystal layer 113 located between the array substrate 110 and the aligning substrate 111.
  • the frame sealant 112 is arranged around the liquid crystal layer 113 once.
  • the frame sealant 112 is located between the array substrate 110 and the cell aligning substrate 111, and is used to connect the array substrate 110 and the cell aligning substrate 111 to form a liquid crystal cell for accommodating the liquid crystal layer 113.
  • the distance H between the array substrate 110 and the cell substrate 111 is referred to as the cell thickness of the liquid crystal cell, and the cell thickness can determine the thickness of the liquid crystal layer 113.
  • the display area 14 includes at least one through hole area 140.
  • one photosensitive device 20 corresponds to the position of one through hole region 140.
  • the light transmittance of the through-hole region 140 is higher than that of the non-open-hole region 141, so that after the external light enters the photosensitive device 20 through the through-hole region 140, it can have a smaller light loss, which is beneficial to improve The photoelectric conversion efficiency and accuracy of the photosensitive device 20.
  • the above-mentioned through hole region 140 may be disposed at an angle formed by two intersecting edges of the peripheral region 15.
  • the above-mentioned through hole area 140 may be disposed above the display area 14 near the center of the display area 14.
  • the area other than the through hole area 140 in the above-mentioned display area 14 is referred to as the non-opening area 141.
  • FIG. 2b and FIG. 2c are described by taking an example in which the contour shape of the through hole region 140 is circular.
  • the present application does not limit the outline shape of the above-mentioned through hole region 140.
  • it may also be rectangular, triangular, trapezoidal or irregular shape.
  • the array substrate 110 is provided with a plurality of horizontal and vertical gate lines (GL) and data lines (data lines) as shown in FIG. 4a at the position corresponding to the non-opening area 141. line, DL). Multiple GLs and multiple DLs intersect to define multiple sub-pixels 21. At least one thin film transistor (TFT) and a pixel electrode 201 are provided in each sub-pixel 21.
  • TFT thin film transistor
  • the gate (g) of the TFT is electrically connected to a GL
  • the source (source, s) (or drain) of the TFT is electrically connected to a DL
  • the drain (drain, d) (or source) of the TFT is electrically connected It is electrically connected to the pixel electrode 201 in the sub-pixel 21.
  • the above-mentioned array substrate 110 is shown in FIG. 4b (a cross-sectional view obtained by cutting along O1-O1 shown in FIG. 4a), and further includes a common electrode 202.
  • the electrodes 202 can be shared.
  • the electrode layer of the first base substrate 200 far away from the array substrate 110 may include a plurality of strips arranged at intervals. ⁇ electrode.
  • the above-mentioned first base substrate 200 may be a transparent glass, resin or sapphire substrate. The present application does not limit the arrangement of the first base substrate 200.
  • FIG. 4b illustrates an example in which the TFT is a top-gate TFT.
  • the AL of the TFT is first Fabricated on the first base substrate 200.
  • the TFT of the top-gate structure can be fabricated by a low temperature polysilicon (LTPS) process.
  • the TFT prepared by the LTPS process has better conduction performance and higher mobility.
  • the embodiments of the present application are not limited thereto.
  • the AL may use other semiconductor materials such as amorphous silicon or metal oxide.
  • the above-mentioned TFT may also be a bottom-gate TFT.
  • the gate g of the TFT is first fabricated on the first base substrate 200.
  • each DL when a row of GL controls the TFTs in the sub-pixels 21 in the same row to turn on, each DL can write the data voltage Vdata to the TFTs in the sub-pixels 21 of the row. ⁇ pixel electrode 201 to charge the pixel electrode 201.
  • the pixel electrodes 201 in different sub-pixels 21 are charged with different data voltages Vdata. Therefore, the electric field generated between the pixel electrode 201 and the common electrode 202 is different. Therefore, the liquid crystal molecules of the liquid crystal layer 113 at different positions of the sub-pixels 21 are deflected at different angles under the electric field drive. Furthermore, after the light provided by the backlight of the display screen 10 passes through the liquid crystal layer 113 corresponding to different sub-pixels 21, the amount of light emitted from the light-emitting surface A1 of the display screen 10 is different to display grayscale images with different brightness.
  • a color filter layer 312 is provided on the second base substrate 300 of the counter substrate 111.
  • the color filter layer 312 is located in the non-opening area 141 as shown in FIG. 2b.
  • the color filter layer 312 includes three different color photoresist blocks. Each photoresist block corresponds to the position of a sub-pixel 21.
  • the color filter (CF) 312 includes a first color photoresist block 302a, a second color photoresist block 302b, and a third color photoresist block (not shown in FIG. 4b).
  • the first color photoresist block 302a can pass blue (blue, B) light in the light emitted by the backlight of the display screen 10.
  • the sub-pixel 21 corresponding to the first color photoresist block 302a can emit blue light.
  • the second color photoresist block 302b can make the red (red R) light of the light emitted by the backlight of the display screen 10 pass.
  • the sub-pixel 21 corresponding to the first color photoresist block 302a may emit red light.
  • the third color photoresist block can allow green (G) light in the light emitted by the backlight of the display screen 10 to pass through.
  • the sub-pixel 21 corresponding to the first color photoresist block 302a can emit green light.
  • color display can be realized.
  • three adjacent sub-pixels that can respectively emit red light, green light and blue light can constitute one pixel.
  • the box substrate 111 having the color filter layer 312 may also be referred to as a color filter substrate.
  • the above-mentioned color filter layer 312 may also be disposed in the array substrate 110.
  • a black matrix (BM) as shown in FIG. 4b is also provided on the box substrate 111.
  • the BM is located in the non-opening area 141 as shown in FIG. 2b, and is disposed between the second base substrate 300 and the color filter layer 312.
  • the BM in the non-opening area 141 is mainly a grid structure formed by a plurality of horizontally and vertically crossing light-shielding bars.
  • the BM is arranged around the circumference of the through hole region 140, so that the traces, such as GL and DL, which are routed at the edge of the through hole region 140 can be shielded.
  • the photoresist block 302b and the third color photoresist block form a color filter layer 312.
  • a part of the film layer formed later, such as the first color photoresist block 302a will cover the first patterned film layer, such as the first color photoresist block 302a, which causes the color filter layer 312 to deviate from the second color photoresist block 302a.
  • the surface of the base substrate 300 is uneven. In this case, as shown in FIG.
  • the above-mentioned box pair substrate 111 further includes an overcoat (OC) 303.
  • the cover layer 303 is disposed on the surface of the color filter layer 312 facing the array substrate 110, so that the surface of the box substrate 111 facing the array substrate 110 can have a better flatness.
  • the above-mentioned cover layer 303 may be located in the display area 14 as shown in FIG. 2c. Therefore, as shown in FIG. 6a, the cover layer 303 is located in the through hole area 140 of the display area 14, and is also located in the display area 14 except for the through hole area. In the non-perforated area 141 other than 140. Moreover, it can be seen from the above that the color filter layer 312 and the BM are both provided in the non-opening area 141, that is, as shown in FIG. 6a, the color filter layer 312 (including the first color photoresist block) is not provided in the through hole area 140 302a, the second color photoresist block 302b, and the third color photoresist block 302c) and BM. Therefore, the cover layer 303 is in contact with the second base substrate 300 in the via area 140. In this way, the above-mentioned covering layer 303 and the second base substrate 300 can form the second transparent substrate 310 of the counter substrate 111.
  • the second transparent substrate 310 may further include the liquid crystal alignment layer.
  • the second transparent substrate 310 may directly contact the liquid crystal layer 113.
  • the first base substrate 200 may serve as the first transparent substrate of the array substrate 110.
  • the liquid crystal alignment layer may extend to the through hole area 140 and be in contact with the first base substrate 200 .
  • the first transparent substrate 210 in FIG. 7 includes a first base substrate 200 (as shown in FIG. 6a) and a liquid crystal alignment layer.
  • the GI in the array substrate 110 may also extend into the through hole region 140.
  • the first transparent substrate 210 in FIG. 7 includes a first base substrate 200 (as shown in FIG. 6a), GI, and a liquid crystal alignment layer.
  • the first transparent substrate 210 may directly contact the liquid crystal layer 113.
  • the liquid crystal layer 113 is directly connected to the first transparent substrate 210 of the array substrate 110 (as shown in FIG. 7), and The second transparent substrate 310 of the box substrate 111 is in contact with each other.
  • the array substrate 110 is further provided with TFTs, GLs, and DLs capable of shielding light, and on the box substrate 111 is further provided with a color filter layer 312 and BM. Therefore, in the entire display area 14, the light transmittance of the through hole area 140 may be greater than that of the non-opening area 141.
  • the position of the photosensitive device 20 located on the back A2 of the display screen 10 is shown in FIG. 3, corresponding to the position of the through hole area 140, so as to reduce the external light entering the photosensitive device 20 through the through hole area 140.
  • the light loss caused by the incident light is shown in FIG. 3, corresponding to the position of the through hole area 140, so as to reduce the external light entering the photosensitive device 20 through the through hole area 140.
  • the display screen 10 further includes a lower polarizer disposed on the side of the first base substrate 200 away from the box substrate 111, and an upper polarizer disposed on the side of the second base substrate 300 away from the array substrate 110, the above-mentioned upper polarizer
  • the polarizer and the lower polarizer are provided with via holes at positions corresponding to the through hole region 140, so as to prevent the polarizer from affecting the light incident to the photosensitive device 20.
  • the above description is based on an example in which the common electrode 202 is fabricated on the array substrate 110.
  • the above-mentioned common electrode 202 can also be fabricated on the side surface of the cover layer 303 facing the array substrate 110 in the box substrate 111. In this case, the common electrode 202 has an entire thin film structure.
  • the display screen 10 further includes a plurality of main spacers 30 as shown in FIG. 6a.
  • the plurality of main spacers 30 are in the non-opening area 141 and located between the array substrate 110 and the box substrate 111.
  • the main spacer 30 is in contact with the array substrate 110 and the cell substrate 111, so that the array substrate 110 and the cell substrate 111 can be supported, so that the liquid crystal cell can maintain a certain cell thickness.
  • the display screen 10 further includes a plurality of auxiliary spacers 31 as shown in FIG. 6a.
  • the auxiliary spacer 31 is located between the array substrate 110 and the box substrate 111.
  • one end of the auxiliary spacer 31 is in contact with the counter substrate 111 and the other end has a gap with the array substrate 110.
  • the display screen 10 is pressed, the distance between the array substrate 110 and the counter substrate 111 is reduced under the pressure.
  • the end of the auxiliary spacer 31 facing the array substrate 110 can contact the array substrate 110. Therefore, it is possible to further support the array substrate 110 and the cell substrate 111 to avoid the large change in the cell thickness of the liquid crystal cell in the pressed state, thereby destroying the main spacers and causing display dark spots and other phenomena that affect the display effect.
  • the manufacturing process of the box-matching substrate 111 with the above-mentioned main spacer 30 and auxiliary spacer 31 is as follows: First, as shown in FIG. 6b, a patterning process is used to manufacture BM on the second base substrate 300. Then, the first color photoresist block 302a, the second color photoresist block 302b, and the third color photoresist block 302c are sequentially formed on the second base substrate 300 with the BM through a patterning process to form a color filter layer 312. Then, the cover layer 303 is coated on the second base substrate 300 on which the color filter layer 312 is formed. Next, on the second base substrate 300 on which the cover layer 303 is fabricated, the main spacer 30 and the auxiliary spacer 31 are fabricated by a patterning process.
  • the material constituting the main spacer 30 and the auxiliary spacer 31 may be a colorless and transparent material, such as acrylic.
  • the material constituting the main spacer 30 and the auxiliary spacer 31 may be a resin material with light-shielding properties.
  • the positions of the main spacer 30 and the auxiliary spacer 31 correspond to the position of the BM.
  • the above-mentioned patterning process includes a photolithography process, an etching step, and other processes for forming a predetermined pattern.
  • the above-mentioned photolithography process includes at least one of the processes of film formation, masking, exposure, development, etc., and uses photoresist, mask, exposure machine, etc. to form patterns.
  • the main spacer 30 is disposed in the non-opening area 141 shown in FIG. 6a, and the through-hole area 140 supports the array substrate 110 and the cell substrate 111 only through the liquid crystal layer 113.
  • the gravity of the first base substrate 200 or the second base substrate 300, the array substrate 110 and the box substrate 111 are recessed inward in the through hole region 140.
  • the cell thickness at the center of the through hole region 140 and the cell thickness at the edge of the through hole region 140 are greatly different, which affects the collection effect of the optical device 20.
  • a plurality of adjustment sub-areas such as I, II, III, IV.
  • the distribution density of the main spacers 30 of the above-mentioned adjustment sub-area decreases sequentially.
  • the regulating sub-region I, the regulating sub-region II, the regulating sub-region III, and the regulating sub-region IV are sequentially close to the through hole region 140. Based on this, the distribution density of the main spacers 30 of the regulating sub-region I, the regulating sub-region II, the regulating sub-region III, and the regulating sub-region IV decreases sequentially.
  • the distribution density of the main spacers 30 is the number of main spacers 30 in a unit area, such as a1 ⁇ a2, on the surface of the array substrate 110 facing the counter substrate 111, as shown in FIG. That is, within a unit area, the ratio of the area of the contact surface between the main spacer 30 and the array substrate 110 to the unit area.
