WO2021025511A1 - 렌즈 구동 장치, 카메라 모듈 및 광학 기기 - Google Patents

렌즈 구동 장치, 카메라 모듈 및 광학 기기 Download PDF

Info

Publication number
WO2021025511A1
WO2021025511A1 PCT/KR2020/010449 KR2020010449W WO2021025511A1 WO 2021025511 A1 WO2021025511 A1 WO 2021025511A1 KR 2020010449 W KR2020010449 W KR 2020010449W WO 2021025511 A1 WO2021025511 A1 WO 2021025511A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnet
bobbin
disposed
housing
Prior art date
Application number
PCT/KR2020/010449
Other languages
English (en)
French (fr)
Inventor
김중철
박태봉
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190095442A external-priority patent/KR20210016950A/ko
Priority claimed from KR1020190122129A external-priority patent/KR20210039651A/ko
Priority claimed from KR1020190134140A external-priority patent/KR20210049622A/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US17/628,333 priority Critical patent/US20220255414A1/en
Priority to CN202080055207.2A priority patent/CN114174914A/zh
Publication of WO2021025511A1 publication Critical patent/WO2021025511A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Definitions

  • the present embodiment relates to a lens driving device, a camera module, and an optical device.
  • VCM voice coil motor
  • the camera module may be frequently shocked during use, and the camera module may be slightly shaken due to the user's hand shake during shooting.
  • a technology for additionally installing a camera module for preventing hand shake has been developed.
  • an auto focus function that automatically adjusts the focus according to the distance of the subject is being studied in the camera module. Furthermore, a feedback function is being studied to perform more accurate auto focus functions.
  • the first embodiment of the present invention reduces magnetic field interference between magnets included in two adjacent lens driving devices mounted on a dual camera module, and uses electromagnetic force in the X-axis direction and the Y-axis direction to perform the OIS function.
  • a lens driving device capable of balancing the electromagnetic force of the device and reducing the current consumption by reducing the weight of the OIS moving part, and a camera module and an optical device including the same.
  • the second embodiment of the present invention uses a sensing coil instead of a sensing magnet to provide a magnetic field to the position sensor, thereby preventing a malfunction of AF driving due to magnetic field interference, and driving a lens that can improve autofocusing accuracy. It provides an apparatus, and a camera module and an optical device including the same.
  • a third embodiment of the present invention is to provide a camera module including a structure in which an increase in the overall size of the camera module is minimized compared to a camera module not equipped with an auto focus feedback function and an assembly operation for energizing a sensing coil is easy.
  • a lens driving apparatus includes a substrate; A housing disposed on the substrate; A bobbin disposed in the housing; A sensing coil disposed on the bobbin; A first magnet, a second magnet, a third magnet, and a dummy member disposed on different sides of the housing; A first coil including a first coil unit corresponding to the first magnet and a second coil unit corresponding to the second magnet; And a first position sensor disposed on the substrate and corresponding to the sensing coil, wherein the first magnet and the second magnet are located opposite to each other, the third magnet and the dummy member are located opposite to each other, and the A driving signal is provided to the sensing coil, and the first position sensor senses the strength of the magnetic field of the sensing coil and outputs an output signal.
  • the sensing coil may overlap with the first position sensor in the optical axis direction.
  • the bobbin includes a protrusion protruding from an outer surface, and the sensing coil may be coupled to the protrusion of the bobbin.
  • the sensing coil has a ring shape including a central hole, and the central hole of the sensing coil may be parallel to an optical axis.
  • the sensing coil may be coupled to a lower surface of the protrusion.
  • the dummy member may include a first dummy and a second dummy spaced apart from each other, and at least a portion of the sensing coil may be disposed between the first dummy and the second dummy.
  • the lens driving device includes: a second coil including third to fifth coil units corresponding to the first to third magnets in an optical axis direction; And a second position sensor disposed on the substrate and including a first sensor corresponding to the first magnet and a second sensor corresponding to the third magnet.
  • the sensing coil may not overlap with the third to fifth coil units in the optical axis direction.
  • the first position sensor may be a Hall sensor, a driver IC including a Hall sensor, or a TMR (Tunnel Magnetoresistance) sensor.
  • the lens driving device may include an elastic member coupled to the bobbin and the housing; And a support member connecting the elastic member and the substrate.
  • a lens driving device includes a fixing unit; An AF movable part including a bobbin, and an OIS movable part including a housing; A first elastic part supporting the AF movable part with respect to the housing; A second elastic part supporting the OIS movable part with respect to the fixed part; An AF coil disposed on the bobbin; A sensing coil disposed on the bobbin; A first magnet and a second magnet disposed on the housing and positioned opposite to each other; A third magnet and a dummy member disposed in the housing and positioned opposite to each other; First to third OIS coil units corresponding to the first to third magnets in an optical axis direction; An AF position sensor disposed on the fixing unit and corresponding to the sensing coil in the optical axis direction; And a first OIS sensor corresponding to the first magnet and a second OIS sensor corresponding to the third magnet, and a driving signal is provided to the sensing coil, and the AF position sensor It can detect the strength of the magnetic field of the coil
  • a lens driving apparatus includes a base; A housing disposed on the base; A bobbin disposed in the housing; A coil disposed on the bobbin; A sensing coil disposed on the bobbin; And a position sensor disposed on the base and corresponding to the sensing coil, wherein a first driving signal is provided to the sensing coil, and the position sensor senses the strength of the magnetic field of the sensing coil and outputs an output signal.
  • a first driving signal is provided to the sensing coil, and the position sensor senses the strength of the magnetic field of the sensing coil and outputs an output signal.
  • a second driving signal is provided to the coil, the bobbin is moved in the optical axis direction by an interaction between the coil and the magnet, and the first driving signal has a constant value when the bobbin is moved in the optical axis direction. It may be a direct current signal.
  • the sensing coil may overlap the position sensor in the optical axis direction.
  • the coil may be coupled to an outer surface of the bobbin, and the sensing coil may be disposed under the coil.
  • the sensing coil has a ring shape including a central hole, and the central hole of the sensing coil may be parallel to an optical axis.
  • the lens driving device includes a terminal portion disposed on the base, and the terminal portion includes a first terminal, a second terminal, a third terminal, and a fourth terminal spaced apart from each other, and the position sensor includes the first to the first terminal. It can be electrically connected with 4 terminals.
  • the lens driving device includes a lower elastic member coupled to a lower portion of the bobbin and a lower portion of the housing, and the lower elastic member includes a first elastic member, a second elastic member, a third elastic member, and a fourth elastic member.
  • the coil may be electrically connected to the first and second elastic members, and the sensing coil may be electrically connected to the third and fourth elastic members.
  • the shortest distance between the coil and the position sensor may be smaller than the shortest distance between the position sensor and the magnet.
  • the first to fourth terminals are disposed in the base, the base includes a groove exposing one end of each of the first to fourth terminals, and the position sensor is disposed in the groove, and the first to The other end of each of the fourth terminals may be exposed to the outer surface of the base.
  • the position sensor may be a Hall sensor, a driver IC including a Hall sensor, or a TMR (Tunnel Magnetoresistance) sensor.
  • a lens driving apparatus includes a cover including an upper plate and a side plate extending from the upper plate; A bobbin disposed in the cover; A base disposed under the bobbin; A first coil disposed on the bobbin; A magnet disposed between the first coil and the side plate of the cover; An elastic member connected to the bobbin; And a substrate including a second coil and disposed on the base, wherein the substrate is disposed on an upper surface of the base, and the elastic member may include an outer portion disposed on the upper surface of the substrate.
  • An induced voltage may be generated in the second coil by an interaction with the first coil.
  • the outer portion of the elastic member may be fixed to the upper surface of the substrate by an adhesive.
  • the elastic member includes a hole formed in the outer portion, the substrate includes a hole formed at a position corresponding to the hole in the outer portion, and the base corresponds to the hole of the substrate on the upper surface of the base A groove formed at a position, and an adhesive may be disposed in at least a portion of the hole of the outer portion, the hole of the substrate, and the groove of the base.
  • the elastic member includes a hole formed in the outer portion, the substrate includes a hole formed at a position corresponding to the hole in the outer portion, and the base corresponds to the hole of the substrate on the upper surface of the base And a protrusion formed at a position, and the protrusion of the base may be inserted into the hole of the outer portion and the hole of the substrate.
  • the second coil may be formed as a pattern coil on the substrate.
  • the base includes a protrusion formed on the upper surface of the base and extending from an outer surface of the base, and the protrusion includes a first protrusion formed on a first side of the outer surface of the base, and the outer surface of the base. It includes a second protrusion formed on a second side of the side surface opposite to the first side, and the substrate may include a body portion disposed between the first protrusion and the second protrusion.
  • the substrate includes a terminal portion extending downward from the body portion and disposed on a third side of the outer surface of the base, and the elastic member comprises a first lower elastic unit electrically connected to one end of the first coil , A second lower elastic unit spaced apart from the first lower elastic unit and electrically connected to the other end of the first coil, and each of the first lower elastic unit and the second lower elastic unit includes a terminal,
  • the terminal portion of the substrate may be disposed between the terminal of the first lower elastic unit and the terminal of the second lower elastic unit.
  • the substrate includes a terminal portion extending downward from the body portion and disposed on a third side of the outer surface of the base, and the elastic member comprises a first lower elastic unit electrically connected to one end of the first coil And a second lower elastic unit spaced apart from the first lower elastic unit and electrically connected to the other end of the first coil, wherein each of the first lower elastic unit and the second lower elastic unit is electrically connected to the substrate. It is connected, and the terminal portion of the substrate may include two terminals electrically connected to the first coil and two terminals electrically connected to the second coil.
  • the bobbin may include a stopper overlapping the base in an optical axis direction and protruding from a lower surface of the bobbin, and the substrate may include a hole formed at a position corresponding to the stopper.
  • At least a portion of the second coil may overlap the first coil in the optical axis direction.
  • At least a portion of the substrate may overlap the magnet in the optical axis direction.
  • a camera module includes a printed circuit board; An image sensor disposed on the printed circuit board; The lens driving device; And a lens coupled to the bobbin of the lens driving device and disposed at a position corresponding to the image sensor.
  • the optical device according to the third embodiment of the present invention may include the camera module.
  • a lens driving apparatus includes a cover including an upper plate and a side plate extending from the upper plate; A bobbin disposed in the cover; A base disposed under the bobbin; A first coil disposed on the bobbin; A magnet disposed between the first coil and the side plate of the cover; An elastic member connected to the bobbin; And a substrate including a second coil and disposed on the base, wherein the elastic member includes an inner portion coupled to the bobbin, an outer portion coupled to the substrate or the base, and a connection portion connecting the inner portion and the outer portion And the substrate may be disposed between the outer portion of the elastic member and the base.
  • a lens driving apparatus includes a cover including an upper plate and a side plate extending from the upper plate; A bobbin disposed in the cover; A base disposed under the bobbin; A first coil disposed on the bobbin; A magnet disposed between the first coil and the side plate of the cover; An elastic member connected to the bobbin; And a substrate including a second coil and disposed on the base, wherein the elastic member comprises a first lower elastic unit electrically connected to one end of the first coil, and a first lower elastic unit spaced apart from the first And a second lower elastic unit electrically connected to the other end of the first coil, and each of the first lower elastic unit and the second lower elastic unit may be electrically connected to the substrate.
  • the first embodiment of the present invention reduces magnetic field interference between magnets included in two adjacent lens driving devices mounted on a dual camera module, and uses electromagnetic force in the X-axis direction and the Y-axis direction to perform the OIS function. It is possible to balance the electromagnetic force to the furnace and reduce the current consumption by reducing the weight of the OIS moving part.
  • the second embodiment of the present invention by using a sensing coil instead of a sensing magnet to provide a magnetic field to the position sensor, a malfunction of AF driving due to magnetic field interference can be prevented, and accuracy of auto focusing can be improved.
  • the third embodiment of the present invention it is possible to minimize the size of a camera module having an auto focus feedback function.
  • the sensing coil is energized only by energizing the terminal of the FPCB patterned with the sensing coil to the printed circuit board, there is an advantage that an additional soldering connection process is unnecessary.
  • FIG. 1 is an exploded view of a lens driving apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of a lens driving device excluding a cover member.
  • 3A is an exploded perspective view of a bobbin, a first coil unit, a second coil unit, and a sensing coil.
  • 3B is a perspective view of a bobbin, a first coil unit, a second coil unit, and a sensing coil.
  • 4A is an exploded perspective view of a housing, first to third magnets, and a dummy member.
  • 4B is a perspective view of a housing, first to third magnets, and a dummy member.
  • FIG. 5 is a perspective view of an upper elastic member.
  • FIG. 6 is a view for explaining an electrical connection relationship between an upper elastic member, a support member, and a circuit board.
  • FIG. 7 is a bottom view of first to third magnets, a dummy member, a housing, a lower elastic member, and a sensing coil.
  • FIG. 8 is an exploded perspective view of a second coil, a circuit board, and a base.
  • FIG. 9 is a cross-sectional view of the lens driving device in the AB direction of FIG. 2.
  • FIG. 10 is a cross-sectional view of the lens driving device in the CD direction of FIG. 2.
  • FIG. 11 is a cross-sectional view of the lens driving device in the EF direction of FIG. 2.
  • FIG. 12 is a perspective view illustrating a first position sensor, a sensing coil, first to third magnets, a dummy member, and third to fifth coil units.
  • FIG. 13 is a perspective view of a first position sensor, a sensing coil, first to third magnets, a dummy member, third to fifth coil units, and first and second sensors.
  • FIG. 14 is a bottom view of the configurations shown in FIG. 12.
  • 15A shows an arrangement of a sensing coil and a first position sensor for simulation.
  • FIG. 15B shows a change in the position of the sensing coil of FIG. 15A according to the movement of the AF movable part in the optical axis direction.
  • 15C illustrates a change in the intensity of a magnetic field of a sensing coil sensed by the first position sensor according to a position change of the sensing coil of FIG. 15B.
  • FIG. 16 shows another embodiment of a lens driving device.
  • FIG 17 is an exploded perspective view of the camera module according to the first embodiment of the present invention.
  • FIG. 18 is a perspective view of a camera module according to another embodiment.
  • 19A shows an embodiment of the dual camera module of FIG. 18.
  • 19B shows another embodiment of the dual camera module of FIG. 18.
  • FIG. 20A shows another embodiment of the dual camera module of FIG. 18.
  • 20B shows another embodiment of the dual camera module of FIG. 18.
  • 20C shows another embodiment of the dual camera module of FIG. 18.
  • 21 is a perspective view of a portable terminal according to the first embodiment of the present invention.
  • FIG. 22 is a block diagram of the portable terminal shown in FIG. 21.
  • FIG. 23 is an exploded view of a lens driving apparatus according to a second embodiment of the present invention.
  • FIG. 24 is a perspective view of a lens driving device excluding a cover member.
  • 25A is a first perspective view of the bobbin.
  • FIG. 25B is a second perspective view of the bobbin
  • FIG. 25C is a perspective view of a bobbin and a coil.
  • 26A is a perspective view of the housing.
  • 26B is a first perspective view of a housing and a magnet.
  • 26C is a second perspective view of the housing and the magnet.
  • FIG. 27 is a perspective view of a housing, a magnet, and an upper elastic member.
  • FIG. 28 is an exploded perspective view of a lower elastic member, a position sensor, a terminal portion, and a base.
  • 29 is a perspective view of a base to which a position sensor and a terminal portion are combined.
  • FIG. 30 is a perspective view illustrating a combination of a lower elastic member, a terminal portion, and a base.
  • FIG. 31 is a cross-sectional view of the lens driving device in the AB direction of FIG. 24.
  • FIG. 32 is a cross-sectional view of the lens driving device in the CD direction of FIG. 24.
  • 33A shows an arrangement of a coil, magnet units, sensing coil, and position sensor.
  • Fig. 33B shows a bottom view of Fig. 33A.
  • 35A shows an arrangement of a sensing coil and a position sensor for simulation.
  • 35B shows a change in the position of the sensing coil of FIG. 35A according to the movement of the AF movable part in the optical axis direction.
  • FIG. 35C illustrates a change in the intensity of a magnetic field of a sensing coil sensed by a position sensor according to a position change of the sensing coil of FIG. 35B.
  • 36 shows arrangements of coils, magnet units, sensing coils, and position sensors according to another embodiment.
  • FIG. 37 shows magnetic field distributions of a sensing magnet and a driving magnet in a lens driving apparatus using a sensing magnet.
  • 38 is an exploded view of a lens driving apparatus according to another embodiment.
  • FIG. 39 shows the arrangement of the coil, magnet units, and position sensor of FIG. 38.
  • FIG. 40 is a cross-sectional view of the lens driving device of FIG. 38 in the AB direction of FIG. 24.
  • FIG. 41 shows an example of a driving signal provided to the coil of FIG. 38.
  • FIG. 43 is an exploded perspective view of a camera module according to a second embodiment of the present invention.
  • FIG 44 is a perspective view of a portable terminal according to a second embodiment of the present invention.
  • FIG. 45 is a block diagram of the portable terminal shown in FIG. 44;
  • 46 is a perspective view of a lens driving apparatus according to a third embodiment of the present invention.
  • FIG. 47 is a cross-sectional view as viewed from A-A of FIG. 46;
  • FIG. 48 is a cross-sectional view as viewed from B-B of FIG. 46;
  • 49 is a cross-sectional view as viewed from C-C of FIG. 46;
  • FIG. 50 is a bottom view of a lens driving apparatus according to a third embodiment of the present invention.
  • FIG. 51 is a perspective view of a state in which the cover is removed from FIG. 46;
  • FIG. 52 is an exploded perspective view of a lens driving apparatus according to a third embodiment of the present invention.
  • FIG. 53 is an exploded perspective view of a lens driving apparatus according to a third embodiment of the present invention as viewed from a different direction from FIG. 52.
  • FIG. 54 is an exploded perspective view showing a mover and a stator according to a third embodiment of the present invention.
  • 55 is an exploded perspective view showing a base, an elastic member, and a substrate according to a third embodiment of the present invention.
  • FIG. 56 is an exploded perspective view of a part of the configuration according to the third embodiment of the present invention as viewed from a direction different from that of FIG. 55.
  • 57A is a perspective view showing a bonding state of a base and a substrate according to a third embodiment of the present invention.
  • 57B is a perspective view showing a bonding state of a base and a substrate according to a modification example.
  • FIG. 58 is a perspective view showing a state in which a lower elastic member is further coupled to FIG. 57A.
  • 59 is a cross-sectional perspective view of a partial configuration of a lens driving apparatus according to a third embodiment of the present invention.
  • 60 is an exploded perspective view of a camera module according to a third embodiment of the present invention.
  • 61 is a perspective view of an optical device according to a third embodiment of the present invention.
  • FIG. 62 is a configuration diagram of an optical device according to a third embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the component from other components, and are not limited to the nature, order, or order of the component by the term.
  • a component when a component is described as being'connected','coupled' or'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also the component and The case of being'connected','coupled' or'connected' due to another component between the other components may also be included.
  • the top (top) or bottom (bottom) when it is described as being formed or disposed on the “top (top) or bottom (bottom)” of each component, the top (top) or bottom (bottom) is one as well as when the two components are in direct contact with each other. It also includes a case in which the above other component is formed or disposed between the two components.
  • upper (upper) or lower (lower) when expressed as "upper (upper) or lower (lower)", the meaning of not only an upward direction but also a downward direction based on one component may be included.
  • the lens driving device may be referred to as a lens driver, a voice coil motor (VCM), an actuator, or a lens moving device, and the term “coil” is referred to as a coil unit.
  • VCM voice coil motor
  • actuator an actuator
  • lens moving device a lens moving device
  • coil is referred to as a coil unit.
  • elastic member may be replaced with an elastic unit or a spring.
  • terminal may be represented by replacing it with a pad, an electrode, a conductive layer, or a bonding part.
  • the lens driving apparatus is described using a Cartesian coordinate system (x, y, z), but may be described using other coordinate systems, and the embodiment is not limited thereto.
  • the x-axis and y-axis mean a direction perpendicular to the z-axis, which is the optical axis direction
  • the z-axis direction which is the optical axis (OA) direction
  • the x-axis direction is called the'second direction'
  • the y-axis direction may be referred to as a'third direction'.
  • the lens driving apparatus may perform an'auto focusing function'.
  • the auto-focusing function refers to automatically focusing the image of the subject on the image sensor surface.
  • the lens driving apparatus may perform a'image stabilization function'.
  • the image stabilization function refers to preventing that the outline of the captured image is not formed clearly due to vibration caused by the user's hand shake when capturing a still image.
  • FIG. 1 is an exploded view of a lens driving apparatus 100 according to a first embodiment of the present invention
  • FIG. 2 is a perspective view of a lens driving apparatus 100 excluding a cover member 300.
  • the lens driving device 100 includes a bobbin 110, a first coil 120, a first magnet 130-1, a second magnet 130-2, and a third magnet ( 130-3), dummy member 135, housing 140, upper elastic member 150, lower elastic member 160, first position sensor 170, sensing coil 180, and second coil 230 ) Can be included.
  • the lens driving apparatus 100 may further include at least one of a base 210, a circuit board 250, and a support member 220.
  • the lens driving apparatus 100 may further include a balancing coil (not shown) for attenuating the weight of the sensing coil 180 or the influence of the magnetic field.
  • a balancing coil (not shown) for attenuating the weight of the sensing coil 180 or the influence of the magnetic field.
  • the lens driving apparatus 100 may further include a second position sensor 240 to drive an OIS (Optical Image Stabilizer) feedback.
  • the lens driving device 100 may further include a cover member 300.
  • the present embodiment may provide a lens driving apparatus including an OIS function capable of reducing or suppressing magnetic field interference between magnets included in two adjacent lens driving apparatuses mounted on a dual camera module.
  • the present embodiment may balance the electromagnetic force generated in the X-axis direction and the electromagnetic force generated in the Y-axis direction in order to perform the OIS function.
  • the bobbin 110 is disposed inside the housing 140 and is in the direction of the optical axis (OA) by an electromagnetic interaction between the first coil 120 and the first and second magnets 130-1 and 130-2. Alternatively, it may be moved in the first direction (eg, the Z-axis direction).
  • FIG. 3A is an exploded perspective view of the bobbin 110, the first coil unit 120-1, the second coil unit 120-2, and the sensing coil 180
  • FIG. 3B is the bobbin 110 and the first coil.
  • the unit 120-1, the second coil unit 120-2, and the sensing coil 180 are combined in a perspective view.
  • the bobbin 110 may have an opening for mounting a lens or a lens barrel.
  • the opening of the bobbin 110 may be in the form of a through hole penetrating through the bobbin 110, and the shape of the opening of the bobbin 110 may be circular, elliptical, or polygonal, but is not limited thereto.
  • a lens may be directly mounted to the opening of the bobbin 110, but is not limited thereto.
  • a lens barrel for mounting or coupling at least one lens may be coupled or mounted to the opening of the bobbin 110. have.
  • the lens or lens barrel may be coupled to the inner peripheral surface of the bobbin 110 in various ways.
  • the bobbin 110 may include a plurality of side portions spaced apart from each other, and the plurality of side portions may be connected to each other.
  • the bobbin 110 includes side portions corresponding to the side portions 141-1 to 141-4 of the housing 140 and corner portions corresponding to the corner portions 142-1 to 142-4 of the housing 140 (Or corners).
  • the first coil unit 120-1 and the second coil unit 120-2 are disposed, mounted, or seated in the two sides of the bobbin 110 that are opposite to each other. ) Can be provided.
  • the seating groove 201 may be formed on first and second outer surfaces of the bobbin 110 that are opposite to each other.
  • the mounting groove 201 may have a structure that is recessed from the first and second outer sides of the bobbin 110, and matches the shape of the first coil unit 120-1 and the second coil unit 120-2. It can have a shape.
  • Each of the first and second outer surfaces opposite to each other of the bobbin 110 has a protrusion 25 for being coupled to a corresponding one of the first and second coil units 120-1 and 120-2. Can be provided.
  • a first protrusion for mounting or winding the first coil unit 120-1 may be formed on the first outer side of the bobbin 110, and a second coil unit may be formed on the second outer side of the bobbin 110.
  • a second protrusion for mounting or winding 120-2 may be formed.
  • the protrusion 25 may protrude from the bottom surface of the seating groove 201.
  • a protrusion 116 may be provided on an outer surface (eg, a fourth outer surface) of the bobbin 110 other than the first and second outer surfaces of the bobbin 110.
  • a protrusion 26 for mounting or arranging the sensing coil 180 may be formed on the protrusion 116.
  • the protrusion 116 may protrude in a direction perpendicular to the optical axis from an outer surface (eg, a fourth outer surface) of a side portion of the bobbin 110.
  • the protrusion 116 may pass through the center of the opening of the bobbin 110 and protrude in a direction parallel to a straight line perpendicular to the optical axis direction.
  • the protrusion 26 may protrude downward from the lower surface of the protrusion 116 or in a direction toward the first position sensor 170.
  • the bobbin 110 may further include a protrusion formed on another side (or third outer side) of the bobbin 110 for mounting or disposition of the balancing coil.
  • the third outer surface of the bobbin 110 may be an outer surface positioned opposite to the fourth outer surface of the bobbin 110.
  • Protrusions 111 may be formed at corners of the bobbin 110.
  • the protrusion 111 of the bobbin 110 passes through the center of the opening of the bobbin 110 and may protrude in a direction parallel to a straight line perpendicular to the optical axis direction, but is not limited thereto.
  • the protrusion 111 of the bobbin 110 corresponds to the groove 145 of the housing 140, and may be inserted or disposed in the groove 145 of the housing 140, and the bobbin 110 is constant around the optical axis. It is possible to inhibit or prevent movement or rotation beyond the range.
  • a first escape groove 122a for avoiding spatial interference with the first frame connection 153 of the upper elastic member 150 may be provided on the upper surface of the bobbin 110, and the lower elasticity
  • a second escape groove 122b for avoiding spatial interference with the second frame connecting portion 163 of the member 150 may be provided.
  • the first and second escape grooves 122a and 122b may be formed at the corners of the bobbin 110, but are not limited thereto, and may be formed at the side of the bobbin 110 in other embodiments.
  • the bobbin 110 may include a first stopper protruding from an upper surface and a second stopper protruding from a lower surface.
  • the first and second stoppers of the bobbin 110 move even if the bobbin 110 moves beyond a prescribed range due to an external impact or the like, the bobbin 110
  • the upper surface of the cover member 300 can be prevented from directly colliding with the inside of the upper plate, and the lower surface of the bobbin 110 is on the base 210, the second coil 230, or/and the circuit board 250 Direct collision can be avoided.
  • a first coupling part for coupling and fixing to the upper elastic member 150 may be provided on the upper surface of the bobbin 110, and a second coupling for coupling and fixing to the lower elastic member 160 on the lower surface of the bobbin 110 Additional can be provided.
  • the first and second coupling portions of the bobbin 110 may have a flat shape, but are not limited thereto, and in other embodiments, the first and second coupling portions of the bobbin 110 are It may have a groove or protrusion shape.
  • a screw wire for coupling with a lens or a lens barrel may be provided on the inner circumferential surface of the bobbin 110. While the bobbin 110 is fixed by a jig or the like, a thread can be formed on the inner circumferential surface of the bobbin 110, and a jig fixing groove 19 may be provided on the upper surface of the bobbin 110. have.
  • the first coil 120 includes a first coil unit 120-1 and a second coil unit 120-2 disposed on two sides of the bobbin 110 that are opposite to each other.
  • the “coil unit” may be represented by replacing it with a coil unit, a coil block, or a coil ring.
  • the first coil unit 120-1 may be disposed on the first side of the bobbin 110 corresponding to the first side part 141-1 of the housing 140, and the second coil unit 120-2 ) May be disposed on the second side of the bobbin 110 corresponding to the second side part 141-2 of the housing 140.
  • the first and second coil units 120-1 and 120-2 may be disposed in the seating groove 201 of the bobbin 110.
  • the first and second coil units 120-1 and 120-2 may be coupled to the protrusion 25 of the bobbin 110 or may be wound around the protrusion 25.
  • Each of the first coil unit 120-1 and the second coil unit 120-2 may include at least one of a circular shape, an elliptical shape, or a closed curve shape.
  • each of the first coil unit 120-1 and the second coil unit 120-2 may have a coil ring shape that passes through the center of the opening of the bobbin 110 and is wound around an axis perpendicular to the optical axis.
  • each of the first and second coil units 120-1 and 120-2 may include a central hole, and the central hole includes the first and second coil units 120-1 and 120-2.
  • the outer surface of the bobbin 110 to be disposed may be faced, and may be combined with the protrusion 25.
  • each of the first and second coil units 120-1 and 120-2 has a first portion 3a, a second portion 3b disposed under the first portion 3a, and a first portion 3a.
  • the second portion 3b may include a connection portion 3c connecting each other, and a closed curve may be formed by the first to third portions 3a to 3c.
  • the third part 3c is a first connection part 3c1 connecting one end of the first part 3a and one end of the second part 3b, and the other end and the second part 3b of the first part 3a It may include a second connection portion (3c2) connecting the other end of the.
  • the first coil 120 is disposed between the first coil unit 120-1 and the second coil unit 120-2, and the first coil unit 120-1 and the second coil unit 120-2 It may include a connection unit (not shown) or a connection coil for connecting to each other.
  • connection part of the first coil 120 may be connected to one end of the first coil unit 120-1, and the other end of the connection part of the first coil 120 is connected to one end of the second coil unit 120-2.
  • connection portion of the first coil 120 may face the third magnet 130-1 and may be disposed between the third magnet 130-1 and the bobbin 110.
  • connection portion of the first coil 120 may face the dummy member 135 and may be disposed between the dummy member 135 and the bobbin 110.
  • first coil unit 120-1 and the first coil unit 120-2 may be separated or spaced apart from each other, and the first coil unit 120-1 and the first coil unit 120 -2) A separate driving signal may be provided for each.
  • Power or a driving signal may be provided to the first coil 120.
  • the power or driving signal provided to the first coil 120 may be a DC signal or an AC signal, or may include a DC signal and an AC signal, and may be in the form of voltage or current.
  • a driving signal eg, driving current
  • driving current e.g. driving current
  • the bobbin 110 may be moved upward or downward (eg, in the Z-axis direction), which is referred to as bidirectional driving of the AF movable part.
  • the bobbin 110 may be moved upward, which is referred to as unidirectional driving of the AF movable part.
  • the AF movable unit may include a bobbin 110 and components coupled to the bobbin 110.
  • the AF movable unit may include a bobbin 110, a first coil 120, a sensing coil 180, or/and a balancing magnet.
  • the AF movable unit may further include a lens mounted on the bobbin 110.
  • the initial position of the AF movable part is the initial position of the AF movable part in the state that power is not applied to the first coil 120, or the upper and lower elastic members 150 and 160 are elastically deformed only by the weight of the AF movable part. It can be the position where the part is placed.
  • the initial position of the bobbin 110 is the position where the AF movable part is placed when gravity acts from the bobbin 110 to the base 210, or vice versa, when the gravity acts from the base 210 to the bobbin 110.
  • the first coil unit 120-1 is perpendicular to the optical axis, and the direction from the optical axis toward the first coil unit 120-1 (or the center of the first coil unit 120-1) As a result, the first magnet 130-1 may be opposed to or overlapped, but the third magnet 130-3 may not be opposed or overlapped.
  • the second coil unit 120-2 is perpendicular to the optical axis, and the direction from the optical axis toward the second coil unit 120-2 (or the center of the second coil unit 120-2) As a result, the second magnet 130-2 may be opposed or overlapped, but the third magnet 130-3 may not be opposed or overlapped.
  • the sensing coil 180 may be disposed on one side of the bobbin 110 in which the first coil unit 120-1 and the second coil unit 120-2 are not disposed.
  • the sensing coil 180 may be disposed on the protrusion 116 of the bobbin 110 and may be coupled to the protrusion 26 or may be wound around the protrusion 26.
  • the balancing sensing coil does not include the first coil unit 120-1 and the second coil unit 120-2 among the sides of the bobbin 110. It can be placed on either side of the other.
  • the balancing sensing coil may be coupled to a protrusion formed on the other side of the bobbin 110 or may be wound.
  • the balancing sensing coil may be used to cancel the magnetic field influence of the sensing coil 180 and balance the weight with the sensing coil 180, thereby enabling an accurate AF operation to be performed.
  • the sensing coil 180 may provide a magnetic field for the first position sensor 170 to sense.
  • the sensing coil 180 may be provided with a driving signal or power to generate a magnetic field.
  • the driving signal provided to the sensing coil 180 may include at least one of a DC signal or an AC signal. Also, the driving signal may be in the form of current or voltage.
  • the sensing coil 180 may include at least one of a circular shape, an elliptical shape, or a closed curve shape.
  • the sensing coil 180 may be in the form of a coil ring wound around an axis parallel to the optical axis.
  • the sensing coil 180 may include a central hole, and the central hole may be parallel to the optical axis.
  • the central hole of the sensing coil 180 may face the lower surface of the protrusion 116 of the bobbin 110 in which the sensing coil 180 is disposed, and may be coupled to the protrusion 26.
  • the sensing coil 180 connects the first part 4a, the second part 4b disposed under the first part 4a, and the first part 4a and the second part 4b to each other.
  • a portion 4c may be included, and a closed curve may be formed by the first to third portions 4a to 4c.
  • the third part 4c is a first connection part 4c1 connecting one end of the first part 4a and one end of the second part 4b, and the other end and the second part 4b of the first part 4a It may include a second connection portion (4c2) connecting the other end of the.
  • first part 3a or 4a may be expressed as a "first straight part”
  • second part 3b or 4b may be expressed as a “second straight part”
  • third part ( 3c or 4c) may be expressed as a “curved portion”
  • first connecting portion 3c1 or 4c1 may be expressed as a “first curved portion”
  • second connecting portion 3c2 or 4c2 may be expressed as “ It may be expressed as a "second curved part”.
  • the sensing coil 180 is formed by the interaction between the first coil unit 120-1 and the first magnet 130-1 and the interaction between the second coil unit 120-2 and the second magnet 130-2.
  • Silver can be moved in the direction of the optical axis OA together with the bobbin 110, and the first position sensor 170 can detect the strength of the magnetic field of the sensing coil 180 moving in the optical axis direction, and according to the detected result.
  • Output signal can be output.
  • the controller 830 of the camera module or the controller 780 of the terminal may detect the displacement of the bobbin 110 in the optical axis direction based on an output signal output from the first position sensor 170.
  • the housing 140 accommodates at least a portion of the bobbin 110 inside, and the first magnet 130-1, the second magnet 130-2, the third magnet 130-3, and the dummy member 135 ) Support.
  • FIG. 4A is an exploded perspective view of the housing 140, first to third magnets 130-1 to 130-3, and the dummy member 135, and FIG. 4B is a housing 140, first to third magnets It is a combined perspective view of the s 130-1 to 130-3 and the dummy member 135.
  • the housing 140 may be disposed inside the cover member 300 and may be disposed between the cover member 300 and the bobbin 110.
  • the housing 140 may accommodate the bobbin 110 inside.
  • the outer surface of the housing 140 may be spaced apart from the inner surface of the side plate 302 of the cover member 300.
  • the housing 140 may have a hollow pillar shape including an opening or a hollow.
  • the housing 140 may have a polygonal (eg, quadrangular or octagonal) or circular opening, and the opening of the housing 140 may be in the form of a through hole penetrating the housing 140 in the optical axis direction.
  • the housing 140 may include a plurality of side portions 141-1 to 141-4 and a plurality of corner portions 142-1 to 142-4.
  • the housing 140 may include first to fourth side portions 141-1 to 141-4 and first to fourth corner portions 142-1 to 142-4.
  • the first to fourth side portions 141-1 to 141-4 may be spaced apart from each other.
  • Each of the corner portions 142-1 to 142-4 of the housing 140 has two adjacent side portions 141-1 and 141-3, 141-1 and 141-4, 141-4 and 141-2, and 141 It may be disposed or positioned between -2 and 141-3), and the side portions 141-1 to 141-4 may be connected to each other.
  • corner portions 142-1 to 142-4 may be located at a corner or corner of the housing 140.
  • the number of side portions of the housing 140 is four, and the number of corner portions is four, but is not limited thereto.
  • Each of the side portions 141-1 to 141-4 of the housing 140 may be disposed in parallel with a corresponding one of the side plates of the cover member 300.
  • each of the side portions 141-1 to 141-4 of the housing 140 in the horizontal direction may be greater than the length of each of the corner portions 142-1 to 142-4 in the horizontal direction, but is not limited thereto. .
  • the first side portion 141-2 and the second side portion 141-2 of the housing 140 may be located opposite to each other, and the third side portion 141-3 and the fourth side portion 141-4 are It can be located on the other side.
  • Each of the third side portion 141-3 and the fourth side portion 141-4 of the housing 140 may be positioned between the first side portion 141-2 and the second side portion 141-2.
  • the housing 140 may be provided with a stopper 144 on the upper, upper, or upper surface.
  • a stopper 144 may be provided on an upper surface (eg, the first surface 51a) of each of the corner portions 142-1 to 142-4 of the housing 140, but is not limited thereto.
  • At least one first coupling portion coupled to the first outer frame 152 of the upper elastic member 150 may be provided on the upper, upper, or upper surface of the housing 140.
  • at least one second coupling portion coupled to and fixed to the second outer frame 162 of the lower elastic member 160 may be provided on the lower, lower, or lower surface of the housing 140.
  • Each of the first coupling portion and the second coupling portion of the housing 140 may be one of a plane, a groove, or a protrusion.
  • the first coupling portion of the housing 140 and the first outer frame 152 of the upper elastic member 150 may be coupled to each other using heat fusion bonding or an adhesive, and the second coupling portion and the lower elastic portion of the housing 140
  • the second outer frames 162 of the member 160 may be coupled to each other.
  • the housing 140 is provided on any of two side portions (eg, the first side portion 141-1) and a first seating portion 141a for arranging the first magnet 130-1. ), and a second seating portion 141b provided on the other one 141-2 of the two side portions and for disposing the second magnet 130-2.
  • the housing 140 is provided on any one of the other two side portions (eg, the third side portion 141-3) located opposite each other, and a third seating for the third magnet 130-3 A portion 141c, and a fourth seating portion 141d provided on the other of the other two side portions 141-4 and for arranging the protrusion 116 of the bobbin 110 may be included. .
  • At least a part of the sensing coil 180 may be disposed on the fourth seating part 141d of the housing 140.
  • Each of the first to third seating portions 141a to 141c of the housing 140 may be provided on an inner side of a corresponding one of the side portions of the housing 140, but is not limited thereto, and provided on the outer side. It could be.
  • Each of the first to third seating portions 141a to 141c of the housing 140 is a groove having a shape corresponding to or corresponding to one of the first to third magnets 130-1 to 130-3 ,
  • the first seating portion 141a (or the second seating portion 141b) of the housing 140 has a first opening facing the first coil unit 120-1 (or the second coil unit).
  • a second opening facing the third coil unit 230-1 (or the fourth coil unit 230-2) may be formed, and this is to facilitate mounting of the magnet 130.
  • the third seating portion 141c of the housing 140 may have a first opening facing the outer surface of the bobbin 110 and a second opening facing the fifth coil unit 230-3.
  • the fourth seating portion 141d of the housing 140 may be formed as a groove, for example, a groove having a shape that corresponds to or matches the protrusion 116 of the bobbin 110, but is not limited thereto. In the embodiment, it may be in the form of a through hole passing through the side of the housing 140.
  • the fourth seating portion 141d of the housing 140 includes a first opening that opens to the inner surface of the fourth side portion 141-4 of the housing 140 and the fourth side portion 141-4 of the housing 140. It may include a second opening that opens to the lower surface.
  • one side of the first to third magnets 130-1, 130-2, 130-3 fixed or disposed on the first to third seating portions 141a, 141b, 141c of the housing 140 Silver may be exposed through the first opening of the seating portions 141a, 141b, 141c.
  • the lower surfaces of the first to third magnets 130-1, 130-2, 130-3 fixed or disposed on the first to third seating portions 141a, 141b, 141c of the housing 140 are seating portions It may be exposed through the second opening of (141a, 141b, 141c).
  • At least a portion of the sensing coil 180 disposed on the fourth seating portion 141d of the housing 140 may be exposed through the second opening of the fourth side portion 141-4 of the housing 140.
  • the lower or lower surface of the sensing coil 180 may be exposed through the second opening of the fourth side of the housing 140, and may face or overlap the first position sensor 170 in the optical axis direction. have.
  • At least one of the first straight portion 4a and the second straight portion 4b of the sensing coil 180 may overlap the first position sensor 170 in the optical axis direction.
  • at least a portion of the central hole of the sensing coil 180 may overlap the first position sensor 170 in the optical axis direction.
  • Seating grooves 41 and 42 for arranging the dummy member 135 may be provided in the fourth side portion 141-4 of the housing 140.
  • a first seating groove 41 for placing the first dummy 135a, and a second seating groove for placing the second dummy 135b ( 42) can be formed in the fourth side portion 141-4 of the housing 140.
  • Each of the first and second seating grooves 41 and 42 may be recessed from the lower surface of the fourth side portion 141-4 of the housing 140, but is not limited thereto.
  • the fourth mounting portion 141d may be disposed between the first mounting groove 41 and the second mounting groove 42 of the housing 140, but is not limited thereto.
  • first to third magnets 130-1 to 130-3 may be attached or fixed to the first to third seating portions 141a to 141c by an adhesive.
  • the dummy member 135 may be attached or fixed in the mounting grooves 41 and 42 of the housing 140 by an adhesive.
  • Support members 220-1 to 220-4 may be disposed at the corner portions 142-1 to 142-4 of the housing 140, and the corner portions 142-1 to 142-4 of the housing 140 Holes 147 forming a path through which the support members 220-1 to 220-4 pass may be provided.
  • the housing 140 may include a hole 147 penetrating the upper portions of the corner portions 142-1 to 142-4.
  • the holes provided in the corner portions 142-1 to 142-4 of the housing 140 may have a structure that is recessed from the outer surface of the corner portion of the housing 140, and at least a part of the hole is an outer surface of the corner portion It can also be opened.
  • the number of holes 147 of the housing 140 may be the same as the number of support members.
  • the housing 140 may include at least one stopper (not shown) protruding from the outer surface of the side portions 141-1 to 141-4, and at least one stopper includes the housing 140 being perpendicular to the optical axis direction. It is possible to prevent collision with the cover member 300 when moving in one direction.
  • the housing 140 may further include a stopper (not shown) protruding from the lower surface.
  • the housing 140 includes corner portions 142-1 to 142 -4) may be provided with a groove 148 provided at the lower or lower end.
  • the first magnet 130-1, the second magnet 130-2, and the third magnet 130-3 may be spaced apart from each other and disposed in the housing 140.
  • each of the first to third magnets 130-1 to 130-3 may be disposed between the bobbin 110 and the housing 140.
  • the first magnet 130-1, the second magnet 130-2, and the third magnet 130-3 may be disposed on the side of the housing 140.
  • the first magnet 130-1 and the second magnet 130-2 are any two side parts 141-1 located opposite to each other among the side parts 141-1 to 141-4 of the housing 140, 141-2).
  • the third magnet 130-3 and the dummy member 135 may include any two other side parts 141-3 and 141 located opposite to each other among the side parts 141-1 to 141-4 of the housing 140. -4) can be deployed.
  • the first magnet 130-1 may be disposed on the first side portion 141-1 of the housing 140, and the second magnet 130-2 faces the first side portion 141-1. It may be disposed on the second side portion 141-2 of the housing 140.
  • the third magnet 130-3 may be disposed on the third side part 141-3 of the housing 140, and the dummy member 135 may be formed of the housing 140 facing the third side part 141-3. It may be disposed on the fourth side portion 141-4.
  • first and second coil units 120-1 and 120-2 for AF driving are disposed on two sides of the bobbin 110 facing each other, the bobbin 110 and the third magnet 130- 3) A coil unit for driving the AF is not arranged between. In addition, a coil unit for driving the AF is not disposed between the bobbin 110 and the dummy member 135.
  • the dummy member 135 The second coil 230 for driving the OIS is not disposed between the and the circuit board 250.
  • the first magnet 130-1 may include a first surface facing the first coil unit 120-1, and the first surface of the first magnet 130-1 is an N-pole and an S-pole It may include a first non-magnetic barrier wall (11c) positioned between the two polarities and the two polarities of.
  • the first magnet 130-1 may include a second surface facing the third coil unit 230-1, and the second surface of the first magnet 130-1 is an N-pole and an S-pole It may include two polarities of.
  • the second magnet 130-2 may include a first surface facing the second coil unit 120-2, and the first surface of the second magnet 130-2 is an N-pole and an S-pole It may include a second non-magnetic barrier wall (12c) positioned between the two polarities of the two polarities.
  • the second magnet 130-2 may include a second surface facing the fourth coil unit 230-2, and the second surface of the second magnet 130-2 is an N-pole and an S-pole It may include two polarities of.
  • the third magnet 130-3 includes a first surface facing the side of the bobbin 110 facing the third side portion 141-3 of the housing 140 in which the third magnet 130 is disposed.
  • the first surface of the third magnet 130-3 may include one polarity of the N pole or the S pole.
  • the third magnet 130-3 may include a second surface facing the fifth coil unit 230-3, and the second surface of the third magnet 130-3 is an N-pole and an S-pole It can have two polarities.
  • the third magnet 130-3 may be an anode magnetized magnet. In another embodiment, at least one of the first to third magnets 130-1 to 130-3 may be a single-pole magnetized magnet or a positive electrode magnetized magnet.
  • the first magnet 130-1 is perpendicular to the optical axis OA and the center of the first coil unit 120-1 (or the first coil unit 120-1) is at the optical axis OA. It may overlap with the first coil unit 120-1 in a direction toward ).
  • the second magnet 130-2 is perpendicular to the optical axis and is directed from the optical axis toward the second coil unit 120-2 (or the center of the second coil unit 120-2). It may overlap with the two coil unit 120-2.
  • the third magnet 130-3 is perpendicular to the optical axis and the first coil unit in a direction from the third side part 141-3 to the fourth side part 141-4 of the housing 140. It does not face or overlap with the (120-1) and the second coil unit (120-2).
  • each of the first to third magnets 130-1 to 130-3 may be disposed on a corresponding one of the first to third seating portions 141a to 141c of the housing 140.
  • the first magnet 130-1 is perpendicular to the optical axis and overlaps with the second magnet 130-2 in a direction toward the second side part 141-2 on the first side part 141-1 of the housing 140. I can.
  • Each of the first to third magnets 130-1 to 130-3 is mounted or disposed on one of the first to third side parts 141-1 to 141-3 of the housing 140. It may be a polyhedral shape that is easy to become, for example, a rectangular parallelepiped. For example, each of the first to third magnets 130-1 to 130-3 may have a flat plate shape, but is not limited thereto.
  • each of the first and second magnets 130-1 and 130-2 may be a 4 pole magnet including two N poles and two S poles
  • the third magnet 130- 3 may be a two-pole magnet including one N-pole and one S-pole.
  • the four-pole magnet may be expressed as a “positive magnetized magnet”
  • the two-pole magnet may be expressed as a “unipolar magnetized magnet”.
  • the first to third magnets 130-1 to 130-3 will be described later.
  • At least one of the first to third magnets may be two-pole magnets.
  • at least one of the first to third magnets may be a four-pole magnet.
  • the dummy member 135 may be disposed on the fourth side portion 141-4 of the housing 140.
  • the dummy member 135 may be a non-magnetic material or a non-magnetic material, but is not limited thereto, and in other embodiments, may include a magnetic material.
  • the dummy member 135 may have the same mass as the third magnet 130-3, but is not limited thereto.
  • the dummy member 135 may be disposed on a side portion 141-4 positioned opposite to the side portion 141-3 of the housing 140 in which the third magnet 130-3 is disposed for weight balance.
  • the dummy member 135 may be represented by replacing it with a "weight balancing member", a "balancing member”, or a "weight member”.
  • the dummy member 135 may include a first dummy 135a and a second dummy 135b spaced apart from each other.
  • the protrusion 116 of the bobbin 110 may be disposed between the first dummy 135a and the second dummy 135b.
  • at least a portion of the sensing coil 180 may be disposed between the first dummy 135a and the second dummy 135b.
  • first dummy 135a and the second dummy 135b may have a shape symmetrical to each other.
  • the first dummy 135a and the second dummy 135b may be symmetrically disposed with respect to the sensing coil 180 or the protrusion 116 of the bobbin 110, but is not limited thereto.
  • the dummy member according to another embodiment may include only one of the first dummy 135a and the second dummy 135b.
  • the first dummy 135a and the second dummy 135b may be connected to each other.
  • the dummy member 135 is perpendicular to the optical axis and the first coil unit 120-in a direction from the third side part 141-3 to the fourth side part 141-4 of the housing 140. It does not face or overlap with 1) and the second coil unit 120-2.
  • the dummy member 135 may be perpendicular to the optical axis and face or overlap the third magnet 130-3 in a direction from the third side portion 141-3 of the housing 140 toward the fourth side portion 141-4. have.
  • the dummy member 135 is perpendicular to the optical axis and does not overlap with the first position sensor 170 in a direction from the third side portion 141-3 to the fourth side portion 141-4 of the housing 140.
  • the dummy member 135 may not overlap with the first position sensor 170 in the optical axis direction.
  • the dummy member 135 may not overlap with the sensing coil 180 in the optical axis direction, but is not limited thereto. In another embodiment, both may overlap each other in the optical axis direction.
  • the dummy member 135 does not overlap with the second coil 230 in the optical axis direction.
  • a coil unit may not be formed in an area corresponding to the dummy member 135 in the optical axis direction (eg, an area of the circuit member 231 ).
  • the magnetic strength of the dummy member 135 may be less than that of the third magnet 130-3.
  • the dummy member 135 may include tungsten, and tungsten may occupy 95% or more of the total weight.
  • the dummy member 135 may be a tungsten alloy.
  • the first and second piles 135a and 135b may have a polyhedron, for example, a rectangular parallelepiped or a cube shape, but are not limited thereto and may be formed in various shapes.
  • the dummy member 135 may include a rounded portion or a curved surface at a side edge.
  • FIG. 5 is a perspective view of the upper elastic member 150
  • FIG. 6 is a view for explaining the electrical connection relationship between the upper elastic member 150, the support member 220, and the circuit board 250
  • FIG. 8 is a second An exploded perspective view of the coil 230, the circuit board 250, and the base 210
  • FIG. 9 is a cross-sectional view of the lens driving apparatus 100 in the AB direction of FIG. 2
  • FIG. 10 is a lens driving apparatus 100 ) Is a cross-sectional view in the CD direction of FIG. 2
  • FIG. 11 is a cross-sectional view of the lens driving device 100 in the EF direction of FIG. 2.
  • the upper elastic member 150 and the lower elastic member 160 may constitute an elastic member, and the elastic member may be coupled to the bobbin 110 and the housing 140, and The member may elastically support the bobbin 110 with respect to the housing 140.
  • the upper elastic member 150 may be coupled to the upper, upper, or upper end of the bobbin 110 and the upper, upper, or upper end of the housing 140.
  • the lower elastic member 160 may be coupled to the lower, lower, or lower end of the bobbin 110 and the lower, lower, or lower end of the housing 140.
  • the elastic member may be represented by replacing it with “elastic unit”, “spring”, or “elastic body”.
  • the upper elastic member 150 may include a plurality of upper elastic members 150-1 to 150-4 spaced or separated from each other. In FIG. 5, four upper elastic members separated from each other are shown, but the number is not limited thereto, and in other embodiments, there may be two or more. Alternatively, in another embodiment, the upper elastic member 150 may be implemented as a single elastic unit integrally formed.
  • At least one of the first to fourth upper elastic members 150-1 to 150-4 is a first inner frame 151 coupled to the bobbin 110 and a first outer frame 152 coupled to the housing 140 ), a first frame connector 153 connecting the first inner frame 151 and the first outer frame 152 may be further included.
  • the inner frame may be expressed as "inner part”
  • the outer frame may be expressed as "outer part”.
  • first and second inner frames 151 and 161 may be provided with a first region to be coupled to the first and second coupling portions of the bobbin 110, and the first and second outer frames ( A second region may be provided at 152 and 162 to be coupled to the first and second coupling portions of the housing 140.
  • a second region may be provided at 152 and 162 to be coupled to the first and second coupling portions of the housing 140.
  • holes for coupling the first and second coupling portions of the bobbin 110 and the first and second coupling portions of the housing 140 may be provided in the first and second regions.
  • the first outer frame 152 of each of the first to fourth upper elastic members 150-1 to 150-4 may correspond to one of the corner parts 142-1 to 142-4 of the housing 140 and
  • the first coupling part 510 may include at least one coupling region (for example, 5a, 5b) coupled to the housing 140 (for example, the corner parts 142-1 to 142-4).
  • a hole is not formed in the coupling regions 5a and 5b of the first coupling portion 510, but in other embodiments, the coupling regions (e.g., 5a, 5b) of the first coupling portion 510 It may include at least one hole or through hole (not shown) coupled to the first coupling portion of 140.
  • each of the coupling regions 5a and 5b may have one or more holes, and at least one first coupling portion is provided corresponding to the corner portions 142-1 to 142-4 of the housing 140 Can be.
  • the coupling regions of the first coupling portion 510 may be implemented in various shapes sufficient to be coupled to the housing 140, for example, in a groove shape.
  • the second coupling part 520 may include a hole 52 through which the support member 220 passes. One end of the support member 220 passing through the hole 52 may be directly coupled to the second coupling portion 520 by a conductive adhesive member or solder 901 (see FIG. 6), and the second coupling portion 520 And the support members 220-1 to 220-4 may be electrically connected.
  • the second coupling part 520 is a region in which the solder 901 is disposed for coupling with the support member 220 and may include a hole 52 and a region around the hole 52.
  • connection part 530 may connect the coupling regions 5a and 5b of the first coupling part 510 and the second coupling part 510.
  • connection part 530 is a first connection part 530-1 and a first connection part 510 connecting the first region 5a of the first coupling part 510 and the second coupling part 520. It may include a second connector 530-2 connecting the second region 5b and the second coupling part 520.
  • Each of the first and second connecting portions 530 may include a portion that is bent or bent at least once.
  • the lower elastic member 160 may be implemented as an integrally formed elastic unit, but is not limited thereto, and in another embodiment, a plurality of elastic units separated from each other may be included.
  • the lower elastic member 160 is a second inner frame 161 coupled or fixed to the lower, lower, or lower end of the bobbin 110, and a second inner frame 161 coupled or fixed to the lower, lower, or lower end of the housing 140.
  • the second outer frame 162 may include a second frame connector 163 that connects the second inner frame 161 and the second outer frame 162 to each other.
  • Each of the first frame connection part 153 of the upper elastic member 150 and the second frame connection part 163 of the lower elastic member 160 are formed to be bent or curved (or curved) at least once to form a pattern of a predetermined shape. Can be formed.
  • the bobbin 110 may be resiliently (or elastically) supported by an upward and/or downward motion of the bobbin 110 in the first direction through a change in position and fine deformation of the first and second frame connection parts 153 and 163.
  • the upper elastic members 150-1 to 150-4 and the lower elastic member 160 may be formed of a leaf spring, but are not limited thereto, and may be implemented as a coil spring.
  • the support member 220 may elastically support the OIS movable part (eg, the housing 140) with respect to the fixed part, and may support the OIS movable part to be movable in a direction perpendicular to the optical axis.
  • the fixing part may include at least one of the circuit board 250, the second coil 230, and/or the base 210.
  • the support member 220 may electrically connect the upper elastic member 150 and the circuit board 250.
  • the support member 220 may include a plurality of support members 220-1 to 220-4.
  • the support member 220 may include first to fourth support members 220-1 to 220-4 corresponding to the corner portions 142-1 to 142-4 of the housing 140.
  • Each of the first to fourth support members 220-1 to 220-4 may be disposed at any one of the first to fourth corner parts 142-1 to 142-4 of the housing 140, , A corresponding one of the first to fourth upper elastic members 150-1 to 150-4 and the circuit board 250 may be connected to each other.
  • one support member is disposed at one corner of the housing 140, but is not limited thereto. In another embodiment, two or more support members may be disposed at one corner of the housing 140. have.
  • each of the first to fourth support members 220-1 to 220-4 is a corresponding one of the first to fourth upper elastic members 150-1 to 150-4 and the circuit board 250 One of the corresponding terminals of may be electrically connected.
  • the first to fourth support members 220-1 to 220-4 may be spaced apart from the housing 140, and are not coupled or fixed to the housing 140, but the first to fourth support members 220-1 to 220-4 through a conductive adhesive or soldering.
  • One end of each of the fourth support members 220-1 to 220-4 is attached to a corresponding first coupling part 510 among the first to fourth upper elastic members 150-1 to 150-4 Can be directly connected or combined.
  • each of the first to fourth support members 220-1 to 220-4 may be directly connected or coupled to the circuit board 250 through soldering or the like.
  • the other end of each of the first to fourth support members 220-1 to 220-4 may be directly connected or coupled to the lower surface of the circuit board 250.
  • the other end of each of the support members 220-1 to 220-4 may be coupled to the circuit member 231 or the base 210 of the second coil 230.
  • each of the first to fourth support members 220-1 to 220-4 passes through a hole 147 provided in a corresponding one of the corner portions 142-1 to 142-4 of the housing 140
  • the support members may be disposed adjacent to the boundary line between the side portions 141-1 to 141-4 and the corner portions 142 of the housing 140, and the corner portions 142-1 of the housing 140 To 142-4) may not pass.
  • the first coil 120 may be electrically connected to the upper elastic member 150.
  • One end of the first coil unit 120-1 may be coupled or connected to the first upper elastic member 150-1, and the other end of the first coil unit 120-1 is the second upper elastic member 150-2. ) Can be bound or linked.
  • the first coil unit 120-1 may be coupled or connected to the first inner frame 151 of the first and second upper elastic members 150-1 and 150-2.
  • One end of the second coil unit 120-2 may be coupled or connected to the third upper elastic member 150-3, and the other end of the second coil unit 120-2 is the fourth upper elastic member 150-4.
  • the second coil unit 120-2 may be coupled or connected to the first inner frame 151 of the third and fourth upper elastic members 150-3 and 150-4.
  • the first and second coil units 120-1 and 120-2 may be electrically connected to the circuit board 250 by the first to fourth support members 220-1 to 220-4.
  • first and second coil units 120-1 and 120-2 may be connected in series to each other through a wiring or a circuit pattern formed on the circuit board 250.
  • both ends of the first and second coil units connected in series may be electrically connected to any two terminals of the terminals of the circuit board 250.
  • one driving signal may be provided to the first coil unit 120-1 and the second coil unit 120-2 through any of the two terminals of the circuit board 250.
  • first and second coil units 120-1 and 120-2 may not be connected in series with each other, and the first coil units 120-1 are two terminals of the circuit board 250
  • the second coil units 120-2 may be electrically connected to the other two terminals of the circuit board 250, and the first coil units 120-2 may be electrically connected to the other two terminals of the circuit board 250.
  • Individual driving signals eg, driving current
  • first coil unit 120-1 and the second coil unit 120-2 may be connected in series with each other by an upper elastic member.
  • the upper elastic member may include first to third elastic units, the first coil unit 120-1 may be coupled to the first elastic unit and the third elastic unit, and the second coil unit 120 -2) may be coupled to the second elastic unit and the third elastic unit, and both may be connected in series by the third elastic unit.
  • the support member 220 is conductive and may be implemented as a member that can be supported by elasticity, for example, a suspension wire, a leaf spring, or a coil spring. In addition, in another embodiment, the support member 220 may be integrally formed with the upper elastic member 150.
  • the lens driving device 100 is disposed between each of the upper elastic members 150-1 to 150-4 and the bobbin 110 (or the housing 140).
  • a first damper (not shown) may be further provided.
  • a first damper (not shown) may be disposed in a space between the first frame connection portion 153 and the bobbin 110 of each of the upper elastic members 150-1 to 150-4.
  • the lens driving device 100 may further include a second damper (not shown) disposed between the second frame connection portion 163 of the lower elastic member 160 and the bobbin 110 (or the housing 140). May be.
  • the lens driving apparatus 100 may further include a third damper (not shown) disposed between the support member 220 and the hole 147 of the housing 140.
  • the lens driving device 100 may further include a second coupling portion 520 and a fourth damper (not shown) disposed at one end of the support member 220, and the other end of the support member 220 A fifth damper (not shown) disposed on the circuit board 250 may be further included.
  • a sixth damper (not shown) may be filled in an empty space between the connection part 530 and the housing 140 to prevent oscillation due to vibration.
  • a seventh damper (not shown) may be further disposed between the inner surface of the housing 140 and the outer peripheral surface of the bobbin 110.
  • the base 210 is disposed under the bobbin 110 (or the housing 140 ).
  • the base 210 may have an opening 21 corresponding to the opening of the bobbin 110 or/and the opening of the housing 140, and has a shape that matches or corresponds to the cover member 300, for example, a square shape.
  • the opening of the base 210 may be in the form of a through hole penetrating the base 210 in the optical axis direction.
  • a support part 255 or a support part may be provided in an area of the base 210 facing the terminal 251 of the circuit board 250.
  • the support part 255 of the base 210 may support the terminal surface 253 of the circuit board 250 on which the terminal 251 is formed.
  • the base 210 may have a groove 212 in a corner region to avoid spatial interference with the other end of the support members 220-1 to 220-4 coupled to the circuit board 250.
  • the groove 212 may be formed to correspond to the edge of the cover member 300.
  • a coupling groove 23 of the circuit member 231 and a protrusion 29 for coupling to the coupling groove 27 of the circuit board 250 may be provided on an upper surface around the opening of the base 210.
  • the coupling groove 23 may be formed adjacent to the opening of the circuit member 231 and may be recessed from the inner surface of the circuit member 231.
  • the coupling groove 27 may be formed adjacent to the opening of the circuit board 250 and may be recessed from the inner circumferential surface of the circuit board 250.
  • a seating portion (not shown) on which the filter 610 of the camera module 200 is installed may be formed on the lower surface of the base 210.
  • the base 210 has a first seating groove 215-1 for arranging, seating, or receiving the first position sensor 170, and the first sensor 240a of the second position sensor 240 is placed, seated or A second seating groove 215-2 for receiving, and a third seating groove 215-3 for arranging, seating, or receiving the second sensor 240b of the second position sensor 240 may be included. .
  • the first to third seating grooves 215-1 to 215-3 may be recessed from the upper surface of the base 210.
  • the second coil 230 may be disposed under the bobbin 110 or/and the housing 140, and may be disposed on the circuit board 250.
  • the second coil 230 may be disposed on the upper surface of the circuit board 250.
  • the second coil 230 may be disposed under the housing 140 and the bobbin 110.
  • the second coil 230 may include a plurality of coil units 230-1 to 230-3.
  • the second coil 230 includes a third coil unit 230-1 corresponding to the first magnet 130-1 disposed in the housing 140, and a fourth coil unit 230-1 corresponding to the second magnet 130-2.
  • a coil unit 230-2 and a fifth coil unit 230-3 corresponding to the third magnet 130-3 may be included.
  • the third coil unit 230-1 may be expressed as a "first OIS coil unit” or “first coiling”
  • the fourth coil unit 230-2 may be a "second OIS coil unit” or " The second coiling unit may be replaced with “second coiling”
  • the fourth coil unit 230-4 may be expressed as “third OIS coil unit” or “third coiling”.
  • the third coil unit 230-1 may face or overlap with the first magnet 130-1 in the optical axis direction
  • the fourth coil unit 230-2 may be the second magnet 130- 2) may be opposite to or overlapped
  • the fifth coil unit 230-3 may be opposite or overlapped with the third magnet 130-3 in the optical axis direction.
  • Each of the third to fifth coil units 230-1 to 230-3 may have a closed curve having a central hole, for example, a ring shape, and the central hole may be formed to face the optical axis direction.
  • Each of the third to fifth coil units 230-1 to 230-4 may be in the form of a coil pattern formed of a fine pattern (FP) coil, but is not limited thereto.
  • FP fine pattern
  • the third coil unit 230-1 and the fourth coil unit 230-2 face each other in a direction from the first magnet 130-1 to the second magnet 130-2 or are opposite to each other. Can be placed.
  • each of the third coil unit 230-1 and the fourth coil unit 230-2 is a fifth coil unit ( 230-3) and may not overlap.
  • the second coil 230 may further include a polygonal (eg, quadrangle) circuit member 231 in which the third to fifth coil units 230-1 to 230-3 are formed.
  • the circuit member 231 may be expressed as a "substrate”, a “circuit board”, or a "coil board”.
  • the circuit member 231 may include four sides, and each of the third to fifth coil units 230-1 to 230-3 corresponds to one of the three sides of the circuit member 231
  • the coil unit may not be disposed on the other side of the circuit member 231.
  • each of the third coil unit 230-1 and the fourth coil unit 230-2 may be disposed parallel to one of the first and second sides facing each other of the circuit member 231, ,
  • the fifth coil unit 230-3 may be disposed parallel to the third or fourth side of the circuit member 231.
  • the second coil may include only ring-shaped coil blocks in a form in which a circuit member is omitted or third to fifth coil units implemented in a fine patterned (FP) form.
  • FP fine patterned
  • the third to fifth coil units of the second coil may be implemented in the form of a circuit pattern or wiring formed on the circuit board 250.
  • circuit board 250 and the circuit member 231 are expressed as separate components, but are not limited thereto, and in other embodiments, the circuit board 250 and the circuit member 231 are bundled together to form a “circuit member”. It can also be expressed in terms of In this case, the other ends of the support members may be coupled to the "circuit member (eg, the lower surface of the circuit member)".
  • a hole 230a may be provided at the edge of the circuit member 231, and the support members 220-1 to 220-4 Silver may pass through the hole 230a of the circuit member 231.
  • the circuit member may have a groove provided at the edge of the circuit member instead of the hole to avoid spatial interference with the support members.
  • the third to fifth coil units 230-1 to 230-3 may be electrically connected to the circuit board 250.
  • the third to fifth coil units 230-1 to 230-3 may be electrically connected to the terminals 251 of the circuit board 250.
  • the circuit board 250 is disposed on the upper surface of the base 210 and may have an opening corresponding to an opening of the bobbin 110, an opening of the housing 140, or/and an opening of the base 210.
  • the shape of the circuit board 250 may be a shape that matches or corresponds to the upper surface of the base 210, for example, a square shape.
  • the circuit board 250 may include at least one terminal surface 253 that is bent from an upper surface.
  • a plurality of terminals 251 for receiving electrical signals from the outside may be provided on at least one terminal surface 253 of the circuit board 250.
  • the circuit board 250 may include two terminal surfaces disposed on two sides facing each other among the sides of the upper surface, but is not limited thereto.
  • a driving signal may be provided to each of the first coil 120 and the second coil 230 through a plurality of terminals 251 provided on the terminal surface 253 of the circuit board 250.
  • a driving signal may be provided to each of the first position sensor 170 and the second position sensor 240 through the terminals 251 of the circuit board 250, and the circuit board 250 includes the first and second position sensors. The output signals of each of the position sensors 170 and 240 may be received and output through the terminals 251.
  • the circuit board 250 may be provided as an FPCB, but it is not limited thereto, and terminals of the circuit board 250 may be directly formed on the surface of the base 210 by using a surface electrode method or the like.
  • the circuit board 250 may include a hole 250a through which the support members 220-1 to 220-4 pass in order to avoid spatial interference with the support members 220-1 to 220-4.
  • the location and number of the holes 250a may correspond to or correspond to the location and number of the support members 220-1 to 220-4.
  • the circuit board 250 may have escape grooves at the corners instead of the holes 250a.
  • the support members 220-1 to 220-4 may pass through the hole 250a of the circuit board 250 and be electrically connected through a circuit pattern disposed on the lower surface of the circuit board 250 and solder, etc. , But is not limited thereto.
  • the circuit board 250 may not have a hole, and the support members 220-1 to 220-4 may be formed on a circuit pattern or pad formed on the upper surface of the circuit board 250 by soldering. It can also be electrically connected.
  • the support members 220-1 to 220-4 may be electrically connected to the circuit member 231, and the circuit member 231 may be connected to the support members 220-1 to 220-4.
  • the substrate 250 may be electrically connected.
  • the circuit board 250 may include pads P1 to P4 electrically connected to the third to fifth coil units 230-1 to 230-3. Power or a driving signal may be provided to the second coil 230 through the circuit board 250.
  • the power or driving signal provided to the second coil 230 may be a DC signal or an AC signal, or may include a DC signal and an AC signal, and may be in the form of current or voltage.
  • one end of the third coil unit 230-1 may be connected to the first pad P1, and the other end of the third coil unit 230-1 may be connected to the second pad P2.
  • One end of the fourth coil unit 230-2 may be connected to the third pad P3, and the other end of the fourth coil unit 230-2 may be connected to the fourth pad P4.
  • any one of the first and second pads (e.g., P2) and any one of the third and fourth pads P3 and P4 (e.g., P4) are formed by the first circuit pattern (or first wiring). Can be connected to each other.
  • the third and fourth coil units 230-1 and 230-2 may be connected in series with each other. And the other one of the first and second pads P1 and P2 (for example, P1) and the other one of the third and fourth pads P3 and P4 (for example, P3) is a second circuit pattern ( Alternatively, it may be electrically connected to the first and second terminals of the circuit board 250 through a second wiring). In addition, a first driving signal may be provided to the first and second coil units 230-1 and 230-2 through the first and second terminals of the circuit board 250.
  • one end of the fifth coil unit 230-3 may be connected to the fifth pad P5, and the other end of the fifth coil unit 230-3 may be connected to the sixth pad P6.
  • the fifth and sixth pads P5 and P6 may be electrically connected to the third and fourth terminals of the circuit board 250 through a third circuit pattern (or third wiring).
  • the second driving signal may be provided to the fifth coil unit 230-3 through the third and fourth terminals of the circuit board 250.
  • the first to third circuit patterns may be formed in the circuit board 250.
  • OIS movable part by interaction between the first to third magnets 130-1 to 130-3 and the third to fifth coil units 230-1 to 230-3 provided with the first and second driving signals may move in the second and/or third direction, for example, in the x-axis and/or y-axis direction, thereby performing camera shake correction.
  • the first and second sensors 240a and 240b of the first position sensor 170 and the second position sensor 240 may be disposed between the circuit board 250 and the base 210.
  • the first position sensor 170 and the first and second sensors 240a and 240b may be disposed, mounted, or coupled to the lower surface of the circuit board 250.
  • At least one of the first position sensor 170 and the first and second sensors 240a and 240b may be disposed on the upper surface of the circuit board 250.
  • the first position sensor may be disposed in the housing 140 instead of the base 210, and the housing 140 may be provided with a seating portion for the first position sensor 170 to be disposed.
  • the seating portion may be a groove or a hole.
  • the first position sensor disposed in the housing 140 may overlap with the sensing magnet in the optical axis direction, but is not limited thereto, and in other embodiments, both may not overlap in the optical axis direction.
  • the first position sensor disposed in the housing 140 may be disposed under the sensing coil 180, but is not limited thereto, and may be disposed on one side of the sensing coil.
  • Each of the first position sensor 170 and the first and second sensors 240a and 240b may be electrically connected to the circuit board 250.
  • the first position sensor 170 and each of the first and second sensors 240a and 240b may be electrically connected to the terminals 251 of the circuit board 250.
  • the first position sensor 170 may be an "AF position sensor", and the second position sensor 240 may be an OIS position sensor.
  • the second position sensor 240 includes a first sensor 240a and a second position sensor. It may include a sensor (240b).
  • the AF movable part (eg, the bobbin 110 and the sensing coil 180) may be moved in the optical axis direction by electromagnetic force caused by the interaction between the first coil 120 and the magnet 130, and the first position sensor 170 ) Can detect the strength or magnetic force of the magnetic field of the sensing coil 180 moving in the direction of the optical axis, and output an output signal according to the detected result.
  • the strength or magnetic force of the magnetic field of the sensing coil 180 sensed by the first position sensor 170 may change according to the displacement of the bobbin 110 in the optical axis direction, and the first position sensor 170 detects An output signal proportional to the strength of the magnetic field may be output, and a displacement of the bobbin 110 in the optical axis direction may be sensed using the output signal of the first position sensor 170.
  • the OIS movable part may be moved in a direction perpendicular to the optical axis by electromagnetic force caused by the interaction between the second coil 230 and the magnet 130, and each of the first and second sensors 240a and 240b is perpendicular to the optical axis.
  • the strength of the magnetic field of the magnet 130 of the OIS movable part moving in one direction may be detected, and an output signal according to the detected result may be output.
  • a displacement of the OIS movable part in a direction perpendicular to the optical axis, for example, a shift or a tilt of the OIS movable part, may be sensed by using the output signals of the first and second sensors 240a and 240b.
  • the OIS movable unit may include an AF movable unit and components mounted on the housing 140.
  • the OIS movable unit may include an AF movable unit and a housing 140, a magnet 130, and a dummy member 135.
  • At least one of the first position sensor 170 and the first and second sensors 240a and 240b may be implemented as a Hall sensor alone.
  • At least one of the first position sensor 170 and the first and second sensors 240a and 240b may be implemented in the form of a driver integrated circuit (IC) including a Hall sensor.
  • IC driver integrated circuit
  • the first position sensor 170 is disposed on the base 210, compared to the case where the first position sensor 170 is disposed on the OIS movable part (eg, housing), sensing with the first position sensor 170 Since the separation distance between the coils 180 may be increased, the first position sensor 170 may be implemented as a Hall sensor having high sensitivity or a Tunnel Magnetoresistance (TMR) sensor.
  • TMR Tunnel Magnetoresistance
  • the Hall sensor 170, 240a, or 240b may include two input terminals and two output terminals.
  • the two input terminals of the Hall sensor may be electrically connected to the two terminals of the circuit board 250, through which a driving signal may be provided.
  • the two output terminals of the Hall sensor may be electrically connected to the other two terminals of the circuit board 250, through which the output signal of the Hall sensor may be output.
  • a driving signal may be directly provided to the first coil 120 from the first position sensor 170.
  • the first position sensor 170 may be electrically connected to the two upper elastic members through two support members, and may directly provide a driving signal to the first coil 120.
  • the first driving signal may be directly provided to the third and fourth coil units 230-1 and 230-2 from the first sensor 240a, and the fifth coil unit 230-3 may be provided from the second sensor 240b. ) May be directly provided with the second driving signal.
  • the first sensor 240a may be electrically connected to two pads of the circuit board 250 electrically connected to the third and fourth coil units 2301 and 230-2 connected in series
  • the second sensor 240b may be electrically connected to two pads of the circuit board 250 electrically connected to the fifth coil unit 230-3.
  • signals for data communication with the driver IC may be transmitted/received through terminals 251 of the circuit board 250.
  • Signals for data communication may include a clock signal, a data signal, and a power signal.
  • the cover member 300 includes an OIS movable part, an upper elastic member 150, a lower elastic member 160, a first position sensor 170, a second coil 230, and a base in an accommodation space formed together with the base 210. 210, the circuit board 250, the support member 220, and the second position sensor 240 may be accommodated.
  • the cover member 300 has an open lower portion and may be in the form of a box including an upper plate 310 and side plates 302, and a lower portion of the cover member 300 may be coupled to an upper portion of the base 210.
  • the shape of the upper plate of the cover member 300 may be a polygon, for example, a square or an octagon.
  • the cover member 300 may have an opening in the upper plate that exposes a lens (not shown) coupled to the bobbin 110 to external light.
  • the material of the cover member 300 may be a non-magnetic material such as SUS in order to prevent sticking with the magnet 130.
  • the cover member 300 may be formed of a metal plate, but is not limited thereto, and may be formed of plastic.
  • the cover member 300 may be connected to the ground of the second holder 800 of the camera module 200.
  • the cover member 300 may block electromagnetic interference (EMI).
  • EMI electromagnetic interference
  • FIG. 12 illustrates a first position sensor 170, a sensing coil 180, first to third magnets 130-1 to 130-3, a dummy member 135, and third to fifth coil units ( 230-1 to 230-5) are shown in perspective
  • FIG. 13 is a first position sensor 170, a sensing coil 180, first to third magnets 130-1 to 130-3, and a dummy member ( 135), third to fifth coil units 230-1 to 230-5, and a perspective view of the first and second sensors 240a and 240b
  • FIG. 14 is a bottom view of the components shown in FIG. 12 to be.
  • the first magnet 130-1 includes a first magnet part 11a, a second magnet part 11b, and a first magnet part 11a and a second magnet part 11b. It may include a first partition wall 11c disposed therebetween.
  • the first partition wall 11c may be represented by replacing it with “a first non-magnetic partition wall”.
  • first magnet portion 11a and the second magnet portion 11b may be spaced apart from each other in the optical axis direction, and the first partition wall 11c is between the first magnet portion 11a and the second magnet portion 11b. Can be located in
  • the first magnet part 11a may include an N pole, an S pole, and a first boundary surface 21a between the N pole and the S pole.
  • the first boundary surface 21a may include a section that has almost no polarity as a part that does not have substantially magnetism, and may be a part that is naturally generated to form a magnet composed of one N-pole and one S-pole. .
  • the second magnet part 11b may include an N pole, an S pole, and a second boundary surface 21b between the N pole and the S pole.
  • the second boundary surface 21b may include a section that has almost no polarity as a part that does not have substantially magnetism, and may be a part that is naturally generated to form a magnet composed of one N-pole and one S-pole. .
  • the first partition wall 11c separates or isolates the first magnet part 11a and the second magnet part 11b, and may be a part that does not substantially have magnetism and has almost no polarity.
  • the first partition wall 11c may be a non-magnetic material or air.
  • the partition wall may be expressed as a "Neutral Zone” or a "Neutral Zone”.
  • the first partition wall 11c is a part artificially formed when magnetizing the first magnet part 11a and the second magnet part 11b, and the width W11 of the first partition wall 11c is the first boundary surface ( 21a) and the second boundary surface 21b may be larger than each of the widths.
  • the width W11 of the first partition wall 11c may be a length of the first partition wall 11c in a direction from the first magnet part 11a to the second magnet part 11b.
  • the width W11 of the first partition wall 11c may be the length of the first partition wall 11c in the optical axis direction.
  • the first magnet portion 11a and the second magnet portion 11b may be disposed so that opposite polarities face each other in the optical axis direction.
  • the S pole of the first magnet part 11a and the N pole of the second magnet part 11b may be disposed to face the first coil unit 120-1, but are not limited thereto, and vice versa. It could be.
  • the second magnet 130-2 includes a third magnet part 12a, a fourth magnet part 12b, and a second partition wall 12c disposed between the third magnet part 12a and the fourth magnet part 12b. ) Can be included.
  • the second partition wall 12c may be replaced with a "second non-magnetic partition wall".
  • the third magnet portion 12a and the fourth magnet portion 12b may be spaced apart from each other in the optical axis direction, and the second partition wall 12c is between the third magnet portion 12a and the fourth magnet portion 12b. Can be located in
  • Each of the third magnet portion 12a and the fourth magnet portion 12b may include an N-pole, an S-pole, and an interface between the N-pole and the S-pole.
  • Descriptions of the interface surfaces 21a and 21b of the first and second magnet parts 11a and 11b may be applied to the boundary surfaces of the third magnet part 12a and the fourth magnet part 12b, respectively. Also, the description of the first partition wall 11c may be applied to the second partition wall 12c.
  • Each of the first and second partition walls 11c and 12c may extend in a horizontal direction or a direction perpendicular to the optical axis.
  • each of the first and second partition walls 11c and 12c may isolate or separate the two magnet portions 11a and 11b, 12a and 12b from each other in the optical axis direction.
  • the first magnet portion 11a, the first partition wall 11c, and the second magnet portion 11b may be sequentially disposed in the optical axis direction.
  • the third magnet portion 12a, the second partition wall 12c, and the fourth magnet portion 12b may be sequentially disposed in the optical axis direction.
  • first magnet part 11a may be disposed on the first partition wall 11c
  • second magnet part 11b may be disposed under the first partition wall 11c
  • third magnet portion 12a may be disposed on the second partition wall 12c
  • fourth magnet portion 12b may be disposed under the second partition wall 12c.
  • each of the first partition wall 11c and the second partition wall 12c may be parallel to a straight line perpendicular to the optical axis, and the boundary surfaces 21a and 21b of each of the first and second magnet parts 11a and 11b are optical axes. Can be parallel to
  • each of the first magnet 130-1 and the second magnet 130-2 may have an N-pole and an S-pole of an anode magnetization disposed in the optical axis direction.
  • the third magnet 130-3 may include an N-pole, an S-pole, and an interface between the N-pole and the S-pole.
  • the interface of the third magnet (130-3) may include a section having almost no polarity as a part that does not have substantially magnetism, and is naturally generated to form a magnet consisting of one N-pole and one S-pole. It can be part.
  • the first magnet 130-1 may be located inside the region of the third coil unit 230-1 and may overlap with the third coil unit 230-1 in the optical axis direction.
  • the second magnet 130-2 may be located inside the region of the fourth coil unit 230-2 and may overlap with the fourth coil unit 230-2 in the optical axis direction.
  • the third magnet 130-3 may be located inside the area of the fifth coil unit 230-3 and may overlap with the fifth coil unit 230-3 in the optical axis direction.
  • One part of the third coil unit 230-1 is a first polar part of the first magnet part 11a, a first partition wall 11c, and a second polar part of the second magnet part 11b in the optical axis direction And can overlap at the same time.
  • the first polar portion may be an N-pole or an S-pole
  • the second polar portion may be an opposite polarity portion of the first polarity.
  • One portion of the fourth coil unit 230-2 is a first polar portion of the third magnet portion 12a, a second partition wall 12c, and a second polar portion of the fourth magnet portion 12b in the optical axis direction And can overlap at the same time.
  • Any one portion of the fifth coil unit 230-3 may overlap with the N pole and the S pole of the third magnet 130-3 in the optical axis direction.
  • the first magnet 130-1 and the second magnet 130-2 may have the same shape, but are not limited thereto.
  • the first magnet 130-1 and the second magnet 130-2 may have the same length, width, and height, but are not limited thereto.
  • the third coil unit 230-1 and the fourth coil unit 230-2 may have the same shape, but are not limited thereto.
  • the length, width, and height of the third coil unit 230-1 and the fourth coil unit 230-2 may be the same, but are not limited thereto.
  • first to third magnets 130-1 to 130-3, dummy 135a and 135b, sensing coil 180, and third to fifth coil units 230- 1 to 230-3) Each length, width, and height will be described.
  • each of the first to third magnets 130-1 to 130-3, the sensing coil 180, the dummy 135a, 135b, and the third to fifth coil units 230-1 to 230-3 The length may be a length in each of these longitudinal directions.
  • each of the first to third magnets 130-1 to 130-3, the sensing coil 180, the dummy 135a, 135b, and the third to fifth coil units 230-1 to 230-3 The width may be the length of each of these in the width direction.
  • the width direction may be perpendicular to the length direction, and the length may be a shorter direction in each of the components 130-1 to 130-3, 135a, 135b, 180, 230-1 to 230-3.
  • the width of each component (130-1 to 130-3, 135a, 135b, 180, 230-1 to 230-3) may be expressed by replacing the "thickness" of each component.
  • each of the first to third magnets 130-1 to 130-3, the sensing coil 180, the dummy 135a and 135b, and the third to fifth coil units 230-1 to 230-3 is Each of these may be lengths in the optical axis direction.
  • each component 130-1 to 130-3, 135a, 135b, 180, 230-1 to 230-3) is each component (130-1 to 130-3, 135a, facing the bobbin 110), 135b, 180, 230-1 to 230-3) may be a length in the horizontal direction of the first surface.
  • each component 130-1 to 130-3, 135a, 135b, 180, 230-1 to 230-3) is each component facing the bobbin 110 ((130-1 to 130-3, 135a, 135b, 180, 230-1 to 230-3) may be a distance from the first surface to the second surface opposite to the first surface.
  • each component (130-1 to 130-3, 135a, 135b, 180, 230-1 to 230-3) is each component facing the bobbin 110 ((130-1 to 130-3, 135a, 135b) , 180, 230-1 to 230-3) may be the length of the first surface in the vertical direction, or, for example, each of the components (130-1 to 130-3, 135a, 135b, 180, 230-1 to 230- The height of 3) may be the distance from the lower surface to the upper surface of each component (130-1 to 130-3, 135a, 135b, 180, 230-1 to 230-3),
  • the length L1 of the first magnet 130-1 may be smaller than the length M1 of the third coil unit 230-1 (L1 ⁇ M1), but is not limited thereto, and in other embodiments, both are They can also be the same.
  • the width W1 of the first magnet 130-1 may be smaller than the width K1 of the third coil unit 230-1 (W1 ⁇ K1), but is not limited thereto, and in other embodiments, both are They can also be the same.
  • the length of the second magnet 130-2 may be smaller than the length of the fourth coil unit 230-2.
  • the width of the second magnet 130-2 may be smaller than the width of the fourth coil unit 230-2.
  • the length L2 of the third magnet 130-3 may be smaller than the length M2 of the fifth coil unit 230-3 (L2 ⁇ M2), but is not limited thereto, and in other embodiments, both are They can also be the same.
  • the width W2 of the third magnet 130-3 may be smaller than the width K2 of the fifth coil unit 230-3 (W2 ⁇ K2), but is not limited thereto, and in other embodiments, both are They can also be the same.
  • the length M2 of the fifth coil unit 230-3 may be larger than the length M1 of the third coil unit 230-1 or/and the length of the fourth coil unit 230-2 (M2> M1), it is not limited thereto, and in other embodiments, both may be the same.
  • the length (L2) of the third magnet (130-3) may be larger than the length (L1) of the first magnet (130-1) or/and the length of the second magnet (130-2) (L2>L1), It is not limited thereto, and in other embodiments, both may be the same.
  • the first electromagnetic force generated by the fifth coil unit 230-3 and the third magnet 130-3 is equal to the third coil unit 230-1 and the third coil unit 230-1. It may be greater than the second electromagnetic force generated by the first magnet 130-1 and the third electromagnetic force generated by the fourth coil unit 230-2 and the second magnet 130-2, respectively. Accordingly, the embodiment can reduce the difference between the first electromagnetic force in the Y-axis direction and the sum of the second and third electromagnetic forces in the X-axis direction, and the driving force in the X-axis direction for the OIS movable part and the OIS movable part It is possible to reduce the difference in the driving force in the Y-axis direction, thereby improving the reliability of OIS operation.
  • the width K2 of the fifth coil unit 230-3 may be greater than the width K1 of the third coil unit 230-1 or/and the width of the fourth coil unit 230-2 (K2 >K1), but is not limited thereto, and in other embodiments, both may be the same.
  • the width W2 of the third magnet 130-3 may be greater than the width W1 of the first magnet 130-1 or/and the width of the second magnet 130-2 (W2>W1), It is not limited thereto, and in other embodiments, both may be the same.
  • the embodiment can reduce the difference between the sum of the first electromagnetic force in the Y-axis direction and the second and third electromagnetic forces in the X-axis direction, and the driving force in the X-axis direction for the OIS movable part It is possible to reduce the difference in the driving force in the Y-axis direction with respect to the OIS moving part, and improve the reliability of OIS operation.
  • the height (H2) of the third magnet (130-3) may be smaller than the height (H1) of the first magnet (130-1), or/and the height of the second magnet (130-2) (H2 ⁇ H1) ,
  • the present invention is not limited thereto, and in other embodiments, both may be the same, and in another embodiment, the former may be larger than the latter.
  • the embodiment can reduce the weight of the lens driving apparatus 100, thereby reducing power consumption for driving AF and/or OIS.
  • each of the first and second dummy 135a and 135b may be smaller than the length L2 of each of the first to third magnets 130-1 to 130-3 (L3 ⁇ L2)
  • the present invention is not limited thereto, and in other embodiments, the former may be the same as or greater than the latter.
  • the width W3 of each of the first and second piles 135a and 135b may be smaller than the width of each of the first to third magnets 130-1 to 130-3 (W3 ⁇ W1, W2), It is not limited thereto, and in other embodiments, the former may be the same as or greater than the latter.
  • the height H3 of each of the first and second piles 135a and 135b may be smaller than the height H1 of each of the first and second magnets 130-1 and 130-2, and the third magnet (although it may be greater than the height H2 of 130-3) (H2 ⁇ H3 ⁇ H1), it is not limited thereto.
  • the height of each of the first and second dummy 135a and 135b may be equal to or greater than the height H1 of each of the first and second magnets 130-1 and 130-2.
  • the height of each of the first and second piles 135a and 135b may be less than or equal to the height H2 of the third magnet 130-3.
  • the length M3 of the sensing coil 180 may be smaller than the lengths M1 and M2 of each of the third to fifth coil units 230-1 to 230-3 (M3 ⁇ M1, M2), but is limited thereto. In other embodiments, the former may be the same as or greater than the latter.
  • the width K3 of the sensing coil 180 may be smaller than the width K2 of the fifth coil unit 230-3 (K3 ⁇ K2).
  • the width K3 of the sensing coil 180 may be the same as or smaller than the width K1 of each of the third and fourth coil units 230-1 and 230-2, but is not limited thereto, and other embodiments E may be greater than the latter.
  • the length (or height) of the sensing coil 180 in the optical axis direction may be greater than the length (or height) of each of the third to fifth coil units in the optical axis direction. Accordingly, the intensity of the magnetic field of the sensing coil 180 can be increased, and the sensitivity of the first position sensor 170 can be improved.
  • the length (or height) of the sensing coil 180 in the optical axis direction may be the same as the length (or height) of each of the third to fifth coil units in the optical axis direction.
  • first separation distance in the optical axis direction between the first magnet 130-1 and the third coil unit 230-1, and the optical axis direction between the second magnet 130-2 and the fourth coil unit 230-2 may be the same, but are not limited thereto.
  • the third separation distance may be smaller than the first separation distance or/and the second separation distance. And since the third separation distance is smaller than the first separation distance or/and the second separation distance, compared to the case where all the first to third separation distances are the same, in another embodiment, the electromagnetic force generated in the Y-axis direction and the X-axis The difference in the electromagnetic force generated in the direction can be further reduced.
  • the first position sensor 170 may overlap the sensing coil 180 in the optical axis direction.
  • the first position sensor 170 may not overlap the dummy member 135 in the optical axis direction, but is not limited thereto.
  • at least a part of the first position sensor 170 may be a dummy member ( 135) and may overlap.
  • the initial position of the OIS movable part may be the initial position of the OIS movable part supported by the support member 220 and the elastic members 150 and 160 in a state in which no driving signal is provided to the second coil 230.
  • the initial position of the OIS movable part may be a position where the OIS movable part is placed when gravity acts from the bobbin 110 to the base 210, or vice versa, when the gravity acts from the base 210 to the bobbin 110. have.
  • each of the first to third magnets 130-1 to 130-3 corresponds to any one of the third to fifth coil units 230-1 to 230-3 in the optical axis direction.
  • the first sensor 240a may overlap with the first magnet 130-1 in the optical axis direction, and the second sensor 240b may overlap with the third magnet 130-3 in the optical axis direction.
  • the first sensor 240a overlaps the third coil unit 230-1 in the optical axis direction
  • the second sensor 240b overlaps the fifth coil unit 230-3 in the optical axis direction.
  • the first sensor may not overlap with the third coil unit in the optical axis direction
  • the second sensor may not overlap with the fifth coil unit in the optical axis direction.
  • the first position sensor 170 may be located within an area of the sensing coil 180.
  • the first position sensor 170 may be disposed under the sensing coil 180
  • the first sensor 240a may be disposed under the first magnet 130-1
  • the second sensor 240b May be disposed under the third magnet 130-3.
  • a sensing element (or sensing region) of the first position sensor 170 may overlap the sensing coil 180 in the optical axis direction.
  • the sensing element of the first position sensor 170 may overlap the sensing coil 180 in the optical axis direction.
  • the first position sensor 170 is disposed on a fixed part (eg, circuit board 250 and base 210), and the sensing coil 180 is disposed on an OIS movable part (eg, bobbin 110), OIS operation
  • the additional fixing part moves in a direction perpendicular to the optical axis
  • the alignment or relative positional relationship in the optical axis direction between the sensing coil 180 and the first position sensor 170 may be changed, and thus the first position sensor 170
  • the sensitivity of may decrease or the sensitivity of the first position sensor 170 may be affected.
  • the sensing element of the first position sensor 170 and at least a part of the sensing coil 180 may maintain a state of overlapping in the optical axis direction.
  • the sensing coil 180 may be disposed between the first dummy 35A and the second dummy 35B, but is not limited thereto.
  • the AF movable part and the OIS movable part of the lens driving apparatus 100 may be supported by the elastic part.
  • the elastic portion may include at least one of the upper elastic member 150, the lower elastic member 160, and the support member 220.
  • the elastic part may include a first elastic part elastically supporting the AF movable part with respect to the housing 140, and a second elastic part elastically supporting the OIS movable part with respect to the fixed part.
  • the first elastic part may include the upper elastic member 150 and the lower elastic member 160
  • the second elastic part may include the support member 220.
  • the OIS movable part supported by the fixed part by the first and second elastic parts may sag or move in the direction of gravity due to the influence of gravity.
  • the AF position sensor when the AF position sensor is placed on the OIS moving part (e.g., housing or bobbin), the AF position sensor can detect the displacement in the optical axis direction of the AF moving part through feedback operation, so the AF moving part is deflected by the influence of gravity. Can be automatically corrected or compensated.
  • the OIS moving part e.g., housing or bobbin
  • the AF position sensor placed on the OIS movable part cannot detect the displacement in the optical axis direction of the OIS movable part relative to the fixed part, the deflection or movement of the OIS movable part due to the influence of gravity is automatically corrected by the AF position sensor or It cannot be compensated.
  • the AF movable portion caused by movement (or sagging) of the OIS movable portion due to the influence of gravity Movement (or sagging) of can be automatically compensated or corrected, and thus accurate AF driving can be performed, and reliability of AF operation can be improved.
  • FIG. 15A shows the arrangement of the sensing coil 180 and the first position sensor 170 for simulation
  • FIG. 15B shows the position change of the sensing coil 180 of FIG. 15A according to the movement of the AF movable part in the optical axis direction
  • FIG. 15C shows a change in the intensity of the magnetic field of the sensing coil 180 sensed by the first position sensor 170 according to the position change of the sensing coil 180 of FIG. 15B.
  • the outer peripheral surface of the sensing coil 180 viewed from above may have a rectangular shape, but is not limited thereto.
  • the length (X1) of the outer peripheral surface of the sensing coil 180 may be 3.29 [mm]
  • the width (Y1) of the outer peripheral surface of the sensing coil 180 may be 2.05 [mm]
  • the inner peripheral surface of the sensing coil 180 may be
  • the length X2 may be 1.93 [mm]
  • the width Y2 of the inner circumferential surface of the sensing coil 180 may be 0.74 [mm]
  • the length Z1 of the sensing coil 180 in the optical axis direction is 0.54 It can be [mm].
  • the driving signal Ia provided to the sensing coil 180 may be 100 [mA].
  • the separation distance d1 from the lower surface 17A of the first position sensor 170 to the lower surface 18A of the sensing coil 180 may be 0.43 [mm].
  • the front stroke of the AF movable part may be 200 [ ⁇ m]
  • the rear stroke of the AF movable part may be 200 [ ⁇ m].
  • the X axis represents the displacement (or position) of the sensing coil 180 in the optical axis direction
  • the Y axis represents the change in the intensity of the magnetic field of the sensing coil 180 sensed by the first position sensor 170
  • g1 represents the change in the intensity of the magnetic field in the optical axis direction of the sensing coil 180 sensed by the first position sensor 170
  • g2 is the optical axis of the sensing coil 180 sensed by the first position sensor 170 It represents the change in the strength of the magnetic field in the vertical direction.
  • the change in the magnetic field in the direction of the optical axis detected by the first position sensor 170 according to the displacement in the optical axis direction of the AF movable part may be within the range of -4.6[mT] to -8.2[mT].
  • g1 may be a linear graph.
  • the output of the first position sensor 170 may be proportional to the strength of the magnetic field of the sensing coil 180 detected by the first position sensor 170, and the controller 830 of the camera module 200 or the terminal 200A, The displacement in the optical axis direction of the AF movable part 780 may be detected by using the output of the first position sensor 170.
  • three magnets 130-1 to 130-3 and three OIS coils corresponding thereto It includes units 230-1 to 230-3.
  • two magnets 130-1 and 130-2 are interacted with the first and second coil units 120-1 and 120-2.
  • the AF operation in the optical axis direction may be performed and the OIS operation in the X-axis direction perpendicular to the optical axis may be performed by interacting with the third and fourth coil units 230-1 and 230-2.
  • the other magnet 130-3 of the three magnets 130-1 to 130-3 interacts with the fifth coil unit 230-3 only to operate OIS in the Y-axis direction perpendicular to the optical axis. Can be done.
  • the present embodiment can prevent oscillation due to weight eccentricity during OSI operation.
  • the electromagnetic force in the X-axis direction due to the interaction between one magnet and one coil unit is smaller than the electromagnetic force in the Y-axis direction due to the interaction between two magnets and two coil units.
  • the difference between the electromagnetic force in the X-axis direction and the electromagnetic force in the Y-axis direction may cause a malfunction of OIS drive.
  • the present embodiment may be configured as follows.
  • the number of windings of the coil in the fifth coil unit 230-3 (hereinafter, “the number of windings of the first”) is the number of windings of the coil in the third coil unit 230-1 (hereinafter, the number of windings in the second) or/ And the number of windings of the coil in the fourth coil unit 230-2 (hereinafter, “the number of windings of the third”), thereby reducing the difference between the electromagnetic force generated in the X-axis direction and the electromagnetic force generated in the Y-axis direction. I can.
  • the second winding number and the third winding number may be the same, but are not limited thereto.
  • the first winding number and the second winding number (or the third winding number) may be the same.
  • the length (L2) of the third magnet (130-3) may be greater than the length (L1) of the first magnet (130-1) or/and the length of the second magnet (130-2), and the fifth coil unit
  • the length (M2) of (230-3) may be greater than the length (M1) of the third coil unit (230-1) or/and the length of the fourth coil unit (230-2), and thus in the X-axis direction. It is possible to reduce the difference between the electromagnetic force generated and the electromagnetic force generated in the Y-axis direction.
  • FIG. 16 shows another embodiment of a lens driving device.
  • the sensing coil 180 of the lens driving apparatus 100 may be replaced with a sensing magnet 180A.
  • a sensing magnet 180A may be disposed on the bobbin 110 instead of the sensing coil 180.
  • the sensing magnet 180A may be coupled to the protrusion 116 of the bobbin 110.
  • the protrusion 116 of the bobbin 110 may have a groove in which the sensing magnet 180A is seated or disposed.
  • the sensing magnet 180A may have a cylindrical shape or a polyhedral shape, but is not limited thereto.
  • the sensing magnet 180A may have a cylindrical shape in which a length in the optical axis direction is longer than a length in a direction perpendicular to the optical axis, but is not limited thereto.
  • the cross-sectional shape of the sensing magnet 180 cut in a direction perpendicular to the optical axis may be circular, elliptical, or polygonal (eg, triangular or square), but is not limited thereto.
  • the lens driving apparatus 100 may be implemented in various fields, for example, a camera module or an optical device, or may be used in a camera module or an optical device.
  • the lens driving apparatus 100 forms an image of an object in space by using reflection, refraction, absorption, interference, diffraction, etc., which are characteristics of light, and aims to increase the visual power of the eye.
  • It may be included in an optical instrument for the purpose of recording and reproducing an image by a lens, or for optical measurement, image propagation or transmission, etc.
  • the optical device according to the present embodiment may include a portable terminal equipped with a smartphone and a camera.
  • FIG 17 is an exploded perspective view of the camera module 200 according to the first embodiment of the present invention.
  • the camera module 200 includes a lens or lens barrel 400, a lens driving device 100, an adhesive member 612, a filter 610, a first holder 600, and a second holder 800. ), an image sensor 810, a motion sensor 820, a control unit 830, and a connector 840.
  • the lens or lens barrel 400 may be mounted on the bobbin 110 of the lens driving device 100.
  • the first holder 600 may be disposed under the base 210 of the lens driving device 100.
  • the filter 610 is mounted on the first holder 600, and the first holder 600 may include a protrusion 500 on which the filter 610 is mounted.
  • the adhesive member 612 may couple or attach the base 210 of the lens driving device 100 to the first holder 600. In addition to the above-described adhesive role, the adhesive member 612 may serve to prevent foreign substances from flowing into the lens driving apparatus 100.
  • the adhesive member 612 may be an epoxy, a thermosetting adhesive, or an ultraviolet curable adhesive.
  • the filter 610 may serve to block light of a specific frequency band in the light passing through the lens barrel 400 from entering the image sensor 810.
  • the filter 610 may be an infrared cut filter, but is not limited thereto. In this case, the filter 610 may be disposed parallel to the x-y plane.
  • An opening may be formed in a portion of the first holder 600 on which the filter 610 is mounted so that the light passing through the filter 610 can enter the image sensor 810.
  • the second holder 800 may be disposed under the first holder 600, and an image sensor 810 may be mounted on the second holder 600.
  • the image sensor 810 is a portion where the light that has passed through the filter 610 is incident and an image including the light is formed.
  • the second holder 800 may be provided with various circuits, elements, control units, etc. to convert an image formed by the image sensor 810 into an electrical signal and transmit it to an external device.
  • the second holder 800 may be implemented as a circuit board on which an image sensor may be mounted, a circuit pattern may be formed, and various elements are coupled.
  • the image sensor 810 may receive an image included in light incident through the lens driving device 100 and convert the received image into an electrical signal.
  • the filter 610 and the image sensor 810 may be disposed to be spaced apart to face each other in the first direction.
  • the motion sensor 820 is mounted on the second holder 800 and may be electrically connected to the controller 830 through a circuit pattern provided on the second holder 800.
  • the motion sensor 820 outputs rotational angular velocity information due to the movement of the camera module 200.
  • the motion sensor 820 may be implemented as a 2-axis or 3-axis gyro sensor or an angular velocity sensor.
  • the controller 830 is mounted or disposed on the second holder 800.
  • the second holder 800 may be electrically connected to the lens driving device 100.
  • the second holder 800 may be electrically connected to the circuit board 250 of the lens driving apparatus 100.
  • a driving signal may be provided to the first position sensor 170 and the second position sensor 240 through the second holder 800, and the output signal of the first position sensor 170, the second position sensor ( The output signal 240 may be transmitted to the second holder 800.
  • an output signal of the first position sensor 170 and an output signal of the second position sensor 240 may be received by the controller 830.
  • the connector 840 is electrically connected to the second holder 800 and may include a port for electrically connecting to an external device.
  • FIG. 18 is a perspective view of a camera module 1000 according to another embodiment.
  • the camera module 1000 may be a dual camera module including a first lens driving device 100-1 and a second lens driving device 100-2.
  • Each of the first lens driving device 100-1 and the second lens driving device 100-2 may be one of a lens driving device for auto focus (AF) or a lens driving device for optical image stabilizer (OIS). .
  • AF auto focus
  • OIS optical image stabilizer
  • a lens driving device for AF refers to a device capable of performing only an auto focus function
  • a lens driving device for OIS refers to a device capable of performing an auto focus function and an OIS (Optical Image Stabilizer) function.
  • the first lens driving device 100-1 may be the embodiment 100 shown in FIG. 1
  • the second lens driving device 100-2 may be the embodiment 100 shown in FIG. 1 or It may be a lens driving device for AF.
  • the camera module 1000 may further include a circuit board 1100 for mounting the first lens driving device 100-1 and the second lens driving device 100-2.
  • the first lens driving device 100-1 and the second lens driving device 100-2 are arranged side by side on one circuit board 1100, but the present invention is not limited thereto.
  • the circuit board 1100 may include a first circuit board and a second circuit board separated from each other, the first lens driving device may be disposed on the first circuit board, and the second lens driving device is It may be disposed on the second circuit board.
  • the first to third magnets of the first lens driving device 100-1 It is possible to reduce a decrease in the magnetic field between the magnets 130-1 to 130-3 and the magnet included in the second lens driving apparatus 100-2, and thereby, the first lens driving apparatus 100-1 and the second lens Reliability of driving the AF and/or OIS driving of each of the driving devices 100-2 can be ensured.
  • a malfunction may occur in the functions of the camera module such as AF operation or OIS operation due to the influence of the magnetic field of the sensing magnet. , This may reduce the resolution of the camera module.
  • FIG. 19A shows an embodiment of the dual camera module of FIG. 18. Further, FIG. 19A shows the magnetic fields of the magnets 30A, 30B, 30C, 31A, 31B, and 31C and the sensing magnets 80A and 80B.
  • the dual camera module of FIG. 19A may include a first lens driving device 100A and a second lens driving device 100C.
  • the first lens driving apparatus 100A may include three driving magnets 30A, 30B, and 30C and one sensing magnet 80A.
  • each of the first and second lens driving devices 100A and 100C is the lens driving device 100 according to the embodiment of FIG. 1, the lens driving device of FIG. 16 (or the lens driving device 100-2 of FIG. 20B). )), or a third lens driving device.
  • lens driving apparatus 100 in each embodiment, a description of the lens driving apparatus 100 according to the embodiment of FIG. 1 or the lens driving apparatus of FIG. 16 (or the lens driving apparatus 100-2 of FIG. 20B) may be applied.
  • the driving magnets 30A, 30B and 30C may correspond to the magnets 130-1 to 130-3 of the embodiments of FIGS. 1 and 16, and the sensing magnets 80A and 80B are the sensing magnets 180A. The description of may apply.
  • the third lens driving device may be an embodiment in which the first position sensor 170A is disposed in the housing 140 instead of the base 210 in the lens driving device 100-2 of FIG. 20B.
  • the driving magnets 30A to 30B, 31A to 31C of the first and second lens driving devices 100A and 100C the driving magnets 30A to 30B and 31A to 31C as shown in FIG. Sensing magnets 80A and 80B may be disposed.
  • FIG. 19B shows another embodiment of the dual camera module of FIG. 18. Further, FIG. 19B shows the magnetic fields of the magnets 30A, 30B, 30C, 40A, 40B, 40C, and 40D and the sensing magnets 80A and 80B.
  • the dual camera module of FIG. 19B may include a first lens driving device 100A and a second lens driving device 100B.
  • the first lens driving device may be replaced with a "first camera module”
  • the second lens driving device may be replaced with a "second camera module”.
  • the first lens driving device 100A may be the same as described above, and the second lens driving device 100B may include four driving magnets 40A, 40B, 40C, and 40D.
  • FIG. 20A shows another embodiment of the dual camera module 1000 of FIG. 18.
  • each of the first lens driving device 100-1 and the second lens driving device 100-2 may be a lens driving device 100 according to the embodiment of FIG. 1.
  • the fourth side of the first housing of the first lens driving device 100-1 in which the dummy members 135a and 135b are disposed is of the second lens driving device 100-2 in which the dummy members 135a and 135b are disposed. It may be disposed adjacent to each other with the fourth side of the second housing.
  • the first dummy members 135a and 135b of the first lens driving device 100-1 are the third magnet 130-3 and the second lens of the first lens driving device 100-1. It may be disposed between the second dummy members 135a and 135b of the driving device 100-2.
  • the fourth side portion 141-4 of the first housing of the first lens driving device 100-1 and the fourth side portion 141-4 of the second housing of the second lens driving device 100-2 are adjacent to each other. Can be placed
  • the fourth side portion of the first housing and the fourth side portion of the second housing may be disposed parallel to each other, but are not limited thereto.
  • the first dummy members 135a and 135b of the first lens driving device 100-1 and the second dummy members 135a and 135b of the second lens driving device 100-2 may be disposed adjacent to each other.
  • the first bobbin of the first lens driving device 100-1 and the second bobbin of the second lens driving device 100-2 may be disposed to be spaced apart from each other.
  • the first magnet 130-1 of the first lens driving device 100-1 may be disposed on the first side of the first bobbin and may be spaced apart from the first side of the first bobbin or may be separated from the first side of the first bobbin. Can be placed adjacent to.
  • the first magnet 130-1 of the first lens driving apparatus 100-1 may be disposed between the first bobbin (eg, the first side of the first bobbin) and the first housing.
  • the first magnet 130-1 may be disposed in the first housing corresponding to the first side of the first bobbin.
  • the second magnet 130-2 of the first lens driving device 100-1 may be disposed on a second side of the first bobbin facing the first side of the first bobbin, and may be disposed on the second side of the first bobbin. It may be spaced apart from or disposed adjacent to the second side of the first bobbin.
  • the second magnet 130-2 of the first lens driving apparatus 100-1 may be disposed between the first bobbin (eg, the second side of the first bobbin) and the first housing.
  • the second magnet 130-2 may be disposed in the first housing corresponding to the second side of the first bobbin.
  • the third magnet 130-3 of the first lens driving device 100-1 may be disposed on a third side of the first bobbin adjacent to the first side of the first bobbin, and may be disposed on the third side of the first bobbin. It may be spaced apart from or disposed adjacent to the third side of the first bobbin.
  • the third magnet 130-3 may be disposed between the first bobbin (eg, the third side of the first bobbin) and the first housing.
  • the third magnet 130-3 may be disposed in the first housing corresponding to the third side of the first bobbin.
  • the first magnet 130-1 of the second lens driving device 100-2 may be disposed on the first side of the second bobbin, and may be spaced apart from the first side of the second bobbin, or may be separated from the first side of the second bobbin. Can be placed adjacent to.
  • the first magnet 130-1 of the second lens driving apparatus 100-2 may be disposed between the second bobbin (eg, the first side of the second bobbin) and the second housing.
  • the first magnet 130-1 of the second lens driving apparatus 100-2 may be disposed in the second housing corresponding to the first side of the second bobbin.
  • the second magnet 130-2 of the second lens driving apparatus 100-2 may be disposed on a second side of the second bobbin facing the first side of the second bobbin, and may be disposed on the second side of the second bobbin. It may be spaced apart from or disposed adjacent to the second side of the second bobbin.
  • the second magnet 130-2 of the second lens driving apparatus 100-2 may be disposed between the second bobbin (eg, the second side of the second bobbin) and the second housing.
  • the second magnet 130-2 of the second lens driving apparatus 100-2 may be disposed in the second housing corresponding to the second side of the second bobbin.
  • the third magnet 130-3 of the second lens driving device 100-2 may be disposed on a third side of the second bobbin adjacent to the first side of the second bobbin, and may be disposed on the third side of the second bobbin. It may be spaced apart from or disposed adjacent to the third side of the second bobbin.
  • the third magnet 130-3 of the second lens driving apparatus 100-2 may be disposed between the second bobbin (eg, the third side of the second bobbin) and the second housing.
  • the third magnet 130-3 of the second lens driving apparatus 100-2 may be disposed in the second housing corresponding to the third side of the second bobbin.
  • the first dummy members 135a and 135b of the first lens driving device 100-1 may be disposed on the fourth side of the first bobbin facing the third side of the first bobbin, and It may be spaced apart from the side or disposed adjacent to the fourth side of the first bobbin.
  • the second dummy members 135a and 135b of the second lens driving device 100-2 may be disposed on the fourth side of the second bobbin facing the third side of the second bobbin, and It may be spaced apart from the side or disposed adjacent to the fourth side of the second bobbin.
  • the first dummy members 135a and 135b of the first lens driving device 100-1 and the second dummy members 135a and 135b of the second lens driving device 100-2 are provided with the first lens driving device 100- It may be arranged to overlap each other in a direction from the third magnet 130-3 of 1) toward the third magnet 130-3 of the second lens driving apparatus 100-2.
  • the dummy members 135a and 135b of the first and second lens driving devices 100-1 and 100-2 are from the first bobbin (eg, the fourth side) to the second bobbin (eg, , The fourth side) may be disposed to overlap in a direction.
  • first position sensor 170 of the first lens driving device 110-1 and the first position sensor 170A of the second lens driving device 100-2 are of the first lens driving device 110-1.
  • the first base and the second base of the second lens driving apparatus 100-2 may be disposed in regions adjacent to each other.
  • regions adjacent to each other of the first and second bases may be regions corresponding to fourth side portions (or fourth sides of the first and second bobbins) of the first and second housings.
  • the sensing coil 180 (hereinafter referred to as "first sensing coil”) of the first lens driving device 110-1 is one side (or side) of the first bobbin corresponding to or opposite to the fourth side of the first housing , For example, may be disposed on the fourth side of the first bobbin.
  • the sensing coil 180 (hereinafter referred to as “second sensing coil”) of the second lens driving device 110-2 is one side (or side) of the second bobbin corresponding to or opposite to the fourth side of the second housing , For example, may be disposed on the fourth side of the second bobbin.
  • the first sensing coil and the second sensing coil may be disposed adjacent to each other.
  • the first sensing coil may be disposed on the fourth side of the first bobbin facing the third side of the first bobbin, and the second sensing coil is the fourth side of the second bobbin facing the third side of the second bobbin. Can be placed on
  • the first sensing coil and the second sensing coil are transferred from the third magnet 130-3 of the first lens driving device 100-1 to the third magnet 130-3 of the second lens driving device 100-2. It may be arranged to overlap each other in a direction facing.
  • the first and second sensing coils may be disposed to overlap in a direction from a first bobbin (eg, a fourth side) to a second bobbin (eg, a fourth side).
  • FIG. 20A Since the embodiment of FIG. 20A includes the sensing coil 180 instead of the sensing magnets 80A and 80B of FIG. 19A, it is possible to reduce the effect of magnetic field interference between adjacent sensing magnets of FIG. 19A, thereby reducing magnetic field interference. It is possible to prevent errors in the AF operation according to.
  • the camera module 1000 may include a first camera module 100-1 and a second camera module 100-2.
  • the first camera module 100-1 includes a first bobbin 110 of 100-1, a first AF coil 120 of 100-1 disposed on the first bobbin 110 of 100-1, and a first AF coil 120. of 100-1), the first magnet 130 of 100-1, the first sensing coil 180 of 100-1 disposed on the first bobbin 110 of 100-1, and the first sensing coil ( 180 of 100-1) and a first position sensor 170.
  • the second camera module 100-2 includes a second bobbin 110 of 100-2 spaced apart from the first bobbin 110 of 100-2, and a second AF coil 120 of 100- disposed on the second bobbin. 2), a second magnet (130 of 100-2) corresponding to the second AF coil (120 of 100-2), a second sensing coil (180 of 100-2) disposed on the second bobbin (110 of 100-2) ), and a second position sensor 170A corresponding to the second sensing coil 180 of 100-2.
  • the first sensing coil (180 of 100-1) and the second sensing coil (180 of 100-2) face each other and are adjacent to the first bobbin (110 of 100-1) and the second bobbin (110 of 100-2). It can be disposed on the sides.
  • the camera module 1000 may include a first camera module 100-1 and a second camera module 100-2.
