WO2021018263A1 - 一种基于多副族元素的陶瓷发热体及其制备方法和用途 - Google Patents

一种基于多副族元素的陶瓷发热体及其制备方法和用途 Download PDF

Info

Publication number
WO2021018263A1
WO2021018263A1 PCT/CN2020/106031 CN2020106031W WO2021018263A1 WO 2021018263 A1 WO2021018263 A1 WO 2021018263A1 CN 2020106031 W CN2020106031 W CN 2020106031W WO 2021018263 A1 WO2021018263 A1 WO 2021018263A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
heating element
paper
resistance
composition
Prior art date
Application number
PCT/CN2020/106031
Other languages
English (en)
French (fr)
Inventor
刘华臣
陈义坤
黄婷
刘磊
罗诚浩
Original Assignee
湖北中烟工业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北中烟工业有限责任公司 filed Critical 湖北中烟工业有限责任公司
Publication of WO2021018263A1 publication Critical patent/WO2021018263A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5138Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of Mn and Mo, e.g. for the Moly-manganese method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/27Mixtures of metals, alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase

Definitions

  • the present invention belongs to the field of heating devices. More specifically, the present invention generally relates to a ceramic heating element based on multi-subgroup elements and a preparation method and application thereof.
  • the ceramic heating element is a kind of high-efficiency heater with uniform heat distribution and excellent thermal conductivity, which can ensure the uniform temperature of the hot surface, thereby eliminating the hot and cold spots of the equipment.
  • the ceramic heating element also has a long life, good insulation performance, The advantages of strong mechanical properties, corrosion resistance and magnetic field resistance.
  • there are two main types of ceramic heating elements namely PTC ceramic heating elements and MCH ceramic heating elements.
  • the materials used in these two products are completely different, but the finished products are similar to ceramics, so they are collectively referred to as "ceramic heating elements”.
  • PTC ceramic heating element is a thermistor, which is composed of PTC ceramic heating element and aluminum tube. It has the advantages of small thermal resistance and high heat exchange efficiency.
  • MCH ceramic heating element uses alumina ceramics, which is a new type of high-efficiency, environmentally-friendly and energy-saving ceramic heating element. Compared with PTC ceramic heating element, it can save 20-30% of electric energy under the same heating effect.
  • MCH ceramic heating elements are mostly used as heating elements. Specifically, MCH ceramic heating elements are printed with a metal heating layer on a ceramic base layer by screen printing, that is, molybdenum and tungsten and other high-temperature refractory metals As the internal electrode of the heating circuit, a high-efficiency and energy-saving cermet heating element is obtained by co-firing in a reducing atmosphere at 1400°C to 1800°C through a series of special preparation processes. The cast aluminum body is usually used as the insulating layer.
  • the substrate, the prepared high-temperature metal thick film paste wiring is printed on one side of the green body, and then the upper and lower alumina ceramic substrates are laminated and sliced, and the leads are welded after high-temperature sintering in a hydrogen reduction furnace to obtain MCH heating stuff.
  • the internal electrode is included in the middle of the alumina ceramic on both sides and the alumina ceramic absorbs heat, the heating efficiency of the internal electrode is not high, and therefore the efficiency of the entire ceramic heating element is not high, and the addition of the green body causes the ceramic heating element It becomes thicker and is not easy to be inserted in low-temperature smoke.
  • the purpose of the present invention is to overcome the above-mentioned drawbacks in the prior art, and provide a fast heat generation, easy to plug in low-temperature smoke, and have an incredibly consistent and low temperature coefficient of resistance in different batches Ceramic heating element.
  • the inventors of this patent found, after a lot of experiments, very surprisingly that products made from electronic pastes of certain components have an incredibly consistent temperature coefficient of resistance in each batch, and the temperature coefficient of resistance is satisfactory Low, thus completing the present invention.
  • the present invention provides a ceramic heating element, wherein the ceramic heating element includes a ceramic rod base and a resistance heating element provided on the surface of the ceramic rod base, and wherein the resistance heating element includes multiple subgroups Element composition and additives, the multi-subgroup element composition is selected from at least two of manganese, molybdenum, gold, silver, platinum, copper, iron, zinc, nickel, chromium and cobalt, and the additives are selected from ruthenium, tellurium, germanium , At least one of vanadium, yttrium and iridium.
  • the material of the ceramic rod base is at least one of aluminum oxide, silicon nitride, glass, aluminum nitride, and silicon carbide.
  • one end of the ceramic rod base is tapered.
  • the number of resistance heating elements close to the tapered end in the length direction of the ceramic rod base is larger than the other end.
  • the resistance heating element is arranged by decal printing the electronic paste composition on the surface of the ceramic rod substrate, the electronic paste composition comprising a composition of multiple subgroup elements, additives, and porcelain powder And organic vehicles.
  • the proportion of a single element in the multi-subgroup element composition is between 4 and 96% by weight; preferably, the content of the additive is 0.5-96% by weight based on the total weight of the multi-subgroup element composition.
  • the present invention also provides a method for preparing the above ceramic heating element, wherein the method includes decal printing the electronic paste composition on the ceramic rod substrate.
  • the decal printing includes printing the electronic paste composition on a paper-based film to make decal paper.
  • the printing makes the application amount of the electronic paste on one end of the paper-based film larger than the other end.
  • the paper-based film is made of at least one of tissue paper, wood pulp paper, carbon fiber paper, synthetic fiber paper, and natural fiber paper.
  • the decal printing further includes applying the decal paper to the ceramic rod substrate subjected to acid-base treatment.
  • the decal printing further includes applying the decal paper to the ceramic rod substrate at 1200-1800°C. Fired at a temperature of 1-4h.
  • the method further includes dipping the glaze after the decal printing, and then firing at a temperature of 1000-1200°C.
  • the present invention also provides the use of the above-mentioned ceramic heating element and the ceramic heating element prepared by the above-mentioned method in a new type of tobacco product heater, especially the use of a low-temperature smoke heater.
  • the ceramic heating element of the present invention and the ceramic heating element prepared by the method of the present invention have the advantages of fast heat generation and easy insertion in low-temperature smoke.
  • the temperature coefficient of resistance of the ceramic heating element decal printed using the electronic paste composition of the present invention between different batches is surprisingly consistent and low, making its resistance control unusually easy and producing defective products The rate is extremely low.
  • the electronic paste composition of the present invention is applied to the ceramic heating element, it can obtain the excellent performance of unexpectedly consistent and low temperature coefficient of resistance, which can ensure that the temperature coefficient of resistance of each batch of finished products is consistent. The resistance changes little by temperature, so the circuit is simple and the overall heating reliability is high.
  • electronic paste is a basic material for the manufacture of cermet heating elements. It is a paste formed by mixing solid powder and liquid solvent uniformly through three-roll rolling. Different, electronic pastes can be divided into dielectric pastes, resistance pastes and conductor pastes; according to different types of substrates, electronic pastes can be divided into ceramic substrates, polymer substrates, glass substrates, and metal insulation substrates. Electronic paste, etc.; according to the different sintering temperature, electronic paste can be divided into high temperature, medium temperature and low temperature drying electronic paste; according to different uses, electronic paste can be divided into general electronic paste and special electronic paste According to the price of the conductive phase, electronic pastes can also be divided into precious metal electronic pastes and base metal electronic pastes.