  • the description is made by taking as an example that each main spacer 30 is cut at the same horizontal position, and the obtained cross-sectional area is the same.
  • the above-mentioned cross section is parallel to the first base substrate 200 of the array substrate 110.
  • the part close to the through-hole area 140 is divided into a plurality of adjustment sub-areas which are sequentially close to the through-hole area 140, such as I and II. , III, IV.
  • the distribution density of the main spacers 30 of the aforementioned adjustment sub-area I, adjustment sub-area II, adjustment sub-area III, and adjustment sub-area IV decreases in order. That is, for the above-mentioned multiple adjustment sub-regions, the closer the adjustment sub-regions of the through-hole region 140 are, the less the number of main spacers 30 per unit area is.
  • the main spacer 30 is not provided in the through-hole region 140, and is supported solely by the liquid crystal layer 113, in the direction toward the through-hole region 140, the above-mentioned regulating sub-region I and regulating sub-region II , The supportability of the adjustment sub-region III and the adjustment sub-region IV gradually approaches the supportability of the through hole region 140.
  • the deformation of the first base substrate 200 in the array substrate 110 and the second base substrate 300 in the box substrate 111 will be adjusted by the sub-region I ,
  • the regulating sub-region II, the regulating sub-region III, and the regulating sub-region IV gradually decrease to the center of the through hole region 140.
  • the cell thickness of the liquid crystal cell is gradually reduced from the adjustment sub-area I, the adjustment sub-area II, the adjustment sub-area III, and the adjustment sub-area IV to the center of the through hole area 140, which reduces the cell thickness and the center position of the through hole area 140.
  • the difference between the cell thickness at the edge of the through hole region 140 Reduce the influence on the collection effect of the optical device 20.
  • the density of the main spacers of the adjustment sub-regions decreases sequentially along the direction toward the through-hole region 140.
  • the distribution density of the main spacers 30 of the aforementioned adjustment sub-region I is 0.04%.
  • the distribution density of the main spacer 30 of the adjustment sub-region II is 0.03%.
  • the distribution density of the main spacers 30 in the adjustment subzone III is 0.02%.
  • the distribution density of the main spacers 30 in the adjustment sub-region IV is 0.01%.
  • the distribution density of the main spacers 30 of the aforementioned regulating sub-region I is 0.08%.
  • the distribution density of the main spacers 30 in the adjustment sub-region II is 0.05%.
  • the distribution density of the main spacers 30 in the adjustment subzone III is 0.03%.
  • the distribution density of the main spacers 30 in the adjustment sub-region IV is 0.01%.
  • the distribution density of the main spacers 30 in the above-mentioned regulator sub-region I, regulator sub-region II, regulator sub-region III, and regulator sub-region IV decreases in order. That is, in the above-mentioned adjustment sub-area I, adjustment sub-area II, adjustment sub-area III, and adjustment sub-area IV, on the surface of the array substrate 110 facing the counter substrate 111, the number of main spacers 30 per unit area decreases successively. Thereby, the supporting performance of the main spacer 30 of the adjusting sub-region I, the adjusting sub-region II, the adjusting sub-region III, and the adjusting sub-region IV can be slowly reduced, and finally close to the supporting performance of the through hole region 140.
  • the distribution density of the main spacers 30 in the portions other than the plurality of adjustment sub-regions, such as I, II, III, and IV is the first density.
  • the distribution density of the main spacer 30 of the adjusting sub-region I is the above-mentioned first density.
  • the distribution density of the main spacer 30 can adopt the conventional distribution density of the display screen 10, namely The above first density.
  • the distribution density of the main spacer 30 of the adjustment sub-region I farthest from the through hole 140 is the same as the above-mentioned conventional distribution density.
  • the main spacers in the non-opening region 141 near the through-hole region 140 can be The distribution density of the objects 30 gradually decreases from the conventional distribution density, so that the support performance gradually decreases from the conventional support performance and approaches the support performance of the through hole region 140.
  • the adjustment sub-region closest to the through hole region 140 for example, the distribution density of the main spacer 30 of the adjustment sub-region IV is less than or equal to 0.01%.
  • the distribution density of the main spacers 30 of the adjustment sub-region IV is less than or equal to 0.01%, the supportability of the adjustment sub-region IV can be made closer to the supportability of the through-hole region 140, and the through-hole area is further reduced.
  • the aforementioned unit area may be 1-100 mm 2 .
  • the side length a1 and the side length a2 of the rectangle are 1-10 mm.
  • the space for arranging the main spacers is limited due to the small unit area. Therefore, it is not conducive to dividing a plurality of adjusting sub-regions with gradually changing spacer distribution density.
  • the number of divided adjustment sub-areas is small due to the limitation of the size of the display area 14 itself, so that the non-opening area 141 to the through-hole area 140 cannot be obtained.
  • the support of the through-hole region 140 is slowly transitioned, and the effect of reducing the difference between the cell thickness at the center of the through-hole region 140 and the cell thickness at the edge of the through-hole region 140 is reduced.
  • the side length a1 or side length a2 per unit area may be 3 mm, 4 mm, 5 mm, or 6 mm.
  • the stacked structure of the box substrate 111 includes the second base substrate 300, BM, color filter layer 312 and cover layer 303 as shown in FIG. 6a. Therefore, except for the through-hole area 140 in the display screen 10, the laminated structure of the box substrate 111 is basically the same.
  • the main spacers 30 everywhere in the display screen 10 have the same original height (in the same direction as the thickness of the liquid crystal cell) before the pressure is applied. Therefore, the original cell thickness difference of the liquid crystal cell before applying pressure is small. Therefore, it is possible to avoid the large difference between the compression resistance and the surrounding area due to the lack of the main spacer support 30 in the through-hole area, resulting in a large difference between the cell thickness at the center of the through-hole area 140 and the cell thickness at the edge of the through-hole area 140 .
  • the structure of the display screen 10 will be exemplified according to the number of the through hole regions 140 in the display screen 10 and the difference in the setting positions.
  • the display screen 10 includes a through hole area 140.
  • the above-mentioned through hole region 140 may be disposed at an angle formed by two intersecting edges of the peripheral region 15.
  • the part close to the through-hole area 140 is divided into a plurality of adjustment sub-areas which are sequentially close to the through-hole area 140, for example
  • each adjustment sub-region is arranged around a circle of the through hole region 140.
  • the regulating sub-region IV, the regulating sub-region III, the regulating sub-region II, and the regulating sub-region I are nested in the periphery of the through hole region 140 in sequence.
  • the distribution density of the main spacers 30 of the adjustment sub-area I, the adjustment sub-area II, the adjustment sub-area III, and the adjustment sub-area IV decreases sequentially.
  • the distribution density of the main spacers 30 of the adjustment sub-zone I is 0.06%.
  • the distribution density of the main spacers 30 of the adjustment sub-region II is 0.04%.
  • the distribution density of the main spacers 30 in the adjustment subzone III is 0.02%.
  • the distribution density of the main spacers 30 in the adjustment sub-region IV is 0.01%.
  • the BM is arranged around a circumference of the through hole region 140 to form the boundary of the through hole region 140 (border).
  • the portion of the BM that is the boundary of the via region 140 can shield the traces routed on the edge of the via region 140, such as GL and DL.
  • the main spacer 30 is not provided in the through hole region 140, and the liquid crystal layer 113 is solely supported for support.
  • the liquid crystal layer 113 is connected to the second transparent substrate 310 (including the cover layer 303 and the second base substrate 300) in the cell substrate 111, and the first transparent substrate in the array substrate 110
  • the bottom 210 ie, the first base substrate 200
  • the thickness of the liquid crystal layer 113 in the through hole area 140 is greater than the thickness of the liquid crystal layer 113 in the non-open hole area 141.
  • the above-mentioned display screen 10 further includes a plurality of liquid crystal barrier walls 32 arranged at intervals as shown in FIG. 9b.
  • the liquid crystal barrier wall 32 may be located on a surface of the cover layer 303 facing the array substrate 110 and arranged at the periphery of the through hole region 140.
  • the liquid crystal barrier wall 32 may be located in the adjustment sub-region IV closest to the through hole region 140.
  • the through-hole area 140 contacts the array substrate 110, so as to achieve the supporting effect and prevent the liquid crystal in the through-hole area 140 from flowing into the non-opening area 141, which causes the instantaneous variation of the cell thickness to produce water. Phenomena such as ripples will affect the display effect.
  • the multiple liquid crystal barrier walls 32 are arranged at intervals, so that the liquid crystal in the liquid crystal cell can flow smoothly between the through hole area 140 and the non-open hole area 141.
  • the main spacer 30 and the auxiliary spacer 31 are also provided on the surface of the cover layer 303 facing the array substrate 110. Therefore, it is possible to complete the fabrication of a plurality of spaced apart liquid crystal barrier walls 32 while fabricating the main spacer 30 and the auxiliary spacer 31 through the same fabrication process.
  • the material constituting the liquid crystal barrier wall 32 may be the same as the material of the main spacer 30 and the auxiliary spacer 31.
  • the part close to the through-hole area 140 is divided into four adjustment sub-areas which are sequentially close to the through-hole area 140, for example, I , II, III, IV as examples.
  • the portion close to the through hole area 140 is divided into five areas that are close to the through hole in turn.
  • the modulator region of 140 such as I, II, III, IV, V.
  • the main spacers 30 of the adjusting sub-area I, the adjusting sub-area II, the adjusting sub-area III, the adjusting sub-area IV, and the adjusting sub-area IV are distributed.
  • the density decreases sequentially.
  • the distribution density of the main spacers 30 of the adjustment sub-region I is 0.08%.
  • the distribution density of the main spacers 30 in the adjustment sub-region II is 0.06%.
  • the distribution density of the main spacers 30 in the adjustment subzone III is 0.04%.
  • the distribution density of the main spacers 30 in the adjustment sub-region IV is 0.02%.
  • the distribution density of the main spacer 30 of the adjustment sub-region V is 0.01%.
  • the sum L of the widths of all the adjustment sub-areas can be in the range of 5mm-50mm.
  • the sum L of the widths of all the adjustment sub-areas is less than 5 mm, the number of the adjustment sub-areas that can be divided is small, so that the distribution density of the main spacers 30 of the multiple adjustment sub-areas cannot be effectively stepped. The state is reduced. It is not conducive to the effect of reducing the difference between the cell thickness at the center of the through hole region 140 and the cell thickness at the edge of the through hole region 140.
  • the sum L of the widths of all the adjustment sub-areas is greater than 50 mm, the number of the adjustment sub-areas that can be divided is larger, which will increase the complexity of the distribution of the main spacer 30.
  • the sum L of the widths of all adjustment sub-regions may be 5mm, 6mm, 7mm, 8mm, 10mm, 20mm, 30mm, 40mm.
  • the above-mentioned through hole area 140 may be disposed above the display area 14 near the center of the display area 14.
  • the part close to the through-hole area 140 is divided into a plurality of parts, for example, four adjacent to the through-hole area 140 in turn.
  • the sub-areas, I, II, III, and IV, each of the adjustment sub-areas is arranged around a circumference of the through hole area 140.
  • the distribution density of the main spacers 30 of the regulating sub-region I, the regulating sub-region II, the regulating sub-region III, and the regulating sub-region IV decreases in order.
  • the distribution density of the main spacers 30 of the adjustment sub-zone I is 0.06%.
  • the distribution density of the main spacers 30 of the adjustment sub-region II is 0.04%.
  • the distribution density of the main spacers 30 in the adjustment subzone III is 0.02%.
  • the distribution density of the main spacers 30 in the adjustment sub-region IV is 0.01%.
  • the display screen 10 includes two spaced through hole regions, namely a first through hole region 140a and a second through hole region 140b.
  • the non-opening area 141 in the display area 14 except for the first through hole area 140a and the second through hole area 140b is an effective display area (AA) in the display area 14 that can realize image display.
  • the adjustment sub-regions sequentially close to the first through hole region 140a are called the first adjustment sub-regions (for example, Ia, IIa, IIIa, IVa), and at least one first adjustment sub-region surrounds
  • the first through-hole area 140a is arranged one round.
  • the first regulating sub-region Ia, the first regulating sub-region IIa, and the first regulating sub-region IIIa encompass approximately 3/4 of the first through hole region 140a from left to right.
  • the first adjustment sub-region IVa is arranged around a circumference of the first through hole region 140a.
  • the distribution density of the main spacers 30 of the first regulatory sub-region Ia, the first regulatory sub-region IIa, the first regulatory sub-region IIIa, and the first regulatory sub-region IVa are 0.06% and 0.04%, respectively. , 0.02%, 0.01%.
  • each adjustment sub-region in turn close to the periphery of the second through hole region 140b is called a second adjustment sub-region (for example, Ib, IIb, IIIb, IVb), and at least one second adjustment sub-region surrounds the second through hole region 140b.
  • Week setting For example, in FIG. 12a, the second regulating sub-region Ib, the second regulating sub-region IIb, and the second regulating sub-region IIIb encompass approximately 3/4 of the second through hole region 140b from right to left.
  • the second regulating sub-region IVb is arranged around a circumference of the second through hole region 140b.
