WO2021019602A1 - 長尺な構造物の変位を推定するためのシステム、方法、プログラム及び記録媒体 - Google Patents

長尺な構造物の変位を推定するためのシステム、方法、プログラム及び記録媒体 Download PDF

Info

Publication number
WO2021019602A1
WO2021019602A1 PCT/JP2019/029421 JP2019029421W WO2021019602A1 WO 2021019602 A1 WO2021019602 A1 WO 2021019602A1 JP 2019029421 W JP2019029421 W JP 2019029421W WO 2021019602 A1 WO2021019602 A1 WO 2021019602A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
relationship
time
inclination angle
series value
Prior art date
Application number
PCT/JP2019/029421
Other languages
English (en)
French (fr)
Inventor
雄太郎 梅川
久忠 菅沼
Original Assignee
株式会社Ttes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ttes filed Critical 株式会社Ttes
Priority to JP2020545751A priority Critical patent/JP6894656B1/ja
Priority to US17/629,806 priority patent/US20220261511A1/en
Priority to PCT/JP2019/029421 priority patent/WO2021019602A1/ja
Publication of WO2021019602A1 publication Critical patent/WO2021019602A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration

Definitions

  • the present invention relates to a technique for estimating the displacement of a long structure such as a bridge or a tower.
  • One of the methods for specifying the displacement of the structure is to measure the distance from the reference position to the specific point of the structure with a non-contact type range finder using a laser beam or the like.
  • a non-contact type range finder using a laser beam or the like.
  • the method of identifying the displacement of an object using a non-contact range finder has a problem that the longer the distance from the non-contact range finder to the object, the lower the accuracy of the displacement of the specified object. .. Further, the method of specifying the displacement of the object using the non-contact type range finder also has a problem that the accuracy of the displacement of the specified object decreases when the non-contact type range finder shakes. Further, when there is an obstacle around the object, the displacement of the object cannot be specified by using a non-contact range finder.
  • an object of the present invention is to provide a means for estimating the displacement of a long structure under various installation environments.
  • the longitudinal direction in the reference posture of a long structure having one or more fixed points is set as the first direction
  • the specific direction perpendicular to the first direction is set as the first direction.
  • a plane including the first direction and the second direction is used as a reference plane, at a specific timing at each of a plurality of measurement positions having different distances from the reference position in the first direction.
  • the distance from the reference position in the first direction by using the acquisition means for acquiring the measured inclination angle of the structure in the reference plane with respect to the first direction and the inclination angle acquired by the acquisition means.
  • a system including a relationship estimation means for estimating a relationship with a displacement of the structure from the reference posture on the reference plane at a position separated from the reference position by the distance is provided as the first aspect.
  • the displacement of the structure can be estimated regardless of the installation environment of the structure. it can.
  • the acquisition means acquires and acquires a time-series value of acceleration in the first direction of the structure measured at the measurement position for each of the plurality of measurement positions. Even if a configuration in which a component having a frequency equal to or lower than a predetermined threshold value is extracted from the waveform indicated by the time series value and the inclination angle of the structure at the measurement position is obtained from the extracted component is adopted as the second aspect. Good.
  • the number of measurement positions of the inclination angle required for estimating the relationship between the position and the displacement can be reduced.
  • the acquisition means acquires the tilt angle with respect to each of the plurality of different timings
  • the relationship estimation means obtains the relationship with respect to each of the plurality of different timings.
  • the time-series value of the displacement of the structure from the reference posture at a specific position in the first direction is specified by using the relationship estimated by the relationship estimation means for each of the plurality of different timings.
  • a configuration in which the displacement time series value specifying means is provided may be adopted as the third aspect.
  • the acquisition means acquires the time-series value of the acceleration of the structure in the second direction measured at the specific measurement position in the first direction, and the acquisition means.
  • the extraction means for extracting a component having a frequency equal to or higher than a predetermined threshold from the waveform indicated by the time-series value of the acceleration of the structure acquired by the above and the component of the acceleration extracted by the extraction means are integrated and at the specific measurement position.
  • the structure is provided with a calculation means for calculating a time-series value of a fine variation component of displacement in the second direction of the structure, and the displacement time-series value specifying means is specified by using the relation estimated by the relation estimation means.
  • a configuration in which the time-series value of the displacement is corrected by adding the time-series value of the fine fluctuation component of the displacement calculated by the calculation means may be adopted as the fourth aspect.
  • a specific direction perpendicular to the first direction and different from the second direction is set as a third direction
  • the reference plane is set as the first reference plane.
  • the acquisition means is the first of the structures measured at the specific timings at each of the plurality of measurement positions.
  • the inclination angle of the reference plane 2 with respect to the first direction is acquired, and the relationship estimation means obtains the inclination angle of the first reference plane acquired by the acquisition means and the second reference acquired by the acquisition means.
  • the tilt angle on the surface is used to identify the tilt angle of the structure with respect to the first direction in a specific plane including the first direction, and the reference position in the first direction from the specified tilt angle. Even if the configuration of estimating the relationship between the distance from the reference position and the displacement of the structure from the reference posture on the specific plane at a position separated from the reference position by the distance is adopted as the fifth aspect. Good.
  • the deformation of the long structure is not limited to the deformation in one direction perpendicular to the axis of the structure
  • the deformation of the structure at the time of measurement is three-dimensional.
  • the shape can be estimated.
  • the acquisition means acquires the time-series value of the inclination angle
  • the relationship estimation means has a predetermined time-series value of the inclination angle acquired by the acquisition means.
  • the sixth configuration is that the error included in the tilt angle acquired by the acquisition means is corrected based on the tilt angle statistic in the period fluctuating within the range, and the relationship is estimated using the corrected tilt angle. It may be adopted as an aspect of.
  • the longitudinal direction in the reference posture of a long structure having one or more fixed points is set as the first direction
  • the specific direction perpendicular to the first direction is set as the second direction.
  • the structure measured at a specific timing at each of a plurality of measurement positions having different distances from the reference position in the first direction. From the distance from the reference position in the first direction and from the reference position using the step of acquiring the inclination angle with respect to the first direction on the reference plane and the inclination angle acquired in the acquisition step.
  • a method comprising a step of estimating the relationship with the displacement of the structure from the reference posture on the reference plane at a position separated by the distance is provided as a seventh aspect.
  • the displacement of the structure can be estimated regardless of the installation environment of the structure. it can.
  • the longitudinal direction in the reference posture of a long structure having one or more fixed points is set as the first direction
  • the specific direction perpendicular to the first direction is set as the second direction.
  • measurements are made by a computer at specific timings at each of a plurality of measurement positions having different distances from the reference position in the first direction.
  • An eighth aspect provides a program for estimating a relationship with a displacement of the structure from the reference posture on the reference plane at a position separated from the reference position by the distance.
  • the longitudinal direction in the reference posture of a long structure having one or more fixed points is set as the first direction
  • the specific direction perpendicular to the first direction is set as the second direction.
  • the computer measures the measurement at a specific timing at each of a plurality of measurement positions having different distances from the reference position in the first direction.
  • the distance from the reference position in the first direction and the said is a computer-readable recording medium that continuously records a program for continuously executing a process of estimating a relationship with a displacement of the structure from the reference posture on the reference plane at a position separated from the reference position by the distance.
  • the inclination angle can be measured at a plurality of measurement positions of a long structure, what kind of installation environment the structure is in? Also, the displacement of the structure can be estimated using a computer.
  • the displacement of a long structure under various installation environments can be estimated.
  • An example of a graph showing a time-series value of displacement corrected by the displacement estimation system according to one embodiment by adding fine fluctuation components A graph comparing the estimated displacement value estimated by the displacement estimation system according to the embodiment with the measured displacement value by the displacement meter. The figure which showed the whole structure of the displacement estimation system which concerns on one modification. An example of a graph showing the time-series values of displacements estimated by the displacement estimation system for one modification. The figure for demonstrating the method which the displacement estimation system which concerns on one modification calculates the displacement in the vertical direction of the measurement position on the structure whose longitudinal direction is a vertical direction.
  • the displacement estimation system 1 is a system that estimates the displacement at each of a plurality of positions of a long structure that is deformed by receiving an external force.
  • FIG. 1 is a diagram showing the overall configuration of the displacement estimation system 1.
  • the displacement estimation system 1 is used to estimate the displacement of the bridge 9 (an example of a long structure). For example, when the vehicle 8 travels on the bridge 9, the bridge 9 is deformed by being loaded by the weight of the vehicle 8.
  • FIG. 1A is a side view of the bridge 9, and FIG. 1B is a view of the bridge 9 from above.
  • the longitudinal direction of the bridge 9 is the x-axis direction (the right direction in FIG. 1 is the positive direction), and the vertical direction is the z-axis direction (the upward direction in FIG. 1 (A) is positive).
