WO2021018249A1 - 发光面板及其制备方法、显示装置 - Google Patents

发光面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021018249A1
WO2021018249A1 PCT/CN2020/105859 CN2020105859W WO2021018249A1 WO 2021018249 A1 WO2021018249 A1 WO 2021018249A1 CN 2020105859 W CN2020105859 W CN 2020105859W WO 2021018249 A1 WO2021018249 A1 WO 2021018249A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
barrier wall
base substrate
encapsulation layer
emitting
Prior art date
Application number
PCT/CN2020/105859
Other languages
English (en)
French (fr)
Inventor
黄兴
任艳萍
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/415,015 priority Critical patent/US11864446B2/en
Publication of WO2021018249A1 publication Critical patent/WO2021018249A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a light-emitting panel, a preparation method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • a light emitting panel has a light-emitting area and a non-light-emitting area located beside the light-emitting area, and at least a part of a boundary of the light-emitting area is in the shape of a broken line.
  • the light-emitting panel includes: a base substrate; a plurality of sub-pixels disposed on one side of the base substrate and located in the light-emitting area; a first sub-pixel disposed on a side of the plurality of sub-pixels away from the base substrate Encapsulation layer; and, at least one first barrier wall disposed on the side of the first encapsulation layer away from the base substrate.
  • the orthographic projection of the plurality of sub-pixels on the base substrate is located within the orthographic projection range of the first packaging layer on the base substrate.
  • the first barrier wall is located in the non-light-emitting area, and is arranged on a side of the light-emitting area that is close to the non-light-emitting area of a polygonal boundary. Wherein, the refractive index of the first barrier wall is greater than the refractive index of the first encapsulation layer.
  • the first blocking wall is configured to lead the light propagating in the first encapsulation layer and scatter it, so that the scattered light is emitted from the light emitting surface of the light emitting panel.
  • the refractive index of the first barrier wall ranges from 1.7 to 1.9, and the refractive index of the first encapsulation layer ranges from 1.6 to 1.7.
  • the light emitting panel further includes: a second encapsulation layer disposed on a side of the first barrier wall away from the base substrate.
  • the orthographic projection of the first packaging layer on the base substrate is within the orthographic projection range of the second packaging layer on the base substrate.
  • the refractive index of the second encapsulation layer is greater than the refractive index of the first barrier wall.
  • the refractive index of the second encapsulation layer ranges from 1.9 to 2.0.
  • the light-emitting panel further includes: at least one second barrier wall disposed in the non-light-emitting area and beside the second encapsulation layer.
  • the refractive index of the second barrier wall is less than the refractive index of the second encapsulation layer.
  • the second blocking wall is configured to reflect and/or scatter the light incident on the second blocking wall, and make the light exit from the light-emitting surface of the light emitting panel.
  • the refractive index of the second barrier wall ranges from 1.8 to 1.9.
  • the second barrier wall includes: a first side surface close to a side of the light-emitting area and a bottom surface close to a side of the base substrate, and a clip between the first side surface and the bottom surface
  • the range of the angle is 40°-60°.
  • the border of the light-emitting area in the shape of a broken line forms at least one step; the step includes a first step surface and a second step surface.
  • the first barrier wall is in the shape of a column, and the first barrier wall includes: a first column surface opposite to the first step surface, and a first column surface opposite to the second step surface and connected to the first column surface
  • the second cylindrical surface; the included angle between the first cylindrical surface and the second cylindrical surface, and the included angle between the first stepped surface and the second stepped surface are equal or approximately the same.
  • the first blocking wall further includes: a third cylindrical surface connected to the first cylindrical surface and the second cylindrical surface, respectively.
  • the second barrier wall includes a second side surface close to the light-emitting area, and the second side surface is opposite to the third cylindrical surface.
  • a surface of the second barrier wall facing away from the base substrate is higher than a surface of the first barrier wall facing away from the base substrate.
  • the thickness of the first barrier wall ranges from 5 ⁇ m to 9 ⁇ m.
  • the size of the surface of the second barrier wall facing away from the base substrate is higher than the surface of the first barrier wall facing away from the base substrate in a range of 1 ⁇ m to 7 ⁇ m .
  • the first barrier wall includes a first organic matrix and a plurality of first nanoparticles distributed in the first organic matrix.
  • the second barrier wall includes a second organic matrix and a plurality of second nanoparticles distributed in the second organic matrix. Wherein, the particle size of the second nanoparticles is greater than the particle size of the first nanoparticles, and the distribution density of the second nanoparticles is greater than the distribution density of the first nanoparticles.
  • the particle size of the first nanoparticles is in the range of 5 nm to 200 nm
  • the particle size of the second nanoparticles is in the range of 5 nm to 200 nm.
  • the distribution density of the first nanoparticles ranges from 0.5%wt to 5%wt
  • the distribution density of the second nanoparticles ranges from 0.5%wt to 5%wt.
  • the light emitting panel further includes: a third encapsulation layer disposed on a side of the second encapsulation layer and the second barrier wall away from the base substrate.
  • the orthographic projection of the second packaging layer and the second barrier wall on the base substrate is within an orthographic projection range of the third packaging layer on the base substrate.
  • the refractive index of the third encapsulation layer is smaller than the refractive index of the second barrier wall.
  • the refractive index of the third encapsulation layer ranges from 1.7 to 1.8.
  • each sub-pixel includes: a pixel driving circuit disposed between the base substrate and the first encapsulation layer; and, disposed between the pixel driving circuit and the first encapsulation layer And a light-emitting device electrically connected to the pixel drive circuit.
  • the light-emitting device includes: a second electrode layer electrically connected to the pixel drive circuit; a light-emitting layer provided on the side of the second electrode layer away from the pixel drive circuit; and, provided on the light-emitting layer The first electrode layer on the side away from the pixel driving circuit.
  • a method for manufacturing a light-emitting panel has a light-emitting area and a non-light-emitting area beside the light-emitting area, and at least a part of the boundary of the light-emitting area is in the shape of a fold line.
  • the preparation method includes: providing a base substrate. A plurality of sub-pixels are formed on one side of the base substrate; the plurality of sub-pixels are located in the light-emitting area.
  • a first packaging layer is formed on the side of the plurality of sub-pixels away from the base substrate; the orthographic projection of the plurality of sub-pixels on the base substrate is located on the first packaging layer on the base substrate Within the orthographic projection range.
  • At least one first barrier wall is formed on the side of the first encapsulation layer away from the base substrate and on the side of at least a part of the boundary in the light-emitting area that is in the shape of a broken line; the first barrier wall is located on the The non-light-emitting area is located on the side of the border in the light-emitting area that is in the shape of a broken line, which is close to the non-light-emitting area.
  • the refractive index of the first barrier wall is greater than the refractive index of the first encapsulation layer; the first barrier wall is configured to guide light propagating in the first encapsulation layer and scatter it, The scattered light is emitted on the light-emitting surface of the light-emitting panel.
  • the preparation method further includes: forming at least one second barrier wall on the side of the first encapsulation layer; the second barrier wall is located in the non-light emitting area, and the second barrier wall The barrier wall is farther away from the light-emitting area than the first barrier wall; the second barrier wall is configured to reflect and/or scatter light incident on the second barrier wall, and make the light from the The light emitting surface of the light emitting panel emits.
  • a second encapsulation layer is formed between the first encapsulation layer and the side of the first barrier wall facing away from the base substrate and between the first barrier wall and the second barrier wall;
  • the refractive index of the encapsulation layer is greater than the refractive index of the first barrier wall and greater than the refractive index of the second barrier wall.