  • the first camera module 100-1 includes a first cover 300 of 100-1, a first housing 140 of 100-1, and a first housing 140 disposed within the first cover 300 of 100-1. of 100-1), a first bobbin 110 of 100-1, a first AF coil 120 of 100-1 disposed in the first bobbin 110 of 100-1, and a first housing 140 of 100 -1), the first magnet 130 of 100-1 corresponding to the first AF coil 120 of 100-1, the first sensing coil 180 of which is disposed on the first bobbin 110 of 100-1 100-1), a first base 210 of 100-1 disposed under the first housing 140 of 100-1, and a first sensing coil 180 disposed at the first base 210 of 100-1 of 100-1) may include a first position sensor 170.
  • the second camera module 100-2 includes a second housing 140 of 100-2 and a second housing disposed within the second cover 300 of 100-2 and the second cover 300 of 100-2. 140 of 100-2)), a second bobbin 110 of 100-2, a second AF coil 120 of 100-2 disposed in the second bobbin 110 of 100-2, and a second housing 140 of 100-2), the second magnet 130 of 100-2 corresponding to the second AF coil 120 of 100-2, and a second sensing coil disposed on the second bobbin 110 of 100-2 ( 180 of 100-2), a second base 210 of 100-2 disposed under the second housing 140 of 100-2, and a second sensing coil disposed on the second base 210 of 100-2 A second position sensor 170A of 100-2 corresponding to (180 of 100-2) may be included.
  • the first sensing coil 180 of 100-1 and the second sensing coil 180 of 100-2 face each other and are adjacent to the first bobbin 110 of 100-1 and the second bobbin 110 of 100-2. It can be disposed on the sides.
  • the first sensing coil 180 of 100-1 and the first position sensor 170 of 100-1 may overlap each other in the optical axis direction, and the second sensing coil 180 of 100-2 and the second position sensor ( 170 of 100-2) may overlap each other in the optical axis direction.
  • the first cover (300 of 100-1) extends from the first top plate and the first top plate and is located on the opposite side of the 1-1 side plate and the 1-1 side plate adjacent to the second cover (300 of 100-2). It may include a 1-2 side plate.
  • the second cover (300 of 100-2) extends from the second top plate and the second top plate, and the 2-1 side plate facing the side plate 1-1, and the 2-2 located opposite the side plate 2-1 It may include a side plate.
  • the first sensing coil 180 of 100-1 is adjacent to the 1-1 side plate than the 1-2 side plate, and the second sensing coil 180 of 100-2 is the 2-1 side plate than the 2-2 side plate. Can be adjacent to
  • the first cover 300 of 100-1 may include a 1-3th side plate and a 1-4th side plate disposed between the 1-1th side plate and the 1-2th side plate and facing each other.
  • the second cover 300 of 100-2 may include a 2-3 side plate and a 2-4 side plate disposed between the 2-1 side plate and the 2-2 side plate and facing each other.
  • the first magnet (130 of 100-1) is a 1-1 magnet (130-1 of 100-1) corresponding to the side plate 1-3, and the 1-2 magnet (130-) corresponding to the side plate 1-4 2 of 100-1), and a 1-3th magnet 130-3 of 100-1 corresponding to the 1-2th side plate may be included.
  • the second magnet (130 of 100-2) is a 2-1 magnet (130-1 of 100-2) corresponding to the 2-3 side plate, the 2-2 magnet (130-) corresponding to the 2-4 side plate 2 of 100-2), and a 2-3rd magnet 130-3 of 100-2 corresponding to the 2-2 side plate may be included.
  • the first dummy member (135a, 135b of 100-1) is one side of the first housing (140 of 100-1) corresponding to the 1-1 side plate (for example, the fourth side (141-4 of 100-1) )).
  • the second dummy member (135a, 135b of 100-2) is one side of the second housing (140 of 100-2) corresponding to the 2-1 side plate (for example, the fourth side (141-4 of 100-2) )).
  • the fourth side (141-4 of 100-1) of the first housing (140 of 100-1) and the fourth side (141-4 of 100-4) of the second housing (140 of 100-2) are It can be arranged facing each other.
  • the first sensing coil (180 of 100-1) and the second sensing coil (180 of 100-2) consist of a 1-3 magnet (130-3 of 100-1) and a 2-3 magnet (130-3 of 100). -2) can be placed between.
  • the camera module includes a second coil (230 of 100-1) overlapping with the first magnet (130 of 100-1) in the optical axis direction, and a second coil (230 of 100-1) overlapping with the second magnet (130 of 100-2) in the optical axis direction.
  • 20B shows an embodiment of the dual camera module 1000 of FIG. 18.
  • the first lens driving device 100-1 may be the lens driving device 100 according to the embodiment of FIG. 1, and the second lens driving device 100-2 is the embodiment of FIG. 16. It may be a lens driving device according to.
  • the sensing coil 180 of the first lens driving device 100-1 and the sensing magnet 180A of the second lens driving device 100-2 may be disposed adjacent to each other. Since the influence of magnetic field interference is not significant between the sensing coil 180 and the sensing magnet 180A, the embodiment can prevent an error in AF operation due to magnetic field interference.
  • the second lens driving device 100-2 may be replaced with the first lens driving device 100-1 in FIG. 20B.
  • the first and second lens driving devices The sensing magnets are adjacent and may be disposed to face each other as shown in FIG. 19A.
  • the camera module 1000 may include a first camera module 100-1 and a second camera module 100-2.
  • the first camera module 100-1 includes a first bobbin 110 of 100-1, a first AF coil 120 of 100-1 disposed on the first bobbin 110 of 100-1, and a first AF coil 120. of 100-1), the first magnet 130 of 100-1, the first sensing coil 180 of 100-1 disposed on the first bobbin 110 of 100-1, and the first sensing coil ( 180 of 100-1) may include a first position sensor 170.
  • the second camera module 100-2 includes a second bobbin 110 of 100-2 spaced apart from the first bobbin 110 of 100-2, and a second AF coil 120 of 100- disposed on the second bobbin. 2), a second magnet 130 of 100-2 corresponding to the second AF coil 120 of 100-2, a sensing magnet 180A disposed on the second bobbin 110 of 100-2, and a sensing magnet ( A second position sensor 170A corresponding to 180A) may be included.
  • the first sensing coil (180 of 100-1) and the sensing magnet (180A) are to be disposed on the adjacent sides of the first bobbin (110 of 100-1) and the second bobbin (110 of 100-2). I can.
  • the camera module 1000 may include a first camera module 100-1 and a second camera module 100-2.
  • the first camera module 100-1 includes a first cover 300 of 100-1, a first housing 140 of 100-1, and a first housing 140 disposed within the first cover 300 of 100-1. of 100-1), a first bobbin 110 of 100-1, a first AF coil 120 of 100-1 disposed in the first bobbin 110 of 100-1, and a first housing 140 of 100 -1), the first magnet 130 of 100-1 corresponding to the first AF coil 120 of 100-1, the first sensing coil 180 of which is disposed on the first bobbin 110 of 100-1 100-1), a first base 210 of 100-1 disposed under the first housing 140 of 100-1, and a first sensing coil 180 disposed at the first base 210 of 100-1 of 100-1) may include a first position sensor 170.
  • the second camera module 100-2 includes a second housing 140 of 100-2 and a second housing disposed within the second cover 300 of 100-2 and the second cover 300 of 100-2. 140 of 100-2)), a second bobbin 110 of 100-2, a second AF coil 120 of 100-2 disposed in the second bobbin 110 of 100-2, and a second housing 140 of 100-2), the second magnet 130 of 100-2 corresponding to the second AF coil 120 of 100-2, and the sensing magnet 180A disposed on the second bobbin 110 of 100-2 , A second base 210 of 100-2 disposed under the second housing 140 of 100-2, and a second base 210 of 100-2 disposed under the second housing 140 of 100-2 and corresponding to the sensing magnet 180A It may include a position sensor (170A of 100-2).
  • the first sensing coil 180 of 100-1 and the first position sensor 170 of 100-1 may overlap each other in the optical axis direction, and the sensing magnet 180A and the second position sensor 170 of 100-2 May overlap each other in the direction of the optical axis.
  • the first cover (300 of 100-1) extends from the first top plate and the first top plate and is located on the opposite side of the 1-1 side plate and the 1-1 side plate adjacent to the second cover (300 of 100-2). It may include a 1-2 side plate.
  • the second cover (300 of 100-2) extends from the second top plate and the second top plate, and the 2-1 side plate facing the side plate 1-1, and the 2-2 located opposite the side plate 2-1 It may include a side plate.
  • the first sensing coil 180 of 100-1 may be closer to the 1-1 side plate than the 1-2 -th side plate, and the sensing magnet 180A may be closer to the 2-1 side plate than the 2 -2 side plate.
  • the first sensing coil (180 of 100-1) and the sensing magnet (180A) are disposed between the 1-3 magnet (130-3 of 100-1) and the 2-3 magnet (130-3 of 100-2) Can be.
  • 20C shows an embodiment of the dual camera module 1000 of FIG. 18.
  • the first lens driving device 100-1 and the second lens driving device 100-2 may be a lens driving device according to the embodiment of FIG. 16.
  • the sensing magnet 180A of the first lens driving device 100-1 and the sensing magnet 180A of the second lens driving device 100-2 may be disposed adjacent to each other.
  • the arrangement relationship of the first and second sensing coils in FIG. 20A may be applied or applied mutatis mutandis. .
  • FIG. 21 is a perspective view of a portable terminal 200A according to the first embodiment of the present invention
  • FIG. 22 is a configuration diagram of the portable terminal 200A shown in FIG. 21.
  • the portable terminal 200A (hereinafter referred to as "terminal") includes a body 850, a wireless communication unit 710, an A/V input unit 720, a sensing unit 740, and An output unit 750, a memory unit 760, an interface unit 770, a control unit 780, and a power supply unit 790 may be included.
  • the body 850 shown in FIG. 21 is in the form of a bar, but is not limited thereto, and a slide type, a folder type, and a swing type in which two or more sub-bodies are coupled to enable relative movement. , Swirl type, etc. may have various structures.
  • the body 850 may include a case (casing, housing, cover, etc.) forming an exterior.
  • the body 850 may be divided into a front case 851 and a rear case 852.
  • Various electronic components of the terminal may be embedded in a space formed between the front case 851 and the rear case 852.
  • the wireless communication unit 710 may include one or more modules that enable wireless communication between the terminal 200A and a wireless communication system or between the terminal 200A and a network in which the terminal 200A is located.
  • the wireless communication unit 710 may be configured to include a broadcast reception module 711, a mobile communication module 712, a wireless Internet module 713, a short-range communication module 714, and a location information module 715. have.
  • the A/V (Audio/Video) input unit 720 is for inputting an audio signal or a video signal, and may include a camera 721 and a microphone 722.
  • the camera 721 may include camera modules 200 and 1000 according to the embodiment shown in FIG. 17 or 18.
  • the sensing unit 740 monitors the current state of the terminal 200A, such as the open/closed state of the terminal 200A, the position of the terminal 200A, the presence of user contact, the orientation of the terminal 200A, and acceleration/deceleration of the terminal 200A. By sensing, a sensing signal for controlling the operation of the terminal 200A may be generated. For example, when the terminal 200A is in the form of a slide phone, it is possible to sense whether the slide phone is opened or closed. In addition, it is responsible for a sensing function related to whether the power supply unit 790 supplies power and whether the interface unit 770 is coupled to an external device.
  • the input/output unit 750 is for generating an input or output related to visual, auditory, or tactile sense.
  • the input/output unit 750 may generate input data for controlling the operation of the terminal 200A, and may also display information processed by the terminal 200A.
  • the input/output unit 750 may include a keypad unit 730, a display module 751, an audio output module 752, and a touch screen panel 753.
  • the keypad unit 730 may generate input data by inputting a keypad.
  • the display module 751 may include a plurality of pixels whose color changes according to an electrical signal.
  • the display module 751 includes a liquid crystal display, a thin film transistor-liquid crystal display, an organic light-emitting diode, a flexible display, and a three-dimensional display. It may include at least one of 3D displays.
  • the sound output module 752 outputs audio data received from the wireless communication unit 710 in a call signal reception, a call mode, a recording mode, a voice recognition mode, or a broadcast reception mode, or stored in the memory unit 760. Audio data can be output.
  • the touch screen panel 753 may convert a change in capacitance caused by a user's touch to a specific area of the touch screen into an electric input signal.
  • the memory unit 760 may store a program for processing and control of the controller 780, and store input/output data (eg, a phone book, a message, an audio, a still image, a picture, a video, etc.). Can be stored temporarily.
  • the memory unit 760 may store an image captured by the camera 721, for example, a photo or a video.
  • the interface unit 770 serves as a passage for connecting external devices connected to the terminal 200A.
  • the interface unit 770 receives data from an external device, receives power, and transmits the data to each component inside the terminal 200A, or transmits data inside the terminal 200A to an external device.
  • the interface unit 770 includes a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, a port for connecting a device equipped with an identification module, and an audio input/output (I/O) port. Output) port, video input/output (I/O) port, and earphone port.
  • the controller 780 may control the overall operation of the terminal 200A.
  • the controller 780 may perform related control and processing for voice calls, data communication, and video calls.
  • the controller 780 may include a multimedia module 781 for playing multimedia.
  • the multimedia module 781 may be implemented in the controller 180 or may be implemented separately from the controller 780.
  • the controller 780 may perform pattern recognition processing capable of recognizing a handwriting input or a drawing input performed on the touch screen as characters and images, respectively.
  • the power supply unit 790 may receive external power or internal power under the control of the control unit 780 to supply power required for operation of each component.
  • the lens driving apparatus may include the sensing structure of the second embodiment of the present invention.
  • the lens driving apparatus according to the first embodiment of the present invention may include a sensing coil 2180 and a position sensor 2170 according to the second embodiment of the present invention.
  • the lens driving apparatus according to the first embodiment of the present invention may include a substrate 3600 and a lower elastic member 3520 according to the third embodiment of the present invention.
  • FIG. 23 is an exploded view of the lens driving apparatus 2100 according to the second embodiment of the present invention
  • FIG. 24 is a perspective view of the lens driving apparatus 2100 excluding the cover member 2300.
  • the lens driving device 2100 includes a bobbin 2110, a coil 2120, a sensing coil 2180, a magnet 2130, a housing 2140, and a position sensor 2170. can do.
  • the lens driving apparatus 2100 may further include a terminal portion 2190 electrically connected to the position sensor 2170.
  • the lens driving device 2100 may further include at least one of an upper elastic member 2150, a lower elastic member 2160, and a base 2210.
  • the lens driving apparatus 2100 may further include a balancing coil (not shown) for attenuating the weight of the sensing coil 2180 or the influence of the magnetic field.
  • a balancing coil (not shown) for attenuating the weight of the sensing coil 2180 or the influence of the magnetic field.
  • the lens driving apparatus 2100 may further include a cover or a cover member 2300.
  • a sensing coil or a driving coil is used instead of the sensing magnet to provide a magnetic field for detecting the position of the AF moving part, and thus magnetic field interference between the sensing magnet and the magnet may be prevented.
  • the bobbin 2110 is disposed inside the housing 2140 and is moved in the optical axis (OA) direction or the first direction (eg, the Z axis direction) by an electromagnetic interaction between the coil 2120 and the magnet 2130. I can.
  • FIG. 25A is a first perspective view of the bobbin 2110
  • FIG. 25B is a second perspective view of the bobbin 2110
  • FIG. 25C is a combined perspective view of the bobbin 2110 and the coil 2120.
  • the bobbin 2110 may have an opening or a hollow for mounting a lens or a lens barrel.
  • the opening of the bobbin 2110 may be in the form of a through hole penetrating through the bobbin 2110, and the shape of the opening of the bobbin 2110 may be circular, elliptical, or polygonal, but is not limited thereto.
  • the opening of the bobbin 2110 may be in the form of a hole passing through the bobbin 2110 in the optical axis direction.
  • a lens may be directly mounted to the opening of the bobbin 2110, but is not limited thereto, and in other embodiments, a lens barrel for mounting or coupling at least one lens may be coupled or mounted to the opening of the bobbin 2110. have.
  • the lens or lens barrel may be coupled to the inner circumferential surface of the bobbin 2110 in various ways. For example, a thread for coupling to a lens or a lens module may be formed on the inner surface of the bobbin 2110, but in other embodiments, the thread may not be formed.
  • the bobbin 2110 may include a plurality of side portions 2110b1 to 2110b4, 2110c1 to 2110c4 spaced apart from each other, and a plurality of side portions 2110b1 to 2110b4, 2110c1 to 2110c4 may be connected to each other.
  • the bobbin 2110 includes side portions 2110b1 to 2110b4 corresponding to the side portions 2141-1 to 2141-4 of the housing 2140 and corner portions 2142-1 to 2142-4 of the housing 2140 Corner portions 2110c1 to 2110c4 (or corners) corresponding to may be included.
  • At least one seating groove 2105 for arranging, mounting, or seating the coil 2120 may be provided on the outer surface of the bobbin 2110.
  • the seating groove 2105 may be formed on the outer surfaces of the side portions 2110b1 to 2110b4 and 2110c1 to 2110c4 of the bobbin 2110.
  • the seating groove 2105 may have a structure recessed from the outer surfaces of the side portions 2110b1 to 2110b4 and 2110c1 to 2110c4 of the bobbin 2110, and may have a shape matching the shape of the coil 2120.
  • the coil 2120 may be directly wound or wound in the groove 2105 of the bobbin 2110 so as to rotate clockwise or counterclockwise with respect to the optical axis OA.
  • the shape and number of the grooves 2105 of the bobbin 2110 may correspond to the shape and number of coils disposed on the outer surface of the bobbin 2110.
  • the bobbin 2110 may not have a groove for seating the coil, and the coil 2120 may be wound directly on the outer surface of the bobbin 2110 without the groove or may be wound and fixed.
  • a groove 2106 for passing a line of sight (eg, one end) or a vertical line (eg, the other end) of the coil 2120 may be formed at the lower end of the outer surface of the bobbin 2110.
  • a first escape groove 2122a may be provided on the upper surface of the bobbin 2110 to avoid spatial interference with the first frame connection part 2153 of the upper elastic member 2150, and a lower elasticity is provided on the lower surface of the bobbin 2110.
  • a second escape groove 2122b for avoiding spatial interference with the second frame connecting portion 2163 of the member 2150 may be provided.
  • the first and second escape grooves 2122a and 122b may be formed at the corners of the bobbin 2110, but are not limited thereto, and may be formed at the side of the bobbin 2110 in other embodiments.
  • the bobbin 2110 may include a first stopper protruding from an upper surface and a second stopper protruding from a lower surface.
  • the first and second stoppers of the bobbin 2110 are when the bobbin 2110 moves in the first direction for the auto-focusing function, even if the bobbin 2110 moves beyond a prescribed range due to an external shock or the like, the bobbin 2110
  • the upper surface of the cover member 2300 may be prevented from directly colliding with the inner side of the upper plate, and the lower surface of the bobbin 2110 may be prevented from directly colliding with the base 2210.
  • a first coupling portion 2113 for coupling and fixing to the upper elastic member 2150 may be provided on the upper surface, upper, or upper surface of the bobbin 2110, and a lower elastic member 2160 may be provided on the lower surface of the bobbin 2110.
  • a second coupling portion 2117 may be provided to be coupled to and fixed to.
  • the first coupling portion 2113 of the bobbin 2110 may have a groove shape
  • the second coupling portion 2117 may have a protrusion shape
  • Each of the first and second coupling portions 2110 may have a groove, a flat surface, or a protrusion shape.
  • a thread for coupling to a lens or a lens barrel may be provided on the inner circumferential surface of the bobbin 2110. While the bobbin 2110 is fixed by a jig or the like, a thread can be formed on the inner circumferential surface of the bobbin 2110, and a jig fixing groove 2119 may be provided on the upper surface of the bobbin 2110. have.
  • the bobbin 2110 may include a groove 2025 through which the sensing coil 2180 is seated, placed, or inserted.
  • the groove 2025 may be formed at the bottom, bottom, or bottom of the bobbin 2110.
  • the groove 2025 may have a shape recessed from the lower surface of the bobbin 2110.
  • the groove 2025 may be formed in any one of the corners of the bobbin 2110.
  • the groove part 2025 may be formed under the second corner part 2110c2 of the bobbin 2110.
  • the groove 2025 may include at least one opening.
  • the groove part 2025 may include a first opening that is open toward the base 2210.
  • the groove part 2025 may include at least one second opening that opens to the outer surface of the bobbin 2110. .
  • the bobbin 2110 may include at least one protrusion 2026 to be coupled to the sensing coil 2180.
  • the protrusion 2026 may be disposed in the groove 2025.
  • the protrusion 2026 may protrude downward from the upper surface of the groove 2025 or in a direction toward the position sensor 2170 (or the base 2210).
  • the bobbin 2110 may further include a separate groove located on the opposite side of the groove 2025.
  • the coil 2120 may be disposed on the bobbin 2110, coupled to or connected to the bobbin 2110, or supported by the bobbin 2110.
  • the coil 2120 may be disposed on the outer surface of the bobbin 2110.
  • the coil 2120 may be disposed to surround the outer surface of the bobbin 2110 so as to rotate clockwise or counterclockwise about the optical axis.
  • the coil 2120 may be disposed or wound in the groove 2105 provided on the outer surface of the bobbin 2110.
  • the coil 2120 may have a closed curve or a ring shape having a central hole.
  • the coil 2120 may be implemented in the form of a coil ring wound in a clockwise or counterclockwise direction around an axis perpendicular to the optical axis, and the number of coil rings may be the same as the number of magnets 2130. , But is not limited thereto.
  • the coil 2120 electromagnetically interacts with the magnet 2130 disposed in the housing 2140.
  • Power may be supplied to the coil 2120 or a driving signal may be applied to the coil 2120 in order to generate an electromagnetic force due to interaction with the magnet 2130.
  • the power or driving signal provided to the coil 2120 may be a DC signal or an AC signal, or may include a DC signal and an AC signal, and may be in the form of voltage or current.
  • a driving signal e.g., driving current
  • an electromagnetic force may be formed through an electromagnetic interaction between the coil 2120 and the magnet 2130, and the upper and lower elastic members may be formed by the formed electromagnetic force.
  • the bobbin 2110 supported by the fields 2150 and 2160 may be moved in the direction of the optical axis OA.
  • the movement of the bobbin 2110 in the first direction may be controlled, and thus an auto focusing function may be performed.
  • the bobbin 2110 may be moved in an upward or downward direction (eg, in the Z-axis direction), which is referred to as bidirectional driving of the AF movable part.
  • the bobbin 2110 may be moved upward, which is referred to as unidirectional driving of the AF movable part.
  • the AF movable unit may include a bobbin 2110 and components coupled to the bobbin 2110.
  • the AF movable unit may include a bobbin 2110, a coil 2120, and a sensing coil 2180.
  • the AF movable unit may further include a lens mounted on the bobbin 2110.
  • the initial position of the AF movable part is the initial position of the AF movable part in the state that power is not applied to the coil 2120, or the upper and lower elastic members 2150 and 160 are elastically deformed only by the weight of the AF movable part. It can be the position where the part is placed.
  • the initial position of the bobbin 2110 is the position where the AF movable part is placed when gravity acts from the bobbin 2110 to the base 2210, or vice versa, when the gravity acts from the base 2210 to the bobbin 2110.
  • the coil 2120 may be perpendicular to the optical axis and may face or overlap the magnet 2130 in a direction from the optical axis toward the coil 2120.
  • the coil 2120 may be electrically connected to at least one of the upper or lower elastic members 2150 and 2160.
  • a driving signal may be applied to the coil 2120 through at least one of the upper or lower elastic members 2150 and 2160.
  • a driving signal may be provided to the coil 2120 through the two elastic members 2160-1 and 2160-2 of the lower elastic member 2160.
  • the sensing coil 2180 may be spaced apart from the coil 2120 and may be disposed under the coil 2120.
  • the sensing coil 2180 may overlap a part of the coil 2120 in the optical axis direction. In another embodiment, the sensing coil 2180 may not overlap with the coil 2120 in the optical axis direction.
  • the embodiment may include a balancing coil (not shown) disposed on the bobbin 2110A so as to be located on the opposite side of the sensing coil 2180 in order to balance the weight with the sensing coil 2180.
  • the balancing sensing coil may be used to cancel the magnetic field influence of the sensing coil 2180 and balance the weight with the sensing coil 2180, thereby enabling an accurate AF operation to be performed.
  • the balancing coil may have the same weight as the sensing coil 2180, and both may have the same shape, but are not limited thereto, and in other embodiments, both may have different shapes.
  • the sensing coil 2180 may be disposed on one side or/and a corner of the bobbin 2110.
  • the sensing coil 2180 may be disposed in the groove portion 2025 of the bobbin 2110, coupled to the protrusion 2026, or may be wound around the protrusion 2026.
  • the sensing coil 2180 may provide a magnetic field for the position sensor 2170 to sense, and a driving signal or power may be provided to the sensing coil 2180 to generate such a magnetic field.
  • the driving signal provided to the sensing coil 2180 may include at least one of a DC signal or an AC signal. Also, the driving signal may be in the form of current or voltage.
  • the sensing coil 2180 may include at least one of a circular shape, an elliptical shape, or a closed curve shape.
  • the sensing coil 2180 may be in the form of a coil ring wound around an optical axis or an axis parallel to the optical axis.
  • the sensing coil 2180 may have a ring shape including a central hole, and the central hole may be parallel to the optical axis.
  • the central hole of the sensing coil 2180 may face the groove 2025 (or the protrusion 2026) of the bobbin 2110, and may be coupled to the protrusion 2026.
  • a diameter (eg, a maximum diameter) of a central hole of the sensing coil 2180 may be smaller than a diameter (eg, a minimum diameter) of a ring of the coil 2120.
  • the sensing coil 2180 includes a first portion 2009A, a second portion 2009B disposed under the first portion 2009A, and a first portion connecting the first portion 2009A and the second portion 2009B. It may contain three parts (2009C).
  • the third part 2009C of the sensing coil 2180 includes a first connection part connecting one end of the first part 2009A and one end of the second part 2009B, and the other end of the first part and the other end of the second part. It may include a second connection portion connecting the.
  • each of the first part 2009A and the second part 2009B of the sensing coil 2180 may have a "straight line shape, and the third part 2009C of the sensing coil 2180 may have a curved shape or a bent shape. Can have.
  • the sensing coil 2180 can move along with the bobbin 2110 in the optical axis OA direction, and the position sensor 2170 is a sensing coil moving in the optical axis direction.
  • the strength of the magnetic field of 2180) may be detected, and an output signal according to the detected result may be output.
  • the strength of the magnetic field or the magnetic force of the sensing coil 2180 sensed by the position sensor 2170 may be changed according to the displacement of the bobbin 2110 in the direction of the optical axis, and the position sensor 2170 may change the strength of the sensed magnetic field.
  • An output signal proportional to, may be output, and a displacement of the bobbin 2110 in the optical axis direction may be sensed using the output signal of the position sensor 2170.
  • the controller 2410 of the camera module or the controller 2780 of the terminal may detect a displacement of the bobbin 2110A in the optical axis direction based on an output signal output from the position sensor 2170.
  • At least a part of the sensing coil 2180 disposed in the groove 2025 of the bobbin 2110 may be exposed from the bobbin 2110 through the first opening and the second opening of the bobbin 2110A.
  • the lower or lower surface of the sensing coil 2180 may be exposed from the bobbin 2110 and may be opposed to or overlapped with the position sensor 2170 in the optical axis direction.
  • At least one of the first portion 2009A and the second portion 2009B of the sensing coil 2180 may overlap the position sensor 2170 in the optical axis direction.
  • at least a part of the central hole of the sensing coil 2180 may overlap the position sensor 2170 in the optical axis direction.
  • the housing 2140 accommodates at least a portion of the bobbin 2110 inside and supports the magnet 2130.
  • FIG. 26A is a perspective view of the housing 2140
  • FIG. 26B is a first perspective view of the housing 2140 and the magnet 2130
  • FIG. 26C is a second perspective view of the housing 2140 and the magnet 2130.
  • the housing 2140 may be disposed inside the cover member 2300, and may be disposed between the cover member 2300 and the bobbin 2110.
  • the housing 2140 may accommodate the bobbin 2110 inside.
  • the outer surface of the housing 2140 may be spaced apart from the inner surface of the side plate 2302 of the cover member 2300, but is not limited thereto, and in other embodiments, both may be in contact with each other.
  • the housing 2140 may have a hollow column shape including an opening or a hollow.
  • the housing 2140 may have a polygonal (eg, quadrangle or octagonal) or circular opening, and the opening of the housing 2140 may be in the form of a through hole penetrating the housing 2140 in the optical axis direction.
  • the housing 2140 may include a plurality of side portions 2141-1 to 2141-4 and a plurality of corner portions 2142-1 to 2142-4.
  • sides may be represented by replacing “first sides”
  • corner parts may be represented by replacing “second side parts”.
  • corner portions may be represented by replacing "columns”.
  • the housing 2140 may include first to fourth side portions 2141-1 to 2141-4 and first to fourth corner portions 2142-1 to 2142-4.
  • the side portions 2141-1 to 2141-4 of the housing 2140 may be portions corresponding to the sides of the housing 2140, and the corner portions 2142-1 to 2142-4 of the housing 2140 are It may be a part corresponding to the edge of the housing 2140.
  • each of the corner portions 2142-1 to 2142-4 of the housing 2140 may be a flat surface, a chamfer, or a curved surface.
  • the first to fourth side portions 2141-1 to 2141-4 may be spaced apart from each other.
  • Each of the corner portions 2142-1 to 2142-4 of the housing 2140 has two adjacent side portions 2141-1 and 2141-3, 2141-1 and 2141-4, 2141-4 and 2141-2, and 2141. It may be disposed or positioned between -2 and 2141-3), and the side portions 2141-1 to 2141-4 may be connected to each other.
  • corner portions 2142-1 to 2142-4 may be located at a corner or corner of the housing 2140.
  • the number of side portions of the housing 2140 is four, and the number of corner portions is four, but is not limited thereto.
  • Each of the side portions 2141-1 to 2141-4 of the housing 2140 may be disposed in parallel with any one of the side plates of the cover member 2300.
  • each of the side portions 2141-1 to 2141-4 of the housing 2140 in the horizontal direction may be greater than the length of each of the corner portions 2142-1 to 2142-4 in the horizontal direction, but is not limited thereto. .
  • the first side portion 2141-2 and the second side portion 2141-2 of the housing 2140 may be located opposite to each other, and the third side portion 2141-3 and the fourth side portion 2141-4 are It can be located on the other side.
  • Each of the third side portion 2141-3 and the fourth side portion 2141-4 of the housing 2140 may be positioned between the first side portion 2141-2 and the second side portion 2141-2.
  • the housing 2140 may be provided with a stopper 2143 on the upper, upper, or upper surface.
  • a stopper 2143 may be provided on an upper surface (eg, the first surface 251a) of each of the corner portions 2142-1 to 2142-4 of the housing 2140, but is not limited thereto.
  • the housing 2140 may further include a stopper (not shown) protruding from the lower surface.
  • At least one first coupling portion 2144 coupled to the first outer frame 2152 of the upper elastic member 2150 may be provided on the upper, upper, or upper surface of the housing 2140.
  • at least one second coupling portion 2147 coupled to and fixed to the second outer frame 2162 of the lower elastic member 2160 may be provided at the lower, lower, or lower surface of the housing 2140.
  • each of the first coupling portion 2144 and the second coupling portion 2147 of the housing 2140 may have a protrusion shape, but is not limited thereto.
  • the housing 2140 Each of the first and second coupling portions may be any one of a flat surface, a groove, or a protrusion.
  • the first coupling portion 2144 of the housing 2140 and the hole 2152a of the first outer frame 2152 of the upper elastic member 2150 may be coupled to each other using heat fusion bonding or an adhesive, and the housing 2140
  • the second coupling portion 2147 of and the hole 2162a of the second outer frame 2162 of the lower elastic member 2160 may be coupled to each other.
  • At least one of the side portions 2141-1 to 2141-4 of the housing 2140 may be provided with a seating portion 2141a on which a magnet 2130 may be disposed or installed.
  • the seating portion 2141a may be in the form of an opening or a through hole penetrating the side portions 2141-1 to 2141-4 of the housing 2140, but is not limited thereto.
  • a groove or a groove shape May be.
  • the housing 2140 may include a support part 2018 adjacent to the seating part 2141a to support the edge of the first surface of the magnet 2130 facing the coil 2120.
  • the support part 2018 may be positioned adjacent to the inner surface of the housing 2140 and may protrude in a horizontal direction with respect to the side surface of the seating part 2141a. Also, for example, the support part 2018 may include a tapered portion or an inclined surface. In another embodiment, the housing 2140 may not include the support part 2018.
  • the magnet 2130 may be attached or fixed to the seating portion 2141a by an adhesive.
  • a first groove 2118 may be provided at the lower, lower, or lower ends of the corners of the housing 2140, and the first grooves 2118 of the housing 2140 are provided at the corners of the upper surface of the base 2210.
  • the first groove 2218 corresponding to the may be provided.
  • An adhesive such as silicone or epoxy may be disposed between the first groove 2118 of the housing 2140 and the second groove 2218 of the base 2210, whereby the housing 2140 and the base ( 2210) can be combined with each other.
  • a protrusion protruding from the upper surface of the base 2210 may be provided instead of the second groove 2218 of the base 2210.
  • the magnet 2130 may be disposed in the housing 2140.
  • the magnet 2130 may be disposed between the bobbin 2110 and the housing 2140.
  • the magnet 2130 may include a plurality of magnets or magnet units 2130-1 to 2130-4.
  • the magnet 2130 may include first to fourth magnets 2130-1 to 2130-4, but is not limited thereto.
  • the number of magnet units may be two or more.
  • the magnet may include two magnet units disposed on two sides of the housing 2140 located opposite to each other.
  • the magnet units 2130-1 to 2130-4 may be disposed on the side portions 2141-1 to 2141-4 of the housing 2140.
  • each of the first to fourth magnet units 2130-1 to 2130-4 corresponds to one of the first to fourth side portions 2141-1 to 2141-4 of the housing 2140 May be placed in (2141a).
  • the first magnet unit 2130-1 and the third magnet unit 2130-3 may be located adjacent to the first corner part 2142-1 of the housing 2140, and the second magnet unit 2130-2 ) And the fourth magnet unit 2130-4 may be positioned adjacent to the third corner portion 2142-3 facing the first corner portion 2142-1 in a diagonal direction.
  • a part of the first magnet unit 2130-1 and a part of the third magnet unit 2130-3 may be disposed to extend to the first corner part 2141-1 of the housing 2140, and the second A part of the magnet 2130-2 and a part of the fourth magnet 2130-4 may be disposed to extend to the third corner part 2141-3 of the housing 2140.
  • the first magnet unit 2130-1 may be disposed closer to the first corner portion 2142-1 than the second corner portion 2142-2
  • the second magnet unit 2130-2 may be It may be disposed closer to the third corner part 2142-3 than the fourth corner part 2142-4
  • the third magnet unit 2130-3 is the first one than the fourth corner part 2142-4
  • the fourth magnet unit 2130-4 may be disposed closer to the corner part 2142-1
  • the fourth magnet unit 2130-4 is disposed closer to the third corner part 2142-3 than the second corner part 2142-2. Can be.
  • each of the magnet units may be disposed to be located at the same distance from both corners of the housing 2140.
  • the magnet 2130 may be disposed on the side portions 2141-1 to 2141-4 of the housing 2140 to correspond to or to face the coil 2120.
  • Each of the magnet units 2130-1 to 2130-4 has a shape corresponding to the outer surface of the side portions 2141-1 to 2141-4 of the housing 2140, for example, a polyhedron (eg, a rectangular parallelepiped) shape as a whole. May have, but is not limited thereto.
  • a polyhedron eg, a rectangular parallelepiped
  • Each of the magnet units 2130-1 to 2130-4 may be a single-pole magnetized magnet or a two-pole magnet having two different polarities and an interface naturally formed between the different polarities.
  • each of the magnet units 2130-1 to 2130-4 is a single-pole magnetized magnet disposed such that a first surface facing the coil 2120 is an N pole, and a second surface opposite the first surface is an S pole.
  • the present invention is not limited thereto, and the N pole and the S pole may be opposite.
  • each of the magnet units 2130-1 to 2130-4 may be a 24-pole magnet or an anode magnetized magnet including two N poles and two S poles.
  • each of the magnet units 2130-1 to 2130-4 may be implemented with ferrite, alnico, a rare earth magnet, or the like, but is not limited thereto.
  • each of the magnet units 2130-1 to 2130-4 includes a first magnet part, a second magnet part, and a first magnet part and a second magnet part. It may include a partition wall disposed between the magnet parts.
  • the first magnet portion may include an N-pole, an S-pole, and a first boundary surface between the N-pole and the S-pole.
  • the first boundary surface may include a section having almost no polarity as a portion that does not substantially have magnetism, and may be a portion that is naturally generated to form a magnet composed of one N-pole and one S-pole.
  • the second magnet portion may include an N-pole, a S-pole, and a second boundary surface between the N-pole and the S-pole.
  • the second boundary surface may include a section that has almost no polarity as a part that does not substantially have magnetism, and may be a part that is naturally generated to form a magnet composed of one N pole and one S pole.
  • the partition wall separates or isolates the first magnet part and the second magnet part, and may be a part that does not substantially have magnetic properties and has almost no polarity.
  • the partition wall may be a non-magnetic material or air.
  • the partition wall may be expressed as a "Neutral Zone” or a "Neutral Zone”.
  • the partition wall is a portion that is artificially formed when magnetizing the first magnet portion and the second magnet portion, and the width of the partition wall may be greater than the widths of each of the first and second boundary surfaces.
  • the width of the partition wall may be a length of the partition wall in a direction from the first magnet part to the second magnet part.
  • FIG. 27 is a perspective view of the housing 2140, the magnet 2130, and the upper elastic member 2150
  • FIG. 28 is an exploded perspective view of the lower elastic member 2160, the position sensor 2170, the terminal portion 2190, and the base 29 is a perspective view of the base 2210 to which the position sensor 2170 and the terminal portion 2190 are coupled
  • FIG. 30 is a perspective view of the lower elastic member 2160, the terminal portion 2190, and the base 2210 31 is a cross-sectional view of the lens driving device 2100 in the AB direction of FIG. 24, and
  • FIG. 32 is a cross-sectional view of the lens driving device 2100 in the CD direction of FIG. 24.
  • the upper elastic member 2150 and the lower elastic member 2160 may constitute an elastic member, the elastic member may be coupled to the bobbin 2110 and the housing 2140, and The member may elastically support the bobbin 2110 with respect to the housing 2140.
  • the upper elastic member 2150 may be coupled to the top, the top, or the top of the bobbin 2110 and the top, the top, or the top of the housing 2140.
  • the lower elastic member 2160 may be coupled to the lower, lower, or lower end of the bobbin 2110 and the lower, lower, or lower end of the housing 2140.
  • the elastic member may be represented by replacing it with “elastic unit”, “spring”, or “elastic body”.
  • the upper elastic member 2150 is not separated into a plurality and may have a single structure, but is not limited thereto. In another embodiment, the upper elastic member 2150 may include a plurality of elastic units spaced apart from each other. have.
  • the upper elastic member 2150 includes a first inner frame 2151 coupled with the bobbin 2110, a first outer frame 2152 coupled with the housing 2140, a first inner frame 2151 and a first outer frame ( A first frame connection part 2153 connecting the 2152 may be further included.
  • the inner frame may be represented by replacing the "inner part”
  • the outer frame may be represented by replacing the "outer part”
  • the frame connection part may be represented by replacing the "connector”.
  • the first inner frame 2151 of the upper elastic member 2150 may be provided with a hole 2151a to be coupled to the first coupling part 2113 of the bobbin 2110, and the first outer frame 2152 may be provided with a housing.
  • a hole 2152a for coupling with the first coupling part 2144 of 2140 may be provided.
  • the lower elastic member 2160 may include elastic members divided or separated into two or more, and may be coupled to the bobbin 2110.
  • elastic members may be expressed as “lower elastic members”, “elastic units” or “springs”.
  • the lower elastic member 2160 may include first to fourth elastic members 2160-1 to 2160-4 spaced apart from each other, and the first to fourth elastic members 2160-1 to 2160- 4) can be electrically separated from each other.
  • At least one of the first to fourth elastic members 2160-1 to 2160-4 is a second inner frame 2161 coupled to the lower portion of the bobbin 2110, and a second outer side coupled to the lower portion of the housing 2140
  • a frame 2162 and a second frame connector 2163 connecting the second inner frame 2161 and the second outer frame 2162 may be included.
  • Each of the coil 2120 and the sensing coil 2180 may be electrically connected to at least one of the upper elastic member 2150 and the lower elastic member 2160.
  • the coil 2120 may be electrically connected to the first and second elastic members 2160-1 and 2160-2.
  • one end (or first end) of the coil 2120 may be coupled to the first elastic member 2160-1 by soldering or a conductive member, and the other end (or second end) of the second coil 2120 Silver may be combined with the second elastic member 2160-2.
  • the sensing coil 2180 may be electrically connected to the third and fourth elastic members 2160-3 and 2160-4 of the lower elastic member 2160.
  • one end of the sensing coil 2180 may be coupled to the second inner frame 2161 of the third elastic member 2160-3, and the other end of the sensing coil 2180 is a fourth elastic member. It may be coupled to the second inner frame 2161 of the member 2160-4.
  • a driving signal or power may be provided to the sensing coil 2180 through the third and fourth terminals 2164-3 and 2164-4 of the third and fourth elastic members 2160-3 and 2160-4. have.
  • the second inner frame 2161 may be provided with a hole 2161a to be coupled to the second coupling portion 2117 of the bobbin 2110, and the second outer frame 2162 is provided with a second coupling of the housing 2140.
  • a hole 2162a for coupling with the part 2147 may be provided.
  • the lower elastic member may be implemented as an integrally formed elastic unit, and the coil 2120 may be electrically connected to two of the plurality of upper elastic members according to another embodiment.
  • Each of the first frame connecting portion 2153 of the upper elastic member 2150 and the second frame connecting portion 2163 of the lower elastic member 2160 is formed to be bent or curved (or curved) at least once to form a pattern having a predetermined shape. Can be formed.
  • the bobbin 2110 may be elastically (or elastically) supported by an upward and/or downward motion of the bobbin 2110 in the first direction through position change and fine deformation of the first and second frame connection parts 2153 and 2163.
  • the upper elastic member 2150 and the lower elastic member 2160 may be formed of a leaf spring, but are not limited thereto, and may be implemented as a coil spring.
  • the lens driving device 2100 includes a first damper (not shown) disposed between the upper elastic member 2150 and the bobbin 2110 (or the housing 2140). It may be further provided.
  • a first damper (not shown) may be disposed in a space between the first frame connection part 2153 of the upper elastic member 2150 and the bobbin 2110.
  • the lens driving device 2100 may further include a second damper (not shown) disposed between the second frame connection portion 2163 of the lower elastic member 2160 and the bobbin 2110 (or the housing 2140). May be.
  • a damper (not shown) may be disposed between the inner surface of the housing 2140 and the outer peripheral surface of the bobbin 2110.
  • the damper may be a gel-shaped silicone, but is not limited thereto.
  • the first elastic member 2160-1 is connected to the outer surface of the second outer frame 2162 of the first elastic member 2160-1, and the second outer frame 2162 of the first elastic member 2160-1 ) May include a first terminal 2164-1 that is bent and extended in a direction toward the base 2210.
  • the second elastic member 2160-2 is connected to the outer surface of the second outer frame 2162 of the second elastic member 2160-2, and the second outer frame of the second elastic member 2160-2 ( A second terminal 2164-2 may be bent and extended in a direction from 2162 toward the base 2210.
  • the third elastic member 2160-3 is connected to the outer surface of the second outer frame 2162 of the third elastic member 2160-3, and the second outer frame of the third elastic member 2160-3 ( A third terminal 2164-3 may be bent and extended in a direction from 2162 toward the base 2210.
  • the fourth elastic member 2160-4 is connected to the outer surface of the second outer frame 2162 of the fourth elastic member 2160-4, and the second outer frame of the fourth elastic member 2160-4 ( A fourth terminal 2164-4 may be bent and extended in a direction from 2162 toward the base 2210.
  • the first terminal 2164-1 of the first elastic member 2160-1 is a first outer surface 2028A of the base 2210 in the second outer frame 2162 of the first elastic member 2160-1. ) Can be extended.
  • the second terminal 2164-2 of the second elastic member 2160-2 is the first outer surface of the base 2210 in the second outer frame 2162 of the second elastic member 2160-2 ( 2028A).
  • the third terminal 2164-3 of the third elastic member 2160-3 is a second outer surface of the base 2210 in the second outer frame 2162 of the third elastic member 2160-3 ( 2028B) can be extended.
  • the fourth terminal 2164-4 of the fourth elastic member 2160-4 is a second outer surface of the base 2210 in the second outer frame 2162 of the fourth elastic member 2160-4 ( 2028B) can be extended.
  • the second outer side surface 2028B of the base 2210 may be located on the opposite side of the first outer side surface 2028A of the base 2210.
  • first to fourth terminals 2164-1 to 2164-4 of the first to fourth elastic members 2160-1 to 2160-4 may be disposed to be spaced apart from each other.
  • first and second terminals 2164-1 and 2164-2 of the first and second elastic members 2160-1 and 2160-2 are on the first outer side 2028A of the base 2210. It may be disposed, seated, or inserted into the prepared first and second recessed portions 2052a and 2052b.
  • the third and fourth terminals 2164-3 and 2164-4 of the third and fourth elastic members 2160-3 and 2160-4 are provided on the second outer surface 2028B of the base 2210. It may be disposed, seated, or inserted into the third and fourth recessed portions 2052c and 2052d.
  • the depression may be represented by replacing it with "groove".
  • the first to fourth terminals 2164-1 to 2164-4 of the first to fourth elastic members 2160-1 to 2160-4 may be exposed from the base 2210 and the first to fourth terminals The terminals 2164-1 to 2164-4 may be electrically separated from each other.
  • the inner surface of the terminals 2164-1 to 2164-4 disposed in the depressions 2052a to 2052d of the base 2210 may contact one surface (eg, the bottom surface) of the depressions 2052a to 2052d,
  • the outer surfaces of the terminals 2164-1 and 2164-4 may be exposed from the outer surfaces (eg, 2028A and 2028B) of the base 2210.
  • the outer surfaces of the terminals 2164-1 to 2164-4 may be opposite to the inner surfaces of the terminals 2164-1 to 2164-4.
  • each of the first to fourth terminals 2164-1 to 2164-4 may be exposed from the lower surface of the base 2210, but is not limited thereto, and in other embodiments, the first to fourth terminals The lower ends of each of the s 2164-1 to 2164-4 may not be exposed to the lower surface of the base 2210.
  • the depth of the depressions 2052a to 2052d may be greater than the thickness of the terminals 2164-1 to 2164-4, and the outer surfaces of the terminals 2164-1 to 2164-4 disposed in the depressions 2052a to 2052d Silver may not protrude outside the recessed portions 2252a to 2052d.
  • the first to fourth terminals 2164-1 to 2164-4 may occur outside the outer surface of the base 2210, the first to fourth terminals 2164-1 to 2164 Contact or collision between the solder bonded to -4) and the cover member 2300 may occur, and thus an electrical short or disconnection may occur.
  • the depth of the depressions 2052a to 2052d may be sufficiently secured so that the solder bonded to the terminals 2164-1 to 2164-4 does not protrude out of the outer surface (eg, 2028A, 2028B) of the base 2210.
  • the embodiment can prevent the above-described electrical short circuit or disconnection.
  • outer surfaces of the terminals 2164-1 to 2164-4 may protrude out of the recessed portions 2052a to 2052d.
  • the first to fourth terminals 2164-1 to 2164-4 may be electrically connected to external wirings or external devices by a conductive adhesive member (eg, soldering).
  • a conductive adhesive member eg, soldering
  • first and second terminals 2164-1 and 2164-2 may be supplied with power or a driving signal to be supplied to the coil 2120 from the outside, and the first and second elastic members 2160-
  • the first and second terminals 2164-1 and 2164-2 of 1 and 2160-2 may be electrically connected to the coil 2120.
  • the first terminal 2164-1 is formed integrally with the first elastic member 2160-1
  • the second terminal 2164-2 is formed integrally with the second elastic member 2160-2
  • the third terminal 2164-3 is formed integrally with the third elastic member 2160-3
  • the fourth terminal 2164-4 is formed integrally with the fourth elastic member 2160-4, It is not limited.
  • At least one of the first to fourth terminals may be disposed on an outer surface (eg, 2028A, 2028B) of the base 2210 in a configuration separate from at least one of the first to fourth elastic members.
  • the corresponding elastic member and the terminal may be coupled or connected to each other by a conductive adhesive (eg, solder).
  • each of the first to fourth terminals may be configured separately from each of the first to fourth elastic members, and each of the first to fourth terminals by a conductive adhesive (eg, solder) is It may be connected to a corresponding one of the four elastic members.
  • a conductive adhesive eg, solder
  • the base 2210 is disposed under the bobbin 2110 (or the housing 2140).
  • the base 2210 may be under the lower elastic member 2160.
  • the base 2210 may be coupled to the housing 2140 and may form a space for accommodating the bobbin 2110 and the housing 2140 together with the cover member 2300.
  • the base 2210 may have an opening 2021 corresponding to the opening of the bobbin 2110 or/and the opening of the housing 2140, and has a shape that matches or corresponds to the cover member 2300, for example, a square shape.
  • the opening 2021 of the base 2210 may be in the form of a through hole penetrating the base 2210 in the optical axis direction.
  • a seating portion (not shown) on which the filter 2610 of the camera module 2200 is installed may be formed on the lower surface of the base 2210.
  • the base 2210 may include a seating groove 2215 for placing, seating, or receiving the position sensor 2170.
  • the mounting groove 2215 may have a shape that is recessed from the upper surface of the base 2210.
  • the base 2210 includes side portions 2142-1 to 2142-4 of the housing 2140 corresponding to or opposing the side portions 2141-1 to 2141-4 of the housing 2140 in the optical axis direction and corner portions 2142-1 to 2142-4 of the housing 2140 in the optical axis direction. ) May include corresponding or opposite corner portions.
  • the seating groove 2215 may be provided at any one corner of the base 2210.
  • it may be formed between any one corner of the base 2210 of the mounting groove 2215 and the opening 2021 of the base 2210.
  • first and second depressions 2052a and 2052b may be formed on the outer surface of the first side of the base 2210, and the third and fourth depressions 2052c and 2052d are It may be formed on the outer surface of the second side.
  • the second side portion of the base 2210 may be located opposite the first side portion of the base 2210.
  • the base 2210 may include a stepped jaw 2211 at the lower end of the outer surface of the base 2210 to which the adhesive may be applied.
  • the stepped jaw 2211 may guide the cover member 2300 coupled to the upper side, and may face the lower end of the side plate 2302 of the cover member 2300.
  • An adhesive member or/and a sealing member may be disposed or applied between the lower end of the side plate 2302 of the cover member 2300 and the stepped portion 2211 of the base 2210.
  • a groove 2247 for mounting, inserting, or coupling the second coupling portion 2147 of the protruding housing 2140 may be provided on the upper surface 2210A of the base 2210.
  • the groove 2247 may correspond to or face the second coupling portion 2147 of the housing 2140 in the optical axis direction.
  • At least one protrusion or protrusion 2145 may be formed on the lower or lower surface of the housing 2140, and a groove 2212 corresponding to the protrusion or protrusion 2145 of the housing 2140 is formed on the side of the base 2210. Can be provided.
  • the protrusion or protrusion 2145 of the housing 2140 may be coupled to the groove 2212 of the base 2210.
  • the terminal portion 2190 may be disposed on the base 2210 and may be electrically connected to the position sensor 2170.
  • the terminal unit 2190 may include a plurality of terminals P1 to P4.
  • the plurality of terminals P1 to P4 may be spaced apart from each other.
  • the base 2210 may be formed of an injection product.
  • each of the first to fourth terminals P1 to P4 of the terminal portion 2190 may be located inside the base 2210 by an insert injection process.
  • each of the first to fourth terminals P1 to P4 may be referred to as an “insert terminal”.
  • the first to fourth terminals P1 to P4 of the terminal unit 2190 may be disposed inside the base 2210.
  • at least a part (or one end) (B1 to B4) of each of the first to fourth terminals (P1 to P4) for electrical connection with the position sensor 2170 is exposed from the mounting groove 2215 of the base 2210 Can be.
  • each of the first to fourth terminals P1 to P4 is the base 2210 It may be exposed to the outer surface of (eg, 28A).
  • a third depression 2052c may be formed on the first outer surface 2028A of the base 2210, and at least another part (or the other end) of each of the first to fourth terminals P1 to P4 is It may be disposed in the third recessed portion 2052c of the base 2210.
  • at least another part (or the other end) of each of the first to fourth terminals P1 to P4 may not protrude from the third recessed portion 2052c of the base 2210, and thus the first and second terminals As described in the depressions 2052a and 2052b, an electrical short or disconnection can be prevented.
  • Each of the first to fourth terminals P1 to P4 has a first portion B1 to B4 electrically connected to the position sensor 2170, and a second exposed to the first outer surface 2028A of the base 2210. It may include portions Q1 to Q4, and third portions R1 to R4 connecting the first portions B1 to B4 and the second portions Q1 to Q4.
  • At least one third portion R1 to R4 of the first to fourth terminals P1 to P4 may include a bent or bent portion.
  • the third portions R1 to R4 may include portions bent at least once.
  • the third portions R1 to R4 may have a linear shape without including a bent portion.
  • the position sensor 2170 is disposed under the sensing coil 2180.
  • the position sensor 2170 may be disposed on the base 2210.
  • the position sensor 2170 may be disposed in the mounting groove 2215 of the base 2210.
  • the position sensor 2170 may be disposed on the second portions B1 to B4 of the terminals P1 to P4 of the terminal portion 2190 exposed by the mounting groove 2215.
  • the position sensor 2170 may be coupled to the second portions B1 to B4 of the terminals P1 to P4 of the terminal portion 2190 exposed by the mounting groove 2215.
  • the position sensor 2170 may be electrically connected to the second portions B1 to B4 of the terminals P1 to P4 of the terminal portion 2190.
  • the position sensor 2170 may be an “AF position sensor”.
  • the position sensor 2170 may overlap a part of the coil 2120 in the optical axis direction. In another embodiment, the position sensor 2170 in the optical axis direction may not overlap a part of the coil 2120.
  • a driving signal 2120 may be provided to the coil 2120, and an AF movable unit (e.g., a bobbin 2110, a coil 2120) may be provided by an electromagnetic force caused by an interaction between the coil 2120 provided with the driving signal and the magnet 2130. )) can be moved in the direction of the optical axis.
  • the coil 2120 provided with the driving signal may generate a magnetic field.
  • the position sensor 2170 may detect the strength of the magnetic field of the coil 2120 moving in the direction of the optical axis, and may output an output signal according to the detected result.
  • the strength or magnetic force of the coil 2120 sensed by the position sensor 2170 may be changed according to the displacement of the bobbin 2110 in the direction of the optical axis, and the position sensor 2170 may change the strength of the sensed magnetic field. It can output a proportional output signal.
  • the controllers 2410 and 2780 of the camera module or optical device may detect the displacement of the bobbin 2110 in the optical axis direction by using the output signal of the position sensor 2170.
  • the position sensor 2170 may be implemented as a Hall sensor alone, or may be implemented in the form of a driver IC (Integrated Circuit) including a Hall sensor.
  • the position sensor 2170 is disposed on the base 2210, compared to the case where the position sensor 2170 is disposed in the OIS movable part (eg, housing), the separation distance between the position sensor 2170 and the coil 2120 Since may be increased, the position sensor 2170 may be implemented as a Hall sensor with high sensitivity or a Tunnel Magnetoresistance (TMR) sensor.
  • TMR Tunnel Magnetoresistance
  • the position sensor 2170 may include two input terminals and two output terminals. In this case, the position sensor 2170 may sense a magnetic field generated from the coil 2120 and output an output voltage, which is an analog signal, through the two output terminals.
  • the two input terminals of the position sensor 2170 may be electrically connected to the first and second terminals (eg, P1, P2) of the terminal portion 2190, and a driving signal is transmitted through these (P1, P2). It may be provided at 2170.
  • the two output terminals of the position sensor 2170 may be electrically connected to the third and fourth terminals (eg, P3, P4) of the terminal portion 2190, and through these (eg, P3, P4), the position sensor The output signal of 2170 may be output.
  • the position sensor 2170 includes first and second terminals for receiving power, and a clock signal and a data signal for data communication. It may include third and fourth terminals for transmitting and receiving a signal, and fifth and sixth terminals for directly providing a driving signal to the coil 2120.
  • each of the first to fourth terminals of the position sensor 2170 may be electrically connected to a corresponding one of the first to fourth terminals of the terminal unit 2190, and the fifth and fourth terminals of the position sensor 2170 The six terminals may be electrically connected to the coil 2120.
  • the fifth and sixth terminals of the position sensor 2170 may be electrically connected to the first and second elastic members 2160-1 and 2160-2, and the first and second elastic members are electrically connected to the coil.
  • the first and second terminals 2164-1 and 2164-2 of the first and second elastic members 2160-1 and 2160-2 may be omitted.
  • the cover member 2300 includes an AF movable part, a housing 2140, a magnet 2130, an upper elastic member 2150, a lower elastic member 2160, a position sensor 2170, and a housing space formed together with the base 2210.
  • the terminal portion 2190 and the base 2210 may be accommodated.
  • the cover member 2300 may have a bottom open, a box shape including an upper plate 2310 and side plates 2302, and a lower portion of the cover member 2300 may be coupled to an upper portion of the base 2210.
  • the shape of the upper plate of the cover member 2300 may be a polygon, for example, a square or an octagon.
  • the cover member 2300 may include an opening in the upper plate 2301 for exposing a lens (not shown) coupled to the bobbin 2110 to external light.
  • the material of the cover member 2300 may be a non-magnetic material such as SUS in order to prevent sticking with the magnet 2130.
  • the cover member 2300 may be formed of a metal plate, but is not limited thereto, and may be formed of plastic.
  • FIG. 33A shows the arrangement of the coil 2120, the magnet units 2130-1 to 2130-4, the sensing coil 2180, and the position sensor 2170
  • FIG. 33B shows a bottom view of FIG. 33A.
  • the coil 2120 includes first portions 2012A disposed on the side portions 2110b1 to 2110b4 of the bobbin 2110, and corner portions 2110c1 to 2110c4 of the bobbin 2110. It may include second portions 2012B arranged in the.
  • the length L1 of the first portion 2012A in the horizontal direction may be greater than the length L2 of the second portion 2012B in the horizontal direction.
  • the sensing coil 2180 may be disposed under the coil 2120, and the position sensor 2170 may be disposed under the sensing coil 2180.
  • the sensing coil 2180 and the position sensor 2170 may overlap any one of the second portions 2012B of the coil 2120 in the optical axis direction.
  • the sensing coil 2180 has a second corner part 2142-2 or a fourth corner part of the housing 2140 than the first corner part 2142-1 and the second corner part 2142-2 of the housing 2140. May be placed closer to (2142-4). This increases the separation distance between the sensing coil 2180 and the magnet units 2130-1 to 2130-4, thereby affecting the interaction between the sensing coil 2180 and the magnet units 2130-1 to 2130-4. By reducing the number, it is to avoid affecting the AF driving according to the interaction between the coil 2120 and the magnet units 2130-1 to 2130-4.
  • the position sensor 2170 is a second corner portion 2142-2 or the fourth corner of the housing 2140 than the first corner portion 2142-1 and the second corner portion 2142-2 of the housing 2140. It may be disposed closer to the unit 2142-4. This increases the reliability of the output value of the position sensor 2170 by allowing the position sensor 2170 to be less affected by the magnetic field of the magnet units 2130-1 to 2130-4 and to sense the strength of the magnetic field of the coil 2120. It is for sake.
  • the shortest distance d1 between the coil 2120 and the position sensor 2170 is the shortest distance between the position sensor 2170 and the adjacent magnet unit (eg, 2130-1, 2130-4) and the position sensor 2170 ( It may be less than d2) (d1 ⁇ d2). This is to reduce the influence of magnetic field interference of the magnets (eg, 2130-1 and 2130-4) and to increase the sensing sensitivity of the position sensor 2170 to the magnetic field of the sensing coil 2180. In another embodiment, d1 ⁇ d2 may be used.
  • the shortest distance d3 between the sensing coil 2180 and the coil 2120 may be smaller than the shortest distance d4 between the sensing coil 2180 and the position sensor 21700 (d3 ⁇ d4).
  • d4 ⁇ d3 may be used to improve the sensitivity of the position sensor 2170 to the magnetic field of the sensing coil 2180.
  • the position sensor 2170 when viewed from above (or below), the position sensor 2170 may be located within an area of the sensing coil 2180. In order to improve the sensitivity of the position sensor 2170, a sensing element (or sensing area) of the position sensor 2170 may overlap the sensing coil 2180 in the optical axis direction.
  • the length K1 of the position sensor 2170 in the horizontal direction may be smaller than the length M1 of the sensing coil 2180 in the horizontal direction (K1 ⁇ M1).
  • the length K2 in the vertical direction of the position sensor 2170 may be smaller than the length M2 in the vertical direction of the sensing coil 2180 (K2 ⁇ M2).
  • the length of the position sensor in the horizontal direction may be greater than or equal to the length of the sensing coil in the horizontal direction.
  • the length of the position sensor in the vertical direction may be greater than or equal to the length of the sensing coil in the vertical direction.
  • the position sensor when viewed from above (or below), may include a portion that does not overlap with the sensing coil 2180 in the optical axis direction.
  • a part of the position sensor when viewed from above (or below), may be disposed to protrude outward from an area of the sensing coil.
  • At least a part of the sensing coil may be disposed outside the coil 2120.
  • all, part or most of the sensing coil (or/and the position sensor) may be disposed outside the coil 2120.
  • FIG. 34 shows the relationship between the displacement of the bobbin 2110, the first driving signal Id applied to the coil 2120, and the second driving signal Is applied to the sensing coil 2180.
  • a1 may be the highest position or the macro position of the bobbin 2110, and a2 may be the lowest position or the infinity position of the bobbin 2110.
  • the X-axis of FIG. 34 may be a displacement of the bobbin or a stroke of the bobbin.
  • a relationship between the magnitude of the first driving signal Id and the displacement of the bobbin 2110 (or the stroke of the bobbin) may be a linear straight line having a constant slope.
  • the relationship between the two may be non-linear.
  • the first driving signal Id may be a signal that increases or decreases.
  • the magnitude of the second driving signal Is may have a constant value even if the displacement or position of the bobbin 2110 changes in order to generate a magnetic field having a predetermined intensity.
  • the second driving signal Is may be provided with a signal having a preset constant value regardless of the displacement of the bobbin 2110.
  • FIG. 35A shows the arrangement of the sensing coil 2180 and the position sensor 2170 for simulation
  • FIG. 35B shows the position change of the sensing coil 2180 of FIG. 35A according to the movement of the AF movable part in the optical axis direction
  • FIG. 35c shows a change in the intensity of the magnetic field of the sensing coil 2180 sensed by the position sensor 2170 according to the change in the position of the sensing coil 2180 of FIG. 35B.
  • the outer peripheral surface of the sensing coil 2180 viewed from above may have a rectangular shape, but is not limited thereto.
  • the length (X1) of the outer peripheral surface of the sensing coil 2180 may be 3.29 [mm]
  • the width (Y1) of the outer peripheral surface of the sensing coil 2180 may be 2.05 [mm]
  • the inner peripheral surface of the sensing coil 2180 may be
  • the length X2 may be 1.93 [mm]
  • the width Y2 of the inner peripheral surface of the sensing coil 2180 may be 0.74 [mm]
  • the length Z1 in the optical axis direction of the sensing coil 2180 may be 0.54 It can be [mm].
  • the driving signal Ia provided to the sensing coil 2180 may be 100 [mA].
  • a separation distance d1 from the lower surface 217A of the position sensor 2170 to the lower surface 2018A of the sensing coil 2180 may be 0.43 [mm].
  • the front stroke of the AF movable part may be 200 [ ⁇ m]
  • the rear stroke of the AF movable part may be 200 [ ⁇ m].
  • the X axis represents the displacement (or position) of the sensing coil 2180 in the optical axis direction
  • the Y axis represents the change in the intensity of the magnetic field of the sensing coil 2180 sensed by the position sensor 2170
  • g1 represents the change in the intensity of the magnetic field in the optical axis direction of the sensing coil 2180 sensed by the position sensor 2170
  • g2 is in a direction perpendicular to the optical axis of the sensing coil 2180 detected by the position sensor 2170 Represents the change in the strength of the magnetic field of
  • the change in the magnetic field in the direction of the optical axis detected by the position sensor 2170 according to the displacement in the optical axis direction of the AF movable part may be within the range of -4.6[mT] to -8.2[mT], g1 may be a linear graph.
  • the output of the position sensor 2170 may be proportional to the strength of the magnetic field of the sensing coil 2180 detected by the position sensor 2170, and the controllers 2410 and 780 of the camera module 2200 or the terminal 2200A
  • the displacement of the AF movable part in the optical axis direction may be detected using the output of the sensor 2170.
  • two magnet units may be disposed on two side portions (eg, 2141-1 and 2141-2) facing each other of the housing 2140.
  • the position sensor 2170 is a part of the coil 2120 disposed on the outer surface of the bobbin 2110 corresponding to any one of the side parts and corner parts of the housing 2140 in which the two magnet units are not disposed and the optical axis It may be disposed on the base 2210 so as to overlap in the direction.
  • the center of the position sensor 2170 and the center of the sensing coil 2180 may be disposed to overlap each other in the optical axis direction, but the present invention is not limited thereto.
  • the center of the position sensor 2170 is disposed so as to overlap the edge or the edge side of the sensing coil 2180 other than the center of the sensing coil 2180, or overlap one side of a part of the sensing coil 2180. It can also be placed.
  • FIG. 36 illustrates an arrangement of the coil 2120A, the magnet units 2130A-1 to 2130A-4, the sensing coil 2180, and the position sensor 2170 according to another exemplary embodiment.
  • magnet units 2130A-1 to 2130A-4 may be disposed at corners of the housing.
  • Each of the magnetic units 2130A-1 to 2130A-4 disposed at the corner portions of the housing may have a polyhedral shape that is easily seated at the corner portions of the housing.
  • the area of the first surface of each of the magnet units 2130A-1 to 2130A-4 may be larger than the area of the second surface.
  • the first surface 2011a of each of the magnet units 2130A-1 to 2130A-4 may be a surface facing one surface of the coil 2120A (or an outer surface of the bobbin 2110), and the second surface ( 2011b) may be a surface opposite to the first surface 2011a.
  • the length of the second surface 2011b in the horizontal direction may be smaller than the length of the first surface 2011a in the horizontal direction.
  • each of the first to fourth magnet units 2130A-1 to 2130A-4 in a direction from the first surface 2011a to the second surface 2011b may include a portion whose length in the horizontal direction gradually decreases. I can.
  • the coil 2120A includes first portions 2012A1 disposed on the sides of the bobbin 2110 corresponding to the side portions of the housing, and second portions disposed at the corner portions of the bobbin 2110 corresponding to the corner portions of the housing. (2012B1) may be included.
  • the position sensor 2170 may be disposed to overlap in the optical axis direction with any one of the first parts 2012A1 of the coil 2120A disposed on the side of the bobbin 2110 corresponding to any one of the side parts of the housing. .
  • the first shortest distance between the coil 2120A and the position sensor 2170 may be smaller than the second shortest distance between the position sensor 2170 and the adjacent magnet unit (eg, 2130A-1, 2130A-4) and the position sensor 2170. have. In another embodiment, the first shortest distance may be greater than or equal to the second shortest distance.
  • the sensing coil 2120 may be disposed to overlap in the optical axis direction with any one of the first parts 2012A1 of the coil 2120A disposed on the side of the bobbin 2110 corresponding to any one of the side parts of the housing. .
  • the sensing coil 2180 may overlap in the optical axis direction with the first part 2012A1 of the coil 2120A disposed on the side part 2110b1 of the bobbin 2110 corresponding to the side part 2141-1 of the housing. .
  • the sensing coil 2180 is disposed closer to the position sensor 2170 than the coil 2120, and sensing affects the position sensor 2170 rather than the strength of the magnetic field of the coil 2120 applied to the position sensor 2170 Since the strength of the magnetic field of the coil 2180 is greater, the embodiment may further improve the sensing sensitivity of the position sensor 2170 with respect to the magnetic field of the sensing coil 2180.
  • the distance between the sensing magnet and the driving magnet is narrowed.
  • FIG. 37 shows magnetic field distributions of a sensing magnet and a driving magnet in a lens driving apparatus using a sensing magnet.
  • the reliability of the output value of the Hall sensor which is a position sensor, deteriorates due to mutual magnetic field interference between the sensing magnet and the driving magnet, Accuracy may be inferior, and VCM design is difficult.
  • the sensing magnet is not separately provided, and the position sensor 2170 disposed on the base 2210 is the coil 2120 according to the movement (or displacement) of the AF movable part (eg, bobbin 2110) in the optical axis direction. Since the position (or displacement) of the bobbin 2110 is sensed by detecting the change in magnetic force of the magnetic field, it is possible to prevent the reliability of the output value of the position sensor from deteriorating due to magnetic field interference between the sensing magnet and the magnet units.
  • the AF movable part eg, bobbin 2110
  • FIG. 38 is an exploded view of a lens driving apparatus 2100-1 according to another embodiment, and FIG. 39 is a coil 2120, magnet units 2130-1 to 2130-4, and a position sensor 2170 of FIG. 38 40 is a cross-sectional view of the lens driving device 2100-1 of FIG. 38 in the AB direction of FIG. 24.
  • FIG. 38 the same reference numerals as those of FIG. 23 denote the same configuration, and descriptions of the same configuration will be omitted or simplified.
  • the lens driving device 2100-1 may have a structure in which the sensing coil 2180 is omitted from the lens driving device of FIG. 23.
  • the position sensor 2170 may be disposed under the coil 2120.
  • the position sensor 2170 may overlap any one of the second portions 2012B of the coil 2120 in the optical axis direction.
  • the description of FIG. 33A may be applied or applied mutatis mutandis.
  • the driving signal provided to the coil 2120 may include a DC signal and an AC signal.
  • the AC signal included in the driving signal provided to the coil 2120 may generate an electromagnetic force by interaction with the magnet units 2130-1 to 2130-4.
  • the AC signal may be a PWM (Pulse Width Modulation) signal.
  • the coil 2120 may generate a magnetic field for the position sensor 2170 by a direct current signal included in a driving signal provided to the coil 2120.
  • 41 shows an example of a driving signal provided to the coil 2120 of FIG. 38.
  • the driving signal V3 provided to the coil 2120 may include a PWM signal V1 and a DC signal V2 having a constant size A.
  • the electromagnetic force between the magnet units 2130-1 to 2130-4 and the coil 2120 may be controlled by the PWM signal V1. That is, by controlling the duty ratio of the PWM signal, the electromagnetic force between the magnet units 2130-1 to 2130-4 and the coil 2120 may be controlled.
  • the strength of the magnetic field generated in the coil 2120 by the DC signal V2 may be constant regardless of the displacement of the bobbin 2110. However, as the bobbin 2110 moves, the strength or magnetic force of the coil 2120 by the DC signal V2 sensed by the position sensor 2170 may be changed, and the position sensor 2170 may change the detected magnetic field. Output signal proportional to the intensity of can be output.
  • the position sensor 2170 may detect the strength of the magnetic field of the coil 2120 moving in the optical axis direction, and may output an output signal according to the detected result.
  • the controllers 2410 and 780 of the camera module or optical device may detect the displacement of the bobbin 2110 in the direction of the optical axis by using the output signal of the position sensor 2170.
  • 42 illustrates arrangement of magnet units, coils, and position sensors 2170 according to another embodiment. 42 may be a modified example of FIG. 36. In the embodiment of FIG. 42, the sensing coil 2180 is omitted from FIG. 36, and the description of FIG. 36 may be applied or applied mutatis mutandis.
  • the lens driving apparatus 2100 and 2100-1 may be implemented in various fields, for example, a camera module or an optical device, or may be used in a camera module or an optical device.
  • the lens driving devices 2100 and 2100-1 form an image of an object in space by using reflection, refraction, absorption, interference, diffraction, etc., which are characteristics of light, and increase the visual power of the eye. It may be included in an optical instrument aimed at, for the purpose of recording and reproducing an image by a lens, or for optical measurement, propagation or transmission of an image, etc.
  • the optical device according to the embodiment may include a portable terminal equipped with a smartphone and a camera.
  • FIG. 43 is an exploded perspective view of a camera module 2200 according to a second embodiment of the present invention.
  • the camera module includes a lens module 2400, a lens driving device 2100, an adhesive member 2612, a filter 2610, a circuit board 2800, an image sensor 2810, a controller 2410, and It may include a connector 840.
  • the camera module may include a lens driving device 2100-1 instead of the lens driving device 2100.
  • the lens module 2400 may include a lens or a lens barrel, and may be mounted or coupled to the bobbin 2110 of the lens driving device 2100.
  • the lens module 2400 may include one or more lenses and a lens barrel accommodating one or more lenses.
  • one configuration of the lens module is not limited to the lens barrel, and any structure may be used as long as it has a holder structure capable of supporting one or more lenses.
  • the lens module is coupled to the lens driving device 2100 and may move together with the lens driving devices 2100 and 2100-1.
  • the lens module 2400 may be screwed to the lens driving apparatus 2100 as an example.
  • the lens module 2400 may be coupled to the lens driving device 2100 by an adhesive (not shown) as an example. Meanwhile, light that has passed through the lens module 2400 may pass through the filter 2610 and be irradiated to the image sensor 2810.
  • the adhesive member 2612 may couple or attach the base 2210 of the lens driving device 2100 to the circuit board 2800.
  • the adhesive member 2612 may be an epoxy, a thermosetting adhesive, an ultraviolet curable adhesive, or the like.
  • the filter 2610 may serve to block light of a specific frequency band in the light passing through the lens barrel 2400 from entering the image sensor 2810.
  • the filter 2610 may be an infrared cut filter, but is not limited thereto. In this case, the filter 2610 may be disposed parallel to the x-y plane.
  • the infrared cut filter may be formed of a film material or a glass material.
  • the infrared filter may be formed by coating an infrared blocking coating material on a flat optical filter such as a cover glass or cover glass for protecting an imaging surface.
  • the filter 2610 may be disposed under the base 2210 of the lens driving device 2100.
  • the base 2210 of the lens driving device 2100 may have a seating portion for seating the filter 2610 on its lower surface.
  • a separate sensor base for seating the filter 2610 may be provided.
  • the circuit board 2800 may be disposed under the lens driving apparatus 2100, and the image sensor 2810 may be mounted on the circuit board 2800.
  • the image sensor 2810 may receive an image included in the incident light through the lens driving device 2100 and may convert the received image into an electrical signal.
  • the image sensor 2810 may be positioned so that the lens module 2400 and the optical axis coincide. Through this, the image sensor may acquire light that has passed through the lens module 2400. The image sensor 2810 may output irradiated light as an image.
  • the circuit board 2800 may be electrically connected to the lens driving apparatus 2100.
  • the circuit board 2800 may be electrically connected to the coil 2120, the sensing coil 2180, and the position sensor 2170 of the lens driving apparatus 2100.
  • the circuit board 2800 includes the first to fourth terminals 2164-1 to 2164-4 of the lower elastic member 2160 of the lens driving device 2100 and the terminals P1 to P4 of the terminal unit 2190. ) May be provided with terminals 2811 electrically connected to each other.
  • a driving signal may be provided to the position sensor 2170 through the circuit board 2800, and an output signal of the position sensor 2170 may be transmitted to the circuit board 2800.
  • the output signal of the position sensor 2170 may be received by the controller 2410, but is not limited thereto, and may be transmitted to the controller 2780 of the terminal 2200A through the terminal 2811.
  • a driving signal may be provided to the coil 2120 through the circuit board 2800 and a driving signal may be provided to the sensing coil 2180.
  • the circuit board 2800 is shown to include eight terminals, but is not limited thereto, and in another embodiment, the circuit board 2800 includes a plurality of terminals for AF driving, for example, two or more terminals. I can.
  • the filter 2610 and the image sensor 2810 may be disposed to be spaced apart to face each other in the first direction.
  • the connector 2840 is electrically connected to the circuit board 2800 and may include a port for electrically connecting to an external device.
  • the controller 2410 may control the AF driving of the lens driving apparatus 2100, but is not limited thereto, and the AF driving of the lens driving apparatus may be controlled by the controller 2780 of the terminal 2200A.
  • the camera module 2200 may further include a motion sensor for outputting rotational angular velocity information due to the movement of the camera module 2200.
  • FIG. 44 is a perspective view of a portable terminal 2200A according to a second embodiment of the present invention
  • FIG. 45 is a block diagram of the portable terminal 2200A shown in FIG. 44.
  • the portable terminal 2200A (hereinafter referred to as "terminal") includes a body 2850, a wireless communication unit 2710, an A/V input unit 2720, a sensing unit 2740, and An output unit 2750, a memory unit 2760, an interface unit 2770, a control unit 2780, and a power supply unit 2790 may be included.
  • the body 2850 shown in FIG. 44 is in the form of a bar, but is not limited thereto, and a slide type, a folder type, and a swing type in which two or more sub-bodies are coupled to enable relative movement. , Swirl type, etc. may have various structures.
  • the body 2850 may include a case (casing, housing, cover, etc.) forming an exterior.
  • the body 2850 may be divided into a front case 2851 and a rear case 2852.
  • Various electronic components of the terminal may be embedded in the space formed between the front case 2851 and the rear case 2852.
  • the wireless communication unit 2710 may include one or more modules that enable wireless communication between the terminal 2200A and the wireless communication system or between the terminal 2200A and a network in which the terminal 2200A is located.
  • the wireless communication unit 2710 may include a broadcast receiving module 2711, a mobile communication module 2712, a wireless Internet module 2713, a short-range communication module 2714, and a location information module 2715. have.
  • the A/V (Audio/Video) input unit 2720 is for inputting an audio signal or a video signal, and may include a camera 2721 and a microphone 2722.
  • the camera 2721 may include the camera module 2200 according to the embodiment.
  • the sensing unit 2740 monitors the current state of the terminal 2200A, such as the open/closed state of the terminal 2200A, the position of the terminal 2200A, the presence of user contact, the orientation of the terminal 2200A, and acceleration/deceleration of the terminal 2200A. By sensing, a sensing signal for controlling the operation of the terminal 2200A may be generated. For example, when the terminal 2200A is in the form of a slide phone, whether or not the slide phone is opened or closed may be sensed. In addition, it is responsible for a sensing function related to whether the power supply unit 2790 supplies power and whether the interface unit 2770 is coupled to an external device.
  • the input/output unit 2750 is for generating input or output related to visual, auditory or tactile sense.
  • the input/output unit 2750 may generate input data for controlling the operation of the terminal 2200A, and may also display information processed by the terminal 2200A.
  • the input/output unit 2750 may include a keypad unit 2730, a display module 2751, an audio output module 2762, and a touch screen panel 2755.
  • the keypad unit 2730 may generate input data by inputting a keypad.
  • the display module 2751 may include a plurality of pixels whose color changes according to an electrical signal.
  • the display module 2751 includes a liquid crystal display, a thin film transistor-liquid crystal display, an organic light-emitting diode, a flexible display, and a three-dimensional display. It may include at least one of the 23D displays.
  • the sound output module 2252 outputs audio data received from the wireless communication unit 2710 in a call signal reception, a call mode, a recording mode, a voice recognition mode, or a broadcast reception mode, or stored in the memory unit 2760. Audio data can be output.
  • the touch screen panel 2755 may convert a change in capacitance generated due to a user's touch to a specific area of the touch screen into an electric input signal.
  • the memory unit 2760 may store a program for processing and control of the controller 2780, and store input/output data (eg, a phone book, a message, an audio, a still image, a picture, a video, etc.). Can be stored temporarily.
  • the memory unit 2760 may store an image captured by the camera 2721, for example, a photo or a video.
  • the interface unit 2770 serves as a passage through which an external device connected to the terminal 2200A is connected.
  • the interface unit 2770 receives data from an external device, receives power and transmits it to each component inside the terminal 2200A, or transmits data inside the terminal 2200A to an external device.
  • the interface unit 2770 includes a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, a port connecting a device equipped with an identification module, and an audio input/output (I/O) port. Output) port, video input/output (I/O) port, and earphone port.
  • the controller 780 may control the overall operation of the terminal 2200A.
  • the controller 2780 may perform related control and processing for voice calls, data communication, and video calls.
  • the controller 2780 may include a multimedia module 2781 for playing multimedia.
  • the multimedia module 2781 may be implemented in the control unit 2780 or may be implemented separately from the control unit 2780.
  • the controller 2780 may perform pattern recognition processing capable of recognizing a handwriting input or a drawing input performed on the touch screen as characters and images, respectively.
  • the power supply unit 2790 may receive external power or internal power under the control of the control unit 2780 to supply power required for operation of each component.
  • the lens driving apparatus may include the sensing structure of the first embodiment of the present invention.
  • the lens driving apparatus according to the second embodiment of the present invention may include the sensing coil 180 and the position sensor 170 of the first embodiment of the present invention.
  • the lens driving apparatus according to the second embodiment of the present invention may include a substrate 3600 and a lower elastic member 3520 according to the third embodiment of the present invention.
  • FIG. 46 is a perspective view of a lens driving apparatus according to a third embodiment of the present invention
  • FIG. 47 is a cross-sectional view viewed from AA of FIG. 46
  • FIG. 48 is a cross-sectional view viewed from BB of FIG. 46
  • FIG. 49 is CC of FIG. 50 is a bottom view of a lens driving apparatus according to a third embodiment of the present invention
  • FIG. 51 is a perspective view of a state in which the cover is removed in FIG. 46
  • FIG. 52 is a third embodiment of the present invention.
  • FIG. 53 is an exploded perspective view of a lens driving apparatus according to a third embodiment of the present invention
  • FIG. 53 is an exploded perspective view of a lens driving apparatus according to a third embodiment of the present invention
  • FIG. 53 is an exploded perspective view of a lens driving apparatus according to a third embodiment of the present invention as viewed from a different direction from FIG. And an exploded perspective view showing a stator
  • FIG. 55 is an exploded perspective view showing a base, an elastic member, and a substrate according to a third embodiment of the present invention
  • FIG. 56 is a partial configuration diagram according to a third embodiment of the present invention.
  • 55 is an exploded perspective view viewed from a different direction
  • FIG. 57A is a perspective view showing a bonding state of a base and a substrate according to a third embodiment of the present invention
  • FIG. Fig. 58 is a perspective view showing a state in which a lower elastic member is additionally coupled to Fig. 57A
  • Fig. 59 is a cross-sectional perspective view of a partial configuration of a lens driving apparatus according to a third embodiment of the present invention.
  • the lens driving device 3010 may be a voice coil motor (VCM).
  • the lens driving device 3010 may be a lens driving motor.
  • the lens driving device 3010 may be a lens driving motor.
  • the lens driving device 3010 may be a lens driving actuator.
  • the lens driving device 3010 may include a CLAF actuator or a CLAF module.
  • a state in which a lens, an image sensor 3060, and a printed circuit board 3050 are assembled to the lens driving device 3010 may be understood as a camera module.
  • the lens driving device 3010 may include a cover 3100.
  • the cover 3100 may cover the housing 3310.
  • the cover 3100 may be coupled to the base 3400.
  • the cover 3100 may form an inner space between the base 3400.
  • the cover 3100 may accommodate the housing 3310 therein.
  • the cover 3100 may accommodate the bobbin 3210 therein.
  • the cover 3100 may form the exterior of the camera module.
  • the cover 3100 may have a hexahedral shape with an open bottom surface.
  • the cover 3100 may be a non-magnetic material.
  • the cover 3100 may be formed of a metal material.
  • the cover 3100 may be formed of a metal plate.
  • the cover 3100 may be connected to the ground part of the printed circuit board. Through this, the cover 3100 may be grounded.
  • the cover 3100 may block electro magnetic interference (EMI).
  • the cover 3100 may be referred to as'shield can' or'EMI shield can'.
  • the cover 3100 may include an upper plate 3110.
  • the cover 3100 may include a side plate 3120.
  • the side plate 3120 may extend from the upper plate 3110.
  • the cover 3100 may include an upper plate 3110 and a side plate 3120 extending downward from an outer periphery or edge of the upper plate 3110.
  • the lower end of the side plate 3120 of the cover 3100 may be disposed at the step 3450 of the base 3400.
  • the inner surface of the side plate 3120 of the cover 3100 may be fixed to the base 3400 by an adhesive.
  • the cover 3100 may include a plurality of side plates.
  • the cover 3100 may include a plurality of side plates and a plurality of corners formed by the plurality of side plates.
  • the cover 3100 may include four side plates and four corners formed between the four side plates.
  • the cover 3100 may include a first side plate, a second side plate disposed opposite the first side plate, and a third side plate and a fourth side plate disposed on opposite sides between the first side plate and the second side plate.
  • the cover 3100 may include first to fourth corners.
  • the cover 3100 may include a first corner, a second corner disposed opposite to the first corner, and a third corner and a fourth corner disposed opposite to each other.
  • the cover 3100 may include an inner yoke 3130.
  • the inner yoke 3130 may extend downward from the inner periphery of the upper plate 3110.
  • the inner yoke 3130 may be disposed in the side plate 3120. At least a portion of the inner yoke 3130 may be disposed in the groove 3213 of the bobbin 3210.
  • the inner yoke 3130 may be formed to prevent rotation of the bobbin 3210.
  • the inner yoke 3130 may include a plurality of inner yokes.
  • the inner yoke 3130 may include four inner yokes. Four inner yokes may be formed at four corners of the cover 3100, respectively.
  • the lens driving device 3010 may include a mover 3200.
  • the mover 3200 may be coupled to the lens.
  • the mover 3200 may be connected to the stator 3300 through an elastic member 3500.
  • the mover 3200 may move through interaction with the stator 3300.
  • the mover 3200 may move integrally with the lens.
  • the mover 3200 can move when driving the AF.
  • the mover 3200 may be referred to as an'AF mover'.
  • the lens driving device 3010 may include a bobbin 3210.
  • the bobbin 3210 may be disposed in the housing 3310.
  • the bobbin 3210 may be movably coupled to the housing 3310.
  • the bobbin 3210 may move in the optical axis direction with respect to the housing 3310.
  • the bobbin 3210 may be disposed within the cover 3100.
  • the bobbin 3210 may be disposed on the base 3400.
  • the bobbin 3210 may include a hole 3211.
  • the hole 3211 may be a hollow hole.
  • a lens may be coupled to the hole 3211.
  • a thread may be formed on the inner peripheral surface of the hole 3211 of the bobbin 3210.
  • the inner circumferential surface of the hole 3211 of the bobbin 3210 may be formed into a curved surface without a thread.
  • the bobbin 3210 may include a first protrusion coupled to the upper elastic member 3510.
  • the first protrusion of the bobbin 3210 may be inserted into and coupled to a corresponding hole of the upper elastic member 3510.
  • the bobbin 3210 may include a second protrusion coupled to the lower elastic member 3520.
  • the second protrusion of the bobbin 3210 may be inserted into a corresponding hole of the lower elastic member 3520 to be coupled.
  • the bobbin 3210 may include a rib 3212.
  • the rib 3212 may protrude from the side of the bobbin 3210.
  • the rib 3212 may fix the first coil 3220.
  • the rib 3212 may include an upper rib protruding from an upper portion of the bobbin 3210 and a lower rib protruding from a lower portion of the bobbin 3210.
  • the first coil 3220 may be wound and fixed between the upper rib and the lower rib.
  • the bobbin 3210 may include a groove 3213.
  • the groove 3213 may be an inner yoke receiving groove. At least a part of the inner yoke 3130 of the cover 3100 may be disposed in the groove 3213.
  • the groove 3213 may be recessed in the upper surface of the bobbin 3210.
  • the width of the groove 3213 may be slightly larger than the width of the inner yoke 3130.
  • the bobbin 3210 may include an upper stopper 3214.
  • the upper stopper 3214 may be formed to protrude from the upper surface of the bobbin 3210.
  • the upper surface of the upper stopper 3214 may form the upper end of the bobbin 3210. Through this, when the bobbin 3210 moves upward as far as possible, the upper surface of the upper stopper 3214 may contact the upper plate 3110 of the cover 3100.
  • the upper stopper 3214 of the bobbin 3210 may overlap with the upper plate 3110 of the cover 3100 in the optical axis direction.
  • the bobbin 3210 may include a lower stopper 3215.
  • the lower stopper 3215 may protrude from the lower surface of the bobbin 3210.
  • the lower surface of the lower stopper 3215 may form the lower end of the bobbin 3210. Through this, when the bobbin 3210 moves downward as much as possible, the lower surface of the lower stopper 3215 may contact the base 3400.
  • the lower stopper 3215 of the bobbin 3210 may overlap the base 3400 in the optical axis direction.
  • the bobbin 3210 may be coupled to one or more of the elastic member 3500 and the first coil 3220 by an adhesive.
  • the adhesive may be an epoxy cured by at least one of heat, laser, and ultraviolet (UV) light.
  • the lens driving device 3010 may include a first coil 3220.
  • the first coil 3220 may be an'AF driving coil'.
  • the first coil 3220 may be disposed on the bobbin 3210.
  • the first coil 3220 may be disposed in contact with the bobbin 3210.
  • the first coil 3220 may be disposed between the bobbin 3210 and the housing 3310.
  • the first coil 3220 may be disposed on the outer periphery of the bobbin 3210.
  • the first coil 3220 may be directly wound on the bobbin 3210.
  • the first coil 3220 may face the magnet 3320.
  • the first coil 3220 may electromagnetically interact with the magnet 3320. When an electric current is supplied to the first coil 3220 and an electromagnetic field is formed around the first coil 3220, the first coil 3220 is formed by an electromagnetic interaction between the first coil 3220 and the magnet 3320. It can move with respect to the magnet 3320.
  • the lens driving device 3010 may include a stator 3300.
  • the stator 3300 may support the mover 3200 to be movable.
  • the stator 3300 may move the mover 3200 through interaction with the mover 3200.
  • the stator 3300 may include a housing 3310 and a magnet 3320.
  • the base 3400 and the cover 3100 may also be understood as the stator 3300.
  • the lens driving device 3010 may include a housing 3310.
  • the housing 3310 may be disposed outside the bobbin 3210.
  • the housing 3310 may accommodate at least a part of the bobbin 3210.
  • the housing 3310 may be disposed within the cover 3100.
  • the housing 3310 may be disposed between the cover 3100 and the bobbin 3210.
  • the housing 3310 may be formed of a material different from that of the cover 3100.
  • the housing 3310 may be formed of an insulating material.
  • the housing 3310 may be formed of an injection product.
  • a magnet 3320 may be disposed in the housing 3310.
  • the housing 3310 and the magnet 3320 may be coupled by an adhesive.
  • An upper elastic member 3510 may be coupled to an upper portion of the housing 3310.
  • a lower elastic member 3520 may be coupled to a lower portion of the housing 3310.
  • the housing 3310 may be coupled to the elastic member 3500 by heat fusion and/or an adhesive.
  • the housing 3310 includes first and second side portions disposed opposite each other, third and fourth side portions disposed opposite to each other, a first corner portion connecting the first side portion and the third side portion, and a first side portion And a second corner portion connecting the second side portion and the fourth side portion, a third corner portion connecting the second side portion and the fourth side portion, and a fourth corner portion connecting the second side portion and the third side portion.
  • the housing 3310 may include a first hole 3311.
  • the first hole 3311 may be a hollow hole.
  • the first hole 3311 may be formed through the center of the housing 3310 in a vertical direction.
  • a bobbin 3210 may be disposed in the first hole 3311 of the housing 3310.
  • the housing 3310 may include a second hole 3312.
  • the second hole 3312 may be a'magnet receiving hole'.
  • a magnet 3320 may be disposed in the second hole 3312.
  • the second hole 3312 may be formed through a side portion of the housing 3310 in a direction perpendicular to the optical axis.
  • the second hole 3312 may be formed as a groove.
  • the housing 3310 may include a protrusion 3313.
  • the protrusion 3313 may protrude from the upper surface of the housing 3310.
  • the protrusion 3313 may be coupled to the upper elastic member 3500.
  • the protrusion 3313 may be inserted into and coupled to a corresponding hole of the elastic member 3500.
  • the housing 3310 may be coupled to one or more of the cover 3100, the base 3400, the elastic member 3500, and the magnet 3320 by an adhesive.
  • the adhesive may be an epoxy cured by at least one of heat, laser, and ultraviolet (UV) light.
  • the lens driving device 3010 may include a magnet 3320.
  • the magnet 3320 may be a'driving magnet'.
  • the magnet 3320 may be disposed in the housing 3310.
  • the magnet 3320 may be disposed between the first coil 3220 and the side plate 3120 of the cover 3100.
  • the magnet 3320 may be disposed between the bobbin 3210 and the housing 3310.
  • the magnet 3320 may face the first coil 3220.
  • the magnet 3320 may electromagnetically interact with the first coil 3220.
  • the magnet 3320 can be used for AF driving.
  • the magnet 3320 may be disposed on the side of the housing 3310. In this case, the magnet 3320 may be formed as a flat magnet.
  • the magnet 3320 may be formed in a flat plate shape.
  • the magnet 3320 may be formed in a rectangular parallelepiped shape.
  • the magnet 3320 may include a plurality of magnets.
  • the magnet 3320 may include four magnets.
  • the magnet 3320 may include first to fourth magnets 3321, 3322, 3333, and 3334.
  • the first magnet 3321 may be disposed on the first side of the housing 3310.
  • the second magnet 3322 may be disposed on the second side of the housing 3310.
  • the third magnet 3323 may be disposed on the third side of the housing 3310.
  • the fourth magnet 3324 may be disposed on the fourth side of the housing 3310.
  • the lens driving device 3010 may include a base 3400.
  • the base 3400 may be disposed under the housing 3310.
  • the base 3400 may be disposed under the bobbin 3210.
  • the base 3400 may be spaced apart from the bobbin 3210 at least in part.
  • the base 3400 may be coupled to the side plate 3120 of the cover 3100.
  • the base 3400 may be disposed between the bobbin 3210 and the sensor holder.
  • the base 3400 may be formed separately from the sensor holder. However, as a modification, the base 3400 may be integrally formed with the sensor holder.
  • the base 3400 may include a hole 3410.
  • the hole 3410 may be a hollow hole.
  • the hole 3410 may penetrate the base 3400 in the optical axis direction. Light passing through the lens through the hole 3410 may be incident on the image sensor 3060.
  • the base 3400 may include a groove 3420.
  • the groove 3420 of the base 3400 may be an'adhesive receiving groove'.
  • the groove 3420 may be formed on the upper surface of the base 3400.
  • the groove 3420 may be formed at a position corresponding to the hole 3630 of the substrate 3600.
  • the groove 3420 may be formed at a position corresponding to the hole 3522a of the lower elastic member 3520.
  • An adhesive may be disposed in at least a portion of the groove 3420.
  • the outer portion 3522 of the substrate 3600 and the lower elastic member 3520 may be fixed to the base 3400 by an adhesive.
  • the base 3400 may include a protrusion.
  • the protrusion may be formed on the upper surface of the base 3400.
  • the protrusion may be formed at a position corresponding to the hole 3630 of the substrate 3600.
  • the protrusion may be formed at a position corresponding to the hole 3522a of the lower elastic member 3520.
  • the protrusion of the base 3400 may be inserted into the hole 3522a of the lower elastic member 3520 and the hole 3630 of the substrate 3600. That is, the assembly positions of the outer portion 3522 of the lower elastic member 3520 and the substrate 3600 by the protrusion of the base 3400 may be aligned and/or guided.
  • An adhesive may be disposed in at least a portion of the groove 3420.
  • the outer portion 3522 of the substrate 3600 and the lower elastic member 3520 may be fixed to the base 3400 by an adhesive.
  • the base 3400 may include a protrusion 3430.
  • the protrusion 3430 may extend from the outer surface of the base 3400.
  • the protrusion 3430 may protrude from the upper surface of the base 3400.
  • the protrusion 3430 may be formed on the upper surface of the base 3400.
  • the protrusion 3430 may be formed around the outer periphery of the base 3400.
  • the protrusion 3430 may include a plurality of protrusions.
  • the protrusion 3430 may include first to third protrusions 3431, 3432, and 3433.
  • the protrusion 3430 includes a first protrusion 3431 formed on a first side of the outer surface of the base 3400, and a second protrusion 343 formed on a second side of the outer surface of the base 3400 opposite the first side. (3432) may be included.
  • the base 3400 may include a groove 3440.
  • the groove 3440 may be a terminal receiving groove.
  • the groove 3440 may be recessed in the side surface of the base 3400.
  • the terminal 3524 of the lower elastic member 3520 may be disposed in the groove 3440.
  • the groove 3440 may be formed to correspond to a shape of at least a portion of the terminal 3524 of the lower elastic member 3520.
  • the depth of the groove 3440 may correspond to the thickness of the terminal 3524 of the lower elastic member 3520 or may be greater than the thickness of the terminal 3524.
  • the base 3400 may include a step 3450.
  • the step 3450 may be formed on the side surface of the base 3400.
  • the step 3450 may be formed on the outer peripheral surface of the base 3400.
  • the step 3450 may be formed by protruding a lower portion of the side surface of the base 3400.
  • the lower end of the side plate 3120 of the cover 3100 may be disposed in the step 3450.
  • the base 3400 may include a groove 3460.
  • the groove 3460 may be formed on the lower surface of the base 3400.
  • the groove 3460 may be formed to be spaced apart from the outer periphery of the base 3400.
  • a sensor holder may be fitted into the groove 3460 of the base 3400.
  • the lens driving device 3010 may include an elastic member 3500.
  • the elastic member 3500 may connect the housing 3310 and the bobbin 3210.
  • the elastic member 3500 may be coupled to the housing 3310 and the bobbin 3210.
  • the elastic member 3500 may support the bobbin 3210 to be movable.
  • the elastic member 3500 may elastically support the bobbin 3210.
  • the elastic member 3500 may have elasticity at least in part.
  • the elastic member 3500 may support movement of the bobbin 3210 when driving the AF. In this case, the elastic member 3500 may be an'AF support member'.
  • the elastic member 3500 may include an upper elastic member 3510.
  • the upper elastic member 3510 may be coupled to an upper portion of the bobbin 3210 and an upper portion of the housing 3310.
  • the upper elastic member 3510 may be coupled to the upper surface of the bobbin 3210.
  • the upper elastic member 3510 may be coupled to the upper surface of the housing 3310.
  • the upper elastic member 3510 may be formed of a leaf spring.
  • the upper elastic member 3510 may include an inner portion 3511.
  • the inner part 3511 may be coupled to the bobbin 3210.
  • the inner part 3511 may be coupled to the upper surface of the bobbin 3210.
  • the inner portion 3511 may include a hole or groove coupled to the protrusion of the bobbin 3210.
  • the inner portion 3511 may be fixed to the bobbin 3210 by an adhesive.
  • the upper elastic member 3510 may include an outer portion 3512.
  • the outer portion 3512 may be coupled to the housing 3310.
  • the outer portion 3512 may be coupled to the upper surface of the housing 3310.
  • the outer portion 3512 may include a hole or groove that is coupled to the protrusion 3313 of the housing 3310.
  • the outer portion 3512 may be fixed to the housing 3310 by an adhesive.
  • the upper elastic member 3510 may include a connection part 3513.
  • the connection part 3513 may connect the outer part 3512 and the inner part 3511 to each other.
  • the connection part 3513 may have elasticity.
  • the connection part 3513 may be referred to as an'elastic part'.
  • the connection part 3513 may have a shape that is bent two or more times.
  • the elastic member 3500 may include a lower elastic member 3520.
  • the lower elastic member 3520 may connect the bobbin 3210 and the base 3400.
  • the lower elastic member 3520 may be coupled to a lower portion of the bobbin 3210 and a lower portion of the housing 3310.
  • the lower elastic member 3520 may be coupled to the lower surface of the bobbin 3210.
  • the lower elastic member 3520 may be coupled to the lower surface of the housing 3310.
  • the lower elastic member 3520 may be formed of a leaf spring. A portion of the lower elastic member 3520 may be fixed between the housing 3310 and the base 3400.
  • the lower elastic member 3520 may include a plurality of lower elastic members.
  • the lower elastic member 3520 may include two lower elastic members.
  • the lower elastic member 3520 may include first and second lower elastic members 3520-1 and 3520-2.
  • the first and second lower elastic members 3520-1 and 3520-2 may be spaced apart from each other.
  • the first and second lower elastic members 3520-1 and 3520-2 may be electrically connected to the first coil 3220.
  • the first and second lower elastic members 3520-1 and 3520-2 may be used as conductive lines for applying current to the first coil 3220.
  • the lower elastic member 3520 includes a first lower elastic unit 3520-1 electrically connected to one end of the first coil 3220 and spaced apart from the first lower elastic unit 3520-1 and is spaced apart from the first coil 3220. ) May include a second lower elastic unit 3520-2 electrically connected to the other end.
  • Each of the first lower elastic unit 3520-1 and the second lower elastic unit 3520-2 may include a terminal 3524.
  • the lower elastic member 3520 may include an inner portion 3251.
  • the inner part 3251 may be connected to the bobbin 3210.
  • the inner part 3251 may be coupled to the bobbin 3210.
  • the inner part 3251 may be coupled to the lower surface of the bobbin 3210.
  • the inner part 3251 may include a hole or groove coupled to the protrusion of the bobbin 3210.
  • the inner portion 3251 may be fixed to the bobbin 3210 by an adhesive.
  • the lower elastic member 3520 may include an outer portion 3522.
  • the outer portion 3522 may be disposed on the upper surface of the substrate 3600.
  • the outer portion 3522 may directly contact the upper surface of the substrate 3600.
  • the outer portion 3522 may be fixed to the upper surface of the substrate 3600 by an adhesive.
  • the outer portion 3522 may be coupled to the upper surface of the substrate 3600.
  • the outer part 3522 may be fixed to the base 3400.
  • the outer portion 3522 may be fixed to the upper surface of the base 3400.
  • the outer portion 3522 may be connected to the base 3400.
  • the outer portion 3522 may be coupled to the housing 3310.
  • the outer portion 3522 may be coupled to the lower surface of the housing 3310.
  • the outer portion 3522 may include a hole or groove coupled to the protrusion of the housing 3310.
  • the outer portion 3522 may be fixed to the housing 3310 by an adhesive.
  • the lower elastic member 3520 may include a hole 3522a formed in the outer portion 3522.
  • the hole 3522a of the outer portion 3522 may be formed at a position corresponding to the hole 3630 of the substrate 3600 and the groove 3420 of the base 3400.
  • An adhesive may be disposed in at least a portion of the hole 3522a of the outer portion 3522.
  • the lower elastic member 3520 may include a connection part 3523.
  • the connection part 3523 may connect the outer part 3522 and the inner part 3251 to each other.
  • the connection part 3523 may have elasticity.
  • the connection part 3523 may be referred to as an'elastic part'.
  • the connection part 3523 may have a shape that is bent two or more times.
  • the lower elastic member 3520 may include a terminal 3524.
  • the terminal 3524 may extend from the outer portion 3522.
  • the terminal 3524 may be connected to the outer portion 3522.
  • the terminal 3524 may be formed integrally with the outer portion 3522 and be bent downward from the outer portion 3522.
  • the terminal 3524 may be formed separately from the lower elastic member 3520.
  • Terminal 3524 may include two terminals.
  • the terminal 3524 may be coupled to a terminal of the printed circuit board 3050 through a conductive member.
  • the conductive member may be a solder ball or a conductive epoxy.
  • the terminal 3524 may be disposed on the side of the base 3400.
  • the terminal 3524 may be disposed in the groove 3440 of the base 3400.
  • Each of the two lower elastic members may include a terminal 3524.
  • the terminal 3524 may be disposed between the second coil 3611 and the base 3400 in a direction perpendicular to the optical axis.
  • the terminal 3524 may penetrate the substrate 3600.
  • the terminal 3524 may pass through the body portion 3610 of the substrate 3600.
  • the lens driving device 3010 may include a substrate 3600.
  • the substrate 3600 may include a flexible printed circuit board (FPCB).
  • the substrate 3600 may be disposed on the base 3400.
  • the substrate 3600 may be disposed on the upper surface of the base 3400. At least a portion of the substrate 3600 may overlap the magnet 3320 in the optical axis direction.
  • the substrate 3600 may be disposed between the outer portion 3522 of the lower elastic member 3520 and the base 3400.
  • the substrate 3600 may include a body portion 3610.
  • the body portion 3610 may be disposed on the upper surface of the base 3400.
  • the body portion 3610 may be disposed between the first protrusion 3431 and the second protrusion 3432.
  • the lens driving device 3010 may include a second coil 3611.
  • the substrate 3600 may include a second coil 3611.
  • the body portion 3610 of the substrate 3600 may include a second coil 3611.
  • the second coil 3611 may be a sensing coil.
  • the second coil 3611 may be disposed on the base 3400.
  • the second coil 3611 may be disposed on the upper surface of the base 3400. At least a portion of the second coil 3611 may overlap the first coil 3220 in the optical axis direction. At least a portion of the second coil 3611 may overlap the base 3400 in a direction perpendicular to the optical axis.
  • the second coil 3611 may be formed on the substrate 3600 as a pattern coil.
  • the second coil 3611 may be formed as an FP coil (fine pattern coil) on the substrate 3600.
  • an arbitrary high-frequency signal may be synthesized with a driving signal for driving the lens module 3020 and applied to the first coil 3220.
  • the driving signal may be a signal component for moving the mover 3200
  • the high-frequency signal may be a signal component for sensing the position of the mover 3200.
  • the high frequency signal may be a higher frequency signal than the driving signal.
  • the high frequency signal synthesized to the driving signal may be about 100 kHz to about 5 MHz.
  • An induced current or voltage may be generated in the second coil 3611 due to interaction with the first coil 3220. That is, an induced current or voltage may be generated in the second coil 3611 by a high frequency signal applied to the first coil 3220, and the position of the mover 3200 is sensed by measuring the generated induced current or voltage. can do.
  • the second coil 3611 is formed as a patterned coil on the substrate 3600, a camera having a thickness less than the substrate 3600 compared to an open loop auto focus (OLAF) module without the second coil 3611 An increase in the total length of the module can be caused.
  • OLAF open loop auto focus
  • the second coil 3611 may be wound separately from the substrate 3600.
  • the second coil 3611 may be provided separately from the substrate 3600 and may be coupled to the substrate 3600 through soldering.
  • the lower elastic member 3520 may be connected to the substrate 3600 without the terminal 3524, and a bent portion of the substrate 3600 may be connected to the printed circuit board 3050.
  • the body portion 3610 of the substrate 3600 may include a substrate portion 3612.
  • the substrate portion 3612 may be a portion of the body portion 3610 of the substrate 3600 excluding the second coil 3611.
  • the substrate 3600 may include a terminal portion 3620.
  • the terminal portion 3620 may extend downward from the body portion 3610.
  • the terminal portion 3620 may be disposed on a third side of the outer side of the base 3400 that connects the first side and the second side.
  • the terminal portion 3620 may be disposed between the terminal 3524 of the first lower elastic unit 3520-1 and the terminal 3524 of the second lower elastic unit 3520-2.
  • the terminal portion 3620 may include two terminals electrically connected to the second coil 3611.
  • each of the first lower elastic unit 3520-1 and the second lower elastic unit 3520-2 may be electrically connected to the substrate 3600.
  • the terminal portion 3620 of the substrate 3600 may include four terminals as shown in FIG. 57B.
  • the terminal portion 3620 of the substrate 3600 may include two terminals electrically connected to the first coil 3220 and two terminals electrically connected to the second coil 3611.
  • the substrate 3600 may include a hole 3630.
  • the hole 3630 may be formed at a position corresponding to the hole 3522a of the outer portion 3522 of the lower elastic member 3520.
  • the hole 3630 may be formed at a position corresponding to the groove 3420 of the base 3400.
  • An adhesive may be disposed in at least a portion of the hole 3630.
  • the substrate 3600 may include a hole formed at a position corresponding to the lower stopper 3215 of the bobbin 3210.
  • the lower stopper 3215 of the bobbin 3210 may contact the base 3400 rather than the substrate 3600. Through this, a phenomenon in which the lower stopper 3215 of the bobbin 3210 continuously hits the substrate 3600 and the second coil 3611 of the substrate 3600 is damaged can be prevented.
  • 60 is an exploded perspective view of a camera module according to a third embodiment of the present invention.
  • the camera device 3010A may include a camera module.
  • the camera device 3010A may include a lens module 3020.
  • the lens module 3020 may include at least one lens.
  • the lens may be disposed at a position corresponding to the image sensor 3060.
  • the lens module 3020 may include a lens and a barrel.
  • the lens module 3020 may be coupled to the bobbin 3210 of the lens driving device 3010.
  • the lens module 3020 may be coupled to the bobbin 3210 by screwing and/or an adhesive.
  • the lens module 3020 may move integrally with the bobbin 3210.
  • the camera device 3010A may include a filter 3030.
  • the filter 3030 may serve to block light of a specific frequency band from entering the image sensor 3060 from the light passing through the lens module 3020.
  • the filter 3030 may be disposed parallel to the x-y plane.
  • the filter 3030 may be disposed between the lens module 3020 and the image sensor 3060.
  • the filter 3030 may be disposed on the sensor holder.
  • the filter 3030 may be disposed on the base 3400.
  • the filter 3030 may be adhesively fixed to the lower surface of the base 3400.
  • a groove having a shape corresponding to the filter 3030 may be formed on the lower surface of the base 3400.
  • the filter 3030 may include an infrared filter.
  • the infrared filter may block the incident of light in the infrared region to the image sensor 3060.
  • the camera device 3010A may include a sensor holder.
  • the sensor holder may be disposed between the lens driving device 3010 and the printed circuit board 3050.
  • the sensor holder may include a protrusion 341 on which the filter 3030 is disposed.
  • An opening may be formed in a portion of the sensor holder in which the filter 3030 is disposed so that light passing through the filter 3030 may enter the image sensor 3060.
  • the adhesive member 345 may couple or adhere the base 3400 of the lens driving device 3010 to the sensor holder.
  • the adhesive member 345 may additionally serve to prevent foreign substances from flowing into the interior of the lens driving device 3010.
  • the adhesive member 345 may include any one or more of an epoxy, a thermosetting adhesive, and an ultraviolet curable adhesive.
  • the camera device 3010A may include a printed circuit board 3050 (PCB, Printed Circuit Board).
  • the printed circuit board 3050 may be a substrate or a circuit board.
  • a lens driving device 3010 may be disposed on the printed circuit board 3050.
  • a sensor holder may be disposed between the printed circuit board 3050 and the lens driving device 3010.
  • the printed circuit board 3050 may be electrically connected to the lens driving device 3010.
  • An image sensor 3060 may be disposed on the printed circuit board 3050.
  • the printed circuit board 3050 may be provided with various circuits, elements, control units, etc. to convert an image formed by the image sensor 3060 into an electrical signal and transmit it to an external device.
  • the camera device 3010A may include an image sensor 3060.
  • the image sensor 3060 may have a configuration in which light passing through the lens and the filter 3030 is incident to form an image.
  • the image sensor 3060 may be mounted on the printed circuit board 3050.
  • the image sensor 3060 may be electrically connected to the printed circuit board 3050.
  • the image sensor 3060 may be coupled to the printed circuit board 3050 by a surface mounting technology (SMT).
  • SMT surface mounting technology
  • the image sensor 3060 may be coupled to the printed circuit board 3050 by flip chip technology.
  • the image sensor 3060 may be disposed so that the lens and the optical axis coincide. That is, the optical axis of the image sensor 3060 and the optical axis of the lens may be aligned.
  • the image sensor 3060 may convert light irradiated to the effective image area of the image sensor 3060 into an electrical signal.
  • the image sensor 3060 may be any one of a charge coupled device (CCD), a metal oxide semi-conductor (MOS), a CPD, and a CID.
  • CCD charge coupled device
  • MOS metal oxide semi-conductor
  • CPD CPD
  • CID CID
  • the camera device 3010A may include a motion sensor 3070.
  • the motion sensor 3070 may be mounted on the printed circuit board 3050.
  • the motion sensor 3070 may be electrically connected to the controller 3080 through a circuit pattern provided on the printed circuit board 3050.
  • the motion sensor 3070 may output rotational angular velocity information due to the movement of the camera device 3010A.
  • the motion sensor 3070 may include a 2-axis or 3-axis gyro sensor, or an angular velocity sensor.
  • the camera device 3010A may include a control unit 3080.
  • the control unit 3080 may be disposed on the printed circuit board 3050.
  • the control unit 3080 may be electrically connected to the first and second coils 3220 and 3430 of the lens driving device 3010.
  • the controller 3080 may individually control the direction, intensity, and amplitude of the current supplied to the first and second coils 3220 and 430.
  • the controller 3080 may control the lens driving device 3010 to perform an autofocus function and/or a camera shake correction function. Furthermore, the controller 3080 may perform auto focus feedback control and/or camera shake correction feedback control for the lens driving device 3010.
  • the camera device 3010A may include a connector 3090.
  • the connector 3090 may be electrically connected to the printed circuit board 3050.
  • the connector 3090 may include a port for electrically connecting to an external device.
  • FIG. 61 is a perspective view of an optical device according to a third embodiment of the present invention
  • FIG. 62 is a configuration diagram of an optical device according to the third embodiment of the present invention.
  • Optical devices 3010B include mobile phones, mobile phones, smart phones, portable smart devices, digital cameras, laptop computers, digital broadcasting terminals, PDAs (Personal Digital Assistants), PMP (Portable Multimedia Player), and navigation. It can be any one of. However, the type of the optical device 3010B is not limited thereto, and any device for photographing an image or photograph may be included in the optical device 3010B.
  • the optical device 3010B may include a body 3850.
  • the body 3850 may have a bar shape.
  • the main body 3850 may have various structures such as a slide type, a folder type, a swing type, and a swivel type in which two or more sub-bodies are relatively movably coupled.
  • the body 3850 may include a case (casing, housing, and cover) forming an exterior.
  • the main body 3850 may include a front case 3852 and a rear case 3852.
  • Various electronic components of the optical device 3010B may be embedded in a space formed between the front case 3852 and the rear case 3852.
  • a display module 3755 may be disposed on one surface of the main body 3850.
  • the camera 3721 may be disposed on one or more of the surfaces of the main body 3850 and the other surface disposed on the opposite side of the body 3850.
  • the optical device 3010B may include a wireless communication unit 3710.
  • the wireless communication unit 3710 may include one or more modules that enable wireless communication between the optical device 3010B and the wireless communication system or between the optical device 3010B and a network in which the optical device 3010B is located.
  • the wireless communication unit 3710 includes one or more of a broadcast reception module 3711, a mobile communication module 3712, a wireless Internet module 3713, a short-range communication module 3714, and a location information module 3715. can do.
  • the optical device 3010B may include an A/V input unit 3720.
  • the A/V (Audio/Video) input unit 3720 is for inputting an audio signal or a video signal, and may include one or more of a camera 3721 and a microphone 3722.
  • the camera 3721 may include the camera device 3010A according to the present embodiment.
  • the optical device 3010B may include a sensing unit 3740.
  • the sensing unit 3740 includes an optical device 3010B such as an open/closed state of the optical device 3010B, a position of the optical device 3010B, presence or absence of user contact, an orientation of the optical device 3010B, acceleration/deceleration of the optical device 3010B, etc. ) May generate a sensing signal for controlling the operation of the optical device 3010B.
  • an optical device 3010B such as an open/closed state of the optical device 3010B, a position of the optical device 3010B, presence or absence of user contact, an orientation of the optical device 3010B, acceleration/deceleration of the optical device 3010B, etc.
  • a sensing function related to whether power is supplied from the power supply unit 3790 and whether the interface unit 3770 is coupled to an external device may be performed.
  • the optical device 3010B may include an input/output unit 3750.
  • the input/output unit 3750 may be a component for generating input or output related to visual, auditory, or tactile sense.
  • the input/output unit 3750 may generate input data for controlling the operation of the optical device 3010B, and may also output information processed by the optical device 3010B.
  • the input/output unit 3750 may include one or more of a keypad unit 3751, a touch screen panel 3762, a display module 3755, and an audio output module 3754.
  • the keypad part 3751 may generate input data by inputting a keypad.
  • the touch screen panel 3756 may convert a change in capacitance generated due to a user's touch to a specific area of the touch screen into an electric input signal.
  • the display module 3755 may output an image captured by the camera 3721.
  • the display module 3755 may include a plurality of pixels whose color changes according to an electrical signal.
  • the display module 3755 includes a liquid crystal display, a thin film transistor-liquid crystal display, an organic light-emitting diode, a flexible display, and a three-dimensional display.
  • the sound output module 3754 outputs audio data received from the wireless communication unit 3710 in a call signal reception, a call mode, a recording mode, a voice recognition mode, or a broadcast reception mode, or stored in the memory unit 3760. Audio data can be output.
  • the optical device 3010B may include a memory unit 3760.
  • a program for processing and controlling the controller 3780 may be stored in the memory unit 3760.
  • the memory unit 3760 may store input/output data, for example, at least one of a phone book, a message, an audio, a still image, a picture, and a video.
  • the memory unit 3760 may store an image captured by the camera 3721, for example, a photo or a video.
  • the optical device 3010B may include an interface unit 3770.
  • the interface unit 3770 serves as a passage for connecting to an external device connected to the optical device 3010B.
  • the interface unit 3770 may receive data from an external device, receive power and transmit it to each component inside the optical device 3010B, or transmit data inside the optical device 3010B to an external device.
  • the interface unit 3770 includes a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, a port for connecting a device equipped with an identification module, and audio input/output (I/O). It may include any one or more of a port, a video input/output (I/O) port, and an earphone port.
  • the optical device 3010B may include a control unit 3780.
  • the controller 3780 may control the overall operation of the optical device 3010B.
  • the controller 3780 may perform related control and processing for voice calls, data communication, and video calls.
  • the control unit 3780 may include a display control unit 3780 that controls the display module 3755, which is a display of the optical device 3010B.
  • the controller 3780 may include a camera controller 3788 that controls the camera device 3010A.
  • the controller 3780 may include a multimedia module 3784 for playing multimedia.
  • the multimedia module 3784 may be provided in the control unit 3180 or may be provided separately from the control unit 3780.
  • the controller 3780 may perform a pattern recognition process capable of recognizing a handwriting input or a drawing input performed on the touch screen as characters and images, respectively.
  • the optical device 3010B may include a power supply 3790.
  • the power supply unit 3790 may receive external power or internal power under the control of the controller 3780 to supply power required for operation of each component.
  • the lens driving apparatus may include the sensing structure of the first embodiment of the present invention.
  • the lens driving apparatus according to the third embodiment of the present invention may include the sensing coil 180 and the position sensor 170 of the first embodiment of the present invention.
  • the lens driving apparatus according to the third embodiment of the present invention may include the sensing structure of the second embodiment of the present invention.
  • the lens driving apparatus according to the third embodiment of the present invention may include a sensing coil 2180 and a position sensor 2170 according to the second embodiment of the present invention.
  • the fourth embodiment of the present invention may include some configurations of the first embodiment of the present invention and some configurations of the second embodiment.
  • the fifth embodiment of the present invention may include some configurations of the second embodiment of the present invention and some configurations of the third embodiment.
  • the sixth embodiment of the present invention may include some configurations of the first embodiment of the present invention and some configurations of the third embodiment.
  • the seventh embodiment of the present invention may include some configurations of the first embodiment of the present invention, some configurations of the second embodiment, and some configurations of the third embodiment.
  • the sensing coil and position sensor of the first or second embodiment may be applied to the third embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Lens Barrels (AREA)