  • the term "temperature coefficient of resistance” refers to the relative change in the resistance value (that is, the rate of change of the resistance value relative to the resistance) when the temperature of the resistance changes by 1 degree.
  • the temperature coefficient of resistance is a parameter closely related to the microstructure of the metal, and it has a theoretical maximum value without any defects. In other words, the size of the temperature coefficient of resistance itself characterizes the performance of the metal process to a certain extent. In the research and development process of new technology or online monitoring, we can use the temperature coefficient of resistance for early monitoring and rapid evaluation of the reliability of metals.
  • applique printing refers to the use of ceramic pigments to print on the surface of a specific paper or plastic film according to a designed pattern through a printing process, and then transfer the patterned paper to the surface of the substrate, and then perform high-temperature sintering. The printing is permanently attached to the surface of the substrate.
  • the present invention provides a ceramic heating element, wherein the ceramic heating element may include a ceramic rod base and a resistance heating element disposed on the surface of the ceramic rod base, and wherein the resistance heating element may include a composition of multiple subgroup elements And additives, the multi-subgroup element composition can be selected from at least two of manganese, molybdenum, gold, silver, platinum, copper, iron, zinc, nickel, chromium and cobalt, and the additives can be selected from ruthenium, tellurium, germanium, At least one of vanadium, yttrium, and iridium.
  • the ceramic heating element provided by the present invention is a rod-shaped ceramic heating element commonly used in new tobacco products, especially low-temperature smoke, and therefore usually includes a ceramic rod base to provide its basic shape, and
  • the material of the ceramic rod base is not particularly limited, and it may be a common ceramic base material in the field.
  • the material of the ceramic rod base is at least one of aluminum oxide, silicon nitride, glass, aluminum nitride, and silicon carbide.
  • one end of the ceramic rod base in order to better insert the ceramic heating element in the low-temperature smoke, one end of the ceramic rod base can be made into a sharp shape, and according to the usual way of inserting the ceramic heating element in the low-temperature smoke, the sharp end It will be used as the insertion end, which is closer to the cigarette structure, and the other end is closer to the power source.
  • the other end In order to protect the power source as much as possible while the ceramic heating element burns the cigarette effectively, the other end can have fewer resistance heating elements.
  • one end of the ceramic rod base may be tapered.
  • the amount of resistance heating elements close to the tapered end in the length direction of the ceramic rod base may be greater than the resistance heating element at the other end. the amount.
  • the resistance heating element of the present invention can be arranged on the surface of the ceramic rod substrate by various coating or printing methods well known in the art, without particular limitation.
  • the resistance heating element is arranged by decal printing the electronic paste composition on the surface of the ceramic rod substrate, the electronic paste composition comprising a composition of multiple subgroup elements, additives, porcelain powder and organic The carrier, so that the resistance heating element disposed on the surface of the ceramic rod base after the decal printing process contains the components of the multi-subgroup element composition and additives.
  • Subgroup elements such as manganese, molybdenum, gold, silver, platinum, copper, iron, zinc, nickel, chromium and cobalt all have good electrical conductivity and heating characteristics.
  • Molybdenum-manganese paste is a common electronic paste in this field. Molybdenum is the main heating element, but the temperature coefficient of resistance of molybdenum is very high, resulting in a high temperature coefficient of resistance of the entire electronic paste.
  • Silver paste in precious metal paste is relatively inexpensive. Due to its excellent electrical conductivity, solderability and connectivity with wires, it has been widely used in the electronics industry. Copper, iron, zinc, nickel, chromium and cobalt have high electrical conductivity, good ductility, and good thermal and electrical conductivity. According to the present invention, there are no particular restrictions on the type of the multi-subgroup element composition and the proportion of each element in the electronic paste composition of the present invention, and may be a common composition form in the field.
  • the proportion of a single element in the multi-subgroup element composition may be between 4 and 96% by weight.
  • the multi-subgroup element composition may contain molybdenum and manganese; preferably, the weight ratio of molybdenum and manganese may be 6:4-9.5:0.5; more preferably, the weight ratio of molybdenum and manganese may be 7:3-9.3:0.7.
  • the multi-subgroup element composition may include gold, silver and platinum; preferably, the weight ratio of gold, silver and platinum may be 4-60:8-85:4-65; more preferably , The weight ratio of gold, silver and platinum can be 5-55:8-80:5-60.
  • the multi-subgroup element composition may include copper, iron and zinc; preferably, the weight ratio of copper, iron and zinc may be 5-90:5-90:5-90; more preferably , The weight ratio of copper, iron and zinc can be 5-80:7-80:5-80.
  • the multi-subgroup element composition may include nickel, chromium and cobalt; preferably, the weight ratio of nickel, chromium and cobalt may be 5-90:5-90:5-90; more preferably , The weight ratio of nickel, chromium and cobalt can be 5-80:7-80:5-80.
  • the inventor’s research has found that adding the additives of the present invention (for example at least one of ruthenium, tellurium, germanium, vanadium, yttrium and iridium) to the slurry of the multi-subgroup element composition can advantageously greatly reduce electrons.
  • the temperature coefficient of resistance of the paste based on the total weight of the multi-subgroup element composition, the content of the additive may be 0.5-10% by weight; more preferably, the content of the additive may be 1-6% by weight. In a preferred embodiment, based on the total weight of the multi-subgroup element composition, the content of the porcelain powder is 0.5-8% by weight, preferably, the content of the porcelain powder is 0.8-5% by weight.
  • the type and content of the organic vehicle in the electronic paste composition of the present invention are not particularly limited, and may be the type and content of the organic vehicle commonly used in the art.
  • the organic carrier may be a mixture of terpineol, ethyl cellulose, glycerol and absolute ethanol, such as 90-95% by weight (for example, 92% by weight) terpineol, 3-5 wt% (eg 5 wt%) ethyl cellulose, 1-5 wt% (eg 2 wt%) glycerol and 1-3 wt% (eg 1 wt%) absolute ethanol, preferably based on According to the total weight of molybdenum and manganese, the content of the organic vehicle may be 5-30% by weight, preferably 10-20% by weight.
  • the present invention also provides a method for preparing the above ceramic heating element, wherein the method includes decal printing the electronic paste composition on the ceramic rod substrate.
  • the preferred embodiments of the ceramic rod base and the electronic paste composition in the method for preparing the ceramic heating element of the present invention, the material and shape of the ceramic rod base, and the composition of the electronic paste composition can be the same as previously described. Therefore, I will not repeat them here.
  • the preparation method of the present invention adopts decal printing to attach the electronic paste to the ceramic rod substrate, which not only can effectively reduce the ceramic
  • the thickness of the heating element, and the printed circuit (ie electronic paste) can be directly exposed on the surface of the ceramic heating element, so the heating efficiency is greatly improved.
  • the electronic paste at one end can also be made Less, so that the operating temperature of the end is lower.
  • the pattern design is performed on a plane, it is easy to design different printed circuit patterns as required, so that the finished ceramic heating element also has a desired appearance.