  • a display device in another aspect, includes the light-emitting panel as described in any of the above embodiments.
  • FIG. 1 is a structural diagram of an OLED light emitting panel in the related art
  • FIG. 2 is a top view of a light emitting panel in some embodiments of the present disclosure
  • Fig. 3 is a top view of another light emitting panel in some embodiments of the present disclosure.
  • Fig. 4 is a top view of still another light emitting panel in some embodiments of the present disclosure.
  • FIG. 5 is a cross-sectional view of the light-emitting panel shown in FIG. 1 along the O-O' direction;
  • FIG. 6 is another cross-sectional view of the light-emitting panel shown in FIG. 1 along the O-O' direction;
  • FIG. 7 is another cross-sectional view of the light-emitting panel shown in FIG. 1 along the O-O' direction;
  • Fig. 8 is a light path diagram of the structure shown in Fig. 7;
  • Fig. 9 is an equivalent circuit diagram of a sub-pixel according to some embodiments of the present disclosure.
  • FIG. 10 is a flowchart of a method for manufacturing a light-emitting panel in some embodiments of the present disclosure
  • FIG. 11 is a step diagram of another method for manufacturing a light-emitting panel in some embodiments of the present disclosure.
  • FIG. 12 is a structural diagram of a display device in some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • connection and its extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content herein.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if it is determined" or “if [the stated condition or event] is detected” is optionally interpreted to mean “when determining" or “in response to determining" Or “when [the stated condition or event] is detected” or “in response to the detection of [stated condition or event]”.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances are conceivable. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviation due to, for example, manufacturing.
  • the etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • OLED light-emitting panels often require higher brightness, higher uniformity, and higher reliability. For this reason, many pairs of OLED light-emitting panels are designed to be pixelated to reduce the yield loss caused by particles in the manufacturing process. On this basis, the size of each sub-pixel in an OLED light-emitting panel is generally large. As shown in Figure 1, the middle part of the structure shown in Figure 1 is the light-emitting area, which easily causes the edge of the OLED light-emitting panel to appear jagged, and then Affect the aesthetics of OLED light-emitting panels.
  • the light emitting panel 100 has a light emitting area A and a non-light emitting area B located beside the light emitting area A.
  • the non-light-emitting area B may be located on one side, two sides, three sides, or peripheral side of the light-emitting area A (as shown in FIGS. 2 to 4).
  • the light-emitting panel 100 includes: a base substrate 1 and a plurality of sub-pixels 2 arranged on one side of the base substrate 1 and located in the light-emitting area A.
  • the base substrate 1 includes a rigid base substrate.
  • the rigid base substrate may be, for example, a glass base substrate.
  • the base substrate 1 includes a flexible base substrate.
  • the flexible substrate may be, for example, a PET (Polyethylene terephthalate, polyethylene terephthalate) substrate, a PEN (Polyethylene naphthalate two formal acid glycolester, polyethylene naphthalate) substrate, or PI (Polyimide, polyimide) base substrate.
  • the arrangement of the multiple sub-pixels 2 described above includes multiple, which can be selected and set according to actual needs.
  • the plurality of sub-pixels 2 may be arranged as shown in FIG. 2 or 3, or the plurality of sub-pixels 2 may also be arranged as shown in FIG. 4.
  • each sub-pixel 2 includes: a pixel driving circuit 21 arranged on the side of the base substrate 1 and a light emitting device 22 arranged on the side of the pixel driving circuit 21 away from the base substrate 1 .
  • the above-mentioned pixel driving circuit 21 has various structures, which can be selected and set according to actual needs.
  • the structure of the pixel driving circuit 21 may include structures such as “2T1C”, “6T1C”, “7T1C”, “6T2C”, or “7T2C”.
  • T represents thin film transistors
  • the number before “T” represents the number of thin film transistors
  • C represents storage capacitors
  • the number before “C” represents the number of storage capacitors.
  • one thin film transistor is called a driving transistor, and the remaining thin film transistors are called switching transistors.
  • the above-mentioned light-emitting device 22 includes: a second electrode layer 221 electrically connected to the pixel driving circuit 21, and a light-emitting layer disposed on the side of the second electrode layer 221 away from the pixel driving circuit 21 222, and the first electrode layer 223 disposed on the side of the light-emitting layer 222 away from the pixel driving circuit 21.
  • the aforementioned pixel driving circuit 21 can provide a driving voltage to the light emitting device 22 to drive the light emitting layer 222 of the light emitting device 22 to emit light.
  • the first electrode layers 223 of the plurality of light-emitting devices 22 may be connected to each other, for example, in a unitary structure.
  • the boundary of the light-emitting region A is the outer boundary of the orthographic projection of the light-emitting devices 22 of the plurality of sub-pixels 2 on the base substrate 1. Since the sub-pixels 2 located at the edge portion of the above-mentioned multiple sub-pixels 2 may be arranged in a stepped manner, that is, the light-emitting devices 22 located at the edge may be arranged in a stepped manner, so that at least the boundary of the light-emitting area A A part is in the shape of a broken line.
  • the light emitting panel 100 further includes: a first encapsulation layer 3 disposed on the side of the plurality of sub-pixels 2 away from the base substrate 1.
  • the orthographic projection of the plurality of sub-pixels 2 on the base substrate 1 is located within the orthographic projection range of the first packaging layer 3 on the base substrate 1. That is, the first encapsulation layer 3 covers the plurality of sub-pixels 2.
  • the first encapsulation layer 3 can be used to encapsulate the multiple sub-pixels 2 to protect the light-emitting devices 22 in the multiple sub-pixels 2 and prevent the light-emitting devices 22 from being corroded by oxygen and/or water vapor.
  • the above-mentioned light emitting panel 100 further includes: at least one first barrier wall 4 disposed on the side of the first encapsulation layer 3 away from the base substrate 1.
  • the at least one first barrier wall 4 is located in the non-light-emitting area B, and is arranged on the side of the light-emitting area A that is close to the non-light-emitting area B, which is a polygonal line.
  • the at least one first barrier wall 4 may be located at a step position to fill the step position.
  • the light emitting panel 100 may include one first barrier wall 4 or multiple barrier walls 4.
  • the number of the first barrier walls 4 can be selected and set according to actual needs, which is not limited in the present disclosure.
  • the aforementioned at least one first barrier wall 4 is located in the non-light-emitting area B, that is, the orthographic projection of the at least one first barrier wall 4 on the base substrate 1 and the orthographic projection of the plurality of light-emitting devices 22 on the base substrate 1 are not overlap. In this way, it is possible to prevent the first barrier wall 4 from blocking the light emitting device 22, thereby avoiding affecting the forward light emission of the light emitting device 22, and ensuring the forward light emission efficiency of the light emitting panel 100.
  • the refractive index of the first barrier wall 4 is greater than the refractive index of the first encapsulation layer 3.
  • the first blocking wall 4 is configured to guide the light propagating in the first encapsulation layer 3 and diffuse it so that the scattered light is emitted on the light-emitting surface of the light-emitting panel 100.
  • the refractive index of the first barrier wall 4 ranges from 1.7 to 1.9.
  • the refractive index of the first barrier wall 4 may be 1.7, 1.75, 1.8, 1.88, or 1.9.
  • the refractive index of the first encapsulation layer 3 ranges from 1.6 to 1.7.