  • the distribution density of the main spacers 30 of the second regulatory subregion Ib, the second regulatory subregion IIb, the second regulatory subregion IIIb, and the second regulatory subregion IVb are 0.06%, 0.04%, and 0.02%, respectively. , 0.01%.
  • the portion of the non-opening area 141 between the first through hole area 140a and the second through hole area 140b is divided into adjacent first adjusting sub-regions IVa and second At least one third regulator region between the two regulator regions IVb.
  • the distribution density of the main spacers 30 of any one of the above-mentioned third regulatory sub-regions is greater than that of the first regulatory sub-regions (Ia, IIa, IIIa or IVa) and the main spacers of the second regulatory sub-regions (Ib, IIb, IIIb, IVb) 30 distribution density. Therefore, the distribution density of the main spacers 30 of the third regulating sub-region c2 and the first regulating sub-region IVa can be gradually reduced along the direction toward the first through hole region 140a. Similarly, along the direction toward the second through-hole region 140b, the distribution density of the main spacers 30 of the third adjusting sub-region c3 and the first adjusting sub-region IVb gradually decreases.
  • the portion between the first through hole region 140a and the second through hole region 140b is divided into a third regulating subregion c1, a third regulating subregion c2, and a third regulating subregion c3 as shown in FIG. 12a.
  • s is an odd number.
  • the distribution density of each of the above-mentioned third adjustment sub-areas decreases sequentially.
  • s is an even number.
  • a plurality of the first through-hole regions 140a are close to half the number (ie, s/2).
  • the distribution density of each of the above-mentioned third adjusting sub-regions decreases sequentially.
  • the part between the first through-hole region 140a and the second through-hole region 140b is divided into a third regulating sub-region c1, a third regulating sub-region c2, a third regulating sub-region c3, and a third regulating sub-region as shown in FIG. Sub-area c4.
  • the distribution density of the main spacers 30 in the adjustment sub-region c2 decreases sequentially.
  • the distribution density of the main spacers 30 of each third adjusting sub-region (c1, c2) is the same as the distribution density of the main spacers of a first adjusting sub-region symmetrical about the center position of the first through hole region 140a.
  • the distribution density of the main spacers 30 of the third regulating sub-region c1 and the first regulating sub-region IIa are the same.
  • the distribution density of the main spacers 30 of the third regulating sub-region c2 is the same as that of the first regulating sub-region IIIa.
  • s is an odd number.
  • a third adjusting sub-region located in the middle, and a plurality of third adjusting sub-regions between the middle third adjusting sub-region and the second through-hole region 140b are oriented toward the first In the direction of the two through-hole regions 140b, the distribution density of each of the above-mentioned third adjusting sub-regions decreases sequentially.
  • s is an even number.
  • the plurality of third adjusting sub-regions close to half of the second through-hole region 140b (ie s/2) along the direction toward the second through-hole region 140b, The distribution density of each of the above-mentioned third regulating sub-regions decreases sequentially.
  • the part between the first through-hole region 140a and the second through-hole region 140b is divided into a third regulating sub-region c1, a third regulating sub-region c2, a third regulating sub-region c3, and a third regulating sub-region as shown in FIG. Sub-area c4.
  • the distribution density of the main spacers 30 in the adjustment sub-region c4 decreases sequentially.
  • the distribution density of the main spacers 30 of each third adjusting sub-region (c3, c4) is the same as the distribution density of the main spacers of a second adjusting sub-region symmetrical about the center position of the second through hole region 140b.
  • the distribution density of the main spacers 30 of the third regulating sub-region c3 and the second regulating sub-region IIb are the same.
  • the distribution density of the main spacers 30 in the third regulating sub-region c4 and the second regulating sub-region IIIb is the same.
  • the display screen 10 includes two spaced through hole regions, a first through hole region 140a and a second through hole region 140b, respectively.
  • the arrangement of the third adjustment sub-region between the first through-hole region 140a and the second through-hole region 140b is the same as that in the second example, which will not be repeated here.
  • the difference lies in that the non-opening area 141 between the first through hole area 140a and the second through hole area 140b is an ineffective display area F that cannot display images. Except for the first through hole area 140a, the second through hole area 140b, and the inactive display area F between the first through hole area 140a and the second through hole area 140b in the above non-opening area 141, the rest is AA Area.
  • a part of the BM on the box substrate 111 may cover the first through hole area 140a and the second through hole area 140a.
  • the color filter layer 312 in FIG. 4b may be located in the non-opening area 141 as shown in FIG. 2b.
  • the non-opening area 141 includes the aforementioned non-effective display area F and AA area.
  • only the color filter layer 312 in the AA area can enable the display screen 10 to perform color display. Therefore, the above-mentioned color filter layer 312 may be provided only in the AA area.
  • the portion of the BM in the non-effective display area F is connected to the portion of the BM in the first adjustment sub-region IVa closest to the first through-hole area 140a, and is around the first through-hole area 140a.
  • One week setting the portion of the BM in the non-effective display area F is connected to the portion of the BM in the second adjustment sub-region IVb closest to the second through-hole area 140b, and is arranged around a circumference of the second through-hole area 140b.
  • the ineffective display area F is divided into at least one fourth adjustment sub-area d.
  • a part of the plurality of third regulating sub-regions for example, the third regulating sub-region c1 is located between the first through hole region 140a and the fourth regulating sub-region d.
  • another part of the plurality of third adjustment subregions for example, the third adjustment subregion c2 is located between the second through hole region 140b and the fourth adjustment subregion d.