  • the decal printing may include printing the electronic paste composition (for example, missing printing, coating, etc.) on a paper-based film to make decal paper.
  • printing such that the electronic paste composition is The amount of application on one end of the paper-based film may be greater than that on the other end.
  • the present invention has no particular limitation on the composition of the paper-based film, and it can be made from raw materials commonly used in the art.
  • the paper-based film is made of at least one of tissue paper, wood pulp paper, carbon fiber paper, synthetic fiber paper, and natural fiber paper.
  • the decal paper after the decal paper of the electronic paste of the present invention is prepared, the decal paper can be transferred to the ceramic rod substrate, and can undergo subsequent processing to completely adhere the electronic paste to the surface of the ceramic rod substrate .
  • the decal printing further includes applying the decal paper to the ceramic rod substrate that has been treated with acid and alkali.
  • the decal printing also includes applying the decal paper to the ceramic rod substrate (preferably in H 2 and Under the mixed gas of N 2 ), it is fired at a temperature of 1200-1800°C for 1-4 hours.
  • the decal printing before the firing step, the decal printing further includes drying the ceramic rod substrate with the decal paper at 100-150°C, and then debinding at 300-600°C.
  • a glaze layer may also be provided on the surface of the ceramic heating element in order to provide insulation, increase strength, and protect the heater. Therefore, in a preferred embodiment, the method further includes dipping the glaze after the decal printing, and then firing at a temperature of 1000-1200°C. After firing, the ceramic heating element can also be provided with lead wires. Therefore, the method of the present invention can also include surface treatment of the ceramic heating element at the solder joints, and using wire bonding tools to fix the lead wires with the solder joints and the solder into the kiln The furnace performs wire bonding at about 700°C to make a finished product.
  • the preparation method of the ceramic heating element of the present invention includes: (1) According to product requirements, design the diameter and length of the ceramic rod matrix, the electronic paste that meets the requirements, the printing weight and the production requirements.
  • the prepared electronic paste is printed on the paper-based surface coated with water-soluble glue through the circuit part of the screen printing plate to make Decal paper
  • the paper base is made of at least one of tissue paper, wood pulp paper, carbon fiber paper, synthetic fiber paper, natural fiber paper, etc.
  • the decal paper printed with electronic paste is pasted on the Acid-base treatment on the ceramic rod substrate;
  • After debinding the whole is in H 2 and Firing under N 2 mixed gas and at a temperature of 1200-1800°C for 1-4 hours;
  • (7) After firing the ceramic heating element after surface treatment at the solder joints, the lead wire, the solder joints and the solder are fixed into the
  • the present invention also provides the use of the above-mentioned ceramic heating element and the ceramic heating element prepared by the above-mentioned method in a new type of tobacco product heater, especially the use of a low-temperature smoke heater.
  • a mixture of 92% by weight terpineol, 5% by weight ethyl cellulose, 2% by weight glycerol and 1% by weight of absolute ethanol is used as the organic carrier, which is obtained by combining terpineol and ethyl cellulose , Glycerol and anhydrous ethanol are weighed in proportion and then mixed uniformly by a magnetic stirrer at a water bath temperature of 90°C to prepare.
  • electronic paste compositions C1-C13 were prepared in the same manner as described above, 5 batches of each electronic paste were prepared, and then all batches of electronic paste compositions were passed through It is printed on a ceramic substrate by conventional techniques in the art such as screen printing to form a heating element. Measure the resistance value of the heating element prepared from each batch of electronic paste composition C1-C13 at 25°C, 83°C, 150°C and 230°C, and then pass the resistance value of each batch through the least square method and linearity Fit to get the temperature coefficient of resistance.
  • the electronic paste composition (C2-C13) of the present invention can prepare excellent heating elements, so that the average deviation of the temperature coefficient of resistance between multiple batches is significantly lower than that of molybdenum and manganese alone.
  • the average deviation of the temperature coefficient of resistance of the heating element prepared from the electronic paste composition (C1) shows excellent performance of consistent and low temperature coefficient of resistance.
  • electronic paste compositions D1-D13 were prepared in the same manner as described above, 5 batches of each electronic paste were prepared, and then all batches of electronic paste compositions were passed through It is printed on a ceramic substrate by conventional techniques such as screen printing and the like to form a heating element. Measure the resistance value of the heating element prepared from each batch of electronic paste composition D1-D13 at 25°C, 83°C, 150°C and 230°C, and then pass the resistance value of each batch through the least square method and linearity Fit to get the temperature coefficient of resistance.
  • the electronic paste composition (D2-D13) of the present invention can prepare excellent heating elements, so that the average deviation of the temperature coefficient of resistance between multiple batches is significantly lower than that of gold and silver alone.
  • the average deviation of the temperature coefficient of resistance of the heating element prepared from the platinum electronic paste composition (D1) shows the excellent performance of uniform and low temperature coefficient of resistance.
  • electronic paste compositions E1-E13 were prepared in the same manner as described above, 5 batches of each electronic paste were prepared, and then all batches of electronic paste compositions were passed through It is printed on a ceramic substrate by conventional techniques in the art such as screen printing to form a heating element. Measure the resistance value of the heating element prepared from each batch of electronic paste composition E1-E13 at 25°C, 83°C, 150°C and 230°C, and then pass the resistance value of each batch through the least square method and linearity Fit to get the temperature coefficient of resistance.
  • the electronic paste composition (E2-E13) of the present invention can prepare excellent heating elements, so that the average deviation of the temperature coefficient of resistance between multiple batches is significantly lower than that of copper and iron alone.
  • the average deviation of the temperature coefficient of resistance of the heating element prepared from the zinc electronic paste composition (E1) shows the excellent performance of uniform and low temperature coefficient of resistance.
  • the electronic paste compositions F1-F13 were prepared in the same manner as above, 5 batches of each electronic paste were prepared, and then all batches of electronic paste compositions were passed through It is printed on a ceramic substrate by conventional techniques in the art such as screen printing to form a heating element. Measure the resistance value of the heating element prepared from each batch of electronic paste composition F1-F13 at 25°C, 83°C, 150°C and 230°C, and then pass the resistance value of each batch through the least square method and linearity Fit to get the temperature coefficient of resistance.
  • Nickel chromium cobalt Porcelain powder ruthenium germanium vanadium tellurium yttrium iridium F1 NiCrCo 55 25 20 5 - - - - - - F2 Nickel chromium cobalt, ruthenium 55 25 20 5 0.5 - - - - - F3 Nickel chromium cobalt, ruthenium 55 25 20 5 3.5 - - - - - - F4 Nickel chromium cobalt, germanium 55 25 20 5 - 3 - - - - - F5 Nickel chromium cobalt, germanium 55 25 20 5 - 10 - - - - F6 Nickel chromium cobalt, vanadium 55 25 20 5 - - 4.5 - - - F7 Nickel chromium cobalt, vanadium 55 25 20 5 - - 6 - - - F8 Nickel chromium cobalt, tellurium 55 25 20
  • the electronic paste composition (F2-F13) of the present invention can prepare excellent heating elements, so that the average deviation of the temperature coefficient of resistance between multiple batches is significantly lower than that of nickel and chromium alone.
  • the average deviation of the temperature coefficient of resistance of the heating element prepared from the cobalt electronic paste composition (F1) shows the excellent performance of consistent and low temperature coefficient of resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