  • Direction the direction perpendicular to the x-axis direction and the z-axis direction is the y-axis direction (the downward direction in FIG. 1B is the positive direction).
  • the displacement estimation system 1 includes a data processing device 12 that performs data communication between the m accelerometers 11 and each of the m accelerometers 11.
  • the accelerometer 11 is, for example, a 3-axis accelerometer.
  • the measured values of the acceleration in the x-axis direction (an example of the first direction) and the z-axis direction (an example of the second direction) are used, and the measured values of the acceleration in the y-axis direction are used. Therefore, a two-axis accelerometer may be used as the accelerometer 11.
  • branch numbers are assigned such as accelerometers 11-1 to 11-m.
  • the m accelerometers 11 are the accelerometer 11-1, the accelerometer 11-2, ..., The accelerometer 11-m, with a predetermined interval in the x-axis direction on the lower surface of the superstructure of the bridge 9. They are installed side by side in order. As described above, m accelerometers 11 are installed in the reference plane R. The positions where each of the accelerometers 11-1 to 11-m are installed are hereinafter referred to as measurement positions P1 to Pm.
  • Each of the m accelerometers 11 sequentially transmits acceleration data indicating the measured value of the acceleration to be continuously measured to the data processing device 12 by, for example, wirelessly.
  • the data processing device 12 receives acceleration data continuously transmitted from each of the accelerometers 11, and uses the received acceleration data to roughly determine the reference posture of the bridge 9 at an arbitrary position in the x-axis direction. It is a device that estimates the relational expression that can specify the displacement and estimates the detailed displacement from the reference posture at each of the measurement positions P1 to Pm.
  • the data processing device 12 is realized by a computer. That is, the computer functions as the data processing device 12 by executing the processing according to the program according to the present embodiment.
  • FIG. 2 is a diagram showing a configuration of a computer 10 used for realizing the data processing device 12.
  • the computer 10 includes a processor 101 that processes various data according to a program, a memory 102 that stores various data including the program, and a communication interface 103 that performs data communication between an external device.
  • FIG. 3 is a diagram showing the configuration of the data processing device 12.
  • the data processing device 12 including the components shown in FIG. 3 is realized. Each of the constituent parts of the data processing apparatus 12 will be described below.
  • the acquisition means 121 is mainly realized by the communication interface 103 and the processor 101 under the control of the processor 101, and is inclined with respect to the x-axis direction in the reference plane R of the bridge 9 at each of the measurement positions P1 to Pm measured at a specific timing. Get the horn.
  • the acquisition means 121 acquires by calculating the above inclination angle from the acceleration in the x-axis direction measured by the accelerometer 11. Therefore, the acquisition means 121 is based on the receiving means 1211 that receives the acceleration data transmitted from the accelerometer 11 and the waveform indicated by the time-series value of the acceleration in the x-axis direction at each of the measurement positions P1 to Pm indicated by the acceleration data.
  • the extraction means 1212 for extracting a component having a frequency equal to or lower than a predetermined threshold, and the calculation means 1213 for calculating the inclination angle of the bridge 9 at each of the measurement positions P1 to Pm from the component of the acceleration extracted by the extraction means 1212 are provided.
  • the receiving means 1211 is mainly realized by the communication interface 103 under the control of the processor 101. Further, the extraction means 1212 and the calculation means 1213 are mainly realized by the processor 101.
  • the storage means 122 is realized mainly by the memory 102 under the control of the processor 101, and stores various data.
  • the data stored in the storage means 122 includes data generated by a component of the data processing device 12, such as acceleration data received by the receiving means 1211 from the accelerometer 11 and data indicating an inclination angle calculated by the calculating means 1213. Is done.
  • the relationship estimation means 123 is mainly realized by the processor 101, and uses the inclination angle acquired by the acquisition means 121 to refer to the distance from the reference position in the x-axis direction and the reference of the bridge 9 at a position separated from the reference position by the distance. The relationship with the displacement from the reference posture on the surface R is estimated. From the relationship estimated by the relationship estimation means 123, the rough displacement from the reference posture at an arbitrary position (not limited to the measurement positions P1 to Pm) of the bridge 9 in the x-axis direction can be found.
  • the displacement time series value specifying means 124 is mainly realized by the processor 101, and uses the relationship estimated by the relationship estimating means 123 for each of a plurality of different timings from the reference posture of the bridge 9 at a specific position in the x-axis direction. Identify the time series value of displacement.
  • the extraction means 125 is realized mainly by the processor 101, and at the time of acceleration in the z-axis direction at each of the measurement positions P1 to Pm (an example of a specific position in the x-axis direction) obtained from the acceleration data received by the receiving means 1211. From the waveform indicated by the series value, components with frequencies above a predetermined threshold are extracted.
  • the calculation means 126 is mainly realized by the processor 101, integrates the acceleration components extracted by the extraction means 125, and calculates the time-series value of the minute fluctuation component of the displacement of the bridge 9 in the z-axis direction at each of the measurement positions P1 to Pm. calculate.
  • the time-series value of the fine variation component of the displacement calculated by the calculation means 126 is the rough displacement from the reference posture of the bridge 9 at each of the measurement positions P1 to Pm by the displacement time-series value specifying means 124, that is, the z-axis. It is added to the time series value of the rough displacement in the direction.
  • the time series value of the detailed displacement of the bridge 9 at the measurement positions P1 to Pm can be known.
  • the receiving means 1211 continuously receives the acceleration data transmitted from each of the accelerometers 11.
  • the acceleration data received by the receiving means 1211 is stored in the storage means 122.
  • the displacement estimation system 1 executes a process according to the sequence shown in FIGS. 4 and 9 below every predetermined time.
  • FIG. 4 shows the displacement of the bridge 9 from the rough reference posture at an arbitrary position (including the measurement positions P1 to Pm) in the x-axis direction among the processes performed by the displacement estimation system 1 every predetermined time. The processing sequence is shown.
  • the extraction means 1212 reads the acceleration data in the period T of the latest predetermined time length for each of the measurement positions P1 to Pm from the storage means 122, and when the measurement value of the acceleration in the x-axis direction indicated by the acceleration data is obtained.
  • the waveform indicated by the series value is smoothed (step S101).
  • the extraction means 1212 smoothes the waveform by passing the waveform indicated by the time-series value of acceleration through a low-pass filter to extract a component having a frequency equal to or lower than a predetermined threshold (cutoff frequency). ..
  • the calculation means 1213 calculates the inclination angle of the bridge 9 with respect to the x-axis direction from the time-series value of the measured value of the acceleration in the x-axis direction smoothed in step S101 for each of the measurement positions P1 to Pm. (Step S102).
  • the inclination angle with respect to the x-axis direction at the measurement position of the bridge 9 is the inclination angle caused by the bending of the bridge 9.
  • the inclination angle generated at the measurement position of the structure due to the bending of the structure is referred to as a “deflection angle”.
  • the deflection angle ⁇ of the bridge 9 in the x-axis direction at the certain position is as follows. It is calculated according to the formula of Equation 1.
  • FIG. 5 is an example of a graph showing a waveform indicated by a time-series value of the deflection angle of the bridge 9 in the x-axis direction at a certain measurement position, which is generated by the process of step S102.
  • the relationship estimation means 123 identifies the drift from the waveform indicated by the time-series value of the deflection angle calculated in step S102 for each of the measurement positions P1 to Pm, and removes the specified drift from the waveform (step). S103).
  • the deflection angle drift specified in step S103 is a deflection angle calculated from the measured value of the acceleration due to the deviation from the actual acceleration that occurs in the measured value of the accelerometer 11 under the influence of disturbance such as temperature. It means the deviation from the actual deflection angle that occurs in.
  • the relationship estimating means 123 draws a straight line that approximates the waveform in the period in which the deflection angle is stable in the vicinity of 0 in the waveform (see FIG. 5) indicated by the time series value of the deflection angle calculated in step S102. Specify as a straight line indicating drift.
  • FIG. 6 is an example of a graph showing a waveform (after drift removal) represented by a time-series value of the deflection angle of the bridge 9 in the x-axis direction at a certain measurement position, which is generated by the process of step S103.
  • the relationship estimation means 123 refers to each of the measurement positions P1 to Pm at a specific time t (for example, T / from the start timing of the period T) from the time series value of the deflection angle after drift removal generated in step S103.
  • the deflection angle at the timing when only 2 has passed) is extracted (step S104).
  • FIG. 7 is an example of a graph showing the relationship between the deflection angle extracted in step S104 and the distance of the measurement position from the reference position in the x-axis direction.
  • the relationship between the distance x from the reference position in the x-axis direction and the displacement ⁇ (x) from the reference posture of the bridge 9 at that position is estimated (step S105).
  • step S105 a method in which the relation estimation means 123 estimates the displacement ⁇ (x), which is a function of the distance x, will be described in step S105.
  • the displacement ⁇ (x) of the bridge 9 from the reference posture in the x-axis direction is the integral of the deflection angle ⁇ (x), that is, It is calculated by the formula of the number 2.
  • the deflection angle ⁇ (x) of the entire girder of the bridge 9 can be approximated by, for example, the nth-order polynomial function shown in Equation 3 below.
  • Equation 4 the displacement ⁇ (x) is approximated by the equation of Equation 4 below.
  • FIG. 8 is an example of a graph showing the relationship between the distance and the displacement at the time t estimated in step S105.
  • the relationship data showing the relationship between the distance and the displacement at the time t estimated in step S105 is stored in the storage means 122.