  • the distribution density of the main spacers 30 of the fourth regulating sub-region d is greater than that of the third regulating sub-region c1 and the main spacers 30 of the third regulating sub-region c2 adjacent to the fourth regulating sub-region d. Distribution density.
  • the BM has a monolithic structure as shown in FIG. 14a.
  • the BM is a grid structure that crosses vertically and horizontally as shown in FIG. 5.
  • the box substrate The thickness of 111 in the non-effective display area F is relatively large.
  • the distribution density of the main spacer 30 is reduced from 0.02% to 0 in the direction of the arrow shown in FIG. 14b along the third adjusting sub-region c1 and the third adjusting sub-region c2.
  • the distribution density of the main spacers 30 of the third regulating sub-region c1 and the third regulating sub-region c2 is zero in the part close to the edge of the AA region.
  • the distribution density of the main spacers 30 at the center of the fourth adjustment sub-zone d is 0.04%.
  • the distribution of the main spacers 30 is reduced to 0.02%, and then in the part near the edge of the AA zone, The distribution density of the main spacers 30 in the fourth adjustment sub-region d is reduced to zero.
  • the purpose of reducing the support difference between the non-effective display area F and the AA area adjacent to the non-effective display area F is achieved.
  • the cell thickness of the liquid crystal cell is equal everywhere, as shown in Figure 14c (along Figure 14b Cut in the direction of the line connecting the centers of the first through hole region 140a and the second through hole region 140b), as shown in the ineffective display region F between the first through hole region 140a and the second through hole region 140b,
  • the color filter layer 312 includes a plurality of first color photoresist blocks 302a arranged at intervals.
  • the BM in the non-effective display area F in FIG. 14b has a monolithic structure without a hollowed out area, it is because the color filter layer 312 in the non-effective display area F is only arranged at intervals.
  • the first color photoresist block 302a Therefore, the cover layer 303 made on the side of the BM facing the array substrate 110 can enter the gap between the two adjacent first color photoresist blocks 302a, so that the cover layer 303 and the first color photoresist block 302a are located at the second A color photoresist block 302a is in contact with the BM on the side away from the array substrate 110. Therefore, the thickness of the cover layer 303 can be reduced. Furthermore, the purpose of reducing the difference in cell thickness between the non-effective display area F and the AA area adjacent to the non-effective display area F is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请实施例提供一种显示屏、电子设备,涉及显示技术领域,用于减小显示屏中与摄像头对应区域的中心位置和边缘位置的盒厚差异。该显示屏具有显示区。显示区包括至少一个通孔区以及设置于通孔区周边的非开孔区。显示屏中阵列基板包括第一透明衬底。对盒基板包括第二透明衬底。液晶层位于阵列基板和对盒基板之间。在通孔区,液晶层与第一透明衬底和第二透明衬底相接触。多个主间隔物在非开孔区内,且位于阵列基板和对盒基板之间。主间隔物与阵列基板和对盒基板相接触。非开孔区中靠近通孔区的部分,划分有多个依次靠近通孔区的调节子。沿朝向通孔区的方向,调节子区的主间隔物分布密度依次减小。

Description

一种显示屏、电子设备
本申请要求于2019年08月15日提交国家知识产权局、申请号为201910755249.6、申请名称为“一种显示屏、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示屏、电子设备。
背景技术
随着电子技术的不断发展,用户对电子设备配置的要求越来越高。例如,上述电子设备不仅需要具有较大的屏占比,还需要集成有摄像头。为了满足上述需要,可以在电子设备的显示屏上设置一个较小的透明区域,将摄像头安装于显示屏的下方,以使得外界光线能够穿过上述透明区域入射至摄像头内,以实现拍摄功能。
当上述显示屏为液晶显示屏(liquid crystal display,LCD)时,构成LCD中如图1所示的液晶盒100的上盖101和下底102之间通常采用多个间隔物(photo spacer,PS)进行支撑。然而,为了保证上述透明区域103的透光性能,液晶盒在对应透明区域103的位置不再设置PS,而只通过液晶(liquid crystal,LC)进行支撑。这样一来,上述透明区域103位置处,会因为大气压力、上盖101、下盖102的重量等造成透明区域103中心凹陷,使得透明区域103中心位置的盒厚(cell gap)H与透明区域103边缘的盒厚H差异较大,从而对摄像头的拍摄效果造成影响。
发明内容
本申请实施例提供一种显示屏、电子设备,用于减小显示屏中与摄像头对应区域的中心位置和边缘位置的盒厚差异。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种显示屏。该显示屏具有显示区。显示区包括至少一个通孔区以及设置于通孔区周边的非开孔区。此外,显示屏包括阵列基板、对盒基板、液晶层、多个主间隔物。其中,阵列基板包括第一透明衬底。对盒基板包括第二透明衬底。液晶层位于阵列基板和对盒基板之间。在通孔区,液晶层与第一透明衬底和第二透明衬底相接触。此外,多个主间隔物在非开孔区内,且位于阵列基板和对盒基板之间。主间隔物与阵列基板和对盒基板相接触。在此基础上,非开孔区中靠近通孔区的部分,划分有多个依次靠近通孔区的调节子。沿朝向通孔区的方向,调节子区的主间隔物分布密度依次减小。本申请实施例中,是以每个主间隔物在同一水平位置剖切,获得的横截面的面积相同为例进行的说明。其中该横截面与阵列基板的衬底基板平行。在此情况下,主间隔物分布密度的减小是指阵列基板朝向对盒基板的表面上,单位面积内具有主间隔物数量的减少。
综上所述,在显示区中除了通孔区以外的非开孔区中,靠近通孔区的部分划分出多个依次靠近通孔区的调节子区。并且沿朝向通孔区的方向,上述多个调节子区的主 间隔物分布密度依次减小。即对于上述多个调节子区而言,越靠近通孔区的调节子区中单位面积内的主间隔物的数量越少。在此情况下,一方面,由于通孔区内没有设置主间隔物,而单纯通过液晶层进行支撑,因此沿朝向通孔区的方向,上述多个调节子区的支撑性逐渐接近通孔区的支撑性。这样一来,在大气压力及自身重力等作用力的作用下,阵列基板中的第一衬底基板以及对盒基板中的第二衬底基板的形变,会由多个调节子区逐渐降低至通孔区的中心。从而使得液晶盒的盒厚由多个调节子区逐渐降低至通孔区的中心,减弱了在上述大气压力及自身重力等作用下通孔区中心位置的盒厚与通孔区边缘的盒厚之间的差异。降低对光学器件采集效果的影响。另一方面,非开孔区中的各个部分,例如上述多个调节子区以及非开孔区中除了上述调节子区和通孔区以外的部分,对盒基板的叠层结构基本一致。这样一来,显示屏中各处的主间隔物,在未施加压力之前的原始高度(与液晶盒盒厚的方向一致)各处相同。所以液晶盒在未施加压力之前的各处的原始盒厚差异较小。从而能够避免由于通孔区无主间隔物支撑造成抗压性与周围区域差异过大,使得通孔区中心位置的盒厚与通孔区边缘的盒厚之间差异较大的问题。
可选的,显示屏包括一个通孔区。每个调节子区绕通孔区的一周设置。从而通孔区四周边缘位置的支撑性与中心位置的支撑性接近。
可选的,显示屏包括两个间隔设置的通孔区,分别为第一通孔区和第二通孔区。依次靠近第一通孔区的调节子区为第一调节子区,且至少一个第一调节子区绕第一通孔区的一周设置。依次靠近第二通孔区的调节子区为第二调节子区;且至少一个第二调节子区绕第二通孔区的一周设置。此外,非开孔区中位于第一通孔区和第二通孔区之间的部分,划分有位于相邻的第一调节子区和第二调节子区之间的至少一个第三调节子区。第三调节子区的主间隔物分布密度,大于第一调节子区和第二调节子区的主间隔物分布密度。从而可以使得沿朝向第一通孔区的方向,第三调节子区、第一调节子区的主间隔物分布密度逐渐减小。同理沿朝向第二通孔区的方向,第三调节子区、第一调节子区的主间隔物分布密度逐渐减小。
可选的,非开孔区中位于第一通孔区和第二通孔区之间的部分,划分有s个第三调节子区;3≤s;s为正整数。沿朝向第一通孔区的方向,靠近第一通孔区的部分第三调节子区的主间隔物分布密度依次减小。沿朝向第二通孔区的方向,靠近第二通孔区的部分第三调节子区的主间隔物分布密度依次减小。从而可以使得第一通孔区和第二通孔区之间的部分的支撑性能够逐渐降低,并与第一通孔区和第二通孔区位置处的支撑性能接近。
可选的,s为偶数,沿朝向第一通孔区的方向,靠近第一通孔区的s/2个第三调节子区的主间隔物分布密度依次减小。沿朝向第二通孔区的方向,靠近第二通孔区的s/2个第三调节子区的主间隔物分布密度依次减小。或者,s为奇数,沿朝向第一通孔区的方向,靠近第一通孔区的[(s-1)/2]+1个第三调节子区的主间隔物分布密度依次减小;沿朝向第二通孔区的方向,靠近第二通孔区的[(s-1)/2]+1个第三调节子区的主间隔物分布密度依次减小。从而可以根据第一通孔区和第二通孔区之间设置的第三调节子区的数量,确定出多个第三调节子区的主间隔物的分布情况。
可选的,s为偶数,靠近第一通孔区的s/2个第三调节子区中,每个第三调节子区 的主间隔物分布密度和关于第一通孔区中心位置对称的一个第一调节子区的主间隔物分布密度相同。从而使得第一通孔区左右两侧的支撑力的过渡效果接近。靠近第二通孔区的s/2个第三调节子区中,每个第三调节子区的主间隔物分布密度和关于第二通孔区中心位置对称的一个第二调节子区的主间隔物分布密度相同。从而使得第二通孔区左右两侧的支撑力的过渡效果接近。s为奇数,靠近第一通孔区的[(s-1)/2]+1个第三调节子区中,每个第三调节子区的主间隔物分布密度和关于第一通孔区中心位置对称的一个第一调节子区的主间隔物分布密度相同。从而使得第一通孔区左右两侧的支撑力的过渡效果接近。靠近第二通孔区的[(s-1)/2]+1个第三调节子区中,每个第三调节子区的主间隔物分布密度和关于第二通孔区中心位置对称的一个第二调节子区的主间隔物分布密度相同。从而使得第二通孔区左右两侧的支撑力的过渡效果接近。
可选的,第一通孔区和第二通孔区之间的非开孔区为有效显示区。在此情况下,第一通孔区和第二通孔区之间的部分能够进行显示。
可选的,第一通孔区和第二通孔区之间的非开孔区为非有效显示区,非开孔区的其余部分为有效显示区。非有效显示区划分有至少一个第四调节子区。多个第三调节子区的一部分位于第一通孔区和第四调节子区之间,多个第三调节子区的另一部分位于第二通孔区和第四调节子区之间。此外,在非有效显示区,第四调节子区的主间隔物分布密度大于,与第四调节子区相邻的第三调节子区的主间隔物分布密度。从而使得沿朝向第一通孔区的方向,第四调节子区、第三调节子区的主间隔物的分布密度能够逐渐减小。此外,沿朝向第二通孔区的方向,第四调节子区、第三调节子区的主间隔物的分布密度能够逐渐减小。在此基础上,在垂直于第一通孔区和第二通孔区中心连线的方向上,沿朝向有效显示区的方向,每个第四调节子区的主间隔物分布密度、每个第三调节子区的主间隔物分布密度逐渐减小。从而可以有利于减小非有效显示区以及与该非有效显示区相邻的AA区的支撑性差异。
可选的,在垂直于第一通孔区和第二通孔区中心连线的方向上,每个第四调节子区以及每个第三调节子区中,在靠近有效显示区边缘的部分,主间隔物分布密度为零。使得非有效显示区在与AA区交界的位置,其支撑性更加接近或相同。
可选的,对盒基板包括第二衬底基板、黑矩阵、彩色滤光层、覆盖层。其中,黑矩阵设置于第二衬底基板朝向阵列基板的一侧表面,且位于非开孔区,用于对阵列基板上的走线以及TFT等遮光部件进行遮挡。彩色滤光层设置于黑矩阵朝向阵列基板的一侧表面,且位于非开孔区,用于对背光源发出的光线进行滤光。覆盖层设置于彩色滤光层朝向阵列基板的一侧表面,且位于显示区。用于使得对盒基板朝向阵列基板的一侧表面具有良好的平整度。覆盖层在通孔区与第二衬底基板相接触,第二透明衬底包括第二衬底基板以及覆盖层。