基于多副族元素的陶瓷发热体及其制备方法,该陶瓷发热体包括陶瓷棒基体和设置在陶瓷棒基体的表面上的电阻发热元件;该方法包括将电子浆料组合物贴花印刷在陶瓷棒基体的表面上。该陶瓷发热体用于新型烟草制品发热器中。陶瓷发热体具有发热快和在低温烟中易于抽插的优点,还具有一致且低的电阻温度系数,这可以确保在使用过程中电阻受温度变化小,因而使得电路简单、整体发热可靠性能高。

Description

一种基于多副族元素的陶瓷发热体及其制备方法和用途 技术领域
本发明属于发热装置领域,更具体地,本发明通常涉及一种基于多副族元素的陶瓷发热体及其制备方法和用途。
背景技术
陶瓷发热体是一种高效热分部均匀且热导性极佳的加热器,可以确保热面温度均匀,从而消除设备的热点及冷点,此外陶瓷发热体还具有长寿命、保温性能好、机械性能强、耐腐蚀和抗磁场等优点。目前,陶瓷发热体主要分两种,分别是PTC陶瓷发热体和MCH陶瓷发热体。这两种产品所使用的材质是完全不同的,只是成品类似于陶瓷,所以统称为“陶瓷发热体”。PTC陶瓷发热体是热敏电阻,采用PTC陶瓷发热元件与铝管组成,有热阻小、换热效率高的优点,是一种自动恒温、省电的电加热器。MCH陶瓷发热体使用氧化铝陶瓷是一种新型高效环保节能陶瓷发热元件,相比于PTC陶瓷发热体,在具有相同加热效果情况下节约20~30%电能。
在目前的低温烟领域中大多采用MCH陶瓷发热体作为发热元件,具体地,MCH陶瓷发热体是用丝网印刷法将金属发热层印刷于陶瓷基层上,即以钼钨等耐高温难熔金属作为发热电路的内电极,通过一系列特殊的制备工艺在1400℃至1800℃的还原气氛下共烧得到的一种高效节能的金属陶瓷发热体,其中通常采用氧化铝流延坯体作为绝缘层和基体,将制备好的高温金属厚膜浆料布线印刷在坯体的一面上,然后将上下氧化铝陶瓷基层叠压和切片,在氢气还原炉中经高温烧结后焊接引线,从而制得MCH发热体。但是由于内电极包括在两侧的氧化铝陶瓷中间且氧化铝陶瓷吸热,导致内电极的发热效率不高,并因此整个陶瓷发热体的效率不高,而且由于外加坯体,导致陶瓷发热体变粗,在低温烟中不易抽插。虽然现在技术中存在各式各样的用于制备发热元件的电子浆料产品,然而,现有技术中的电子浆料所制得的发热元件存在批次不同而导致电 阻温度系数偏差极大的缺陷,从而导致电阻控制难度极高,生产产品次品率极高,产品电阻温度系数误差很大,以及电路程序无法精确控温等不良结果。此外,对于现有的电子浆料产品而言,很难在保证电阻温度系数误差满意的同时达到低电阻温度系数。
发明内容
本发明的目的在于克服上述提及的现有技术中的缺陷,提供一种发热快、在低温烟中易于抽插、且在不同批次中均具有难以置信地一致且低的电阻温度系数的陶瓷发热体。本专利的发明人经过大量试验非常惊奇地发现,由某些组分的电子浆料制得的产品在各批次中具有难以置信地一致的电阻温度系数,并且该电阻温度系数令人满意地低,从而完成本发明。
为了实现上述目的,一方面,本发明提供了一种陶瓷发热体,其中该陶瓷发热体包括陶瓷棒基体和设置在陶瓷棒基体的表面上的电阻发热元件,并且其中电阻发热元件包含多副族元素组合物和添加剂,多副族元素组合物选自锰、钼、金、银、铂、铜、铁、锌、镍、铬和钴中的至少两种,并且添加剂选自钌、碲、锗、钒、钇和铱中的至少一种。
在本发明的一个优选实施方式中,陶瓷棒基体的材料为氧化铝、氮化硅、玻璃、氮化铝和碳化硅中的至少一种。
在本发明的一个优选实施方式中,陶瓷棒基体的一端为锥形,优选地,陶瓷棒基体的长度方向上的靠近锥形一端的电阻发热元件的量大于另一端。
在本发明的一个优选实施方式中,电阻发热元件通过将电子浆料组合物贴花印刷在陶瓷棒基体的表面上而设置,该电子浆料组合物包含多副族元素组合物、添加剂、瓷粉和有机载体。
在本发明的一个优选实施方式中,多副族元素组合物中单一元素的比例在4-96重量%之间;优选地,基于多副族元素组合物的总重量,添加剂的含量为0.5-10重量%;优选地,基于多副族元素组合物的总重量,瓷粉的含量为0.5-8重量%;优选地,有机载体为松油醇、乙基纤维素、丙三醇和无水乙醇的混合物,更优选地,基于多副族元素组合物的总重量,有机载体的含量为5-30重量%。
另一方面,本发明还提供了一种制备上述陶瓷发热体的方法,其中该方法包括将电子浆料组合物贴花印刷在陶瓷棒基体上。
在本发明的一个优选实施方式中,贴花印刷包括将电子浆料组合物印刷在纸基薄膜上以制成贴花纸,优选地,印刷使得电子浆料在纸基薄膜一端的施加量大于另一端的施加量,更优选地,纸基薄膜由绵纸、木浆纸、炭纤维纸、合成纤维纸和天然纤维纸等中的至少一种制成。
在本发明的一个优选实施方式中,贴花印刷还包括将贴花纸贴在经酸碱处理的陶瓷棒基体上,优选地,贴花印刷还包括将贴有贴花纸的陶瓷棒基体在1200-1800℃的温度下烧制1-4h。
在本发明的一个优选实施方式中,该方法还包括在贴花印刷之后进行浸釉,然后在1000-1200℃的温度下烧制。
再一方面,本发明还提供了上述陶瓷发热体和通过上述方法制备的陶瓷发热体在新型烟草制品用发热器中的用途,特别在低温烟用发热器中的用途。
综上所述,本发明的陶瓷发热体和通过本发明的方法制备的陶瓷发热体具有发热快和在低温烟中易于抽插的优点。此外,使用本发明的电子浆料组合物贴花印刷的陶瓷发热体在不同批次之间的电阻温度系数令人意外地一致且低,使得其电阻控制变得异常地容易,且生产产品次品率极低。在将其本发明的电子浆料组合物应用于陶瓷发热体时,能够获得出人意料地一致且低的电阻温度系数的优异性能,这可以确保各批次成品的电阻温度系数一致,在使用过程中电阻受温度变化小,因而使得电路简单、整体发热可靠性能高。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文 中具体公开。
如本文所述,术语“电子浆料”是制造金属陶瓷发热体的基础材料,是一种由将固体粉末和液体溶剂经过三辊轧制混合均匀而形成的膏状物,其中,根据用途的不同,电子浆料可以分为介质浆料、电阻浆料和导体浆料;根据基片种类的不同,电子浆料又可以分为陶瓷基片、聚合物基片、玻璃基片、金属绝缘基片电子浆料等;根据烧结温度的不同,电子浆料又可以分为高温、中温和低温烘干电子浆料;根据用途的不同,电子浆料又可以分为通用电子浆料和专用电子浆料;根据导电相的价格不同,电子浆料也可以分为贵金属电子浆料和贱金属电子浆料。
如本文所用,术语“电阻温度系数”(temperature coefficient of resistance,简称TCR)表示电阻当温度改变1度时,电阻值的相对变化(即电阻值变化相对于该电阻的变化率),计算公式为TCR=(R T2-R T1)/[(T 2-T 1)×R T1],单位为ppm/℃,其中T 1表示第一温度,T 2表示第二温度,R T1表示第一温度下的电阻值,R T2表示第二温度下的电阻值。电阻温度系数是一个与金属的微观结构密切相关的一个参数,在没有任何缺陷的情况下,它具有理论上的最大值。也就是说,电阻温度系数本身的大小在一定程度上表征了金属工艺的性能。在新技术工艺的研发过程或在线监测中,我们可以利用电阻温度系数对金属的可靠性进行早期监测与快速评估。
如本文所用,术语“贴花印刷”是指采用陶瓷颜料通过印刷工艺按照设计好的纹样印刷到特定纸张或塑料膜表面,然后将带有图案的纸张移贴到基体表面,然后再进行高温烧结,印花就永久性的粘附在基体表面。
一方面,本发明提供了一种陶瓷发热体,其中该陶瓷发热体可以包括陶瓷棒基体和设置在陶瓷棒基体的表面上的电阻发热元件,并且其中电阻发热元件可以包含多副族元素组合物和添加剂,多副族元素组合物可以选自锰、钼、金、银、铂、铜、铁、锌、镍、铬和钴中的至少两种,并且添加剂可以选自钌、碲、锗、钒、钇和铱中的至少一种。
根据本发明待解决的现有技术中的缺陷,本发明提供的陶瓷发热体是通常用于新型烟草制品特别是低温烟的棒状陶瓷发热体,因此通常包括陶瓷棒基体以提供其基本形状,而对陶瓷棒基体的材料没有特别限制,可以为本领域中常 见的陶瓷基体材料。在一个优选的实施方式中,陶瓷棒基体的材料为氧化铝、氮化硅、玻璃、氮化铝和碳化硅中的至少一种。
根据本发明,为了使陶瓷发热体在低温烟中更好地进行抽插,可以将陶瓷棒基体的一端制成尖锐形状,并且根据陶瓷发热体在低温烟中的通常插入方式,尖锐形状的一端将作为插入端,更靠近烟支结构,而另一端更靠近电源,为了使陶瓷发热体在有效燃烧烟支的情况下尽可能地保护电源,可以将使该另一端的电阻发热元件更少,以使该另一端的温度更低。因此,在一个优选的实施方式中,陶瓷棒基体的一端可以为锥形,优选地,陶瓷棒基体的长度方向上的靠近锥形一端的电阻发热元件的量可以大于另一端的电阻发热元件的量。