  • the displacement time-series value specifying means 124 has a bridge at each of the measurement positions P1 to Pm at time t according to the relationship between the distance x and the displacement ⁇ (x) estimated in step S105 for each of the measurement positions P1 to Pm.
  • the displacement from the reference posture of 9 is calculated (step S106).
  • the displacement time series value specifying means 124 calculates the displacement ⁇ i from the reference posture of the bridge 9 at the measurement position Pi at time t by the following matrix equation of Equation 6.
  • the displacement data indicating the displacement at time t which is calculated for each of the measurement positions P1 to Pm in step S106, is stored in the storage means 122.
  • FIG. 9 shows a sequence of processes for calculating the minute fluctuation component of the displacement of the bridge 9 from the reference posture at the measurement positions P1 to Pm among the processes performed by the displacement estimation system 1 every time a predetermined time elapses.
  • the extraction means 125 reads out the acceleration data in the period T of the latest predetermined time length for each of the measurement positions P1 to Pm from the storage means 122, and when the measurement value of the acceleration in the z-axis direction indicated by the acceleration data is obtained.
  • a high frequency component is extracted from the waveform indicated by the series value (step S201).
  • the extraction means 125 extracts a component having a frequency equal to or higher than a predetermined threshold value (cutoff frequency) by passing a waveform indicated by a time series value of acceleration through a high-pass filter.
  • the calculation means 126 second-order integrates the high frequency components of the waveform indicated by the time series of acceleration in the z-axis direction extracted in step S201 for each of the measurement positions P1 to Pm at time t, and bridges at time t.
  • the minute fluctuation component of the displacement from the reference posture of 9 is calculated (step S202).
  • the displacement estimation system 1 executes a process according to the sequence shown in FIG. 10, for example, every time a predetermined time elapses.
  • the displacement time-series value specifying means 124 stores displacement data indicating the rough displacement of the bridge 9 calculated in step S106 in the past predetermined time length period U for each of the measurement positions P1 to Pm from the storage means 122.
  • the time series value of the displacement indicated by the read-out and those read-out displacement data is specified (step S301).
  • FIG. 11 is an example of a graph showing the time-series value of the displacement of the bridge 9 from the reference posture at a certain measurement position specified in step S301.
  • the displacement time-series value specifying means 124 indicates a displacement minute fluctuation component of the displacement of the bridge 9 calculated in step S202 during a period U of a predetermined time length in the past for each of the measurement positions P1 to Pm.
  • the data is read out from the storage means 122, and the time-series value of the fine fluctuation component of the displacement indicated by the read fine fluctuation component data of the displacement is specified (step S302).
  • FIG. 12 is an example of a graph showing a time-series value of a minute variation component of the displacement of the bridge 9 from the reference posture at a certain measurement position specified in step S302.
  • the displacement time-series value specifying means 124 adds the time-series value of the fine variation component of the displacement specified in step S302 to the time-series value of the displacement specified in step S301 for each of the measurement positions P1 to Pm.
  • the time series value of the displacement specified in step S301 is corrected (step S303).
  • FIG. 13 is an example of a graph showing the time-series value of the displacement of the bridge 9 from the reference posture at a certain measurement position, which is corrected by the addition of the fine fluctuation components in step S303.
  • the displacement time series data representing the time series value of the displacement corrected for each of the measurement positions P1 to Pm in step S303 is stored in the storage means 122.
  • a rough displacement from a reference posture at an arbitrary position in the longitudinal direction of a long structure at a specific time t is estimated. Further, according to the displacement estimation system 1, detailed displacement from the reference posture at a specific position (measurement position) in the longitudinal direction of the long structure at a specific time t is estimated.
  • FIG. 14 shows the measured value of the displacement of the bridge 9 from the reference posture measured by the displacement meter at a certain measurement position and the estimation of the displacement of the bridge 9 from the reference posture at the same measurement position estimated by the displacement estimation system 1. It is a graph comparing with the value.
  • FIG. 14A shows a time series value of the measured value of the displacement measured by the displacement meter.
  • FIG. 14B shows time-series values of displacement estimates estimated by the displacement estimation system 1.
  • 14 (C) is a superimposition of the graph of FIG. 14 (A) and the graph of FIG. 14 (B). From the graph of FIG. 14, it can be seen that the displacement estimated by the displacement estimation system 1 is in good agreement with the displacement measured by the displacement meter.
  • the displacement estimation system 1 measures the acceleration in the x-axis direction with the accelerometer 11 and calculates the deflection angle (inclination angle with respect to the x-axis direction) of the bridge 9 from the measured acceleration (step S102). ).
  • the displacement estimation system 1 may be provided with inclinometers installed at each of the measurement positions P1 to Pm, and may be directly measured and used by using the inclining angles measured by those inclinometers. In the case of this modification, the displacement estimation system 1 uses the measured value of the tilt angle measured by the inclinometer in the process of step S103.
  • the displacement estimation system 1 estimates the displacement of a long structure having two fixed points, as shown in FIG.
  • the number of fixed points of the structure to which the displacement estimation system according to the present invention estimates displacement is not limited to two, and may be one or three or more.
  • the type of the structure for which the displacement estimation system according to the present invention estimates the displacement is not limited to the bridge.
  • the longitudinal direction of the structure to which the displacement estimation system according to the present invention estimates the displacement is not limited to the horizontal direction.
  • FIG. 15 is a diagram showing the overall configuration of the displacement estimation system 2 used for estimating the displacement of the sign column 7.
  • FIG. 15 (A) is a view of the sign pillar 7 viewed from the side
  • FIG. 15 (B) is a view of the sign pillar 7 viewed from above.
  • the sign pillar 7 is a long structure having a vertical direction as a longitudinal direction, in which a lower end is fixed to the ground and a sign is attached near the upper end.
  • the number of fixed points of the sign column 7 is one.
  • the data processing device 12 uses a plurality of accelerometers 21 arranged at predetermined intervals in the longitudinal direction (z-axis direction) of the marker column 7 and accelerometers for accelerometer data indicating accelerations measured by each of the accelerometers 21.
  • a data processing device 22 is provided, which is received from 21 and uses the received acceleration data to estimate the displacement of the marker column 7 from the reference posture.
  • the accelerometer 21 is a 3-axis accelerometer, and measures acceleration in each of the x-axis direction, the y-axis direction (an example of the third direction), and the z-axis direction.
  • the data processing device 22 is different from the data processing device 12 in that it estimates the displacement in the x-axis direction and the y-axis direction instead of the displacement in the z-axis direction.
  • the data processing device 22 performs the same processing as when the data processing device 12 estimates the displacement in the z-axis direction in each of the x-axis direction and the y-axis direction.
  • FIG. 16 is an example of a graph showing the time series value of the displacement of the sign column 7.
  • FIG. 16A shows a time-series value of the displacement of the sign column 7 at a certain measurement position from the reference posture in the x-axis direction.
  • FIG. 16B shows a time-series value of the displacement of the sign column 7 at a certain measurement position from the reference posture in the y-axis direction.
  • FIG. 16C is a graph showing the relationship between the distance from the reference position in the z-axis direction and the displacement in the x-axis direction of the sign column 7 at a certain time.
  • FIG. 16D is a graph showing the relationship between the distance from the reference position in the z-axis direction and the displacement in the y-axis direction of the sign column 7 at a certain time.
  • the three-dimensional shape of a long structure at a certain time is estimated.
  • the displacement estimation system 2 calculates the displacement of the measurement position (point Q in FIG. 17) in the z-axis direction by using the displacement of the marker column 7 estimated as described above in the x-axis direction and the y-axis direction. May be good.
  • the marker column 7 bends in the x-axis direction as shown in FIG. 17, the point Q moves by d x in the x-axis direction from the position in the reference posture, and the accelerometer 21 at the measurement position moves.
  • the displacement d z absolute value of the point Q in the z-axis direction is calculated by the following equation (7).
  • the accelerometer 11 and the data processing device 12 of the displacement estimation system 1 perform data communication wirelessly, but the method in which the accelerometer 11 and the data processing device 12 perform data communication is wireless. Not limited to this, those devices may perform data communication by wire.
  • the relationship estimation means 123 approximates the deflection angle of the entire girder of the bridge 9 with a polynomial function having the distance x from the reference position in the x-axis direction as a variable.
  • the type of function in which the relation estimation means 123 approximates the deflection angle of the structure is not limited to the polynomial function. For example, an exponential function, a logarithmic function, or the like may be adopted instead of the polynomial function.
  • the data processing device 12 is realized by the computer executing the processing according to the program. Instead of this, the data processing device 12 may be configured as a so-called dedicated device.
  • the program executed by the computer 10 to realize the data processing device 12 may be downloaded to the computer 10 via a network such as the Internet, or may be continuously downloaded to the recording medium. It may be recorded and distributed and read from the recording medium to the computer 10.
  • Displacement estimation system 1 ... Displacement estimation system, 2 ... Displacement estimation system, 7 ... Marking pillar, 8 ... Vehicle, 9 ... Bridge, 10 ... Computer, 11 ... Accelerometer, 12 ... Data processing device, 21 ... Accelerometer, 22 ... Data processing device , 101 ... Processor, 102 ... Memory, 103 ... Communication interface, 121 ... Acquisition means, 122 ... Storage means, 123 ... Relationship estimation means, 124 ... Displacement time series value specifying means, 125 ... Extraction means, 126 ... Calculation means, 1211 ... receiving means, 1212 ... extracting means, 1213 ... calculating means.