可选的,黑矩阵在最靠近通孔区的调节子区内的部分,绕通孔区的一周设置。由于阵列基板上的走线在通孔区所在的位置需要绕行至通孔区的周边,所以对合基板上的黑矩阵通过绕通孔区的一周设置,以对阵列基板上位于通孔区周边的走线进行遮挡。
可选的,显示屏包括第一通孔区和第二通孔区。黑矩阵的一部分覆盖第一通孔区和第二通孔区之间的非有效显示区。黑矩阵在非有效显示区的部分,与黑矩阵在最靠近第一通孔区的第一调节子区的部分相连接,且绕第一通孔区的一周设置。黑矩阵在 非有效显示区的部分,与黑矩阵在最靠近第二通孔区的第二调节子区的部分相连接,且绕第二通孔区的一周设置。通过黑矩阵对第一通孔区和第二通孔区之间的区域进行遮挡,从而能够使得该部分区域不用进行显示。
可选的,显示屏包括第一通孔区和第二通孔区。在第一通孔区和第二通孔区之间的非有效显示区,彩色滤光层包括多个间隔设置的第一颜色光阻块。覆盖层与第一颜色光阻块和黑矩阵相接触。这样一来,虽然黑矩阵在非有效显示区内为一整块结构而没有镂空区域,但是由于非有效显示区内彩色滤光层中只设置的多个间隔设置的第一颜色光阻块。因此,制作于黑矩阵朝向阵列基板一侧的覆盖层可以进入相邻两个第一颜色光阻块之间的缝隙内,使得覆盖层与第一颜色光阻块和该第一颜色光阻块下方的黑矩阵相接触。从而可以降低覆盖层厚度。进而达到减小非有效显示区以及与该非有效显示区相邻的AA区的盒厚差异的目的。
可选的,显示屏还包括多个间隔设置的液晶挡墙。液晶挡墙位于覆盖层朝向阵列基板的一侧表面并设置于通孔区的周边。此外,液晶挡墙与阵列基板之间具有间隙。通过上述液晶挡墙的设置,一方面,液晶挡墙在未施加压力下不会与阵列基板直接接触。另一方面,在通孔区受到按压后,与阵列基板相接触,从而达到支撑的效果且避免该通孔区内的液晶大量流入非开孔区,导致盒厚瞬间变异产生水波纹等现象出现而影响显示效果。又一方面,多个液晶挡墙通过间隔设置,可以让液晶盒内的液晶能够平缓的在通孔区及通孔区以外的非开孔区之间流动。
可选的,沿朝向通孔区的方向,调节子区的主间隔物的密度依次递减。非开孔区中,除了多个调节子区以外的部分的主间隔物分布密度为第一密度。多个调节子区中,最远离通孔区的调节子区的主间隔物分布密度为第一密度。从而能够使得多个调节子区的主间隔物的支撑性能缓慢降低,并最终接近通孔区的支撑性能。
可选的,多个调节子区中,最靠近通孔区的调节子区的主间隔物分布密度小于或等于0.01%。这样一来,可以使得最靠近通孔区的调节子区的支撑性与通孔区的支撑性更加接近,进一步减小了通孔区中心位置的盒厚与通孔区边缘的盒厚之间的差异。
可选的,单位面积为1~100mm 2。当单位面积小于1mm 2时,由于单位面积较小,布置主间隔物的空间有限。从而不利于划分出多个间隔物分布密度逐渐变化的调节子区。或者,当上述单位面积大于100mm 2时,由于显示区自身尺寸的限制使得划分出的调节子区的数量较少,从而无法使得非开孔区到通孔区的支撑性进行缓慢的过渡,降低减弱通孔区中心位置的盒厚与通孔区边缘的盒厚之间的差异的效果。
可选的,显示屏还包括位于阵列基板和对盒基板之间的多个辅助间隔物。该辅助间隔物位于所述非开孔区。此外,辅助间隔物的一端与对盒基板相接触,另一端与阵列基板之间具有间隙。这样一来,当显示屏受到按压时,阵列基板和对盒基板之间的间距在压力作用下减小,此时辅助间隔物朝向阵列基板的一端可以与阵列基板相接触,从而能够进一步对阵列基板和对盒基板进行支撑,避免按压状态下,液晶盒的盒厚变化较大,从而破坏主间隔物造成显示黑斑等影响显示效果的现象。
本申请实施例的第二方面,提供一种电子设备,包括光敏器件以及如上所述的任意一种显示屏。显示屏具有用于显示图像的显示面以及背离显示面的背面;光敏器件位于显示屏的背面,且与通孔区的位置相对应。光敏器件的受光面朝向显示屏。该电 子设备具有与前述实施例提供的显示屏相同的技术效果,此处不再赘述。
附图说明
图1为本申请的一些实施例提供的电子设备的一种结构示意图;
图2a为图1中电子设备的爆炸结构示意图;
图2b为本申请的一些实施例提供的电子设备显示面的一种结构示意图;
图2c为本申请的一些实施例提供的电子设备显示面的另一种结构示意图;
图3为本申请实施例提供的电子设备的另一种结构示意图;
图4a为本申请实施例提供的显示屏阵列基板的一种结构示意图;
图4b为图4a中沿O1-O1进行剖切得到的剖视图;
图5为本申请实施例提供的黑矩阵的部分结构示意图;
图6a为本申请实施例提供的显示屏的一种截面图;
图6b为图6a中对盒基板的部分结构示意图;
图7为本申请实施例提供的显示屏的另一种截面图;
图8为本申请实施例提供的单位面积的尺寸示意图;
图9a为本申请实施例提供的通孔区周边的调节子区的一种设置方式示意图;
图9b为图9a中调节子区的主间隔物密度分布示意图;
图10a为本申请实施例提供的通孔区周边的调节子区的另一种设置方式示意图;
图10b为图10a中调节子区的主间隔物密度分布示意图;
图11a为本申请实施例提供的通孔区周边的调节子区的另一种设置方式示意图;
图11b为图11a中调节子区的主间隔物密度分布示意图;
图12a为本申请实施例提供的第一通孔区周边的第一调节子区、第二通孔区周边的第二调节子区的一种设置方式示意图;
图12b为图12a中调节子区的主间隔物密度分布示意图;
图13为本申请实施例提供的第一通孔区周边的第一调节子区、第二通孔区周边的第二调节子区的另一种设置方式示意图;
图14a为本申请实施例提供的第一通孔区和第二通孔区之间的区域为非有效显示区的示意图;
图14b为图14a中调节子区的主间隔物密度分布示意图;
图14c为本申请实施例提供的显示屏的另一种截面图。
附图标记:
100-液晶盒;101-上盖;102-下底;103-透明区域;01-电子设备;10-显示屏;11-中框;12-壳体;14-显示区;140-通孔区;141-非开孔区;15-周边区;110-阵列基板;111-对盒基板;112-封框胶;113-液晶层;20-光敏器件;21-亚像素;201-像素电极;200-第一衬底基板;202-公共电极;300-第二衬底基板;312-彩色滤光层;302a-第一颜色光阻块;302b-第二颜色光阻块;302c-第三颜色光阻块;303-覆盖层;30-主间隔物;31-辅助间隔物;32-液晶挡墙。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”、“左”、“右”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。
本申请实施例提供一种电子设备。该电子设备包括例如电视、手机、平板电脑、个人数字助理(personal digital assistant,PDA)、车载电脑等。本申请实施例对上述电子设备的具体形式不做特殊限制。以下为了方便说明,是以电子设备为手机为例进行的说明。
在此情况下,如图2a所示,上述电子设备01主要包括显示屏10、中框11以及壳体12。显示屏10安装于中框11上,中框11与壳体12相连接。其中,显示屏10具有用于显示图像的显示面A1以及远离显示面A1的背面A2。上述当显示屏10安装于中框11,并通过中框11与壳体12相连接时,壳体12靠近显示屏10的背面A2。
显示屏10的显示面A1,如图2b所示(沿图2a所示的箭头B获得的俯视图)包括显示区14以及位于该显示区14四周的周边区15。显示屏10显示的图像位于显示区14内。此外,用于控制显示区14进行图像显示的驱动电路,例如栅极驱动电路或者源极驱动电路设置于周边区15内。该周边区15不用于显示,所以周边区15的宽度为显示屏10屏幕边框的宽度。周边区15的宽度越小,显示屏10的屏占比越大。
在此基础上,为了提高电子设备01的配置要求,使得电子设备01具有更多的功能,上述电子设备01还包括如图3所示的光敏器件20。该光敏器件20能够接收外界光线,并将接收到光信号转换为电信号。在本申请的一些实施例中,上述光敏器件20可以为摄像头或者指纹识别器件。为了方便举例,以下实施例均是以光敏器件20为摄像头为例进行的说明。
为了避免将上述光敏器件20设置于周边区15中,以增加周边区15的宽度,造成屏占比的降低,如图3所示,光敏器件20可以设置于显示屏10的下方,即该显示屏10背面A2所在的一侧。并且,该光敏器件20的受光面,即用于接收光线的表面朝向显示屏10的背面A2。
在本申请的实施例中上述显示屏10可以为LCD。在此情况下,如图3所示,显示屏10包括阵列基板110、对盒基板111,以及位于阵列基板110和对盒基板111之间封框胶112和液晶层113。
其中,封框胶112绕液晶层113一周设置。该封框胶112位于阵列基板110和对盒基板111之间,且用于将阵列基板110和对盒基板111相连接,以形成用于容纳液晶层113的液晶盒。阵列基板110和对盒基板111之间的间距H称为液晶盒的盒厚,该盒厚可以决定液晶层113的厚度。
基于此,外界光线需要穿过显示屏10后才能够进入到光敏器件20中。所以为了降低光敏器件20入射光的光损,如图3所示,显示区14包括至少一个通孔区140。在此情况下,一个光敏器件20与一个通孔区140的位置相对应。
上述通孔区140的透光性高于非开孔区141的透光性,从而能够使得外界光线穿过通孔区140入射至光敏器件20后,能够具有较小的光损,有利于提高光敏器件20的光电转换效率和精度。
在本申请的一些实施例中,如图2b所示,上述通孔区140可以设置于周边区15的两条相交的边缘形成的夹角位置处。或者,在本申请的另一些实施例中,如图2c所示,上述通孔区140可以设置于显示区14的上方靠近显示区14中心的位置。此外,为了方便说明上述显示区14中除了通孔区140以外的区域称为非开孔区141。
需要说明的是,图2b、图2c是以通孔区140的轮廓形状为圆形为例进行的说明。本申请对上述通孔区140的轮廓形状不进行限定。例如还可以为矩形、三角形、梯形或者不规则形状等。
以下对显示屏10中透光性不同的通孔区140和非开孔区141的设置方式进行说明。
为了使得显示屏10能够显示图像,上述阵列基板110在对应非开孔区141所在的位置,设置有如图4a所示的多条横纵交叉的栅线(gate line,GL)和数据线(data line,DL)。多条GL和多条DL交叉界定多个亚像素(sub pixel)21。每个亚像素21内设置有至少一个薄膜晶体管(thin film transistor,TFT)以及像素电极201。该TFT的栅极(gate,g)与一条GL电连接,TFT的源极(source,s)(或者漏极)与一条DL电连接,TFT的漏极(drain,d)(或者源极)与该亚像素21内的像素电极201电连接。
此外,在本申请的一些实施例中,上述阵列基板110如图4b(沿图4a所示的O1-O1进行剖切得到的剖视图)所示,还包括公共电极202,所有亚像素21的公共电极202可以共用。
需要说明的是,当公共电极202和像素电极201均设置于阵列基板110时,远离该阵列基板110的第一衬底基板200的电极层,例如上述公共电极202可以包括多个间隔设置的条状电极。此外,上述第一衬底基板200可以为透明的玻璃、树脂或者蓝宝石基板。本申请对第一衬底基板200的设置方式不做限定。
此外,图4b是以TFT为顶栅型TFT为例进行的说明。其中,顶栅型TFT中,相对于设置在该TFT的有源层(active layer,AL)与TFT的栅极g之间的栅极绝缘层(gate insulator,GI)而言,TFT的AL先制作于第一衬底基板200上。顶栅型结构的TFT可以采用低温多晶硅(low temperature poly silicon,LTPS)工艺制备而成。LTPS工艺制备而成的TFT的导通性能更好,迁移率更高。但本申请实施例并不以此为限,在其他实施例中AL可采用非晶硅或金属氧化物等其他半导体材料。
或者,在本申请的另一些实施例中,上述TFT还可以为底栅型TFT。其中,底栅型TFT中,相对于设置在该TFT的AL与TFT的栅极g之间的GI而言,TFT的栅极g先制作于第一衬底基板200上。
在此情况下,如图4a所示,当一行GL控制位于同一行的亚像素21中各个TFT导通时,每一条DL可以将数据电压Vdata写入至上述一行亚像素21中各个TFT相连 接的像素电极201,以对该像素电极201进行充电。
接下来,在公共电极202充入公共电压Vcom后,不同亚像素21内的像素电极201由于充入的数据电压Vdata的大小不同,因此,像素电极201与公共电极202之间产生的电场大小不同,从而使得不同亚像素21所在位置处液晶层113的液晶分子,在电场驱动下发生偏转的角度不同。进而使得显示屏10的背光提供的光线穿过不同亚像素21对应的液晶层113后,由显示屏10的出光面A1出射的光线的数量不同,以显示出明暗不同的灰阶图像。
在此基础上,为了实现彩色显示,如图4b所示,对盒基板111的第二衬底基板300上设置有彩色滤光层312。该彩色滤光层312位于如图2b所示的非开孔区141内。其中,彩色滤光层312包括三种不同颜色的光阻块。每个光阻块与一个亚像素21的位置相对应。
示例的,彩色滤光层(color filter,CF)312包括第一颜色光阻块302a、第二颜色光阻块302b以及第三颜色光阻块(图4b中未示出)。其中,第一颜色光阻块302a能够使得显示屏10的背光发出的光线中的蓝色(blue,B)光线穿过。此时,与该第一颜色光阻块302a位于对应的亚像素21可以发出蓝光。第二颜色光阻块302b能够使得显示屏10的背光发出的光线中的红色(red R)光线穿过。此时,与该第一颜色光阻块302a位于对应的亚像素21可以发出红光。第三颜色光阻块能够使得显示屏10的背光发出的光线中的绿光(green G)光线穿过。此时,与该第一颜色光阻块302a位于对应的亚像素21可以发出绿光。从而可以实现彩色显示。其中,三个相邻的且能够分别发出红光、绿光以及蓝光的亚像素可以构成一个像素(pixel)。
需要说明的是,具有上述彩色滤光层312的对盒基板111也可以称为彩膜基板。或者,在本申请的另一些实施例中,上述彩色滤光层312还可以设置于阵列基板110中。
此外,为了对阵列基板110上的金属图案,例如TFT、GL或者DL等进行遮挡,上述对盒基板111上还设置有如图4b所示的黑矩阵(black matrix,BM)。该BM位于如图2b所示的非开孔区141内,且设置于第二衬底基板300与彩色滤光层312之间。
如图4a所示,GL和DL横纵交叉设置,所以BM在非开孔区141内如图5所示,主要为由多个横纵交叉的遮光条形成的栅格结构。此外,如图4a所示,在由于通孔区140的存在,通孔区140周边的GL和DL需要绕开通孔区140,而布线于通孔区140的边缘。在此情况下,如图5所示,通孔区140的周边,BM绕通孔区140的一周设置,从而可以对布线于通孔区140边缘的走线,例如GL和DL进行遮挡。
此外,在第二衬底基板300上制作好BM后,会在BM背离第二衬底基板300的表面,采用构图工艺依次制作如图4b所示的第一颜色光阻块302a、第二颜色光阻块302b以及第三颜色光阻块,从而形成彩色滤光层312。这样一来,后来形成的膜层例如第一颜色光阻块302a的一部分会覆盖在,先构图完的薄膜层,例如第一颜色光阻块302a上,从而导致彩色滤光层312背离第二衬底基板300的表面凹凸不平。在此情况下,如图4b所示,上述对盒基板111还包括覆盖层(over coat,OC)303。该覆盖层303设置于彩色滤光层312朝向阵列基板110的一侧表面,从而能够使得对盒基板111朝向阵列基板110的一侧表面具有较好的平整度。