对于本发明中的电阻发热元件,其可以通过本领域熟知的各种涂布或印刷方式设置在陶瓷棒基体的表面上,而没有特别的限制。在一个优选的实施方式中,电阻发热元件通过将电子浆料组合物贴花印刷在陶瓷棒基体的表面上而设置,该电子浆料组合物包含多副族元素组合物、添加剂、瓷粉和有机载体,从而使得在贴花印刷过程后设置在陶瓷棒基体的表面上的电阻发热元件包含多副族元素组合物和添加剂的组分。
副族元素锰、钼、金、银、铂、铜、铁、锌、镍、铬和钴等都具有良好的导电性和发热特性。钼锰浆料是本领域中常见的一种电子浆料,钼为主要发热元素,但钼的电阻温度系数很高,导致整个电子浆料的电阻温度系数很高。贵金属浆料中银浆料是较廉价的,由于它优良的导电性、可焊性和与导线的连接性,电子工业中一直得到广泛的应用。铜、铁、锌、镍、铬和钴等的导电率高,具有很好的延展性,且导热和导电性能较好。根据本发明,对本发明的电子浆料组合物中的多副族元素组合物的种类以及其中各元素的占比没有特别限制,可以为本领域中常见的组成形式。
在一个优选实施方式中,多副族元素组合物中单一元素的占比可以在4-96重量%之间。在一个优选实施方式中,多副族元素组合物可以包含钼和锰;优选地,钼和锰的重量比可以为6:4-9.5:0.5;更优选地,钼和锰的重量比可以为7:3-9.3:0.7。在另一个优选实施方式中,多副族元素组合物可以包含金、银和铂;优选地,金、银和铂的重量比可以为4-60:8-85:4-65;更优选地,金、银和铂的的重量比可以为5-55:8-80:5-60。在另一个优选实施方式中,多副族元素组合物 可以包含铜、铁和锌;优选地,铜、铁和锌的重量比可以为5-90:5-90:5-90;更优选地,铜、铁和锌的重量比可以为5-80:7-80:5-80。在另一个优选实施方式中,多副族元素组合物可以包含镍、铬和钴;优选地,镍、铬和钴的重量比可以为5-90:5-90:5-90;更优选地,镍、铬和钴的重量比可以为5-80:7-80:5-80。
此外,经过本发明人的研究发现,在多副族元素组合物浆料中加入本发明的添加剂(例如钌、碲、锗、钒、钇和铱中的至少一种)可以有利地大幅降低电子浆料的电阻温度系数。在一个优选实施方式中,基于多副族元素组合物的总重量,添加剂的含量可以为0.5-10重量%;更优选地,添加剂的含量可以为1-6重量%。在一个优选实施方式中,基于多副族元素组合物的总重量,瓷粉的含量为0.5-8重量%,优选地,瓷粉的含量为0.8-5重量%。
此外,根据本发明,对本发明的电子浆料组合物中有机载体的种类和含量没有特别限制,可以为本领域中常见的有机载体种类和含量。在本发明的一个优选实施方式中,所述有机载体可以为松油醇、乙基纤维素、丙三醇和无水乙醇的混合物,例如90-95重量%(例如92重量%)松油醇、3-5重量%(例如5重量%)乙基纤维素、1-5重量%(例如2重量%)丙三醇和1-3重量%(例如1重量%)无水乙醇,优选地,基于所述钼和锰的总重量,所述有机载体的含量可以为5-30重量%,优选为10-20重量%。
另一方面,本发明还提供了一种制备上述陶瓷发热体的方法,其中该方法包括将电子浆料组合物贴花印刷在陶瓷棒基体上。
对于本发明的陶瓷发热体的制备方法中的陶瓷棒基体和电子浆料组合物,陶瓷棒基体的材料和形状以及电子浆料组合物的组成等的优选实施方式可以与先前所述的一样,因此在此不再赘述。
根据本发明,为了使陶瓷发热体具有发热快、在低温烟中易于抽插的优点,本发明的制备方法采用贴花印刷的方式将电子浆料附着在陶瓷棒基体上,这样不仅可以有效降低陶瓷发热体的厚度,而且可以使印刷电路(即电子浆料)直接外露在陶瓷发热体表面,因此大大提高了发热效率,出于与之前相同的保护电源的考虑,同样可以使得一端的电子浆料更少,以使该端的工作温度更低。此外,在采用贴花印刷的过程中,由于是在平面上进行图案设计,因此容易地可以根据需要设计出不同的印刷电路图案,使得制成的陶瓷发热体还具备期望 的外观。在一个优选的实施方式中,贴花印刷可以包括将电子浆料组合物印刷(例如漏印、涂布等)在纸基薄膜上以制成贴花纸,优选地,印刷使得电子浆料组合物在纸基薄膜一端的施用量可以大于另一端的施用量。此外,本发明对纸基薄膜的组成没有特别限制,可以由本领域中常见的原料制成。在一个优选的实施方式中,纸基薄膜由绵纸、木浆纸、炭纤维纸、合成纤维纸和天然纤维纸等中的至少一种制成。
根据本发明,在制得本发明的电子浆料的贴花纸后,可以将该贴花纸再转移到陶瓷棒基体上,并且可以经过后续的加工以将电子浆料完全粘附在陶瓷棒基体表面。在一个优选的实施方式中,贴花印刷还包括将贴花纸贴在经酸碱处理的陶瓷棒基体上,优选地,贴花印刷还包括将贴有贴花纸的陶瓷棒基体(优选地在H 2和N 2的混合气体下)在1200-1800℃的温度下烧制1-4h。在一个更优选的实施方式中,贴花印刷在烧制步骤之前还包括将贴有贴花纸的陶瓷棒基体在100-150℃下干燥,再在300-600℃的条件下进行排胶。
根据本发明,为了起到绝缘、提高强度、保护加热器的作用,可以还在陶瓷发热体表面设置釉层。因此,在一个优选的实施方式中,该方法还包括在贴花印刷之后进行浸釉,然后在1000-1200℃的温度下烧制。在烧制好后,还可以对陶瓷发热体设置引线,因此本发明的方法还可以包括将陶瓷发热体在焊点处进行表面处理,利用焊线制具将引线与焊点、焊料固定进入窑炉在700℃左右的条件下进行引线焊接,从而制成成品。
本发明的上述各个优选实施方式可以单独使用或者与其它优选实施方式组合使用。在一个特别优选的实施方式中,本发明的陶瓷发热体的制备方法包括:(1)根据产品要求,设计陶瓷棒基体的直径、长度,符合要求的电子浆料、印刷印重以及生产所需的模具、制具;(2)在无尘室中,利用精密丝印机,将制备好的电子浆料通过丝网印版的电路部分漏印到涂覆有水溶性胶的纸基表面,制成贴花纸,所述纸基由绵纸、木浆纸、炭纤维纸、合成纤维纸、天然纤维纸等中的至少一种制成;(3)将印刷有电子浆料的贴花纸贴在经酸碱处理的陶瓷棒基体上;(4)将贴有贴花纸的陶瓷棒在100-150℃干燥,再在300-600℃条件下进行排胶;(5)排胶后整体在H 2和N 2混合气体下以及1200-1800℃的温度下烧制1-4小时;(6)将烧制后的陶瓷加热棒通过浸釉的方式挂上一层透明薄釉, 再推入还原气氛炉中,在1000-1200℃的温度下进行高温烧制;(7)烧制好后的陶瓷发热体在焊点处进行表面处理后,利用焊线制具将引线与焊点、焊料固定进入窑炉在700℃左右的条件下进行引线焊接,从而制成成品。
再一方面,本发明还提供了上述陶瓷发热体和通过上述方法制备的陶瓷发热体在新型烟草制品用发热器中的用途,特别是在低温烟用发热器中的用途。
以下将通过实施例对本发明进行详细描述。
以下实施例中,使用92重量%松油醇、5重量%乙基纤维素、2重量%丙三醇和1重量%无水乙醇的混合物作为有机载体,其通过将松油醇、乙基纤维素、丙三醇和无水乙醇按比例称量后通过磁力搅拌器在水浴温度为90℃下混合均匀来制备。
实施例1
称取90重量份钼粉、10重量份锰粉和5重量份瓷粉并混合均匀,将混合粉末与10重量份有机载体混合后放入行星球磨机中进行球磨,其中,使用无水乙醇作为球磨介质,混合物与球磨介质的重量比为1.5:1,球磨速度为500r/min,时间为1.5h,从而制得电子浆料组合物。
按照表1中所示的含量,按照上述相同的方式制备电子浆料组合物C1-C13,每种电子浆料各制备5个批次,然后,将全部批次的电子浆料组合物各自通过诸如丝网印刷等本领域中常规的技术将其印刷在陶瓷基体上,以形成发热元件。测量由电子浆料组合物C1-C13的各批次制得的发热元件在25℃、83℃、150℃和230℃下的电阻值,然后将各批次的电阻值通过最小二乘法和线性拟合,以得到电阻温度系数。对于电子浆料组合物C1-C13中的每一种,根据5个批次电阻温度系数TCR1、TCR2、TCR3、TCR4和TCR5,计算5个批次平均电阻温度系数(平均TCR),以及每个批次的电阻温度系数偏差率TCR(TCRn-平均TCR)/平均TCR(n为1、2、3、4或5),并进一步计算5个批次的电阻温度系数的平均偏差率(5个批次的电阻温度系数偏差率的平均值),结果示于表2中。
表1
编号 组分 瓷粉
C1 钼锰 90 10 5 - - - - - -
C2 钼锰钌 90 10 5 0.5 - - - - -
C3 钼锰钌 90 10 5 3 - - - - -
C4 钼锰锗 90 10 5 - 1.5 - - - -
C5 钼锰锗 90 10 5 - 5 - - - -
C6 钼锰钒 90 10 5 - - 2 - - -
C7 钼锰钒 90 10 5 - - 6 - - -
C8 钼锰碲 90 10 5 - - - 4 - -
C9 钼锰碲 90 10 5 - - - 10 - -
C10 钼锰钇 90 10 5 - - - - 2.5 -
C11 钼锰钇 90 10 5 - - - - 4.5 -
C12 钼锰铱 90 10 5 - - - - - 3