Abstract

본 실시예는 기판, 하우징, 보빈, 센싱 코일, 제1마그네트, 제2마그네트, 제3마그네트, 및 더미 부재, 제1코일 유닛과 제2코일 유닛을 포함하는 제1코일, 및 기판에 배치되고 센싱 코일과 대응되는 제1위치 센서를 포함하고, 제1마그네트와 제2마그네트는 서로 반대편에 위치하고, 제3마그네트와 더미 부재는 서로 반대편에 위치하고, 센싱 코일에는 구동 신호가 제공되고, 제1위치 센서는 센싱 코일의 자기장의 세기를 감지하고, 출력 신호를 출력하는 렌즈 구동 장치에 관한 것이다.

Description

렌즈 구동 장치, 카메라 모듈 및 광학 기기
본 실시예는 렌즈 구동 장치, 카메라 모듈 및 광학 기기에 관한 것이다.
초소형, 저전력 소모를 위한 카메라 모듈은 기존의 일반적인 카메라 모듈에 사용된 보이스 코일 모터(VCM:Voice Coil Motor)의 기술을 적용하기 곤란하여, 이와 관련 연구가 활발히 진행되어 왔다.
스마트폰과 같은 소형 전자제품에 실장되는 카메라 모듈의 경우, 사용 도중에 빈번하게 카메라 모듈이 충격을 받을 수 있으며, 촬영하는 동안 사용자의 손떨림 등에 따라 미세하게 카메라 모듈이 흔들릴 수 있다. 이와 같은 점을 감안하여, 최근에는 손떨림 방지 수단을 카메라 모듈에 추가 설치하는 기술이 개발되고 있다.
한편, 카메라 모듈에는 피사체의 거리에 따라 초점을 자동으로 조절하는 오토 포커스 기능이 연구되고 있다. 나아가, 보다 정확한 오토 포커스 기능 수행을 위해 피드백 기능이 연구되고 있다.
그런데, 종래의 오토 포커스 피드백 기능을 갖춘 카메라 모듈의 경우 렌즈의 위치를 감지하기 위한 구성에 의해 카메라 모듈 전체의 크기가 증가하게 되어 카메라 모듈의 설치를 위한 공간에 제약이 있는 스마트폰에는 적용이 어려운 문제가 있다.
본 발명의 제1실시예는 듀얼 카메라 모듈에 장착된 인접하는 2개의 렌즈 구동 장치들에 포함된 마그네트들 간의 자계 간섭을 감소시키고, OIS 기능을 수행하기 위한 X축 방향으로의 전자기력과 Y축 방향으로의 전자기력의 균형을 맞출 수 있고, OIS 가동부의 무게를 줄여 전류 소모량을 감소시킬 수 있는 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈과 광학 기기를 제공한다.
본 발명의 제2실시예는 센싱 마그네트 대신에 센싱 코일을 이용하여 위치 센서에 자기장을 제공함으로써, 자계 간섭으로 인하여 AF 구동의 오동작을 방지할 수 있고, 오토 포커싱의 정확도를 향상시킬 수 있는 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기를 제공한다.
본 발명의 제3실시예는 오토 포커스 피드백 기능을 갖추지 않은 카메라 모듈 대비 카메라 모듈 전체 크기의 증가는 최소화되고 센싱 코일의 통전을 위한 조립 작업은 용이한 구조를 포함하는 카메라 모듈을 제공하고자 한다.
또한, 상기 카메라 모듈에 제공되는 렌즈 구동 장치를 제공하고자 한다.
본 발명의 제1실시예에 따른 렌즈 구동 장치는 기판; 상기 기판 상에 배치되는 하우징; 상기 하우징 내에 배치되는 보빈; 상기 보빈에 배치되는 센싱 코일; 상기 하우징의 서로 다른 측부에 배치되는 제1마그네트, 제2마그네트, 제3마그네트, 및 더미 부재; 상기 제1마그네트에 대응되는 제1코일 유닛과 상기 제2마그네트에 대응되는 제2코일 유닛을 포함하는 제1코일; 및 상기 기판에 배치되고 상기 센싱 코일과 대응되는 제1위치 센서를 포함하고, 상기 제1마그네트와 상기 제2마그네트는 서로 반대편에 위치하고, 상기 제3마그네트와 상기 더미 부재는 서로 반대편에 위치하고, 상기 센싱 코일에는 구동 신호가 제공되고, 상기 제1위치 센서는 상기 센싱 코일의 자기장의 세기를 감지하고, 출력 신호를 출력한다.
상기 센싱 코일은 광축 방향으로 상기 제1위치 센서와 오버랩될 수 있다.
상기 보빈은 외측면으로부터 돌출되는 돌출부를 포함하고, 상기 센싱 코일은 상기 보빈의 상기 돌출부와 결합될 수 있다.
상기 센싱 코일은 중앙홀을 포함하는 링 형상이고, 상기 센싱 코일의 중앙홀은 광축과 평행할 수 있다.
상기 센싱 코일은 상기 돌출부의 하면에 결합될 수 있다.
상기 더미 부재는 서로 이격되는 제1더미와 제2더미를 포함하고, 상기 센싱 코일의 적어도 일부는 상기 제1더미와 상기 제2더미 사이에 배치될 수 있다.
상기 렌즈 구동 장치는 광축 방향으로 상기 제1 내지 제3마그네트들과 대응되는 제3 내지 제5코일 유닛들을 포함하는 제2코일; 및 상기 기판에 배치되고 상기 제1마그네트와 대응되는 제1센서와 상기 제3마그네트와 대응되는 제2센서를 포함하는 제2위치 센서를 포함할 수 있다.
상기 광축 방향으로 상기 센싱 코일은 상기 제3 내지 제5코일 유닛들과 오버랩되지 않을 수 있다.
상기 제1위치 센서는 홀 센서, 홀 센서를 포함하는 드라이버 IC, 또는 TMR(Tunnel Magnetoresistance) 센서일 수 있다.
상기 렌즈 구동 장치는 상기 보빈과 상기 하우징에 결합되는 탄성 부재; 및 상기 탄성 부재와 상기 기판을 연결하는 지지 부재를 포함할 수 있다.
다른 실시예에 따른 렌즈 구동 장치는 고정부; 보빈을 포함하는 AF 가동부, 및 하우징을 포함하는 OIS 가동부; 상기 하우징에 대하여 상기 AF 가동부를 지지하는 제1탄성부; 상기 고정부에 대하여 상기 OIS 가동부를 지지하는 제2탄성부; 상기 보빈에 배치되는 AF 코일; 상기 보빈에 배치되는 센싱 코일; 상기 하우징에 배치되고 서로 반대편에 위치하는 제1마그네트와 제2마그네트; 상기 하우징에 배치되고, 서로 반대편에 위치하는 제3마그네트와 더미 부재; 광축 방향으로 상기 제1 내지 제3마그네트들과 대응되는 제1 내지 제3OIS코일 유닛들; 상기 고정부에 배치되고, 상기 광축 방향으로 상기 센싱 코일에 대응되는 AF 위치 센서; 및 상기 고정부에 배치되고, 상기 제1마그네트와 대응되는 제1OIS 센서와 상기 제3마그네트와 대응되는 제2OIS 센서를 포함하고, 상기 센싱 코일에는 구동 신호가 제공되고, 상기 AF 위치 센서는 상기 센싱 코일의 자기장의 세기를 감지하고, 출력 신호를 출력할 수 있다.
본 발명의 제2실시예에 따른 렌즈 구동 장치는 베이스; 상기 베이스 상에 배치되는 하우징; 상기 하우징 내에 배치되는 보빈; 상기 보빈에 배치되는 코일; 상기 보빈에 배치되는 센싱 코일; 및 상기 베이스에 배치되고 상기 센싱 코일과 대응되는 위치 센서를 포함하고, 상기 센싱 코일에는 제1구동 신호가 제공되고, 상기 위치 센서는 상기 센싱 코일의 자기장의 세기를 감지하고, 출력 신호를 출력할 수 있다.
상기 코일에는 제2구동 신호가 제공되고, 상기 코일과 상기 마그네트 간의 상호 작용에 의하여 상기 보빈은 광축 방향으로 이동되고, 상기 보빈의 상기 광축 방향으로의 이동 시 상기 제1구동 신호는 일정한 값을 갖는 직류 신호일 수 있다.
상기 센싱 코일은 광축 방향으로 상기 위치 센서와 오버랩될 수 있다.
상기 코일은 상기 보빈의 외측면에 결합되고, 상기 센싱 코일은 상기 코일 아래에 배치될 수 있다.
상기 센싱 코일은 중앙홀을 포함하는 링 형상이고, 상기 센싱 코일의 중앙홀은 광축과 평행할 수 있다.
상기 렌즈 구동 장치는 상기 베이스에 배치되는 단자부를 포함하고, 상기 단자부는 서로 이격되는 제1단자, 제2단자, 제3단자, 및 제4단자를 포함하고, 상기 위치 센서는 상기 제1 내지 제4단자들과 전기적으로 연결될 수 있다.
상기 렌즈 구동 장치는 상기 보빈의 하부와 상기 하우징의 하부에 결합되는 하부 탄성 부재를 포함하고, 상기 하부 탄성 부재는 제1탄성 부재, 제2탄성 부재, 제3탄성 부재, 및 제4탄성 부재를 포함하고, 상기 코일은 상기 제1 및 제2탄성 부재들과 전기적으로 연결되고, 상기 센싱 코일은 상기 제3 및 제4탄성 부재들과 전기적으로 연결될 수 있다.
상기 코일과 상기 위치 센서 간의 최단 거리는 상기 위치 센서와 상기 마그네트 간의 최단 거리보다 작을 수 있다.
상기 제1 내지 제4단자들은 상기 베이스 내에 배치되고, 상기 베이스는 상기 제1 내지 제4단자들 각각의 일단을 노출하는 홈을 포함하고, 상기 위치 센서는 상기 홈 내에 배치되고, 상기 제1 내지 제4단자들 각각의 타단은 상기 베이스의 외측면으로 노출될 수 있다.
상기 위치 센서는 홀 센서, 홀 센서를 포함하는 드라이버 IC, 또는 TMR(Tunnel Magnetoresistance) 센서일 수 있다.
본 발명의 제3실시예에 따른 렌즈 구동 장치는 상판과, 상기 상판으로부터 연장되는 측판을 포함하는 커버; 상기 커버 내에 배치되는 보빈; 상기 보빈의 아래에 배치되는 베이스; 상기 보빈에 배치되는 제1코일; 상기 제1코일과 상기 커버의 상기 측판 사이에 배치되는 마그네트; 상기 보빈에 연결되는 탄성부재; 및 제2코일을 포함하고 상기 베이스에 배치되는 기판을 포함하고, 상기 기판은 상기 베이스의 상면에 배치되고, 상기 탄성부재는 상기 기판의 상면에 배치되는 외측부를 포함할 수 있다.
상기 제2코일에는 상기 제1코일과의 상호 작용에 의해 유도 전압이 발생될 수 있다.
상기 탄성부재의 상기 외측부는 상기 기판의 상면에 접착제에 의해 고정될 수 있다.
상기 탄성부재는 상기 외측부에 형성되는 홀을 포함하고, 상기 기판은 상기 외측부의 상기 홀에 대응하는 위치에 형성되는 홀을 포함하고, 상기 베이스는 상기 베이스의 상기 상면에 상기 기판의 상기 홀에 대응하는 위치에 형성되는 홈을 포함하고, 상기 외측부의 상기 홀, 상기 기판의 상기 홀 및 상기 베이스의 상기 홈 중 적어도 일부에는 접착제가 배치될 수 있다.
상기 탄성부재는 상기 외측부에 형성되는 홀을 포함하고, 상기 기판은 상기 외측부의 상기 홀에 대응하는 위치에 형성되는 홀을 포함하고, 상기 베이스는 상기 베이스의 상기 상면에 상기 기판의 상기 홀에 대응하는 위치에 형성되는 돌기를 포함하고, 상기 베이스의 상기 돌기는 상기 외측부의 상기 홀과 상기 기판의 상기 홀에 삽입될 수 있다.
상기 제2코일은 상기 기판에 패턴 코일로 형성될 수 있다.
상기 베이스는 상기 베이스의 상기 상면에 형성되고 상기 베이스의 외측면으로부터 연장되는 돌출부를 포함하고, 상기 돌출부는 상기 베이스의 상기 외측면 중 제1측면에 형성되는 제1돌출부와, 상기 베이스의 상기 외측면 중 상기 제1측면의 반대편의 제2측면에 형성되는 제2돌출부를 포함하고, 상기 기판은 상기 제1돌출부와 상기 제2돌출부 사이에 배치되는 몸체부를 포함할 수 있다.
상기 기판은 상기 몸체부로부터 아래로 연장되고 상기 베이스의 상기 외측면 중 제3측면에 배치되는 단자부를 포함하고, 상기 탄성부재는 상기 제1코일의 일단에 전기적으로 연결되는 제1하부 탄성유닛과, 상기 제1하부 탄성유닛과 이격되고 상기 제1코일의 타단에 전기적으로 연결되는 제2하부 탄성유닛을 포함하고, 상기 제1하부 탄성유닛과 상기 제2하부 탄성유닛 각각은 단자를 포함하고, 상기 기판의 상기 단자부는 상기 제1하부 탄성유닛의 상기 단자와 상기 제2하부 탄성유닛의 상기 단자 사이에 배치될 수 있다.
상기 기판은 상기 몸체부로부터 아래로 연장되고 상기 베이스의 상기 외측면 중 제3측면에 배치되는 단자부를 포함하고, 상기 탄성부재는 상기 제1코일의 일단에 전기적으로 연결되는 제1하부 탄성유닛과, 상기 제1하부 탄성유닛과 이격되고 상기 제1코일의 타단에 전기적으로 연결되는 제2하부 탄성유닛을 포함하고, 상기 제1하부 탄성유닛과 상기 제2하부 탄성유닛 각각은 상기 기판에 전기적으로 연결되고, 상기 기판의 상기 단자부는 상기 제1코일과 전기적으로 연결되는 2개의 단자와, 상기 제2코일과 전기적으로 연결되는 2개의 단자를 포함할 수 있다.
상기 보빈은 상기 베이스와 광축방향으로 오버랩되고 상기 보빈의 하면으로부터 돌출되는 스토퍼를 포함하고, 상기 기판은 상기 스토퍼와 대응하는 위치에 형성되는 홀을 포함할 수 있다.
상기 제2코일의 적어도 일부는 상기 제1코일과 광축 방향으로 오버랩될 수 있다.
상기 기판의 적어도 일부는 상기 마그네트와 광축 방향으로 오버랩될 수 있다.
본 발명의 제3실시예에 따른 카메라 모듈은 인쇄회로기판; 상기 인쇄회로기판에 배치되는 이미지 센서; 상기 렌즈 구동 장치; 및 상기 렌즈 구동 장치의 상기 보빈에 결합되고 상기 이미지 센서와 대응하는 위치에 배치되는 렌즈를 포함할 수 있다.
본 발명의 제3실시예에 따른 광학기기는 상기 카메라 모듈을 포함할 수 있다.
본 발명의 제3실시예에 따른 렌즈 구동 장치는 상판과, 상기 상판으로부터 연장되는 측판을 포함하는 커버; 상기 커버 내에 배치되는 보빈; 상기 보빈의 아래에 배치되는 베이스; 상기 보빈에 배치되는 제1코일; 상기 제1코일과 상기 커버의 상기 측판 사이에 배치되는 마그네트; 상기 보빈에 연결되는 탄성부재; 및 제2코일을 포함하고 상기 베이스에 배치되는 기판을 포함하고, 상기 탄성부재는 상기 보빈에 결합되는 내측부와, 상기 기판 또는 상기 베이스에 결합되는 외측부와, 상기 내측부와 상기 외측부를 연결하는 연결부를 포함하고, 상기 기판은 상기 탄성부재의 상기 외측부와 상기 베이스 사이에 배치될 수 있다.
본 발명의 제3실시예에 따른 렌즈 구동 장치는 상판과, 상기 상판으로부터 연장되는 측판을 포함하는 커버; 상기 커버 내에 배치되는 보빈; 상기 보빈의 아래에 배치되는 베이스; 상기 보빈에 배치되는 제1코일; 상기 제1코일과 상기 커버의 상기 측판 사이에 배치되는 마그네트; 상기 보빈에 연결되는 탄성부재; 및 제2코일을 포함하고 상기 베이스에 배치되는 기판을 포함하고, 상기 탄성부재는 상기 제1코일의 일단에 전기적으로 연결되는 제1하부 탄성유닛과, 상기 제1하부 탄성유닛과 이격되고 상기 제1코일의 타단에 전기적으로 연결되는 제2하부 탄성유닛을 포함하고, 상기 제1하부 탄성유닛과 상기 제2하부 탄성유닛 각각은 상기 기판에 전기적으로 연결될 수 있다.
본 발명의 제1실시예는 듀얼 카메라 모듈에 장착된 인접하는 2개의 렌즈 구동 장치들에 포함된 마그네트들 간의 자계 간섭을 감소시키고, OIS 기능을 수행하기 위한 X축 방향으로의 전자기력과 Y축 방향으로의 전자기력의 균형을 맞출 수 있고, OIS 가동부의 무게를 줄여 전류 소모량을 감소시킬 수 있다.
본 발명의 제2실시예는 센싱 마그네트 대신에 센싱 코일을 이용하여 위치 센서에 자기장을 제공함으로써, 자계 간섭으로 인하여 AF 구동의 오동작을 방지할 수 있고, 오토 포커싱의 정확도를 향상시킬 수 있다.
본 발명의 제3실시예를 통해, 오토 포커스 피드백 기능을 갖춘 카메라 모듈의 크기를 최소화할 수 있다.
또한, 센싱 코일을 사용하는 다른 비교예와 비교할 때 센싱 코일을 별도로 권선하고 조립할 필요가 없다는 장점이 있다.
나아가, 센싱 코일이 패턴화된 FPCB의 단자를 인쇄회로기판에 통전시키는 작업만으로 센싱 코일의 통전이 완료되므로 추가 납땜 연결 공정이 불필요한 장점이 있다.
도 1은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 분해도이다.
도 2는 커버 부재를 제외한 렌즈 구동 장치의 사시도이다.
도 3a는 보빈, 제1코일 유닛, 제2코일 유닛, 및 센싱 코일의 분리 사시도이다.
도 3b는 보빈, 제1코일 유닛, 제2코일 유닛, 및 센싱 코일의 결합 사시도이다.
도 4a는 하우징, 제1 내지 제3마그네트들, 및 더미 부재의 분리 사시도이다.
도 4b는 하우징, 제1 내지 제3마그네트들, 및 더미 부재의 결합 사시도이다.
도 5는 상부 탄성 부재의 사시도이다.
도 6은 상부 탄성 부재, 지지 부재, 및 회로 기판의 전기적 연결 관계를 설명하기 위한 도면이다.
도 7은 제1 내지 제3마그네트들, 더미 부재, 하우징, 하부 탄성 부재, 및 센싱 코일의 저면도이다.
도 8은 제2코일, 회로 기판, 및 베이스의 분리 사시도이다.
도 9는 렌즈 구동 장치에 대한 도 2의 AB 방향으로의 단면도이다.
도 10은 렌즈 구동 장치에 대한 도 2의 CD 방향으로의 단면도이다.
도 11은 렌즈 구동 장치에 대한 도 2의 EF 방향으로의 단면도이다.
도 12는 제1위치 센서, 센싱 코일, 제1 내지 제3마그네트들, 더미 부재, 및 제3 내지 제5코일 유닛들의 사시도를 나타낸다.
도 13은 제1위치 센서, 센싱 코일, 제1 내지 제3마그네트들, 더미 부재, 제3 내지 제5코일 유닛들, 및 제1 및 제2센서들의 사시도이다.
도 14는 도 12에 도시된 구성들의 저면도이다.
도 15a는 시뮬레이션을 위한 센싱 코일과 제1위치 센서의 배치를 나타낸다.
도 15b는 AF 가동부의 광축 방향으로의 이동에 따른 도 15a의 센싱 코일의 위치 변화를 나타낸다.
도 15c는 도 15b의 센싱 코일의 위치 변화에 따른 제1위치 센서가 감지하는 센싱 코일의 자기장의 세기의 변화를 나타낸다.
도 16은 렌즈 구동 장치의 다른 실시예를 나타낸다.
도 17은 본 발명의 제1실시예에 따른 카메라 모듈의 분해 사시도를 나타낸다.
도 18은 다른 실시예에 따른 카메라 모듈의 사시도를 나타낸다.
도 19a는 도 18의 듀얼 카메라 모듈의 일 실시예를 나타낸다.
도 19b는 도 18의 듀얼 카메라 모듈의 다른 실시예를 나타낸다.
도 20a는 도 18의 듀얼 카메라 모듈의 또 다른 실시예를 나타낸다.
도 20b는 도 18의 듀얼 카메라 모듈의 또 다른 실시예를 나타낸다.
도 20c는 도 18의 듀얼 카메라 모듈의 또 다른 실시예를 나타낸다.
도 21은 본 발명의 제1실시예에 따른 휴대용 단말기의 사시도를 나타낸다.
도 22는 도 21에 도시된 휴대용 단말기의 구성도를 나타낸다.
도 23은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 분해도이다.
도 24는 커버 부재를 제외한 렌즈 구동 장치의 사시도이다.
도 25a는 보빈의 제1사시도이다.
도 25b는 보빈의 제2사시도이고, 도 25c는 보빈, 및 코일의 결합 사시도이다.
도 26a는 하우징의 사시도이다.
도 26b는 하우징과 마그네트의 제1사시도이다.
도 26c는 하우징과 마그네트의 제2사시도이다.
도 27는 하우징, 마그네트, 및 상부 탄성 부재의 사시도이다.
도 28은 하부 탄성 부재, 위치 센서, 단자부, 및 베이스의 분리 사시도이다.
도 29은 위치 센서 및 단자부가 결합된 베이스의 사시도이다.
도 30은 하부 탄성 부재, 단자부, 및 베이스의 결합 사시도이다.
도 31는 도 24의 AB 방향으로의 렌즈 구동 장치의 단면도이다.
도 32은 도 24의 CD 방향으로의 렌즈 구동 장치의 단면도이다.
도 33a는 코일, 마그네트 유닛들, 센싱 코일, 및 위치 센서의 배치를 나타낸다.
도 33b는 도 33a의 저면도를 나타낸다.
도 34는 보빈의 변위, 코일에 인가되는 제1구동 신호, 및 센싱 코일에 인가되는 제2구동 신호의 관계를 나타낸다.
도 35a는 시뮬레이션을 위한 센싱 코일과 위치 센서의 배치를 나타낸다.
도 35b는 AF 가동부의 광축 방향으로의 이동에 따른 도 35a의 센싱 코일의 위치 변화를 나타낸다.
도 35c는 도 35b의 센싱 코일의 위치 변화에 따른 위치 센서가 감지하는 센싱 코일의 자기장의 세기의 변화를 나타낸다.
도 36는 다른 실시예에 따른 코일, 마그네트 유닛들, 센싱 코일 및 위치 센서의 배치를 나타낸다.
도 37는 센싱 마그네트를 사용하는 렌즈 구동 장치에서 센싱 마그네트와 구동 마그네트 각각의 자계 분포를 나타낸다.
도 38은 다른 실시예에 따른 렌즈 구동 장치의 분해도이다.
도 39은 도 38의 코일, 마그네트 유닛들, 및 위치 센서의 배치를 나타낸다.
도 40은 도 38의 렌즈 구동 장치의 도 24의 AB 방향으로의 단면도이다.
도 41는 도 38의 코일에 제공되는 구동 신호의 일 예를 나타낸다.
도 42은 다른 실시예에 따른 마그네트 유닛들, 코일, 및 위치 센서의 배치를 나타낸다.
도 43은 본 발명의 제2실시예에 따른 카메라 모듈의 분해 사시도를 나타낸다.
도 44는 본 발명의 제2실시예에 따른 휴대용 단말기의 사시도를 나타낸다.
도 45은 도 44에 도시된 휴대용 단말기의 구성도를 나타낸다.
도 46은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 사시도이다.
도 47는 도 46의 A-A에서 바라본 단면도이다.
도 48은 도 46의 B-B에서 바라본 단면도이다.
도 49는 도 46의 C-C에서 바라본 단면도이다.
도 50은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 저면도이다.
도 51은 도 46에서 커버를 제거한 상태의 사시도이다.
도 52은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 분해사시도이다.
도 53은 본 발명의 제3실시예에 따른 렌즈 구동 장치를 도 52과 다른 방향에서 바라본 분해사시도이다.
도 54는 본 발명의 제3실시예에 따른 가동자와 고정자를 도시하는 분해사시도이다.
도 55은 본 발명의 제3실시예에 따른 베이스, 탄성부재 및 기판을 도시하는 분해사시도이다.
도 56은 본 발명의 제3실시예에 따른 일부 구성을 도 55과 다른 방향에서 바라본 분해사시도이다.
도 57a는 본 발명의 제3실시예에 따른 베이스와 기판의 결합상태를 도시하는 사시도이다.
도 57b는 변형례에 따른 베이스와 기판의 결합상태를 도시하는 사시도이다.
도 58은 도 57a에 하부 탄성부재가 추가로 결합된 상태를 도시하는 사시도이다.
도 59는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 일부 구성의 단면사시도이다.
도 60는 본 발명의 제3실시예에 따른 카메라 모듈의 분해사시도이다.
도 61은 본 발명의 제3실시예에 따른 광학기기의 사시도이다.
도 62은 본 발명의 제3실시예에 따른 광학기기의 구성도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시예들 간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C중 적어도 하나(또는 한개이상)"로 기재되는 경우 A,B,C로 조합할 수 있는 모든 조합중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성 요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우 뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속'되는 경우도 포함할 수 있다. 또한, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두개의 구성 요소들이 서로 직접 접촉되는 경우 뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한 "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하 렌즈 구동 장치는 렌즈 구동부, VCM(Voice Coil Motor), 액츄에이터(Actuator) 또는 렌즈 무빙 디바이스(lens moving device)등으로 대체하여 호칭될 수 있고, 이하 "코일"이라는 용어는 코일 유닛(coil unit)으로 대체하여 표현될 수 있고, "탄성 부재"라는 용어는 탄성 유닛, 또는 스프링으로 대체하여 표현될 수 있다.
또한 이하 설명에서 "단자(terminal)"는 패드(pad), 전극(electrode), 도전층(conductive layer), 또는 본딩부 등으로 대체하여 표현될 수 있다.
설명의 편의상, 실시예에 의한 렌즈 구동 장치는 데카르트 좌표계(x, y, z)를 사용하여 설명하지만, 다른 좌표계를 사용하여 설명할 수도 있으며, 실시예는 이에 국한되지 않는다. 각 도면에서 x축과 y축은 광축 방향인 z축에 대하여 수직한 방향을 의미하며, 광축(OA) 방향인 z축 방향을 '제1방향'이라 칭하고, x축 방향을 '제2방향'이라 칭하고, y축 방향을 '제3방향'이라 칭할 수 있다.
실시예에 따른 렌즈 구동 장치는 '오토 포커싱 기능'을 수행할 수 있다. 여기서 오토 포키싱 기능이란 피사체의 화상의 초점을 자동으로 이미지 센서 면에 결상시키는 것을 말한다.
또한 실시예에 따른 렌즈 구동 장치는 '손떨림 보정 기능'을 수행할 수 있다. 여기서 손떨림 보정 기능이란 정지 화상의 촬영 시 사용자의 손떨림에 의해 기인한 진동으로 인해 촬영된 이미지의 외곽선이 또렷하게 형성되지 못하는 것을 방지할 수 있는 것을 말한다.
도 1은 본 발명의 제1실시예에 따른 렌즈 구동 장치(100)의 분해도이고, 도 2는 커버 부재(300)를 제외한 렌즈 구동 장치(100)의 사시도이다.
도 1 및 도 2를 참조하면, 렌즈 구동 장치(100)는 보빈(110), 제1코일(120), 제1마그네트(130-1), 제2마그네트(130-2), 제3마그네트(130-3), 더미 부재(135), 하우징(140), 상부 탄성 부재(150), 하부 탄성 부재(160), 제1위치 센서(170), 센싱 코일(180), 및 제2코일(230)을 포함할 수 있다.
렌즈 구동 장치(100)는 베이스(210), 회로 기판(250) 및 지지 부재(220) 중 적어도 하나를 더 포함할 수도 있다.
또한 렌즈 구동 장치(100)는 센싱 코일(180)의 무게 또는 자계의 영향을 감쇄시키기 위한 밸런싱 코일(미도시)를 더 포함할 수도 있다.
또한 렌즈 구동 장치(100)는 OIS(Optical Image Stabilizer) 피드백 구동을 위하여 제2위치 센서(240)를 더 구비할 수 있다. 또한 렌즈 구동 장치(100)는 커버 부재(300)를 더 포함할 수 있다.
본 실시예는 듀얼 카메라 모듈에 장착된 인접하는 2개의 렌즈 구동 장치들에 포함된 마그네트들 간의 자계 간섭을 감소 또는 억제시킬 수 있는 OIS 기능을 포함하는 렌즈 구동 장치를 제공할 수 있다.
또한 이와 더불어 본 실시예는 OIS 기능을 수행하기 위하여 X축 방향으로 발생되는 전자기력과 Y축 방향으로 발생되는 전자기력의 균형을 맞출 수 있다.
또한 본 실시예는 OIS용 마그네트의 개수를 줄이고, OIS용 마그네트의 사이즈를 줄임으로써, OIS 가동부의 무게를 줄임으로써, 전류 소모량을 감소시킬 수 있다.
먼저 보빈(110)에 대하여 설명한다.
보빈(110)은 하우징(140)의 내측에 배치되고, 제1코일(120)과 제1 및 제2마그네트들(130-1, 130-2) 간의 전자기적 상호 작용에 의하여 광축(OA) 방향 또는 제1방향(예컨대, Z축 방향)으로 이동될 수 있다.
도 3a는 보빈(110), 제1코일 유닛(120-1), 제2코일 유닛(120-2), 및 센싱 코일(180)의 분리 사시도이고, 도 3b는 보빈(110), 제1코일 유닛(120-1), 제2코일 유닛(120-2), 및 센싱 코일(180)의 결합 사시도이다.
도 3a 및 도 3b를 참조하면, 보빈(110)은 렌즈 또는 렌즈 배럴을 장착하기 위한 개구을 가질 수 있다. 예컨대, 보빈(110)의 개구는 보빈(110)을 관통하는 관통 홀 형태일 수 있고, 보빈(110)의 개구의 형상은 원형, 타원형, 또는 다각형일 수 있으나, 이에 한정되는 것은 아니다.
보빈(110)의 개구에는 렌즈가 직접 장착될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 적어도 하나의 렌즈가 장착 또는 결합되기 위한 렌즈 배럴이 보빈(110)의 개구에 결합 또는 장착될 수 있다. 렌즈 또는 렌즈 배럴은 보빈(110)의 내주면에 다양한 방식으로 결합될 수 있다.
보빈(110)은 서로 이격하는 복수의 측부들을 포함할 수 있으며, 복수의 측부들은 서로 연결될 수 있다.
예컨대, 보빈(110)은 하우징(140)의 측부들(141-1 내지 141-4)에 대응하는 측부들 및 하우징(140)의 코너부들(142-1 내지 142-4)에 대응되는 코너부들(또는 코너들)을 포함할 수 있다.
보빈(110)의 측부들 중 서로 반대편에 위치하는 2개의 측부들에는 제1코일 유닛(120-1) 및 제2코일 유닛(120-2)이 배치, 장착, 또는 안착되기 위한 안착홈(201)이 마련될 수 있다.
예컨대, 안착홈(201)은 보빈(110)의 서로 반대편에 위치하는 제1 및 제2외측면들에 형성될 수 있다. 안착홈(201)은 보빈(110)의 제1 및 제2외측면들로부터 함몰된 구조일 수 있으며, 제1코일 유닛(120-1) 및 제2코일 유닛(120-2)의 형상과 일치하는 형상을 가질 수 있다.
보빈(110)의 서로 반대편에 위치하는 제1 및 제2외측면들 각각에는 제1 및 제2코일 유닛들(120-1, 120-2) 중 대응하는 어느 하나와 결합되기 위한 돌기(25)가 마련될 수 있다.
예컨대, 보빈(110)의 제1외측면에는 제1코일 유닛(120-1)을 장착 또는 권선하기 위한 제1돌기가 형성될 수 있고, 보빈(110)의 제2외측면에는 제2코일 유닛(120-2)을 장착 또는 권선하기 위한 제2돌기가 형성될 수 있다. 예컨대, 돌기(25)는 안착홈(201)의 바닥면으로부터 돌출될 수 있다.
보빈(110)의 제1 및 제2외측면들이 아닌 보빈(110)의 다른 어느 하나의 외측면(예컨대, 제4외측면)에는 돌출부(116)가 마련될 수 있다. 돌출부(116)에는 센싱 코일(180)의 장착 또는 배치를 위한 돌기(26)가 형성될 수 있다.
돌출부(116)는 보빈(110)의 측부의 외측면(예컨대, 제4외측면)으로부터 광축과 수직한 방향으로 돌출될 수 있다. 예컨대, 돌출부(116)는 보빈(110)의 개구의 중심을 지나고 광축 방향과 수직한 직선에 평행한 방향으로 돌출될 수 있다.
예컨대, 돌기(26)는 돌출부(116)의 하면으로부터 하측 방향 또는 제1위치 센서(170)를 향하는 방향으로 돌출될 수 있다.
또한 보빈(110)은 밸런싱 코일의 장착 또는 배치를 위하여, 보빈(110) 또 다른 측부(또는 제3외측면)에 형성되는 돌기를 더 포함할 수도 있다. 이때 보빈(110)의 제3외측면은 보빈(110)의 제4외측면의 반대편에 위치하는 외측면일 수 있다.
보빈(110)의 코너부들에는 돌출부(111)가 형성될 수 있다. 보빈(110)의 돌출부(111)는 보빈(110)의 개구의 중심을 지나고 광축 방향과 수직한 직선에 평행한 방향으로 돌출될 수 있으나, 이에 한정되는 것은 아니다.
보빈(110)의 돌출부(111)는 하우징(140)의 홈부(145)와 대응하고, 하우징(140)의 홈부(145) 내에 삽입 또는 배치될 수 있으며, 보빈(110)이 광축을 중심으로 일정한 범위 이상으로 이동하거나 또는 회전되는 것을 억제 또는 방지할 수 있다.
보빈(110)의 상면에는 상부 탄성 부재(150)의 제1프레임 연결부(153)와 공간적 간섭을 회피하기 위한 제1도피홈(122a)이 마련될 수 있고, 보빈(110)의 하면에는 하부 탄성 부재(150)의 제2프레임 연결부(163)와 공간적 간섭을 회피하기 위한 제2도피홈(122b)이 마련될 수 있다. 예컨대, 제1 및 제2도피홈(122a,122b)은 보빈(110)의 코너부에 형성될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 보빈(110)의 측부에 형성될 수도 있다.
도 3a 및 도 3b에는 도시되지 않지만 보빈(110)은 상면으로부터 돌출되는 제1스토퍼 및 하면으로부터 돌출되는 제2스토퍼를 포함할 수도 있다. 보빈(110)의 제1 및 제2스토퍼들은 보빈(110)이 오토 포커싱 기능을 위해 제1방향으로 움직일 때, 외부 충격 등에 의해 보빈(110)이 규정된 범위 이상으로 움직이더라도, 보빈(110)의 상면이 커버 부재(300)의 상판의 내측과 직접 충돌하는 것을 방지할 수 있고, 보빈(110)의 하면이 베이스(210), 제2코일(230), 또는/및 회로 기판(250)에 직접 충돌되는 것을 방지할 수 있다.
보빈(110)의 상면에는 상부 탄성 부재(150)에 결합 및 고정되기 위한 제1결합부가 마련될 수 있고, 보빈(110)의 하면에는 하부 탄성 부재(160)에 결합 및 고정되기 위한 제2결합부가 마련될 수 있다.
예컨대, 도 3a 및 도 3b에서는 보빈(110)의 제1 및 제2결합부들은 평면 형태일 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에 보빈(110)의 제1 및 제2결합부들은 홈 또는 돌기 형상일 수도 있다.
보빈(110)의 내주면에는 렌즈 또는 렌즈 배럴과 결합을 위한 나사선이 마련될 수 있다. 지그(jig) 등에 의하여 보빈(110)을 고정시킨 상태에서 보빈(110)의 내주면에 나사선을 형성할 수 있는데, 보빈(110)의 상면에는 지그(jig) 고정용 홈(19)이 마련될 수 있다.
다음으로 제1코일(120)에 대하여 설명한다.
제1코일(120)은 보빈(110)의 측부들 중 서로 반대편에 위치하는 2개의 측부들에 배치되는 제1코일 유닛(120-1) 및 제2코일 유닛(120-2)을 포함한다.
여기서 "코일 유닛"은 코일부, 코일 블록, 또는 코일 링 등으로 대체하여 표현될 수 있다.
예컨대, 제1코일 유닛(120-1)은 하우징(140)의 제1측부(141-1)에 대응되는 보빈(110)의 제1측부에 배치될 수 있고, 제2코일 유닛(120-2)은 하우징(140)의 제2측부(141-2)에 대응되는 보빈(110)의 제2측부에 배치될 수 있다.
제1 및 제2코일 유닛들(120-1, 120-2)은 보빈(110)의 안착홈(201)에 배치될 수 있다. 제1 및 제2코일 유닛들(120-1, 120-2)은 보빈(110)의 돌기(25)에 결합되거나 돌기(25)에 권선될 수 있다.
제1코일 유닛(120-1) 및 제2코일 유닛(120-2) 각각은 원 형상, 타원 형상, 또는 폐곡선 형상 중 적어도 하나의 형상을 포함할 수 있다. 예컨대, 제1코일 유닛(120-1) 및 제2코일 유닛(120-2) 각각은 보빈(110)의 개구의 중심을 지나고 광축과 수직한 축을 기준으로 회전하도록 감긴 코일 링 형태일 수 있다.
예컨대, 제1 및 제2코일 유닛들(120-1, 120-2) 각각은 중앙홀을 포함할 수 있으며, 중앙홀은 제1 및 제2코일 유닛들(120-1, 120-2)이 배치되는 보빈(110)의 외측면을 마주볼 수 있으며, 돌기(25)와 결합될 수 있다.
예컨대, 제1 및 제2코일 유닛들(120-1, 120-2) 각각은 제1부분(3a), 제1부분(3a) 아래에 배치되는 제2부분(3b), 제1부분(3a)과 제2부분(3b)을 서로 연결하는 연결 부분(3c)을 포함할 수 있으며, 제1 내지 제3부분들(3a 내지 3c)에 의하여 폐곡선을 이룰 수 있다.
제3부분(3c)은 제1부분(3a)의 일단과 제2부분(3b)의 일단을 연결하는 제1연결 부분(3c1) 및 제1부분(3a)의 타단과 제2부분(3b)의 타단을 연결하는 제2연결 부분(3c2)을 포함할 수 있다.
제1코일(120)은 제1코일 유닛(120-1)과 제2코일 유닛(120-2) 사이에 배치되고, 제1코일 유닛(120-1)과 제2코일 유닛(120-2)을 서로 연결하는 연결부(미도시) 또는 연결 코일을 포함할 수 있다.
제1코일(120)의 연결부의 일단은 제1코일 유닛(120-1)의 일단과 연결될 수 있고, 제1코일(120)의 연결부의 타단은 제2코일 유닛(120-2)의 일단과 연결될 수 있다. 즉 제1코일(120)의 연결부에 의하여 제1코일 유닛(120-1)과 제2코일 유닛(120-2)은 직렬 연결될 수 있으며, 제1코일(120)에는 하나의 구동 신호가 제공될 수 있다.
예컨대, 제1코일(120)의 연결부는 제3마그네트(130-1)와 대향할 수 있고, 제3마그네트(130-1)와 보빈(110) 사이에 배치될 수 있다.
다른 실시예에 따르면, 제1코일(120)의 연결부는 더미 부재(135)와 대향할 수 있고, 더미 부재(135)와 보빈(110) 사이에 배치될 수 있다.
다른 실시예에서는 제1코일 유닛(120-1)과 제1코일 유닛(120-2)은 서로 분리 또는 이격된 형태일 수도 있으며, 제1코일 유닛(120-1)과 제1코일 유닛(120-2) 각각에는 별개의 구동 신호가 제공될 수 있다.
제1코일(120)에는 전원 또는 구동 신호가 제공될 수 있다.
제1코일(120)에 제공되는 전원 또는 구동 신호는 직류 신호 또는 교류 신호이거나 또는 직류 신호와 교류 신호를 포함할 수 있으며, 전압 또는 전류 형태일 수 있다.
제1코일(120)에 구동 신호(예컨대, 구동 전류)가 공급될 때, 제1코일(120)과 제1 및 제2마그네트들(130-1, 130-2) 간의 전자기적 상호 작용을 통해 전자기력이 형성될 수 있고, 형성된 전자기력에 의하여 광축(OA) 방향으로 보빈(110)이 이동될 수 있다.
AF 가동부의 초기 위치에서, 보빈(110)은 상측 또는 하측 방향(예컨대, Z축 방향)으로 이동될 수 있으며, 이를 AF 가동부의 양방향 구동이라 한다. 또는 AF 가동부의 초기 위치에서, 보빈(110)은 상측 방향으로 이동될 수 있으며, 이를 AF 가동부의 단방향 구동이라 한다.
AF 가동부는 보빈(110), 및 보빈(110)에 결합된 구성들을 포함할 수 있다. 예컨대, AF 가동부는 보빈(110), 제1코일(120), 센싱 코일(180), 또는/및 밸런싱 마그네트를 포함할 수 있다. 또한 AF 가동부는 보빈(110)에 장착되는 렌즈를 더 포함할 수도 있다.
그리고 AF 가동부의 초기 위치는 제1코일(120)에 전원을 인가하지 않은 상태에서 AF 가동부의 최초 위치이거나 또는 상부 및 하부 탄성 부재(150,160)가 단지 AF 가동부의 무게에 의해서만 탄성 변형됨에 따라 AF 가동부가 놓이는 위치일 수 있다.
이와 더불어 보빈(110)의 초기 위치는 중력이 보빈(110)에서 베이스(210) 방향으로 작용할 때, 또는 이와 반대로 중력이 베이스(210)에서 보빈(110) 방향으로 작용할 때의 AF 가동부가 놓이는 위치일 수 있다.
AF 가동부의 초기 위치에서, 제1코일 유닛(120-1)은 광축과 수직하고, 광축에서 제1코일 유닛(120-1)(또는 제1코일 유닛(120-1)의 중심)을 향하는 방향으로 제1마그네트(130-1)와 대향하거나 오버랩(overlap)될 수 있으나, 제3마그네트(130-3)와 대향 또는 오버랩되지 않는다.
AF 가동부의 초기 위치에서, 제2코일 유닛(120-2)은 광축과 수직하고, 광축에서 제2코일 유닛(120-2)(또는 제2코일 유닛(120-2)의 중심)을 향하는 방향으로 제2마그네트(130-2)와 대향하거나 오버랩될 수 있으나, 제3마그네트(130-3)와 대향 또는 오버랩되지 않는다.
다음으로 센싱 코일(180)에 대해서 설명한다.
센싱 코일(180)는 보빈(110)의 측부들 중 제1코일 유닛(120-1)과 제2코일 유닛(120-2)이 배치되지 않는 어느 한 측부에 배치될 수 있다. 예컨대, 센싱 코일(180)는 보빈(110)의 돌출부(116)에 배치될 수 있고, 돌기(26)에 결합되거나 또는 돌기(26)에 권선될 수 있다.
렌즈 구동 장치(100)가 밸런싱 센싱 코일을 구비하는 경우, 밸런싱 센싱 코일은 보빈(110)의 측부들 중 제1코일 유닛(120-1)과 제2코일 유닛(120-2)이 배치되지 않는 다른 어느 한 측부에 배치될 수 있다. 예컨대, 밸런싱 센싱 코일은 보빈(110)의 다른 어느 한 측부에 형성되는 돌기에 결합되거나 권선될 수 있다.
밸런싱 센싱 코일은 센싱 코일(180)의 자계 영향을 상쇄시키고, 센싱 코일(180)와 무게 균형을 맞추기 위한 것일 수 있으며, 이로 인하여 정확한 AF 동작이 수행될 수 있다.
센싱 코일(180)은 제1위치 센서(170)가 감지하기 위한 자기장을 제공할 수 있다. 센싱 코일(180)은 자기장을 발생시키기 위하여 구동 신호 또는 전원이 제공될 수 있다. 센싱 코일(180)에 제공되는 구동 신호는 직류 신호 또는 교류 신호 중 적어도 하나를 포함할 수 있다. 또한 구동 신호는 전류 또는 전압 형태일 수 있다.
센싱 코일(180)은 원 형상, 타원 형상, 또는 폐곡선 형상 중 적어도 하나의 형상을 포함할 수 있다. 예컨대, 센싱 코일(180)은 광축과 평행한 축을 기준으로 회전하도록 감긴 코일 링 형태일 수 있다.
예컨대, 센싱 코일(180)은 중앙홀을 포함할 수 있으며, 중앙홀은 광축과 평행할 수 있다. 또는 센싱 코일(180)의 중앙홀은 센싱 코일(180)이 배치되는 보빈(110)의 돌출부(116)의 하면을 마주볼 수 있으며, 돌기(26)와 결합될 수 있다.
예컨대, 센싱 코일(180)은 제1부분(4a), 제1부분(4a) 아래에 배치되는 제2부분(4b), 제1부분(4a)과 제2부분(4b)을 서로 연결하는 연결 부분(4c)을 포함할 수 있으며, 제1 내지 제3부분들(4a 내지 4c)에 의하여 폐곡선을 이룰 수 있다.
제3부분(4c)은 제1부분(4a)의 일단과 제2부분(4b)의 일단을 연결하는 제1연결 부분(4c1) 및 제1부분(4a)의 타단과 제2부분(4b)의 타단을 연결하는 제2연결 부분(4c2)을 포함할 수 있다.
예컨대, 제1부분(3a, 또는 4a)은 "제1직선부"로 표현될 수 있고, 제2부분(3b, 또는 4b)은 "제2직선부"로 표현될 수 있고, 제3부분(3c 또는 4c)은 "곡선부"로 표현될 수 있고, 제1연결 부분(3c1, 또는 4c1)은 "제1곡선부"로 표현될 수 있고, 제2연결 부분(3c2, 또는 4c2)은 "제2곡선부"로 표현될 수 있다.
제1코일 유닛(120-1)과 제1마그네트(130-1) 간의 상호 작용 및 제2코일 유닛(120-2)과 제2마그네트(130-2) 간의 상호 작용에 의하여 센싱 코일(180)은 보빈(110)과 함께 광축(OA) 방향으로 이동할 수 있으며, 제1위치 센서(170)는 광축 방향으로 이동하는 센싱 코일(180)의 자기장의 세기를 감지할 수 있고, 감지된 결과에 따른 출력 신호를 출력할 수 있다.
예컨대, 카메라 모듈의 제어부(830) 또는 단말기의 제어부(780)는 제1위치 센서(170)가 출력하는 출력 신호에 기초하여, 보빈(110)의 광축 방향으로의 변위를 검출할 수 있다.
다음으로 하우징(140)에 대하여 설명한다.
하우징(140)은 내측에 보빈(110)의 적어도 일부를 수용하며, 제1마그네트(130-1), 제2마그네트(130-2), 제3마그네트(130-3), 및 더미 부재(135)를 지지한다.
도 4a는 하우징(140), 제1 내지 제3마그네트들(130-1 내지 130-3), 및 더미 부재(135)의 분리 사시도이고, 도 4b는 하우징(140), 제1 내지 제3마그네트들(130-1 내지 130-3), 및 더미 부재(135)의 결합 사시도이다.
도 4a 및 도 4b를 참조하면, 하우징(140)은 커버 부재(300)의 내측에 배치될수 있고, 커버 부재(300)와 보빈(110) 사이에 배치될 수 있다. 하우징(140)은 내측에 보빈(110)을 수용할 수 있다. 하우징(140)의 외측면은 커버 부재(300)의 측판(302)의 내면과 이격될 수 있다.
하우징(140)은 개구 또는 중공을 포함하는 중공 기둥 형상일 수 있다.
예컨대, 하우징(140)은 다각형(예컨대, 사각형, 또는 팔각형) 또는 원형의 개구을 구비할 수 있으며, 하우징(140)의 개구는 광축 방향으로 하우징(140)을 관통하는 관통 홀 형태일 수 있다.
하우징(140)은 복수의 측부들(141-1 내지 141-4) 및 복수의 코너부들(142-1 내지 142-4)을 포함할 수 있다.
예를 들어, 하우징(140)은 제1 내지 제4측부들(141-1 내지 141-4) 및 제1 내지 제4코너부들(142-1 내지 142-4)을 포함할 수 있다.
제1 내지 제4측부들(141-1 내지 141-4)은 서로 이격될 수 있다. 하우징(140)의 코너부들(142-1 내지 142-4) 각각은 인접하는 2개의 측부들(141-1과 141-3, 141-1과 141-4, 141-4와 141-2, 141-2와 141-3) 사이에 배치 또는 위치할 수 있고, 측부들(141-1 내지 141-4)을 서로 연결시킬 수 있다.
예컨대, 코너부들(142-1 내지 142-4)은 하우징(140)의 코너 또는 모서리에 위치할 수 있다. 예컨대, 하우징(140)의 측부들의 개수는 4개이고, 코너부들의 개수는 4개이나, 이에 한정되는 것은 아니다.
하우징(140)의 측부들(141-1 내지 141-4) 각각은 커버 부재(300)의 측판들 중 대응하는 어느 하나와 평행하게 배치될 수 있다.
하우징(140)의 측부들(141-1 내지 141-4) 각각의 가로 방향의 길이는 코너부들(142-1 내지 142-4) 각각의 가로 방향의 길이보다 클 수 있으나, 이에 한정되는 것은 아니다.
하우징(140)의 제1측부(141-2)와 제2측부(141-2)는 서로 반대편에 위치할 수 있고, 제3측부(141-3)와 제4측부(141-4)는 서로 반대편에 위치할 수 있다. 하우징(140)의 제3측부(141-3)와 제4측부(141-4) 각각은 제1측부(141-2)와 제2측부(141-2) 사이에 위치할 수 있다.
커버 부재(300)의 상판(301)의 내측면에 직접 충돌하는 것을 방지하기 위하여, 하우징(140)은 상부, 상단, 또는 상면에는 스토퍼(144)가 마련될 수 있다.
예컨대, 하우징(140)의 코너부들(142-1 내지 142-4) 각각의 상면(예컨대, 제1면(51a))에는 스토퍼(144)가 마련될 수 있으나, 이에 한정되는 것은 아니다.
하우징(140)의 상부, 상단, 또는 상면에는 상부 탄성 부재(150)의 제1외측 프레임(152)과 결합하는 적어도 하나의 제1결합부가 구비될 수 있다. 또한 하우징(140)의 하부, 하단, 또는 하면에는 하부 탄성 부재(160)의 제2외측 프레임(162)에 결합 및 고정되는 적어도 하나의 제2결합부가 구비될 수 있다.
하우징(140)의 제1결합부 및 제2결합부 각각은 평면, 홈, 또는 돌기 중 어느 하나일 수 있다.
열 융착 또는 접착제를 이용하여 하우징(140)의 제1결합부와 상부 탄성 부재(150)의 제1외측 프레임(152)은 서로 결합될 수 있고, 하우징(140)의 제2결합부와 하부 탄성 부재(160)의 제2외측 프레임(162)은 서로 결합될 수 있다.
하우징(140)은 서로 반대편에 위치하는 어느 2개의 측부들 중 어느 하나(예컨대, 제1측부(141-1)에 마련되고 제1마그네트(130-1)가 배치되기 위한 제1안착부(141a), 및 상기 2개의 측부들 중 나머지 다른 하나(141-2)에 마련되고 제2마그네트(130-2)가 배치되기 위한 제2안착부(141b)를 포함할 수 있다.
또한 하우징(140)은 서로 반대편에 위치하는 다른 어느 2개의 측부들 중 어느 하나(예컨대, 제3측부(141-3))에 마련되고 제3마그네트(130-3)가 배치되기 위한 제3안착부(141c), 및 상기 다른 어느 2개의 측부들 중 나머지 다른 하나(141-4)에 마련되고 보빈(110)의 돌출부(116)가 배치되기 위한 제4안착부(141d)를 포함할 수 있다.
예컨대, 하우징(140)의 제4안착부(141d)에는 센싱 코일(180)의 적어도 일부가 배치될 수 있다.
하우징(140)의 제1 내지 제3안착부들(141a 내지 141c) 각각은 하우징(140)의 측부들 중 대응하는 어느 하나의 내측면에 마련될 수 있으나, 이에 한정되는 것은 아니며, 외측면에 마련될 수도 있다.
하우징(140)의 제1 내지 제3안착부들(141a 내지 141c) 각각은 제1 내지 제3마그네트들(130-1 내지 130-3) 중 대응하는 어느 하나와 대응하거나 또는 일치하는 형상을 갖는 홈, 예컨대, 요홈으로 형성될 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 하우징(140)의 제1안착부(141a)(또는 제2안착부(141b))는 제1코일 유닛(120-1)(또는 제2코일 유닛)을 마주보는 제1개구가 형성될 수 있고, 제3코일 유닛(230-1)(또는 제4코일 유닛(230-2))과 마주보는 제2개구가 형성될 수 있으며, 이는 마그네트(130)의 장착을 용이하게 하기 위함이다.
하우징(140)의 제3안착부(141c)는 보빈(110)의 외측면을 마주보는 제1개구, 및 제5코일 유닛(230-3)을 마주보는 제2개구가 형성될 수 있다.
또한 하우징(140)의 제4안착부(141d)는 보빈(110)의 돌출부(116)와 대응하거나 또는 일치하는 형상을 갖는 홈, 예컨대, 요홈으로 형성될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 하우징(140)의 측부를 관통하는 관통홀 형태일 수도 있다.
하우징(140)의 제4안착부(141d)는 하우징(140)의 제4측부(141-4)의 내측면으로 개방되는 제1개구 및 하우징(140)의 제4측부(141-4)의 하면으로 개방되는 제2개구를 포함할 수 있다.
예컨대, 하우징(140)의 제1 내지 제3안착부들(141a, 141b, 141c)에 고정, 또는 배치된 제1 내지 제3마그네트들(130-1, 130-2, 130-3)의 일 측면은 안착부(141a, 141b, 141c)의 제1개구를 통하여 노출될 수 있다. 또한 하우징(140)의 제1 내지 제3안착부들(141a, 141b, 141c)에 고정 또는 배치된 제1 내지 제3마그네트들(130-1, 130-2, 130-3)의 하면은 안착부(141a, 141b, 141c)의 제2개구를 통하여 노출될 수 있다.
하우징(140)의 제4안착부(141d)에 배치된 센싱 코일(180)의 적어도 일부는 하우징(140)의 제4측부(141-4)의 제2개구를 통하여 노출될 수 있다.
예컨대, 센싱 코일(180)의 하부 또는 하면의 적어도 일부는 하우징(140)의 제4측부의 제2개구를 통하여 노출될 수 있고, 광축 방향으로 제1위치 센서(170)에 대향되거나 오버랩될 수 있다.
예컨대, 센싱 코일(180)의 제1직선부(4a) 및 제2직선부(4b) 중 적어도 하나는 제1위치 센서(170)와 광축 방향으로 오버랩될 수 있다. 또는 센싱 코일(180)의 중앙홀의 적어도 일부는 제1위치 센서(170)와 광축 방향으로 오버랩될 수도 있다.
하우징(140)의 제4측부(141-4)에는 더미 부재(135)가 배치되기 위한 안착홈(41,42)이 마련될 수 있다. 예컨대, 하우징(140)의 제4측부(141-4)에는 제1더미(135a)가 배치되기 위한 제1안착홈(41), 및 제2더미(135b)가 배치되기 위한 제2안착홈(42)이 형성될 수 있다. 제1 및 제2안착홈들(41, 42) 각각은 하우징(140)의 제4측부(141-4)의 하면으로부터 함몰된 형태일 수 있으나, 이에 한정되는 것은 아니다.
하우징(140)의 제1안착홈(41)과 제2안착홈(42) 사이에 제4안착부(141d)가 배치될 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 접착제에 의하여 제1 내지 제3마그네트들(130-1 내지 130-3)은 제1 내지 제3안착부들(141a 내지 141c)에 부착 또는 고정될 수 있다. 또한 접착제에 의하여 더미 부재(135)는 하우징(140)의 안착홈(41,42) 내에 부착 또는 고정될 수 있다.
하우징(140)의 코너부들(142-1 내지 142-4)에는 지지 부재(220-1 내지 220-4)가 배치될 수 있는데, 하우징(140)의 코너부들(142-1 내지 142-4)에는 지지 부재(220-1 내지 220-4)가 지나가는 경로를 형성하는 홀(147)이 구비될 수 있다.
예컨대, 하우징(140)은 코너부들(142-1 내지 142-4)의 상부를 관통하는 홀(147)을 포함할 수 있다.
다른 실시예에서 하우징(140)의 코너부들(142-1 내지 142-4)에 마련되는 홀은 하우징(140)의 코너부의 외측면으로부터 함몰되는 구조일 수 있으며, 홀의 적어도 일부는 코너부의 외측면으로 개방될 수도 있다. 하우징(140)의 홀(147)의 개수는 지지 부재의 개수와 동일할 수 있다.
하우징(140)은 측부들(141-1 내지 141-4)의 외측면으로부터 돌출된 적어도 하나의 스토퍼(미도시)를 구비할 수 있으며, 적어도 하나의 스토퍼는 하우징(140)이 광축 방향과 수직한 방향으로 움직일 때 커버 부재(300)와 충돌하는 것을 방지할 수 있다.
하우징(140)의 하부면이 베이스(210) 및/또는 회로 기판(250)과 충돌하는 것을 방지하기 위하여, 하우징(140)은 하부면으로부터 돌출되는 스토퍼(미도시)를 더 구비할 수도 있다.
지지 부재(220-1 내지 220-4)가 지나가는 경로를 확보하기 위해서일 뿐만 아니라, 댐핑 역할을 할 수 있는 실리콘을 채우기 위한 공간을 확보하기 위하여 하우징(140)은 코너부들(142-1 내지 142-4)의 하부, 또는 하단에 마련되는 홈(148)를 구비할 수 있다.
다음으로 제1마그네트(130-1), 제2마그네트(130-2), 및 제3마그네트(130-3), 및 더미 부재(135)에 대해서 설명한다.
제1마그네트(130-1), 제2마그네트(130-2), 및 제3마그네트(130-3)는 서로 이격되어 하우징(140)에 배치될 수 있다. 예컨대, 제1 내지 제3마그네트들(130-1 내지 130-3) 각각은 보빈(110)과 하우징(140) 사이에 배치될 수 있다.
제1마그네트(130-1), 제2마그네트(130-2), 및 제3마그네트(130-3)는 하우징(140)의 측부에 배치될 수 있다.
제1마그네트(130-1)와 제2마그네트(130-2)는 하우징(140)의 측부들(141-1 내지 141-4) 중 서로 반대편에 위치하는 어느 2개의 측부들(141-1, 141-2)에 배치될 수 있다.
또한 제3마그네트(130-3) 및 더미 부재(135)는 하우징(140)의 측부들(141-1 내지 141-4) 중 서로 반대편에 위치하는 다른 어느 2개의 측부들(141-3, 141-4)에 배치될 수 있다.
예컨대, 제1마그네트(130-1)는 하우징(140)의 제1측부(141-1)에 배치될 수 있고, 제2마그네트(130-2)는 제1측부(141-1)와 마주보는 하우징(140)의 제2측부(141-2)에 배치될 수 있다.
제3마그네트(130-3)는 하우징(140)의 제3측부(141-3)에 배치될 수 있고, 더미 부재(135)는 제3측부(141-3)와 마주보는 하우징(140)의 제4측부(141-4)에 배치될 수 있다.
AF 구동을 위한 제1 및 제2코일 유닛들(120-1, 120-2)은 보빈(110)의 서로 마주보는 2개의 측부들에 배치되기 때문에, 보빈(110)과 제3마그네트(130-3) 사이에는 AF 구동을 위한 코일 유닛이 배치되지 않는다. 또한 보빈(110)과 더미 부재(135) 사이에는 AF 구동을 위한 코일 유닛이 배치되지 않는다.
또한 OIS 구동을 위해서, 제3 내지 제5코일 유닛들(230-1 내지 230-3)과 제1 내지 제3마그네트들(130-1 내지 130-3)이 서로 대응하므로, 더미 부재(135)와 회로 기판(250) 사이에는 OIS 구동을 위한 제2코일(230)이 배치되지 않는다.
예컨대, 제1마그네트(130-1)는 제1코일 유닛(120-1)과 대향하는 제1면을 포함할 수 있고, 제1마그네트(130-1)의 제1면은 N극과 S극의 2개의 극성들과 2개의 극성들 사이에 위치하는 제1비자성체 격벽(11c)을 포함할 수 있다.
예컨대, 제1마그네트(130-1)는 제3코일 유닛(230-1)을 마주보는 제2면을 포함할 수 있고, 제1마그네트(130-1)의 제2면은 N극과 S극의 2개의 극성들을 포함할 수 있다.
예컨대, 제2마그네트(130-2)는 제2코일 유닛(120-2)과 대향하는 제1면을 포함할 수 있고, 제2마그네트(130-2)의 제1면은 N극과 S극의 2개의 극성과 2개의 극성들 사이에 위치하는 제2비자성체 격벽(12c)을 포함할 수 있다.
예컨대, 제2마그네트(130-2)는 제4코일 유닛(230-2)을 마주보는 제2면을 포함할 수 있고, 제2마그네트(130-2)의 제2면은 N극과 S극의 2개의 극성들을 포함할 수 있다.
예컨대, 제3마그네트(130-3)는 제3마그네트(130)가 배치된 하우징(140)의 제3측부(141-3)와 마주보는 보빈(110)의 측부와 대향하는 제1면을 포함할 수 있고, 제3마그네트(130-3)의 제1면은 N극 또는 S극의 1개의 극성을 포함할 수 있다.
예컨대, 제3마그네트(130-3)는 제5코일 유닛(230-3)을 마주보는 제2면을 포함할 수 있고, 제3마그네트(130-3)의 제2면은 N극과 S극의 2개의 극성을 가질 수 있다.
다른 실시예에서는 제3마그네트(130-3)는 양극 착자 마그네트일 수도 있ㄷ다. 또 다른 실시예에서는 제1 내지 제3마그네트들(130-1 내지 130-3) 중 적어도 하나는 단극 착자 마그네트이거나 양극 착자 마그네트일 수도 있다.
AF 가동부의 초기 위치에서, 제1마그네트(130-1)는 광축(OA)과 수직하고 광축(OA)에서 제1코일 유닛(120-1)(또는 제1코일 유닛(120-1)의 중심)을 향하는 방향으로 제1코일 유닛(120-1)과 오버랩될 수 있다.
AF 가동부의 초기 위치에서, 제2마그네트(130-2)는 광축과 수직하고 광축에서 제2코일 유닛(120-2)(또는 제2코일 유닛(120-2)의 중심)을 향하는 방향으로 제2코일 유닛(120-2)과 오버랩될 수 있다.
AF 가동부의 초기 위치에서, 제3마그네트(130-3)는 광축과 수직하고 하우징(140)의 제3측부(141-3)에서 제4측부(141-4)를 향하는 방향으로 제1코일 유닛(120-1) 및 제2코일 유닛(120-2)과 대향 또는 오버랩되지 않는다.
예컨대, 제1 내지 제3마그네트들(130-1 내지 130-3) 각각은 하우징(140)의 제1 내지 제3안착부들(141a 내지 141c) 중 대응하는 어느 하나에 배치될 수 있다.
제1마그네트(130-1)는 광축과 수직하고 하우징(140)의 제1측부(141-1)에 제2측부(141-2)로 향하는 방향으로 제2마그네트(130-2)와 오버랩될 수 있다.
제1 내지 제3마그네트들(130-1 내지 130-3) 각각의 형상은 하우징(140)의 제1 내지 제3측부들(141-1 내지 141-3) 중 대응하는 어느 하나에 안착 또는 배치되기 용이한 다면체 형상, 예컨대, 직육면체일 수 있다. 예컨대, 제1 내지 제3마그네트들(130-1 내지 130-3) 각각은 평판(flat plate) 형상일 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 제1 및 제2마그네트들(130-1, 130-2) 각각은 2개의 N극과 2개의 S극을 포함하는 4극 마그네트(4 pole magnet)일 수 있고, 제3마그네트(130-3)는 1개의 N극과 1개의 S극을 포함하는 2극 마그네트일 수 있다. 여기서 4극 마그네트는 "양극 착자 마그네트"로 표현될 수도 있고, 2극 마그네트는 "단극 착자 마그네트"로 표현될 수도 있다. 제1 내지 제3마그네트들(130-1 내지 130-3)에 대해서는 후술한다.
다른 실시예에서는 제1 내지 제3마그네트들 중 적어도 하나는 2극 마그네트들일 수도 있다. 또는 제1 내지 제3마그네트들 중 적어도 하나는 4극 마그네트일 수도 있다.
더미 부재(135)는 하우징(140)의 제4측부(141-4)에 배치될 수 있다. 더미 부재(135)는 비자성 물질 또는 비자성체일 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 자성체를 포함할 수도 있다.
더미 부재(135)는 제3마그네트(130-3)와 동일한 질량을 가질 수 있으나, 이에 한정되는 것은 아니다. 더미 부재(135)는 무게 균형을 위하여 제3마그네트(130-3)가 배치되는 하우징(140)의 측부(141-3)와 반대편에 위치하는 측부(141-4)에 배치될 수 있다. 더미 부재(135)는 "무게 밸런싱 부재", "밸런싱 부재", 또는 "무게 부재"로 대체하여 표현될 수도 있다.
더미 부재(135)는 서로 이격되는 제1더미(135a), 및 제2더미(135b)를 포함할 수 있다.
예컨대, 보빈(110)의 돌출부(116)의 적어도 일부는 제1더미(135a)와 제2더미(135b) 사이에 배치될 수 있다. 또한 예컨대, 센싱 코일(180)의 적어도 일부는 제1더미(135a)와 제2더미(135b) 사이에 배치될 수 있다.
예컨대, 제1더미(135a)와 제2더미(135b)는 서로 대칭적인 형상을 가질 수 있다. 예컨대, 제1더미(135a)와 제2더미(135b)는 센싱 코일(180) 또는 보빈(110)의 돌출부(116)를 기준으로 대칭적으로 배치될 수 있으나, 이에 한정되는 것은 아니다.
또 다른 실시예에 따른 더미 부재는 제1더미(135a) 및 제2더미(135b) 중 어느 하나만을 포함할 수도 있다. 또 다른 실시예에 따른 더미 부재는 제1더미(135a)와 제2더미(135b)가 서로 연결될 수도 있다.
AF 가동부의 초기 위치에서, 더미 부재(135)는 광축과 수직하고 하우징(140)의 제3측부(141-3)에서 제4측부(141-4)를 향하는 방향으로 제1코일 유닛(120-1) 및 제2코일 유닛(120-2)과 대향 또는 오버랩되지 않는다.
더미 부재(135)는 광축과 수직하고 하우징(140)의 제3측부(141-3)에서 제4측부(141-4)를 향하는 방향으로 제3마그네트(130-3)와 대향 또는 오버랩될 수 있다.
또한 더미 부재(135)는 광축과 수직하고 하우징(140)의 제3측부(141-3)에서 제4측부(141-4)를 향하는 방향으로 제1위치 센서(170)와 오버랩되지 않는다.
또한 더미 부재(135)는 광축 방향으로 제1위치 센서(170)와 오버랩되지 않을 수 있다. 또한 더미 부재(135)는 광축 방향으로 센싱 코일(180)과 오버랩되지 않을 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 광축 방향으로 양자는 서로 오버랩될 수도 있다.
또한 더미 부재(135)는 광축 방향으로 제2코일(230)과 오버랩되지 않는다.
예컨대, 광축 방향으로 더미 부재(135)에 대응하는 영역(예컨대, 회로 부재(231)의 일 영역)에는 코일 유닛이 형성되지 않을 수 있다.
더미 부재(135)가 자성체를 포함하는 경우에, 더미 부재(135)의 자성의 세기는 제3마그네트(130-3)의 자성의 세기보다 작을 수 있다.
예컨대, 더미 부재(135)는 텅스텐을 포함할 수 있으며, 텅스텐은 전체 중량의 95% 이상을 차지할 수 있다. 예컨대, 더미 부재(135)는 텅스텐 합금일 수 있다.
제1 및 제2더미들(135a, 135b)는 다면체, 예컨대, 직육면체 또는 정육면체형상을 가질 수 있으나, 이에 한정되는 것은 아니며, 다양한 형상으로 형성될 수 있다. 예컨대, 더미 부재(135)는 측면 모서리에 라운드진 부분 또는 곡면을 포함할 수 있다.
다음으로 상부 탄성 부재(150), 하부 탄성 부재(160), 지지 부재(220), 제2코일(230), 회로 기판(250), 및 베이스(210)에 대해서 설명한다.
도 5는 상부 탄성 부재(150)의 사시도이고, 도 6은 상부 탄성 부재(150), 지지 부재(220), 및 회로 기판(250)의 전기적 연결 관계를 설명하기 위한 도면이고, 도 7은 제1 내지 제3마그네트들(130-1 내지 130-3), 더미 부재(135), 하우징(140), 하부 탄성 부재(160), 및 센싱 코일(180)의 저면도이고, 도 8은 제2코일(230), 회로 기판(250), 및 베이스(210)의 분리 사시도이고, 도 9는 렌즈 구동 장치(100)에 대한 도 2의 AB 방향으로의 단면도이고, 도 10은 렌즈 구동 장치(100)에 대한 도 2의 CD 방향으로의 단면도이고, 도 11은 렌즈 구동 장치(100)에 대한 도 2의 EF 방향으로의 단면도이다.
도 5 내지 도 11을 참조하면, 상부 탄성 부재(150)와 하부 탄성 부재(160)는 탄성 부재를 구성할 수 있고, 탄성 부재는 보빈(110)과 하우징(140)에 결합될 수 있고, 탄성 부재는 하우징(140)에 대하여 보빈(110)을 탄성 지지할 수 있다.
상부 탄성 부재(150)는 보빈(110)의 상부, 상면, 또는 상단 및 하우징(140)의 상부, 상면, 또는 상단과 결합될 수 있다. 하부 탄성 부재(160)는 보빈(110)의 하부, 하면, 또는 하단 및 하우징(140)의 하부, 하면, 또는 하단과 결합될 수 있다. 상부 탄성 부재 및 하부 탄성 부재에서 탄성 부재는 "탄성 유닛", "스프링", 또는 "탄성체"로 대체하여 표현될 수 있다.
상부 탄성 부재(150)는 서로 이격 또는 분리된 복수의 상부 탄성 부재들(150-1 내지 150-4)을 포함할 수 있다. 도 5에서는 서로 분리된 4개의 상부 탄성 부재들을 도시하나, 그 개수가 이에 한정되는 것은 아니며, 다른 실시예에서는 2개 이상일 수도 있다. 또는 다른 실시예에서는 상부 탄성 부재(150)는 일체로 형성되는 단일의 탄성 유닛으로 구현될 수도 있다.
제1 내지 제4상부 탄성 부재들(150-1 내지 150-4) 중 적어도 하나는 보빈(110)과 결합되는 제1내측 프레임(151), 하우징(140)과 결합되는 제1외측 프레임(152), 제1내측 프레임(151)과 제1외측 프레임(152)을 연결하는 제1프레임 연결부(153)를 더 포함할 수 있다. 이때, 내측 프레임은 "내측부"로 표현될 수 있고, 외측 프레임은 "외측부"로 표현될 수도 있다.
예컨대, 제1 및 제2내측 프레임들(151, 161)에는 보빈(110)의 제1 및 제2결합부들과 결합되기 위한 제1영역이 마련될 수 있고, 제1 및 제2외측 프레임들(152,162)에는 하우징(140)의 제1 및 제2결합부들과 결합되기 위한 제2영역이 마련될 수 있다. 도 6에는 도시되지 않지만, 제1 및 제2영역에는 보빈(110)의 제1 및 제2결합부들과 하우징(140)의 제1 및 제2결합부들과 결합되기 위한 홀이 마련될 수도 있다.
제1 내지 제4상부 탄성 부재들(150-1 내지 150-4) 각각의 제1외측 프레임(152)은 하우징(140)의 코너부들(142-1 내지 142-4) 중 대응하는 어느 하나와 결합되는 제1결합부(510), 지지 부재(220-1 내지 220-4)와 결합되는 제2결합부(520), 제1결합부(510)와 제2결합부(520)를 연결하는 연결부(530)를 포함할 수 있다.
제1결합부(510)는 하우징(140)(예컨대, 코너부(142-1 내지 142-4))와 결합되는 적어도 하나의 결합 영역(예컨대, 5a, 5b)을 포함할 수 있다.
예컨대, 도 5에서 제1결합부(510)의 결합 영역(5a,5b)에는 홀이 형성되지 않지만, 다른 실시예에서는 제1결합부(510)의 결합 영역(예컨대, 5a, 5b)은 하우징(140)의 제1결합부와 결합되는 적어도 하나의 홀 또는 관통홀(미도시)을 포함할 수 있다.
예컨대, 결합 영역들(5a, 5b) 각각은 1개 이상의 홀을 구비할 수 있으며, 하우징(140)의 코너부(142-1 내지 142-4)에는 이에 대응하여 1개 이상의 제1결합부가 마련될 수 있다. 다른 실시예에서 제1결합부(510)의 결합 영역들은 하우징(140)과 결합하기 충분한 다양한 형태, 예컨대, 홈 형태 등으로 구현될 수도 있다.
제2결합부(520)는 지지 부재(220)가 통과하는 홀(52)을 구비할 수 있다. 홀(52)을 통과한 지지 부재(220)의 일단은 전도성 접착 부재 또는 솔더(901, 도 6 참조)에 의하여 제2결합부(520)에 직접 결합될 수 있고, 제2결합부(520)와 지지 부재(220-1 내지 220-4)는 전기적으로 연결될 수 있다.
예컨대, 제2결합부(520)는 지지 부재(220)와의 결합을 위하여 솔더(901)가 배치되는 영역으로서, 홀(52) 및 홀(52) 주위의 일 영역을 포함할 수 있다.
연결부(530)는 제1결합부(510)의 결합 영역들(5a, 5b)과 제2결합부(510)를 연결할 수 있다.
예컨대, 연결부(530)는 제1결합부(510)의 제1영역(5a)과 제2결합부(520)를 연결하는 제1연결부(530-1)와 제1결합부(510)의 제2영역(5b)과 제2결합부(520)를 연결하는 제2연결부(530-2)를 포함할 수 있다. 제1 및 제2연결부들(530) 각각은 적어도 한번 절곡된 부분 또는 휘어진 부분을 포함할 수 있다.
도 5b를 참조하면, 하부 탄성 부재(160)는 일체로 형성된 하나의 탄성 유닛으로 구현될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 서로 분리된 복수의 탄성 유닛들을 포함할 수도 있다.
예컨대, 하부 탄성 부재(160)는 보빈(110)의 하부, 하면, 또는 하단에 결합 또는 고정되는 제2내측 프레임(161), 하우징(140)의 하부, 하면, 또는 하단에 결합 또는 고정되는 제2외측 프레임(162), 및 제2내측 프레임(161)과 제2외측 프레임(162)을 서로 연결하는 제2프레임 연결부(163)를 포함할 수 있다.
상부 탄성 부재(150)의 제1프레임 연결부(153)와 하부 탄성 부재(160)의 제2프레임 연결부(163) 각각은 적어도 한 번 이상 절곡 또는 커브(또는 곡선)지도록 형성되어 일정 형상의 패턴을 형성할 수 있다. 제1 및 제2프레임 연결부들(153, 163)의 위치 변화 및 미세 변형을 통해 보빈(110)은 제1방향으로 상승 및/또는 하강 동작이 탄력적으로(또는 탄성적으로) 지지될 수 있다.
상부 탄성 부재들(150-1 내지 150-4) 및 하부 탄성 부재(160)는 판 스프링으로 이루어질 수 있으나, 이에 한정되는 것은 아니며, 코일 스프링 등으로 구현될 수도 있다.
다음으로 지지 부재(220)에 대하여 설명한다.
지지 부재(220)는 고정부에 대하여 OIS 가동부(예컨대, 하우징(140))을 탄성적으로 지지할 수 있고, OIS 가동부를 광축과 수직인 방향으로 이동 가능하게 지지할 수 있다. 고정부는 회로 기판(250), 제2코일(230), 또는/및 베이스(210) 중 적어도 하나를 포함할 수 있다.
지지 부재(220)는 상부 탄성 부재(150)와 회로 기판(250)을 전기적으로 연결할 수 있다.
지지 부재(220)는 복수의 지지 부재들(220-1 내지 220-4)을 포함할 수 있다.
예컨대, 지지 부재(220)는 하우징(140)의 코너부들(142-1 내지 142-4)에 대응되는 제1 내지 제4지지 부재들(220-1 내지 220-4)을 포함할 수 있다.
제1 내지 제4지지 부재들(220-1 내지 220-4) 각각은 하우징(140)의 제1 내지 제4코너부들(142-1 내지 142-4) 중 대응하는 어느 하나에 배치될 수 있고, 제1 내지 제4상부 탄성 부재들(150-1 내지 150-4) 중 대응하는 어느 하나와 회로 기판(250)을 서로 연결할 수 있다.
도 2에서는 하우징(140)의 하나의 코너부에 하나의 지지 부재가 배치되나, 이에 한정되는 것은 아니며, 다른 실시예에서는 하우징(140)의 하나의 코너부에 2개 이상의 지지 부재가 배치될 수도 있다.
예컨대, 제1 내지 제4지지 부재들(220-1 내지 220-4) 각각은 제1 내지 제4상부 탄성 부재들(150-1 내지 150-4) 중 대응하는 어느 하나와 회로 기판(250)의 단자들 중 대응하는 어느 하나를 전기적으로 연결시킬 수 있다.
제1 내지 제4지지 부재들(220-1 내지 220-4)은 하우징(140)과 이격될 수 있고, 하우징(140)에 결합 또는 고정되는 것이 아니라, 전도성 접착제 또는 납땜 등을 통하여 제1 내지 제4지지 부재들(220-1 내지 220-4) 각각의 일단은 제1 내지 제4상부 탄성 부재들(150-1 내지 150-4) 중 대응하는 어느 하나의 제1결합부(510)에 직접 연결 또는 결합될 수 있다.
또한 납땝 등을 통하여 제1 내지 제4지지 부재들(220-1 내지 220-4) 각각의 타단은 회로 기판(250)에 직접 연결 또는 결합될 수 있다. 예컨대, 제1 내지 제4지지 부재들(220-1 내지 220-4) 각각의 타단은 회로 기판(250)의 하면에 직접 연결 또는 결합될 수 있다. 다른 실시예에서는 지지 부재들(220-1 내지 220-4) 각각의 타단은 제2코일(230)의 회로 부재(231) 또는 베이스(210)에 결합될 수도 있다.
예컨대, 제1 내지 제4지지 부재들(220-1 내지 220-4) 각각은 하우징(140)의 코너부들(142-1 내지 142-4) 중 대응하는 어느 하나에 마련된 홀(147)을 통과할 수 있으나, 이에 한정되는 것은 아니다. 다른 실시예에서는 지지 부재들은 하우징(140)의 측부들(141-1 내지 141-4)과 코너부들(142)의 경계선에 인접하여 배치될 수 있고, 하우징(140)의 코너부(142-1 내지 142-4)를 통과하지 않을 수도 있다.
제1코일(120)은 상부 탄성 부재(150)에 전기적으로 연결될 수 있다.
제1코일 유닛(120-1)의 일단은 제1상부 탄성 부재(150-1)에 결합 또는 연결될 수 있고, 제1코일 유닛(120-1)의 타단은 제2상부 탄성 부재(150-2)에 결합 또는 연결될 수 있다. 예컨대, 제1코일 유닛(120-1)은 제1 및 제2상부 탄성 부재들(150-1, 150-2)의 제1내측 프레임(151)에 결합 또는 연결될 수 있다.
제2코일 유닛(120-2)의 일단은 제3상부 탄성 부재(150-3)에 결합 또는 연결될 수 있고, 제2코일 유닛(120-2)의 타단은 제4상부 탄성 부재(150-4)에 결합 또는 연결될 수 있다. 예컨대, 제2코일 유닛(120-2)은 제3 및 제4상부 탄성 부재들(150-3, 150-4)의 제1내측 프레임(151)에 결합 또는 연결될 수 있다.