Abstract

変位推定システム1は、橋梁9の長手方向であるx軸方向において所定の間隔を空けて配置されている加速度計11-1、11-2、・・・、11-m(以下、加速度計11と総称する)と、加速度計11が測定した加速度の測定値を示す加速度データを加速度計11から受信し、加速度データが示すx軸方向の加速度からx軸方向における基準位置からの距離とz軸方向における基準姿勢からの変位との関係を推定するデータ処理装置12を備える。データ処理装置12によれば、x軸方向の任意の位置における橋梁9の変位が推定される。また、データ処理装置12は、加速度計11が配置されている位置(測定位置)の各々に関し、加速度データが示すz軸方向の加速度からz軸方向における橋梁9の変位の微細変動成分を算出し、推定したz軸方向における変位に算出した微細変動成分を加算することで、測定位置の各々における橋梁9の詳細な変位を推定する。

Description

長尺な構造物の変位を推定するためのシステム、方法、プログラム及び記録媒体
 本発明は、橋梁や塔のような長尺な構造物の変位を推定するための技術に関する。
 橋梁や塔のような長尺な構造物の変位を知りたい、というニーズがある。例えば、橋梁の変位を継続的に知ることができれば、橋梁の経年劣化の程度を推定することができる。
 構造物の変位を特定する方法の1つに、レーザ光等を用いた非接触型距離計により基準位置から構造物の特定点までの距離を測定する方法がある。例えば、特許文献1には、橋梁の下方に設置した非接触距離計によって橋梁の下面に設定した複数の特定点までの距離を測定し、それらの測定の結果を用いた演算により、橋梁の撓みによる変位を特定する方法が提案されている。
特開2014-74685号公報
 非接触型距離計を用いて対象物の変位を特定する方法には、非接触型距離計から対象物までの距離が長い程、特定される対象物の変位の精度が下がる、という問題がある。また、非接触型距離計を用いて対象物の変位を特定する方法には、非接触型距離計が揺れると、特定される対象物の変位の精度が下がる、という問題もある。また、対象物の周りに障害物がある場合、非接触型距離計を用いてその対象物の変位を特定することはできない。
 上記の事情に鑑み、本発明は、様々な設置環境下にある長尺な構造物の変位を推定できる手段を提供することを目的とする。
 上述した課題を解決するため、本発明は、1以上の固定点を持つ長尺な構造物の基準姿勢における長手方向を第1の方向とし、前記第1の方向に垂直な特定の方向を第2の方向とし、前記第1の方向と前記第2の方向を含む平面を基準面とするとき、前記第1の方向における基準位置からの距離が異なる複数の測定位置の各々で特定のタイミングに測定された前記構造物の前記基準面における前記第1の方向に対する傾斜角を取得する取得手段と、前記取得手段が取得した傾斜角を用いて、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記基準面における前記基準姿勢からの変位との関係を推定する関係推定手段とを備えるシステムを、第1の態様として提供する。
 第1の態様に係るシステムによれば、長尺な構造物の複数の測定位置において傾斜角を測定できれば、その構造物がどのような設置環境下にあっても、その構造物の変位を推定できる。
 第1の態様に係るシステムにおいて、前記取得手段は、前記複数の測定位置の各々に関し、当該測定位置において測定された前記構造物の前記第1の方向における加速度の時系列値を取得し、取得した時系列値が示す波形から所定の閾値以下の周波数の成分を抽出し、抽出した成分から当該測定位置における前記構造物の傾斜角を取得する、という構成が第2の態様として採用されてもよい。
 第2の態様に係るシステムによれば、位置と変位の関係を推定するために必要な傾斜角の測定位置の数を減らすことができる。
 第1又は第2の態様に係るシステムにおいて、前記取得手段は、複数の異なるタイミングの各々に関し、前記傾斜角を取得し、前記関係推定手段は、前記複数の異なるタイミングの各々に関し、前記関係を推定し、前記複数の異なるタイミングの各々に関し前記関係推定手段が推定した前記関係を用いて、前記第1の方向における特定の位置における前記構造物の前記基準姿勢からの変位の時系列値を特定する変位時系列値特定手段を備える、という構成が第3の態様として採用されてもよい。
 第3の態様に係るシステムによれば、長尺な構造物の特定位置における変位の経時変化を知ることができる。
 第3の態様に係るシステムにおいて、前記取得手段は、前記第1の方向における特定の測定位置において測定された前記第2の方向における前記構造物の加速度の時系列値を取得し、前記取得手段が取得した前記構造物の加速度の時系列値が示す波形から所定の閾値以上の周波数の成分を抽出する抽出手段と、前記抽出手段が抽出した加速度の成分を積分し、前記特定の測定位置における前記構造物の前記第2の方向における変位の微細変動成分の時系列値を算出する算出手段とを備え、前記変位時系列値特定手段は、前記関係推定手段が推定した前記関係を用いて特定した変位の時系列値を、前記算出手段が算出した変位の微細変動成分の時系列値を加算することにより補正する、という構成が第4の態様として採用されてもよい。
 第4の態様に係るシステムによれば、長尺な構造物の特定位置における変位の経時変化を微細な点まで知ることができる。
 第1乃至第4のいずれかに係るシステムにおいて、前記第1の方向に垂直で前記第2の方向と異なる特定の方向を第3の方向とし、前記基準面を第1の基準面とし、前記第1の方向と前記第3の方向を含む平面を第2の基準面とするとき、前記取得手段は、前記複数の測定位置の各々で前記特定のタイミングに測定された前記構造物の前記第2の基準面における前記第1の方向に対する傾斜角を取得し、前記関係推定手段は、前記取得手段が取得した前記第1の基準面における傾斜角と前記取得手段が取得した前記第2の基準面における傾斜角を用いて、前記第1の方向を含む特定の平面における前記構造物の前記第1の方向に対する傾斜角を特定し、特定した傾斜角から、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記特定の平面における前記基準姿勢からの変位との関係を推定する、という構成が第5の態様として採用されてもよい。
 第5の態様に係るシステムによれば、長尺な構造物の変形が、構造物の軸に垂直な一方向における変形に限られない場合であっても、測定時における当該構造物の3次元形状を推定することができる。
 第1乃至第5のいずれかに係るシステムにおいて、前記取得手段は、前記傾斜角の時系列値を取得し、前記関係推定手段は、前記取得手段が取得した傾斜角の時系列値が所定の範囲内で変動する期間における傾斜角の統計量に基づき前記取得手段が取得した傾斜角に含まれる誤差を補正し、補正後の傾斜角を用いて前記関係の推定を行う、という構成が第6の態様として採用されてもよい。
 第6の態様に係るシステムによれば、傾斜角の測定値が温度等による外乱の影響を受けていても、その影響の除去された精度の高い、位置と変位の関係を推定することができる。
 また、本発明は、1以上の固定点を持つ長尺な構造物の基準姿勢における長手方向を第1の方向とし、前記第1の方向に垂直な特定の方向を第2の方向とし、前記第1の方向と前記第2の方向を含む平面を基準面とするとき、前記第1の方向における基準位置からの距離が異なる複数の測定位置の各々で特定のタイミングに測定された前記構造物の前記基準面における前記第1の方向に対する傾斜角を取得するステップと、前記取得するステップにおいて取得した傾斜角を用いて、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記基準面における前記基準姿勢からの変位との関係を推定するステップとを備える方法を、第7の態様として提供する。
 第7の態様に係る方法によれば、長尺な構造物の複数の測定位置において傾斜角を測定できれば、その構造物がどのような設置環境下にあっても、その構造物の変位を推定できる。
 また、本発明は、1以上の固定点を持つ長尺な構造物の基準姿勢における長手方向を第1の方向とし、前記第1の方向に垂直な特定の方向を第2の方向とし、前記第1の方向と前記第2の方向を含む平面を基準面とするとき、コンピュータに、前記第1の方向における基準位置からの距離が異なる複数の測定位置の各々で特定のタイミングに測定された前記構造物の前記基準面における前記第1の方向に対する傾斜角を取得する処理と、前記取得する処理において取得した傾斜角を用いて、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記基準面における前記基準姿勢からの変位との関係を推定する処理とを実行させるためのプログラムを、第8の態様として提供する。
 また、本発明は、1以上の固定点を持つ長尺な構造物の基準姿勢における長手方向を第1の方向とし、前記第1の方向に垂直な特定の方向を第2の方向とし、前記第1の方向と前記第2の方向を含む平面を基準面とするとき、コンピュータに、前記第1の方向における基準位置からの距離が異なる複数の測定位置の各々で特定のタイミングに測定された前記構造物の前記基準面における前記第1の方向に対する傾斜角を取得する処理と、前記取得する処理において取得した傾斜角を用いて、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記基準面における前記基準姿勢からの変位との関係を推定する処理とを実行させるためのプログラムを持続的に記録するコンピュータ読み取り可能な記録媒体を、第9の態様として提供する。
 第8の態様に係るプログラム又は第9の態様に係る記録媒体によれば、長尺な構造物の複数の測定位置において傾斜角を測定できれば、その構造物がどのような設置環境下にあっても、コンピュータを用いて、その構造物の変位を推定できる。
 本発明によれば、様々な設置環境下にある長尺な構造物の変位を推定できる。
一実施形態に係る変位推定システムの全体構成を示した図。 一実施形態に係るデータ処理装置の実現のために用いられるコンピュータの構成を示した図。 一実施形態に係るデータ処理装置の構成を示した図。 一実施形態に係る変位推定システムが実行する処理のシーケンスを示した図。 一実施形態に係る変位推定システムが生成する撓み角の時系列値が示す波形を表したグラフの例。 一実施形態に係る変位推定システムが生成する撓み角の時系列値が示す波形(ドリフト除去後)を表したグラフの例。 一実施形態に係る変位推定システムが抽出する撓み角と、測定位置のx軸方向における基準位置からの距離との関係を表したグラフの例。 一実施形態に係る変位推定システムが推定する距離と変位との関係を表したグラフの例。 一実施形態に係る変位推定システムが実行する処理のシーケンスを示した図。 一実施形態に係る変位推定システムが実行する処理のシーケンスを示した図。 一実施形態に係る変位推定システムが特定する変位の時系列値を表すグラフの例。 一実施形態に係る変位推定システムが特定する変位の微細変動成分の時系列値を表すグラフの例。 一実施形態に係る変位推定システムが微細変動成分の加算により補正した変位の時系列値を表すグラフの例。 一実施形態に係る変位推定システムが推定した変位の推定値と変位計による変位の測定値とを比較したグラフ。 一変形例に係る変位推定システムの全体構成を示した図。 一変形例に係る変位推定システムが推定した変位の時系列値を表したグラフの例。 一変形例に係る変位推定システムが、長手方向が鉛直方向の構造物上の測定位置の鉛直方向における変位を算出する方法を説明するための図。