  • the refractive index of the first encapsulation layer 3 may be 1.6, 1.63, 1.67, or 1.7.
  • the refractive index of the first barrier wall 4 is greater than the refractive index of the first encapsulation layer 3, when the refractive index of the first barrier wall 4 is 1.7, the refractive index of the first encapsulation layer 3 may be between 1.6 and 1.7. When the refractive index of the first encapsulation layer 3 is 1.7, the refractive index of the first barrier wall 4 can be any value greater than 1.7 between 1.7 and 1.9.
  • the first barrier wall 4 that fills the step position can also "emit light", improve the display continuity at the edge of the light-emitting panel 100, and weaken or even eliminate the edge of the light-emitting panel 100.
  • a barrier wall 4 is provided in the non-light-emitting area B, and the barrier wall 4 is located at the edge of the light-emitting area A in the shape of a broken line near the non-light-emitting area and B.
  • the first barrier wall 4 can be used to guide the light propagating in the first encapsulation layer 3 for scattering, so that the scattered light is self-contained.
  • the first blocking wall 4 is emitted, which can improve the efficiency of forward light emission, increase the display brightness and continuity at the edge of the light-emitting panel 100, and effectively improve the edge jaggedness of the light-emitting panel 100.
  • a decorative film is usually made on the cover of the light-emitting panel, so that the decorative film layer is used to block the light emitted by the sub-pixels located at the edge of the light-emitting panel, thereby improving the edge jagged phenomenon and beautifying the appearance
  • the solution of manufacturing the decorative film on the cover plate can easily reduce the forward light extraction efficiency, and the alignment accuracy between the cover plate and the sub-pixels is relatively high, and the decorative film and the sub-pixels are manufactured separately, and the process integration is low.
  • the first barrier wall 4 in the non-light emitting area B of the light emitting panel 100, it is possible to improve the process integration and reduce the process difficulty of the light emitting panel 100 on the basis of improving the forward light extraction efficiency.
  • the above-mentioned light emitting panel 100 further includes: a second encapsulation layer 5 arranged on the side of the first barrier wall 4 away from the base substrate 1.
  • the orthographic projection of the first packaging layer 3 on the base substrate 1 is within the orthographic projection range of the second packaging layer 5 on the base substrate 1.
  • the second encapsulation layer 5 covers and encapsulates the first encapsulation layer 3 and the first barrier wall 4, so that the sub-pixel 2 can be further protected by the second encapsulation layer 5.
  • the refractive index of the second encapsulation layer 5 is greater than the refractive index of the first barrier wall 4. That is, the refractive index of the first barrier wall 4 is between the refractive index of the first encapsulation layer 3 and the refractive index of the second encapsulation layer 5.
  • the refractive index of the second encapsulation layer 5 ranges from 1.9 to 2.0.
  • the refractive index of the second encapsulation layer 5 may be 1.9, 1.92, 1.95, 1.98, 2.0, or the like.
  • the refractive index of the second encapsulation layer 5 is greater than the refractive index of the first barrier wall 4, when the refractive index of the first barrier wall 4 is 1.9, the refractive index of the second encapsulation layer 5 may be 1.9 When the refractive index of the second encapsulation layer 5 is 1.9, the refractive index of the first barrier wall 4 can be any value between 1.7 and 1.9 that is less than 1.9.
  • the refractive index of the first encapsulation layer 3 may be less than the refractive index of the second encapsulation layer 5. In this way, the light emitted from the light-emitting layer 222 in the light-emitting device 22 is incident to the second encapsulation layer 5 through the first encapsulation layer 3, and total reflection may occur, so that at least a part of the light is transmitted in the first encapsulation layer 3. .
  • the refractive index of the first barrier wall 4 By controlling the refractive index of the first barrier wall 4 to be greater than the refractive index of the first encapsulation layer 3, and controlling the refractive index of the first barrier layer 4 to be smaller than the refractive index of the second encapsulation layer 5, it is possible to make the occurrence in the first encapsulation layer 3 Among the totally reflected light, at least a part of the light enters the first barrier wall 4, is scattered in the first barrier wall 4, and then exits to the outside of the light-emitting panel 100, which is beneficial to improve the edge light leakage phenomenon of the light-emitting area A and improve the forward direction. Light efficiency.
  • the light-emitting panel 100 further includes: at least one second barrier wall 6 arranged in the non-light-emitting area B and located beside the second encapsulation layer 5. That is, the light emitting panel 100 may include one second barrier wall 6 or multiple second barrier walls 6.
  • the light emitting panel 100 includes a second barrier wall 6.
  • the second barrier wall 6 has a ring structure and surrounds the second encapsulation layer 5. That is, the second barrier wall 6 is located on the peripheral side of the second encapsulation layer 5.
  • the light emitting panel 100 includes a plurality of second barrier walls 6.
  • the plurality of second barrier walls 6 are arranged in sequence to form a ring structure and surround the second encapsulation layer 5. That is, the second barrier wall 6 is located on the peripheral side of the second encapsulation layer 5.
  • the refractive index of the second barrier wall 6 is less than the refractive index of the second encapsulation layer 5.
  • the second blocking wall 6 is configured to reflect and/or scatter light incident on the second blocking wall 6 and make the light exit from the light emitting surface of the light emitting panel 100.
  • the refractive index of the second barrier wall 6 ranges from 1.8 to 1.9.
  • the refractive index of the second barrier wall 6 may be 1.8, 1.81, 1.86, 1.87, or 1.9.
  • the refractive index of the second barrier wall 6 is smaller than the refractive index of the second encapsulation layer 5, when the refractive index of the second barrier wall 6 is 1.9, the refractive index of the second encapsulation layer 5 may be 1.9 When the refractive index of the second encapsulation layer 5 is 1.9, the refractive index of the second barrier wall 6 may be any value between 1.8 and 1.9 that is less than 1.9.
  • the second barrier wall 6 includes: a first side surface C on the side close to the light-emitting area A and a bottom surface D on the side close to the base substrate 1, between the first side surface C and the bottom surface D
  • the included angle ⁇ ranges from 40° to 60°.
  • the angle between the side surface of the second barrier wall 6 away from the light-emitting area A and the bottom surface D may also range from 40° to 60°.
  • the slope angle ⁇ can be set to 40-60 ° to ensure a better light-emitting effect of the second blocking wall 6.
  • the second barrier wall 6 is arranged in the non-light-emitting area B, and the second barrier wall 6 can be used for the first encapsulation layer 3.
  • the part of the light that is not led out by the first barrier wall 4 is scattered and/or reflected, and the light is emitted from the second barrier wall 6, which is beneficial to further improve the light output efficiency of the light panel 100, increase the edge brightness of the light emitting panel 100, and prevent light emission.
  • the edge of the panel 100 is further smoothed to further improve the effect of improving the jagged edge.
  • the surface of the second barrier wall 6 facing away from the base substrate 1 is higher than the first barrier wall 4 facing away from the base substrate 1. s surface.
  • an inkjet printing process may be used to prepare and form.
  • the material of the second encapsulation layer 5 is in a liquid state.
  • the second barrier wall 6 and the first barrier wall A buffer zone is formed between the walls 4, so that when the material of the second encapsulation layer 5 is slightly excessive, the buffer zone can be used to accommodate the material of the second encapsulation layer 5, reducing the risk of overflow.
  • the thickness of the first barrier wall 4 (that is, the size of the first barrier wall 4 in the direction perpendicular to the base substrate 1) ranges from 5 ⁇ m to 9 ⁇ m.