제1 내지 제4지지 부재들(220-1 내지 220-4)에 의하여 제1 및 제2코일 유닛들(120-1, 120-2)은 회로 기판(250)과 전기적으로 연결될 수 있다.
예컨대, 회로 기판(250)에 형성되는 배선 또는 회로 패턴을 통하여 제1 및 제2코일 유닛들(120-1, 120-2)은 서로 직렬 연결될 수 있다. 그리고 직렬 연결되는 제1 및 제2코일 유닛들은 양단은 회로 기판(250)의 단자들 중 어느 2개의 단자들과 전기적을 연결될 수 있다. 이때 회로 기판(250)의 상기 어느 2개의 단자들을 통하여 제1코일 유닛(120-1)과 제2코일 유닛(120-2)에 하나의 구동 신호가 제공될 수 있다.
다른 실시예에서는 제1 및 제2코일 유닛들(120-1, 120-2)은 서로 직렬 연결되지 않을 수 있고, 제1코일 유닛들(120-1)은 회로 기판(250)의 2개의 단자들에 전기적으로 연결될 수 있고, 제2코일 유닛들(120-2)은 회로 기판(250)의 다른 2개의 단자들에 전기적으로 연결될 수도 있고, 회로 기판(250)의 4개의 단자들을 통하여 제1코일 유닛(120-1)과 제2코일 유닛(120-2) 각각에 개별적인 구동 신호(예컨대, 구동 전류)가 제공될 수 있다.
다른 실시예에서는 제1코일 유닛(120-1)과 제2코일 유닛(120-2)은 상부 탄성 부재에 의하여 서로 직렬 연결될 수도 있다. 예컨대, 상부 탄성 부재는 제1 내지 제3탄성 유닛들을 포함할 수 있고, 제1코일 유닛(120-1)은 제1탄성 유닛과 제3탄성 유닛에 결합될 수 있고, 제2코일 유닛(120-2)은 제2탄성 유닛과 제3탄성 유닛에 결합될 수 있으며, 제3탄성 유닛에 의하여 양자는 직렬 연결될 수도 있다.
지지 부재(220)는 전도성이고, 탄성에 의하여 지지할 수 있는 부재, 예컨대, 서스펜션와이어(suspension wire), 판스프링(leaf spring), 또는 코일스프링(coil spring) 등으로 구현될 수 있다. 또한 다른 실시예에 지지 부재(220)는 상부 탄성 부재(150)와 일체로 형성될 수도 있다.
보빈(110)의 진동을 흡수 및 완충시키기 위하여, 렌즈 구동 장치(100)는 상부 탄성 부재들(150-1 내지 150-4) 각각과 보빈(110)(또는 하우징(140)) 사이에 배치되는 제1댐퍼(미도시)를 더 구비할 수 있다.
예컨대, 상부 탄성 부재들(150-1 내지 150-4) 각각의 제1프레임 연결부(153)와 보빈(110) 사이의 공간에 제1댐퍼(미도시)가 배치될 수 있다.
또한 예컨대, 렌즈 구동 장치(100)는 하부 탄성 부재(160)의 제2프레임 연결부(163)와 보빈(110)(또는 하우징(140) 사이에 배치되는 제2댐퍼(미도시)를 더 구비할 수도 있다.
또한 예컨대, 렌즈 구동 장치(100)는 지지 부재(220)와 하우징(140)의 홀(147) 사이에 배치되는 제3댐퍼(미도시)를 더 포함할 수 있다.
또한 예컨대, 렌즈 구동 장치(100)는 제2결합부(520)와 지지 부재(220)의 일단에 배치되는 제4댐퍼(미도시)를 더 포함할 수 있고, 지지 부재(220)의 타단과 회로 기판(250)에 배치되는 제5댐퍼(미도시)를 더 포함할 수 있다.
또한 진동에 의한 발진을 방지하기 위하여 연결부(530)와 하우징(140) 사이의 빈 공간에는 제6댐퍼(미도시)가 채워질 수도 있다.
또한 예컨대, 하우징(140)의 내측면과 보빈(110)의 외주면 사이에도 제7댐퍼(미도시)가 더 배치될 수도 있다.
다음으로 베이스(210), 회로 기판(250), 및 제2코일(230)에 대하여 설명한다.
도 8을 참조하면, 베이스(210)는 보빈(110)(또는 하우징(140)) 아래에 배치된다.
베이스(210)는 보빈(110)의 개구, 또는/및 하우징(140)의 개구에 대응하는 개구(21)을 구비할 수 있고, 커버 부재(300)와 일치 또는 대응되는 형상, 예컨대, 사각형 형상일 수 있다. 예컨대, 베이스(210)의 개구는 광축 방향으로 베이스(210)를 관통하는 관통 홀 형태일 수 있다.
회로 기판(250)의 단자(251)와 마주하는 베이스(210)의 영역에는 받침부(255) 또는 지지부가 마련될 수 있다. 베이스(210)의 받침부(255)는 단자(251)가 형성된 회로 기판(250)의 단자면(253)을 지지할 수 있다.
베이스(210)는 회로 기판(250)과 결합된 지지 부재(220-1 내지 220-4)의 타단과의 공간적 간섭을 회피하기 위하여 모서리 영역에 요홈(212)를 가질 수 있다. 예컨대, 요홈(212)은 커버 부재(300)의 모서리에 대응되도록 형성될 수 있다.
또한 베이스(210)의 개구 주위의 상면에는 회로 부재(231)의 결합홈(23), 및 회로 기판(250)의 결합홈(27)과 결합하기 위한 돌출부(29)가 마련될 수 있다. 예컨대, 결합홈(23)은 회로 부재(231)의 개구에 인접하여 형성될 수 있고, 회로 부재(231)의 내측면으로부터 함몰된 형태일 수 있다. 또한 예컨대, 결합홈(27)은 회로 기판(250)의 개구에 인접하여 형성될 수 있고, 회로 기판(250)의 내주면으로부터 함몰된 형태일 수 있다.
또한 베이스(210)의 하면에는 카메라 모듈(200)의 필터(610)가 설치되는 안착부(미도시)가 형성될 수도 있다.
베이스(210)는 제1위치 센서(170)를 배치, 안착, 또는 수용하기 위한 제1안착홈(215-1), 제2위치 센서(240)의 제1센서(240a)를 배치, 안착 또는 수용하기 위한 제2안착홈(215-2), 및 제2위치 센서(240)의 제2센서(240b)를 배치, 안착 또는 수용하기 위한 제3안착홈(215-3)을 포함할 수 있다.
제1 내지 제3안착홈들(215-1 내지 215-3)은 베이스(210)의 상면으로부터 함몰되는 형태일 수 있다.
제2코일(230)은 보빈(110) 또는/및 하우징(140) 아래에 배치될 수 있고, 회로 기판(250) 상에 배치될 수 있다. 예컨대, 제2코일(230)은 회로 기판(250)의 상면에 배치될 수 있다.
제2코일(230)은 하우징(140) 및 보빈(110)의 아래에 배치될 수 있다.
제2코일(230)은 복수의 코일 유닛들(230-1 내지 230-3)을 포함할 수 있다.
예컨대, 제2코일(230)은 하우징(140)에 배치된 제1마그네트(130-1)에 대응되는 제3코일 유닛(230-1), 제2마그네트(130-2)에 대응되는 제4코일 유닛(230-2), 및 제3마그네트(130-3)에 대응되는 제5코일 유닛(230-3)을 포함할 수 있다.
여기서 제3코일 유닛(230-1)은 "제1OIS 코일 유닛" 또는 "제1코일링"으로 대체하여 표현될 수 있고, 제4코일 유닛(230-2)은 "제2OIS 코일 유닛" 또는 "제2코일링"으로 대체하여 표현될 수 있고, 제4코일 유닛(230-4)은 "제3OIS 코일 유닛" 또는 "제3코일링"으로 대체하여 표현될 수 있다.
예컨대, 제3코일 유닛(230-1)은 광축 방향으로 제1마그네트(130-1)와 대향 또는 오버랩될 수 있고, 제4코일 유닛(230-2)은 광축 방향으로 제2마그네트(130-2)와 대향 또는 오버랩될 수 있고, 제5코일 유닛(230-3)은 광축 방향으로 제3마그네트(130-3)와 대향 또는 오버랩될 수 있다.
제3 내지 제5코일 유닛들(230-1 내지 230-3) 각각은 중앙홀을 갖는 폐곡선, 예컨대, 링 형상을 가질 수 있으며, 중앙홀은 광축 방향을 향하도록 형성될 수 있다.
제3 내지 제5코일 유닛들(230-1 내지 230-4) 각각은 FP(Fine pattern) 코일로 형성되는 코일 패턴 형태일 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 제3코일 유닛(230-1)과 제4코일 유닛(230-2)은 제1마그네트(130-1)에서 제2마그네트(130-2)로 향하는 방향으로 서로 마주보거나 또는 서로 반대편에 배치될 수 있다.
또한 예컨대, 제1마그네트(130-1)에서 제2마그네트(130-2)로 향하는 방향으로 제3코일 유닛(230-1)과 제4코일 유닛(230-2) 각각은 제5코일 유닛(230-3)과 오버랩되지 않을 수 있다.
예컨대, 제2코일(230)은 제3 내지 제5코일 유닛들(230-1 내지 230-3)이 형성되는 다각형(예컨대, 사각형)의 회로 부재(231)를 더 포함할 수 있다. 여기서 회로 부재(231)는 "기판", "회로 기판", 또는 "코일 기판" 등으로 표현될 수 있다.
예컨대, 회로 부재(231)는 4개의 변들을 포함할 수 있으며, 제3 내지 제5코일 유닛들(230-1 내지 230-3) 각각은 회로 부재(231)의 3개의 변들 중 대응하는 어느 하나에 배치될 수 있고, 회로 부재(231)의 나머지 하나의 변에는 코일 유닛이 배치되지 않을 수 있다.
예컨대, 제3코일 유닛(230-1)과 제4코일 유닛(230-2) 각각은 회로 부재(231)의 서로 마주보는 제1 및 제2변들 중 대응하는 어느 하나에 평행하도록 배치될 수 있고, 제5코일 유닛(230-3)은 회로 부재(231)의 제3변 또는 제4변에 평행하도록 배치될 수 있다.
또 다른 실시예에서는 제2코일은 회로 부재가 생략된 형태로 링 형상의 코일 블록들 또는 FP(Fine Patterned) 형태로 구현된 제3 내지 제5코일 유닛들만을 포함할 수도 있다.
또 다른 실시예에서는 제2코일의 제3 내지 제5코일 유닛들은 회로 기판(250)에 형성되는 회로 패턴 또는 배선 형태로 구현될 수도 있다.
회로 기판(250)과 회로 부재(231)는 별도의 구성들로 분리되어 표현되지만, 이에 한정되는 것은 아니며, 다른 실시예에서는 회로 기판(250) 및 회로 부재(231)를 함께 묶어 "회로 부재"라는 용어로 표현할 수도 있다. 이 경우에 지지 부재들의 타단은 "회로 부재(예컨대, 회로 부재의 하면)"에 결합될 수 있다.
지지 부재들(220-1 내지 220-4)과의 공간적 간섭을 피하기 위하여, 회로 부재(231)의 모서리에는 홀(230a)이 마련될 수 있으며, 지지 부재들(220-1 내지 220-4)은 회로 부재(231)의 홀(230a)을 통과할 수 있다. 다른 실시예에서는 회로 부재는 지지 부재들과의 공간적 간섭을 피하기 위하여 홀 대신에 회로 부재의 모서리에 마련되는 홈을 구비할 수도 있다.
제3 내지 제5코일 유닛들(230-1 내지 230-3)은 회로 기판(250)과 전기적으로 연결될 수 있다. 예컨대, 제3 내지 제5코일 유닛들(230-1 내지 230-3)은 회로 기판(250)의 단자들(251)에 전기적으로 연결될 수 있다.
회로 기판(250)은 베이스(210)의 상면 상에 배치되며, 보빈(110)의 개구, 하우징(140)의 개구, 또는/및 베이스(210)의 개구에 대응하는 개구을 구비할 수 있다. 회로 기판(250)의 형상은 베이스(210)의 상면과 일치 또는 대응되는 형상, 예컨대, 사각형 형상일 수 있다.
회로 기판(250)은 상면으로부터 절곡되는 적어도 하나의 단자면(253)을 포함할 수 있다. 회로 기판(250)의 적어도 하나의 단자면(253)에는 외부로부터 전기적 신호들을 공급받는 복수 개의 단자들(251)이 마련될 수 있다.
예컨대, 회로 기판(250)은 상면의 변들 중에서 서로 마주보는 2개의 변들에 배치되는 2개의 단자면들을 포함할 수 있으나, 이에 한정되는 것은 아니다.
회로 기판(250)의 단자면(253)에 마련된 복수 개의 단자들(251)을 통하여 제1코일(120), 및 제2코일(230) 각각에 구동 신호가 제공될 수 있다. 또한 회로 기판(250)의 단자들(251)을 통하여 제1위치 센서(170) 및 제2위치 센서(240) 각각에 구동 신호가 제공될 수 있고, 회로 기판(250)은 제1 및 제2위치 센서들(170, 240) 각각의 출력 신호를 수신하여 단자들(251)을 통하여 출력할 수 있다.
회로 기판(250)은 FPCB로 마련될 수 있으나 이를 한정하는 것은 아니며, 회로 기판(250)의 단자들을 베이스(210)의 표면에 표면 전극 방식 등을 이용하여 직접 형성하는 것도 가능하다.
회로 기판(250)은 지지 부재들(220-1 내지 220-4)과의 공간적 간섭을 피하기 위하여 지지 부재들(220-1 내지 220-4)이 통과하는 홀(250a)을 포함할 수 있다. 홀(250a)의 위치 및 수는 지지 부재들(220-1 내지 220-4)의 위치 및 수에 대응 또는 일치할 수 있다. 다른 실시예에서 회로 기판(250)은 홀(250a) 대신에 모서리에 도피 홈을 구비할 수도 있다.
예컨대, 지지 부재들(220-1 내지 220-4)은 회로 기판(250)의 홀(250a)을 통과하여 회로 기판(250)의 하면에 배치되는 회로 패턴과 솔더 등을 통해 전기적으로 연결될 수 있으나, 이에 한정되는 것은 아니다.
다른 실시예에서 회로 기판(250)은 홀을 구비하지 않을 수 있으며, 지지 부재들(220-1 내지 220-4)은 회로 기판(250)의 상면에 형성되는 회로 패턴 또는 패드에 솔더 등을 통하여 전기적으로 연결될 수도 있다.
또는 다른 실시예에서 지지 부재들(220-1 내지 220-4)은 회로 부재(231)에 전기적으로 연결될 수도 있고, 회로 부재(231)는 지지 부재들(220-1 내지 220-4)과 회로 기판(250)을 전기적으로 연결시킬 수 있다.
회로 기판(250)은 제3 내지 제5코일 유닛들(230-1 내지 230-3)과 전기적으로 연결되기 위한 패드들(P1 내지 P4)을 포함할 수 있다. 회로 기판(250)을 통하여 제2코일(230)에 전원 또는 구동 신호가 제공될 수 있다. 제2코일(230)에 제공되는 전원 또는 구동 신호는 직류 신호 또는 교류 신호이거나 또는 직류 신호와 교류 신호를 포함할 수 있고, 전류 또는 전압 형태일 수 있다.
예컨대, 제3코일 유닛(230-1)의 일단은 제1패드(P1)에 연결될 수 있고, 제3코일 유닛(230-1)의 타단은 제2패드(P2)에 연결될 수 있다.
제4코일 유닛(230-2)의 일단은 제3패드(P3)에 연결될 수 있고, 제4코일 유닛(230-2)의 타단은 제4패드(P4)에 연결될 수 있다. 그리고 제1 및 제2패드들 중 어느 하나(예컨대, P2)와 제3 및 제4패드들(P3, P4) 중 어느 하나(예컨대, P4)는 제1회로 패턴(또는 제1배선)에 의하여 서로 연결될 수 있다.
제3 및 제4코일 유닛들(230-1, 230-2)은 서로 직렬 연결될 수 있다. 그리고 제1 및 제2패드들(P1,P2) 중 나머지 다른 하나(예컨대, P1)와 제3 및 제4패드들(P3,P4) 중 나머지 다른 하나(예컨대, P3)는 제2회로 패턴(또는 제2배선)을 통하여 회로 기판(250)의 제1 및 제2단자들과 전기적으로 연결될 수 있다. 그리고 회로 기판(250)의 제1 및 제2단자들을 통하여 제1 및 제2코일 유닛들(230-1, 230-2)에 제1구동 신호가 제공될 수 있다.
또한 예컨대, 제5코일 유닛(230-3)의 일단은 제5패드(P5)에 연결될 수 있고, 제5코일 유닛(230-3)의 타단은 제6패드(P6)에 연결될 수 있다. 제5 및 제6패드들(P5,P6)은 제3회로 패턴(또는 제3배선)을 통하여 회로 기판(250)의 제3 및 제4단자들과 전기적으로 연결될 수 있다. 회로 기판(250)의 제3 및 제4단자들을 통하여 제5코일 유닛(230-3)에 제2구동 신호가 제공될 수 있다.
제1 내지 제3회로 패턴들(또는 배선들)은 회로 기판(250) 내에 형성될 수 있다.
제1 내지 제3마그네트들(130-1 내지 130-3)과 제1 및 제2구동 신호들이 제공된 제3 내지 제5코일 유닛들(230-1 내지 230-3) 간의 상호 작용에 의해 OIS 가동부(예컨대, 하우징(140))이 제2 및/또는 제3방향, 예컨대, x축 및/또는 y축 방향으로 움직일 수 있고, 이로 인하여 손떨림 보정이 수행될 수 있다.
제1위치 센서(170)와 제2위치 센서(240)의 제1 및 제2센서들(240a, 240b)은 회로 기판(250)과 베이스(210) 사이에 배치될 수 있다. 예컨대, 제1위치 센서(170)와 제1 및 제2센서들(240a,240b)은 회로 기판(250)의 하면에 배치, 실장, 또는 결합될 수 있다.
다른 실시예에서는 제1위치 센서(170)와 제1 및 제2센서들(240a,240b) 중 적어도 하나는 회로 기판(250)의 상면에 배치될 수도 있다.
또 다른 실시예에서는 제1위치 센서는 베이스(210)가 아닌 하우징(140)에 배치될 수도 있으며, 하우징(140)에는 제1위치 센서(170)가 배치되기 위한 안착부가 마련될 수 있고, 이때 안착부는 홈, 또는 홀일 수 있다. 예컨대, 하우징(140)에 배치된 제1위치 센서는 광축 방향으로 센싱 마그네트와 오버랩될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 광축 방향으로 오버랩되지 않을 수도 있다. 또한 하우징(140)에 배치된 제1위치 센서는 센싱 코일(180) 아래에 배치될 수도 있으나, 이에 한정되는 것은 아니며, 센싱 코일의 일 측에 배치될 수도 있다.
제1위치 센서(170), 및 제1 및 제2센서들(240a, 240b) 각각은 회로 기판(250)과 전기적으로 연결될 수 있다. 예컨대, 제1위치 센서(170), 및 제1 및 제2센서들(240a, 240b) 각각은 회로 기판(250)의 단자들(251)과 전기적으로 연결될 수 있다.
제1위치 센서(170)는 "AF 위치 센서"일 수 있고, 제2위치 센서(240)는 OIS 위치 센서"일 수 있다. 제2위치 센서(240)는 제1센서(240a) 및 제2센서(240b)를 포함할 수 있다.
제1코일(120)과 마그네트(130) 간의 상호 작용에 의한 전자기력에 의하여 AF 가동부(예컨대, 보빈(110)과 센싱 코일(180))는 광축 방향으로 이동될 수 있으며, 제1위치 센서(170)는 광축 방향으로 이동하는 센싱 코일(180)의 자기장의 세기 또는 자기력을 감지할 수 있고, 감지된 결과에 따른 출력 신호를 출력할 수 있다.
예컨대, 광축 방향으로의 보빈(110)의 변위에 따라 제1위치 센서(170)가 감지한 센싱 코일(180)의 자기장의 세기 또는 자기력이 변화할 수 있고, 제1위치 센서(170)는 감지된 자기장의 세기에 비례하는 출력 신호를 출력할 수 있고, 제1위치 센서(170)의 출력 신호를 이용하여 보빈(110)의 광축 방향으로의 변위가 감지될 수 있다.
제2코일(230)과 마그네트(130) 간의 상호 작용에 의한 전자기력에 의하여 OIS 가동부는 광축과 수직한 방향으로 이동될 수 있고, 제1 및 제2센서들(240a, 240b) 각각은 광축과 수직한 방향으로 이동되는 OIS 가동부의 마그네트(130)의 자기장의 세기를 감지할 수 있고, 감지된 결과에 따른 출력 신호를 출력할 수 있다.
제1 및 제2센서들(240a, 240b)의 출력 신호들을 이용하여 광축과 수직인 방향으로의 OIS 가동부의 변위, 예컨대, OIS 가동부의 쉬프트(shift) 또는 틸트(tilt)를 감지할 수 있다. 여기서 OIS 가동부는 AF 가동부, 및 하우징(140)에 장착되는 구성 요소들을 포함할 수 있다.
예컨대, OIS 가동부는 AF 가동부 및 하우징(140), 마그네트(130), 및 더미 부재(135)를 포함할 수 있다.
제1위치 센서(170), 및 제1 및 제2센서들(240a, 240b) 중 적어도 하나는 홀 센서(Hall sensor) 단독으로 구현될 수 있다.
또는 제1위치 센서(170), 및 제1 및 제2센서들(240a, 240b) 중 적어도 하나는 홀 센서를 포함하는 드라이버 IC(Integrated Circuit) 형태로 구현될 수 있다.
또한 제1위치 센서(170)가 베이스(210)에 배치되기 때문에, 제1위치 센서(170)가 OIS 가동부(예컨대, 하우징)에 배치되는 경우와 비교할 때, 제1위치 센서(170)와 센싱 코일(180) 간의 이격 거리가 증가될 수 있으므로, 제1위치 센서(170)는 감도가 높은 홀 센서, 또는 TMR(Tunnel Magnetoresistance) 센서로 구현될 수도 있다.
홀 센서(Hall sensor) 단독으로 구현되는 실시예에서는, 홀 센서(170, 240a, 또는 240b)는 2개의 입력 단자들 및 2개의 출력 단자들을 포함할 수 있다. 홀 센서의 2개의 입력 단자들은 회로 기판(250)의 2개의 단자들과 전기적으로 연결될 수 있고, 이를 통하여 구동 신호가 제공될 수 있다. 또한 홀 센서의 2개의 출력 단자들은 회로 기판(250)의 다른 2개의 단자들과 전기적으로 연결될 수 있고, 이를 통하여 홀 센서의 출력 신호가 출력될 수 있다.
홀 센서를 포함하는 드라이버 IC(Integrated Circuit) 형태로 구현되는 실시예에서는, 제1위치 센서(170)로부터 제1코일(120)에 직접 구동 신호가 제공될 수 있다. 예컨대, 제1위치 센서(170)는 2개의 지지 부재들을 통하여 2개의 상부 탄성 부재들과 전기적으로 연결될 수 있고, 제1코일(120)에 직접 구동 신호를 제공할 수 있다. 또한 제1센서(240a)로부터 제3 및 제4코일 유닛들(230-1,230-2)에 직접 제1구동 신호가 제공될 수 있고, 제2센서(240b)로부터 제5코일 유닛(230-3)에 직접 제2구동 신호가 제공될 수 있다.
예컨대, 제1센서(240a)는 직렬 연결된 제3 및 제4코일 유닛들(2301,230-2)과 전기적으로 연결된 회로 기판(250)의 2개의 패드들에 전기적으로 연결될 수 있고, 제2센서(240b)는 제5코일 유닛(230-3)과 전기적으로 연결된 회로 기판(250)의 2개의 패드들과 전기적으로 연결될 수 있다.
또한 홀 센서를 포함하는 드라이버 IC(Integrated Circuit) 형태로 구현되는 실시예에서는, 회로 기판(250)의 단자들(251)을 통하여 드라이버 IC와 데이터 통신을 하기 위한 신호들이 송수신될 수 있다. 데이터 통신을 하기 위한 신호들은 클럭 신호, 데이터 신호, 및 전원 신호를 포함할 수 있다.
다음으로 커버 부재(300)에 대하여 설명한다.
커버 부재(300)는 베이스(210)와 함께 형성되는 수용 공간 내에 OIS 가동부, 상부 탄성 부재(150), 하부 탄성 부재(160), 제1위치 센서(170), 제2코일(230), 베이스(210), 회로 기판(250), 지지 부재(220), 및 제2위치 센서(240)를 수용할 수 있다.
커버 부재(300)는 하부가 개방되고, 상판(310) 및 측판들(302)을 포함하는 상자 형태일 수 있으며, 커버 부재(300)의 하부는 베이스(210)의 상부와 결합될 수 있다. 커버 부재(300)의 상판의 형상은 다각형, 예컨대, 사각형 또는 팔각형 등일 수 있다.
커버 부재(300)는 보빈(110)과 결합하는 렌즈(미도시)를 외부광에 노출시키는 개구을 상판에 구비할 수 있다. 커버 부재(300)의 재질은 마그네트(130)와 붙는 현상을 방지하기 위하여 SUS 등과 같은 비자성체일 수 있다. 커버 부재(300)는 금속의 판재로 형성될 수 있으나, 이에 한정되는 것은 아니며, 플라스틱으로 형성될 수도 있다. 또한 커버 부재(300)는 카메라 모듈(200)의 제2홀더(800)의 그라운드와 연결될 수 있다. 커버 부재(300)는 전자 방해 잡음(Electromagnetic Interference, EMI)을 차단할 수 있다.
도 12는 제1위치 센서(170), 센싱 코일(180), 제1 내지 제3마그네트들(130-1 내지 130-3), 더미 부재(135), 및 제3 내지 제5코일 유닛들(230-1 내지 230-5)의 사시도를 나타내고, 도 13은 제1위치 센서(170), 센싱 코일(180), 제1 내지 제3마그네트들(130-1 내지 130-3), 더미 부재(135), 제3 내지 제5코일 유닛들(230-1 내지 230-5), 및 제1 및 제2센서들(240a, 240b)의 사시도이고, 도 14는 도 12에 도시된 구성들의 저면도이다.
도 12 내지 도 14를 참조하면, 제1마그네트(130-1)는 제1마그넷부(11a), 제2마그넷부(11b), 및 제1마그넷부(11a)와 제2마그넷부(11b) 사이에 배치되는 제1격벽(11c)을 포함할 수 있다. 여기서 제1격벽(11c)은 "제1비자성체 격벽"으로 대체하여 표현될 수도 있다.
예컨대, 제1마그넷부(11a)와 제2마그넷부(11b)는 광축 방향으로 서로 이격될 수 있고, 제1격벽(11c)은 제1마그넷부(11a)와 제2마그넷부(11b) 사이에 위치할 수 있다.
제1마그넷부(11a)는 N극, S극, N극과 S극 사이의 제1경계면(21a)을 포함할 수 있다. 제1경계면(21a)은 실질적으로 자성을 갖지 않는 부분으로 극성이 거의 없는 구간을 포함할 수 있으며, 하나의 N극과 하나의 S극으로 이루어진 자석을 형성하기 위하여 자연적으로 발생되는 부분일 수 있다.
제2마그넷부(11b)는 N극, S극, N극과 S극 사이의 제2경계면(21b)을 포함할 수 있다. 제2경계면(21b)은 실질적으로 자성을 갖지 않는 부분으로 극성이 거의 없는 구간을 포함할 수 있으며, 하나의 N극과 하나의 S극으로 이루어진 자석을 형성하기 위하여 자연적으로 발생되는 부분일 수 있다.
제1격벽(11c)은 제1마그넷부(11a)과 제2마그넷부(11b)를 분리 또는 격리시키며, 실질적으로 자성을 갖지 않는 부분으로 극성이 거의 없는 부분일 수 있다. 예컨대, 제1격벽(11c)은 비자성체 물질, 또는 공기 등일 수 있다. 격벽은 "뉴트럴 존(Neutral Zone)", 또는 "중립 영역"으로 표현될 수 있다.
제1격벽(11c)은 제1마그넷부(11a)와 제2마그넷부(11b)를 착자할 때, 인위적으로 형성되는 부분으로, 제1격벽(11c)의 폭(W11)은 제1경계면(21a)과 제2경계면(21b) 각각의 폭보다 클 수 있다.
여기서 제1격벽(11c)의 폭(W11)은 제1마그넷부(11a)에서 제2마그넷부(11b)로 향하는 방향으로의 제1격벽(11c)의 길이일 수 있다. 또는 제1격벽(11c)의 폭(W11)은 광축 방향으로의 제1격벽(11c)의 길이일 수 있다.
제1마그넷부(11a)와 제2마그넷부(11b)는 광축 방향으로 서로 반대 극성이 마주보도록 배치될 수 있다.
예컨대, 제1마그넷부(11a)의 S극과 제2마그넷부(11b)의 N극이 제1코일 유닛(120-1)을 마주보도록 배치될 수 있으나, 이에 한정되는 것은 아니며, 그 반대로 배치될 수도 있다.
제2마그네트(130-2)는 제3마그넷부(12a), 제4마그넷부(12b), 및 제3마그넷부(12a)와 제4마그넷부(12b) 사이에 배치되는 제2격벽(12c)을 포함할 수 있다. 여기서 제2격벽(12c)은 "제2비자성체 격벽"으로 대체하여 표현될 수 있다.
예컨대, 제3마그넷부(12a)와 제4마그넷부(12b)는 광축 방향으로 서로 이격될 수 있고, 제2격벽(12c)은 제3마그넷부(12a)와 제4마그넷부(12b) 사이에 위치할 수 있다.
제3마그넷부(12a) 및 제4마그넷부(12b) 각각은 N극, S극, N극과 S극 사이의 경계면을 포함할 수 있다.
제3마그넷부(12a)와 제4마그넷부(12b) 각각의 경계면은 제1 및 제2마그넷부들(11a, 11b)의 경계면(21a, 21b)에 대한 설명이 적용될 수 있다. 또한 상술한 제1격벽(11c)에 대한 설명은 제2격벽(12c)에 적용될 수 있다.
제1격벽(11c)과 제2격벽(12c) 각각은 수평 방향 또는 광축과 수직한 방향으로 연장될 수 있다. 예컨대, 제1 및 제2격벽들(11c,12c) 각각은 광축 방향으로 2개의 마그넷부들(11a와 11b, 12a와 12b)을 서로 격리 또는 분리시킬 수 있다.
제1마그넷부(11a), 제1격벽(11c), 및 제2마그넷부(11b)는 광축 방향으로 순차적으로 배치될 수 있다. 제3마그넷부(12a), 제2격벽(12c), 및 제4마그넷부(12b)는 광축 방향으로 순차적으로 배치될 수 있다.
예컨대, 제1격벽(11c) 상에 제1마그넷부(11a)가 배치될 수 있고, 제1격벽(11c) 아래에 제2마그넷부(11b)가 배치될 수 있다. 또한 제2격벽(12c) 상에 제3마그넷부(12a)가 배치될 수 있고, 제2격벽(12c) 아래에 제4마그넷부(12b)가 배치될 수 있다.
예컨대, 제1격벽(11c)와 제2격벽(12c) 각각은 광축과 수직인 직선과 평행할 수 있고, 제1 및 제2마그넷부들(11a, 11b) 각각의 경계면(21a, 21b)은 광축과 평행할 수 있다.
예컨대, 제1마그네트(130-1) 및 제2마그네트(130-2) 각각은 광축 방향으로 양극 착자의 N극과 S극이 배치될 수 있다.
제3마그네트(130-3)는 N극, S극, 및 N극과 S극 사이의 경계면을 포함할 수 있다. 제3마그네트(130-3)의 경계면은 실질적으로 자성을 갖지 않는 부분으로 극성이 거의 없는 구간을 포함할 수 있으며, 하나의 N극과 하나의 S극으로 이루어진 자석을 형성하기 위하여 자연적으로 발생되는 부분일 수 있다.
예컨대, 제1마그네트(130-1)는 제3코일 유닛(230-1)의 영역 내측에 위치할 수 있고, 광축 방향으로 제3코일 유닛(230-1)과 오버랩될 수 있다.
예컨대, 제2마그네트(130-2)는 제4코일 유닛(230-2)의 영역 내측에 위치할 수 있고, 광축 방향으로 제4코일 유닛(230-2)과 오버랩될 수 있다.
예컨대, 제3마그네트(130-3)는 제5코일 유닛(230-3)의 영역 내측에 위치할 수 있고, 광축 방향으로 제5코일 유닛(230-3)과 오버랩될 수 있다.
제3코일 유닛(230-1)의 어느 한 부분은 광축 방향으로 제1마그넷부(11a)의 제1극성 부분, 제1격벽(11c), 및 제2마그넷부(11b)의 제2극성 부분과 동시에 오버랩될 수 있다. 여기서 제1극성 부분은 N극 또는 S극일 수 있고, 제2극성 부분은 제1극성의 반대 극성 부분일 수 있다.
제4코일 유닛(230-2)의 어느 한 부분은 광축 방향으로 제3마그넷부(12a)의 제1극성 부분, 제2격벽(12c), 및 제4마그넷부(12b)의 제2극성 부분과 동시에 오버랩될 수 있다.
제5코일 유닛(230-3)의 어느 한 부분은 광축 방향으로 제3마그네트(130-3)의 N극과 S극에 함께 오버랩될 수 있다.
제1마그네트(130-1)와 제2마그네트(130-2)는 그 형상이 동일할 수 있으나, 이에 한정되는 것은 아니다. 예컨대, 제1마그네트(130-1)와 제2마그네트(130-2)는 길이, 폭, 높이가 서로 동일할 수 있으나, 이에 한정되는 것은 아니다.
또한 제3코일 유닛(230-1)과 제4코일 유닛(230-2)은 그 형상이 동일할 수 있으나, 이에 한정되는 것은 아니다. 예컨대, 제3코일 유닛(230-1)과 제4코일 유닛(230-2)의 길이, 폭, 높이가 서로 동일할 수 있으나, 이에 한정되는 것을 아니다.
도 12 내지 도 14를 참조하여 제1 내지 제3마그네트들(130-1 내지 130-3), 더미(135a, 135b), 센싱 코일(180), 및 제3 내지 제5코일 유닛들(230-1 내지 230-3) 각각의 길이, 폭, 및 높이에 대하여 설명한다.
여기서 제1 내지 제3마그네트들(130-1 내지 130-3), 센싱 코일(180), 더미(135a, 135b), 제3 내지 제5코일 유닛들(230-1 내지 230-3) 각각의 길이는 이들 각각의 길이 방향의 길이일 수 있다.
또한 제1 내지 제3마그네트들(130-1 내지 130-3), 센싱 코일(180), 더미(135a, 135b), 제3 내지 제5코일 유닛들(230-1 내지 230-3) 각각의 폭은 이들 각각의 폭 방향의 길이일 수 있다. 여기서 폭 방향은 길이 방향과 수직일 수 있고, 각 구성(130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)에서 길이가 더 짧은 방향일 수 있다. 또한 각 구성(130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)의 폭은 각 구성의 "두께"로 대체하여 표현될 수도 있다.
제1 내지 제3마그네트들(130-1 내지 130-3), 센싱 코일(180), 더미(135a, 135b), 제3 내지 제5코일 유닛들(230-1 내지 230-3) 각각의 높이는 이들 각각의 광축 방향으로의 길이일 수 있다.
예컨대, 각 구성(130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)의 길이는 보빈(110)을 마주보는 각 구성(130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)의 제1면의 가로 방향의 길이일 수 있다.
또한 예컨대, 각 구성(130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)의 폭은 보빈(110)을 마주보는 각 구성((130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)의 제1면에서 상기 제1면의 반대면인 제2면까지의 거리일 수 있다.
또한 각 구성(130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)의 높이는 보빈(110)을 마주보는 각 구성((130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)의 제1면의 세로 방향의 길이일 수도 있다. 또는 예컨대, 각 구성(130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)의 높이는 각 구성(130-1 내지 130-3, 135a, 135b, 180, 230-1 내지 230-3)의 하면에서 상면까지의 거리일 수도 있다,
제1마그네트(130-1)의 길이(L1)는 제3코일 유닛(230-1)의 길이(M1)보다 작을 수 있으나(L1<M1), 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 동일할 수도 있다.
제1마그네트(130-1)의 폭(W1)은 제3코일 유닛(230-1)의 폭(K1)보다 작을 수 있으나(W1<K1), 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 동일할 수도 있다.
또한 제2마그네트(130-2)의 길이는 제4코일 유닛(230-2)의 길이보다 작을 수 있다. 제2마그네트(130-2)의 폭은 제4코일 유닛(230-2)의 폭보다 작을 수 있다.
제3마그네트(130-3)의 길이(L2)는 제5코일 유닛(230-3)의 길이(M2)보다 작을 수 있으나(L2<M2), 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 동일할 수도 있다.
제3마그네트(130-3)의 폭(W2)은 제5코일 유닛(230-3)의 폭(K2)보다 작을 수 있으나(W2<K2), 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 동일할 수도 있다.
제5코일 유닛(230-3)의 길이(M2)는 제3코일 유닛(230-1)의 길이(M1) 또는/및 제4코일 유닛(230-2)의 길이보다 클 수 있으나(M2>M1), 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 동일할 수도 있다.
제3마그네트(130-3)의 길이(L2)는 제1마그네트(130-1)의 길이(L1) 또는/및 제2마그네트(130-2)의 길이보다 클 수 있으나(L2>L1), 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 동일할 수도 있다.
실시예서는 M2>M1이고, L2>L1이므로, 제5코일 유닛(230-3)과 제3마그네트(130-3)에 의하여 발생되는 제1전자기력이 제3코일 유닛(230-1)과 제1마그네트(130-1)에 의하여 발생하는 제2전자기력, 및 제4코일 유닛(230-2)과 제2마그네트(130-2)에 의하여 발생하는 제3전자기력 각각보다 클 수 있다. 이로 인하여 실시예는 Y축 방향으로의 제1전자기력과 X축 방향으로의 제2 및 제3전자기력들의 합 사이의 차이를 감소시킬 수 있고, OIS 가동부에 대한 X축 방향으로의 구동력과 OIS 가동부에 대한 Y축 방향으로의 구동력의 차이를 줄일 수 있고, 이로 인하여 OIS 동작의 신뢰성을 향상시킬 수 있다.
또한 제5코일 유닛(230-3)의 폭(K2)은 제3코일 유닛(230-1)의 폭(K1) 또는/및 제4코일 유닛(230-2)의 폭보다 클 수 있으나(K2>K1), 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 동일할 수도 있다.
제3마그네트(130-3)의 폭(W2)는 제1마그네트(130-1)의 폭(W1) 또는/및 제2마그네트(130-2)의 폭보다 클 수 있으나(W2>W1), 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 동일할 수도 있다.
W2>W1이므로, 실시예는 Y축 방향으로의 제1전자기력과 X축 방향으로의 제2 및 제3전자기력들의 합 사이의 차이를 감소시킬 수 있고, OIS 가동부에 대한 X축 방향으로의 구동력과 OIS 가동부에 대한 Y축 방향으로의 구동력의 차이를 줄일 수 있고, OIS 동작의 신뢰성을 향상시킬 수 있다.
제3마그네트(130-3)의 높이(H2)는 제1마그네트(130-1)의 높이(H1), 또는/및 제2마그네트(130-2)의 높이보다 작을 수 있으나(H2<H1), 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 동일할 수도 있고, 또 다른 실시예에서는 전자가 후자보다 클 수도 있다.
H2<H1이므로, 실시예는 렌즈 구동 장치(100)의 무게를 줄일 수 있고, 이로 인하여 AF 구동 또는/및 OIS 구동을 위한 전력 소모를 줄일 수 있다.
제1 및 제2더미들(135a, 135b) 각각의 길이(L3)는 제1 내지 제3마그네트들(130-1 내지 130-3) 각각의 길이(L2)보다 작을 수 있으나(L3<L2), 이에 한정되는 것은 아니며, 다른 실시예에서는 전자는 후자와 서로 동일하거나 클 수도 있다.
제1 및 제2더미들(135a, 135b) 각각의 폭(W3)은 제1 내지 제3마그네트들(130-1 내지 130-3) 각각의 폭보다 작을 수 있으나(W3<W1, W2), 이에 한정되는 것은 아니며, 다른 실시예에서는 전자는 후자와 동일하거나 클 수도 있다.
제1 및 제2더미들(135a, 135b) 각각의 높이(H3)는 제1 및 제2마그네트들(130-1, 130-2) 각각의 높이(H1)보다 작을 수 있고, 제3마그네트(130-3)의 높이(H2)보다 클 수 있으나(H2<H3<H1), 이에 한정되는 것은 아니다. 다른 실시예에서는 제1 및 제2더미들(135a, 135b) 각각의 높이는 제1 및 제2마그네트들(130-1, 130-2) 각각의 높이(H1)와 동일하거나 클 수 있다. 또 다른 실시예에서는 제1 및 제2더미들(135a, 135b) 각각의 높이는 제3마그네트(130-3)의 높이(H2)보다 작거나 동일할 수도 있다.
센싱 코일(180)의 길이(M3)는 제3 내지 제5코일 유닛들(230-1 내지 230-3) 각각의 길이(M1, M2)보다 작을 수 있으나(M3<M1,M2), 이에 한정되는 것은 아니며 다른 실시예에서는 전자는 후자와 동일하거나 또는 클 수도 있다.
센싱 코일(180)의 폭(K3)은 제5코일 유닛(230-3)의 폭(K2)보다 작을 수 있다(K3<K2). 센싱 코일(180)의 폭(K3)은 제3 및 제4코일 유닛들(230-1, 230-2) 각각의 폭(K1)과 동일하거나 작을 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 전자가 후자보다 클 수도 있다.
센싱 코일(180)의 광축 방향의 길이(또는 높이)는 제3 내지 제5코일 유닛들 각각의 광축 방향의 길이(또는 높이)보다 클 수 있다. 이로 인하여 센싱 코일(180)의 자기장의 세기를 증가시킬 수 있고, 제1위치 센서(170)의 감도를 향상시킬 수 있다. 다른 실시예에서는 센싱 코일(180)의 광축 방향의 길이(또는 높이)는 제3 내지 제5코일 유닛들 각각의 광축 방향의 길이(또는 높이)와 동일할 수도 있다.
또한 제1마그네트(130-1)와 제3코일 유닛(230-1) 간의 광축 방향으로의 제1이격 거리, 제2마그네트(130-2)와 제4코일 유닛(230-2) 간의 광축 방향으로의 제2이격 거리, 및 제3마그네트(130-3)와 제5코일 유닛(230-3) 간의 광축 방향으로의 제3이격 거리는 서로 동일할 수 있으나, 이에 한정되는 것은 아니다.
다른 실시예에서는 제3이격 거리가 제1이격 거리 또는/및 제2이격 거리보다 작을 수 있다. 그리고 제3이격 거리가 제1이격 거리 또는/및 제2이격 거리보다 작기 때문에, 제1 내지 제3이격 거리들이 모두 동일한 경우와 비교할 때, 다른 실시예에서는 Y축 방향으로 발생되는 전자기력과 X축 방향으로 발생되는 전자기력의 차이를 더 줄일 수 있다.
OIS 가동부의 초기 위치에서 제1위치 센서(170)는 광축 방향으로 센싱 코일(180)와 오버랩될 수 있다. 제1위치 센서(170)는 광축 방향으로 더미 부재(135)와 오버랩되지 않을 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 제1위치 센서(170)의 적어도 일부는 광축 방향으로 더미 부재(135)와 오버랩될 수도 있다.
여기서 OIS 가동부의 초기 위치는 제2코일(230)에 구동 신호를 제공하지 않을 상태에서, 지지 부재(220)와 탄성 부재(150, 160)에 의하여 지지되는 OIS 가동부의 최초 위치일 수 있다. 이와 더불어 OIS 가동부의 초기 위치는 중력이 보빈(110)에서 베이스(210) 방향으로 작용할 때, 또는 이와 반대로 중력이 베이스(210)에서 보빈(110) 방향으로 작용할 때의 OIS 가동부가 놓이는 위치일 수 있다.
OIS 가동부의 초기 위치에서, 제1 내지 제3마그네트들(130-1 내지 130-3) 각각은 광축 방향으로 제3 내지 제5코일 유닛들(230-1 내지 230-3) 중 대응하는 어느 하나와 오버랩될 수 있다.
제1센서(240a)는 광축 방향으로 제1마그네트(130-1)와 오버랩될 수 있고, 제2센서(240b)는 광축 방향으로 제3마그네트(130-3)와 오버랩될 수 있다.
또한 도 13 및 도 14에서는 제1센서(240a)는 광축 방향으로 제3코일 유닛(230-1)과 오버랩되고, 제2센서(240b)는 광축 방향으로 제5코일 유닛(230-3)과 오버랩되나, 이에 한정되는 것은 아니며, 다른 실시예에서는 제1센서는 광축 방향으로 제3코일 유닛과 오버랩되지 않을 수 있고, 제2센서는 광축 방향으로 제5코일 유닛과 오버랩되지 않을 수도 있다.
도 14를 참조하면, 제1위치 센서(170)는 센싱 코일(180)의 영역 내에 위치할 수 있다. 예컨대, 제1위치 센서(170)는 센싱 코일(180) 아래에 배치될 수 있고, 제1센서(240a)는 제1마그네트(130-1) 아래에 배치될 수 있고, 제2센서(240b)는 제3마그네트(130-3) 아래에 배치될 수 있다.
제1위치 센서(170)의 감도를 향상시키기 위하여, 제1위치 센서(170)의 센싱 소자(sensing element)(또는 센싱 영역)는 광축 방향으로 센싱 코일180)과 오버랩될 수 있다.
OIS 가동부의 초기 위치에서 제1위치 센서(170)의 센싱 소자는 광축 방향으로 센싱 코일(180)과 오버랩될 수 있다.
제1위치 센서(170)는 고정부(예컨대, 회로 기판(250)과 베이스(210))에 배치되고, 센싱 코일(180)은 OIS 가동부(예컨대, 보빈(110))에 배치되므로, OIS 가동부가 고정부에 대하여 광축과 수직한 방향으로 움직이면, 센싱 코일(180)과 제1위치 센서(170) 간의 광축 방향으로의 정렬 또는 상대적인 위치 관계가 바뀔 수 있으며, 이로 인하여 제1위치 센서(170)의 감도가 떨어지거나 제1위치 센서(170)의 감도에 영향을 줄 수 있다.
광축과 수직한 방향으로의 OIS 가동부의 스트로크 범위 내에서 제1위치 센서(170)의 센싱 소자와 센싱 코일(180)의 적어도 일부는 광축 방향으로의 오버랩되는 상태를 유지할 수 있다.
예컨대, 센싱 코일(180)의 적어도 일부는 제1더미(35A)와 제2더미(35B) 사이에 배치될 수 있으나, 이에 한정되는 것은 아니다.
렌즈 구동 장치(100)의 AF 가동부와 OIS 가동부는 탄성부에 의하여 지지될 수 있다. 예컨대, 탄성부는 상부 탄성 부재(150), 하부 탄성 부재(160), 및 지지 부재(220) 중 적어도 하나를 포함할 수 있다.
예컨대, 탄성부는 하우징(140)에 대하여 AF 가동부를 탄성적으로 지지하는 제1탄성부, 및 고정부에 대하여 OIS 가동부를 탄성적으로 지지하는 제2탄성부를 포함할 수 있다.
예컨대, 제1탄성부는 상부 탄성 부재(150) 및 하부 탄성 부재(160)를 포함할 수 있고, 제2탄성부는 지지 부재(220)를 포함할 수 있다.
제1 및 제2탄성부들에 의하여 고정부에 대하여 지지되는 OIS 가동부는 중력의 영향에 의하여 중력 방향으로 처짐 또는 이동이 발생될 수 있다.
일반적으로 AF 위치 센서가 OIS 가동부(예컨대, 하우징 또는 보빈)에 배치될 때에는 AF 위치 센서가 피드백 동작을 통하여 AF 가동부의 광축 방향으로의 변위를 감지할 수 있기 때문에 중력의 영향에 의한 AF 가동부의 처짐은 자동적으로 보정 또는 보상될 수 있다.
그러나 OIS 가동부에 배치된 AF 위치 센서는 고정부에 대한 OIS 가동부의 광축 방향으로의 변위를 감지할 수 없기 때문에, 중력의 영향에 의한 OIS 가동부의 처짐 또는 이동은 AF 위치 센서에 의하여 자동적으로 보정 또는 보상될 수 없다.
실시예에서는 제1위치 센서(170)가 고정부(예컨대, 회로 기판(250)과 베이스(210))에 배치되기 때문에, 중력의 영향에 의한 OIS 가동부의 이동(또는 처짐)에 기인하는 AF 가동부의 이동(또는 처짐)을 자동적으로 보상 또는 보정할 수 있고, 이로 인하여 정확한 AF 구동을 수행할 수 있고, AF 동작의 신뢰성을 향상시킬 수 있다.
도 15a는 시뮬레이션을 위한 센싱 코일(180)과 제1위치 센서(170)의 배치를 나타내고, 도 15b는 AF 가동부의 광축 방향으로의 이동에 따른 도 15a의 센싱 코일(180)의 위치 변화를 나타내고, 도 15c는 도 15b의 센싱 코일(180)의 위치 변화에 따른 제1위치 센서(170)가 감지하는 센싱 코일(180)의 자기장의 세기의 변화를 나타낸다.
도 15a 내지 도 15c를 참조하면, 위에서 바라본 센싱 코일(180)의 외주면의 형상은 사각형일 수 있으나, 이에 한정되는 것은 아니다. 센싱 코일(180)의 외주면의 길이(X1)는 3.29[mm]일 수 있고, 센싱 코일(180)의 외주면의 폭(Y1)은 2.05[mm]일 수 있고, 센싱 코일(180)의 내주면의 길이(X2)는 1.93[mm]일 수 있고, 센싱 코일(180)의 내주면의 폭(Y2)은 0.74[mm]일 수 있고, 센싱 코일(180)의 광축 방향으로의 길이(Z1)는 0.54[mm]일 수 있다. 또한 센싱 코일(180)에 제공되는 구동 신호(Ia)는 100[mA]일 수 있다. 또한 제1위치 센서(170)의 하면(17A)에서 센싱 코일(180)의 하면(18A) 까지의 이격 거리(d1)는 0.43[mm]일 수 있다.
AF 가동부의 초기 위치(예컨대, Z=0인 위치)에서, AF 가동부의 전방 스트로크는 200[㎛]일 수 있고, AF 가동부의 후방 스트로크는 200[㎛]일 수 있다.
도 15c에서 X축은 센싱 코일(180)의 광축 방향으로의 변위(또는 위치)를 나타내고, Y축은 제1위치 센서(170)가 감지하는 센싱 코일(180)의 자기장의 세기의 변화를 나타낸다. g1은 제1위치 센서(170)가 감지하는 센싱 코일(180)의 광축 방향으로의 자기장의 세기의 변화를 나타내고, g2은 제1위치 센서(170)가 감지하는 센싱 코일(180)의 광축과 수직한 방향으로의 자기장의 세기의 변화를 나타낸다.
g1에 도시된 바와 같이, AF 가동부의 광축 방향으로의 변위에 따라 제1위치 센서(170)가 감지하는 광축 방향으로의 자기장의 변화는 -4.6[mT] ~ -8.2[mT]의 범위 내일 수 있고, g1은 선형적인 그래프일 수 있다.
제1위치 센서(170)의 출력은 제1위치 센서(170)가 감지하는 센싱 코일(180)의 자기장의 세기에 비례할 수 있고, 카메라 모듈(200) 또는 단말기(200A)의 제어부(830, 780)는 제1위치 센서(170)의 출력을 이용하여 AF 가동부의 광축 방향으로의 변위가 감지할 수 있다.
본 실시예는 듀얼 이상의 카메라 모듈에서 인접하는 렌즈 구동 장치들에 포함함되는 마그네트들 간의 자계 간섭을 줄이기 위하여, 3개의 마그네트들(130-1 내지 130-3) 및 이에 대응하는 3개의 OIS용 코일 유닛들(230-1 내지 230-3)을 포함한다.
3개의 마그네트들(130-1 내지 130-3) 중 2개의 마그네트들(130-1, 130-2)은 제1 및 제2코일 유닛들(120-1, 120-2)과 상호 작용에 의하여 광축 방향으로의 AF 동작을 수행함과 동시에 제3 및 제4코일 유닛들(230-1, 230-2)과 상호 작용에 의하여 광축과 수직한 X축 방향으로의 OIS 동작을 수행할 수 있다.
3개의 마그네트들(130-1 내지 130-3) 중 나머지 하나의 마그네트(130-3)는 제5코일 유닛(230-3)과 상호 작용에 의하여 광축과 수직한 Y축 방향으로의 OIS 동작만을 수행할 수 있다.
제3마그네트(130-3)의 반대편에 더미 부재(135)가 배치됨으로써, 본 실시예는 OSI 동작시 무게 편심에 의한 진동(oscillation)을 방지할 수 있다.
일반적으로 1개의 마그네트와 1개의 코일 유닛 간의 상호 작용에 의한 X축 방향으로의 전자기력은 2개의 마그네트들과 2개의 코일 유닛들에 의한 상호 작용에 의한 Y축 방향으로 전자기력보다 작다. 그리고 X축 방향으로의 전자기력과 Y축 방향으로 전자기력의 차이는 OIS 구동의 오동작을 유발할 수 있다.
이러한 X축 방향으로 발생되는 전자기력과 Y축 방향으로 발생되는 전자기력의 차이를 줄이기 위하여 본 실시예는 다음과 같이 구성될 수 있다.
또한 제5코일 유닛(230-3)에서 코일의 감긴 횟수(이하 "제1감긴 횟수")는 제3코일 유닛(230-1)에서 코일의 감긴 횟수(이하 "제2감긴 횟수") 또는/및 제4코일 유닛(230-2)에서 코일의 감긴 횟수(이하 "제3감긴 횟수")보다 클 수 있고, 이로 인하여 X축 방향으로 발생되는 전자기력과 Y축 방향으로 발생되는 전자기력의 차이를 줄일 수 있다.
또한 예컨대, 제2감긴 회수와 제3감긴 횟수는 서로 동일할 수 있으나, 이에 한정되는 것은 아니다. 다른 실시예에서는 제1감긴 횟수와 제2감긴 회수(또는 제3감긴 횟수)는 서로 동일할 수도 있다.
또한 제3마그네트(130-3)의 길이(L2)는 제1마그네트(130-1)의 길이(L1) 또는/및 제2마그네트(130-2)의 길이보다 클 수 있고, 제5코일 유닛(230-3)의 길이(M2)는 제3코일 유닛(230-1)의 길이(M1) 또는/및 제4코일 유닛(230-2)의 길이보다 클 수 있고, 이로 인하여 X축 방향으로 발생되는 전자기력과 Y축 방향으로 발생되는 전자기력의 차이를 줄일 수 있다.
도 16은 렌즈 구동 장치의 다른 실시예를 나타낸다. 도 16을 참조하면, 다른 실시예에서는 렌즈 구동 장치(100)의 센싱 코일(180)는 센싱 마그네트(180A)로 대체될 수 있다.
예컨대, 센싱 코일(180) 대신에 센싱 마그네트(180A)가 보빈(110)에 배치될 수 있다. 예컨대, 센싱 마그네트(180A)는 보빈(110)의 돌출부(116)에 결합될 수 있다. 예컨대, 보빈(110)의 돌출부(116)는 센싱 마그네트(180A)가 안착 또는 배치되기 위한 홈을 구비할 수 있다.
센싱 마그네트(180A)의 형상은 원통형, 또는 다면체 형상일 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 센싱 마그네트(180A)는 광축 방향으로의 길이가 광축과 수직한 방향으로의 길이보다 긴 원통 형상을 가질 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 광축과 수직한 방향으로 절단한 센싱 마그네트(180)의 단면 형상은 원형, 타원형, 또는 다각형(예컨대, 삼각형 또는 사각형) 형상일 수 있으나, 이에 한정되는 것은 아니다.
전술한 실시예에 의한 렌즈 구동 장치(100)는 다양한 분야, 예를 들어 카메라 모듈 또는 광학 기기로 구현되거나 또는 카메라 모듈 또는 광학 기기에 이용될 수 있다.
예컨대, 본 실시예에 따른 렌즈 구동 장치(100)는 빛의 특성인 반사, 굴절, 흡수, 간섭, 회절 등을 이용하여 공간에 있는 물체의 상을 형성시키고, 눈의 시각력 증대를 목표로 하거나, 렌즈에 의한 상의 기록과 그 재현을 목적으로 하거나, 광학적인 측정, 상의 전파나 전송 등을 목적으로 하는 광학 기기(opticla instrument)에 포함될 수 있다. 예컨대, 본 실시예에 따른 광학 기기는 스마트폰 및 카메라가 장착된 휴대용 단말기를 포함할 수 있다.
도 17은 본 발명의 제1실시예에 따른 카메라 모듈(200)의 분해 사시도를 나타낸다.
도 17을 참조하면, 카메라 모듈(200)은 렌즈 또는 렌즈 배럴(400), 렌즈 구동 장치(100), 접착 부재(612), 필터(610), 제1홀더(600), 제2홀더(800), 이미지 센서(810), 모션 센서(motion sensor, 820), 제어부(830), 및 커넥터(connector, 840)를 포함할 수 있다.
렌즈 또는 렌즈 배럴(lens barrel, 400)은 렌즈 구동 장치(100)의 보빈(110)에 장착될 수 있다.
제1홀더(600)는 렌즈 구동 장치(100)의 베이스(210) 아래에 배치될 수 있다. 필터(610)는 제1홀더(600)에 장착되며, 제1홀더(600)는 필터(610)가 안착되는 돌출부(500)를 구비할 수 있다.
접착 부재(612)는 렌즈 구동 장치(100)의 베이스(210)를 제1홀더(600)에 결합 또는 부착시킬 수 있다. 접착 부재(612)는 상술한 접착 역할 외에 렌즈 구동 장치(100) 내부로 이물질이 유입되지 않도록 하는 역할을 할 수도 있다.
예컨대, 접착 부재(612)는 에폭시, 열경화성 접착제, 자외선 경화성 접착제 등일 수 있다.
필터(610)는 렌즈 배럴(400)을 통과하는 광에서의 특정 주파수 대역의 광이 이미지 센서(810)로 입사하는 것을 차단하는 역할을 할 수 있다. 필터(610)는 적외선 차단 필터일 수 있으나, 이에 한정되는 것은 아니다. 이때, 필터(610)는 x-y평면과 평행하도록 배치될 수 있다.
필터(610)가 실장되는 제1홀더(600)의 부위에는 필터(610)를 통과하는 광이 이미지 센서(810)에 입사할 수 있도록 개구가 형성될 수 있다.
제2홀더(800)는 제1홀더(600)의 하부에 배치되고, 제2홀더(600)에는 이미지 센서(810)가 실장될 수 있다. 이미지 센서(810)는 필터(610)를 통과한 광이 입사하여 광이 포함하는 이미지가 결상되는 부위이다.
제2홀더(800)는 이미지 센서(810)에 결상되는 이미지를 전기적 신호로 변환하여 외부장치로 전송하기 위해, 각종 회로, 소자, 제어부 등이 구비될 수도 있다.
제2홀더(800)는 이미지 센서가 실장될 수 있고, 회로 패턴이 형성될 수 있고, 각종 소자가 결합하는 회로 기판으로 구현될 수 있다.
이미지 센서(810)는 렌즈 구동 장치(100)를 통하여 입사되는 광에 포함되는 이미지를 수신하고, 수신된 이미지를 전기적 신호로 변환할 수 있다.
필터(610)와 이미지 센서(810)는 제1방향으로 서로 대향되도록 이격하여 배치될 수 있다.
모션 센서(820)는 제2홀더(800)에 실장되며, 제2홀더(800)에 마련되는 회로 패턴을 통하여 제어부(830)와 전기적으로 연결될 수 있다.
모션 센서(820)는 카메라 모듈(200)의 움직임에 의한 회전 각속도 정보를 출력한다. 모션 센서(820)는 2축 또는 3축 자이로 센서(Gyro Sensor), 또는 각속도 센서로 구현될 수 있다.
제어부(830)는 제2홀더(800)에 실장 또는 배치된다. 제2홀더(800)는 렌즈 구동 장치(100)와 전기적으로 연결될 수 있다. 예컨대, 제2홀더(800)는 렌즈 구동 장치(100)의 회로 기판(250)에 전기적으로 연결될 수 있다.
예컨대, 제2홀더(800)를 통하여 제1위치 센서(170), 제2위치 센서(240)에 구동 신호가 제공될 수 있고, 제1위치 센서(170)의 출력 신호, 제2위치 센서(240)의 출력 신호가 제2홀더(800)로 전송될 수 있다. 예컨대, 제1위치 센서(170)의 출력 신호, 제2위치 센서(240)의 출력 신호는 제어부(830)로 수신될 수 있다.
커넥터(840)는 제2홀더(800)와 전기적으로 연결되며, 외부 장치와 전기적으로 연결되기 위한 포트(port)를 구비할 수 있다.
도 18은 다른 실시예에 따른 카메라 모듈(1000)의 사시도를 나타낸다.
도 18을 참조하면, 카메라 모듈(1000)은 제1렌즈 구동 장치(100-1), 및 제2렌즈 구동 장치(100-2)를 포함하는 듀얼 카메라 모듈일 수 있다.
제1렌즈 구동 장치(100-1) 및 제2렌즈 구동 장치(100-2) 각각은 AF(Auto Focus)용 렌즈 구동 장치, 또는 OIS(Optical Image Stabilizer)용 렌즈 구동 장치중 어느 하나일 수 있다.
AF용 렌즈 구동 장치는 오토 포커스 기능만을 수행할 수 있는 것을 말하며, OIS용 렌즈 구동 장치는 오토 포커스 기능 및 OIS(Optical Image Stabilizer) 기능을 수행할 수 있는 것을 말한다.
예컨대, 제1렌즈 구동 장치(100-1)는 도 1에 도시된 실시예(100)일 수 있고, 제2렌즈 구동 장치(100-2)는 도 1에 도시된 실시예(100)이거나 또는 AF용 렌즈 구동 장치일 수 있다.
카메라 모듈(1000)은 제1렌즈 구동 장치(100-1)와 제2렌즈 구동 장치(100-2)를 실장하기 위한 회로 기판(1100)을 더 포함할 수 있다. 도 18에서는 하나의 회로 기판(1100)에 제1렌즈 구동 장치(100-1)와 제2렌즈 구동 장치(100-2)가 나란히 배치되지만, 이에 한정되는 것은 아니다. 다른 실시예에서는 회로 기판(1100)은 서로 분리된 제1회로 기판과 제2회로 기판을 포함할 수 있고, 제1렌즈 구동 장치는 제1회로 기판에 배치될 수 있고, 제2렌즈 구동 장치는 제2회로 기판에 배치될 수도 있다.
제1렌즈 구동 장치(100-1)의 더미 부재(135)를 제2렌즈 구동 장치(100-2_에 인접하여 배치시킴으로써, 제1렌즈 구동 장치(100-1)의 제1 내지 제3마그네트들(130-1 내지 130-3)과 제2렌즈 구동 장치(100-2)에 포함된 마그네트 간의 자계 감소를 감소시킬 수 있고, 이로 인하여 제1렌즈 구동 장치(100-1)와 제2렌즈 구동 장치(100-2) 각각의 AF 구동의 신뢰성 또는/및 OIS 구동의 신뢰성을 확보할 수 있다.
듀얼 이상의 카메라 모듈에 포함된 렌즈 구동 장치들이 AF 위치 센서에 대응되는 센싱 마그네트를 구비할 때에, 센싱 마그네트의 자계의 영향에 의하여 AF 동작 또는 OIS 동작과 같은 카메라 모듈의 기능에 오동작이 발생될 수 있고, 이로 인하여 카메라 모듈의 해상력이 감소될 수 있다.
도 19a는 도 18의 듀얼 카메라 모듈의 일 실시예를 나타낸다. 또한 도 19a는 마그네트들(30A,30B,30C,31A,31B,31C)과 센싱 마그네트(80A, 80B)의 자계를 나타낸다.
도 19a의 듀얼 카메라 모듈은 제1렌즈 구동 장치(100A)와 제2렌즈 구동 장치(100C)를 포함할 수 있다.
제1렌즈 구동 장치(100A)는 3개의 구동 마그네트들(30A, 30B, 30C)과 하나의 센싱 마그네트(80A)를 포함할 수 있다.
예컨대, 제1 및 제2렌즈 구동 장치들(100A, 100C) 각각은 도 1의 실시예에 따른 렌즈 구동 장치(100), 도 16의 렌즈 구동 장치(또는 도 20b의 렌즈 구동 장치(100-2)), 또는 제3렌즈 구동 장치 중 어느 하나일 수 있다.
각 실시예는 도 1의 실시예에 따른 렌즈 구동 장치(100), 또는 도 16의 렌즈 구동 장치(또는 도 20b의 렌즈 구동 장치(100-2))에 대한 설명이 적용될 수 있다.
즉 구동 마그네트들(30A,30B,30C)은 도 1, 도 16의 실시예의 마그네트들(130-1 내지 130-3)에 대응될 수 있고, 센싱 마그네트(80A, 80B)는 센싱 마그네트(180A)에 대한 설명이 적용될 수 있다.
예컨대, 제3렌즈 구동 장치는 도 20b의 렌즈 구동 장치(100-2)에서 제1위치 센서(170A)가 베이스(210)가 아닌 하우징(140)에 배치되는 실시예일 수 있다.
제1 및 제2렌즈 구동 장치들(100A, 100C)의 구동 마그네트들(30A 내지 30B, 31A 내지 31C) 간의 자계 간섭을 줄이기 위하여 도 19a와 같이 구동 마그네트들(30A 내지 30B, 31A 내지 31C)과 센싱 마그네트들(80A,80B)이 배치될 수 있다.
도 19b는 도 18의 듀얼 카메라 모듈의 또 다른 실시예를 나타낸다. 또한 도 19b는 마그네트들(30A,30B,30C,40A,40B,40C,40D)과 센싱 마그네트(80A, 80B)의 자계를 나타낸다.
도 19b의 듀얼 카메라 모듈은 제1렌즈 구동 장치(100A)와 제2렌즈 구동 장치(100B)를 포함할 수 있다. 제1렌즈 구동 장치는 "제1카메라 모듈"로 대체하여 표현될 수 있고, 제2렌즈 구동 장치는 "제2카메라 모듈"로 대체하여 표현될 수도 있다.
제1렌즈 구동 장치(100A)는 상술한 바와 동일할 수 있고, 제2렌즈 구동 장치(100B)는 4개의 구동 마그네트들(40A,40B,40C,40D)을 포함할 수 있다.
도 20a는 도 18의 듀얼 카메라 모듈(1000)의 또 다른 실시예를 나타낸다.
도 20a를 참조하면, 제1렌즈 구동 장치(100-1) 및 제2렌즈 구동 장치(100-2) 각각은 도 1의 실시예에 따른 렌즈 구동 장치(100)일 수 있다.
더미 부재(135a, 135b)가 배치되는 제1렌즈 구동 장치(100-1)의 제1하우징의 제4측부는 더미 부재(135a, 135b)가 배치되는 제2렌즈 구동 장치(100-2)의 제2하우징의 제4측부와 서로 인접하여 배치될 수 있다.
또한 상부에서 보았을 때, 제1렌즈 구동 장치(100-1)의 제1더미 부재(135a, 135b)는 제1렌즈 구동 장치(100-1)의 제3마그네트(130-3)와 제2렌즈 구동 장치(100-2)의 제2더미 부재(135a, 135b) 사이에 배치될 수 있다.
제1렌즈 구동 장치(100-1)의 제1하우징의 제4측부(141-4)와 제2렌즈 구동 장치(100-2)의 제2하우징의 제4측부(141-4)는 서로 인접하여 배치될 수 있다.
예컨대, 제1하우징의 제4측부와 제2하우징의 제4측부는 서로 평행하게 배치될 수 있으나, 이에 한정되는 것은 아니다.
제1렌즈 구동 장치(100-1)의 제1더미 부재(135a, 135b)와 제2렌즈 구동 장치(100-2)의 제2더미 부재(135a, 135b)는 서로 인접하여 배치될 수 있다.
제1렌즈 구동 장치(100-1)의 제1보빈과 제2렌즈 구동 장치(100-2)의 제2보빈은 서로 이격되어 배치될 수 있다.
제1렌즈 구동 장치(100-1)의 제1마그네트(130-1)는 제1보빈의 제1측에 배치될 수 있고, 제1보빈의 제1측으로부터 이격되거나 제1보빈의 제1측에 인접하여 배치될 수 있다.
예컨대, 제1렌즈 구동 장치(100-1)의 제1마그네트(130-1)는 제1보빈(예컨대, 제1보빈의 제1측)과 제1하우징 사이에 배치될 수 있다. 예컨대, 제1마그네트(130-1)는 제1보빈의 제1측에 대응하여 제1하우징에 배치될 수 있다.
제1렌즈 구동 장치(100-1)의 제2마그네트(130-2)는 제1보빈의 제1측과 마주보는 제1보빈의 제2측에 배치될 수 있고, 제1보빈의 제2측으로부터 이격되거나 또는 제1보빈의 제2측에 인접하여 배치될 수 있다.
예컨대, 제1렌즈 구동 장치(100-1)의 제2마그네트(130-2)는 제1보빈(예컨대, 제1보빈의 제2측)과 제1하우징 사이에 배치될 수 있다. 예컨대, 제2마그네트(130-2)는 제1보빈의 제2측에 대응하여 제1하우징에 배치될 수 있다.
제1렌즈 구동 장치(100-1)의 제3마그네트는(130-3)는 제1보빈의 제1측과 인접한 제1보빈의 제3측에 배치될 수 있고, 제1보빈의 제3측으로부터 이격되거나 제1보빈의 제3측에 인접하여 배치될 수 있다.
예컨대, 제3마그네트(130-3)는 제1보빈(예컨대, 제1보빈의 제3측)과 제1하우징 사이에 배치될 수 있다. 예컨대, 제3마그네트(130-3)는 제1보빈의 제3측에 대응하여 제1하우징에 배치될 수 있다.
제2렌즈 구동 장치(100-2)의 제1마그네트(130-1)는 제2보빈의 제1측에 배치될 수 있고, 제2보빈의 제1측으로부터 이격되거나 제2보빈의 제1측에 인접하여 배치될 수 있다.
예컨대, 제2렌즈 구동 장치(100-2)의 제1마그네트(130-1)는 제2보빈(예컨대, 제2보빈의 제1측)과 제2하우징 사이에 배치될 수 있다. 예컨대, 제2렌즈 구동 장치(100-2)의 제1마그네트(130-1)는 제2보빈의 제1측에 대응하여 제2하우징에 배치될 수 있다.
제2렌즈 구동 장치(100-2)의 제2마그네트(130-2)는 제2보빈의 제1측과 마주보는 제2보빈의 제2측에 배치될 수 있고, 제2보빈의 제2측으로부터 이격되거나 또는 제2보빈의 제2측에 인접하여 배치될 수 있다.
예컨대, 제2렌즈 구동 장치(100-2)의 제2마그네트(130-2)는 제2보빈(예컨대, 제2보빈의 제2측)과 제2하우징 사이에 배치될 수 있다. 예컨대, 제2렌즈 구동 장치(100-2)의 제2마그네트(130-2)는 제2보빈의 제2측에 대응하여 제2하우징에 배치될 수 있다.
제2렌즈 구동 장치(100-2)의 제3마그네트는(130-3)는 제2보빈의 제1측과 인접한 제2보빈의 제3측에 배치될 수 있고, 제2보빈의 제3측으로부터 이격되거나 제2보빈의 제3측에 인접하여 배치될 수 있다.
예컨대, 제2렌즈 구동 장치(100-2)의 제3마그네트(130-3)는 제2보빈(예컨대, 제2보빈의 제3측)과 제2하우징 사이에 배치될 수 있다. 예컨대, 제2렌즈 구동 장치(100-2)의 제3마그네트(130-3)는 제2보빈의 제3측에 대응하여 제2하우징에 배치될 수 있다.
제1렌즈 구동 장치(100-1)의 제1더미 부재(135a, 135b)는 제1보빈의 제3측과 마주보는 제1보빈의 제4측에 배치될 수 있고, 제1보빈의 제4측으로부터 이격되거나 제1보빈의 제4측에 인접하여 배치될 수 있다.
제2렌즈 구동 장치(100-2)의 제2더미 부재(135a, 135b)는 제2보빈의 제3측과 마주보는 제2보빈의 제4측에 배치될 수 있고, 제2보빈의 제4측으로부터 이격되거나 제2보빈의 제4측에 인접하여 배치될 수 있다.
제1렌즈 구동 장치(100-1)의 제1더미 부재(135a, 135b)와 제2렌즈 구동 장치(100-2)의 제2더미 부재(135a, 135b)는 제1렌즈 구동 장치(100-1)의 제3마그네트(130-3)에서 제2렌즈 구동 장치(100-2)의 제3마그네트(130-3)로 향하는 방향으로 서로 오버랩되도록 배치될 수 있다.
또는 상면에서 보았을 때, 제1 및 제2렌즈 구동 장치들(100-1, 100-2)의 더미 부재들(135a, 135b)은 제1보빈(예컨대, 제4측)에서 제2보빈(예컨대, 제4측)으로 향하는 방향으로 오버랩되도록 배치될 수 있다.
또한 제1렌즈 구동 장치(110-1)의 제1위치 센서(170)와 제2렌즈 구동 장치(100-2)의 제1위치 센서(170A)는 제1렌즈 구동 장치(110-1)의 제1베이스와 제2렌즈 구동 장치(100-2)의 제2베이스의 서로 인접하는 영역들에 배치될 수 있다.
이때 제1 및 제2베이스들의 서로 인접하는 영역들은 제1 및 제2하우징들의 제4측부들(또는 제1 및 제2보빈들의 제4측들)에 대응되는 영역일 수 있다.
제1렌즈 구동 장치(110-1)의 센싱 코일(180, 이하 "제1센싱 코일"이라 함)은 제1하우징의 제4측부에 대응 또는 대향하는 제1보빈의 어느 한 측부(또는 측면), 예컨대, 제1보빈의 제4측에 배치될 수 있다.
제2렌즈 구동 장치(110-2)의 센싱 코일(180, 이하 "제2센싱 코일"이라 함)은 제2하우징의 제4측부에 대응 또는 대향하는 제2보빈의 어느 한 측부(또는 측면), 예컨대, 제2보빈의 제4측에 배치될 수 있다.
제1센싱 코일과 제2센싱 코일은 서로 인접하여 배치될 수 있다.
제1센싱 코일은 제1보빈의 제3측과 마주보는 제1보빈의 제4측에 배치될 수 있고, 제2센싱 코일은 제2보빈의 제3측과 마주보는 제2보빈의 제4측에 배치될 수 있다.
제1센싱 코일과 제2센싱 코일은 제1렌즈 구동 장치(100-1)의 제3마그네트(130-3)에서 제2렌즈 구동 장치(100-2)의 제3마그네트(130-3)로 향하는 방향으로 서로 오버랩되도록 배치될 수 있다.
또는 상면에서 보았을 때, 제1 및 제2센싱 코일들은 제1보빈(예컨대, 제4측)에서 제2보빈(예컨대, 제4측)으로 향하는 방향으로 오버랩되도록 배치될 수 있다.
도 20a의 실시예는 도 19a의 센싱 마그네트(80A, 80B) 대신에 센싱 코일(180)을 구비하기 때문에, 도 19a의 인접하는 센싱 마그네트들 간의 자계 간섭의 영향을 줄일 수 있고, 이로 인하여 자계 간섭에 따른 AF 동작의 오류를 방지할 수 있다.
도 20a 및 도 1 내지 도 15c를 참조하면, 카메라 모듈(1000)은 제1카메라 모듈(100-1) 및 제2카메라 모듈(100-2)을 포함할 수 있다.
제1카메라 모듈(100-1)은 제1보빈(110 of 100-1), 제1보빈(110 of 100-1)에 배치되는 제1AF 코일(120 of 100-1), 제1AF 코일(120 of 100-1)에 대응하는 제1마그네트(130 of 100-1), 제1보빈(110 of 100-1)에 배치되는 제1센싱 코일(180 of 100-1), 및 제1센싱 코일(180 of 100-1)에 대응하는 제1위치 센서(170)를 포함한다.
상기 제2카메라 모듈(100-2)은 제1보빈(110 of 100-2)과 이격되는 제2보빈(110 of 100-2), 상기 제2보빈에 배치되는 제2AF 코일(120 of 100-2), 제2AF 코일(120 of 100-2)에 대응하는 제2마그네트(130 of 100-2), 제2보빈(110 of 100-2)에 배치되는 제2센싱 코일(180 of 100-2), 및 제2센싱 코일(180 of 100-2)에 대응하는 제2위치 센서(170A)를 포함할 수 있다.
제1센싱 코일(180 of 100-1)과 제2센싱 코일(180 of 100-2)은 제1보빈(110 of 100-1)과 제2보빈(110 of 100-2)의 서로 마주보고 인접하는 측부들에 배치될 수 있다.
또는 카메라 모듈(1000)은 제1카메라 모듈(100-1) 및 제2카메라 모듈(100-2)을 포함할 수 있다.
제1카메라 모듈(100-1)은 제1커버(300 of 100-1), 제1커버(300 of 100-1) 내에 배치되는 제1하우징(140 of 100-1), 제1하우징(140 of 100-1) 내에 배치되는 제1보빈(110 of 100-1), 제1보빈(110 of 100-1)에 배치되는 제1AF 코일(120 of 100-1), 제1하우징(140 of 100-1)에 배치되고 제1AF 코일(120 of 100-1)에 대응하는 제1마그네트(130 of 100-1), 제1보빈(110 of 100-1)에 배치되는 제1센싱 코일(180 of 100-1), 제1하우징(140 of 100-1) 아래에 배치되는 제1베이스(210 of 100-1), 및 제1베이스(210 of 100-1)에 배치되고 제1센싱 코일(180 of 100-1)에 대응하는 제1위치 센서(170)를 포함할 수 있다.
제2카메라 모듈(100-2)은 제2커버(300 of 100-2), 제2커버(300 of 100-2)) 내에 배치되는 제2하우징(140 of 100-2), 제2하우징(140 of 100-2)) 내에 배치되는 제2보빈(110 of 100-2), 제2보빈(110 of 100-2)에 배치되는 제2AF 코일(120 of 100-2), 제2하우징(140 of 100-2)에 배치되고 제2AF 코일(120 of 100-2)에 대응하는 제2마그네트(130 of 100-2), 제2보빈(110 of 100-2)에 배치되는 제2센싱 코일(180 of 100-2), 제2하우징(140 of 100-2) 아래에 배치되는 제2베이스(210 of 100-2), 및 제2베이스(210 of 100-2)에 배치되고 제2센싱 코일(180 of 100-2)에 대응하는 제2위치 센서(170A of 100-2)를 포함할 수 있다.
제1센싱 코일(180 of 100-1)과 제2센싱 코일(180 of 100-2)은 제1보빈(110 of 100-1)과 제2보빈(110 of 100-2)의 서로 마주보고 인접하는 측부들에 배치될 수 있다.
제1센싱 코일(180 of 100-1)과 제1위치 센서(170 of 100-1)는 광축 방향으로 서로 오버랩될 수 있고, 제2센싱 코일(180 of 100-2)과 제2위치 센서(170 of 100-2)는 광축 방향으로 서로 오버랩될 수 있다.