 以下に本発明の一実施形態に係る変位推定システム1を説明する。変位推定システム1は、外力を受けて変形する長尺な構造物の複数の位置の各々における変位を推定するシステムである。
 図1は、変位推定システム1の全体構成を示した図である。図1の例では、変位推定システム1は橋梁9(長尺な構造物の一例)の変位を推定するために用いられる。橋梁9は、例えば車両8がその上を走行すると、車両8の重量による荷重を受けて変形する。図1(A)は橋梁9を側方から見た図であり、図1(B)は橋梁9を上方から見た図である。
 図1に示されるように、以下の説明において、橋梁9の長手方向をx軸方向(図1の右方向を正方向)、鉛直方向をz軸方向(図1(A)の上方向を正方向)、x軸方向とz軸方向に垂直な方向をy軸方向(図1(B)の下方向を正方向)とする。また、図1における橋梁9の左端をx軸方向の基準位置(x=0)とする。また、橋梁9が外力を受けていない状態において、図1(B)にRで示される基準面(y軸方向に垂直な平面で、後述する加速度計11が設置されている位置を含む平面)における橋梁9の上部工の下面(加速度計11が設置されている面)の位置を橋梁9の基準姿勢と呼ぶものとする。
 変位推定システム1は、m個の加速度計11と、m個の加速度計11の各々との間でデータ通信を行うデータ処理装置12を備える。加速度計11は、例えば3軸加速度計である。ただし、本実施形態においては、x軸方向(第1の方向の一例)とz軸方向(第2の方向の一例)の加速度の測定値が用いられ、y軸方向の加速度の測定値は用いられないので、2軸加速度計が加速度計11として用いられてもよい。以下、m個の加速度計11を各々区別する場合、加速度計11-1~11-mのように枝番号を付す。
 m個の加速度計11は、橋梁9の上部工の下面に、x軸方向に所定の間隔を空けて、加速度計11-1、加速度計11-2、・・・、加速度計11-mの順に並べて設置されている。上述したように、m個の加速度計11は基準面R内に設置されている。加速度計11-1~11-mの各々が設置されている位置を、以下、測定位置P1~Pmという。
 m個の加速度計11の各々は、例えば無線により、継続的に測定する加速度の測定値を示す加速度データを順次、データ処理装置12に送信する。
 データ処理装置12は、加速度計11の各々から継続的に送信されてくる加速度データを受信し、受信した加速度データを用いて、橋梁9のx軸方向における任意の位置における基準姿勢からの大まかな変位を特定できる関係式を推定するとともに、測定位置P1~Pmの各々における基準姿勢からの詳細な変位を推定する装置である。
 本実施形態において、データ処理装置12はコンピュータにより実現される。すなわち、コンピュータが、本実施形態に係るプログラムに従う処理を実行することにより、データ処理装置12として機能する。図2は、データ処理装置12の実現のために用いられるコンピュータ10の構成を示した図である。コンピュータ10は、プログラムに従い各種データ処理を行うプロセッサ101と、プログラムを含む各種データを記憶するメモリ102と、外部の装置との間でデータ通信を行う通信インタフェース103を備える。
 図3は、データ処理装置12の構成を示した図である。コンピュータ10が、本実施形態に係るプログラムに従う処理を実行すると、図3に示した構成部を備えるデータ処理装置12が実現される。以下にデータ処理装置12の構成部の各々を説明する。
 取得手段121は、主としてプロセッサ101の制御下の通信インタフェース103及びプロセッサ101により実現され、特定のタイミングに測定された、測定位置P1~Pmの各々における橋梁9の基準面Rにおけるx軸方向に対する傾斜角を取得する。本実施形態において、取得手段121は、加速度計11が測定したx軸方向の加速度から上記の傾斜角を算出することにより取得する。そのため、取得手段121は、加速度計11から送信されてくる加速度データを受信する受信手段1211と、加速度データが示す測定位置P1~Pmの各々におけるx軸方向の加速度の時系列値が示す波形から所定の閾値以下の周波数の成分を抽出する抽出手段1212と、抽出手段1212が抽出した加速度の成分から測定位置P1~Pmの各々における橋梁9の傾斜角を算出する算出手段1213を備える。受信手段1211は、主としてプロセッサ101の制御下の通信インタフェース103により実現される。また、抽出手段1212及び算出手段1213は主としてプロセッサ101により実現される。
 記憶手段122は、主としてプロセッサ101の制御下のメモリ102により実現され、各種データを記憶する。記憶手段122が記憶するデータには、受信手段1211が加速度計11から受信した加速度データや、算出手段1213が算出した傾斜角を示すデータ等のデータ処理装置12の構成部が生成したデータが含まれる。
 関係推定手段123は、主としてプロセッサ101により実現され、取得手段121が取得した傾斜角を用いて、x軸方向における基準位置からの距離と、基準位置から当該距離だけ離れた位置における橋梁9の基準面Rにおける基準姿勢からの変位との関係を推定する。関係推定手段123により推定される関係により、x軸方向における橋梁9の任意の位置(測定位置P1~Pmに限られない)における基準姿勢からの大まかな変位が分かる。
 変位時系列値特定手段124は、主としてプロセッサ101により実現され、複数の異なるタイミングの各々に関し関係推定手段123が推定した関係を用いて、x軸方向における特定の位置における橋梁9の基準姿勢からの変位の時系列値を特定する。
 抽出手段125は、主としてプロセッサ101により実現され、受信手段1211が受信した加速度データから得られる、測定位置P1~Pmの各々(x軸方向における特定の位置の例)におけるz軸方向の加速度の時系列値が示す波形から、所定の閾値以上の周波数の成分を抽出する。
 算出手段126は、主としてプロセッサ101により実現され、抽出手段125が抽出した加速度の成分を積分し、測定位置P1~Pmの各々における橋梁9のz軸方向における変位の微細変動成分の時系列値を算出する。算出手段126により算出された変位の微細変動成分の時系列値は、変位時系列値特定手段124により、測定位置P1~Pmの各々における橋梁9の基準姿勢からの大まかな変位、すなわち、z軸方向における大まかな変位の時系列値に加算される。この加算により、測定位置P1~Pmにおける橋梁9の詳細な変位の時系列値が分かる。
 続いて、変位推定システム1が行う処理を説明する。まず、受信手段1211は、継続的に加速度計11の各々から送信されてくる加速度データを受信する。受信手段1211により受信された加速度データは記憶手段122に記憶される。
 上記の加速度データの受信及び記憶の処理と並行して、変位推定システム1は以下に図4及び図9に示すシーケンスに従う処理を所定時間の経過毎に実行する。
 図4は、所定時間の経過毎に変位推定システム1が行う処理のうち、x軸方向における任意の位置(測定位置P1~Pmを含む)における橋梁9の大まかな基準姿勢からの変位を推定する処理のシーケンスを示している。
 まず、抽出手段1212は、測定位置P1~Pmの各々に関し、直近の所定時間長の期間Tにおける加速度データを記憶手段122から読み出し、それらの加速度データが示すx軸方向の加速度の測定値の時系列値が示す波形を平滑化する(ステップS101)。例えば、抽出手段1212は、加速度の時系列値が示す波形を、ローパスフィルタに通すことで、所定の閾値(カットオフ周波数)以下の周波数の成分を抽出することで、当該波形の平滑化を行う。
 続いて、算出手段1213は、測定位置P1~Pmの各々に関し、ステップS101において平滑化されたx軸方向の加速度の測定値の時系列値から、橋梁9のx軸方向に対する傾斜角を算出する(ステップS102)。橋梁9の測定位置におけるx軸方向に対する傾斜角は、橋梁9の撓みにより生じる傾斜角である。以下、構造物の撓みによりその構造物の測定位置に生じる傾斜角を「撓み角」と呼ぶ。なお、或る位置における橋梁9のx軸方向の加速度をAxとすると、z軸方向の加速度は重力加速度Gであるので、その或る位置における橋梁9のx軸方向に対する撓み角φは以下の数1の式に従い算出される。
Figure JPOXMLDOC01-appb-M000001
 図5は、ステップS102の処理により生成される、或る測定位置における橋梁9のx軸方向に対する撓み角の時系列値が示す波形を表したグラフの例である。
 続いて、関係推定手段123は、測定位置P1~Pmの各々に関し、ステップS102において算出された撓み角の時系列値が示す波形からドリフトを特定し、特定したドリフトをその波形から除去する(ステップS103)。なお、ステップS103において特定される撓み角のドリフトとは、温度等の外乱の影響を受けて加速度計11の測定値に生じる実際の加速度からのズレにより、加速度の測定値から算出される撓み角に生じる実際の撓み角からのズレを意味する。
 関係推定手段123は、例えば、ステップS102において算出された撓み角の時系列値が示す波形(図5参照)において、撓み角が0の近傍で安定している期間における波形を近似する直線を、ドリフトを示す直線として特定する。図6は、ステップS103の処理により生成される、或る測定位置における橋梁9のx軸方向に対する撓み角の時系列値が示す波形(ドリフト除去後)を表したグラフの例である。
 続いて、関係推定手段123は、測定位置P1~Pmの各々に関し、ステップS103において生成されるドリフト除去後の撓み角の時系列値から特定の時刻t(例えば、期間Tの開始タイミングからT/2だけ経過したタイミング)における撓み角を抽出する(ステップS104)。図7は、ステップS104において抽出される撓み角と、測定位置のx軸方向における基準位置からの距離との関係を表したグラフの例である。
 続いて、関係推定手段123は、ステップS104において抽出した時刻tにおける、測定位置P1~Pmにおける撓み角と、測定位置P1~Pmのx軸方向における基準位置からの距離とに基づき、時刻tにおける、x軸方向の基準位置からの距離xと、その位置における橋梁9の基準姿勢からの変位δ(x)との関係を推定する(ステップS105)。
 以下に、ステップS105において関係推定手段123が距離xの関数である変位δ(x)を推定する方法を説明する。
 x軸方向の基準位置から距離xの位置における撓み角をφ(x)とすると、x軸方向に対する橋梁9の基準姿勢からの変位δ(x)は撓み角φ(x)の積分、すなわち以下の数2の式により算出される。
Figure JPOXMLDOC01-appb-M000002
 橋梁9の桁全体の撓み角φ(x)は、例えば以下の数3に示すn次の多項式関数で近似することができる。