  • the surface of the second barrier wall 6 facing away from the base substrate 1 is higher than the surface of the first barrier wall 4 facing away from the base substrate 1 in a range of 1 ⁇ m-7 ⁇ m.
  • the thickness of the first barrier wall 4 may be 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 7.6 ⁇ m, 8.1 ⁇ m, or 9 ⁇ m.
  • the surface of the second barrier wall 6 facing away from the base substrate 1 is higher than the surface of the first barrier wall 4 facing away from the base substrate 1.
  • the size may be 1 ⁇ m, 2.2 ⁇ m, 3.5 ⁇ m, 5 ⁇ m. , 6 ⁇ m or 7 ⁇ m.
  • the surface of the second encapsulation layer 5 facing away from the base substrate 1 is flush with the surface of the second barrier wall 6 facing away from the base substrate 1.
  • the size of the surface of the second encapsulation layer 5 on the side facing away from the base substrate 1 higher than the surface of the first barrier wall 4 facing away from the base substrate 1 may also range from 1 ⁇ m to 7 ⁇ m. .
  • the thickness of the portion of the second packaging layer 5 that is located on the side of the first packaging layer 3 away from the base substrate 1 may be 10 ⁇ m to 12 ⁇ m.
  • the thickness of the portion of the second encapsulation layer 5 that is located on the side of the first encapsulation layer 3 away from the base substrate 1 may be 10 ⁇ m, 11 ⁇ m, 11.3 ⁇ m, or 12 ⁇ m.
  • the size of the distance between the second barrier wall 6 and the first barrier wall 4 may be determined according to actual conditions, and the embodiment of the present disclosure does not limit its value.
  • the first barrier wall 4 may include: a first organic matrix, and a plurality of first nanoparticles distributed in the first organic matrix.
  • the plurality of first nanoparticles may be uniformly distributed in the first organic matrix, for example.
  • the second barrier wall 6 may include: a second organic matrix, and a plurality of second nanoparticles distributed in the second organic matrix.
  • the light emitting panel 100 is a top emission type light emitting panel.
  • a relatively large portion for example, approximately or greater than 40%
  • the light generated by the light-emitting layer 222 in the light-emitting device 22 cannot be coupled to the surrounding environment, but due to the base substrate 1, the electrode
  • the internal reflection between the layer and the encapsulation layer is lost, and a part of the light (for example, about 10% or more) may leak from the edge of the light emitting panel 100.
  • the first barrier wall 4 by controlling the material of the first barrier wall 4, for example, by controlling the refractive index of the first organic matrix, the particle size and distribution density of the first nano-particles, the first barrier wall 4 can interact with the first encapsulation layer 3. At least part of the propagating light is derived.
  • the material of the second barrier wall 6, such as the refractive index of the second organic matrix, the particle size and distribution density of the second nanoparticles the second barrier wall 6 can be injected from the first encapsulation layer 3 and passed through the The light incident from the second encapsulation layer 5 to the second blocking wall 6 is scattered and/or reflected, which further improves the edge brightness of the light emitting panel 100 and eliminates edge jaggedness.
  • the material of the first organic matrix may include an acrylic material, an epoxy resin, a polyurethane material, etc., and the refractive index thereof may range from 1.5 to 1.9.
  • the material of the second organic matrix may also include acrylic material, epoxy resin or polyurethane material, etc., and the refractive index thereof may range from 1.5 to 1.9.
  • the material of the first nano-particles may include silver, aluminum, zinc, etc., and the particle size may range from 5 nm to 100 nm; or, the material of the first nano-particles may be organic montmorillonite, titanium dioxide or silicon dioxide. Etc., the range of the particle size may be 20 nm to 200 nm. Wherein, the distribution density of the first nanoparticles in the first organic matrix may range from 0.5%wt to 5%wt.
  • the material of the second nanoparticle may include silver, aluminum, zinc, etc., and the particle size may range from 5 nm to 100 nm; or, the material of the second nanoparticle may be organic montmorillonite, titanium dioxide or silicon dioxide. Etc., the range of the particle size may be 20 nm to 200 nm. Wherein, the distribution density of the second nanoparticles in the second organic matrix may range from 0.5%wt to 5%wt.
  • the refractive index of the second organic matrix can be greater than the refractive index of the first organic matrix
  • the particle size of the second nanoparticle can be greater than the particle size of the first nanoparticle
  • the distribution density of the second nanoparticle can be greater than that of the first nanoparticle.
  • first barrier wall 4 and second barrier wall 6 have various shapes, which can be selected and set according to actual needs.
  • the border of the light-emitting area A in the shape of a broken line constitutes at least one step E. That is, the border in the shape of a broken line in the light-emitting region A may constitute one step or a plurality of steps E.
  • each step E includes a first step surface E1 and a second step surface E2. There is an included angle between the first step surface E1 and the second step surface E2.
  • the above-mentioned first barrier wall 4 may have a columnar shape, and the first barrier wall 4 includes: a first cylindrical surface F1 opposite to the first step surface E1, and a first cylindrical surface F1 opposite to the second step surface E2 and connected to the first cylindrical surface F1 Two cylinders F2.
  • the included angle between the first cylindrical surface F1 and the second cylindrical surface F2 is equal to or approximately the same as the included angle between the first step surface E1 and the second step surface E2.
  • the shape of the portion of the first barrier wall 4 facing the fold-line-shaped boundary in the light-emitting area A matches the shape of the fold-line-shaped boundary in the light-emitting area A.
  • the step E is generally adjacent to two sub-pixels 2.
  • the light emitted from the two adjacent sub-pixels 2 into the first encapsulation layer 3 is more fully derived and scattered, so that the brightness of the light emitted at the step E at the junction of the two sub-pixels 2 can be greatly increased, and the The difference between the light-emitting brightness at the step E and the light-emitting brightness of the two sub-pixels 2 can blur the boundary of the sub-pixel 2 observed by the user, thereby effectively improving the jagged edge of the light-emitting panel 100.
  • the shape of the first barrier wall 4 may be a triangular prism, a quadrangular prism, a pentagonal prism, or the like.
  • the shape of the first barrier wall 4 may be a triangular pyramid or a quadrangular pyramid.
  • the border in the shape of a broken line in the light-emitting area A may constitute a plurality of continuous steps E
  • the plurality of first barrier walls 4 provided correspondingly may be independent of each other or connected to each other.
  • the shape of the first barrier wall 4 is a triangular prism as an example, the shape of the second barrier wall 6 is schematically described.
  • the first barrier wall 4 further includes: a third cylindrical surface F3 connected to the first cylindrical surface F1 and the second cylindrical surface F2 respectively.
  • the second barrier wall 6 includes a second side surface G close to the light-emitting area A, and the second side surface G is opposite to the third cylindrical surface F3.
  • the shape of the second barrier wall 6 may be, for example, a quadrangular prism as shown in FIGS. 3 and 4, or may be a ring as shown in FIG.
  • the light-emitting panel 100 may further include: a third encapsulation layer 7 disposed on the side of the second encapsulation layer 5 and the second barrier wall 6 away from the base substrate 1.
  • the orthographic projection of the second packaging layer 5 and the second barrier wall 6 on the base substrate 1 is within the orthographic projection range of the third packaging layer 7 on the base substrate 1. That is, the third encapsulation layer 7 covers and encapsulates the second encapsulation layer 5 and the second barrier wall 6, so that the third encapsulation layer 7 can be used to further protect the sub-pixel 2.