C13 钼锰铱 90 10 5 - - - - - 6
表2
Figure PCTCN2020106031-appb-000001
Figure PCTCN2020106031-appb-000002
由上述实施例可知,通过本发明的电子浆料组合物(C2-C13)可以制备优异性的发热元件,使得多个批次之间的电阻温度系数的平均偏差显著地低于单独的钼锰电子浆料组合物(C1)制备的发热元件的电阻温度系数的平均偏差,显示出一致且低的电阻温度系数的优异性能。
实施例2
称取10重量份金粉、80重量份银粉、10重量份铂粉和6重量份瓷粉并混合均匀,将混合粉末与10重量份有机载体混合后放入行星球磨机中进行球磨,其中,使用无水乙醇作为球磨介质,混合物与球磨介质的重量比为1.5:1,球磨速度为500r/min,时间为1.5h,从而制得电子浆料组合物。
按照表3中所示的含量,按照上述相同的方式制备电子浆料组合物D1-D13,每种电子浆料各制备5个批次,然后,将全部批次的电子浆料组合物各自通过诸如丝网印刷等本领域中常规的技术将其印刷在陶瓷基体上,形成发热元件。测量由电子浆料组合物D1-D13的各批次制得的发热元件在25℃、83℃、150℃和230℃下的电阻值,然后将各批次的电阻值通过最小二乘法和线性拟合,以得到电阻温度系数。对于电子浆料组合物D1-D13中的每一种,根据5个批次电阻温度系数TCR1、TCR2、TCR3、TCR4和TCR5,计算5个批次平均电阻温度系数(平均TCR),以及每个批次的电阻温度系数偏差率TCR(TCRn-平均TCR)/平均TCR(n为1、2、3、4或5),并进一步计算5个批次的电阻温度系数的平均偏差率(5个批次的电阻温度系数偏差率的平均值),结果示于表4中。
表3
编号 组分 瓷粉
D1 金银铂 10 80 10 6 - - - - - -
D2 金银铂、钌 10 80 10 6 0.5 - - - - -
D3 金银铂、钌 10 80 10 6 3.5 - - - - -
D4 金银铂、锗 10 80 10 6 - 3 - - - -
D5 金银铂、锗 10 80 10 6 - 10 - - - -
D6 金银铂、钒 10 80 10 6 - - 4.5 - - -
D7 金银铂、钒 10 80 10 6 - - 6 - - -
D8 金银铂、碲 10 80 10 6 - - - 2 - -
D9 金银铂、碲 10 80 10 6 - - - 5 - -
D10 金银铂、钇 10 80 10 6 - - - - 2.5 -
D11 金银铂、钇 10 80 10 6 - - - - 4.5 -
D12 金银铂、铱 10 80 10 6 - - - - - 3
D13 金银铂、铱 10 80 10 6 - - - - - 6
表4
Figure PCTCN2020106031-appb-000003
由上述实施例可知,通过本发明的电子浆料组合物(D2-D13)可以制备优异性的发热元件,使得多个批次之间的电阻温度系数的平均偏差显著地低于单独的金银铂电子浆料组合物(D1)制备的发热元件的电阻温度系数的平均偏差,显示出一致且低的电阻温度系数的优异性能。
实施例3
称取75重量份铜粉、10重量份铁粉、15重量份锌粉和5份重量份瓷粉并混合均匀,将混合粉末与10重量份有机载体混合后放入行星球磨机中进行球磨,其中,使用无水乙醇作为球磨介质,混合物与球磨介质的重量比为1.5:1,球磨速度为500r/min,时间为1.5h,从而制得电子浆料组合物。
按照表5中所示的含量,按照上述相同的方式制备电子浆料组合物E1-E13,每种电子浆料各制备5个批次,然后,将全部批次的电子浆料组合物各自通过诸如丝网印刷等本领域中常规的技术将其印刷在陶瓷基体上,以形成发热元件。测量由电子浆料组合物E1-E13的各批次制得的发热元件在25℃、83℃、150℃和230℃下的电阻值,然后将各批次的电阻值通过最小二乘法和线性拟合,以得到电阻温度系数。对于电子浆料组合物E1-E13中的每一种,根据5个批次电阻温度系数TCR1、TCR2、TCR3、TCR4和TCR5,计算5个批次平均电阻温度系数(平均TCR),以及每个批次的电阻温度系数偏差率TCR(TCRn-平均TCR)/平均TCR(n为1、2、3、4或5),并进一步计算5个批次的电阻温度系数的平均偏差率(5个批次的电阻温度系数偏差率的平均值),结果示于表6中。
表5
编号 组分 瓷粉
E1 铜铁锌 75 10 15 5 - - - - - -
E2 铜铁锌、钌 75 10 15 5 0.5 - - - - -
E3 铜铁锌、钌 75 10 15 5 3.5 - - - - -
E4 铜铁锌、锗 75 10 15 5 - 3 - - - -
E5 铜铁锌、锗 75 10 15 5 - 10 - - - -
E6 铜铁锌、钒 75 10 15 5 - - 4.5 - - -
E7 铜铁锌、钒 75 10 15 5 - - 6 - - -
E8 铜铁锌、碲 75 10 15 5 - - - 2 - -
E9 铜铁锌、碲 75 10 15 5 - - - 5 - -
E10 铜铁锌、钇 75 10 15 5 - - - - 2.5 -
E11 铜铁锌、钇 75 10 15 5 - - - - 4.5 -
E12 铜铁锌、铱 75 10 15 5 - - - - - 3
E13 铜铁锌、铱 75 10 15 5 - - - - - 6
表6
Figure PCTCN2020106031-appb-000004
由上述实施例可知,通过本发明的电子浆料组合物(E2-E13)可以制备优异性的发热元件,使得多个批次之间的电阻温度系数的平均偏差显著地低于单独的铜铁锌电子浆料组合物(E1)制备的发热元件的电阻温度系数的平均偏差, 显示出一致且低的电阻温度系数的优异性能。
实施例4
称取55重量份镍粉、25重量份铬粉、20重量份钴粉和5重量份瓷粉并混合均匀,将混合粉末与10重量份有机载体混合后放入行星球磨机中进行球磨,其中,使用无水乙醇作为球磨介质,混合物与球磨介质的重量比为1.5:1,球磨速度为500r/min,时间为1.5h,从而制得电子浆料组合物。
按照表7中所示的含量,按照上述相同的方式制备电子浆料组合物F1-F13,每种电子浆料各制备5个批次,然后,将全部批次的电子浆料组合物各自通过诸如丝网印刷等本领域中常规的技术将其印刷在陶瓷基体上,以形成发热元件。测量由电子浆料组合物F1-F13的各批次制得的发热元件在25℃、83℃、150℃和230℃下的电阻值,然后将各批次的电阻值通过最小二乘法和线性拟合,以得到电阻温度系数。对于电子浆料组合物F1-F13中的每一种,根据5个批次电阻温度系数TCR1、TCR2、TCR3、TCR4和TCR5,计算5个批次平均电阻温度系数(平均TCR),以及每个批次的电阻温度系数偏差率TCR(TCRn-平均TCR)/平均TCR(n为1、2、3、4或5),并进一步计算5个批次的电阻温度系数的平均偏差率(5个批次的电阻温度系数偏差率的平均值),结果示于表8中。
表7
编号 组分 瓷粉
F1 镍铬钴 55 25 20 5 - - - - - -
F2 镍铬钴、钌 55 25 20 5 0.5 - - - - -
F3 镍铬钴、钌 55 25 20 5 3.5 - - - - -
F4 镍铬钴、锗 55 25 20 5 - 3 - - - -
F5 镍铬钴、锗 55 25 20 5 - 10 - - - -
F6 镍铬钴、钒 55 25 20 5 - - 4.5 - - -
F7 镍铬钴、钒 55 25 20 5 - - 6 - - -
F8 镍铬钴、碲 55 25 20 5 - - - 2 - -
F9 镍铬钴、碲 55 25 20 5 - - - 5 - -
F10 镍铬钴、钇 55 25 20 5 - - - - 2.5 -
F11 镍铬钴、钇 55 25 20 5 - - - - 4.5 -
F12 镍铬钴、铱 55 25 20 5 - - - - - 3
F13 镍铬钴、铱 55 25 20 5 - - - - - 6
表8
Figure PCTCN2020106031-appb-000005
由上述实施例可知,通过本发明的电子浆料组合物(F2-F13)可以制备优异性的发热元件,使得多个批次之间的电阻温度系数的平均偏差显著地低于单独的镍铬钴电子浆料组合物(F1)制备的发热元件的电阻温度系数的平均偏差,显示出一致且低的电阻温度系数的优异性能。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进 行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