此外,上述覆盖层303可以位于如图2c所示的显示区14,因此如图6a所示,覆盖层303即位于显示区14的通孔区140内,还位于显示区14中除了通孔区140以外的非开孔区141内。并且,由上述可知,彩色滤光层312以及BM均设置于非开孔区141,即如图6a所示,在通孔区140内未设置彩色滤光层312(包括第一颜色光阻块302a、第二颜色光阻块302b以及第三颜色光阻块302c)以及BM。因此在通孔区140内,覆盖层303与第二衬底基板300相接触。这样一来,上述覆盖层303与第二衬底基板300可以构成对盒基板111的第二透明衬底310。
或者,在本申请的一些实施例中,当在覆盖层303朝向阵列基板110的一侧表面制作液晶配向层时,该液晶配向层的一部分也可以位于上述通孔区140。在此情况下,上述第二透明衬底310还可以包括上述液晶配向层。对于上述任意一种第二透明衬底310而言,该第二透明衬底310可以直接与液晶层113相接触。
在此基础上,由上述可知,在通孔区140周边,阵列基板110中的GL和DL会绕开通孔区140设置。在此情况下,第一衬底基板200可以作为阵列基板110的第一透明衬底。
或者,在本申请的一些实施例中,阵列基板110还包括与液晶层113相接触的液晶配向层时,该液晶配向层可以延伸至通孔区140,并与第一衬底基板200相接触。在此情况下,图7中的第一透明衬底210包括第一衬底基板200(如图6a所示)和液晶配向层。
又或者,在本申请的另一些实施例中,阵列基板110中的GI也可以延伸至通孔区140内。在此情况下,上述图7中的第一透明衬底210包括第一衬底基板200(如图6a所示)、GI以及液晶配向层。对于上述任意一种第一透明衬底210而言,该第一透明衬底210可以直接与液晶层113相接触。
综上所述,如图6a(显示屏的部分截面图)所示,在通孔区140内,液晶层113直接与阵列基板110的第一透明衬底210(如图7所示),以及对盒基板111的第二透明衬底310相接触。在非开孔区141内,阵列基板110上还设置有能够遮光的TFT、GL以及DL等,对盒基板111上还设置有彩色滤光层312以及BM。因此,在整个显示区14内,通孔区140的透光性可以大于非开孔区141的透光性。所以,将位于显示屏10背面A2的光敏器件20的设置位置如图3所示,与通孔区140的位置相对应,从而可以减小外界光线在穿过通孔区140进入到光敏器件20时,对入射光线造成的光损。
此外,当显示屏10还包括设置于第一衬底基板200背离对盒基板111一侧的下偏光片,以及位于第二衬底基板300背离阵列基板110一侧的上偏光片时,上述上偏光片、下偏光片在对应通孔区140的位置开设有过孔,从而可以避免偏光片对入射至光敏器件20的光线造成影响。
需要说明的是,上述是以公共电极202制作于阵列基板110为例进行的说明。在本申请的另一些实施例中,上述公共电极202还可以制作于对盒基板111中覆盖层303朝向阵列基板110的一侧表面。在此情况下,该公共电极202为一整层薄膜层结构。
在此基础上,为了对阵列基板110和对盒基板111进行支撑,显示屏10还包括如图6a所示的多个主间隔物30。该多个主间隔物30在非开孔区141内,且位于阵列基 板110和对盒基板111之间。此外,上述主间隔物30与阵列基板110和对盒基板111相接触,从而可以对阵列基板110和对盒基板111进行支撑,使得液晶盒能够保持一定的盒厚。
此外,在本申请的一些实施例中,显示屏10还包括如图6a所示的多个辅助间隔物31。该辅助间隔物31位于阵列基板110和对盒基板111之间。此外,辅助间隔物31一端与对盒基板111相接触,另一端与阵列基板110之间具有间隙。这样一来,当显示屏10受到按压时,阵列基板110和对盒基板111之间的间距在压力作用下减小,此时辅助间隔物31朝向阵列基板110的一端可以与阵列基板110相接触,从而能够进一步对阵列基板110和对盒基板111进行支撑,避免按压状态下,液晶盒的盒厚变化较大,从而破坏主间隔物造成显示黑斑等影响显示效果的现象。
具有上述主间隔物30和辅助间隔物31的对盒基板111的制作过程为:首先,如图6b所示,在第二衬底基板300上采用构图工艺制作BM。然后在制作有BM的第二衬底基板300上通过构图工艺依次成膜上述第一颜色光阻块302a、第二颜色光阻块302b以及第三颜色光阻块302c,以形成彩色滤光层312。然后,在制作有彩色滤光层312的第二衬底基板300上涂覆覆盖层303。接下来,在制作有覆盖层303的第二衬底基板300上,采用构图工艺制作上述主间隔物30和辅助间隔物31。
其中,在本申请的一些实施例中,构成主间隔物30和辅助间隔物31的材料可以为无色透明材料,例如亚克力。或者,在本申请的另一些实施例中,构成主间隔物30和辅助间隔物31的材料可以为具有遮光性能的树脂材料。此外,为了避免主间隔物30和辅助间隔物31对显示造成影响,主间隔物30和辅助间隔物31的位置与BM的位置相对应。
需要说明的是,上述构图工艺包括光刻工艺、刻蚀步骤等用于形成预设图案的工艺。上述光刻工艺包括成膜、掩膜、曝光、显影等工艺过程中的至少一种工艺,并利用光刻胶、掩膜板、曝光机等形成图案的工艺。
由上述可知,主间隔物30设置于图6a所示的非开孔区141内,而通孔区140内仅通过液晶层113对阵列基板110和对盒基板111进行支撑。在此情况下,为了解决在大气压力、第一衬底基板200或第二衬底基板300的重力,造成阵列基板110和对盒基板111在通孔区140发生向内凹陷的现象。从而导致通孔区140中心位置的盒厚与通孔区140边缘的盒厚差异较大,影响光学器件20采集效果的问题。在本申请的一些实施例中,如图7所示,在非开孔区141中靠近通孔区140的部分,划分有多个依次靠近通孔区140的调节子区,例如I、II、III、IV。
沿朝向通孔区140的方向,上述调节子区的主间隔物30分布密度依次减小。示例的,如图7所示,沿朝向通孔区140的方向,调节子区I、调节子区II、调节子区III以及调节子区IV依次靠近通孔区140。基于此,调节子区I、调节子区II、调节子区III以及调节子区IV的主间隔物30分布密度依次减小。
需要说明的是,主间隔物30分布密度为,在阵列基板110朝向对盒基板111的表面上,如图8所示,单位面积内,例如a1×a2内具有主间隔物30的数量。即单位面积内,主间隔物30与阵列基板110的接触面的面积与该单位面积的比值。在本申请的实施例中,是以每个主间隔物30在同一水平位置进行剖切,获得的横截面的面积相同 为例进行的说明。其中上述横截面与阵列基板110的第一衬底基板200平行。
综上所述,在显示区14中除了通孔区140以外的非开孔区141中,靠近通孔区140的部分划分出多个依次靠近通孔区140的调节子区,例如I、II、III、IV。并且沿朝向通孔区140的方向,上述调节子区I、调节子区II、调节子区III、调节子区IV的主间隔物30分布密度依次减小。即对于上述多个调节子区而言,越靠近通孔区140的调节子区中单位面积内的主间隔物30的数量越少。
在此情况下,一方面,由于通孔区140内没有设置主间隔物30,而单纯通过液晶层113进行支撑,因此沿朝向通孔区140的方向,上述调节子区I、调节子区II、调节子区III、调节子区IV的支撑性逐渐接近通孔区140的支撑性。
这样一来,在大气压力或者自身重力等作用力的作用下,阵列基板110中的第一衬底基板200以及对盒基板111中的第二衬底基板300的形变,会由调节子区I、调节子区II、调节子区III、调节子区IV逐渐降低至通孔区140的中心。从而使得液晶盒的盒厚由调节子区I、调节子区II、调节子区III、调节子区IV逐渐降低至通孔区140的中心,减小了通孔区140中心位置的盒厚与通孔区140边缘的盒厚之间的差异。降低对光学器件20采集效果的影响。
在本申请的一些实施例中,沿朝向通孔区140的方向,调节子区的主间隔物的密度依次递减。例如,上述调节子区I的主间隔物30分布密度为0.04%。调节子区II的主间隔物30分布密度为0.03%。调节子区III的主间隔物30分布密度为0.02%。调节子区IV的主间隔物30分布密度为0.01%。
或者,又例如,上述调节子区I的主间隔物30分布密度为0.08%。调节子区II的主间隔物30分布密度为0.05%。调节子区III的主间隔物30分布密度为0.03%。调节子区IV的主间隔物30分布密度为0.01%。
在此情况下,上述调节子区I、调节子区II、调节子区III、调节子区IV的主间隔物30分布密度依次递减。即在上述调节子区I、调节子区II、调节子区III、调节子区IV中,阵列基板110朝向对盒基板111的表面上,单位面积内具有主间隔物30数量的依次递减。从而能够使得调节子区I、调节子区II、调节子区III、调节子区IV的主间隔物30的支撑性能缓慢降低,并最终接近通孔区140的支撑性能。
此外,非开孔区141中,除了多个上述调节子区,例如I、II、III、IV以外的部分的主间隔物30分布密度为第一密度。该多个调节子区,例如I、II、III、IV中,最远离通孔区141的调节子区,例如调节子区I的主间隔物30分布密度为上述第一密度。
在此情况下,非开孔区141中,除了多个上述调节子区,例如I、II、III、IV以外的部分,其主间隔物30分布密度可以采用显示屏10常规的分布密度,即上述第一密度。而最远离通孔140的调节子区I的主间隔物30分布密度与上述常规的分布密度相同。从而可以使得经过上述多个调节子区,例如I、II、III、IV中主间隔物30分布密度渐变设置后,可以使得非开孔区141中,在靠近通孔区140的部分的主间隔物30分布密度由常规分布密度逐渐递减,以使得支撑性能由常规的支撑性能逐渐递减,并接近通孔区140的支撑性能。
此外,在本申请的一些实施例中,最靠近通孔区140的调节子区,例如调节子区IV的主间隔物30分布密度小于或等于0.01%。这样一来,当调节子区IV的主间隔物 30分布密度小于或等于0.01%时,可以使得调节子区IV的支撑性与通孔区140的支撑性更加接近,进一步减小了通孔区140中心位置的盒厚与通孔区140边缘的盒厚之间的差异。
此外,在本申请的一些实施例中,上述单位面积可以为1~100mm 2。以图8中用于示意单位面积的矩形为例,该矩形的边长a1以及边长a2为1~10mm。在此情况下,当上述矩形的边长a1以及边长a2小于1mm时,由于单位面积较小,布置主间隔物的空间有限。从而不利于划分出多个间隔物分布密度逐渐变化的调节子区。
或者,当上述矩形的边长a1以及边长a2大于10mm时,由于显示区14自身尺寸的限制使得划分出的调节子区的数量较少,从而无法使得非开孔区141到通孔区140的支撑性进行缓慢的过渡,降低减弱通孔区140中心位置的盒厚与通孔区140边缘的盒厚之间的差异的效果。
综上所述,在本申请的一些实施例中,单位面积的边长a1或边长a2可以为3mm、4mm、5mm、6mm。
另一方面,如图7所述,非开孔区141中的各个部分,例如调节子区I、调节子区II、调节子区III、调节子区IV,以及非开孔区141中除了上述调节子区和通孔区140以外的部分,对盒基板111的叠层结构都包括如图6a所示的第二衬底基板300、BM、彩色滤光层312以及覆盖层303。因此在显示屏10中除了通孔区140以外,对盒基板111的叠层结构基本一致。
这样一来,显示屏10中各处的主间隔物30,在未施加压力之前的原始高度(与液晶盒盒厚的方向一致)各处相同。所以液晶盒在未施加压力之前的各处的原始盒厚差异较小。从而能够避免由于通孔区无主间隔物支撑30造成抗压性与周围区域差异较大,使得通孔区140中心位置的盒厚与通孔区140边缘的盒厚之间差异较大的问题。
以下根据显示屏10中通孔区140的数量以及设置位置的不同,对显示屏10的结构进行举例说明。
示例一
本示例中,显示屏10包括一个通孔区140。
在本申请的一些实施例中,如图2b所示,上述通孔区140可以设置于周边区15的两条相交的边缘形成的夹角位置处。
基于此,如图9a所示,显示区14中除了通孔区140以外的非开孔区141中,靠近通孔区140的部分划分出多个依次靠近通孔区140的调节子区,例如I、II、III、IV时,每个调节子区绕通孔区140的一周设置。在此情况下,调节子区IV、调节子区III、调节子区II、调节子区I依次嵌套于通孔区140的外围。
如图9b所示,沿朝向通孔区140的方向,调节子区I、调节子区II、调节子区III、调节子区IV的主间隔物30分布密度依次减小。示例的,调节子区I的主间隔物30分布密度为0.06%。调节子区II的主间隔物30分布密度为0.04%。调节子区III的主间隔物30分布密度为0.02%。调节子区IV的主间隔物30分布密度为0.01%。
由上述可知,如图4a所示,在由于通孔区140的存在,通孔区140周边的GL和DL需要绕开通孔区140,而布线于通孔区140的边缘。在此情况下,如图9b所示,在通孔区140的周边,即在最靠近通孔区140的调节子区IV内,BM绕通孔区140的 一周设置形成通孔区140的边界(border)。BM中作为通孔区140边界的部分,可以对布线于通孔区140边缘的走线,例如GL和DL进行遮挡。
此外,如图7所示,通孔区140内未设置主间隔物30,单纯依靠液晶层113进行支撑。并且,在该通孔区140内,液晶层113与对盒基板111中的第二透明衬底310(包括覆盖层303和第二衬底基板300),以及阵列基板110中的第一透明衬底210(即第一衬底基板200)相接触。因此在通孔区140内液晶层113的厚度,大于非开孔区141中液晶层113的厚度。
在此情况下,为了避免通孔区140在受到按压后,该通孔区140内的液晶大量流入非开孔区141,导致水波纹等现象出现而影响显示效果,在本申请的一些实施例中,上述显示屏10还包括如图9b所示的多个间隔设置的液晶挡墙32。
如图6a所示,液晶挡墙32可以位于覆盖层303朝向阵列基板110的一侧表面且设置于通孔区140的周边。示例的,如图7所示,液晶挡墙32可以位于最靠近通孔区140的调节子区IV内。此外,液晶挡墙32与阵列基板110之间具有间隙。通过上述液晶挡墙32的设置,一方面,液晶挡墙32在未施加压力下不会与阵列基板110直接接触。另一方面,在通孔区140受到按压后,与阵列基板110相接触,从而达到支撑的效果且避免该通孔区140内的液晶大量流入非开孔区141,导致盒厚瞬间变异产生水波纹等现象出现而影响显示效果。又一方面,多个液晶挡墙32通过间隔设置,可以让液晶盒内的液晶能够平缓的在通孔区140及非开孔区141之间流动。
由上述可知,主间隔物30和辅助间隔物31也设置于覆盖层303朝向阵列基板110的一侧表面。因此可以通过同一次制作工艺,在制作主间隔物30和辅助间隔物31的同时,完成多个间隔设置的液晶挡墙32的制作。并且,构成上述液晶挡墙32的材料还可以与主间隔物30和辅助间隔物31的材料相同。
需要说明的是,上述是以显示区14中除了通孔区140以外的非开孔区141中,靠近通孔区140的部分划分出四个依次靠近通孔区140的调节子区,例如I、II、III、IV为例进行的说明。在本申请的另一些实施例中,如图10a所示,显示区14中除了通孔区140以外的非开孔区141中,靠近通孔区140的部分划分出五个依次靠近通孔区140的调节子区,例如I、II、III、IV、V。
在此情况下,如图10b所示,沿朝向通孔区140的方向,调节子区I、调节子区II、调节子区III、调节子区IV、调节子区IV的主间隔物30分布密度依次减小。示例的,调节子区I的主间隔物30分布密度为0.08%。调节子区II的主间隔物30分布密度为0.06%。调节子区III的主间隔物30分布密度为0.04%。调节子区IV的主间隔物30分布密度为0.02%。调节子区V的主间隔物30分布密度为0.01%。
需要说明的是,本申请对调节子区的数量不做限定,如图10b所示,所有调节子区的宽度之和L可以在5mm~50mm的范围内。在此情况下,当所有调节子区的宽度之和L小于5mm时,能够划分的调节子区的数量较少,从而使得多个调节子区的主间隔物30的分布密度无法有效的呈阶梯状减小。不利于减弱通孔区140中心位置的盒厚与通孔区140边缘的盒厚之间的差异的效果。