  • the refractive index of the third encapsulation layer 7 is less than the refractive index of the second barrier wall 6, that is, the refractive index of the second barrier wall 6 is between the refractive index of the second encapsulation layer 5 and the third encapsulation layer 7 Between the refractive indices.
  • the refractive index of the second barrier wall 6 By controlling the refractive index of the second barrier wall 6 to be between the second encapsulation layer 5 and the third encapsulation layer 7, it is possible to make the light emitted through the first encapsulation layer 7 and passing through the second encapsulation layer 5 (or called edge light emission) ) Can be better incident into the second barrier wall 6 and emitted from the light-emitting surface of the light-emitting panel 100 under the action of the second barrier wall 6 (for example, reflection and/or scattering), thereby further improving the light-emitting panel 100 Edge light efficiency, effectively reducing the loss of edge light leakage.
  • the refractive index of the third encapsulation layer 7 ranges from 1.7 to 1.8.
  • the refractive index of the third encapsulation layer 7 may be 1.7, 1.73, 1.76, 1.78, 1.8, or the like.
  • the refractive index of the third encapsulation layer 7 may be 1.7 when the refractive index of the second barrier wall 6 is 1.8.
  • the refractive index of the second barrier wall 6 can be any value greater than 1.8 between 1.8 and 1.9.
  • Some embodiments of the present disclosure also provide a method for manufacturing a light-emitting panel, by which the light-emitting panel 100 described in any of the above-mentioned embodiments can be prepared.
  • the light-emitting panel 100 has a light-emitting area A and a non-light-emitting area B located beside the light-emitting area A, and at least a part of the boundary of the light-emitting area A is in the shape of a broken line.
  • the preparation method includes: S100-S400.
  • a base substrate 1 is provided.
  • the type of the base substrate 1 can refer to the description of the base substrate 1 in some of the above-mentioned embodiments, which will not be repeated here.
  • forming a plurality of sub-pixels 2 on one side of the base substrate 1 includes: S210 to S250.
  • Each pixel driving circuit 21 includes a plurality of thin film transistors and at least one storage capacitor.
  • the pixel defining layer 8 has a plurality of openings, and the plurality of openings respectively expose the surface of the plurality of second electrode layers 221 away from the base substrate 1.
  • each light-emitting layer 222 is located in an opening, or a part of each light-emitting layer 222 is located in an opening, and the other part is overlapped on the side surface of the pixel defining layer 8 away from the base substrate 1.
  • step 503 forming a first electrode layer 223 (that is, a cathode layer) on the side of the light emitting layer 222 away from the base substrate 1.
  • the second electrode layer 221, the light emitting layer 222, and the first electrode layer 223 connected to each other constitute the light emitting device 22.
  • the first electrode layers 223 of the plurality of light emitting devices 22 may be connected to each other, for example, to form an integral structure.
  • a low-temperature plasma chemical vapor deposition (Plasma Chemical Vapor Deposition, PCVD) technique may be used to form the first encapsulation layer 3 on the side of the plurality of sub-pixels 2 away from the base substrate 1 to facilitate the use of the first encapsulation layer 3 Protect the first electrode layer 223 and the light emitting layer 222 and other structures.
  • PCVD plasma chemical vapor deposition
  • the first barrier wall 4 is located in the non-light-emitting area B, and is located on the side of the border in the light-emitting area A that is in the shape of a broken line close to the non-light-emitting area B.
  • the refractive index of the first barrier wall 4 is greater than the refractive index of the first encapsulation layer 3.
  • the first blocking wall 4 is configured to guide the light propagating in the first encapsulation layer 3 and diffuse it so that the scattered light is emitted on the light-emitting surface of the light-emitting panel 100.
  • inkjet printing technology or coating, exposure, and development technology may be used to form the first barrier wall 4.
  • the type of curing process can be selected according to the material of the first organic matrix 41 of the first barrier wall 4.
  • the first barrier wall 4 may be cured by a thermal curing process. At this time, the temperature of the curing process may be 80° C. to 120° C., and the curing process time may be 3 h to 5 h.
  • the first barrier wall 4 may be cured by a light curing process. In this case, for example, UV light may be used, and the treatment may be performed for 20 to 30 minutes at a temperature of 50°C.
  • the first nano-particles can be surface-treated to avoid agglomeration of the first nano-particles during the gluing process, and exposure and development can be carried out smoothly. Ensure that the thickness of the formed first barrier wall 4 is the required thickness.
  • a polymer surfactant can be added to the first organic matrix to wrap the first nanoparticles, so that the first nanoparticles can be more uniform and stable Distributed in the first organic matrix.
  • beneficial effects that can be achieved by the method for manufacturing the light-emitting panel provided by some embodiments of the present disclosure are the same as the beneficial effects that can be achieved by the light-emitting panel 100 provided in some of the above embodiments, and will not be repeated here.
  • the above-mentioned preparation method may further include: S500-S600.
  • At least one second barrier wall 6 is formed on the side of the first encapsulation layer 3, the second barrier wall 6 is located in the non-light-emitting area B, and the second barrier wall 6 is farther from the light-emitting area A than the first barrier wall 4.
  • the second blocking wall 6 is configured to reflect and/or scatter light incident on the second blocking wall 6 and make the light exit from the light emitting surface of the light emitting panel 100.
  • the second barrier wall 6 can be formed by using an inkjet printing process or using coating, exposure, and development techniques.
  • the conditions for subsequent curing treatment can refer to the description of the first barrier wall 4; when the second barrier wall is formed by coating, exposure, and development techniques In the case of 6, the surface treatment of the second nanoparticle can refer to the description of the first nanoparticle, which will not be repeated here.
  • a part of the second barrier wall 6 (which can be called a base part) can be prepared in the same sequential patterning process, and then an inkjet printing process can be used.
  • the preparation of the second barrier wall 6 can be completed by printing less material of the second barrier wall 6 on the base part.
  • the slope can be Angle is defined.
  • the slope angle of the second barrier wall 6 can be controlled to be in the range of 40°-60°, so that the second barrier wall 6 has a better light emitting effect.
  • the hydrophobicity of the ink (that is, the material for forming the second barrier wall 6) can be selected to form a hydrophobic angle of 40°-60°.
  • the etching angle of the etching film layer (that is, the film layer formed by the material of the second barrier wall 6) can be controlled by the development process, for example The ratio of physical etching and chemical etching can be adjusted, the process time can be adjusted, and the appropriate etching chemical reagent can be selected to form a hydrophobic angle of 40°-60°.
  • the light extraction efficiency of the edge of the light output panel 100 can be further improved, the brightness of the edge of the light output panel 100 can be improved, and the edge jagged phenomenon can be eliminated.
  • a second encapsulation layer 5 on the side of the first encapsulation layer 3 and the first barrier wall 4 away from the base substrate 1 and between the first barrier wall 4 and the second barrier wall 6.
  • the refractive index of the second encapsulation layer 5 is greater than the refractive index of the first barrier wall 4 and greater than the refractive index of the second barrier wall 6.
  • inkjet printing technology may be used to form the second encapsulation layer 5 on the first encapsulation layer 3 and the first barrier wall 4 and between the first barrier wall 4 and the second barrier wall 6.
  • the second barrier wall 6 may limit the boundary of the second encapsulation layer 5.
  • the surface of the second barrier wall 6 facing away from the base substrate 1 is higher than the surface of the first barrier wall 4 facing away from the base substrate 1.