Figure JPOXMLDOC01-appb-M000003
 数2及び数3の式から、変位δ(x)は以下の数4の式で近似される。
Figure JPOXMLDOC01-appb-M000004
 従って、時刻tにおいて、測定位置Pi(i=1、2、・・・、m)のx軸方向における基準位置からの距離をxiとし、測定位置Piにおける撓み角をφiとすると、最小二乗法を用いて、上記の数4の式の各次数の係数は以下の数5の行列式により算出される。
Figure JPOXMLDOC01-appb-M000005
 これにより、上記の数5の行列式により各次数の係数が算出され、距離xと変位δ(x)の関係が推定される。図8は、ステップS105において推定される時刻tにおける距離と変位との関係を表したグラフの例である。ステップS105において推定された時刻tにおける距離と変位の関係を示す関係データは、記憶手段122に記憶される。
 図4に戻り、変位推定システム1の処理の説明を続ける。続いて、変位時系列値特定手段124は、測定位置P1~Pmの各々に関し、ステップS105において推定した距離xと変位δ(x)の関係に従い、時刻tにおける測定位置P1~Pmの各々における橋梁9の基準姿勢からの変位を算出する(ステップS106)。
 具体的には、ステップS105において推定された変位を表す関数をδ(x)とし、測定位置Pi(i=1、2、・・・、m)のx軸方向における基準位置からの距離をxiとすると、変位時系列値特定手段124は以下の数6の行列式により、時刻tにおける測定位置Piにおける橋梁9の基準姿勢からの変位δiを算出する。
Figure JPOXMLDOC01-appb-M000006
 ステップS106において測定位置P1~Pmの各々に関し算出された、時刻tにおける変位を示す変位データは、記憶手段122に記憶される。
 図9は、所定時間の経過毎に変位推定システム1が行う処理のうち、測定位置P1~Pmにおける橋梁9の基準姿勢からの変位の微細変動成分を算出する処理のシーケンスを示している。
 まず、抽出手段125は、測定位置P1~Pmの各々に関し、直近の所定時間長の期間Tにおける加速度データを記憶手段122から読み出し、それらの加速度データが示すz軸方向の加速度の測定値の時系列値が示す波形から高周波数成分を抽出する(ステップS201)。例えば、抽出手段125は、加速度の時系列値が示す波形を、ハイパスフィルタに通すことで、所定の閾値(カットオフ周波数)以上の周波数の成分を抽出する。
 続いて、算出手段126は、測定位置P1~Pmの各々に関し、ステップS201において抽出されたz軸方向の加速度の時系列が示す波形の高周波数成分を時刻tにおいて二階積分し、時刻tにおける橋梁9の基準姿勢からの変位の微細変動成分を算出する(ステップS202)。ステップS202において測定位置P1~Pmの各々に関し算出された、時刻tにおける変位の微細変動成分を示す変位微細変動成分データは、記憶手段122に記憶される。
 変位推定システム1は、例えば所定時間の経過毎に、図10に示すシーケンスに従う処理を実行する。
 まず、変位時系列値特定手段124は、測定位置P1~Pmの各々に関し、過去の所定時間長の期間UにステップS106において算出された橋梁9の大まかな変位を示す変位データを記憶手段122から読み出し、読み出したそれらの変位データが示す変位の時系列値を特定する(ステップS301)。図11は、ステップS301において特定される、或る測定位置における橋梁9の基準姿勢からの変位の時系列値を表すグラフの例である。
 続いて、変位時系列値特定手段124は、測定位置P1~Pmの各々に関し、過去の所定時間長の期間UにステップS202において算出された橋梁9の変位の微細変動成分を示す変位微細変動成分データを記憶手段122から読み出し、読み出したそれらの変位微細変動成分データが示す変位の微細変動成分の時系列値を特定する(ステップS302)。図12は、ステップS302において特定される、或る測定位置における橋梁9の基準姿勢からの変位の微細変動成分の時系列値を表すグラフの例である。
 続いて、変位時系列値特定手段124は、測定位置P1~Pmの各々に関し、ステップS301において特定した変位の時系列値に、ステップS302において特定した変位の微細変動成分の時系列値を加算することによって、ステップS301において特定した変位の時系列値を補正する(ステップS303)。図13は、ステップS303において微細変動成分の加算により補正された、或る測定位置における橋梁9の基準姿勢からの変位の時系列値を表すグラフの例である。ステップS303において測定位置P1~Pmの各々に関し補正された変位の時系列値を表す変位時系列データは、記憶手段122に記憶される。
 上述したように、変位推定システム1によれば、特定の時刻tにおける、長尺な構造物の長手方向の任意の位置における基準姿勢からの大まかな変位が推定される。また、変位推定システム1によれば、特定の時刻tにおける、長尺な構造物の長手方向の特定の位置(測定位置)における基準姿勢からの詳細な変位が推定される。
 図14は、或る測定位置において変位計により測定された橋梁9の基準姿勢からの変位の測定値と、変位推定システム1により推定された同じ測定位置における橋梁9の基準姿勢からの変位の推定値とを比較したグラフである。図14(A)は、変位計により測定された変位の測定値の時系列値を表している。図14(B)は、変位推定システム1により推定された変位の推定値の時系列値を表している。図14(C)は、図14(A)のグラフと図14(B)のグラフを重ね合わせたものである。図14のグラフから、変位推定システム1により推定される変位が、変位計により測定される変位と、よく合致していることが判る。
[変形例]
 上述した実施形態は、本発明の技術的思想の範囲内で様々に変形することができる。以下にそれらの変形の例を示す。なお、以下の2以上の変形例が組み合わされてもよい。
(1)上述した実施形態において、変位推定システム1は加速度計11によりx軸方向の加速度を測定し、測定した加速度から橋梁9の撓み角(x軸方向に対する傾斜角)を算出する(ステップS102)。これに代えて、変位推定システム1が測定位置P1~Pmの各々に設置された傾斜計を備え、それらの傾斜計により測定される傾斜角を用いて、直接、測定して用いてもよい。この変形例による場合、変位推定システム1はステップS103の処理において、傾斜計により測定される傾斜角の測定値を用いる。
(2)上述した実施形態において、変位推定システム1は図1に示される、固定点の数が2つの長尺な構造物の変位を推定する。本発明に係る変位推定システムが変位を推定する対象の構造物の固定点の数は2つに限られず、1つ又は3つ以上であってもよい。また、本発明に係る変位推定システムが変位を推定する対象の構造物の種別は橋梁に限られない。また、本発明に係る変位推定システムが変位を推定する対象の構造物の長手方向は水平方向に限られない。
 図15は、標識柱7の変位を推定するために用いられる変位推定システム2の全体構成を示した図である。図15(A)は標識柱7を側方から見た図であり、図15(B)は標識柱7を上方から見た図である。標識柱7は下端が地盤に固定され、上端付近に標識が取り付けられている、鉛直方向を長手方向とする長尺な構造物である。標識柱7の固定点の数は1つである。
 データ処理装置12は、標識柱7の長手方向(z軸方向)において所定の間隔を空けて配置された複数の加速度計21と、加速度計21の各々が測定した加速度を示す加速度データを加速度計21から受信し、受信した加速度データを用いて、標識柱7の基準姿勢からの変位を推定するデータ処理装置22を備える。
 加速度計21は、3軸加速度計であり、x軸方向、y軸方向(第3の方向の一例)、z軸方向の各々における加速度を測定する。データ処理装置22は、データ処理装置12と比較し、z軸方向における変位に代えて、x軸方向及びy軸方向における変位を推定する点が異なっている。データ処理装置22は、データ処理装置12がz軸方向における変位を推定する場合と同様の処理を、x軸方向及びy軸方向の各々に関し行う。
 図16は、標識柱7の変位の時系列値を表したグラフの例である。図16(A)は、或る測定位置における標識柱7の、x軸方向における基準姿勢からの変位の時系列値を表している。図16(B)は、或る測定位置における標識柱7の、y軸方向における基準姿勢からの変位の時系列値を表している。図16(C)は、或る時刻における標識柱7のz軸方向における基準位置からの距離とx軸方向における変位との関係を表したグラフである。図16(D)は、或る時刻における標識柱7のz軸方向における基準位置からの距離とy軸方向における変位との関係を表したグラフである。
 上述したように、変位推定システム2によれば、或る時刻における長尺な構造物の三次元形状が推定される。
 また、変位推定システム2が、上記のように推定した標識柱7のx軸方向及びy軸方向における変位を用いて、測定位置(図17の点Q)のz軸方向における変位を算出してもよい。例えば、標識柱7が或る時刻において、図17に示すようにx軸方向に撓って、点Qが基準姿勢における位置からx軸方向にdxだけ移動し、測定位置の加速度計21が鉛直方向に対する角度θの傾きを測定した場合、点Qのz軸方向における変位dz(絶対値)は以下の数7の式により算出される。
Figure JPOXMLDOC01-appb-M000007
(3)上述した実施形態において、変位推定システム1の加速度計11とデータ処理装置12は無線によりデータ通信を行うものとしたが、加速度計11とデータ処理装置12がデータ通信を行う方法は無線に限られず、それらの装置が有線によりデータ通信を行ってもよい。
(4)上述した実施形態において、関係推定手段123は橋梁9の桁全体の撓み角を、x軸方向における基準位置からの距離xを変数とする多項式関数で近似するものとした。関係推定手段123が構造物の撓み角を近似する関数の種類は多項式関数に限られない。例えば、多項式関数に代えて、指数関数や対数関数等が採用されてもよい。
(5)上述した実施形態において、データ処理装置12はコンピュータがプログラムに従った処理を実行することにより実現される。これに代えて、データ処理装置12が、いわゆる専用装置として構成されてもよい。
(6)上述した実施形態において、コンピュータ10がデータ処理装置12を実現するために実行するプログラムは、例えばインターネット等のネットワークを介してコンピュータ10にダウンロードされてもよいし、記録媒体に持続的に記録されて配布され、当該記録媒体からコンピュータ10に読み取られてもよい。
 1…変位推定システム、2…変位推定システム、7…標識柱、8…車両、9…橋梁、10…コンピュータ、11…加速度計、12…データ処理装置、21…加速度計、22…データ処理装置、101…プロセッサ、102…メモリ、103…通信インタフェース、121…取得手段、122…記憶手段、123…関係推定手段、124…変位時系列値特定手段、125…抽出手段、126…算出手段、1211…受信手段、1212…抽出手段、1213…算出手段。