제1커버(300 of 100-1)는 제1상판과 제1상판으로부터 연장되고 제2커버(300 of 100-2)에 인접하는 제1-1 측판 및 제1-1 측판의 반대편에 위치하는 제1-2 측판을 포함할 수 있다. 제2커버(300 of 100-2)는 제2상판과 제2상판으로부터 연장되고 제1-1 측판과 마주보는 제2-1 측판, 및 제2-1 측판의 반대편에 위치하는 제2-2 측판을 포함할 수 있다.
제1센싱 코일(180 of 100-1)은 제1-2 측판보다 제1-1 측판에 인접하고, 제2센싱 코일(180 of 100-2)은 제2-2 측판보다 제2-1 측판에 인접할 수 있다.
제1커버(300 of 100-1)는 제1-1 측판과 제1-2 측판 사이에 배치되고 서로 마주보는 제1-3 측판과 제1-4 측판을 포함할 수 있다.
제2커버(300 of 100-2)는 제2-1 측판과 제2-2 측판 사이에 배치되고 서로 마주보는 제2-3 측판과 제2-4 측판을 포함할 수 있다.
제1마그네트(130 of 100-1)는 제1-3 측판에 대응되는 제1-1 마그네트(130-1 of 100-1), 제1-4 측판에 대응되는 제1-2 마그네트(130-2 of 100-1), 및 제1-2 측판에 대응되는 제1-3 마그네트(130-3 of 100-1)를 포함할 수 있다.
제2마그네트(130 of 100-2)는 제2-3 측판에 대응되는 제2-1 마그네트(130-1 of 100-2), 제2-4 측판에 대응되는 제2-2 마그네트(130-2 of 100-2), 및 제2-2 측판에 대응되는 제2-3 마그네트(130-3 of 100-2)를 포함할 수 있다.
제1더미 부재(135a, 135b of 100-1)는 제1-1 측판과 대응되는 제1하우징(140 of 100-1)의 어느 한 측부(예컨대, 제4측부(141-4 of 100-1))에 배치될 수 있다. 제2더미 부재(135a, 135b of 100-2)는 제2-1 측판과 대응되는 제2하우징(140 of 100-2)의 어느 한 측부(예컨대, 제4측부(141-4 of 100-2))에 배치될 수 있다.
제1하우징(140 of 100-1)의 제4측부(141-4 of 100-1)와 제2하우징(140 of 100-2)의 제4측부(141-4 of 100-4))는 서로 마주보도록 배치될 수 있다.
제1센싱 코일(180 of 100-1)과 제2센싱 코일(180 of 100-2)은 제1-3 마그네트(130-3 of 100-1)과 제2-3 마그네트(130-3 of 100-2) 사이에 배치될 수 있다.
카메라 모듈은 광축 방향으로 제1마그네트(130 of 100-1)와 오버랩되는 제2-1 코일(230 of 100-1), 광축 방향으로 제2마그네트(130 of 100-2)와 오버랩되는 제2-2 코일(230 of 100-2), 제1위치 센서(170 of 100-1)와 전기적으로 연결되는 제1회로 기판, 및 제2위치 센서(170 of 100-2)와 전기적으로 연결되는 제2회로 기판을 포함할 수 있다.
도 20b는 도 18의 듀얼 카메라 모듈(1000)의 일 실시예를 나타낸다.
도 20b를 참조하면, 제1렌즈 구동 장치(100-1)는 도 1의 실시예에 따른 렌즈 구동 장치(100)일 수 있고, 제2렌즈 구동 장치(100-2)는 도 16의 실시예에 따른 렌즈 구동 장치일 수 있다.
도 20b에서는 제1렌즈 구동 장치(100-1)의 센싱 코일(180)과 제2렌즈 구동 장치(100-2)의 센싱 마그네트(180A)가 서로 인접하여 배치될 수 있다. 센싱 코일(180)과 센싱 마그네트(180A) 사이에는 자계 간섭의 영향이 크지 않기 때문에, 실시예는 자계 간섭에 따른 AF 동작의 오류를 방지할 수 있다.
또 다른 실시예에 다른 듀얼 카메라 모듈은 도 20b에서 제1렌즈 구동 장치(100-1) 대신에 제2렌즈 구동 장치(100-2)가 대체될 수도 있으며, 이때 제1 및 제2렌즈 구동 장치들의 센싱 마그네트들은 인접하고, 도 19a에 도시된 바와 같이 서로 마주보도록 배치될 수 있다.
도 20b 및 도 1 내지 도 15c를 참조하면, 카메라 모듈(1000)은 제1카메라 모듈(100-1) 및 제2카메라 모듈(100-2)을 포함할 수 있다.
제1카메라 모듈(100-1)은 제1보빈(110 of 100-1), 제1보빈(110 of 100-1)에 배치되는 제1AF 코일(120 of 100-1), 제1AF 코일(120 of 100-1)에 대응하는 제1마그네트(130 of 100-1), 제1보빈(110 of 100-1)에 배치되는 제1센싱 코일(180 of 100-1), 및 제1센싱 코일(180 of 100-1)에 대응하는 제1위치 센서(170)를 포함할 수 있다.
상기 제2카메라 모듈(100-2)은 제1보빈(110 of 100-2)과 이격되는 제2보빈(110 of 100-2), 상기 제2보빈에 배치되는 제2AF 코일(120 of 100-2), 제2AF 코일(120 of 100-2)에 대응하는 제2마그네트(130 of 100-2), 제2보빈(110 of 100-2)에 배치되는 센싱 마그네트(180A), 및 센싱 마그네트(180A)에 대응하는 제2위치 센서(170A)를 포함할 수 있다.
제1센싱 코일(180 of 100-1)과 센싱 마그네트(180A)은 제1보빈(110 of 100-1)과 제2보빈(110 of 100-2)의 서로 마주보고 인접하는 측부들에 배치될 수 있다.
또는 카메라 모듈(1000)은 제1카메라 모듈(100-1) 및 제2카메라 모듈(100-2)을 포함할 수 있다.
제1카메라 모듈(100-1)은 제1커버(300 of 100-1), 제1커버(300 of 100-1) 내에 배치되는 제1하우징(140 of 100-1), 제1하우징(140 of 100-1) 내에 배치되는 제1보빈(110 of 100-1), 제1보빈(110 of 100-1)에 배치되는 제1AF 코일(120 of 100-1), 제1하우징(140 of 100-1)에 배치되고 제1AF 코일(120 of 100-1)에 대응하는 제1마그네트(130 of 100-1), 제1보빈(110 of 100-1)에 배치되는 제1센싱 코일(180 of 100-1), 제1하우징(140 of 100-1) 아래에 배치되는 제1베이스(210 of 100-1), 및 제1베이스(210 of 100-1)에 배치되고 제1센싱 코일(180 of 100-1)에 대응하는 제1위치 센서(170)를 포함할 수 있다.
제2카메라 모듈(100-2)은 제2커버(300 of 100-2), 제2커버(300 of 100-2)) 내에 배치되는 제2하우징(140 of 100-2), 제2하우징(140 of 100-2)) 내에 배치되는 제2보빈(110 of 100-2), 제2보빈(110 of 100-2)에 배치되는 제2AF 코일(120 of 100-2), 제2하우징(140 of 100-2)에 배치되고 제2AF 코일(120 of 100-2)에 대응하는 제2마그네트(130 of 100-2), 제2보빈(110 of 100-2)에 배치되는 센싱 마그네트(180A), 제2하우징(140 of 100-2) 아래에 배치되는 제2베이스(210 of 100-2), 및 제2베이스(210 of 100-2)에 배치되고 센싱 마그네트(180A)에 대응하는 제2위치 센서(170A of 100-2)를 포함할 수 있다.
제1센싱 코일(180 of 100-1)과 제1위치 센서(170 of 100-1)는 광축 방향으로 서로 오버랩될 수 있고, 센싱 마그네트(180A)와 제2위치 센서(170 of 100-2)는 광축 방향으로 서로 오버랩될 수 있다.
제1커버(300 of 100-1)는 제1상판과 제1상판으로부터 연장되고 제2커버(300 of 100-2)에 인접하는 제1-1 측판 및 제1-1 측판의 반대편에 위치하는 제1-2 측판을 포함할 수 있다. 제2커버(300 of 100-2)는 제2상판과 제2상판으로부터 연장되고 제1-1 측판과 마주보는 제2-1 측판, 및 제2-1 측판의 반대편에 위치하는 제2-2 측판을 포함할 수 있다.
제1센싱 코일(180 of 100-1)은 제1-2 측판보다 제1-1 측판에 인접하고, 센싱 마그네트(180A)는 제2-2 측판보다 제2-1 측판에 인접할 수 있다.
제1커버(300 of 100-1)의 제1-1 내지 1-4 측판들과 제2커버(300 of 100-2)의 제2-1 내지 2-4 측판들, 제1-1 내지 제1-3 마그네트들(130-1 내지 130-3 of 100-1)의 배치, 제2-1 내지 제2-3 마그네트들(130-1 내지 130-3 of 100-2)의 배치, 제1 및 제2더미 부재들(135a, 135b of 100-1, 100-2)의 배치는 eh 20a의 설명이 적용 또는 준용될 수 있다.
제1센싱 코일(180 of 100-1)과 센싱 마그네트(180A)는 제1-3 마그네트(130-3 of 100-1)과 제2-3 마그네트(130-3 of 100-2) 사이에 배치될 수 있다.
도 20c는 도 18의 듀얼 카메라 모듈(1000)의 일 실시예를 나타낸다.
도 20c를 참조하면, 제1렌즈 구동 장치(100-1) 및 제2렌즈 구동 장치(100-2)는 도 16의 실시예에 따른 렌즈 구동 장치일 수 있다.
도 20c에서는 제1렌즈 구동 장치(100-1)의 센싱 마그네트(180A)와 제2렌즈 구동 장치(100-2)의 센싱 마그네트(180A)가 서로 인접하여 배치될 수 있다.
도 20c에서 제1센싱 마그네트(180A of 100-1)와 제2센싱 마그네트(180A of 100-2)의 배치는 도 20a에서의 제1 및 제2센싱 코일들의 배치 관계가 적용 또는 준용될 수 있다.
도 21은 본 발명의 제1실시예에 따른 휴대용 단말기(200A)의 사시도를 나타내고, 도 22는 도 21에 도시된 휴대용 단말기(200A)의 구성도를 나타낸다.
도 21 및 도 22를 참조하면, 휴대용 단말기(200A, 이하 "단말기"라 한다.)는 몸체(850), 무선 통신부(710), A/V 입력부(720), 센싱부(740), 입/출력부(750), 메모리부(760), 인터페이스부(770), 제어부(780), 및 전원 공급부(790)를 포함할 수 있다.
도 21에 도시된 몸체(850)는 바(bar) 형태이지만, 이에 한정되지 않고, 2개 이상의 서브 몸체(sub-body)들이 상대 이동 가능하게 결합하는 슬라이드 타입, 폴더 타입, 스윙(swing) 타입, 스위블(swirl) 타입 등 다양한 구조일 수 있다.
몸체(850)는 외관을 이루는 케이스(케이싱, 하우징, 커버 등)를 포함할 수 있다. 예컨대, 몸체(850)는 프론트(front) 케이스(851)와 리어(rear) 케이스(852)로 구분될 수 있다. 프론트 케이스(851)와 리어 케이스(852)의 사이에 형성된 공간에는 단말기의 각종 전자 부품들이 내장될 수 있다.
무선 통신부(710)는 단말기(200A)와 무선 통신시스템 사이 또는 단말기(200A)와 단말기(200A)가 위치한 네트워크 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함하여 구성될 수 있다. 예를 들어, 무선 통신부(710)는 방송 수신 모듈(711), 이동통신 모듈(712), 무선 인터넷 모듈(713), 근거리 통신 모듈(714) 및 위치 정보 모듈(715)을 포함하여 구성될 수 있다.
A/V(Audio/Video) 입력부(720)는 오디오 신호 또는 비디오 신호 입력을 위한 것으로, 카메라(721) 및 마이크(722) 등을 포함할 수 있다.
카메라(721)는 도 17 또는 도 18에 도시된 실시예에 따른 카메라 모듈(200, 1000)을 포함할 수 있다.
센싱부(740)는 단말기(200A)의 개폐 상태, 단말기(200A)의 위치, 사용자 접촉 유무, 단말기(200A)의 방위, 단말기(200A)의 가속/감속 등과 같이 단말기(200A)의 현 상태를 감지하여 단말기(200A)의 동작을 제어하기 위한 센싱 신호를 발생시킬 수 있다. 예를 들어, 단말기(200A)가 슬라이드 폰 형태인 경우 슬라이드 폰의 개폐 여부를 센싱할 수 있다. 또한, 전원 공급부(790)의 전원 공급 여부, 인터페이스부(770)의 외부 기기 결합 여부 등과 관련된 센싱 기능을 담당한다.
입/출력부(750)는 시각, 청각 또는 촉각 등과 관련된 입력 또는 출력을 발생시키기 위한 것이다. 입/출력부(750)는 단말기(200A)의 동작 제어를 위한 입력 데이터를 발생시킬 수 있으며, 또한 단말기(200A)에서 처리되는 정보를 표시할 수 있다.
입/출력부(750)는 키 패드부(730), 디스플레이 모듈(751), 음향 출력 모듈(752), 및 터치 스크린 패널(753)을 포함할 수 있다. 키 패드부(730)는 키 패드 입력에 의하여 입력 데이터를 발생시킬 수 있다.
디스플레이 모듈(751)은 전기적 신호에 따라 색이 변화하는 복수 개의 픽셀들을 포함할 수 있다. 예컨대, 디스플레이 모듈(751)는 액정 디스플레이(liquid crystal display), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display), 유기 발광 다이오드(organic light-emitting diode), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(3D display) 중에서 적어도 하나를 포함할 수 있다.
음향 출력 모듈(752)은 호(call) 신호 수신, 통화 모드, 녹음 모드, 음성 인식 모드, 또는 방송 수신 모드 등에서 무선 통신부(710)로부터 수신되는 오디오 데이터를 출력하거나, 메모리부(760)에 저장된 오디오 데이터를 출력할 수 있다.
터치 스크린 패널(753)은 터치 스크린의 특정 영역에 대한 사용자의 터치에 기인하여 발생하는 정전 용량의 변화를 전기적인 입력 신호로 변환할 수 있다.
메모리부(760)는 제어부(780)의 처리 및 제어를 위한 프로그램이 저장될 수도 있고, 입/출력되는 데이터들(예를 들어, 전화번호부, 메시지, 오디오, 정지영상, 사진, 동영상 등)을 임시 저장할 수 있다. 예컨대, 메모리부(760)는 카메라(721)에 의해 촬영된 이미지, 예컨대, 사진 또는 동영상을 저장할 수 있다.
인터페이스부(770)는 단말기(200A)에 연결되는 외부 기기와의 연결되는 통로 역할을 한다. 인터페이스부(770)는 외부 기기로부터 데이터를 전송받거나, 전원을 공급받아 단말기(200A) 내부의 각 구성 요소에 전달하거나, 단말기(200A) 내부의 데이터가 외부 기기로 전송되도록 한다. 예컨대, 인터페이스부(770)는 유/무선 헤드셋 포트, 외부 충전기 포트, 유/무선 데이터 포트, 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O(Input/Output) 포트, 및 이어폰 포트 등을 포함할 수 있다.
제어부(controller, 780)는 단말기(200A)의 전반적인 동작을 제어할 수 있다. 예를 들어 제어부(780)는 음성 통화, 데이터 통신, 화상 통화 등을 위한 관련된 제어 및 처리를 수행할 수 있다.
제어부(780)는 멀티 미디어 재생을 위한 멀티미디어 모듈(781)을 구비할 수 있다. 멀티미디어 모듈(781)은 제어부(180) 내에 구현될 수도 있고, 제어부(780)와 별도로 구현될 수도 있다.
제어부(780)는 터치스크린 상에서 행해지는 필기 입력 또는 그림 그리기 입력을 각각 문자 및 이미지로 인식할 수 있는 패턴 인식 처리를 행할 수 있다.
전원 공급부(790)는 제어부(780)의 제어에 의해 외부의 전원, 또는 내부의 전원을 인가받아 각 구성 요소들의 동작에 필요한 전원을 공급할 수 있다.
본 발명의 제1실시예에 따른 렌즈 구동 장치는 본 발명의 제2실시예의 센싱 구조를 포함할 수 있다. 보다 상세히, 본 발명의 제1실시예에 따른 렌즈 구동 장치는 본 발명의 제2실시예의 센싱 코일(2180)과 위치 센서(2170)를 포함할 수 있다. 본 발명의 제1실시예에 따른 렌즈 구동 장치는 본 발명의 제3실시예의 기판(3600)과 하부 탄성부재(3520)를 포함할 수 있다.
도 23은 본 발명의 제2실시예에 따른 렌즈 구동 장치(2100)의 분해도이고, 도 24는 커버 부재(2300)를 제외한 렌즈 구동 장치(2100)의 사시도이다.
도 23 및 도 24를 참조하면, 렌즈 구동 장치(2100)는 보빈(2110), 코일(2120), 센싱 코일(2180), 마그네트(2130), 하우징(2140), 및 위치 센서(2170)를 포함할 수 있다.
렌즈 구동 장치(2100)는 위치 센서(2170)와 전기적으로 연결되는 단자부(2190)를 더 포함할 수 있다.
렌즈 구동 장치(2100)는 상부 탄성 부재(2150), 하부 탄성 부재(2160), 및 베이스(2210) 중 적어도 하나를 더 포함할 수도 있다.
또한 렌즈 구동 장치(2100)는 센싱 코일(2180)의 무게 또는 자계의 영향을 감쇄시키기 위한 밸런싱 코일(미도시)를 더 포함할 수도 있다.
또한 렌즈 구동 장치(2100)는 커버 또는 커버 부재(2300)를 더 포함할 수 있다.
실시예는 센싱 마그네트 대신에 센싱 코일 또는 구동 코일을 이용하여 AF 가동부의 위치를 감지하기 위한 자기장을 제공하기 때문에, 센싱 마그네트와 마그네트 간의 자계 간섭을 방지할 수 있다.
먼저 보빈(2110)에 대하여 설명한다.
보빈(2110)은 하우징(2140)의 내측에 배치되고, 코일(2120)과 마그네트(2130) 간의 전자기적 상호 작용에 의하여 광축(OA) 방향 또는 제1방향(예컨대, Z축 방향)으로 이동될 수 있다.
도 25a는 보빈(2110)의 제1사시도이고, 도 25b는 보빈(2110)의 제2사시도이고, 도 25c는 보빈(2110), 및 코일(2120)의 결합 사시도이다.
도 25a 내지 도 25c를 참조하면, 보빈(2110)은 렌즈 또는 렌즈 배럴을 장착하기 위한 개구 또는 중공을 가질 수 있다. 예컨대, 보빈(2110)의 개구는 보빈(2110)을 관통하는 관통 홀 형태일 수 있고, 보빈(2110)의 개구의 형상은 원형, 타원형, 또는 다각형일 수 있으나, 이에 한정되는 것은 아니다. 예컨대, 보빈(2110)의 개구는 광축 방향으로 보빈(2110)을 관통하는 홀 형태일 수 있다.
보빈(2110)의 개구에는 렌즈가 직접 장착될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 적어도 하나의 렌즈가 장착 또는 결합되기 위한 렌즈 배럴이 보빈(2110)의 개구에 결합 또는 장착될 수 있다. 렌즈 또는 렌즈 배럴은 보빈(2110)의 내주면에 다양한 방식으로 결합될 수 있다. 예컨대, 예컨대, 보빈(2110)의 내측면에는 렌즈 또는 렌즈 모듈과 결합을 위한 나사산이 형성될 수도 있으나, 다른 실시예에서는 나사산이 형성되지 않을 수도 있다.
보빈(2110)은 서로 이격하는 복수의 측부들(2110b1 내지 2110b4, 2110c1 내지 2110c4)을 포함할 수 있으며, 복수의 측부들(2110b1 내지 2110b4, 2110c1 내지 2110c4)은 서로 연결될 수 있다.
예컨대, 보빈(2110)은 하우징(2140)의 측부들(2141-1 내지 2141-4)에 대응하는 측부들(2110b1 내지 2110b4) 및 하우징(2140)의 코너부들(2142-1 내지 2142-4)에 대응되는 코너부들(2110c1 내지 2110c4)(또는 코너들)을 포함할 수 있다.
보빈(2110)의 외측면에는 코일(2120)이 배치, 장착, 또는 안착되기 위한 적어도 하나의 안착홈(2105)이 마련될 수 있다.
예컨대, 안착홈(2105)은 보빈(2110)의 측부들(2110b1 내지 2110b4, 2110c1 내지 2110c4)의 외측면들에 형성될 수 있다. 안착홈(2105)은 보빈(2110)의 측부들(2110b1 내지 2110b4, 2110c1 내지 2110c4)의 외측면들로부터 함몰된 구조일 수 있으며, 코일(2120)의 형상과 일치하는 형상을 가질 수 있다.
예컨대, 광축(OA)을 기준으로 시계 방향 또는 시계 반대 방향으로 회전하도록 보빈(2110)의 홈(2105)에 코일(2120)이 직접 권선 또는 감길 수도 있다.
보빈(2110)의 홈(2105)의 형상 및 개수는 보빈(2110)의 외측면에 배치되는 코일의 형상 및 개수에 상응할 수 있다. 다른 실시예에서는 보빈(2110)은 코일 안착을 위한 홈을 구비하지 않을 수 있고, 코일(2120)은 홈이 없는 보빈(2110)의 외측면에 직접 권선되거나 또는 감기어 고정될 수도 있다.
보빈(2110)의 외측면의 하단에는 코일(2120)의 시선(예컨대, 일단) 또는 종선(예컨대, 타단)이 지나가기 위한 홈(2106)이 형성될 수도 있다.
보빈(2110)의 상면에는 상부 탄성 부재(2150)의 제1프레임 연결부(2153)와 공간적 간섭을 회피하기 위한 제1도피홈(2122a)이 마련될 수 있고, 보빈(2110)의 하면에는 하부 탄성 부재(2150)의 제2프레임 연결부(2163)와 공간적 간섭을 회피하기 위한 제2도피홈(2122b)이 마련될 수 있다. 예컨대, 제1 및 제2도피홈(2122a,122b)은 보빈(2110)의 코너부에 형성될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 보빈(2110)의 측부에 형성될 수도 있다.
도 25a 내지 도 25c에는 도시되지 않지만 보빈(2110)은 상면으로부터 돌출되는 제1스토퍼 및 하면으로부터 돌출되는 제2스토퍼를 포함할 수도 있다. 보빈(2110)의 제1 및 제2스토퍼들은 보빈(2110)이 오토 포커싱 기능을 위해 제1방향으로 움직일 때, 외부 충격 등에 의해 보빈(2110)이 규정된 범위 이상으로 움직이더라도, 보빈(2110)의 상면이 커버 부재(2300)의 상판의 내측과 직접 충돌하는 것을 방지할 수 있고, 보빈(2110)의 하면이 베이스(2210)에 직접 충돌되는 것을 방지할 수 있다.
보빈(2110)의 상면, 상부, 또는 상단에는 상부 탄성 부재(2150)에 결합 및 고정되기 위한 제1결합부(2113)가 마련될 수 있고, 보빈(2110)의 하면에는 하부 탄성 부재(2160)에 결합 및 고정되기 위한 제2결합부(2117)가 마련될 수 있다.
예컨대, 도 25a 내지 도 25c에서는 보빈(2110)의 제1결합부(2113)는 홈 형태이고, 제2결합부(2117)는 돌기 형태일 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에 보빈(2110)의 제1 및 제2결합부들 각각은 홈, 평면, 또는 돌기 형상일 수도 있다.
보빈(2110)의 내주면에는 렌즈 또는 렌즈 배럴과 결합을 위한 나사선이 마련될 수 있다. 지그(jig) 등에 의하여 보빈(2110)을 고정시킨 상태에서 보빈(2110)의 내주면에 나사선을 형성할 수 있는데, 보빈(2110)의 상면에는 지그(jig) 고정용 홈(2119)이 마련될 수 있다.
보빈(2110)은 센싱 코일(2180)이 안착, 배치, 또는 삽입되기 위한 홈부(2025)를 구비할 수 있다.
홈부(2025)는 보빈(2110)의 하부, 하면, 또는, 하단에 형성될 수 있다.
홈부(2025)는 보빈(2110)의 하면으로부터 함몰된 형태일 수 있다. 예컨대, 홈부(2025)는 보빈(2110)의 코너부들 중 어느 하나에 형성될 수 있다.
예컨대, 홈부(2025)는 보빈(2110)의 제2코너부(2110c2)의 하부에 형성될 수 있다. 홈부(2025)는 적어도 하나의 개구를 포함할 수 있다. 예컨대, 홈부(2025)는 베이스(2210)를 향하여 개방된 제1개구를 포함할 수 있다 또한 홈부(2025)는 보빈(2110)의 외측면으로 개방되는 적어도 하나의 제2개구를 포함할 수 있다.
또한 보빈(2110)은 센싱 코일(2180)과 결합되기 위한 적어도 하나의 돌기(2026)를 구비할 수 있다.
예컨대, 돌기(2026)는 홈부(2025) 내에 배치될 수 있다. 예컨대, 돌기(2026)는 홈부(2025)의 상면으로부터 하측 방향 또는 위치 센서(2170)(또는 베이스(2210))를 향하는 방향으로 돌출될 수 있다.
밸런싱 코일의 장착을 위하여 보빈(2110)은 홈부(2025)의 반대편에 위치하는 별도의 홈부를 더 구비할 수도 있다.
다음으로 코일(2120)에 대하여 설명한다.
코일(2120)은 보빈(2110)에 배치되거나 또는 보빈(2110)과 결합 또는 연결되거나 또는 보빈(2110)에 의하여 지지될 수 있다.
예컨대, 코일(2120)은 보빈(2110)의 외측면에 배치될 수 있다.
코일(2120)은 광축을 중심으로 시계 방향 또는 시계 반대 방향으로 회전하도록 보빈(2110)의 외측면을 감싸도록 배치될 수 있다. 예컨대, 코일(2120)은 보빈(2110)의 외측면에 마련된 홈(2105) 내에 배치 또는 권선될 수 있다.
예컨대, 코일(2120)은 폐곡선 또는 중앙홀을 갖는 링 형상을 가질 수 있다.
다른 실시예에서 코일(2120)은 광축과 수직인 축을 중심으로 시계 방향 또는 시계 반대 방향으로 권선되는 코일 링 형태로 구현될 수 있으며, 코일 링의 개수는 마그네트(2130)의 개수와 동일할 수 있으나, 이에 한정되는 것은 아니다.
코일(2120)은 하우징(2140)에 배치되는 마그네트(2130)와 전자기적 상호 작용을 한다. 마그네트(2130)와 상호 작용에 의한 전자기력을 생성하기 위하여 코일(2120)에는 전원이 제공되거나 또는 구동 신호가 인가될 수 있다.
코일(2120)에 제공되는 전원 또는 구동 신호는 직류 신호 또는 교류 신호이거나 또는 직류 신호와 교류 신호를 포함할 수 있으며, 전압 또는 전류 형태일 수 있다.
코일(2120)에 구동 신호(예컨대, 구동 전류)가 공급될 때, 코일(2120)과 마그네트(2130) 간의 전자기적 상호 작용을 통해 전자기력이 형성될 수 있고, 형성된 전자기력에 의하여 상부 및 하부 탄성 부재들(2150, 2160)에 의하여 지지되는 보빈(2110)이 광축(OA) 방향으로 이동될 수 있다.
코일(2120)에 제공되는 구동 신호가 제어됨으로써, 보빈(2110)의 제1방향으로의 움직임이 제어될 수 있으며, 이로 인하여 오토 포커싱 기능이 수행될 수 있다.
AF 가동부의 초기 위치에서, 보빈(2110)은 상측 또는 하측 방향(예컨대, Z축 방향)으로 이동될 수 있으며, 이를 AF 가동부의 양방향 구동이라 한다. 또는 AF 가동부의 초기 위치에서, 보빈(2110)은 상측 방향으로 이동될 수 있으며, 이를 AF 가동부의 단방향 구동이라 한다.
AF 가동부는 보빈(2110), 및 보빈(2110)에 결합된 구성들을 포함할 수 있다. 예컨대, AF 가동부는 보빈(2110), 코일(2120), 및 센싱 코일(2180)을 포함할 수 있다. 또한 AF 가동부는 보빈(2110)에 장착되는 렌즈를 더 포함할 수도 있다.
그리고 AF 가동부의 초기 위치는 코일(2120)에 전원을 인가하지 않은 상태에서 AF 가동부의 최초 위치이거나 또는 상부 및 하부 탄성 부재(2150,160)가 단지 AF 가동부의 무게에 의해서만 탄성 변형됨에 따라 AF 가동부가 놓이는 위치일 수 있다.
이와 더불어 보빈(2110)의 초기 위치는 중력이 보빈(2110)에서 베이스(2210) 방향으로 작용할 때, 또는 이와 반대로 중력이 베이스(2210)에서 보빈(2110) 방향으로 작용할 때의 AF 가동부가 놓이는 위치일 수 있다.
AF 가동부의 초기 위치에서, 코일(2120)은 광축과 수직하고, 광축에서 코일 (2120)을 향하는 방향으로 마그네트(2130)와 대향하거나 오버랩(overlap)될 수 있다.
코일(2120)은 상부 또는 하부 탄성 부재들(2150, 2160) 중 적어도 하나와 전기적으로 연결될 수 있다. 상부 또는 하부 탄성 부재들(2150, 2160) 중 적어도 하나를 통하여 구동 신호가 코일(2120)에 인가될 수 있다. 예컨대, 하부 탄성 부재(2160)의 2개의 탄성 부재들(2160-1, 2160-2)을 통하여 코일(2120)에 구동 신호가 제공될 수 있다.
센싱 코일(2180)은 코일(2120)과 이격되고, 코일(2120) 아래에 배치될 수 있다.
센싱 코일(2180)은 광축 방향으로 코일(2120)의 일부와 오버랩될 수 있다. 다른 실시예에서는 센싱 코일(2180)은 광축 방향으로 코일(2120)과 오버랩되지 않을 수도 있다.
또한 실시예는 센싱 코일(2180)과 무게 균형을 맞추기 위하여 센싱 코일(2180)의 반대 편에 위치하도록 보빈(2110A)에 배치되는 밸런싱 코일(미도시)을 구비할 수 있다. 밸런싱 센싱 코일은 센싱 코일(2180)의 자계 영향을 상쇄시키고, 센싱 코일(2180)와 무게 균형을 맞추기 위한 것일 수 있으며, 이로 인하여 정확한 AF 동작이 수행될 수 있다.
예컨대, 밸런싱 코일은 센싱 코일(2180)과 무게가 동일할 수 있고, 양자는 그 형상이 동일할 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 그 형상이 다를 수도 있다.
또한 예컨대, 센싱 코일(2180)은 보빈(2110)의 어느 한 측부 또는/및 코너부에 배치될 수 있다. 센싱 코일(2180)는 보빈(2110)의 홈부(2025) 내에 배치될 수 있고, 돌기(2026)에 결합되거나 또는 돌기(2026)에 권선될 수 있다.
센싱 코일(2180)은 위치 센서(2170)가 감지하기 위한 자기장을 제공할 수 있ㅇ으며, 이러한 자기장을 발생시키기 위하여 센싱 코일(2180)에는 구동 신호 또는 전원이 제공될 수 있다. 센싱 코일(2180)에 제공되는 구동 신호는 직류 신호 또는 교류 신호 중 적어도 하나를 포함할 수 있다. 또한 구동 신호는 전류 또는 전압 형태일 수 있다.
센싱 코일(2180)은 원 형상, 타원 형상, 또는 폐곡선 형상 중 적어도 하나의 형상을 포함할 수 있다. 예컨대, 센싱 코일(2180)은 광축 또는 광축과 평행한 축을 기준으로 회전하도록 감긴 코일 링 형태일 수 있다.
예컨대, 센싱 코일(2180)은 중앙홀을 포함하는 링 형상을 가질 수 있으며, 중앙홀은 광축과 평행할 수 있다. 또는 센싱 코일(2180)의 중앙홀은 보빈(2110)의 홈부(2025)(또는 돌기(2026))를 마주볼 수 있으며, 돌기(2026)와 결합될 수 있다.
예컨대, 센싱 코일(2180)의 중앙홀의 직경(예컨대, 최대 직경)은 코일(2120)의 링의 직경(예컨대, 최소 직경)보다 작을 수 있다.
예컨대, 센싱 코일(2180)은 제1부분(2009A), 제1부분(2009A) 아래에 배치되는 제2부분(2009B), 및 제1부분(2009A)과 제2부분(2009B)을 연결하는 제3부분(2009C)을 포함할 수 있다.
센싱 코일(2180)의 제3부분(2009C)은 제1부분(2009A)의 일단과 제2부분(2009B)의 일단을 서로 연결하는 제1연결 부분 및 제1부분의 타단과 제2부분의 타단을 연결하는 제2연결 부분을 포함할 수 있다.
예컨대, 센싱 코일(2180)의 제1부분(2009A)과 제2부분(2009B) 각각은 "직선 형상을 가질 수 있고, 센싱 코일(2180)의 제3부분(2009C)은 곡선 형상 또는 절곡 형상을 가질 수 있다.
코일(2120)과 마그네트(2130) 간의 상호 작용에 의하여 센싱 코일(2180)은 보빈(2110)과 함께 광축(OA) 방향으로 이동할 수 있으며, 위치 센서(2170)는 광축 방향으로 이동하는 센싱 코일(2180)의 자기장의 세기를 감지할 수 있고, 감지된 결과에 따른 출력 신호를 출력할 수 있다.
예컨대, 광축 방향으로의 보빈(2110)의 변위에 따라 위치 센서(2170)가 감지한 센싱 코일(2180)의 자기장의 세기 또는 자기력이 변화될 수 있고, 위치 센서(2170)는 감지된 자기장의 세기에 비례하는 출력 신호를 출력할 수 있고, 위치 센서(2170)의 출력 신호를 이용하여 보빈(2110)의 광축 방향으로의 변위가 감지될 수 있다.
예컨대, 카메라 모듈의 제어부(2410) 또는 단말기의 제어부(2780)는 위치 센서(2170)가 출력하는 출력 신호에 기초하여, 보빈(2110A)의 광축 방향으로의 변위를 검출할 수 있다.
보빈(2110)의 홈부(2025)에 배치되는 센싱 코일(2180)의 적어도 일부는 보빈(2110A)의 제1개구 및 제2개구를 통하여 보빈(2110)으로부터 노출될 수 있다.
예컨대, 센싱 코일(2180)의 하부 또는 하면의 적어도 일부는 보빈(2110)으로부터 노출될 수 있고, 광축 방향으로 위치 센서(2170)에 대향되거나 오버랩될 수 있다.
예컨대, 센싱 코일(2180)의 제1부분(2009A) 및 제2부분(2009B) 중 적어도 하나는 위치 센서(2170)와 광축 방향으로 오버랩될 수 있다. 또는 센싱 코일(2180)의 중앙홀의 적어도 일부는 위치 센서(2170)와 광축 방향으로 오버랩될 수도 있다.
다음으로 하우징(2140)에 대하여 설명한다.
하우징(2140)은 내측에 보빈(2110)의 적어도 일부를 수용하며, 마그네트(2130)를 지지한다.
도 26a는 하우징(2140)의 사시도이고, 도 26b는 하우징(2140)과 마그네트(2130)의 제1사시도이고, 도 26c는 하우징(2140)과 마그네트(2130)의 제2사시도이다.
도 26a 내지 도 26c를 참조하면, 하우징(2140)은 커버 부재(2300)의 내측에 배치될수 있고, 커버 부재(2300)와 보빈(2110) 사이에 배치될 수 있다. 하우징(2140)은 내측에 보빈(2110)을 수용할 수 있다. 하우징(2140)의 외측면은 커버 부재(2300)의 측판(2302)의 내면과 이격될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 양자는 서로 접촉될 수도 있다.
하우징(2140)은 개구 또는 중공을 포함하는 중공 기둥 형상일 수 있다.
예컨대, 하우징(2140)은 다각형(예컨대, 사각형, 또는 팔각형) 또는 원형의 개구을 구비할 수 있으며, 하우징(2140)의 개구는 광축 방향으로 하우징(2140)을 관통하는 관통 홀 형태일 수 있다.
하우징(2140)은 복수의 측부들(2141-1 내지 2141-4) 및 복수의 코너부들(2142-1 내지 2142-4)을 포함할 수 있다. 여기서 "측부들"은 "제1측부들"로 대체하여 표현될 수 있고, 코너부들은 "제2측부들"로 대체하여 표현될 수도 있다. 또한 코너부들은 "기둥부들"로 대체하여 표현될 수도 있다.
예를 들어, 하우징(2140)은 제1 내지 제4측부들(2141-1 내지 2141-4) 및 제1 내지 제4코너부들(2142-1 내지 2142-4)을 포함할 수 있다.
예컨대, 하우징(2140)의 측부들(2141-1 내지 2141-4)은 하우징(2140)의 변에 해당하는 부분일 수 있고, 하우징(2140)의 코너부들(2142-1 내지 2142-4)은 하우징(2140)의 모서리에 해당하는 부분일 수 있다.
예컨대, 하우징(2140)의 코너부들(2142-1 내지 2142-4) 각각의 내측면은 평면, 챔퍼(chamfer) 또는 곡면일 수 있다.
제1 내지 제4측부들(2141-1 내지 2141-4)은 서로 이격될 수 있다. 하우징(2140)의 코너부들(2142-1 내지 2142-4) 각각은 인접하는 2개의 측부들(2141-1과 2141-3, 2141-1과 2141-4, 2141-4와 2141-2, 2141-2와 2141-3) 사이에 배치 또는 위치할 수 있고, 측부들(2141-1 내지 2141-4)을 서로 연결시킬 수 있다.
예컨대, 코너부들(2142-1 내지 2142-4)은 하우징(2140)의 코너 또는 모서리에 위치할 수 있다. 예컨대, 하우징(2140)의 측부들의 개수는 4개이고, 코너부들의 개수는 4개이나, 이에 한정되는 것은 아니다.
하우징(2140)의 측부들(2141-1 내지 2141-4) 각각은 커버 부재(2300)의 측판들 중 대응하는 어느 하나와 평행하게 배치될 수 있다.
하우징(2140)의 측부들(2141-1 내지 2141-4) 각각의 가로 방향의 길이는 코너부들(2142-1 내지 2142-4) 각각의 가로 방향의 길이보다 클 수 있으나, 이에 한정되는 것은 아니다.
하우징(2140)의 제1측부(2141-2)와 제2측부(2141-2)는 서로 반대편에 위치할 수 있고, 제3측부(2141-3)와 제4측부(2141-4)는 서로 반대편에 위치할 수 있다. 하우징(2140)의 제3측부(2141-3)와 제4측부(2141-4) 각각은 제1측부(2141-2)와 제2측부(2141-2) 사이에 위치할 수 있다.
커버 부재(2300)의 상판(2301)의 내측면에 직접 충돌하는 것을 방지하기 위하여, 하우징(2140)은 상부, 상단, 또는 상면에는 스토퍼(2143)가 마련될 수 있다.
예컨대, 하우징(2140)의 코너부들(2142-1 내지 2142-4) 각각의 상면(예컨대, 제1면(251a))에는 스토퍼(2143)가 마련될 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 하우징(2140)의 하부면이 베이스(2210)와 충돌하는 것을 방지하기 위하여, 하우징(2140)은 하부면으로부터 돌출되는 스토퍼(미도시)를 더 구비할 수도 있다.
하우징(2140)의 상부, 상단, 또는 상면에는 상부 탄성 부재(2150)의 제1외측 프레임(2152)과 결합하는 적어도 하나의 제1결합부(2144)가 구비될 수 있다. 또한 하우징(2140)의 하부, 하단, 또는 하면에는 하부 탄성 부재(2160)의 제2외측 프레임(2162)에 결합 및 고정되는 적어도 하나의 제2결합부(2147)가 구비될 수 있다.
도 26a 내지 도 26c에서 하우징(2140)의 제1결합부(2144) 및 제2결합부(2147) 각각은 돌기 형태일 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 하우징(2140)의 제1 및 제2결합부들 각각은 평면, 홈, 또는 돌기 중 어느 하나일 수 있다.
열 융착 또는 접착제를 이용하여 하우징(2140)의 제1결합부(2144)와 상부 탄성 부재(2150)의 제1외측 프레임(2152)의 홀(2152a)은 서로 결합될 수 있고, 하우징(2140)의 제2결합부(2147)와 하부 탄성 부재(2160)의 제2외측 프레임(2162)의 홀(2162a)은 서로 결합될 수 있다.
하우징(2140)의 측부들(2141-1 내지 2141-4) 중 적어도 하나에는 마그네트(2130)가 배치 또는 설치될 수 있는 안착부(2141a)가 구비될 수 있다.
도 26a에서 안착부(2141a)는 하우징(2140)의 측부들(2141-1 내지 2141-4)을 관통하는 개구 또는 관통 홀의 형태일 수 있으나 이에 한정되는 것은 아니며, 다른 실시예에서는 홈 또는 요홈 형태일 수도 있다.
하우징(2140)은 코일(2120)을 마주보는 마그네트(2130)의 제1면의 가장 자리를 지지하기 위하여 안착부(2141a)에 인접하는 지지부(2018)를 포함할 수 있다.
지지부(2018)는 하우징(2140)의 내측면에 인접하여 위치할 수 있고, 안착부(2141a)의 측면을 기준으로 수평 방향으로 돌출된 형태일 수 있다. 또한 예컨대, 지지부(2018)는 테이퍼진 부분 또는 경사면을 포함할 수 있다. 다른 실시예에서는 하우징(2140)은 지지부(2018)를 포함하지 않을 수도 있다.
예컨대, 접착제에 의하여 마그네트(2130)는 안착부(2141a)에 부착 또는 고정될 수 있다.
예컨대, 하우징(2140)의 코너부들의 하부, 하면, 또는 하단에는 제1홈(2118)이 마련될 수 있으며, 베이스(2210)의 상면의 코너들에는 하우징(2140)의 제1홈(2118)에 대응되는 제1홈(2218)이 마련될 수 있다. 실리콘 또는 에폭시와 같은 접착제(미도시)는 하우징(2140)의 제1홈(2118)과 베이스(2210)의 제2홈(2218) 사이에 배치될 수 있고, 이로 인하여 하우징(2140)과 베이스(2210)가 서로 결합될 수 있다.
다른 실시예에서는 베이스(2210)의 제2홈(2218) 대신에 베이스(2210)의 상면으로부터 돌출되는 돌출부가 구비될 수도 있다.
다음으로 마그네트(2130)에 대하여 설명한다.
마그네트(2130)는 하우징(2140)에 배치될 수 있다. 예컨대, 마그네트(2130)는 보빈(2110)과 하우징(2140) 사이에 배치될 수 있다.
마그네트(2130)는 복수의 마그네트들 또는 마그네트 유닛들(2130-1 내지 2130-4)을 포함할 수 있다.
예컨대, 마그네트(2130)는 제1 내지 제4마그네트(2130-1 내지 2130-4)을 포함할 수 있으나, 이에 한정되지 않는다. 다른 실시예에서는 마그네트 유닛들의 개수는 2개 이상일 수 있으며, 예컨대, 마그네트는 하우징(2140)의 서로 반대편에 위치하는 2개의 측부들에 배치되는 2개의 마그네트 유닛들을 포함할 수도 있다.
마그네트 유닛들(2130-1 내지 2130-4)은 하우징(2140)의 측부들(2141-1 내지 2141-4)에 배치될 수 있다.
예컨대, 제1 내지 제4마그네트 유닛들(2130-1 내지 2130-4) 각각은 하우징(2140)의 제1 내지 제4측부들(2141-1 내지 2141-4) 중 대응하는 어느 하나의 안착부(2141a)에 배치될 수 있다.
제1마그네트 유닛(2130-1)과 제3마그네트 유닛(2130-3)은 하우징(2140)의 제1코너부(2142-1)에 인접하여 위치할 수 있고, 제2마그네트 유닛(2130-2)과 제4마그네트 유닛(2130-4)은 제1코너부(2142-1)와 대각선 방향으로 마주보는 제3코너부(2142-3)에 인접하여 위치할 수 있다.
예컨대, 제1마그네트 유닛(2130-1)의 일부와 제3마그네트 유닛(2130-3)의 일부는 하우징(2140)의 제1코너부(2141-1)로 연장되어 배치될 수 있고, 제2마그네트(2130-2)의 일부와 제4마그네트(2130-4)의 일부는 하우징(2140)의 제3코너부(2141-3)로 연장되어 배치될 수 있다.
예컨대, 제1마그네트 유닛(2130-1)은 제2코너부(2142-2)보다 제1코너부(2142-1)에 더 인접하여 배치될 수 있고, 제2마그네트 유닛(2130-2)은 제4코너부(2142-4)보다 제3코너부(2142-3)에 더 인접하여 배치될 수 있고, 제3마그네트 유닛(2130-3)은 제4코너부(2142-4)보다 제1코너부(2142-1)에 더 인접하여 배치될 수 있고, 제4마그네트 유닛(2130-4)은 제2코너부(2142-2)보다 제3코너부(2142-3)에 더 인접하여 배치될 수 있다.
다른 실시예에서는 마그네트 유닛들 각각은 하우징(2140)의 양측 코너부들로부터 동일한 거리에 위치하도록 배치될 수도 있다.
AF 가동부(예컨대, 보빈(2110))의 초기 위치에서 마그네트(2130)는 코일(2120)에 대응하거나 또는 대향하도록 하우징(2140)의 측부(2141-1 내지 2141-4)에 배치될 수 있다.
마그네트 유닛들(2130-1 내지 2130-4) 각각의 형상은 하우징(2140)의 측부들(2141-1 내지 2141-4)의 외측면에 대응되는 형상, 예컨대, 전체적으로 다면체(예컨대, 직육면체) 형상을 가질 수 있으나, 이에 한정되는 것은 아니다.
마그네트 유닛들(2130-1 내지 2130-4) 각각은 2개의 서로 다른 극성들과 다른 극성들 사이에 자연적으로 형성되는 경계면을 갖는 단극 착자 마그네트 또는 2극 마그네트일 수 있다.
예컨대, 마그네트 유닛들(2130-1 내지 2130-4) 각각은 코일(2120)을 마주보는 제1면은 N극, 제1면의 반대쪽인 제2면은 S극이 되도록 배치되는 단극 착자 마그네트일 수 있으나, 이에 한정되는 것은 아니며, N극과 S극이 반대일 수도 있다.
다른 실시예에서는 전자기력을 향상시키기 위하여 마그네트 유닛들(2130-1 내지 2130-4) 각각은 2개의 N극과 2개의 S극을 포함하는 4극 마그네트(24 pole magnet) 또는 양극 착자 마그네트일 수 있다. 이때, 마그네트 유닛들(2130-1 내지 2130-4) 각각은 페라이트(ferrite), 알리코(alnico), 희토류 자석 등으로 구현될 수 있으나, 이에 한정되는 것은 아니다.
마그네트 유닛들(2130-1 내지 2130-4)이 양극 착자인 경우, 마그네트 유닛들(2130-1 내지 2130-4) 각각은 제1마그넷부, 제2마그넷부, 및 제1마그넷부와 제2마그넷부 사이에 배치되는 격벽을 포함할 수 있다.
제1마그넷부는 N극, S극, 및 N극과 S극 사이의 제1경계면을 포함할 수 있다. 이때, 제1경계면은 실질적으로 자성을 갖지 않는 부분으로 극성이 거의 없는 구간을 포함할 수 있으며, 하나의 N극과 하나의 S극으로 이루어진 자석을 형성하기 위하여 자연적으로 발생되는 부분일 수 있다.
제2마그넷부는 N극, S극, 및 N극과 S극 사이의 제2경계면을 포함할 수 있으다. 이때 제2경계면은 실질적으로 자성을 갖지 않는 부분으로 극성이 거의 없는 구간을 포함할 수 있으며, 하나의 N극과 하나의 S극으로 이루어진 자석을 형성하기 위하여 자연적으로 발생되는 부분일 수 있다.
격벽은 제1마그넷부과 제2마그넷부를 분리 또는 격리시키며, 실질적으로 자성을 갖지 않는 부분으로 극성이 거의 없는 부분일 수 있다. 예컨대, 격벽은 비자성체 물질, 또는 공기 등일 수 있다. 예컨대, 격벽은 "뉴트럴 존(Neutral Zone)", 또는 "중립 영역"으로 표현될 수 있다.
격벽은 제1마그넷부와 제2마그넷부를 착자할 때 인위적으로 형성되는 부분으로, 격벽의 폭은 제1경계면과 제2경계면 각각의 폭보다 클 수 있다. 여기서 격벽의 폭은 제1마그넷부에서 제2마그넷부로 향하는 방향으로의 격벽의 길이일 수 있다.
다음으로 상부 탄성 부재(2150), 하부 탄성 부재(2160), 베이스(2210), 위치 센서(2170), 및 단자(2180)에 대해서 설명한다.
도 27는 하우징(2140), 마그네트(2130), 및 상부 탄성 부재(2150)의 사시도이고, 도 28은 하부 탄성 부재(2160), 위치 센서(2170), 단자부(2190), 및 베이스의 분리 사시도이고, 도 29은 위치 센서(2170), 및 단자부(2190)가 결합된 베이스(2210)의 사시도이고, 도 30은 하부 탄성 부재(2160), 단자부(2190), 및 베이스(2210)의 결합 사시도이고, 도 31는 도 24의 AB 방향으로의 렌즈 구동 장치(2100)의 단면도이고, 도 32은 도 24의 CD 방향으로의 렌즈 구동 장치(2100)의 단면이다.
도 27 내지 도 32을 참조하면, 상부 탄성 부재(2150)와 하부 탄성 부재(2160)는 탄성 부재를 구성할 수 있고, 탄성 부재는 보빈(2110)과 하우징(2140)에 결합될 수 있고, 탄성 부재는 하우징(2140)에 대하여 보빈(2110)을 탄성 지지할 수 있다.
상부 탄성 부재(2150)는 보빈(2110)의 상부, 상면, 또는 상단 및 하우징(2140)의 상부, 상면, 또는 상단과 결합될 수 있다. 하부 탄성 부재(2160)는 보빈(2110)의 하부, 하면, 또는 하단 및 하우징(2140)의 하부, 하면, 또는 하단과 결합될 수 있다. 상부 탄성 부재 및 하부 탄성 부재에서 탄성 부재는 "탄성 유닛", "스프링", 또는 "탄성체"로 대체하여 표현될 수 있다.
도 27에서 상부 탄성 부재(2150)는 복수 개로 분리되지 않지 않고 단일 구조일 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서 상부 탄성 부재(2150)는 서로 이격하는 복수의 탄성 유닛들을 포함할 수 있다.
상부 탄성 부재(2150)는 보빈(2110)과 결합되는 제1내측 프레임(2151), 하우징(2140)과 결합되는 제1외측 프레임(2152), 제1내측 프레임(2151)과 제1외측 프레임(2152)을 연결하는 제1프레임 연결부(2153)를 더 포함할 수 있다. 이때, 내측 프레임은 "내측부"로 대체하여 표현될 수 있고, 외측 프레임은 "외측부"로 대체하여 표현될 수도 있고, 프레임 연결부는 "연결부"로 대체하여 표현될 수도 있다.
상부 탄성 부재(2150)의 제1내측 프레임(2151)에는 보빈(2110)의 제1결합부(2113)와 결합되기 위한 홀(2151a)이 마련될 수 있고, 제1외측 프레임(2152)에는 하우징(2140)의 제1결합부(2144)와 결합되기 위한 홀(2152a)이 마련될 수 있다.
하부 탄성 부재(2160)는 2개 이상으로 분할 또는 분리되는 탄성 부재들을 포함할 수 있고, 보빈(2110)과 결합될 수 있다. 예컨대, 탄성 부재들은 "하부 탄성 부재들", "탄성 유닛들" 또는 "스프링들"로 표현될 수도 있다.
예컨대, 하부 탄성 부재(2160)는 서로 이격되는 제1 내지 제4탄성 부재들(2160-1 내지 2160-4)을 포함할 수 있으며, 제1 내지 제4탄성 부재들(2160-1 내지 2160-4)은 전기적으로 서로 분리될 수 있다.
제1 내지 제4탄성 부재들(2160-1 내지 2160-4) 중 적어도 하나는 보빈(2110)의 하부와 결합되는 제2내측 프레임(2161), 하우징(2140)의 하부와 결합되는 제2외측 프레임(2162), 및 제2내측 프레임(2161)과 제2외측 프레임(2162)을 연결하는 제2프레임 연결부(2163)를 포함할 수 있다.
코일(2120)과 센싱 코일(2180) 각각은 상부 탄성 부재(2150) 및 하부 탄성 부재(2160) 중 적어도 하나와 전기적으로 연결될 수 있다.
예컨대, 코일(2120)은 제1 및 제2탄성 부재들(2160-1, 2160-2)과 전기적으로 연결될 수 있다. 예컨대, 납땜 또는 전도성 부재에 의하여 코일(2120)의 일단(또는 제1단부)은 제1탄성 부재(2160-1)와 결합될 수 있고, 제2코일(2120)의 타단(또는 제2단부)은 제2탄성 부재(2160-2)와 결합될 수 있다.
또한 예컨대, 센싱 코일(2180)은 하부 탄성 부재(2160)의 제3 및 제4탄성 부재들(2160-3, 2160-4)과 전기적으로 연결될 수 있다.
예컨대, 납땜 또는 전도성 부재에 의하여 센싱 코일(2180)의 일단은 제3탄성 부재(2160-3)의 제2내측 프레임(2161)에 결합될 수 있고, 센싱 코일(2180)의 타단은 제4탄성 부재(2160-4)의 제2내측 프레임(2161)에 결합될 수 있다. 제3 및 제4탄성 부재들(2160-3, 2160-4)의 제3 및 제4단자들(2164-3, 2164-4)을 통하여 센싱 코일(2180)에 구동 신호 또는 전원이 제공될 수 있다.
제2내측 프레임(2161)에는 보빈(2110)의 제2결합부(2117)와 결합되기 위한 홀(2161a)이 마련될 수 있고, 제2외측 프레임(2162)에는 하우징(2140)의 제2결합부(2147)와 결합되기 위한 홀(2162a)이 마련될 수 있다.
다른 실시예에서는 하부 탄성 부재는 일체로 형성된 하나의 탄성 유닛으로 구현될 수도 있으며, 코일(2120)은 다른 실시예에 따른 복수의 상부 탄성 부재들 중 2개에 전기적으로 연결될 수도 있다.
상부 탄성 부재(2150)의 제1프레임 연결부(2153)와 하부 탄성 부재(2160)의 제2프레임 연결부(2163) 각각은 적어도 한 번 이상 절곡 또는 커브(또는 곡선)지도록 형성되어 일정 형상의 패턴을 형성할 수 있다. 제1 및 제2프레임 연결부들(2153, 2163)의 위치 변화 및 미세 변형을 통해 보빈(2110)은 제1방향으로 상승 및/또는 하강 동작이 탄력적으로(또는 탄성적으로) 지지될 수 있다.
상부 탄성 부재(2150) 및 하부 탄성 부재(2160)는 판 스프링으로 이루어질 수 있으나, 이에 한정되는 것은 아니며, 코일 스프링 등으로 구현될 수도 있다.
보빈(2110)의 진동을 흡수 및 완충시키기 위하여, 렌즈 구동 장치(2100)는 상부 탄성 부재(2150)와 보빈(2110)(또는 하우징(2140)) 사이에 배치되는 제1댐퍼(미도시)를 더 구비할 수 있다.
예컨대, 상부 탄성 부재(2150)의 제1프레임 연결부(2153)와 보빈(2110) 사이의 공간에 제1댐퍼(미도시)가 배치될 수 있다.
또한 예컨대, 렌즈 구동 장치(2100)는 하부 탄성 부재(2160)의 제2프레임 연결부(2163)와 보빈(2110)(또는 하우징(2140) 사이에 배치되는 제2댐퍼(미도시)를 더 구비할 수도 있다.
또한 예컨대, 하우징(2140)의 내측면과 보빈(2110)의 외주면 사이에도 댐퍼(미도시)가 배치될 수도 있다. 예컨대, 댐퍼는 젤 형태의 실리콘일 수 있으나, 이에 한정되는 것은 아니다.
제1탄성 부재(2160-1)는 제1탄성 부재(2160-1)의 제2외측 프레임(2162)의 외측면과 연결되고, 제1탄성 부재(2160-1)의 제2외측 프레임(2162)에서 베이스(2210)를 향하는 방향으로 절곡되어 연장되는 제1단자(2164-1)를 포함할 수 있다.
또한 제2탄성 부재(2160-2)는 제2탄성 부재(2160-2)의 제2외측 프레임(2162)의 외측면과 연결되고, 제2탄성 부재(2160-2)의 제2외측 프레임(2162)에서 베이스(2210)를 향하는 방향으로 절곡되어 연장되는 제2단자(2164-2)를 포함할 수 있다.
또한 제3탄성 부재(2160-3)는 제3탄성 부재(2160-3)의 제2외측 프레임(2162)의 외측면과 연결되고, 제3탄성 부재(2160-3)의 제2외측 프레임(2162)에서 베이스(2210)를 향하는 방향으로 절곡되어 연장되는 제3단자(2164-3)를 포함할 수 있다.
또한 제4탄성 부재(2160-4)는 제4탄성 부재(2160-4)의 제2외측 프레임(2162)의 외측면과 연결되고, 제4탄성 부재(2160-4)의 제2외측 프레임(2162)에서 베이스(2210)를 향하는 방향으로 절곡되어 연장되는 제4단자(2164-4)를 포함할 수 있다.
예컨대, 제1탄성 부재(2160-1)의 제1단자(2164-1)는 제1탄성 부재(2160-1)의 제2외측 프레임(2162)에서 베이스(2210)의 제1외측면(2028A)으로 연장될 수 있다.
또한 예컨대, 제2탄성 부재(2160-2)의 제2단자(2164-2)는 제2탄성 부재(2160-2)의 제2외측 프레임(2162)에서 베이스(2210)의 제1외측면(2028A)으로 연장될 수 있다.
또한 예컨대, 제3탄성 부재(2160-3)의 제3단자(2164-3)는 제3탄성 부재(2160-3)의 제2외측 프레임(2162)에서 베이스(2210)의 제2외측면(2028B)으로 연장될 수 있다.
또한 예컨대, 제4탄성 부재(2160-4)의 제4단자(2164-4)는 제4탄성 부재(2160-4)의 제2외측 프레임(2162)에서 베이스(2210)의 제2외측면(2028B)으로 연장될 수 있다. 베이스(2210)의 제2외측면(2028B)은 베이스(2210)의 제1외측면(2028A)의 반대편에 위치할 수 있다.
예컨대, 제1 내지 제4탄성 부재들(2160-1 내지 2160-4)의 제1 내지 제4단자들(2164-1 내지 2164-4)은 서로 이격되어 배치될 수 있다.
예컨대, 제1 및 제2탄성 부재들(2160-1, 2160-2)의 제1 및 제2단자들(2164-1, 2164-2)은 베이스(2210)의 제1외측면(2028A)에 마련된 제1 및 제2함몰부들(2052a, 2052b)에 배치, 안착, 또는 삽입될 수 있다. 또한 제3 및 제4탄성 부재들(2160-3, 2160-4)의 제3 및 제4단자들(2164-3, 2164-4)은 베이스(2210)의 제2외측면(2028B)에 마련된 제3 및 제4함몰부들(2052c, 2052d)에 배치, 안착, 또는 삽입될 수 있다. 여기서 함몰부는 "홈"으로 대체하여 표현될 수 있다.
제1 내지 제4탄성 부재들(2160-1 내지 2160-4)의 제1 내지 제4단자들(2164-1 내지 2164-4)은 베이스(2210)로부터 노출될 수 있으며, 제1 내지 제4단자들(2164-1 내지 2164-4)은 전기적으로 서로 분리될 수 있다.
예컨대, 베이스(2210)의 함몰부(2052a 내지 2052d) 내에 배치된 단자(2164-1 내지 2164-4)의 내측면은 함몰부(2052a 내지 2052d)의 일면(예컨대, 바닥면)에 접할 수 있고, 단자(2164-1, 2164-4)의 외측면은 베이스(2210)의 외측면(예컨대, 2028A, 2028B)으로부터 노출될 수 있다. 단자(2164-1 내지 2164-4)의 외측면은 단자(2164-1 내지 2164-4)의 내측면의 반대면일 수 있다.
예컨대, 제1 내지 제4단자들(2164-1 내지 2164-4) 각각의 하단은 베이스(2210)의 하면으로부터 노출될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시예에서는 제1 내지 제4단자들(2164-1 내지 2164-4) 각각의 하단은 베이스(2210)의 하면으로 노출되지 않을 수도 있다.
함몰부(2052a 내지 2052d)의 깊이는 단자(2164-1 내지 2164-4)의 두께보다 클 수 있고, 함몰부(2052a 내지 2052d) 내에 배치된 단자(2164-1 내지 2164-4)의 외측면은 함몰부(2252a 내지 2052d) 밖으로 돌출되지 않을 수 있다.
만약 제1 내지 제4단자들(2164-1 내지 2164-4)에 본딩된 솔더(solder)가 베이스(2210)의 외측면 밖으로 돌출될 경우에는 제1 내지 제4단자들(2164-1 내지 2164-4)에 본딩된 솔더와 커버 부재(2300) 간의 접촉 또는 충돌이 발생될 수 있고, 이로 인하여 전기적인 단락 또는 단선이 발생될 수 있다. 실시예는 단자(2164-1 내지 2164-4)에 본딩된 솔더가 베이스(2210)의 외측면(예컨대, 2028A, 2028B) 밖으로 돌출되지 않도록 함몰부(2052a 내지 2052d)의 깊이가 충분히 확보될 수 있고, 이로 인하여 실시예는 상술한 전기적인 단락 또는 단선을 방지할 수 있다.
다른 실시예에서는 단자(2164-1 내지 2164-4)의 외측면은 함몰부(2052a 내지 2052d) 밖으로 돌출될 수도 있다.
예컨대, 제1 내지 제4단자들(2164-1 내지 2164-4)은 도전성 접착 부재(예컨대, 납땜)에 의하여 외부 배선들 또는 외부 소자들과 전기적으로 연결될 수 있다.
예컨대, 제1 및 제2단자들(2164-1, 2164-2)은 외부로부터 코일(2120)에 제공되기 위한 전원 또는 구동 신호를 공급받을 수 있고, 제1 및 제2탄성 부재들(2160-1, 2160-2)의 제1 및 제2단자들(2164-1, 2164-2)은 코일(2120)과 전기적으로 연결될 수 있다.
도 28에서 제1단자(2164-1)는 제1탄성 부재(2160-1)와 일체로 형성되고, 제2단자(2164-2)는 제2탄성 부재(2160-2)와 일체로 형성되고, 제3단자(2164-3)는 제3탄성 부재(2160-3)와 일체로 형성되고, 제4단자(2164-4)는 제4탄성 부재(2160-4)와 일체로 형성되지만, 이에 한정되는 것은 아니다.
다른 실시예에서는 제1 내지 제4단자들 중 적어도 하나는 제1 내지 제4탄성 부재들 중 적어도 하나와 별개의 구성으로 베이스(2210)의 외측면(예컨대, 2028A, 2028B)에 배치될 수 있고, 전도성 접착제(예컨대, 솔더)에 의하여 대응하는 탄성 부재와 단자가 서로 결합 또는 연결될 수도 있다.
예컨대, 제1 내지 제4단자들 각각은 제1 내지 제4탄성 부재들 각각과 별개로 구성될 수 있고, 전도성 접착제(예컨대, 솔더)에 의하여 제1 내지 제4단자들 각각은 제1 내지 제4탄성 부재들 중 대응하는 어느 하나와 연결될 수도 있다.
베이스(2210)는 보빈(2110)(또는 하우징(2140)) 아래에 배치된다. 예컨대, 베이스(2210)는 하부 탄성 부재(2160) 아래에 될 수 있다.
예컨대, 베이스(2210)는 하우징(2140)과 결합될 수 있고, 커버 부재(2300)와 함께 보빈(2110) 및 하우징(2140)의 수용 공간을 형성할 수 있다.
베이스(2210)는 보빈(2110)의 개구, 또는/및 하우징(2140)의 개구에 대응하는 개구(2021)을 구비할 수 있고, 커버 부재(2300)와 일치 또는 대응되는 형상, 예컨대, 사각형 형상일 수 있다. 예컨대, 베이스(2210)의 개구(2021)는 광축 방향으로 베이스(2210)를 관통하는 관통 홀 형태일 수 있다.
베이스(2210)의 하면에는 카메라 모듈(2200)의 필터(2610)가 설치되는 안착부(미도시)가 형성될 수도 있다.
베이스(2210)는 위치 센서(2170)를 배치, 안착, 또는 수용하기 위한 안착홈(2215)을 포함할 수 있다. 예컨대, 안착홈(2215)은 베이스(2210)의 상면으로부터 함몰되는 형태일 수 있다.
베이스(2210)는 광축 방향으로 하우징(2140)의 측부들(2141-1 내지 2141-4)에 대응 또는 대향하는 측부들 및 광축 방향으로 하우징(2140)의 코너부들(2142-1 내지 2142-4)에 대응 또는 대향하는 코너부들을 포함할 수 있다.
예컨대, 안착홈(2215)은 베이스(2210)의 어느 한 코너부에 마련될 수 있다. 예컨대, 안착홈(2215)의 베이스(2210)의 어느 한 코너와 베이스(2210)의 개구(2021) 사이에 형성될 수 있다.
예컨대, 제1 및 제2함몰부들(2052a, 2052b)은 베이스(2210)의 제1측부의 외측면에 형성될 수 있고, 제3 및 제4함몰부들(2052c, 2052d)은 베이스(2210)의 제2측부의 외측면에 형성될 수 있다. 베이스(2210)의 제2측부는 베이스(2210)의 제1측부의 반대편에 위치할 수 있다.
베이스(2210)는 커버 부재(2300)를 접착 고정할 때, 접착제가 도포될 수 있는 베이스(2210)의 외측면의 하단에 단턱(2211)을 구비할 수 있다. 이때, 단턱(2211)은 상측에 결합되는 커버 부재(2300)를 가이드할 수 있으며, 커버 부재(2300)의 측판(2302)의 하단과 마주볼 수 있다. 커버 부재(2300)의 측판(2302)의 하단과 베이스(2210)의 단턱(2211) 사이에는 접착 부재 또는/및 실링 부재가 배치 또는 도포될 수 있다.
또한 베이스(2210)의 상면(2210A)에는 돌기 형태의 하우징(2140)의 제2결합부(2147)가 안착, 삽입, 또는 결합되기 위한 홈(2247)이 구비될 수 있다. 홈(2247)은 광축 방향으로 하우징(2140)의 제2결합부(2147)와 대응 또는 대향될 수 있다.
하우징(2140)의 하부 또는 하면에는 적어도 하나의 돌기 또는 돌출부(2145)가 형성될 수 있고, 베이스(2210)의 측부에는 하우징(2140)의 돌기 또는 돌출부(2145)에 대응되는 홈(2212)이 마련될 수 있다. 예컨대, 하우징(2140)이 돌기 또는 돌출부(2145)는 베이스(2210)의 홈(2212)과 결합될 수 있다.
단자부(2190)는 베이스(2210)에 배치될 수 있으며, 위치 센서(2170)와 전기적으로 연결될 수 있다. 단자부(2190)는 복수의 단자들(P1 내지 P4)을 포함할 수 있다. 복수의 단자들(P1 내지 P4)은 서로 이격될 수 있다.
베이스(2210)는 사출물로 이루어질 수 있다.
예컨대, 단자부(2190)의 제1 내지 제4단자들(P1 내지 P4) 각각의 적어도 일부는 인서트 사출 공정에 의하여 베이스(2210) 내부에 위치할 수 있다. 이러한 의미에서 제1 내지 제4단자들(P1 내지 P4) 각각은 "인서트 터미널(insert terminal)"이라고 호칭될 수도 있다.
예컨대, 단자부(2190)의 제1 내지 제4단자들(P1 내지 P4)은 베이스(2210) 내부에 배치될 수 있다. 예컨대, 위치 센서(2170)와의 전기적 연결을 위하여 제1 내지 제4단자들(P1 내지 P4) 각각의 적어도 일부(또는 일단)(B1 내지 B4)은 베이스(2210)의 안착홈(2215)으로부터 노출될 수 있다.
또한 예컨대, 솔더 또는 전도성 접착제 등을 통하여 외부 배선들 또는 외부 소자들과 전기적으로 연결하기 위하여, 제1 내지 제4단자들(P1 내지 P4) 각각의 적어도 다른 일부(또는 타단)은 베이스(2210)의 외측면(예컨대, 28A)으로 노출될 수 있다.
예컨대, 베이스(2210)의 제1외측면(2028A)에는 제3함몰부(2052c)가 형성될 수 있고, 제1 내지 제4단자들(P1 내지 P4) 각각의 적어도 다른 일부(또는 타단)은 베이스(2210)의 제3함몰부(2052c) 내에 배치될 수 있다. 예컨대, 제1 내지 제4단자들(P1 내지 P4) 각각의 적어도 다른 일부(또는 타단)은 베이스(2210)의 제3함몰부(2052c)로부터 돌출되지 않을 수 있으며, 이로 인하여 제1 및 제2함몰부(2052a, 2052b)에서 설명한 바와 마찬가지로 전기적인 단락 또는 단선을 방지할 수 있다.
제1 내지 제4단자들(P1 내지 P4) 각각은 위치 센서(2170)와 전기적으로 연결되는 제1부분(B1 내지 B4), 베이스(2210)의 제1외측면(2028A)으로 노출되는 제2부분(Q1 내지 Q4), 및 제1부분(B1 내지 B4)과 제2부분(Q1 내지 Q4)을 연결하는 제3부분(R1 내지 R4)을 포함할 수 있다.
제1 내지 제4단자들(P1 내지 P4) 중 적어도 하나의 제3부분(R1 내지 R4)은 절곡되거나 휘어진 부분을 포함할 수 있다. 예컨대, 제3부분(R1 내지 R4)은 적어도 한 번 절곡된 부분을 포함할 수 있다. 다른 실시예에서는 제3부분(R1 내지 R4)은 절곡된 부분을 포함하지 않고 직선 형태일 수도 있다.
위치 센서(2170)는 센싱 코일(2180) 아래에 배치된다.
위치 센서(2170)는 베이스(2210)에 배치될 수 있다.
예컨대, 위치 센서(2170)는 베이스(2210)의 안착홈(2215) 내에 배치될 수 있다. 위치 센서(2170)는 안착홈(2215)에 의하여 노출되는 단자부(2190)의 단자들(P1 내지 P4)의 제2부분(B1 내지 B4) 상에 배치될 수 있다.
예컨대, 납땜 또는 전도성 접착제에 의하여 위치 센서(2170)는 안착홈(2215)에 의하여 노출되는 단자부(2190)의 단자들(P1 내지 P4)의 제2부분(B1 내지 B4)과 결합될 수 있다.
또한 예컨대, 위치 센서(2170)는 단자부(2190)의 단자들(P1 내지 P4)의 제2부분(B1 내지 B4)과 전기적으로 연결될 수 있다.
위치 센서(2170)는 "AF 위치 센서"일 수 있다. 광축 방향으로 위치 센서(2170)는 코일(2120)의 일부와 오버랩될 수 있다. 다른 실시예에서는 광축 방향으로 위치 센서(2170)는 코일(2120)의 일부와 오버랩되지 않을 수도 있다.
코일(2120)에는 구동 신호(2120)가 제공될 수 있고, 구동 신호가 제공된 코일(2120)과 마그네트(2130) 간의 상호 작용에 의한 전자기력에 의하여 AF 가동부(예컨대, 보빈(2110), 코일(2120))는 광축 방향으로 이동될 수 있다. 구동 신호가 제공된 코일(2120)은 자기장을 발생할 수 있다.
위치 센서(2170)는 광축 방향으로 이동하는 코일(2120)의 자기장의 세기를 감지할 수 있고, 감지된 결과에 따른 출력 신호를 출력할 수 있다.
예컨대, 광축 방향으로의 보빈(2110)의 변위에 따라 위치 센서(2170)가 감지한 코일(2120)의 자기장의 세기 또는 자기력이 변화될 수 있고, 위치 센서(2170)는 감지된 자기장의 세기에 비례하는 출력 신호를 출력할 수 있다. 카메라 모듈 또는 광학 기기의 제어부(2410, 2780)는 위치 센서(2170)의 출력 신호를 이용하여 보빈(2110)의 광축 방향으로의 변위를 감지할 수 있다.
위치 센서(2170)는 홀 센서(Hall sensor) 단독으로 구현되거나, 또는 홀 센서를 포함하는 드라이버 IC(Integrated Circuit) 형태로 구현될 수 있다.
또한 위치 센서(2170)가 베이스(2210)에 배치되기 때문에, 위치 센서(2170)가 OIS 가동부(예컨대, 하우징)에 배치되는 경우와 비교할 때, 위치 센서(2170)와 코일(2120) 간의 이격 거리가 증가될 수 있으므로, 위치 센서(2170)는 감도가 높은 홀 센서, 또는 TMR(Tunnel Magnetoresistance) 센서로 구현될 수도 있다.
홀 센서(Hall sensor) 단독 또는 TMR 센서로 구현되는 실시예에서는, 위치 센서(2170)는 2개의 입력 단자들 및 2개의 출력 단자들을 포함할 수 있다. 이때 위치 센서(2170)는 코일(2120)에서 발생되는 자계를 감지하고, 아날로그 신호인 출력 전압을 2개의 출력 단자들을 통하여 출력할 수 있다.
위치 센서(2170)의 2개의 입력 단자들은 단자부(2190)의 제1 및 제2단자들(예컨대, P1, P2)과 전기적으로 연결될 수 있고, 이들(P1, P2)을 통하여 구동 신호가 위치 센서(2170)에 제공될 수 있다.
또한 위치 센서(2170)의 2개의 출력 단자들은 단자부(2190)의 제3 및 제4단자들(예컨대, P3, P4)과 전기적으로 연결될 수 있고, 이들(예컨대, P3, P4)을 통하여 위치 센서(2170)의 출력 신호가 출력될 수 있다.
예컨대, 홀 센서를 포함하는 드라이버 IC(Integrated Circuit) 형태로 구현되는 실시예에서는, 위치 센서(2170)는 전원을 제공받기 위한 제1 및 제2단자들, 데이터 통신을 하기 위한 클럭 신호와 데이터 신호를 송수신하기 위한 제3 및 제4단자들, 및 코일(2120)에 직접 구동 신호를 제공하기 위한 제5 및 제6단자들을 포함할 수 있다. 이때 위치 센서(2170)의 제1 내지 제4단자들 각각은 단자부(2190)의 제1 내지 제4단자들 중 대응하는 어느 하나와 전기적으로 연결될 수 있고, 위치 센서(2170)의 제5 및 제6단자들은 코일(2120)과 전기적으로 연결될 수 있다. 예컨대, 위치 센서(2170)의 제5 및 제6단자들은 제1 및 제2탄성 부재들(2160-1, 2160-2)과 전기적으로 연결될 수 있고, 제1 및 제2탄성 부재들은 코일과 전기적으로 연결될 수 있으며, 이 경우 제1 및 제2탄성 부재들(2160-1, 2160-2)의 제1 및 제2단자들(2164-1, 2164-2)은 생략될 수 있다.
다음으로 커버 부재(2300)에 대하여 설명한다.
커버 부재(2300)는 베이스(2210)와 함께 형성되는 수용 공간 내에 AF 가동부, 하우징(2140), 마그네트(2130), 상부 탄성 부재(2150), 하부 탄성 부재(2160), 위치 센서(2170), 단자부(2190), 베이스(2210)를 수용할 수 있다.
커버 부재(2300)는 하부가 개방되고, 상판(2310) 및 측판들(2302)을 포함하는 상자 형태일 수 있으며, 커버 부재(2300)의 하부는 베이스(2210)의 상부와 결합될 수 있다. 커버 부재(2300)의 상판의 형상은 다각형, 예컨대, 사각형 또는 팔각형 등일 수 있다.
커버 부재(2300)는 보빈(2110)과 결합하는 렌즈(미도시)를 외부광에 노출시키는 개구을 상판(2301)에 구비할 수 있다. 커버 부재(2300)의 재질은 마그네트(2130)와 붙는 현상을 방지하기 위하여 SUS 등과 같은 비자성체일 수 있다. 커버 부재(2300)는 금속의 판재로 형성될 수 있으나, 이에 한정되는 것은 아니며, 플라스틱으로 형성될 수도 있다.
도 33a는 코일(2120), 마그네트 유닛들(2130-1 내지 2130-4), 센싱 코일(2180), 및 위치 센서(2170)의 배치를 나타내고, 도 33b는 도 33a의 저면도를 나타낸다.
도 33a 및 도 33b를 참조하면, 코일(2120)은 보빈(2110)의 측부들(2110b1 내지 2110b4)에 배치되는 제1부분들(2012A), 및 보빈(2110)의 코너부들(2110c1 내지 2110c4)에 배치되는 제2부분들(2012B)을 포함할 수 있다.
예컨대, 제1부분(2012A)의 가로 방향의 길이(L1)는 제2부분(2012B)의 가로 방향의 길이(L2)보다 클 수 있다.
센싱 코일(2180)은 코일(2120) 아래에 배치될 수 있고, 위치 센서(2170)는 센싱 코일(2180) 아래에 배치될 수 있다.
예컨대, 센싱 코일(2180)과 위치 센서(2170)는 코일(2120)의 제2부분들(2012B) 중 어느 하나와 광축 방향으로 오버랩될 수 있다.
센싱 코일(2180)은 하우징(2140)의 제1코너부(2142-1) 및 제2코너부(2142-2)보다 하우징(2140)의 제2코너부(2142-2) 또는 제4코너부(2142-4)에 더 인접하여 배치될 수 있다. 이는 센싱 코일(2180)과 마그네트 유닛들(2130-1 내지 2130-4) 간의 이격 거리를 증가시킴으로써, 센싱 코일(2180)과 마그네트 유닛들(2130-1 내지 2130-4) 간의 상호 작용의 영향을 줄임으로써, 코일(2120)과 마그네트 유닛들(2130-1 내지 2130-4) 간의 상호 작용에 따른 AF 구동에 영향을 주지 않도록 하기 위함이다.
또한 위치 센서(2170)는 하우징(2140)의 제1코너부(2142-1) 및 제2코너부(2142-2)보다 하우징(2140)의 제2코너부(2142-2) 또는 제4코너부(2142-4)에 더 인접하여 배치될 수 있다. 이는 위치 센서(2170)가 마그네트 유닛들(2130-1 내지 2130-4)의 자기장의 영향을 덜 받고 코일(2120)의 자기장의 세기를 감지하도록 함으로써, 위치 센서(2170)의 출력값의 신뢰성을 높이기 위함이다.
예컨대, 코일(2120)과 위치 센서(2170) 간의 최단 거리(d1)는 위치 센서(2170)와 인접하는 마그네트 유닛(예컨대, 2130-1, 2130-4)과 위치 센서(2170) 간의 최단 거리(d2)보다 작을 수 있다(d1<d2). 이는 마그네트(예컨대, 2130-1, 2130-4)의 자계 간섭의 영향을 줄이고, 센싱 코일(2180)의 자기장에 대한 위치 센서(2170)의 센싱 감도를 높이기 위함이다. 다른 실시예에서는 d1≥d2일 수도 있다.