  • a buffer zone is formed between the first barrier wall 4 and the ink jet printing technology is used to form the second encapsulation layer 5, and the printed ink (that is, the material used to form the second encapsulation layer 5) can overflow into the buffer zone.
  • the second packaging layer 5 has a good packaging effect.
  • the first barrier wall 4 is formed in the non-light-emitting area B and close to at least a part of the border in the light-emitting area A.
  • the first barrier wall 4 can be used to The light propagating in the first encapsulation layer 3 is led out and scattered to improve the edge brightness of the light emitting panel 100, and achieve the effect of weakening or even eliminating the edge jaggedness. Further, a first barrier wall 4 is formed on the side of the first barrier wall 4 away from the light emitting area A.
  • the second barrier wall 6 can be used to scatter and/or reflect the light that is not led out by the first barrier wall 4 and emitted to the second barrier wall 6 through the second encapsulation layer 5 to further improve the light emitting panel 100
  • the edge brightness of the light-emitting panel 100 is further smoothed to ensure the effect of improving the jagged edge.
  • the foregoing preparation method may further include: S700.
  • a chemical vapor deposition (Chemical Vapor Deposition, CVD for short) technology may be used to form the third encapsulation layer 7 on the side of the second encapsulation layer 5 and the second barrier wall 6 away from the base substrate 1.
  • the third encapsulation layer 7 covers the second encapsulation layer 5 and the second barrier wall 6 and can play a good water and oxygen barrier effect on the light emitting device 22 in the light emitting area A.
  • the embodiments of the present disclosure can achieve a better flexible packaging effect by controlling the type and thickness of packaging materials (for example, the materials of the first packaging layer 3, the second packaging layer 5 and the third packaging layer 7).
  • the packaging material can be selected from inorganic and organic composite materials, so that even if the packaging layer has a high thickness, good flexibility can be ensured; or, atomic layer deposition (Atomic Layer Deposition, ALD) technology can be used to prepare inorganic materials.
  • ALD atomic layer deposition
  • the prepared encapsulation layer is used to control the thickness of the encapsulation layer, so that the encapsulation layer can achieve an encapsulation effect with a smaller thickness and also maintain good flexibility.
  • the display device 1000 may include: the light emitting panel 100 described in any of the above embodiments.
  • the display device 1000 provided by some embodiments of the present disclosure has the same beneficial effects as the light-emitting panel 100 provided by some of the foregoing embodiments, and will not be repeated here.
  • the above-mentioned display device 1000 may be any product or component with a display function or a lighting function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a foldable notebook computer, a digital photo frame, a navigator, a lamp, etc.
  • a display function or a lighting function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a foldable notebook computer, a digital photo frame, a navigator, a lamp, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光面板,具有发光区域和位于发光区域旁侧的非发光区域,发光区域的边界的至少一部分呈折线状。发光面板包括:衬底基板;设置在衬底基板的一侧、且位于发光区域的多个子像素;设置在多个子像素背离衬底基板一侧的第一封装层;以及设置在第一封装层背离衬底基板的一侧的至少一个第一阻挡墙。多个子像素在衬底基板上的正投影位于第一封装层在衬底基板上的正投影范围内。第一阻挡墙位于非发光区域,且设置在发光区域中呈折线状的边界的靠近非发光区域的一侧。第一阻挡墙的折射率大于第一封装层的折射率;第一阻挡墙被配置为,将在第一封装层内传播的光线导出,并进行散射,使得散射后的光线从发光面板的出光面射出。

Description

发光面板及其制备方法、显示装置