  1. 一种陶瓷发热体,其中,所述陶瓷发热体包括陶瓷棒基体和设置在所述陶瓷棒基体的表面上的电阻发热元件,并且其中,所述电阻发热元件包含多副族元素组合物和添加剂,所述多副族元素组合物选自锰、钼、金、银、铂、铜、铁、锌、镍、铬和钴中的至少两种,并且所述添加剂选自钌、碲、锗、钒、钇和铱中的至少一种。
  2. 根据权利要求1所述的陶瓷发热体,其中,所述陶瓷棒基体的材料为氧化铝、氮化硅、玻璃、氮化铝和碳化硅中的至少一种。
  3. 根据权利要求1所述的陶瓷发热体,其中,所述陶瓷棒基体的一端为锥形,优选地,所述陶瓷棒基体的长度方向上的靠近锥形一端的电阻发热元件的量大于另一端。
  4. 根据权利要求1所述的陶瓷发热体,其中,所述电阻发热元件通过将电子浆料组合物贴花印刷在所述陶瓷棒基体的表面上而设置,所述电子浆料组合物包含所述多副族元素组合物、所述添加剂、瓷粉和有机载体。
  5. 根据权利要求4所述的陶瓷发热体,其中,所述多副族元素组合物中单一元素的占比在4-96重量%之间;优选地,基于所述多副族元素组合物的总重量,所述添加剂的含量为0.5-10重量%;优选地,基于所述多副族元素组合物的总重量,所述瓷粉的含量为0.5-8重量%;优选地,所述有机载体为松油醇、乙基纤维素、丙三醇和无水乙醇的混合物,更优选地,基于所述多副族元素组合物的总重量,所述有机载体的含量为5-30重量%。
  6. 一种制备权利要求1至5中任一项所述陶瓷发热体的方法,其中,所述方法包括将所述电子浆料组合物贴花印刷在所述陶瓷棒基体上。
  7. 根据权利要求6所述的方法,其中,所述贴花印刷包括将电子浆料组合物印刷在纸基薄膜上以制成贴花纸,优选地,所述印刷使得电子浆料组合物在纸基薄膜一端的施用量大于另一端的施用量,更优选地,所述纸基薄膜由绵纸、木浆纸、炭纤维纸、合成纤维纸和天然纤维纸等中的至少一种制成。
  8. 根据权利要求7所述的方法,其中,所述贴花印刷还包括将所述贴花纸 贴在经酸碱处理的陶瓷棒基体上,优选地,所述贴花印刷还包括将贴有贴花纸的陶瓷棒基体在1200-1800℃的温度下烧制1-4h。
  9. 根据权利要求8所述的方法,其还包括在所述贴花印刷之后进行浸釉,然后在1000-1200℃的温度下烧制。
  10. 权利要求1至5中任一项所述的陶瓷发热体和通过权利要求6至9中任一项所述的方法制备的陶瓷发热体在新型烟草制品用发热器中的用途,特别是在低温烟用发热器中的用途。
PCT/CN2020/106031 2019-07-31 2020-07-31 一种基于多副族元素的陶瓷发热体及其制备方法和用途 WO2021018263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910702007.0A CN112321330B (zh) 2019-07-31 2019-07-31 一种基于多副族元素的陶瓷发热体及其制备方法和用途
CN201910702007.0 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021018263A1 true WO2021018263A1 (zh) 2021-02-04