Claims (9)

  1.  1以上の固定点を持つ長尺な構造物の基準姿勢における長手方向を第1の方向とし、前記第1の方向に垂直な特定の方向を第2の方向とし、前記第1の方向と前記第2の方向を含む平面を基準面とするとき、
     前記第1の方向における基準位置からの距離が異なる複数の測定位置の各々で特定のタイミングに測定された前記構造物の前記基準面における前記第1の方向に対する傾斜角を取得する取得手段と、
     前記取得手段が取得した傾斜角を用いて、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記基準面における前記基準姿勢からの変位との関係を推定する関係推定手段と
     を備えるシステム。
  2.  前記取得手段は、前記複数の測定位置の各々に関し、当該測定位置において測定された前記構造物の前記第1の方向における加速度の時系列値を取得し、取得した時系列値が示す波形から所定の閾値以下の周波数の成分を抽出し、抽出した成分から当該測定位置における前記構造物の傾斜角を取得する
     請求項1に記載のシステム。
  3.  前記取得手段は、複数の異なるタイミングの各々に関し、前記傾斜角を取得し、
     前記関係推定手段は、前記複数の異なるタイミングの各々に関し、前記関係を推定し、
     前記複数の異なるタイミングの各々に関し前記関係推定手段が推定した前記関係を用いて、前記第1の方向における特定の位置における前記構造物の前記基準姿勢からの変位の時系列値を特定する変位時系列値特定手段を備える
     請求項1又は2に記載のシステム。
  4.  前記取得手段は、前記第1の方向における特定の測定位置において測定された前記第2の方向における前記構造物の加速度の時系列値を取得し、
     前記取得手段が取得した前記構造物の加速度の時系列値が示す波形から所定の閾値以上の周波数の成分を抽出する抽出手段と、
     前記抽出手段が抽出した加速度の成分を積分し、前記特定の測定位置における前記構造物の前記第2の方向における変位の微細変動成分の時系列値を算出する算出手段と
     を備え、
     前記変位時系列値特定手段は、前記関係推定手段が推定した前記関係を用いて特定した変位の時系列値を、前記算出手段が算出した変位の微細変動成分の時系列値を加算することにより補正する
     請求項3に記載のシステム。
  5.  前記第1の方向に垂直で前記第2の方向と異なる特定の方向を第3の方向とし、前記基準面を第1の基準面とし、前記第1の方向と前記第3の方向を含む平面を第2の基準面とするとき、
     前記取得手段は、前記複数の測定位置の各々で前記特定のタイミングに測定された前記構造物の前記第2の基準面における前記第1の方向に対する傾斜角を取得し、
     前記関係推定手段は、前記取得手段が取得した前記第1の基準面における傾斜角と前記取得手段が取得した前記第2の基準面における傾斜角を用いて、前記第1の方向を含む特定の平面における前記構造物の前記第1の方向に対する傾斜角を特定し、特定した傾斜角から、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記特定の平面における前記基準姿勢からの変位との関係を推定する
     請求項1乃至4のいずれか1項に記載のシステム。
  6.  前記取得手段は、前記傾斜角の時系列値を取得し、
     前記関係推定手段は、前記取得手段が取得した傾斜角の時系列値が所定の範囲内で変動する期間における傾斜角の統計量に基づき前記取得手段が取得した傾斜角に含まれる誤差を補正し、補正後の傾斜角を用いて前記関係の推定を行う
     請求項1乃至5のいずれか1項に記載のシステム。
  7.  1以上の固定点を持つ長尺な構造物の基準姿勢における長手方向を第1の方向とし、前記第1の方向に垂直な特定の方向を第2の方向とし、前記第1の方向と前記第2の方向を含む平面を基準面とするとき、
     前記第1の方向における基準位置からの距離が異なる複数の測定位置の各々で特定のタイミングに測定された前記構造物の前記基準面における前記第1の方向に対する傾斜角を取得するステップと、
     前記取得するステップにおいて取得した傾斜角を用いて、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記基準面における前記基準姿勢からの変位との関係を推定するステップと
     を備える方法。
  8.  1以上の固定点を持つ長尺な構造物の基準姿勢における長手方向を第1の方向とし、前記第1の方向に垂直な特定の方向を第2の方向とし、前記第1の方向と前記第2の方向を含む平面を基準面とするとき、
     コンピュータに、
     前記第1の方向における基準位置からの距離が異なる複数の測定位置の各々で特定のタイミングに測定された前記構造物の前記基準面における前記第1の方向に対する傾斜角を取得する処理と、
     前記取得する処理において取得した傾斜角を用いて、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記基準面における前記基準姿勢からの変位との関係を推定する処理と
     を実行させるためのプログラム。
  9.  1以上の固定点を持つ長尺な構造物の基準姿勢における長手方向を第1の方向とし、前記第1の方向に垂直な特定の方向を第2の方向とし、前記第1の方向と前記第2の方向を含む平面を基準面とするとき、
     コンピュータに、
     前記第1の方向における基準位置からの距離が異なる複数の測定位置の各々で特定のタイミングに測定された前記構造物の前記基準面における前記第1の方向に対する傾斜角を取得する処理と、
     前記取得する処理において取得した傾斜角を用いて、前記第1の方向における前記基準位置からの距離と、前記基準位置から当該距離だけ離れた位置における前記構造物の前記基準面における前記基準姿勢からの変位との関係を推定する処理と
     を実行させるためのプログラムを持続的に記録するコンピュータ読み取り可能な記録媒体。
PCT/JP2019/029421 2019-07-26 2019-07-26 長尺な構造物の変位を推定するためのシステム、方法、プログラム及び記録媒体 WO2021019602A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020545751A JP6894656B1 (ja) 2019-07-26 2019-07-26 構造物の変位を推定するためのシステム、方法、及びプログラム
US17/629,806 US20220261511A1 (en) 2019-07-26 2019-07-26 System, method, program, and recording medium for estimating displacement of long structure
PCT/JP2019/029421 WO2021019602A1 (ja) 2019-07-26 2019-07-26 長尺な構造物の変位を推定するためのシステム、方法、プログラム及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029421 WO2021019602A1 (ja) 2019-07-26 2019-07-26 長尺な構造物の変位を推定するためのシステム、方法、プログラム及び記録媒体