本申请要求于2019年07月31日提交的、申请号为201910702199.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种发光面板及其制备方法、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称为OLED),因具有高亮度、全视角、响应速度快以及可柔性显示等优点,已在显示领域得到广泛应用。
发明内容
一方面,提供一种发光面板。所述发光面板具有发光区域和位于所述发光区域旁侧的非发光区域,所述发光区域的边界的至少一部分呈折线状。所述发光面板包括:衬底基板;设置在所述衬底基板的一侧、且位于所述发光区域的多个子像素;设置在所述多个子像素背离所述衬底基板一侧的第一封装层;以及,设置在所述第一封装层背离所述衬底基板的一侧的至少一个第一阻挡墙。所述多个子像素在所述衬底基板上的正投影位于所述第一封装层在所述衬底基板上的正投影范围内。所述第一阻挡墙位于所述非发光区域,且设置在所述发光区域中呈折线状的边界的靠近所述非发光区域的一侧。其中,所述第一阻挡墙的折射率大于所述第一封装层的折射率。所述第一阻挡墙被配置为,将在所述第一封装层内传播的光线导出,并进行散射,使得散射后的光线从所述发光面板的出光面射出。
在一些实施例中,所述第一阻挡墙的折射率的范围为1.7~1.9,所述第一封装层的折射率的范围为1.6~1.7。
在一些实施例中,所述发光面板,还包括:设置在所述第一阻挡墙背离所述衬底基板一侧的第二封装层。其中,所述第一封装层在所述衬底基板上的正投影位于所述第二封装层在所述衬底基板上的正投影范围内。所述第二封装层的折射率大于所述第一阻挡墙的折射率。
在一些实施例中,所述第二封装层的折射率的范围为1.9~2.0。
在一些实施例中,所述发光面板,还包括:设置在所述非发光区域、且位于所述第二封装层旁侧的至少一个第二阻挡墙。所述第二阻挡墙的折射率小于所述第二封装层的折射率。所述第二阻挡墙被配置为,对入射至所述第 二阻挡墙的光线进行反射和/或散射,并使得光线从所述发光面板的出光面射出。
在一些实施例中,所述第二阻挡墙的折射率的范围为1.8~1.9。
在一些实施例中,所述第二阻挡墙包括:靠近所述发光区域一侧的第一侧面以及靠近所述衬底基板一侧的底面,所述第一侧面与所述底面之间的夹角的范围为40°~60°。
在一些实施例中,所述发光区域中呈折线状的边界,构成至少一个台阶;所述台阶包括第一台阶面和第二台阶面。所述第一阻挡墙呈柱状,所述第一阻挡墙包括:与所述第一台阶面相对的第一柱面,以及与所述第二台阶面相对、且与所述第一柱面连接的第二柱面;所述第一柱面和所述第二柱面之间的夹角,与所述第一台阶面和所述第二台阶面之间的夹角相等或大致相等。
在一些实施例中,所述第一阻挡墙还包括:分别与所述第一柱面和所述第二柱面连接的第三柱面。所述第二阻挡墙包括靠近所述发光区域的第二侧面,所述第二侧面与所述第三柱面相对。
在一些实施例中,相对所述衬底基板,所述第二阻挡墙的背离所述衬底基板一侧的表面,高于所述第一阻挡墙背离所述衬底基板一侧的表面。
在一些实施例中,所述第一阻挡墙的厚度的范围为5μm~9μm。相对所述衬底基板,所述第二阻挡墙的背离所述衬底基板一侧的表面高于所述第一阻挡墙背离所述衬底基板一侧的表面的尺寸的范围为1μm~7μm。
在一些实施例中,所述第二阻挡墙与所述第一阻挡墙之间具有间距。
在一些实施例中,所述第一阻挡墙包括第一有机基质以及分布在所述第一有机基质内的多个第一纳米颗粒。所述第二阻挡墙包括第二有机基质以及分布在所述第二有机基质内的多个第二纳米颗粒。其中,第二纳米颗粒的粒径大于第一纳米颗粒的粒径,所述第二纳米颗粒的分布密度大于所述第一纳米颗粒的分布密度。
在一些实施例中,所述第一纳米颗粒的粒径的范围为5nm~200nm,所述第二纳米颗粒的粒径的范围为5nm~200nm。所述第一纳米颗粒的分布密度的范围为0.5%wt~5%wt,所述第二纳米颗粒的分布密度的范围为0.5%wt~5%wt。
在一些实施例中,所述发光面板,还包括:设置在所述第二封装层和所述第二阻挡墙背离所述衬底基板一侧的第三封装层。所述第二封装层和所述第二阻挡墙在所述衬底基板上的正投影位于所述第三封装层在所述衬底基板上的正投影范围内。所述第三封装层的折射率小于所述第二阻挡墙的折射率。
在一些实施例中,所述第三封装层的折射率的范围为1.7~1.8。
在一些实施例中,每个子像素包括:设置在所述衬底基板和所述第一封装层之间的像素驱动电路;以及,设置在所述像素驱动电路和所述第一封装层之间、且与所述像素驱动电路电连接的发光器件。其中,所述发光器件包括:与所述像素驱动电路电连接的第二电极层;设置在所述第二电极层远离所述像素驱动电路一侧的发光层;以及,设置在所述发光层远离所述像素驱动电路一侧的第一电极层。
另一方面,提供一种发光面板的制备方法,所述发光面板具有发光区域和位于所述发光区域旁侧的非发光区域,所述发光区域的边界的至少一部分呈折线状。所述制备方法包括:提供衬底基板。在所述衬底基板的一侧形成多个子像素;所述多个子像素位于所述发光区域。在所述多个子像素背离所述衬底基板的一侧形成第一封装层;所述多个子像素在所述衬底基板上的正投影位于所述第一封装层在所述衬底基板上的正投影范围内。在所述第一封装层背离所述衬底基板的一侧、及所述发光区域中呈折线状的至少一部分边界的旁侧形成至少一个第一阻挡墙;所述第一阻挡墙位于所述非发光区域,且位于所述发光区域中呈折线状的边界的靠近所述非发光区域的一侧。其中,所述第一阻挡墙的折射率大于所述第一封装层的折射率;所述第一阻挡墙被配置为,将在所述第一封装层内传播的光线导出,并进行散射,使得散射后的光线在所述发光面板的出光面射出。
在一些实施例中,所述的制备方法,还包括:在所述第一封装层的旁侧形成至少一个第二阻挡墙;所述第二阻挡墙位于所述非发光区域,所述第二阻挡墙相比于所述第一阻挡墙远离所述发光区域;所述第二阻挡墙被配置为,对入射至所述第二阻挡墙的光线进行反射和/或散射,并使得光线从所述发光面板的出光面射出。在所述第一封装层和所述第一阻挡墙背离所述衬底基板的一侧、以及所述第一阻挡墙和所述第二阻挡墙之间形成第二封装层;所述第二封装层的折射率大于所述第一阻挡墙的折射率,且大于所述第二阻挡墙的折射率。
又一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的发光面板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作 示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程等的限制。
图1为相关技术中的一种OLED发光面板的结构图;
图2为根据本公开一些实施例中的一种发光面板的俯视图;
图3为根据本公开一些实施例中的另一种发光面板的俯视图;
图4为根据本公开一些实施例中的又一种发光面板的俯视图;
图5为图1所示发光面板的沿O-O'向的一种剖视图;
图6为图1所示发光面板的沿O-O'向的另一种剖视图;
图7为图1所示发光面板的沿O-O'向的又一种剖视图;
图8为图7所示结构的一种光路图;
图9为根据本公开一些实施例中的一种子像素的等效电路图;
图10为根据本公开一些实施例中的一种发光面板的制备方法的流程图;
图11为根据本公开一些实施例中的另一种发光面板的制备方法的步骤图;
图12为根据本公开一些实施例中的一种显示装置的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在 本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
OLED发光面板常常要求具有较高的亮度、较高的均匀度以及较高的可靠度,为此,多对OLED发光面板进行像素化设计,以减小制程中颗粒造成的良率损失。在此基础上,OLED发光面板中各子像素的尺寸一般较大,如图1所示,图1所示结构的中部为发光区域,这样容易使得OLED发光面板的边缘出现锯齿感的问题,进而影响OLED发光面板的美观性。
基于此,本公开的一些实施例提供了一种发光面板100。请参照图 2~图7,该发光面板100具有发光区域A及位于发光区域A旁侧的非发光区域B。示例性的,非发光区域B可以位于发光区域A的一侧、两侧、三侧或者周侧(如图2~图4所示)。
在一些实施例中,如图2~图7所示,上述发光面板100包括:衬底基板1,以及设置在衬底基板1的一侧、且位于发光区域A的多个子像素2。
上述衬底基板1的类型包括多种,可以根据实际需要选择设置。
在一些示例中,衬底基板1包括刚性衬底基板。该刚性衬底基板例如可以为玻璃衬底基板。
在另一些示例中,衬底基板1包括柔性衬底基板。该柔性衬底基板例如可以为PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)衬底基板、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸乙二醇酯)衬底基板或PI(Polyimide,聚酰亚胺)衬底基板。