或者,当所有调节子区的宽度之和L大于50mm时,能够划分的调节子区的数量较多,会增加主间隔物30的分布的复杂性。
基于此,在本申请的一些实施例中,所有调节子区的宽度之和L可以为5mm、6mm、7mm、8mm、10mm、20mm、30mm、40mm。
或者,在本申请的另一些实施例中,如图2c所示,上述通孔区140可以设置于显示区14的上方靠近显示区14中心的位置。
基于此,如图11a所示,显示区14中除了通孔区140以外的非开孔区141中,靠近通孔区140的部分划分出多个,例如四个依次靠近通孔区140的调节子区,I、II、III、IV,每个调节子区绕通孔区140的一周设置。
如图11b所示,沿朝向通孔区140的方向,调节子区I、调节子区II、调节子区III、调节子区IV的主间隔物30分布密度依次减小。示例的,调节子区I的主间隔物30分布密度为0.06%。调节子区II的主间隔物30分布密度为0.04%。调节子区III的主间隔物30分布密度为0.02%。调节子区IV的主间隔物30分布密度为0.01%。
示例二
本示例如图12a所示,显示屏10包括两个间隔设置的通孔区,分别为第一通孔区140a和第二通孔区140b。此外,显示区14中除了第一通孔区140a和第二通孔区140b以外的所述非开孔区141,为显示区14中能够实现图像显示的有效显示区(active area,AA)。
在此情况下,如图12a所示,依次靠近第一通孔区140a的调节子区称为第一调节子区(例如Ia、IIa、IIIa、IVa),且至少一个第一调节子区绕第一通孔区140a的一周设置。
例如,图12a中第一调节子区Ia、第一调节子区IIa、第一调节子区IIIa从左至右大约包围了第一通孔区140a的3/4。第一调节子区IVa绕第一通孔区140a的一周设置。
由图12b所示,第一调节子区Ia、第一调节子区IIa、第一调节子区IIIa以及第一调节子区调节子区IVa的主间隔物30分布密度依次为0.06%、0.04%、0.02%、0.01%。
此外,依次靠近第二通孔区140b周边的每个调节子区称为第二调节子区(例如Ib、IIb、IIIb、IVb),且至少一个第二调节子区绕第二通孔区140b的一周设置。例如,图12a中第二调节子区Ib、第二调节子区IIb、第二调节子区IIIb从右至左大约包围了第二通孔区140b的3/4。第二调节子区IVb绕第二通孔区140b的一周设置。
由图12b所示,第二调节子区Ib、第二调节子区IIb、第二调节子区IIIb以及第二调节子区IVb的主间隔物30分布密度依次为0.06%、0.04%、0.02%、0.01%。
在此基础上,如图12a所示,非开孔区141中位于第一通孔区140a和第二通孔区140b之间的部分,划分有位于相邻的第一调节子区IVa和第二调节子区IVb之间的至少一个第三调节子区。例如图12a中第一通孔区140a和第二通孔区140b之间具有第三调节子区c1、第三调节子区c2以及第三调节子区c3。
上述任意一个第三调节子区的主间隔物30分布密度,大于第一调节子区(Ia、IIa、IIIa或IVa)和第二调节子区(Ib、IIb、IIIb、IVb)的主间隔物30分布密度。从而可以使得沿朝向第一通孔区140a的方向,第三调节子区c2、第一调节子区IVa的主间隔物30分布密度逐渐减小。同理沿朝向第二通孔区140b的方向,第三调节子区c3、第一调节子区IVb的主间隔物30分布密度逐渐减小。
在本申请的一些实施例中,第一通孔区140a和第二通孔区140b之间具有s个第 三调节子区。3≤s;s为正整数。例如s=3。此时第一通孔区140a和第二通孔区140b之间的部分划分有如图12a所示的第三调节子区c1、第三调节子区c2以及第三调节子区c3。
基于此,如图12a所示,沿朝向第一通孔区140a的方向,靠近第一通孔区140a的部分第三调节子区的主间隔物30分布密度依次减小。
在本申请的一些实施例中,s为奇数。在此情况下,奇数个第三调节子区中,位于中间的一个第三调节子区,以及该中间的一个第三调节子区和第一通孔区140a之间的多个第三调节子区,沿朝向第一通孔区140a的方向,上述各个第三调节子区的分布密度依次减小。
例如s=3。沿朝向第一通孔区140a的方向,靠近第一通孔区140a的[(s-1)/2]+1=[(3-1)/2]+1=2个第三调节子区,即第三调节子区c1、第三调节子区c2的主间隔物30分布密度依次减小。如图12b所示,第三调节子区c1、第三调节子区c2的主间隔物30的分布密度依次为0.04%、0.02%。
在此情况下,为了使得第一通孔区140a左右两侧的支撑力的过渡效果相当,如图12b所示,靠近第一通孔区140a的[(s-1)/2]+1=[(3-1)/2]+1=2个第三调节子区(c1、c2)中,每个第三调节子区(c1、c2)的主间隔物30分布密度和关于第一通孔区140a中心位置对称的一个第一调节子区的主间隔物30分布密度相同。例如,第三调节子区c1与第一调节子区IIa的主间隔物30分布密度相同。第三调节子区c2与第一调节子区IIIa的主间隔物30分布密度相同。
或者,在本申请的另一些实施例中,s为偶数,在此情况下,偶数个第三调节子区中,靠近第一通孔区140a的一半数量(即s/2)的多个第三调节子区,沿朝向第一通孔区140a的方向,上述各个第三调节子区的分布密度依次减小。
例如s=4。此时第一通孔区140a和第二通孔区140b之间的部分划分有如图13所示的第三调节子区c1、第三调节子区c2、第三调节子区c3以及第三调节子区c4。在此情况下,沿朝向第一通孔区140a的方向,靠近第一通孔区140a的s/2=4/2=2个第三调节子区,即第三调节子区c1、第三调节子区c2的主间隔物30分布密度依次减小。
在此情况下,为了使得第一通孔区140a左右两侧的支撑力的过渡效果相当,靠近第一通孔区140a的s/2=4/2=2个第三调节子区(c1、c2)中,每个第三调节子区(c1、c2)的主间隔物30分布密度和关于第一通孔区140a中心位置对称的一个第一调节子区的主间隔物分布密度相同。例如,第三调节子区c1与第一调节子区IIa的主间隔物30分布密度相同。第三调节子区c2与第一调节子区IIIa的主间隔物30分布密度相同。
此外,如图12a所示,沿朝向第二通孔区140b的方向,靠近第二通孔区140b的部分第三调节子区的主间隔物30分布密度依次减小。
在本申请的一些实施例中,s为奇数。奇数个第三调节子区中,位于中间的一个第三调节子区,以及该中间的一个第三调节子区和第二通孔区140b之间的多个第三调节子区,沿朝向第二通孔区140b的方向,上述各个第三调节子区的分布密度依次减小。
例如s=3。在此情况下,沿朝向第二通孔区140b的方向,靠近第二通孔区140b的[(s-1)/2]+1=[(3-1)/2]+1=2个第三调节子区,即第三调节子区c1、第三调节子区c3的主间隔物30分布密度依次减小。如图12b所示,第三调节子区c1、第三调节 子区c3的主间隔物30的分布密度依次为0.04%、0.02%。
同理,为了使得第二通孔区140b左右两侧的支撑力的过渡效果相当,如图12b所示,靠近第二通孔区140b的[(s-1)/2]+1=[(3-1)/2]+1=2个第三调节子区(c1、c3)中,每个第三调节子区(c1、c3)的主间隔物30分布密度和关于第二通孔区140b中心位置对称的一个第二调节子区的主间隔物30分布密度相同。例如,第三调节子区c1与第二调节子区IIb的主间隔物30分布密度相同。第三调节子区c2与第二调节子区IIIb的主间隔物30分布密度相同。
或者,在本申请的另一些实施例中,s为偶数。在此情况下,偶数个第三调节子区中,靠近第二通孔区140b的一半数量(即s/2)的多个第三调节子区,沿朝向第二通孔区140b的方向,上述各个第三调节子区的分布密度依次减小。
例如s=4。此时第一通孔区140a和第二通孔区140b之间的部分划分有如图13所示的第三调节子区c1、第三调节子区c2、第三调节子区c3以及第三调节子区c4。在此情况下,沿朝向第二通孔区140b的方向,靠近第二通孔区140b的s/2=4/2=2个第三调节子区,即第三调节子区c3、第三调节子区c4的主间隔物30分布密度依次减小。
在此情况下,为了使得第二通孔区140b左右两侧的支撑力的过渡效果相当,靠近第二通孔区140b的s/2=4/2=2个第三调节子区(c3、c4)中,每个第三调节子区(c3、c4)的主间隔物30分布密度和关于第二通孔区140b中心位置对称的一个第二调节子区的主间隔物分布密度相同。例如,第三调节子区c3与第二调节子区IIb的主间隔物30分布密度相同。第三调节子区c4与第二调节子区IIIb的主间隔物30分布密度相同。
示例三
本示例中如图14a所示,显示屏10包括两个间隔设置的通孔区,分别为第一通孔区140a和第二通孔区140b。在此情况下,第一通孔区140a和第二通孔区140b之间的第三调节子区的设置方式与示例二相同此处不再赘述。
不同之处在于,第一通孔区140a和第二通孔区140b之间的非开孔区141为不能进行图像显示的非有效显示区F。而上述非开孔区141中除了第一通孔区140a、第二通孔区140b以及第一通孔区140a和第二通孔区140b之间的非有效显示区F以外,其余部分为AA区。
在此情况下,为了使得第一通孔区140a和第二通孔区140b之间的非开孔区141不能进行显示,对盒基板111上BM的一部分可以覆盖第一通孔区140a和第二通孔区140b之间的非有效显示区F。
需要说明的是,由上述可知,图4b中的彩色滤光层312可以位于如图2b所示的非开孔区141内。非开孔区141包括上述非有效显示区F和AA区。然而只有AA区的彩色滤光层312才能够使得显示屏10进行彩色显示。所以也可以只在AA区内设置上述彩色滤光层312。
此外,如图14a所示,BM在非有效显示区F的部分,与BM在最靠近第一通孔区140a的第一调节子区IVa的部分相连接,且绕第一通孔区140a的一周设置。此外,BM在非有效显示区F的部分,与BM在最靠近第二通孔区140b的第二调节子区IVb的部分相连接,且绕第二通孔区140b的一周设置。
在此基础上,如图14b所示,非有效显示区F划分有至少一个第四调节子区d。 多个第三调节子区的一部分,例如第三调节子区c1位于第一通孔区140a和第四调节子区d之间。此外,多个第三调节子区的另一部分,例如第三调节子区c2位于第二通孔区140b和第四调节子区d之间。
在非有效显示区F,第四调节子区d的主间隔物30分布密度大于,与第四调节子区d相邻的第三调节子c1、第三调节子区c2的主间隔物30的分布密度。
在此基础上,由上述可知,对盒基板111上整个BM的一部分可以覆盖第一通孔区140a和第二通孔区140b之间的非有效显示区F。即,在第一通孔区140a和第二通孔区140b之间的非有效显示区F内,BM如图14a所示为一整块结构。而显示区14中,除了第一通孔区140a、第二通孔区140b、第一通孔区140a和第二通孔区140b之间的非有效显示区F,以及最靠近第一通孔区140a的第一调节子区Iva、最靠近第二通孔区140b的第一调节子区Ivb以外的AA区内,BM为如图5所示的横纵交叉的栅格结构。
在此情况下,当在BM朝向阵列基板110的一侧表面形成覆盖层303后,由于BM在图14b中的非有效显示区F内,为一整块结构而没有镂空区域,所以对盒基板111在非有效显示区F内的厚度较大。
这样一来,为了减小非有效显示区F以及与该非有效显示区F相邻的AA区的支撑性差异,如图14b所示,在垂直于第一通孔区140a和第二通孔区140b中心连线的方向(图14b所示的箭头方向)上,沿朝向AA区的方向(向上或向下),第四调节子区d的主间隔物分布密度、第三调节子区c1、第三调节子区c2的主间隔物30分布密度逐渐减小。
示例的,第三调节子区c1、第三调节子区c2沿图14b所示的箭头方向,主间隔物30分布密度由0.02%减小至0。从而使得在靠近AA区边缘的部分,第三调节子区c1、第三调节子区c2的主间隔物30分布密度为零。
此外,第四调节子区d中心位置的主间隔物30分布密度为0.04%,沿图14b所示的箭头方向,主间隔物30分布减小至0.02%,然后在靠近AA区边缘的部分,第四调节子区d的主间隔物30分布密度减小至零。进而达到减小非有效显示区F以及与该非有效显示区F相邻的AA区的支撑性差异的目的。
在此基础上,为了进一步减小非有效显示区F以及与该非有效显示区F相邻的AA区的支撑性差异,使得液晶盒的盒厚各处相当,如图14c(沿如图14b中第一通孔区140a和第二通孔区140b中心连线的方向进行剖切)所示,在第一通孔区140a和第二通孔区140b之间的非有效显示区F内,彩色滤光层312包括多个间隔设置的第一颜色光阻块302a。
这样一来,虽然BM在图14b中的非有效显示区F内,为一整块结构而没有镂空区域,但是由于非有效显示区F内彩色滤光层312中只设置的多个间隔设置的第一颜色光阻块302a。因此,制作于BM朝向阵列基板110一侧的覆盖层303可以进入相邻两个第一颜色光阻块302a之间的缝隙内,使得覆盖层303与第一颜色光阻块302a以及位于该第一颜色光阻块302a远离阵列基板110一侧的BM相接触。从而可以降低覆盖层303厚度。进而达到减小非有效显示区F以及与该非有效显示区F相邻的AA区的盒厚差异的目的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种显示屏,其特征在于,所述显示屏具有显示区;所述显示区包括至少一个通孔区,以及设置于所述通孔区周边的非开孔区;
    所述显示屏包括:
    阵列基板,包括第一透明衬底;
    对盒基板,包括第二透明衬底;
    液晶层,位于所述阵列基板和所述对盒基板之间;在所述通孔区,所述液晶层与所述第一透明衬底和所述第二透明衬底相接触;
    多个主间隔物,在所述非开孔区内,且位于所述阵列基板和所述对盒基板之间;所述主间隔物与所述阵列基板和所述对盒基板相接触;
    所述非开孔区中靠近所述通孔区的部分,划分有多个依次靠近所述通孔区的调节子区;沿朝向所述通孔区的方向,所述调节子区的主间隔物分布密度依次减小;
    其中,所述主间隔物分布密度为所述阵列基板朝向所述对盒基板的表面上,单位面积内具有所述主间隔物的数量。
  2. 根据权利要求1所述的显示屏,其特征在于,所述显示屏包括一个所述通孔区;每个所述调节子区绕所述通孔区的一周设置。
  3. 根据权利要求1所述的显示屏,其特征在于,所述显示屏包括两个间隔设置的所述通孔区,分别为第一通孔区和第二通孔区;
    依次靠近所述第一通孔区的调节子区为第一调节子区,且至少一个所述第一调节子区绕所述第一通孔区的一周设置;
    依次靠近所述第二通孔区的调节子区为第二调节子区;且至少一个所述第二调节子区绕所述第二通孔区的一周设置;
    所述非开孔区中位于所述第一通孔区和所述第二通孔区之间的部分,划分有位于相邻的所述第一调节子区和所述第二调节子区之间的至少一个第三调节子区;
    所述第三调节子区的主间隔物分布密度,大于所述第一调节子区和所述第二调节子区的主间隔物分布密度。
  4. 根据权利要求3所述的显示屏,其特征在于,所述非开孔区中位于所述第一通孔区和所述第二通孔区之间的部分,划分有s个所述第三调节子区;3≤s;s为正整数;
    沿朝向所述第一通孔区的方向,靠近所述第一通孔区的部分所述第三调节子区的主间隔物分布密度依次减小;
    沿朝向所述第二通孔区的方向,靠近所述第二通孔区的部分所述第三调节子区的主间隔物分布密度依次减小。
  5. 根据权利要求4所述的显示屏,其特征在于,
    s为偶数,沿朝向所述第一通孔区的方向,靠近所述第一通孔区的s/2个所述第三调节子区的主间隔物分布密度依次减小;沿朝向所述第二通孔区的方向,靠近所述第二通孔区的s/2个所述第三调节子区的主间隔物分布密度依次减小;