도 31 및 도 33a을 참조하면, 센싱 코일(2180)과 코일(2120) 간의 최단 거리(d3)는 센싱 코일(2180)과 위치 센서(21700 간의 최단 거리(d4)보다 작을 수 있으나(d3<d4), 이에 한정되는 것은 아니다. 다른 실시예에서는 센싱 코일(2180)의 자기장에 대한 위치 센서(2170)의 감도를 향상시키기 위하여 d4<d3일 수도 있다. 또 다른 실시예에서는 d3=d4일 수도 있다.
도 33b의 저면도를 참조하면, 위(또는 아래)에서 바라볼 때, 위치 센서(2170)는 센싱 코일(2180)의 영역 내에 위치할 수 있다. 위치 센서(2170)의 감도를 향상시키기 위하여, 위치 센서(2170)의 센싱 소자(sensing element)(또는 센싱 영역)는 광축 방향으로 센싱 코일(2180)과 오버랩될 수 있다.
예컨대, 위치 센서(2170)의 가로 방향의 길이(K1)는 센싱 코일(2180)의 가로 방향의 길이(M1)보다 작을 수 있다(K1<M1). 또한 예컨대, 예컨대, 위치 센서(2170)의 세로 방향의 길이(K2)는 센싱 코일(2180)의 세로 방향의 길이(M2)보다 작을 수 있다(K2<M2).
다른 실시예에서는 위치 센서의 가로 방향의 길이는 센싱 코일의 가로 방향의 길이보다 크거나 동일할 수도 있다. 또한 다른 실시예에서는 위치 센서의 세로 방향의 길이는 센싱 코일의 세로 방향의 길이보다 크거나 동일할 수도 있다.
다른 실시예에서는 위(또는 아래)에서 바라볼 때, 위치 센서는 광축 방향으로 센싱 코일(2180)과 오버랩되지 않는 부분을 포함할 수 있다. 예컨대, 위(또는 아래)에서 바라볼 때, 위치 센서의 일부는 센싱 코일의 영역의 바깥쪽으로 돌출되어 배치될 수 있다.
다른 실시예에서는 위(또는 아래)에서 바라볼 때, 센싱 코일(또는/및 위치 센서)의 적어도 일부가 코일(2120)의 외측에 배치될 수도 있다. 예컨대, 센싱 코일(또는/및 위치 센서)의 전부, 일부 또는 대부분이 코일(2120)의 외측에 배치될 수도 있다.
도 34는 보빈(2110)의 변위, 코일(2120)에 인가되는 제1구동 신호(Id), 및 센싱 코일(2180)에 인가되는 제2구동 신호(Is)의 관계를 나타낸다. a1은 보빈(2110)의 최고 위치 또는 매크로(macro) 위치일 수 있고, a2는 보빈(2110)의 최저 위치 또는 인피니티(infinity) 위치일 수 있다. 도 34의 X축은 보빈의 변위 또는 보빈의 스트로크(stroke)일 수 있다.
도 34를 참조하면, 보빈(2110)을 이동시키기 위하여 제1구동 신호(Id)의 크기와 보빈(2110)의 변위(또는 보빈의 스트로크) 간의 관계는 일정한 기울기를 갖는 선형적인 직선일 수 있다. 또는 다른 실시예에서는 양자의 관계는 비선형적일 수도 있다.
예컨대, 보빈의 변위가 변화함에 따라 제1구동 신호(Id)는 증가 또는 감소하는 신호일 수 있다.
반면에, 제2구동 신호(Is)의 크기는 기설정된 일정한 세기를 갖는 자기장을 발생시키기 위하여 보빈(2110)의 변위 또는 위치가 변화하더라도 일정한 값을 가질 수 있다. 예컨대, 제2구동 신호(Is)는 보빈(2110)의 변위에 상관없이 기설정된 일정한 값을 갖는 신호가 제공될 수 있다.
도 35a는 시뮬레이션을 위한 센싱 코일(2180)과 위치 센서(2170)의 배치를 나타내고, 도 35b는 AF 가동부의 광축 방향으로의 이동에 따른 도 35a의 센싱 코일(2180)의 위치 변화를 나타내고, 도 35c는 도 35b의 센싱 코일(2180)의 위치 변화에 따른 위치 센서(2170)가 감지하는 센싱 코일(2180)의 자기장의 세기의 변화를 나타낸다.
도 35a 내지 도 35c를 참조하면, 위에서 바라본 센싱 코일(2180)의 외주면의 형상은 사각형일 수 있으나, 이에 한정되는 것은 아니다. 센싱 코일(2180)의 외주면의 길이(X1)는 3.29[mm]일 수 있고, 센싱 코일(2180)의 외주면의 폭(Y1)은 2.05[mm]일 수 있고, 센싱 코일(2180)의 내주면의 길이(X2)는 1.93[mm]일 수 있고, 센싱 코일(2180)의 내주면의 폭(Y2)은 0.74[mm]일 수 있고, 센싱 코일(2180)의 광축 방향으로의 길이(Z1)는 0.54[mm]일 수 있다. 또한 센싱 코일(2180)에 제공되는 구동 신호(Ia)는 100[mA]일 수 있다. 또한 위치 센서(2170)의 하면(217A)에서 센싱 코일(2180)의 하면(2018A) 까지의 이격 거리(d1)는 0.43[mm]일 수 있다.
AF 가동부의 초기 위치(예컨대, Z=0인 위치)에서, AF 가동부의 전방 스트로크는 200[㎛]일 수 있고, AF 가동부의 후방 스트로크는 200[㎛]일 수 있다.
도 35c에서 X축은 센싱 코일(2180)의 광축 방향으로의 변위(또는 위치)를 나타내고, Y축은 위치 센서(2170)가 감지하는 센싱 코일(2180)의 자기장의 세기의 변화를 나타낸다. g1은 위치 센서(2170)가 감지하는 센싱 코일(2180)의 광축 방향으로의 자기장의 세기의 변화를 나타내고, g2은 위치 센서(2170)가 감지하는 센싱 코일(2180)의 광축과 수직한 방향으로의 자기장의 세기의 변화를 나타낸다.
g1에 도시된 바와 같이, AF 가동부의 광축 방향으로의 변위에 따라 위치 센서(2170)가 감지하는 광축 방향으로의 자기장의 변화는 -4.6[mT] ~ -8.2[mT]의 범위 내일 수 있고, g1은 선형적인 그래프일 수 있다.
위치 센서(2170)의 출력은 위치 센서(2170)가 감지하는 센싱 코일(2180)의 자기장의 세기에 비례할 수 있고, 카메라 모듈(2200) 또는 단말기(2200A)의 제어부(2410, 780)는 위치 센서(2170)의 출력을 이용하여 AF 가동부의 광축 방향으로의 변위가 감지할 수 있다.
다른 실시예에서는 하우징(2140)의 서로 마주보는 2개의 측부들(예컨대, 2141-1, 2141-2)에 2개의 마그네트 유닛들이 배치될 수 있다. 이때 위치 센서(2170)는 2개의 마그네트 유닛들이 배치되지 않는 하우징(2140)의 측부들 및 코너부들 중 어느 하나와 대응되는 보빈(2110)의 외측면에 배치되는 코일(2120)의 일 부분과 광축 방향으로 오버랩되도록 베이스(2210)에 배치될 수 있다.
도 35a 및 도 35b를 참조하면, 광축 방향으로 위치 센서(2170)의 중앙과 센싱 코일(2180)의 중앙은 서로 오버랩되도록 배치될 수 있으나, 이에 한정되는 것은 아니다. 다른 실시예에서는 위치 센서(2170)의 중앙은 센싱 코일(2180)의 중앙이 아닌 센싱 코일(2180)의 가장 자리 또는 가장 자리측과 오버랩되도록 배치되거나, 센싱 코일(2180)의 일부 편측에 오버랩되도록 배치될 수도 있다.
도 36는 다른 실시예에 따른 코일(2120A), 마그네트 유닛들(2130A-1 내지 2130A-4), 센싱 코일(2180), 및 위치 센서(2170)의 배치를 나타낸다.
도 36를 참조하면, 마그네트 유닛들(2130A-1 내지 2130A-4)이 하우징의 코너부들에 배치될 수도 있다. 하우징의 코너부들에 배치되는 마그네트 유닛들(2130A-1 내지 2130A-4) 각각의 형상은 하우징의 코너부에 안착되기 용이한 다면체 형상일 수 있다.
예컨대, 마그네트 유닛들(2130A-1 내지 2130A-4) 각각의 제1면의 면적은 제2면의 면적보다 클 수 있다. 마그네트 유닛들(2130A-1 내지 2130A-4) 각각의 제1면(2011a)은 코일(2120A)의 어느 한 면(또는 보빈(2110)의 외측면)과 마주보는 면일 수 있고, 제2면(2011b)은 제1면(2011a)의 반대 면일 수 있다. 예컨대, 제2면(2011b)의 가로 방향의 길이는 제1면(2011a)의 가로 방향의 길이보다 작을 수 있다.
예컨대, 제1면(2011a)에서 제2면(2011b)을 향하는 방향으로 제1 내지 제4마그네트 유닛들(2130A-1 내지 2130A-4) 각각은 가로 방향의 길이가 점차 감소하는 부분을 포함할 수 있다.
코일(2120A)은 하우징의 측부들과 대응되는 보빈(2110)의 측부에 배치되는 제1부분들(2012A1)과 하우징의 코너부들과 대응되는 보빈(2110)의 코너부들에 배치되는 제2부분들(2012B1)을 포함할 수 있다.
위치 센서(2170)는 하우징의 측부들 중 어느 하나와 대응되는 보빈(2110)의 측부에 배치되는 코일(2120A)의 제1부분들(2012A1) 중 어느 하나와 광축 방향으로 오버랩되도록 배치될 수 있다. 코일(2120A)과 위치 센서(2170) 간의 제1최단 거리는 위치 센서(2170)와 인접하는 마그네트 유닛(예컨대, 2130A-1, 2130A-4)과 위치 센서(2170) 간의 제2최단 거리보다 작을 수 있다. 다른 실시예에서는 제1최단 거리가 제2최단 거리보다 크거나 동일할 수도 있다.
센싱 코일(2120)은 하우징의 측부들 중 어느 하나와 대응되는 보빈(2110)의 측부에 배치되는 코일(2120A)의 제1부분들(2012A1) 중 어느 하나와 광축 방향으로 오버랩되도록 배치될 수 있다.
예컨대, 센싱 코일(2180)은 하우징의 측부(2141-1)와 대응되는 보빈(2110)의 측부(2110b1)에 배치되는 코일(2120A)의 제1부분(2012A1)과 광축 방향으로 오버랩될 수 있다.
실시예에서는 센싱 코일(2180)이 코일(2120)보다 위치 센서(2170)에 더 인접하여 배치되고, 위치 센서(2170)에 미치는 코일(2120)의 자기장의 세기보다 위치 센서(2170)에 미치는 센싱 코일(2180)의 자기장의 세기가 더 크기 때문에, 실시예는 센싱 코일(2180)의 자기장에 대한 위치 센서(2170)의 센싱 감도를 더욱 향상시킬 수 있다.
고객 요청에 의하여 렌즈 구동 장치의 사이즈는 점점 작아지고 있기 때문에, 보빈의 광축 방향으로의 위치를 감지하기 위하여 센싱 마그네트를 사용하는 렌즈 구동 장치에서는, 센싱 마그네트와 구동 마그네트 간의 거리가 좁아진다.
도 37는 센싱 마그네트를 사용하는 렌즈 구동 장치에서 센싱 마그네트(Sensing magnet)와 구동 마그네트(Driving Magnet) 각각의 자계 분포를 나타낸다.
도 37를 참조하면, 센싱 마그네트와 구동 마그네트 간의 거리가 좁아지게 되면, 센싱 마그네트와 구동 마그네트 간의 상호 자계 간섭으로 인하여 위치 센서인 홀 센서(Hall sensor)의 출력 값의 신뢰성이 나빠지고, AF 구동의 정확성이 떨어질 수 있고, VCM 설계에 어려움이 있다.
실시예는 센싱 마그네트를 별도로 구비하지 않으며, 베이스(2210)에 배치된 위치 센서(2170)가 광축 방향으로의 AF 가동부(예컨대, 보빈(2110))의 이동(또는 변위)에 따른 코일(2120)의 자기장의 자력 변화를 감지하여 보빈(2110)의 위치(또는 변위)를 감지하기 때문에, 센싱 마그네트와 마그네트 유닛들 간의 자계 간섭에 따른 위치 센서의 출력 값의 신뢰성이 나빠지는 것을 방지할 수 있다.
도 38은 다른 실시예에 따른 렌즈 구동 장치(2100-1)의 분해도이고, 도 39은 도 38의 코일(2120), 마그네트 유닛들(2130-1 내지 2130-4), 및 위치 센서(2170)의 배치를 나타내고, 도 40은 도 38의 렌즈 구동 장치(2100-1)의 도 24의 AB 방향으로의 단면도이다.
도 38에서 도 23과 동일한 도면 부호는 동일한 구성을 나타내며, 동일한 구성에 대해서는 설명은 생략하거나 간략하게 한다.
도 38 내지 도 40을 참조하면, 렌즈 구동 장치(2100-1)는 도 23의 렌즈 구동 장치에서 센싱 코일(2180)이 생략된 구조를 가질 수 있다.
위치 센서(2170)는 코일(2120) 아래에 배치될 수 있다. 예컨대, 위치 센서(2170)는 코일(2120)의 제2부분들(2012B) 중 어느 하나와 광축 방향으로 오버랩될 수 있다. 도 39의 d1과 d2는 도 33A의 설명이 적용 또는 준용될 수 있다.
코일(2120)에 제공되는 구동 신호는 직류 신호 및 교류 신호를 포함할 수 있다. 이때 코일(2120)에 제공되는 구동 신호에 포함된 교류 신호는 마그네트 유닛들(2130-1 내지 2130-4)과의 상호 작용에 의하여 전자기력을 발생시킬 수 있다. 예컨대, 교류 신호는 PWM(Pulse Width Modulation) 신호일 수 있다.
또한 예컨대, 코일(2120)에 제공되는 구동 신호에 포함된 직류 신호에 의하여 코일(2120)은 위치 센서(2170)를 위한 자기장을 생성할 수 있다.
도 41는 도 38의 코일(2120)에 제공되는 구동 신호의 일 예를 나타낸다.
도 41를 참조하면, 코일(2120)에 제공되는 구동 신호(V3)는 PWM 신호(V1), 및 일정한 크기(A)를 갖는 직류 신호(V2)를 포함할 수 있다.
PWM 신호(V1)에 의하여 마그네트 유닛들(2130-1 내지 2130-4)과 코일(2120) 간의 전자기력이 제어될 수 있다. 즉 PWM 신호의 듀티비(duty ratio)를 제어함으로써, 마그네트 유닛들(2130-1 내지 2130-4)과 코일(2120) 간의 전자기력이 제어될 수 있다.
직류 신호(V2)에 의하여 코일(2120)에 발생되는 자기장의 세기는 보빈(2110)의 변위에 상관없이 일정할 수 있다. 다만, 보빈(2110)이 이동함에 따라 위치 센서(2170)가 감지하는 직류 신호(V2)에 의한 코일(2120)의 자기장의 세기 또는 자기력은 변화될 수 있고, 위치 센서(2170)는 감지된 자기장의 세기에 비례하는 출력 신호를 출력할 수 있다.
즉, 위치 센서(2170)는 광축 방향으로 이동하는 코일(2120)의 자기장의 세기를 감지할 수 있고, 감지된 결과에 따른 출력 신호를 출력할 수 있다.
카메라 모듈 또는 광학 기기의 제어부(2410, 780)는 위치 센서(2170)의 출력 신호를 이용하여 보빈(2110)의 광축 방향으로의 변위를 감지할 수 있다.
도 42은 다른 실시예에 따른 마그네트 유닛들, 코일, 및 위치 센서(2170)의 배치를 나타낸다. 도 42은 도 36의 변형 예일 수 있다. 도 42의 실시예는 도 36에서 센싱 코일(2180)이 생략된 것이며, 도 36의 설명이 적용 또는 준용될 수 있다.
전술한 실시예에 의한 렌즈 구동 장치(2100, 2100-1)는 다양한 분야, 예를 들어 카메라 모듈 또는 광학 기기로 구현되거나 또는 카메라 모듈 또는 광학 기기에 이용될 수 있다.
예컨대, 실시예에 따른 렌즈 구동 장치(2100, 2100-1)는 빛의 특성인 반사, 굴절, 흡수, 간섭, 회절 등을 이용하여 공간에 있는 물체의 상을 형성시키고, 눈의 시각력 증대를 목표로 하거나, 렌즈에 의한 상의 기록과 그 재현을 목적으로 하거나, 광학적인 측정, 상의 전파나 전송 등을 목적으로 하는 광학 기기(opticla instrument)에 포함될 수 있다. 예컨대, 실시예에 따른 광학 기기는 스마트폰 및 카메라가 장착된 휴대용 단말기를 포함할 수 있다.
도 43은 본 발명의 제2실시예에 따른 카메라 모듈(2200)의 분해 사시도를 나타낸다.
도 43을 참조하면, 카메라 모듈은 렌즈 모듈(2400), 렌즈 구동 장치(2100), 접착 부재(2612), 필터(2610), 회로 기판(2800), 이미지 센서(2810), 제어부(2410), 커넥터(connector, 840)를 포함할 수 있다. 카메라 모듈은 렌즈 구동 장치(2100) 대신에 렌즈 구동 장치(2100-1)를 포함할 수도 있다.
렌즈 모듈(2400)은 렌즈 또는 렌즈 배럴(lens barrel)을 포함할 수 있으며, 렌즈 구동 장치(2100)의 보빈(2110)에 장착 또는 결합될 수 있다.
예컨대, 렌즈 모듈(2400)은 한 개 이상의 렌즈와, 한 개 이상의 렌즈를 수용하는 렌즈 배럴을 포함할 수 있다. 다만, 렌즈 모듈의 일 구성이 렌즈 배럴로 한정되는 것은 아니며, 한 개 이상의 렌즈를 지지할 수 있는 홀더 구조라면 어느 것이든 가능하다. 렌즈 모듈은 렌즈 구동 장치(2100)에 결합되어 렌즈 구동 장치(2100, 2100-1)와 함께 이동할 수 있다.
예컨대, 렌즈 모듈(2400)은 일례로서 렌즈 구동 장치(2100)와 나사 결합될 수 있다. 렌즈 모듈(2400)은 일례로서 렌즈 구동 장치(2100)와 접착제(미도시)에 의해 결합될 수 있다. 한편, 렌즈 모듈(2400)을 통과한 광은 필터(2610)를 통과하여 이미지 센서(2810)에 조사될 수 있다.
접착 부재(2612)는 렌즈 구동 장치(2100)의 베이스(2210)를 회로 기판(2800)에 결합 또는 부착시킬 수 있다. 예컨대, 접착 부재(2612)는 에폭시, 열경화성 접착제, 자외선 경화성 접착제 등일 수 있다.
필터(2610)는 렌즈 배럴(2400)을 통과하는 광에서의 특정 주파수 대역의 광이 이미지 센서(2810)로 입사하는 것을 차단하는 역할을 할 수 있다. 필터(2610)는 적외선 차단 필터일 수 있으나, 이에 한정되는 것은 아니다. 이때, 필터(2610)는 x-y평면과 평행하도록 배치될 수 있다.
이때 적외선 차단 필터는 필름 재질 또는 글래스 재질로 형성될 수 있다. 적외선 필터는 일례로서 촬상면 보호용 커버유리, 커버 글래스와 같은 평판 형상의 광학적 필터에 적외선 차단 코팅 물질이 코팅되어 형성될 수 있다.
필터(2610)는 렌즈 구동 장치(2100)의 베이스(2210) 아래에 배치될 수 있다.
예컨대, 렌즈 구동 장치(2100)의 베이스(2210)는 필터(2610)가 안착되기 위한 안착부를 하면에 구비할 수 있다. 다른 실시예에서는 필터(2610)를 안착하기 위한 별도의 센서 베이스가 구비될 수도 있다.
회로 기판(2800)은 렌즈 구동 장치(2100)의 하부에 배치될 수 있고, 회로 기판(2800)에는 이미지 센서(2810)가 실장될 수 있다. 이미지 센서(2810)는 렌즈 구동 장치(2100)를 통하여 입사되는 광에 포함되는 이미지를 수신하고, 수신된 이미지를 전기적 신호로 변환할 수 있다.
이미지 센서(2810)는 렌즈 모듈(2400)과 광축이 일치되도록 위치할 수 있다. 이를 통해, 이미지 센서는 렌즈 모듈(2400)을 통과한 광을 획득할 수 있다. 이미지 센서(2810)는 조사되는 광을 영상으로 출력할 수 있다.
회로 기판(2800)은 렌즈 구동 장치(2100)와 전기적으로 연결될 수 있다.
예컨대, 회로 기판(2800)은 렌즈 구동 장치(2100)의 코일(2120), 센싱 코일(2180), 및 위치 센서(2170)와 전기적으로 연결될 수 있다.
예컨대, 회로 기판(2800)는 렌즈 구동 장치(2100)의 하부 탄성 부재(2160)의 제1 내지 제4단자들(2164-1 내지 2164-4) 및 단자부(2190)의 단자들(P1 내지 P4)과 전기적으로 연결되는 단자들(2811)을 구비할 수 있다.
예컨대, 회로 기판(2800)를 통하여 위치 센서(2170)에 구동 신호가 제공될 수 있고, 위치 센서(2170)의 출력 신호는 회로 기판(2800)으로 전송될 수 있다. 예컨대, 위치 센서(2170)의 출력 신호는 제어부(2410)로 수신될 수 있으나, 이에 한정되는 것은 아니며, 단자(2811)를 통하여 단말기(2200A)의 제어부(2780)로 전송될 수도 있다.
또한 예컨대, 회로 기판(2800)를 통하여 코일(2120)에 구동 신호가 제공될 수 있고, 센싱 코일(2180)에 구동 신호가 제공될 수 있다.
회로 기판(2800)은 8개의 단자들을 포함하는 것으로 도시되나, 이에 한정되는 것은 아니며, 다른 실시예에서는 회로 기판(2800)은 AF 구동을 위한 복수 개의 단자들, 예컨대, 2개 이상의 단자들을 포함할 수 있다.
필터(2610)와 이미지 센서(2810)는 제1방향으로 서로 대향되도록 이격하여 배치될 수 있다.
커넥터(2840)는 회로 기판(2800)과 전기적으로 연결되며, 외부 장치와 전기적으로 연결되기 위한 포트(port)를 구비할 수 있다.
제어부(2410)는 렌즈 구동 장치(2100)의 AF 구동을 제어할 수 있으나, 이에 한정되는 것은 아니며, 단말기(2200A)의 제어부(2780)에 의하여 렌즈 구동 장치의 AF 구동이 제어될 수도 있다.
또한 카메라 모듈(2200)은 카메라 모듈(2200)의 움직임에 의한 회전 각속도 정보를 출력하기 위한 모션 센서를 더 포함할 수도 있다.
도 44는 본 발명의 제2실시예에 따른 휴대용 단말기(2200A)의 사시도를 나타내고, 도 45은 도 44에 도시된 휴대용 단말기(2200A)의 구성도를 나타낸다.
도 44 및 도 45을 참조하면, 휴대용 단말기(2200A, 이하 "단말기"라 한다.)는 몸체(2850), 무선 통신부(2710), A/V 입력부(2720), 센싱부(2740), 입/출력부(2750), 메모리부(2760), 인터페이스부(2770), 제어부(2780), 및 전원 공급부(2790)를 포함할 수 있다.
도 44에 도시된 몸체(2850)는 바(bar) 형태이지만, 이에 한정되지 않고, 2개 이상의 서브 몸체(sub-body)들이 상대 이동 가능하게 결합하는 슬라이드 타입, 폴더 타입, 스윙(swing) 타입, 스위블(swirl) 타입 등 다양한 구조일 수 있다.
몸체(2850)는 외관을 이루는 케이스(케이싱, 하우징, 커버 등)를 포함할 수 있다. 예컨대, 몸체(2850)는 프론트(front) 케이스(2851)와 리어(rear) 케이스(2852)로 구분될 수 있다. 프론트 케이스(2851)와 리어 케이스(2852)의 사이에 형성된 공간에는 단말기의 각종 전자 부품들이 내장될 수 있다.
무선 통신부(2710)는 단말기(2200A)와 무선 통신시스템 사이 또는 단말기(2200A)와 단말기(2200A)가 위치한 네트워크 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함하여 구성될 수 있다. 예를 들어, 무선 통신부(2710)는 방송 수신 모듈(2711), 이동통신 모듈(2712), 무선 인터넷 모듈(2713), 근거리 통신 모듈(2714) 및 위치 정보 모듈(2715)을 포함하여 구성될 수 있다.
A/V(Audio/Video) 입력부(2720)는 오디오 신호 또는 비디오 신호 입력을 위한 것으로, 카메라(2721) 및 마이크(2722) 등을 포함할 수 있다.
카메라(2721)는 실시예에 따른 카메라 모듈(2200)을 포함할 수 있다.
센싱부(2740)는 단말기(2200A)의 개폐 상태, 단말기(2200A)의 위치, 사용자 접촉 유무, 단말기(2200A)의 방위, 단말기(2200A)의 가속/감속 등과 같이 단말기(2200A)의 현 상태를 감지하여 단말기(2200A)의 동작을 제어하기 위한 센싱 신호를 발생시킬 수 있다. 예를 들어, 단말기(2200A)가 슬라이드 폰 형태인 경우 슬라이드 폰의 개폐 여부를 센싱할 수 있다. 또한, 전원 공급부(2790)의 전원 공급 여부, 인터페이스부(2770)의 외부 기기 결합 여부 등과 관련된 센싱 기능을 담당한다.
입/출력부(2750)는 시각, 청각 또는 촉각 등과 관련된 입력 또는 출력을 발생시키기 위한 것이다. 입/출력부(2750)는 단말기(2200A)의 동작 제어를 위한 입력 데이터를 발생시킬 수 있으며, 또한 단말기(2200A)에서 처리되는 정보를 표시할 수 있다.
입/출력부(2750)는 키 패드부(2730), 디스플레이 모듈(2751), 음향 출력 모듈(2752), 및 터치 스크린 패널(2753)을 포함할 수 있다. 키 패드부(2730)는 키 패드 입력에 의하여 입력 데이터를 발생시킬 수 있다.
디스플레이 모듈(2751)은 전기적 신호에 따라 색이 변화하는 복수 개의 픽셀들을 포함할 수 있다. 예컨대, 디스플레이 모듈(2751)는 액정 디스플레이(liquid crystal display), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display), 유기 발광 다이오드(organic light-emitting diode), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(23D display) 중에서 적어도 하나를 포함할 수 있다.
음향 출력 모듈(2752)은 호(call) 신호 수신, 통화 모드, 녹음 모드, 음성 인식 모드, 또는 방송 수신 모드 등에서 무선 통신부(2710)로부터 수신되는 오디오 데이터를 출력하거나, 메모리부(2760)에 저장된 오디오 데이터를 출력할 수 있다.
터치 스크린 패널(2753)은 터치 스크린의 특정 영역에 대한 사용자의 터치에 기인하여 발생하는 정전 용량의 변화를 전기적인 입력 신호로 변환할 수 있다.
메모리부(2760)는 제어부(2780)의 처리 및 제어를 위한 프로그램이 저장될 수도 있고, 입/출력되는 데이터들(예를 들어, 전화번호부, 메시지, 오디오, 정지영상, 사진, 동영상 등)을 임시 저장할 수 있다. 예컨대, 메모리부(2760)는 카메라(2721)에 의해 촬영된 이미지, 예컨대, 사진 또는 동영상을 저장할 수 있다.
인터페이스부(2770)는 단말기(2200A)에 연결되는 외부 기기와의 연결되는 통로 역할을 한다. 인터페이스부(2770)는 외부 기기로부터 데이터를 전송받거나, 전원을 공급받아 단말기(2200A) 내부의 각 구성 요소에 전달하거나, 단말기(2200A) 내부의 데이터가 외부 기기로 전송되도록 한다. 예컨대, 인터페이스부(2770)는 유/무선 헤드셋 포트, 외부 충전기 포트, 유/무선 데이터 포트, 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O(Input/Output) 포트, 및 이어폰 포트 등을 포함할 수 있다.
제어부(controller, 780)는 단말기(2200A)의 전반적인 동작을 제어할 수 있다. 예를 들어 제어부(2780)는 음성 통화, 데이터 통신, 화상 통화 등을 위한 관련된 제어 및 처리를 수행할 수 있다.
제어부(2780)는 멀티 미디어 재생을 위한 멀티미디어 모듈(2781)을 구비할 수 있다. 멀티미디어 모듈(2781)은 제어부(2780) 내에 구현될 수도 있고, 제어부(2780)와 별도로 구현될 수도 있다.
제어부(2780)는 터치스크린 상에서 행해지는 필기 입력 또는 그림 그리기 입력을 각각 문자 및 이미지로 인식할 수 있는 패턴 인식 처리를 행할 수 있다.
전원 공급부(2790)는 제어부(2780)의 제어에 의해 외부의 전원, 또는 내부의 전원을 인가받아 각 구성 요소들의 동작에 필요한 전원을 공급할 수 있다.
본 발명의 제2실시예에 따른 렌즈 구동 장치는 본 발명의 제1실시예의 센싱 구조를 포함할 수 있다. 보다 상세히, 본 발명의 제2실시예에 따른 렌즈 구동 장치는 본 발명의 제1실시예의 센싱 코일(180)과 위치 센서(170)를 포함할 수 있다. 본 발명의 제2실시예에 따른 렌즈 구동 장치는 본 발명의 제3실시예의 기판(3600)과 하부 탄성부재(3520)를 포함할 수 있다.
이하에서는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 구성을 도면을 참조하여 설명한다.
도 46은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 사시도이고, 도 47는 도 46의 A-A에서 바라본 단면도이고, 도 48은 도 46의 B-B에서 바라본 단면도이고, 도 49는 도 46의 C-C에서 바라본 단면도이고, 도 50은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 저면도이고, 도 51은 도 46에서 커버를 제거한 상태의 사시도이고, 도 52은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 분해사시도이고, 도 53은 본 발명의 제3실시예에 따른 렌즈 구동 장치를 도 52과 다른 방향에서 바라본 분해사시도이고, 도 54는 본 발명의 제3실시예에 따른 가동자와 고정자를 도시하는 분해사시도이고, 도 55은 본 발명의 제3실시예에 따른 베이스, 탄성부재 및 기판을 도시하는 분해사시도이고, 도 56은 본 발명의 제3실시예에 따른 일부 구성을 도 55과 다른 방향에서 바라본 분해사시도이고, 도 57a는 본 발명의 제3실시예에 따른 베이스와 기판의 결합상태를 도시하는 사시도이고, 도 57b는 변형례에 따른 베이스와 기판의 결합상태를 도시하는 사시도이고, 도 58은 도 57a에 하부 탄성부재가 추가로 결합된 상태를 도시하는 사시도이고, 도 59는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 일부 구성의 단면사시도이다.
렌즈 구동 장치(3010)는 보이스 코일 모터(VCM, Voice Coil Motor)일 수 있다. 렌즈 구동 장치(3010)는 렌즈 구동 모터일 수 있다. 렌즈 구동 장치(3010)는 렌즈 구동 모터일 수 있다. 렌즈 구동 장치(3010)는 렌즈 구동 액츄에이터일 수 있다. 본 실시예에서 렌즈 구동 장치(3010)는 CLAF 액츄에이터 또는 CLAF 모듈을 포함할 수 있다. 일례로, 렌즈 구동 장치(3010)에 렌즈, 이미지 센서(3060) 및 인쇄회로기판(3050)이 조립된 상태가 카메라 모듈로 이해될 수 있다.
렌즈 구동 장치(3010)는 커버(3100)를 포함할 수 있다. 커버(3100)는 하우징(3310)을 커버할 수 있다. 커버(3100)는 베이스(3400)와 결합될 수 있다. 커버(3100)는 베이스(3400)와의 사이에 내부공간을 형성할 수 있다. 커버(3100)는 하우징(3310)을 내부에 수용할 수 있다. 커버(3100)는 보빈(3210)을 내부에 수용할 수 있다. 커버(3100)는 카메라 모듈의 외관을 형성할 수 있다. 커버(3100)는 하면이 개방된 육면체 형상일 수 있다. 커버(3100)는 비자성체일 수 있다. 커버(3100)는 금속재로 형성될 수 있다. 커버(3100)는 금속의 판재로 형성될 수 있다. 커버(3100)는 인쇄회로기판의 그라운드부와 연결될 수 있다. 이를 통해, 커버(3100)는 그라운드될 수 있다. 커버(3100)는 전자 방해 잡음(EMI, electro magnetic interference)을 차단할 수 있다. 이때, 커버(3100)는 '쉴드캔' 또는 'EMI 쉴드캔'으로 호칭될 수 있다.
커버(3100)는 상판(3110)을 포함할 수 있다. 커버(3100)는 측판(3120)을 포함할 수 있다. 측판(3120)은 상판(3110)으로부터 연장될 수 있다. 커버(3100)는 상판(3110)과, 상판(3110)의 외주(outer periphery) 또는 에지(edge)로부터 하측으로 연장되는 측판(3120)을 포함할 수 있다. 커버(3100)의 측판(3120)의 하단은 베이스(3400)의 단차(3450)에 배치될 수 있다. 커버(3100)의 측판(3120)의 내면은 접착제에 의해 베이스(3400)에 고정될 수 있다.
커버(3100)는 복수의 측판을 포함할 수 있다. 커버(3100)는 복수의 측판과, 복수의 측판에 의해 형성되는 복수의 코너를 포함할 수 있다. 커버(3100)는 4개의 측판과, 4개의 측판 사이에 형성되는 4개의 코너를 포함할 수 있다. 커버(3100)는 제1측판과, 제1측판의 반대편에 배치되는 제2측판과, 제1측판과 제2측판 사이에 서로 반대편에 배치되는 제3측판과 제4측판을 포함할 수 있다. 커버(3100)는 제1 내지 제4코너를 포함할 수 있다. 커버(3100)는 제1코너와, 제1코너의 반대편에 배치되는 제2코너와, 서로 반대편에 배치되는 제3코너와 제4코너를 포함할 수 있다.
커버(3100)는 이너요크(3130)를 포함할 수 있다. 이너요크(3130)는 상판(3110)의 내주로부터 아래로 연장될 수 있다. 이너요크(3130)은 측판(3120) 내에 배치될 수 있다. 이너요크(3130)의 적어도 일부는 보빈(3210)의 홈(3213)에 배치될 수 있다. 이너요크(3130)는 보빈(3210)의 회전을 방지하도록 형성될 수 있다. 이너요크(3130)는 복수의 이너요크를 포함할 수 있다. 이너요크(3130)는 4개의 이너요크를 포함할 수 있다. 4개의 이너요크는 커버(3100)의 4개의 코너에 각각 형성될 수 있다.
렌즈 구동 장치(3010)는 가동자(3200)를 포함할 수 있다. 가동자(3200)는 렌즈와 결합될 수 있다. 가동자(3200)는 탄성부재(3500)를 통해 고정자(3300)와 연결될 수 있다. 가동자(3200)는 고정자(3300)와의 상호작용을 통해 이동할 수 있다. 이때, 가동자(3200)는 렌즈와 일체로 이동할 수 있다. 한편, 가동자(3200)는 AF 구동 시 이동할 수 있다. 이때, 가동자(3200)는 'AF 가동자'로 호칭될 수 있다.
렌즈 구동 장치(3010)는 보빈(3210)을 포함할 수 있다. 보빈(3210)은 하우징(3310) 내에 배치될 수 있다. 보빈(3210)은 하우징(3310)에 이동가능하게 결합될 수 있다. 보빈(3210)은 하우징(3310)에 대하여 광축 방향으로 이동할 수 있다. 보빈(3210)은 커버(3100) 내에 배치될 수 있다. 보빈(3210)은 베이스(3400)의 위에 배치될 수 있다.
보빈(3210)은 홀(3211)을 포함할 수 있다. 홀(3211)은 중공홀일 수 있다. 홀(3211)에는 렌즈가 결합될 수 있다. 보빈(3210)의 홀(3211)의 내주면에는 나사산이 형성될 수 있다. 또는, 보빈(3210)의 홀(3211)의 내주면은 나사산없이 곡면으로 형성될 수 있다. 보빈(3210)은 상부 탄성부재(3510)와 결합되는 제1돌기를 포함할 수 있다. 보빈(3210)의 제1돌기는 상부 탄성부재(3510)의 대응하는 홀에 삽입되어 결합될 수 있다. 보빈(3210)은 하부 탄성부재(3520)와 결합되는 제2돌기를 포함할 수 있다. 보빈(3210)의 제2돌기는 하부 탄성부재(3520)의 대응하는 홀에 삽입되어 결합될 수 있다.
보빈(3210)은 리브(3212)를 포함할 수 있다. 리브(3212)는 보빈(3210)의 측면으로부터 돌출될 수 있다. 리브(3212)는 제1코일(3220)을 고정할 수 있다. 리브(3212)는 보빈(3210)의 상부로부터 돌출되는 상부 리브와, 보빈(3210)의 하부로부터 돌출되는 하부 리브를 포함할 수 있다. 제1코일(3220)은 상부 리브와 하부 리브 사이에 감겨 고정될 수 있다.
보빈(3210)은 홈(3213)을 포함할 수 있다. 홈(3213)은 이너요크 수용홈일 수 있다. 홈(3213)에는 커버(3100)의 이너요크(3130)의 적어도 일부가 배치될 수 있다. 홈(3213)은 보빈(3210)의 상면에 함몰 형성될 수 있다. 홈(3213)의 폭은 이너요크(3130)의 폭보다 다소 클 수 있다. 언급한 배치 구조를 통해, 보빈(3210)이 회전하는 경우 보빈(3210)이 이너요크(3130)에 걸려 보빈(3210)이 회전하는 것이 방지될 수 있다.
보빈(3210)은 상부 스토퍼(3214)를 포함할 수 있다. 상부 스토퍼(3214)는 보빈(3210)의 상면으로부터 돌출 형성될 수 있다. 상부 스토퍼(3214)의 상면은 보빈(3210)의 상단을 형성할 수 있다. 이를 통해, 보빈(3210)이 위로 최대한 이동하는 경우 상부 스토퍼(3214)의 상면이 커버(3100)의 상판(3110)에 접촉될 수 있다. 보빈(3210)의 상부 스토퍼(3214)는 커버(3100)의 상판(3110)과 광축 방향으로 오버랩될 수 있다.
보빈(3210)은 하부 스토퍼(3215)를 포함할 수 있다. 하부 스토퍼(3215)는 보빈(3210)의 하면으로부터 돌출 형성될 수 있다. 하부 스토퍼(3215)의 하면은 보빈(3210)의 하단을 형성할 수 있다. 이를 통해, 보빈(3210)이 아래로 최대한 이동하는 경우 하부 스토퍼(3215)의 하면이 베이스(3400)에 접촉될 수 있다. 보빈(3210)의 하부 스토퍼(3215)는 베이스(3400)와 광축 방향으로 오버랩될 수 있다.
보빈(3210)은 탄성부재(3500)와 제1코일(3220) 중 어느 하나 이상과 접착제에 의해 결합될 수 있다. 이때, 접착제는 열, 레이저 및 자외선(UV) 중 어느 하나 이상에 의해 경화되는 에폭시(epoxy)일 수 있다.
렌즈 구동 장치(3010)는 제1코일(3220)을 포함할 수 있다. 제1코일(3220)은 'AF 구동코일'일 수 있다. 제1코일(3220)은 보빈(3210)에 배치될 수 있다. 제1코일(3220)은 보빈(3210)에 접촉하여 배치될 수 있다. 제1코일(3220)은 보빈(3210)과 하우징(3310) 사이에 배치될 수 있다. 제1코일(3220)은 보빈(3210)의 외주에 배치될 수 있다. 제1코일(3220)은 보빈(3210)에 직권선될 수 있다. 제1코일(3220)은 마그네트(3320)와 대향할 수 있다. 제1코일(3220)은 마그네트(3320)와 전자기적 상호작용할 수 있다. 제1코일(3220)에 전류가 공급되어 제1코일(3220) 주변에 전자기장이 형성되면, 제1코일(3220)과 마그네트(3320) 사이의 전자기적 상호작용에 의해 제1코일(3220)이 마그네트(3320)에 대하여 이동할 수 있다.
렌즈 구동 장치(3010)는 고정자(3300)를 포함할 수 있다. 고정자(3300)는 가동자(3200)를 이동가능하게 지지할 수 있다. 고정자(3300)는 가동자(3200)와의 상호작용을 통해 가동자(3200)를 이동시킬 수 있다. 고정자(3300)는 하우징(3310)과 마그네트(3320)를 포함할 수 있다. 다만, 베이스(3400)와 커버(3100)도 고정자(3300)로 이해될 수 있다.
렌즈 구동 장치(3010)는 하우징(3310)을 포함할 수 있다. 하우징(3310)은 보빈(3210)의 외측에 배치될 수 있다. 하우징(3310)은 보빈(3210)의 적어도 일부를 수용할 수 있다. 하우징(3310)은 커버(3100) 내에 배치될 수 있다. 하우징(3310)은 커버(3100)와 보빈(3210) 사이에 배치될 수 있다. 하우징(3310)은 커버(3100)와 상이한 재질로 형성될 수 있다. 하우징(3310)은 절연 재질로 형성될 수 있다. 하우징(3310)은 사출물로 형성될 수 있다. 하우징(3310)에는 마그네트(3320)가 배치될 수 있다. 하우징(3310)과 마그네트(3320)는 접착제에 의해 결합될 수 있다. 하우징(3310)의 상부에는 상부 탄성부재(3510)가 결합될 수 있다. 하우징(3310)의 하부에는 하부 탄성부재(3520)가 결합될 수 있다. 하우징(3310)은 탄성부재(3500)와 열융착 및/또는 접착제에 의해 결합될 수 있다.
하우징(3310)은 서로 반대편에 배치되는 제1 및 제2측부와, 서로 반대편에 배치되는 제3 및 제4측부와, 제1측부와 제3측부를 연결하는 제1코너부와, 제1측부와 제4측부를 연결하는 제2코너부와, 제2측부와 제4측부를 연결하는 제3코너부와, 제2측부와 제3측부를 연결하는 제4코너부를 포함할 수 있다.
하우징(3310)은 제1홀(3311)을 포함할 수 있다. 제1홀(3311)은 중공홀일 수 있다. 제1홀(3311)은 하우징(3310)의 중심부에 수직방향으로 관통 형성될 수 있다. 하우징(3310)의 제1홀(3311)에는 보빈(3210)이 배치될 수 있다.
하우징(3310)은 제2홀(3312)을 포함할 수 있다. 제2홀(3312)은 '마그네트 수용홀'일 수 있다. 제2홀(3312)에는 마그네트(3320)가 배치될 수 있다. 제2홀(3312)은 하우징(3310)의 측부를 광축에 수직인 방향으로 관통 형성될 수 있다. 변형례로, 제2홀(3312)은 홈으로 형성될 수 있다.
하우징(3310)은 돌기(3313)를 포함할 수 있다. 돌기(3313)는 하우징(3310)의 상면에 돌출 형성될 수 있다. 돌기(3313)는 상부 탄성부재(3500)와 결합될 수 있다. 돌기(3313)는 탄성부재(3500)의 대응하는 홀에 삽입되어 결합될 수 있다.
하우징(3310)은 커버(3100), 베이스(3400), 탄성부재(3500) 및 마그네트(3320) 중 어느 하나 이상과 접착제에 의해 결합될 수 있다. 이때, 접착제는 열, 레이저 및 자외선(UV) 중 어느 하나 이상에 의해 경화되는 에폭시(epoxy)일 수 있다.
렌즈 구동 장치(3010)는 마그네트(3320)를 포함할 수 있다. 마그네트(3320)는 '구동 마그네트'일 수 있다. 마그네트(3320)는 하우징(3310)에 배치될 수 있다. 마그네트(3320)는 제1코일(3220)과 커버(3100)의 측판(3120) 사이에 배치될 수 있다. 마그네트(3320)는 보빈(3210)과 하우징(3310) 사이에 배치될 수 있다. 마그네트(3320)는 제1코일(3220)과 대향할 수 있다. 마그네트(3320)는 제1코일(3220)과 전자기적 상호작용할 수 있다. 마그네트(3320)는 AF 구동에 사용될 수 있다. 마그네트(3320)는 하우징(3310)의 측부에 배치될 수 있다. 이때, 마그네트(3320)는 플랫(flat) 마그네트로 형성될 수 있다. 마그네트(3320)는 평판 형상으로 형성될 수 있다. 마그네트(3320)는 직육면체 형상으로 형성될 수 있다.
마그네트(3320)는 복수의 마그네트를 포함할 수 있다. 마그네트(3320)는 4개의 마그네트를 포함할 수 있다. 마그네트(3320)는 제1 내지 제4마그네트(3321, 3322, 3333, 3334)를 포함할 수 있다. 제1마그네트(3321)는 하우징(3310)의 제1측부에 배치될 수 있다. 제2마그네트(3322)는 하우징(3310)의 제2측부에 배치될 수 있다. 제3마그네트(3323)는 하우징(3310)의 제3측부에 배치될 수 있다. 제4마그네트(3324)는 하우징(3310)의 제4측부에 배치될 수 있다.
렌즈 구동 장치(3010)는 베이스(3400)를 포함할 수 있다. 베이스(3400)는 하우징(3310)의 아래에 배치될 수 있다. 베이스(3400)는 보빈(3210)의 아래에 배치될 수 있다. 베이스(3400)는 적어도 일부에서 보빈(3210)과 이격될 수 있다. 베이스(3400)는 커버(3100)의 측판(3120)과 결합될 수 있다. 베이스(3400)는 보빈(3210)과 센서 홀더 사이에 배치될 수 있다. 베이스(3400)는 센서 홀더와 별도로 형성될 수 있다. 다만, 변형례로 베이스(3400)는 센서 홀더와 일체로 형성될 수 있다.
베이스(3400)는 홀(3410)을 포함할 수 있다. 홀(3410)은 중공홀일 수 있다. 홀(3410)은 베이스(3400)를 광축 방향으로 관통할 수 있다. 홀(3410)을 통해 렌즈를 통과한 광이 이미지 센서(3060)로 입사될 수 있다.
베이스(3400)는 홈(3420)을 포함할 수 있다. 베이스(3400)의 홈(3420)은 '접착제 수용홈'일 수 있다. 홈(3420)은 베이스(3400)의 상면에 형성될 수 있다. 홈(3420)은 기판(3600)의 홀(3630)에 대응하는 위치에 형성될 수 있다. 홈(3420)은 하부 탄성부재(3520)의 홀(3522a)에 대응하는 위치에 형성될 수 있다. 홈(3420)의 적어도 일부에는 접착제가 배치될 수 있다. 접착제에 의해 기판(3600)과 하부 탄성부재(3520)의 외측부(3522)가 베이스(3400)에 고정될 수 있다.
변형례로 베이스(3400)는 돌기를 포함할 수 있다. 돌기는 베이스(3400)의 상면에 형성될 수 있다. 돌기는 기판(3600)의 홀(3630)에 대응하는 위치에 형성될 수 있다. 돌기는 하부 탄성부재(3520)의 홀(3522a)에 대응하는 위치에 형성될 수 있다. 베이스(3400)의 돌기는 하부 탄성부재(3520)의 홀(3522a)과 기판(3600)의 홀(3630)에 삽입될 수 있다. 즉, 베이스(3400)의 돌기에 의해 하부 탄성부재(3520)의 외측부(3522)와 기판(3600)의 조립위치는 정렬 및/또는 가이드될 수 있다.
홈(3420)의 적어도 일부에는 접착제가 배치될 수 있다. 접착제에 의해 기판(3600)과 하부 탄성부재(3520)의 외측부(3522)가 베이스(3400)에 고정될 수 있다.
베이스(3400)는 돌출부(3430)를 포함할 수 있다. 돌출부(3430)는 베이스(3400)의 외측면으로부터 연장될 수 있다. 돌출부(3430)는 베이스(3400)의 상면으로부터 돌출될 수 있다. 돌출부(3430)는 베이스(3400)의 상면에 형성될 수 있다. 돌출부(3430)는 베이스(3400)의 외주를 빙 둘러 형성될 수 있다.
돌출부(3430)는 복수의 돌출부를 포함할 수 있다. 돌출부(3430)는 제1 내지 제3돌출부(3431, 3432, 3433)를 포함할 수 있다. 돌출부(3430)는 베이스(3400)의 외측면 중 제1측면에 형성되는 제1돌출부(3431)와, 베이스(3400)의 외측면 중 제1측면의 반대편의 제2측면에 형성되는 제2돌출부(3432)를 포함할 수 있다.
베이스(3400)는 홈(3440)을 포함할 수 있다. 홈(3440)은 단자부 수용홈일 수 있다. 홈(3440)은 베이스(3400)의 측면에 함몰 형성될 수 있다. 홈(3440)에는 하부 탄성부재(3520)의 단자(3524)가 배치될 수 있다. 홈(3440)은 하부 탄성부재(3520)의 단자(3524)의 적어도 일부의 형상에 대응하게 형성될 수 있다. 홈(3440)의 깊이는 하부 탄성부재(3520)의 단자(3524)의 두께와 대응하거나 단자(3524)의 두께보다 클 수 있다.
베이스(3400)는 단차(3450)를 포함할 수 있다. 단차(3450)는 베이스(3400)의 측면에 형성될 수 있다. 단차(3450)는 베이스(3400)의 외주면에 형성될 수 있다. 단차(3450)는 베이스(3400)의 측면의 하부가 돌출되어 형성될 수 있다. 단차(3450)에는 커버(3100)의 측판(3120)의 하단이 배치될 수 있다.
베이스(3400)는 홈(3460)을 포함할 수 있다. 홈(3460)은 베이스(3400)의 하면에 형성될 수 있다. 홈(3460)은 베이스(3400)의 외주와 이격되어 형성될 수 있다. 베이스(3400)의 홈(3460)에는 센서 홀더가 형합될 수 있다.
렌즈 구동 장치(3010)는 탄성부재(3500)를 포함할 수 있다. 탄성부재(3500)는 하우징(3310)과 보빈(3210)을 연결할 수 있다. 탄성부재(3500)는 하우징(3310)과 보빈(3210)에 결합될 수 있다. 탄성부재(3500)는 보빈(3210)을 이동가능하게 지지할 수 있다. 탄성부재(3500)는 보빈(3210)을 탄성적으로 지지할 수 있다. 탄성부재(3500)는 적어도 일부에서 탄성을 가질 수 있다. 탄성부재(3500)는 AF 구동 시 보빈(3210)의 이동을 지지할 수 있다. 이때, 탄성부재(3500)는 'AF 지지부재'일 수 있다.
탄성부재(3500)는 상부 탄성부재(3510)를 포함할 수 있다. 상부 탄성부재(3510)는 보빈(3210)의 상부와 하우징(3310)의 상부에 결합될 수 있다. 상부 탄성부재(3510)는 보빈(3210)의 상면에 결합될 수 있다. 상부 탄성부재(3510)는 하우징(3310)의 상면에 결합될 수 있다. 상부 탄성부재(3510)는 판스프링으로 형성될 수 있다.
상부 탄성부재(3510)는 내측부(3511)를 포함할 수 있다. 내측부(3511)는 보빈(3210)에 결합될 수 있다. 내측부(3511)는 보빈(3210)의 상면에 결합될 수 있다. 내측부(3511)는 보빈(3210)의 돌기에 결합되는 홀 또는 홈을 포함할 수 있다. 내측부(3511)는 접착제에 의해 보빈(3210)에 고정될 수 있다.
상부 탄성부재(3510)는 외측부(3512)를 포함할 수 있다. 외측부(3512)는 하우징(3310)에 결합될 수 있다. 외측부(3512)는 하우징(3310)의 상면에 결합될 수 있다. 외측부(3512)는 하우징(3310)의 돌기(3313)에 결합되는 홀 또는 홈을 포함할 수 있다. 외측부(3512)는 접착제에 의해 하우징(3310)에 고정될 수 있다.
상부 탄성부재(3510)는 연결부(3513)를 포함할 수 있다. 연결부(3513)는 외측부(3512)와 내측부(3511)를 연결할 수 있다. 연결부(3513)는 탄성을 가질 수 있다. 이때, 연결부(3513)는 '탄성부'로 호칭될 수 있다. 연결부(3513)는 2회 이상 굽어진 형상을 포함할 수 있다.
탄성부재(3500)는 하부 탄성부재(3520)를 포함할 수 있다. 하부 탄성부재(3520)는 보빈(3210)과 베이스(3400)를 연결할 수 있다. 하부 탄성부재(3520)는 보빈(3210)의 하부와 하우징(3310)의 하부에 결합될 수 있다. 하부 탄성부재(3520)는 보빈(3210)의 하면에 결합될 수 있다. 하부 탄성부재(3520)는 하우징(3310)의 하면에 결합될 수 있다. 하부 탄성부재(3520)는 판스프링으로 형성될 수 있다. 하부 탄성부재(3520)의 일부는 하우징(3310)과 베이스(3400) 사이에 고정될 수 있다.
하부 탄성부재(3520)는 복수의 하부 탄성부재를 포함할 수 있다. 하부 탄성부재(3520)는 2개의 하부 탄성부재를 포함할 수 있다. 하부 탄성부재(3520)는 제1 및 제2하부 탄성부재(3520-1, 3520-2)를 포함할 수 있다. 제1 및 제2하부 탄성부재(3520-1, 3520-2)는 서로 이격될 수 있다. 제1 및 제2하부 탄성부재(3520-1, 3520-2)는 제1코일(3220)과 전기적으로 연결될 수 있다. 제1 및 제2하부 탄성부재(3520-1, 3520-2)는 제1코일(3220)에 전류를 인가하기 위한 도전라인으로 사용될 수 있다. 하부 탄성부재(3520)는 제1코일(3220)의 일단에 전기적으로 연결되는 제1하부 탄성유닛(3520-1)과, 제1하부 탄성유닛(3520-1)과 이격되고 제1코일(3220)의 타단에 전기적으로 연결되는 제2하부 탄성유닛(3520-2)을 포함할 수 있다. 제1하부 탄성유닛(3520-1)과 제2하부 탄성유닛(3520-2) 각각은 단자(3524)를 포함할 수 있다.
하부 탄성부재(3520)는 내측부(3521)를 포함할 수 있다. 내측부(3521)는 보빈(3210)에 연결될 수 있다. 내측부(3521)는 보빈(3210)에 결합될 수 있다. 내측부(3521)는 보빈(3210)의 하면에 결합될 수 있다. 내측부(3521)는 보빈(3210)의 돌기에 결합되는 홀 또는 홈을 포함할 수 있다. 내측부(3521)는 접착제에 의해 보빈(3210)에 고정될 수 있다.
하부 탄성부재(3520)는 외측부(3522)를 포함할 수 있다. 외측부(3522)는 기판(3600)의 상면에 배치될 수 있다. 외측부(3522)는 기판(3600)의 상면에 직접 접촉될 수 있다. 외측부(3522)는 기판(3600)의 상면에 접착제에 의해 고정될 수 있다. 외측부(3522)는 기판(3600)의 상면에 결합될 수 있다. 외측부(3522)는 베이스(3400)에 고정될 수 있다. 외측부(3522)는 베이스(3400)의 상면에 고정될 수 있다. 외측부(3522)는 베이스(3400)에 연결될 수 있다. 외측부(3522)는 하우징(3310)에 결합될 수 있다. 외측부(3522)는 하우징(3310)의 하면에 결합될 수 있다. 외측부(3522)는 하우징(3310)의 돌기에 결합되는 홀 또는 홈을 포함할 수 있다. 외측부(3522)는 접착제에 의해 하우징(3310)에 고정될 수 있다.
하부 탄성부재(3520)는 외측부(3522)에 형성되는 홀(3522a)을 포함할 수 있다. 외측부(3522)의 홀(3522a)은 기판(3600)의 홀(3630) 및 베이스(3400)의 홈(3420)과 대응하는 위치에 형성될 수 있다. 외측부(3522)의 홀(3522a)의 적어도 일부에는 접착제가 배치될 수 있다.
하부 탄성부재(3520)는 연결부(3523)를 포함할 수 있다. 연결부(3523)는 외측부(3522)와 내측부(3521)를 연결할 수 있다. 연결부(3523)는 탄성을 가질 수 있다. 이때, 연결부(3523)는 '탄성부'로 호칭될 수 있다. 연결부(3523)는 2회 이상 굽어진 형상을 포함할 수 있다.
하부 탄성부재(3520)는 단자(3524)를 포함할 수 있다. 단자(3524)는 외측부(3522)로부터 연장될 수 있다. 단자(3524)는 외측부(3522)와 연결될 수 있다. 단자(3524)는 외측부(3522)와 일체로 형성되어 외측부(3522)로부터 아래로 절곡될 수 있다. 변형례로, 단자(3524)는 하부 탄성부재(3520)와 별도로 형성될 수 있다. 단자(3524)는 2개의 단자를 포함할 수 있다. 단자(3524)는 인쇄회로기판(3050)의 단자에 통전부재를 통해 결합될 수 있다. 이때, 통전부재는 솔더볼 또는 통전성 에폭시일 수 있다. 단자(3524)는 베이스(3400)의 측면에 배치될 수 있다. 단자(3524)는 베이스(3400)의 홈(3440)에 배치될 수 있다. 2개의 하부 탄성부재 각각은 단자(3524)를 포함할 수 있다. 단자(3524)는 광축에 수직인 방향으로 제2코일(3611)과 베이스(3400) 사이에 배치될 수 있다. 단자(3524)는 기판(3600)을 관통할 수 있다. 단자(3524)는 기판(3600)의 몸체부(3610)를 관통할 수 있다.
렌즈 구동 장치(3010)는 기판(3600)을 포함할 수 있다. 기판(3600)은 FPCB(flexible printed circuit board)를 포함할 수 있다. 기판(3600)은 베이스(3400)에 배치될 수 있다. 기판(3600)은 베이스(3400)의 상면에 배치될 수 있다. 기판(3600)의 적어도 일부는 마그네트(3320)와 광축 방향으로 오버랩될 수 있다. 기판(3600)은 하부 탄성부재(3520)의 외측부(3522)와 베이스(3400) 사이에 배치될 수 있다.
기판(3600)은 몸체부(3610)를 포함할 수 있다. 몸체부(3610)는 베이스(3400)의 상면에 배치될 수 있다. 몸체부(3610)는 제1돌출부(3431)와 제2돌출부(3432) 사이에 배치될 수 있다.
렌즈 구동 장치(3010)는 제2코일(3611)을 포함할 수 있다. 기판(3600)은 제2코일(3611)을 포함할 수 있다. 기판(3600)의 몸체부(3610)는 제2코일(3611)을 포함할 수 있다. 제2코일(3611)은 센싱코일일 수 있다. 제2코일(3611)은 베이스(3400)에 배치될 수 있다. 제2코일(3611)은 베이스(3400)의 상면에 배치될 수 있다. 제2코일(3611)의 적어도 일부는 제1코일(3220)과 광축 방향으로 오버랩될 수 있다. 제2코일(3611)의 적어도 일부는 광축에 수직인 방향으로 베이스(3400)와 오버랩될 수 있다. 제2코일(3611)은 기판(3600)에 패턴 코일로 형성될 수 있다. 제2코일(3611)은 기판(3600)에 FP 코일(미세 패턴 코일, fine pattern coil)로 형성될 수 있다.
본 실시예에서는 렌즈 모듈(3020)을 구동하기 위한 구동 신호에 임의의 고주파 신호를 합성하여 제1코일(3220)에 인가할 수 있다. 일례로, 구동 신호는 가동자(3200)를 이동시키기 위한 신호 성분이고, 고주파 신호는 가동자(3200)의 위치를 센싱하기 위한 신호 성분일 수 있다. 고주파 신호는 구동 신호보다 더 높은 주파수 신호일 수 있다. 구동 신호에 합성되는 고주파 신호는 약 100kHZ - 약 5MHz일 수 있다. 제2코일(3611)에는 제1코일(3220)과의 상호 작용에 의해 유도 전류 또는 전압이 발생될 수 있다. 즉, 제1코일(3220)에 인가되는 고주파 신호에 의해 제2코일(3611)에는 유도 전류 또는 전압이 발생될 수 있으며, 발생된 유도 전류 또는 전압을 측정하여 가동자(3200)의 위치를 센싱할 수 있다.
본 실시예에서는 제2코일(3611)이 기판(3600)에 패턴 코일로 형성됨에 따라 제2코일(3611)이 없는 OLAF(open loop auto focus) 모듈과 비교하여 기판(3600)의 두께이하의 카메라 모듈 전장의 증가가 야기될 수 있다.
변형례로, 제2코일(3611)은 기판(3600)과는 별도로 권선될 수 있다. 제2코일(3611)은 기판(3600)과 별도로 구비되고 기판(3600)에 납땜을 통해 결합될 수 있다. 이 경우, 하부 탄성부재(3520)는 단자(3524) 없이 기판(3600)에 연결되고, 기판(3600)의 절곡된 부분이 인쇄회로기판(3050)과 연결될 수 있다.
기판(3600)의 몸체부(3610)는 기판부(3612)를 포함할 수 있다. 기판부(3612)는 기판(3600)의 몸체부(3610) 중 제2코일(3611)을 제외한 부분일 수 있다.
기판(3600)은 단자부(3620)를 포함할 수 있다. 단자부(3620)는 몸체부(3610)로부터 아래로 연장될 수 있다. 단자부(3620)는 베이스(3400)의 외측면 중 제1측면과 제2측면을 연결하는 제3측면에 배치될 수 있다. 단자부(3620)는 제1하부 탄성유닛(3520-1)의 단자(3524)와 제2하부 탄성유닛(3520-2)의 단자(3524) 사이에 배치될 수 있다. 단자부(3620)는 제2코일(3611)과 전기적으로 연결되는 2개의 단자를 포함할 수 있다.
변형례에서는 제1하부 탄성유닛(3520-1)과 제2하부 탄성유닛(3520-2) 각각이 기판(3600)에 전기적으로 연결될 수 있다. 이때, 기판(3600)의 단자부(3620)는 도 57b에 도시된 바와 같이 4개의 단자를 포함할 수 있다. 보다 상세히, 기판(3600)의 단자부(3620)는 제1코일(3220)과 전기적으로 연결되는 2개의 단자와, 제2코일(3611)과 전기적으로 연결되는 2개의 단자를 포함할 수 있다.
기판(3600)은 홀(3630)을 포함할 수 있다. 홀(3630)은 하부 탄성부재(3520)의 외측부(3522)의 홀(3522a)에 대응하는 위치에 형성될 수 있다. 홀(3630)은 베이스(3400)의 홈(3420)에 대응하는 위치에 형성될 수 있다. 홀(3630)의 적어도 일부에는 접착제가 배치될 수 있다.
변형례로 기판(3600)은 보빈(3210)의 하부 스토퍼(3215)에 대응하는 위치에 형성되는 홀을 포함할 수 있다. 이 경우, 보빈(3210)이 아래로 이동하는 경우 보빈(3210)의 하부 스토퍼(3215)는 기판(3600)이 아닌 베이스(3400)에 접촉될 수 있다. 이를 통해, 보빈(3210)의 하부 스토퍼(3215)가 기판(3600)을 지속적으로 타격하여 기판(3600)의 제2코일(3611)이 파손되는 현상이 방지될 수 있다.
이하에서는 본 발명의 제3실시예에 따른 카메라 모듈을 도면을 참조하여 설명한다.
도 60는 본 발명의 제3실시예에 따른 카메라 모듈의 분해사시도이다.
카메라 장치(3010A)는 카메라 모듈을 포함할 수 있다.
카메라 장치(3010A)는 렌즈 모듈(3020)을 포함할 수 있다. 렌즈 모듈(3020)은 적어도 하나의 렌즈를 포함할 수 있다. 렌즈는 이미지 센서(3060)와 대응하는 위치에 배치될 수 있다. 렌즈 모듈(3020)은 렌즈 및 배럴을 포함할 수 있다. 렌즈 모듈(3020)은 렌즈 구동 장치(3010)의 보빈(3210)에 결합될 수 있다. 렌즈 모듈(3020)은 보빈(3210)에 나사 결합 및/또는 접착제에 의해 결합될 수 있다. 렌즈 모듈(3020)은 보빈(3210)과 일체로 이동할 수 있다.
카메라 장치(3010A)는 필터(3030)를 포함할 수 있다. 필터(3030)는 렌즈 모듈(3020)을 통과하는 광에서 특정 주파수 대역의 광이 이미지 센서(3060)로 입사하는 것을 차단하는 역할을 할 수 있다. 필터(3030)는 x-y평면과 평행하도록 배치될 수 있다. 필터(3030)는 렌즈 모듈(3020)과 이미지 센서(3060) 사이에 배치될 수 있다. 필터(3030)는 센서 홀더에 배치될 수 있다. 변형례로, 필터(3030)는 베이스(3400)에 배치될 수 있다. 필터(3030)는 베이스(3400)의 하면에 접착 고정될 수 있다. 베이스(3400)의 하면에는 필터(3030)와 대응하는 형상의 홈이 형성될 수 있다. 필터(3030)는 적외선 필터를 포함할 수 있다. 적외선 필터는 이미지 센서(3060)에 적외선 영역의 광이 입사되는 것을 차단할 수 있다.
카메라 장치(3010A)는 센서 홀더를 포함할 수 있다. 센서 홀더는 렌즈 구동 장치(3010)와 인쇄회로기판(3050) 사이에 배치될 수 있다. 센서 홀더는 필터(3030)가 배치되는 돌출부(341)를 포함할 수 있다. 필터(3030)가 배치되는 센서 홀더의 부분에는 필터(3030)를 통과하는 광이 이미지 센서(3060)에 입사할 수 있도록 개구가 형성될 수 있다. 접착 부재(345)는 렌즈 구동 장치(3010)의 베이스(3400)를 센서 홀더에 결합 또는 접착시킬 수 있다. 접착 부재(345)는 추가로 렌즈 구동 장치(3010)의 내부로 이물질이 유입되지 않도록 하는 역할을 할 수 있다. 접착 부재(345)는 에폭시, 열경화성 접착제, 자외선 경화성 접착제 중 어느 하나 이상을 포함할 수 있다.
카메라 장치(3010A)는 인쇄회로기판(3050)(PCB, Printed Circuit Board)을 포함할 수 있다. 인쇄회로기판(3050)은 기판 또는 회로기판일 수 있다. 인쇄회로기판(3050)에는 렌즈 구동 장치(3010)가 배치될 수 있다. 인쇄회로기판(3050)과 렌즈 구동 장치(3010) 사이에는 센서 홀더가 배치될 수 있다. 인쇄회로기판(3050)은 렌즈 구동 장치(3010)와 전기적으로 연결될 수 있다. 인쇄회로기판(3050)에는 이미지 센서(3060)가 배치될 수 있다. 인쇄회로기판(3050)에는 이미지 센서(3060)에 결상되는 이미지를 전기적 신호로 변환하여 외부장치로 전송하기 위해, 각종 회로, 소자, 제어부 등이 구비될 수도 있다.
카메라 장치(3010A)는 이미지 센서(3060)를 포함할 수 있다. 이미지 센서(3060)는 렌즈와 필터(3030)를 통과한 광이 입사하여 이미지가 결상되는 구성일 수 있다. 이미지 센서(3060)는 인쇄회로기판(3050)에 실장될 수 있다. 이미지 센서(3060)는 인쇄회로기판(3050)에 전기적으로 연결될 수 있다. 일례로, 이미지 센서(3060)는 인쇄회로기판(3050)에 표면 실장 기술(SMT, Surface Mounting Technology)에 의해 결합될 수 있다. 다른 예로, 이미지 센서(3060)는 인쇄회로기판(3050)에 플립 칩(flip chip) 기술에 의해 결합될 수 있다. 이미지 센서(3060)는 렌즈와 광축이 일치되도록 배치될 수 있다. 즉, 이미지 센서(3060)의 광축과 렌즈의 광축은 얼라인먼트(alignment) 될 수 있다. 이미지 센서(3060)는 이미지 센서(3060)의 유효화상 영역에 조사되는 광을 전기적 신호로 변환할 수 있다. 이미지 센서(3060)는 CCD(charge coupled device, 전하 결합 소자), MOS(metal oxide semi-conductor, 금속 산화물 반도체), CPD 및 CID 중 어느 하나일 수 있다.
카메라 장치(3010A)는 모션 센서(3070)를 포함할 수 있다. 모션 센서(3070)는 인쇄회로기판(3050)에 실장될 수 있다. 모션 센서(3070)는 인쇄회로기판(3050)에 제공되는 회로 패턴을 통하여 제어부(3080)와 전기적으로 연결될 수 있다. 모션 센서(3070)는 카메라 장치(3010A)의 움직임에 의한 회전 각속도 정보를 출력할 수 있다. 모션 센서(3070)는 2축 또는 3축 자이로 센서(Gyro Sensor), 또는 각속도 센서를 포함할 수 있다.
카메라 장치(3010A)는 제어부(3080)를 포함할 수 있다. 제어부(3080)는 인쇄회로기판(3050)에 배치될 수 있다. 제어부(3080)는 렌즈 구동 장치(3010)의 제1 및 제2코일(3220, 3430)과 전기적으로 연결될 수 있다. 제어부(3080)는 제1 및 제2코일(3220, 430)에 공급하는 전류의 방향, 세기 및 진폭 등을 개별적으로 제어할 수 있다. 제어부(3080)는 렌즈 구동 장치(3010)를 제어하여 오토 포커스 기능 및/또는 손떨림 보정 기능을 수행할 수 있다. 나아가, 제어부(3080)는 렌즈 구동 장치(3010)에 대한 오토 포커스 피드백 제어 및/또는 손떨림 보정 피드백 제어를 수행할 수 있다.
카메라 장치(3010A)는 커넥터(3090)를 포함할 수 있다. 커넥터(3090)는 인쇄회로기판(3050)와 전기적으로 연결될 수 있다. 커넥터(3090)는 외부 장치와 전기적으로 연결되기 위한 포트(port)를 포함할 수 있다.
이하에서는 본 발명의 제3실시예에 따른 광학기기를 도면을 참조하여 설명한다.
도 61은 본 발명의 제3실시예에 따른 광학기기의 사시도이고, 도 62은 본 발명의 제3실시예에 따른 광학기기의 구성도이다.
광학기기(3010B)는 핸드폰, 휴대폰, 스마트폰(smart phone), 휴대용 스마트 기기, 디지털 카메라, 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player) 및 네비게이션 중 어느 하나일 수 있다. 다만, 광학기기(3010B)의 종류가 이에 제한되는 것은 아니며 영상 또는 사진을 촬영하기 위한 어떠한 장치도 광학기기(3010B)에 포함될 수 있다.
광학기기(3010B)는 본체(3850)를 포함할 수 있다. 본체(3850)는 바(bar) 형태일 수 있다. 또는, 본체(3850)는 2개 이상의 서브 몸체(sub-body)들이 상대 이동 가능하게 결합하는 슬라이드 타입, 폴더 타입, 스윙(swing) 타입, 스위블(swirl) 타입 등 다양한 구조일 수 있다. 본체(3850)는 외관을 이루는 케이스(케이싱, 하우징, 커버)를 포함할 수 있다. 예컨대, 본체(3850)는 프론트 케이스(3851)와 리어 케이스(3852)를 포함할 수 있다. 프론트 케이스(3851)와 리어 케이스(3852)의 사이에 형성된 공간에는 광학기기(3010B)의 각종 전자 부품이 내장될 수 있다. 본체(3850)의 일면에는 디스플레이 모듈(3753)이 배치될 수 있다. 본체(3850)의 일면과 일면의 반대편에 배치되는 타면 중 어느 하나 이상의 면에는 카메라(3721)가 배치될 수 있다.
광학기기(3010B)는 무선 통신부(3710)를 포함할 수 있다. 무선 통신부(3710)는 광학기기(3010B)와 무선 통신시스템 사이 또는 광학기기(3010B)와 광학기기(3010B)가 위치한 네트워크 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함할 수 있다. 예를 들어, 무선 통신부(3710)는 방송 수신 모듈(3711), 이동통신 모듈(3712), 무선인터넷 모듈(3713), 근거리 통신 모듈(3714) 및 위치 정보 모듈(3715) 중 어느 하나 이상을 포함할 수 있다.
광학기기(3010B)는 A/V 입력부(3720)를 포함할 수 있다. A/V(Audio/Video) 입력부(3720)는 오디오 신호 또는 비디오 신호 입력을 위한 것으로 카메라(3721) 및 마이크(3722) 중 어느 하나 이상을 포함할 수 있다. 이때, 카메라(3721)는 본 실시예에 따른 카메라 장치(3010A)를 포함할 수 있다.
광학기기(3010B)는 센싱부(3740)를 포함할 수 있다. 센싱부(3740)는 광학기기(3010B)의 개폐 상태, 광학기기(3010B)의 위치, 사용자 접촉 유무, 광학기기(3010B)의 방위, 광학기기(3010B)의 가속/감속 등과 같이 광학기기(3010B)의 현 상태를 감지하여 광학기기(3010B)의 동작을 제어하기 위한 센싱 신호를 발생시킬 수 있다. 예를 들어, 광학기기(3010B)가 슬라이드 폰 형태인 경우 슬라이드 폰의 개폐 여부를 센싱할 수 있다. 또한, 전원 공급부(3790)의 전원 공급 여부, 인터페이스부(3770)의 외부 기기 결합 여부 등과 관련된 센싱 기능을 담당할 수 있다.
광학기기(3010B)는 입/출력부(3750)를 포함할 수 있다. 입/출력부(3750)는 시각, 청각 또는 촉각과 관련된 입력 또는 출력을 발생시키기 위한 구성일 수이다. 입/출력부(3750)는 광학기기(3010B)의 동작 제어를 위한 입력 데이터를 발생시킬 수 있으며, 또한 광학기기(3010B)에서 처리되는 정보를 출력할 수 있다.
입/출력부(3750)는 키 패드부(3751), 터치 스크린 패널(3752), 디스플레이 모듈(3753) 및 음향 출력 모듈(3754) 중 어느 하나 이상을 포함할 수 있다. 키 패드부(3751)는 키 패드 입력에 의하여 입력 데이터를 발생시킬 수 있다. 터치 스크린 패널(3752)은 터치 스크린의 특정 영역에 대한 사용자의 터치에 기인하여 발생하는 정전 용량의 변화를 전기적인 입력 신호로 변환할 수 있다. 디스플레이 모듈(3753)은 카메라(3721)에서 촬영된 영상을 출력할 수 있다. 디스플레이 모듈(3753)은 전기적 신호에 따라 색이 변화하는 복수 개의 픽셀들을 포함할 수 있다. 예컨대, 디스플레이 모듈(3753)은 액정 디스플레이(liquid crystal display), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display), 유기 발광 다이오드(organic light-emitting diode), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(33D display) 중에서 적어도 하나를 포함할 수 있다. 음향 출력 모듈(3754)은 콜(call) 신호 수신, 통화 모드, 녹음 모드, 음성 인식 모드, 또는 방송 수신 모드 등에서 무선 통신부(3710)로부터 수신되는 오디오 데이터를 출력하거나, 메모리부(3760)에 저장된 오디오 데이터를 출력할 수 있다.
광학기기(3010B)는 메모리부(3760)를 포함할 수 있다. 메모리부(3760)에는 제어부(3780)의 처리 및 제어를 위한 프로그램이 저장될 수 있다. 또한, 메모리부(3760)는 입/출력되는 데이터 예를 들어, 전화번호부, 메시지, 오디오, 정지영상, 사진, 및 동영상 중 어느 하나 이상을 저장할 수 있다. 메모리부(3760)는 카메라(3721)에 의해 촬영된 이미지, 예컨대, 사진 또는 동영상을 저장할 수 있다.
광학기기(3010B)는 인터페이스부(3770)를 포함할 수 있다. 인터페이스부(3770)는 광학기기(3010B)에 연결되는 외부 기기와의 연결되는 통로 역할을 한다. 인터페이스부(3770)는 외부 기기로부터 데이터를 전송받거나, 전원을 공급받아 광학기기(3010B) 내부의 각 구성 요소에 전달하거나, 광학기기(3010B) 내부의 데이터가 외부 기기로 전송되도록 할 수 있다. 인터페이스부(3770)는 유/무선 헤드셋 포트, 외부 충전기 포트, 유/무선 데이터 포트, 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O(Input/Output) 포트, 및 이어폰 포트 중 어느 하나 이상을 포함할 수 있다.
광학기기(3010B)는 제어부(3780)를 포함할 수 있다. 제어부(controller, 3780)는 광학기기(3010B)의 전반적인 동작을 제어할 수 있다. 제어부(3780)는 음성 통화, 데이터 통신, 화상 통화 등을 위한 관련된 제어 및 처리를 수행할 수 있다. 제어부(3780)는 광학기기(3010B)의 디스플레이인 디스플레이 모듈(3753)을 제어하는 디스플레이 제어부(3781)를 포함할 수 있다. 제어부(3780)는 카메라 장치(3010A)를 제어하는 카메라 제어부(3782)를 포함할 수 있다. 제어부(3780)는 멀티 미디어 재생을 위한 멀티미디어 모듈(3783)을 포함할 수 있다. 멀티미디어 모듈(3783)은 제어부(3180) 내에 제공될 수도 있고, 제어부(3780)와 별도로 제공될 수도 있다. 제어부(3780)는 터치스크린 상에서 행해지는 필기 입력 또는 그림 그리기 입력을 각각 문자 및 이미지로 인식할 수 있는 패턴 인식 처리를 수행할 수 있다.
광학기기(3010B)는 전원 공급부(3790)를 포함할 수 있다. 전원 공급부(3790)는 제어부(3780)의 제어에 의해 외부의 전원, 또는 내부의 전원을 인가받아 각 구성 요소들의 동작에 필요한 전원을 공급할 수 있다.
본 발명의 제3실시예에 따른 렌즈 구동 장치는 본 발명의 제1실시예의 센싱 구조를 포함할 수 있다. 보다 상세히, 본 발명의 제3실시예에 따른 렌즈 구동 장치는 본 발명의 제1실시예의 센싱 코일(180)과 위치 센서(170)를 포함할 수 있다. 본 발명의 제3실시예에 따른 렌즈 구동 장치는 본 발명의 제2실시예의 센싱 구조를 포함할 수 있다. 보다 상세히, 본 발명의 제3실시예에 따른 렌즈 구동 장치는 본 발명의 제2실시예의 센싱 코일(2180)과 위치 센서(2170)를 포함할 수 있다.
본 발명의 제4실시예는 본 발명의 제1실시예의 일부 구성과 제2실시예의 일부 구성을 포함할 수 있다. 본 발명의 제5실시예는 본 발명의 제2실시예의 일부 구성과 제3실시예의 일부 구성을 포함할 수 있다. 본 발명의 제6실시예는 본 발명의 제1실시예의 일부 구성과 제3실시예의 일부 구성을 포함할 수 있다. 본 발명의 제7실시예는 본 발명의 제1실시예의 일부 구성, 제2실시예의 일부 구성 및 제3실시예의 일부 구성을 포함할 수 있다. 보다 상세히, 본 발명의 제3실시예에 제1실시예 또는 제2실시예의 센싱 코일과 위치 센서가 적용될 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (10)