Publications (1)

Publication Number Publication Date
WO2021019602A1 true WO2021019602A1 (ja) 2021-02-04

Family

ID=74229298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029421 WO2021019602A1 (ja) 2019-07-26 2019-07-26 長尺な構造物の変位を推定するためのシステム、方法、プログラム及び記録媒体

Country Status (3)

Country Link
US (1) US20220261511A1 (ja)
JP (1) JP6894656B1 (ja)
WO (1) WO2021019602A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148537A (ja) * 2020-03-18 2021-09-27 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
JP7400566B2 (ja) 2020-03-18 2023-12-19 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
JP7375637B2 (ja) 2020-03-18 2023-11-08 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
JP2021147819A (ja) 2020-03-18 2021-09-27 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
JP7396139B2 (ja) 2020-03-18 2023-12-12 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム
FR3115177B1 (fr) * 2020-10-12 2023-02-24 Sercel Rech Const Elect Système et procédé de génération et de collecte de données vibratoires en vue de la surveillance d’une structure
JP2022131184A (ja) * 2021-02-26 2022-09-07 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545373A (ja) * 1991-08-20 1993-02-23 Nec Corp 加速度センサ
JP2008281508A (ja) * 2007-05-14 2008-11-20 Mitsuba Corp 傾斜角度測定装置
JP2009192504A (ja) * 2008-02-18 2009-08-27 Railway Technical Res Inst 構造物変位推定システム及び構造物変位推定方法
CN204007499U (zh) * 2014-05-15 2014-12-10 宁夏众诚科创信息科技有限公司 一种新型桥梁结构挠度自动监测系统
JP2018004387A (ja) * 2016-06-30 2018-01-11 株式会社日立製作所 傾斜監視システムおよび方法
JP2019052467A (ja) * 2017-09-14 2019-04-04 清水建設株式会社 計測システムおよび計測方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118902A (ja) * 1982-01-07 1983-07-15 Touyoko Erumesu:Kk 構造物の鉛直変位量およびたわみ量を測定する方法
JPH11183514A (ja) * 1997-12-22 1999-07-09 Any:Kk 加速度検出装置
JP4195054B2 (ja) * 2006-11-24 2008-12-10 横浜ゴム株式会社 ブレーキ制御方法およびブレーキ制御装置
JP4996498B2 (ja) * 2008-02-18 2012-08-08 公益財団法人鉄道総合技術研究所 構造物変位推定システム及び構造物変位推定方法
JP6799469B2 (ja) * 2017-01-23 2020-12-16 東日本旅客鉄道株式会社 線路移動方法およびレール支持装置
JP2018189397A (ja) * 2017-04-28 2018-11-29 日新電機株式会社 振動測定装置
JP6993143B2 (ja) * 2017-09-07 2022-01-13 東海旅客鉄道株式会社 鉄道橋梁のたわみ測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545373A (ja) * 1991-08-20 1993-02-23 Nec Corp 加速度センサ
JP2008281508A (ja) * 2007-05-14 2008-11-20 Mitsuba Corp 傾斜角度測定装置
JP2009192504A (ja) * 2008-02-18 2009-08-27 Railway Technical Res Inst 構造物変位推定システム及び構造物変位推定方法
CN204007499U (zh) * 2014-05-15 2014-12-10 宁夏众诚科创信息科技有限公司 一种新型桥梁结构挠度自动监测系统
JP2018004387A (ja) * 2016-06-30 2018-01-11 株式会社日立製作所 傾斜監視システムおよび方法
JP2019052467A (ja) * 2017-09-14 2019-04-04 清水建設株式会社 計測システムおよび計測方法

Also Published As

Publication number Publication date
JPWO2021019602A1 (ja) 2021-09-13
US20220261511A1 (en) 2022-08-18
JP6894656B1 (ja) 2021-06-30

Similar Documents

Publication Publication Date Title
JP6894656B1 (ja) 構造物の変位を推定するためのシステム、方法、及びプログラム
US8645063B2 (en) Method and system for initial quaternion and attitude estimation
KR101988786B1 (ko) 관성 항법 장치의 초기 정렬 방법
JP3947531B2 (ja) 加速度誤差の補正方法及び装置、並びにそれを利用した慣性航法システム
US11009436B2 (en) Rigidity measurement apparatus and rigidity measurement method
US10198640B2 (en) Measuring device, measuring system, measuring method, and program
US9810549B2 (en) Systems, methods, and apparatus for calibration of and three-dimensional tracking of intermittent motion with an inertial measurement unit
US9347205B2 (en) Estimation of the relative attitude and position between a vehicle body and an implement operably coupled to the vehicle body
US7366612B2 (en) Method and apparatus for compensating attitude of inertial navigation system and method and apparatus for calculating position of inertial navigation system using the same
US20140316708A1 (en) Oriented Wireless Structural Health and Seismic Monitoring
US20160001695A1 (en) Method and apparatus for determining the inclination of a moving vehicle with respect to the road and for performing dynamic headlight leveling
JP2012133696A (ja) 運転支援装置
JP6645102B2 (ja) 計測装置、計測システム、計測方法、及びプログラム
CN108132053B (zh) 一种行人轨迹构建方法、系统及惯性测量装置
US9222237B1 (en) Earthmoving machine comprising weighted state estimator
JP6044971B2 (ja) 推定方位角評価装置、移動体端末装置、推定方位角評価装置の制御プログラム、コンピュータ読み取り可能な記録媒体、推定方位角評価装置の制御方法、および測位装置
JP6488860B2 (ja) 勾配推定装置及びプログラム
KR100643400B1 (ko) 입력 장치의 자세 측정 방법 및 그 장치
KR101564020B1 (ko) 이동체의 전자세 예측 방법 및 이를 이용한 전자세 예측 장치
JP6848571B2 (ja) 姿勢算出装置、姿勢計測システム、及び姿勢算出方法
CN113063416A (zh) 一种基于自适应参数互补滤波的机器人姿态融合方法
JP6677576B2 (ja) 加速度信号を用いた吊り下げ移動物体の位置・姿勢推定方法及び推定装置
KR20170070523A (ko) 차량의 피치 각도를 산출하기 위한 장치 및 그 방법
CN108225368B (zh) 计步装置和计步方法
JP3783061B1 (ja) 傾斜角と並進加速度の検出方法および検出装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020545751

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939460

Country of ref document: EP

Kind code of ref document: A1