    或者,
    s为奇数,沿朝向所述第一通孔区的方向,靠近所述第一通孔区的[(s-1)/2]+1个所述第三调节子区的主间隔物分布密度依次减小;沿朝向所述第二通孔区的方向, 靠近所述第二通孔区的[(s-1)/2]+1个所述第三调节子区的主间隔物分布密度依次减小。
  6. 根据权利要求5所述的显示屏,其特征在于,
    s为偶数,靠近所述第一通孔区的s/2个所述第三调节子区中,每个所述第三调节子区的主间隔物分布密度和关于所述第一通孔区中心位置对称的一个所述第一调节子区的主间隔物分布密度相同;靠近所述第二通孔区的s/2个所述第三调节子区中,每个所述第三调节子区的主间隔物分布密度和关于所述第二通孔区中心位置对称的一个所述第二调节子区的主间隔物分布密度相同;
    s为奇数,靠近所述第一通孔区的[(s-1)/2]+1个所述第三调节子区中,每个所述第三调节子区的主间隔物分布密度和关于所述第一通孔区中心位置对称的一个所述第一调节子区的主间隔物分布密度相同;靠近所述第二通孔区的[(s-1)/2]+1个所述第三调节子区中,每个所述第三调节子区的主间隔物分布密度和关于所述第二通孔区中心位置对称的一个所述第二调节子区的主间隔物分布密度相同。
  7. 根据权利要求3所述的显示屏,其特征在于,所述第一通孔区和所述第二通孔区之间的所述非开孔区为有效显示区。
  8. 根据权利要求3所述的显示屏,其特征在于,所述第一通孔区和所述第二通孔区之间的所述非开孔区为非有效显示区,所述非开孔区的其余部分为有效显示区;
    所述非有效显示区划分有至少一个第四调节子区;多个所述第三调节子区的一部分位于所述第一通孔区和所述第四调节子区之间,多个所述第三调节子区的另一部分位于所述第二通孔区和所述第四调节子区之间;
    在所述非有效显示区,所述第四调节子区的主间隔物分布密度大于,与所述第四调节子区相邻的所述第三调节子区的主间隔物分布密度;
    在垂直于所述第一通孔区和所述第二通孔区中心连线的方向上,沿朝向所述有效显示区的方向,每个所述第四调节子区的主间隔物分布密度、每个所述第三调节子区的主间隔物分布密度逐渐减小。
  9. 根据权利要求8所述的显示屏,其特征在于,
    在垂直于所述第一通孔区和所述第二通孔区中心连线的方向上,每个所述第四调节子区以及每个所述第三调节子区中,在靠近所述有效显示区边缘的部分,所述主间隔物分布密度为零。
  10. 根据权利要求1-9任一项所述的显示屏,其特征在于,所述对盒基板包括:
    第二衬底基板;
    黑矩阵,设置于所述第二衬底基板朝向所述阵列基板的一侧表面,且位于所述非开孔区;
    彩色滤光层,设置于所述黑矩阵朝向所述阵列基板的一侧表面,且位于所述非开孔区;
    覆盖层,设置于所述彩色滤光层朝向所述阵列基板的一侧表面,且位于所述显示区;所述覆盖层在所述通孔区与所述第二衬底基板相接触,所述第二透明衬底包括所述第二衬底基板以及所述覆盖层。
  11. 根据权利要求10所述的显示屏,其特征在于,
    所述黑矩阵在最靠近所述通孔区的所述调节子区内的部分,绕所述通孔区的一周设置。
  12. 根据权利要求10所述的显示屏,其特征在于,所述显示屏包括第一通孔区和第二通孔区;
    所述黑矩阵的一部分覆盖所述第一通孔区和所述第二通孔区之间的非有效显示区;
    所述黑矩阵在所述非有效显示区的部分,与所述黑矩阵在最靠近所述第一通孔区的第一调节子区的部分相连接,且绕所述第一通孔区的一周设置,与所述黑矩阵在最靠近所述第二通孔区的第二调节子区的部分相连接,且绕所述第二通孔区的一周设置。
  13. 根据权利要求10所述的显示屏,其特征在于,所述显示屏包括第一通孔区和第二通孔区;
    在所述第一通孔区和所述第二通孔区之间的非有效显示区,所述彩色滤光层包括多个间隔设置的第一颜色光阻块;
    所述覆盖层与所述第一颜色光阻块和所述黑矩阵相接触。
  14. 根据权利要求10所述的显示屏,其特征在于,所述显示屏还包括多个间隔设置的液晶挡墙;
    所述液晶挡墙位于所述覆盖层朝向所述阵列基板的一侧表面,且设置于所述通孔区的周边;所述液晶挡墙与所述阵列基板之间具有间隙。
  15. 根据权利要求1所述的显示屏,其特征在于,沿朝向所述通孔区的方向,所述调节子区的主间隔物的密度依次递减;
    所述非开孔区中,除了多个所述调节子区以外的部分的主间隔物分布密度为第一密度;
    多个所述调节子区中,最远离所述通孔区的所述调节子区的主间隔物分布密度为所述第一密度。
  16. 根据权利要求1所述的显示屏,其特征在于,多个所述调节子区中,最靠近所述通孔区的调节子区的主间隔物分布密度小于或等于0.01%。
  17. 根据权利要求1所述的显示屏,其特征在于,所述单位面积为1~100mm 2
  18. 根据权利要求1所述的显示屏,其特征在于,所述显示屏还包括位于所述阵列基板和所述对盒基板之间的多个辅助间隔物;所述辅助间隔物位于所述非开孔区;
    所述辅助间隔物的一端与所述对盒基板相接触,另一端与所述阵列基板之间具有间隙。
  19. 一种电子设备,其特征在于,包括光敏器件,以及如权利要求1-18任一项所述的显示屏;
    所述显示屏具有用于显示图像的显示面以及背离所述显示面的背面;所述光敏器件位于所述显示屏的背面,且与所述通孔区的位置相对应;
    所述光敏器件的受光面朝向所述显示屏。
PCT/CN2020/103368 2019-08-15 2020-07-21 一种显示屏、电子设备 WO2021027506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910755249.6A CN110515243B (zh) 2019-08-15 2019-08-15 一种显示屏、电子设备
CN201910755249.6 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021027506A1 true WO2021027506A1 (zh) 2021-02-18

Family

ID=68626119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103368 WO2021027506A1 (zh) 2019-08-15 2020-07-21 一种显示屏、电子设备

Country Status (2)

Country Link
CN (1) CN110515243B (zh)
WO (1) WO2021027506A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391983B2 (en) * 2020-08-14 2022-07-19 Chengdu Boe Optoelectronics Technology Co., Ltd. Color film substrate, manufacturing method thereof, display panel and display device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110515243B (zh) * 2019-08-15 2020-08-14 华为技术有限公司 一种显示屏、电子设备
CN110928016B (zh) * 2019-12-13 2022-02-22 武汉华星光电技术有限公司 一种显示面板、显示装置及显示装置的制作方法
CN111025734A (zh) * 2019-12-16 2020-04-17 友达光电(昆山)有限公司 显示装置
CN111129103A (zh) * 2020-01-02 2020-05-08 昆山国显光电有限公司 显示面板以及显示装置
JP7395368B2 (ja) * 2020-01-27 2023-12-11 株式会社ジャパンディスプレイ 電子機器
CN111290155B (zh) * 2020-03-26 2021-04-27 武汉华星光电技术有限公司 一种彩膜基板、显示面板及电子装置
CN111273476A (zh) * 2020-03-27 2020-06-12 武汉华星光电技术有限公司 显示面板及其制作方法、显示装置
CN113467121A (zh) * 2020-03-31 2021-10-01 京东方科技集团股份有限公司 显示面板以及显示装置
CN112014991B (zh) * 2020-09-11 2022-10-04 武汉华星光电技术有限公司 液晶显示面板
CN112764258B (zh) * 2020-12-22 2022-06-28 厦门天马微电子有限公司 一种显示装置及其控制方法
CN112908199A (zh) * 2021-04-13 2021-06-04 昆山国显光电有限公司 显示面板及显示装置
CN113671739A (zh) * 2021-08-03 2021-11-19 Tcl华星光电技术有限公司 显示装置及其显示面板
CN117296002A (zh) * 2022-04-26 2023-12-26 京东方科技集团股份有限公司 显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180027701A (ko) * 2016-09-06 2018-03-15 엘지디스플레이 주식회사 표시패널
CN109100891A (zh) * 2018-08-10 2018-12-28 厦门天马微电子有限公司 一种显示面板及显示装置
CN109307962A (zh) * 2018-11-13 2019-02-05 华为技术有限公司 一种液晶显示面板、液晶显示屏及电子设备
CN109856840A (zh) * 2019-03-26 2019-06-07 厦门天马微电子有限公司 一种显示面板及显示装置
CN109946885A (zh) * 2019-04-17 2019-06-28 武汉华星光电技术有限公司 液晶显示面板以及电子设备
CN110045533A (zh) * 2019-04-30 2019-07-23 厦门天马微电子有限公司 一种显示基板、显示面板和显示装置
CN110515243A (zh) * 2019-08-15 2019-11-29 华为技术有限公司 一种显示屏、电子设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI271574B (en) * 2004-04-30 2007-01-21 Innolux Display Corp Liquid crystal display panel
CN109188787B (zh) * 2018-09-30 2021-09-14 厦门天马微电子有限公司 一种显示面板和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180027701A (ko) * 2016-09-06 2018-03-15 엘지디스플레이 주식회사 표시패널
CN109100891A (zh) * 2018-08-10 2018-12-28 厦门天马微电子有限公司 一种显示面板及显示装置
CN109307962A (zh) * 2018-11-13 2019-02-05 华为技术有限公司 一种液晶显示面板、液晶显示屏及电子设备
CN109856840A (zh) * 2019-03-26 2019-06-07 厦门天马微电子有限公司 一种显示面板及显示装置
CN109946885A (zh) * 2019-04-17 2019-06-28 武汉华星光电技术有限公司 液晶显示面板以及电子设备
CN110045533A (zh) * 2019-04-30 2019-07-23 厦门天马微电子有限公司 一种显示基板、显示面板和显示装置
CN110515243A (zh) * 2019-08-15 2019-11-29 华为技术有限公司 一种显示屏、电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391983B2 (en) * 2020-08-14 2022-07-19 Chengdu Boe Optoelectronics Technology Co., Ltd. Color film substrate, manufacturing method thereof, display panel and display device

Also Published As

Publication number Publication date
CN110515243B (zh) 2020-08-14
CN110515243A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2021027506A1 (zh) 一种显示屏、电子设备
US20220004064A1 (en) Liquid crystal display device
EP2980636B1 (en) Liquid crystal display panel
US8264658B2 (en) Liquid crystal display device and method of manufacturing color filter substrate
WO2020207255A1 (zh) 阵列基板及其制备方法、液晶显示面板、液晶显示装置
CN107290909B (zh) 阵列基板及液晶显示面板
EP3312668B1 (en) Array substrate and method for manufacturing same, and display device
WO2016086539A1 (zh) 液晶面板及其制作方法
CN107688254B (zh) Coa型液晶显示面板及其制作方法
CN107092113B (zh) 液晶显示装置
JP2009103797A (ja) 液晶表示装置
WO2013071840A1 (zh) Tft阵列基板及显示设备
WO2017035911A1 (zh) Boa型液晶面板
KR20160130045A (ko) 표시 패널
CN102749802A (zh) 用于黑底的掩模
US10197845B2 (en) Manufacturing method of color filter substrate and manufacturing method of liquid crystal panel
KR20130015734A (ko) 액정표시장치
WO2019085224A1 (zh) 阵列基板及显示面板
KR20150125160A (ko) 액정 디스플레이 장치와 이의 제조 방법
WO2020124896A1 (zh) 液晶显示面板
WO2020228168A1 (zh) 阵列基板及其制作方法
JP2012098329A (ja) 液晶表示装置
US8223303B2 (en) Transflective LCD device
US11073734B2 (en) Array substrate and method of manufacturing the same, display panel and display device
JP2017187530A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853102

Country of ref document: EP

Kind code of ref document: A1