  1. 기판;
    상기 기판 상에 배치되는 하우징;
    상기 하우징 내에 배치되는 보빈;
    상기 보빈에 배치되는 센싱 코일;
    상기 하우징의 서로 다른 측부에 배치되는 제1마그네트, 제2마그네트, 제3마그네트, 및 더미 부재;
    상기 제1마그네트에 대응되는 제1코일 유닛과 상기 제2마그네트에 대응되는 제2코일 유닛을 포함하는 제1코일; 및
    상기 기판에 배치되고 상기 센싱 코일과 대응되는 제1위치 센서를 포함하고,
    상기 제1마그네트와 상기 제2마그네트는 서로 반대편에 위치하고, 상기 제3마그네트와 상기 더미 부재는 서로 반대편에 위치하고,
    상기 센싱 코일에는 구동 신호가 제공되고, 상기 제1위치 센서는 상기 센싱 코일의 자기장의 세기를 감지하고, 출력 신호를 출력하는 렌즈 구동 장치.
  2. 제1항에 있어서,
    상기 센싱 코일은 광축 방향으로 상기 제1위치 센서와 오버랩되는 렌즈 구동 장치.
  3. 제1항에 있어서,
    상기 보빈은 외측면으로부터 돌출되는 돌출부를 포함하고,
    상기 센싱 코일은 상기 보빈의 상기 돌출부와 결합되는 렌즈 구동 장치.
  4. 제3항에 있어서,
    상기 센싱 코일은 중앙홀을 포함하는 링 형상이고,
    상기 센싱 코일의 중앙홀은 광축과 평행한 렌즈 구동 장치.
  5. 제4항에 있어서,
    상기 센싱 코일은 상기 돌출부의 하면에 결합되는 렌즈 구동 장치.
  6. 제1항에 있어서,
    상기 더미 부재는 서로 이격되는 제1더미와 제2더미를 포함하고,
    상기 센싱 코일의 적어도 일부는 상기 제1더미와 상기 제2더미 사이에 배치되는 렌즈 구동 장치.
  7. 제1항에 있어서,
    광축 방향으로 상기 제1 내지 제3마그네트들과 대응되는 제3 내지 제5코일 유닛들을 포함하는 제2코일; 및
    상기 기판에 배치되고 상기 제1마그네트와 대응되는 제1센서와 상기 제3마그네트와 대응되는 제2센서를 포함하는 제2위치 센서를 포함하는 렌즈 구동 장치.
  8. 제7항에 있어서,
    상기 광축 방향으로 상기 센싱 코일은 상기 제3 내지 제5코일 유닛들과 오버랩되지 않는 렌즈 구동 장치.
  9. 제1항에 있어서,
    상기 제1위치 센서는 홀 센서, 홀 센서를 포함하는 드라이버 IC, 또는 TMR(Tunnel Magnetoresistance) 센서인 렌즈 구동 장치.
  10. 고정부;
    보빈을 포함하는 AF 가동부, 및 하우징을 포함하는 OIS 가동부;
    상기 하우징에 대하여 상기 AF 가동부를 지지하는 제1탄성부;
    상기 고정부에 대하여 상기 OIS 가동부를 지지하는 제2탄성부;
    상기 보빈에 배치되는 AF 코일;
    상기 보빈에 배치되는 센싱 코일;
    상기 하우징에 배치되고 서로 반대편에 위치하는 제1마그네트와 제2마그네트;
    상기 하우징에 배치되고, 서로 반대편에 위치하는 제3마그네트와 더미 부재;
    광축 방향으로 상기 제1 내지 제3마그네트들과 대응되는 제1 내지 제3OIS코일 유닛들;
    상기 고정부에 배치되고, 상기 광축 방향으로 상기 센싱 코일에 대응되는 AF 위치 센서; 및
    상기 고정부에 배치되고, 상기 제1마그네트와 대응되는 제1OIS 센서와 상기 제3마그네트와 대응되는 제2OIS 센서를 포함하고,
    상기 센싱 코일에는 구동 신호가 제공되고, 상기 AF 위치 센서는 상기 센싱 코일의 자기장의 세기를 감지하고, 출력 신호를 출력하는 렌즈 구동 장치.
PCT/KR2020/010449 2019-08-06 2020-08-06 렌즈 구동 장치, 카메라 모듈 및 광학 기기 WO2021025511A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/628,333 US20220255414A1 (en) 2019-08-06 2020-08-06 Lens driving device, camera module, and optical apparatus
CN202080055207.2A CN114174914A (zh) 2019-08-06 2020-08-06 镜头驱动设备、相机模块和光学装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020190095442A KR20210016950A (ko) 2019-08-06 2019-08-06 렌즈 구동 장치, 이를 포함하는 카메라 모듈 및 광학 기기
KR10-2019-0095442 2019-08-06
KR10-2019-0122129 2019-10-02
KR1020190122129A KR20210039651A (ko) 2019-10-02 2019-10-02 렌즈 구동 장치, 이를 포함하는 카메라 모듈 및 광학 기기
KR1020190134140A KR20210049622A (ko) 2019-10-25 2019-10-25 렌즈 구동 장치
KR10-2019-0134140 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021025511A1 true WO2021025511A1 (ko) 2021-02-11