Family

ID=74228777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106031 WO2021018263A1 (zh) 2019-07-31 2020-07-31 一种基于多副族元素的陶瓷发热体及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN112321330B (zh)
WO (1) WO2021018263A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213139A (zh) * 2021-12-31 2022-03-22 深圳市吉迩科技有限公司 陶瓷发热体的制备方法及陶瓷发热体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106261A (ja) * 1997-09-30 1999-04-20 Kyocera Corp セラミック発熱素子
KR20110093971A (ko) * 2011-07-13 2011-08-19 이재환 고압축 나노 코팅 조성물
CN102595665A (zh) * 2012-02-28 2012-07-18 威海兴泰金属制造有限公司 氮化硅加热片及其制造方法
CN108617039A (zh) * 2018-05-21 2018-10-02 深圳市卓力能电子有限公司 一种电子烟加热元件及制备方法
CN108882405A (zh) * 2018-06-28 2018-11-23 珠海华宇宏瑞科技有限公司 一种陶瓷发热体的制作方法
CN109090709A (zh) * 2018-08-30 2018-12-28 湖北中烟工业有限责任公司 一种发热陶瓷料浆及其制备方法
CN109953380A (zh) * 2019-03-20 2019-07-02 河南中烟工业有限责任公司 一种加热不燃烧用加热棒和制作方法以及一种电子烟

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146465A (ja) * 2000-11-06 2002-05-22 Ngk Spark Plug Co Ltd 金属抵抗体及びこの金属抵抗体を有するヒータ並びにガスセンサ
CN101321415B (zh) * 2008-07-14 2011-12-21 佛山市海辰科技有限公司 基于氮化铝微晶陶瓷基板的稀土厚膜电路电热元件及其制备工艺
CN102340900A (zh) * 2011-07-21 2012-02-01 佛山市海辰科技有限公司 基于ir-led陶瓷基板的稀土厚膜电路电热元件及其制备方法
CN105321642B (zh) * 2014-07-31 2017-12-08 中国振华集团云科电子有限公司 一种高tcr低方阻线性ntc电阻浆料的制备方法
CN105060940A (zh) * 2015-06-18 2015-11-18 中国电子科技集团公司第五十五研究所 氧化铝多层陶瓷金属化钨浆料及其制备方法
CN105336389B (zh) * 2015-11-28 2017-05-17 广东中烟工业有限责任公司 一种电子浆料及其制备方法与双面陶瓷发热体
US10834965B2 (en) * 2016-01-20 2020-11-17 Shenzhen Kanger Technology Co., Ltd. Ceramic vaporizer and electronic cigarettes having the ceramic vaporizer
WO2017128038A1 (en) * 2016-01-26 2017-08-03 Xiaochun Zhu Ceramic vaporizer with replaceable e-liquid storage medium and electronic cigarettes having the same
CN107182139B (zh) * 2016-03-11 2020-06-09 周宏明 一种金属膜多孔陶瓷发热体及其应用
KR20180081323A (ko) * 2017-01-06 2018-07-16 엘지이노텍 주식회사 히팅 로드 및 이를 포함하는 히터
CN109413781A (zh) * 2018-11-05 2019-03-01 深圳顺络电子股份有限公司 一种低温烘烤电子烟发热体及其制备方法
CN109734480A (zh) * 2019-02-27 2019-05-10 常州联德陶业有限公司 一种氮化铝陶瓷加热器用共烧高温发热浆料及其制备方法
CN110037349A (zh) * 2019-04-02 2019-07-23 湖南聚能陶瓷材料有限公司 一种用于电子烟的微孔陶瓷加热器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106261A (ja) * 1997-09-30 1999-04-20 Kyocera Corp セラミック発熱素子
KR20110093971A (ko) * 2011-07-13 2011-08-19 이재환 고압축 나노 코팅 조성물
CN102595665A (zh) * 2012-02-28 2012-07-18 威海兴泰金属制造有限公司 氮化硅加热片及其制造方法
CN108617039A (zh) * 2018-05-21 2018-10-02 深圳市卓力能电子有限公司 一种电子烟加热元件及制备方法
CN108882405A (zh) * 2018-06-28 2018-11-23 珠海华宇宏瑞科技有限公司 一种陶瓷发热体的制作方法
CN109090709A (zh) * 2018-08-30 2018-12-28 湖北中烟工业有限责任公司 一种发热陶瓷料浆及其制备方法
CN109953380A (zh) * 2019-03-20 2019-07-02 河南中烟工业有限责任公司 一种加热不燃烧用加热棒和制作方法以及一种电子烟

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213139A (zh) * 2021-12-31 2022-03-22 深圳市吉迩科技有限公司 陶瓷发热体的制备方法及陶瓷发热体

Also Published As

Publication number Publication date
CN112321330A (zh) 2021-02-05
CN112321330B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN111246601B (zh) 一种新型陶瓷发热体的组合物及其发热体制备和应用
WO2020151597A1 (zh) 烟支加热组件及电加热吸烟装置
CN101321415B (zh) 基于氮化铝微晶陶瓷基板的稀土厚膜电路电热元件及其制备工艺
RU2758588C1 (ru) Керамический нагревательный элемент, способ его изготовления и его применение
CN111816345B (zh) 一种电子烟用可印刷和防干烧发热金属浆料及其制备方法
CN111528529B (zh) 加热器具加热元件及其制备方法
WO2021018263A1 (zh) 一种基于多副族元素的陶瓷发热体及其制备方法和用途
CN109461514A (zh) 一种导电相复合物、厚膜电阻浆料及其制备方法
WO2021018264A1 (zh) 一种复合型金属陶瓷发热体及其制备方法和用途
CN114743746B (zh) 一种ntc绝缘层材料及其制备方法和应用
KR20090094548A (ko) 페이스트 조성물, 이를 포함하는 저항체막 및 전자 부품
JPH04300249A (ja) 窒化アルミニウムヒータ用抵抗体及び抵抗ペースト組成物
CN112309607B (zh) 一种基于多副族元素的浆料组合物及其制备方法和用途
CN108682478A (zh) 一种复合氧化物微晶玻璃、绝缘介质浆料及其制备方法和应用
CN115460726A (zh) 一种复合陶瓷发热体及其制备方法
CN105304242B (zh) 一种低b值高阻值厚膜ntc浆料的制备方法
JP4629356B2 (ja) セラミックヒータの製造方法
KR102543744B1 (ko) 전자 페이스트 조성물, 및 이의 제조 방법 및 용도
CN104112487A (zh) 一种导电铜浆料及其制备方法和应用
CN112309606A (zh) 一种复合型金属浆料组合物及其制备方法和用途
TW201643901A (zh) 利用具有低電阻率與高電阻溫度係數之厚膜材料製作高精準阻值之負溫度係數熱敏電阻製造方法
CN114709006B (zh) 镍铬电热浆料及其制备方法和应用
CN114464384B (zh) 金电极ntc热敏电阻芯片、制备方法及温度传感器
CN115553506A (zh) 一种防干烧的陶瓷雾化芯及其制备方法
JPH04349387A (ja) 導電性発熱体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847070

Country of ref document: EP

Kind code of ref document: A1