Family

ID=74503554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010449 WO2021025511A1 (ko) 2019-08-06 2020-08-06 렌즈 구동 장치, 카메라 모듈 및 광학 기기

Country Status (3)

Country Link
US (1) US20220255414A1 (ko)
CN (1) CN114174914A (ko)
WO (1) WO2021025511A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517302B1 (ja) * 2017-10-31 2019-05-22 Tdk株式会社 位置検出装置
KR20210026324A (ko) * 2019-08-29 2021-03-10 엘지이노텍 주식회사 센서 구동 장치 및 카메라 모듈
CN115425868A (zh) * 2022-08-22 2022-12-02 昆山丘钛微电子科技股份有限公司 一种压电驱动电路及摄像头模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170029986A (ko) * 2015-09-08 2017-03-16 엘지이노텍 주식회사 렌즈 구동장치, 카메라 모듈 및 광학기기
KR20170104772A (ko) * 2016-03-08 2017-09-18 엘지이노텍 주식회사 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
KR20180009098A (ko) * 2016-07-18 2018-01-26 엘지이노텍 주식회사 듀얼 카메라 모듈 및 광학기기
WO2018182203A1 (ko) * 2017-03-30 2018-10-04 엘지이노텍 주식회사 렌즈 구동 장치 및 카메라 모듈
US20190137781A1 (en) * 2016-04-28 2019-05-09 Tdk Taiwan Corp. Dual-lens camera system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885163B (zh) * 2015-04-29 2024-04-26 Lg伊诺特有限公司 透镜驱动装置、相机模块以及移动电话
WO2017155296A1 (ko) * 2016-03-08 2017-09-14 엘지이노텍(주) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
JP6643720B2 (ja) * 2016-06-24 2020-02-12 ミツミ電機株式会社 レンズ駆動装置、カメラモジュール及びカメラ搭載装置
CN116299950A (zh) * 2016-07-13 2023-06-23 Lg伊诺特有限公司 相机装置和光学设备
CN115128760A (zh) * 2016-09-30 2022-09-30 Lg伊诺特有限公司 透镜移动设备、包括该设备的相机模块和光学仪器
CN108476283B (zh) * 2016-12-14 2019-11-05 华为技术有限公司 摄像单元、摄像头模组及移动终端
TWI638220B (zh) * 2017-11-30 2018-10-11 大陽科技股份有限公司 鏡頭驅動裝置、攝影模組與電子裝置
JP7057492B2 (ja) * 2017-12-28 2022-04-20 ミツミ電機株式会社 レンズ駆動装置、カメラモジュール、及びカメラ搭載装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170029986A (ko) * 2015-09-08 2017-03-16 엘지이노텍 주식회사 렌즈 구동장치, 카메라 모듈 및 광학기기
KR20170104772A (ko) * 2016-03-08 2017-09-18 엘지이노텍 주식회사 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
US20190137781A1 (en) * 2016-04-28 2019-05-09 Tdk Taiwan Corp. Dual-lens camera system
KR20180009098A (ko) * 2016-07-18 2018-01-26 엘지이노텍 주식회사 듀얼 카메라 모듈 및 광학기기
WO2018182203A1 (ko) * 2017-03-30 2018-10-04 엘지이노텍 주식회사 렌즈 구동 장치 및 카메라 모듈

Also Published As

Publication number Publication date
CN114174914A (zh) 2022-03-11
US20220255414A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2017160094A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017043884A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2016003103A1 (ko) 렌즈 구동 장치
WO2017196047A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2015133759A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
WO2019225890A1 (ko) 렌즈 구동 장치, 이를 포함하는 카메라 모듈 및 광학 기기
WO2018062809A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2020076029A1 (ko) 카메라모듈
WO2019139284A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021025511A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학 기기
WO2018016789A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2018186674A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019039804A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017155296A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019004765A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019231245A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019231239A1 (ko) 렌즈 구동 장치, 및 카메라 장치, 및 이를 포함하는 광학 기기
WO2019066400A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019177390A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019027199A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2018186673A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019045339A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021225362A1 (ko) 카메라 장치
WO2021025361A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021049853A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850175

Country of ref document: EP

Kind code of ref document: A1