上述多个子像素2的排布方式包括多种,可以根据实际需要选择设置。示例性的,该多个子像素2可以采用如图2或3所示的排布方式,或者,该多个子像素2也可以采用如图4所示的排布方式。
在一些示例中,如图9所示,每个子像素2包括:设置在衬底基板1一侧的像素驱动电路21,以及设置在该像素驱动电路21远离衬底基板1一侧的发光器件22。
上述像素驱动电路21的结构包括多种,可以根据实际需要选择设置。例如,像素驱动电路21的结构可以包括“2T1C”、“6T1C”、“7T1C”、“6T2C”或“7T2C”等结构。此处,“T”表示为薄膜晶体管,位于“T”前面的数字表示为薄膜晶体管的数量,“C”表示为存储电容器,“C”前面的数字表示为存储电容器的数量。其中,像素驱动电路21所包括的多个薄膜晶体管中,一个薄膜晶体管称为驱动晶体管,其余的薄膜晶体管称为开关晶体管。
示例性的,如图5~图7所示,上述发光器件22包括:与像素驱动电路21电连接的第二电极层221,设置在第二电极层221远离像素驱动电路21一侧的发光层222,以及设置在发光层222远离像素驱动电路21一侧的第一电极层223。
上述像素驱动电路21能够提供驱动电压至发光器件22,驱动发光器件22的发光层222发光。
此处,多个发光器件22的第一电极层223例如可以相互连接,呈一 体结构。
需要说明的是,如图2~图4所示,上述发光区域A的边界为,上述多个子像素2的发光器件22在衬底基板1上的正投影的外边界。由于上述多个子像素2中,位于边缘部分的子像素2可以呈台阶状排布,也即位于边缘部分的发光器件22可以呈台阶状排布,这样也就会使得发光区域A的边界的至少一部分呈折线状。
在一些实施例中,如图5~图7所示,上述发光面板100还包括:设置在上述多个子像素2背离衬底基板1一侧的第一封装层3。
在一些示例中,如图5~图7所示,上述多个子像素2在衬底基板1上的正投影位于第一封装层3在衬底基板1上的正投影范围内。也即,第一封装层3对该多个子像素2形成了覆盖。
这样可以利用第一封装层3对多个子像素2进行封装,对多个子像素2中的发光器件22形成保护,避免发光器件22被氧气和/或水蒸气侵蚀。
在一些实施例中,如图5~图7所示,上述发光面板100还包括:设置在第一封装层3背离衬底基板1一侧的至少一个第一阻挡墙4。该至少一个第一阻挡墙4位于非发光区域B,且设置在发光区域A中呈折线状的边界的靠近非发光区域B的一侧。示例性的,如图2~图4所示,该至少一个第一阻挡墙4可以位于台阶位置处,对台阶位置处形成填补。
在一些示例中,发光面板100可以包括一个第一阻挡墙4,也可以包括多个阻挡墙4。此处,第一阻挡墙4的数量可以根据实际需要选择设置,本公开对此不做限定。
上述至少一个第一阻挡墙4位于非发光区域B,也即,该至少一个第一阻挡墙4在衬底基板1上的正投影和多个发光器件22在衬底基板1上的正投影无交叠。这样可以避免第一阻挡墙4对发光器件22形成遮挡,进而避免影响发光器件22的正向出光,确保发光面板100的正向出光效率。
在一些示例中,第一阻挡墙4的折射率大于第一封装层3的折射率。第一阻挡墙4被配置为,将在第一封装层3内传播的光线导出,并进行散射,使得散射后的光线在发光面板100的出光面射出。
示例性的,第一阻挡墙4的折射率的范围为1.7~1.9。例如,第一阻挡墙4的折射率可以为1.7、1.75、1.8、1.88或1.9等。
示例性的,第一封装层3的折射率的范围为1.6~1.7。例如,第一封装层3的折射率可以为1.6、1.63、1.67或1.7等。
由于第一阻挡墙4的折射率大于第一封装层3的折射率,因此,在第一阻挡墙4的折射率为1.7的情况下,第一封装层3的折射率可以为1.6~1.7之间小于1.7的任意值;在第一封装层3的折射率为1.7的情况下,第一阻挡墙4的折射率可以为1.7~1.9之间大于1.7的任意值。
在发光面板100工作的过程中,如图8所示,发光器件22所发出的光线中的一部分光线会在第一封装层3内发生全反射。通过将第一阻挡墙4的折射率设置为大于第一封装层3的折射率,可以在该部分光线传输至第一阻挡墙4和第一封装层3的接触位置时,破坏全反射条件,使得该部分光线入射至第一阻挡墙4内,并在第一阻挡墙4的作用下发生散射,使得散射后的光线在发光面板100的出光面射出。这样可以使得对台阶位置处进行填补的第一阻挡墙4也能够“发出光线”,提高发光面板100的边缘处显示的连续性,削弱甚至消除发光面板100的边缘锯齿感。
本公开的一些实施例所提供的发光面板100,通过在非发光区域B内设置阻挡墙4,并使得该阻挡墙4位于发光区域A中呈折线状的边界的靠近非发光区与B的一侧,可以避免影响发光面板100的正向出光效率。而且,通过设置第一阻挡墙4的折射率大于第一封装层3的折射率,可以利用第一阻挡墙4将第一封装层3内传播的光线导出,进行散射,使得散射后的光线自第一阻挡墙4射出,这样可以提高正向出光效率,提高发光面板100的边缘处的显示亮度及连续性,有效改善发光面板100的边缘锯齿感问题。
此外,在相关技术中,通常会在发光面板的盖板上制作装饰膜,以利用该装饰膜层遮挡发光面板中位于边缘处的子像素发出的光线,改善边缘锯齿的现象,起到美化外观的作用。然而,在盖板上制作装饰膜方案,容易降低正向出光效率,且对盖板与子像素之间的对位精度要求较高,并且装饰膜和子像素分开制作,工艺集成度较低。而本公开的一些实施例通过在发光面板100的非发光区域B设置第一阻挡墙4,能够在提高正向出光效率的基础上,提高工艺集成度,降低发光面板100的工艺难度。
在一些实施例中,如图6和图7所示,上述发光面板100还包括:设置在第一阻挡墙4背离衬底基板1一侧的第二封装层5。其中,第一封装层3在衬底基板1上的正投影位于第二封装层5在衬底基板1上的正投影范围内。此时,第二封装层5对第一封装层3及第一阻挡墙4形 成了覆盖及封装,这样可以利用第二封装层5对子像素2形成进一步地保护。
在一些示例中,第二封装层5的折射率大于第一阻挡墙4的折射率。也即,第一阻挡墙4的折射率介于第一封装层3的折射率和第二封装层5的折射率之间。
示例性的,第二封装层5的折射率的范围为1.9~2.0。例如,第二封装层5的折射率可以为1.9、1.92、1.95、1.98或2.0等。
此处,由于第二封装层5的折射率大于第一阻挡墙4的折射率,因此,在第一阻挡墙4的折射率为1.9的情况下,第二封装层5的折射率可以为1.9~2.0之间大于1.9的任意值;在第二封装层5的折射率为1.9的情况下,第一阻挡墙4的折射率可以为1.7~1.9之间小于1.9的任意值。
在一些示例中,第一封装层3的折射率可以小于第二封装层5的折射率。这样发光器件22中的发光层222发出的光线在经由第一封装层3入射至第二封装层5的过程中,有可能会出现全反射现象,使得至少一部分光线在第一封装层3内传播。
通过控制第一阻挡墙4的折射率大于第一封装层3的折射率,且控制第一阻挡层4的折射率小于第二封装层5的折射率,可以使得第一封装层3内的发生全反射的光线中,至少一部分光线进入第一阻挡墙4内,并在第一阻挡墙4内发生散射后出射至发光面板100的外部,有利于改善发光区域A的边缘漏光现象,提高正向出光效率。
在一些实施例中,如图6和图7所示,上述发光面板100还包括:设置在非发光区域B、且位于第二封装层5的旁侧的至少一个第二阻挡墙6。也即,发光面板100可以包括一个第二阻挡墙6,也可以包括多个第二阻挡墙6。
在一些示例中,如图2所示,发光面板100包括一个第二阻挡墙6。该第二阻挡墙6呈环状结构,并对第二封装层5形成了包围。也即,第二阻挡墙6位于第二封装层5的周侧。
在另一些示例中,如图3和图4所示,发光面板100包括多个第二阻挡墙6。该多个第二阻挡墙6顺次排列,形成环状结构,对第二封装层5形成了包围。也即,第二阻挡墙6位于第二封装层5的周侧。
在一些示例中,第二阻挡墙6的折射率小于第二封装层5的折射率。第二阻挡墙6被配置为,对入射至第二阻挡墙6的光线进行反射和/或散射,并使得光线从发光面板100的出光面射出。
需要说明的是,如图8所示,在发光面板100工作的过程中,第一封装层3内发生全反射的光线,可能仅有部分光线会进入第一阻挡墙4内,另一部分光线继续传播,并射入第二封装层5内。该部分光线在入射至第二阻挡墙6内后,可以在第二阻挡墙6的作用下,发生反射和/或散射,并使得该部分光线从发光面板100的出光面射出。这样可以避免出现发光面板100的边缘漏光现象,并进一步提高发光面板100的正向出光效率,提高发光面板100的边缘的显示亮度,改善边缘锯齿感现象。
示例性的,第二阻挡墙6的折射率的范围为1.8~1.9。例如,第二阻挡墙6的折射率可以为1.8、1.81、1.86、1.87或1.9等。
此处,由于第二阻挡墙6的折射率小于第二封装层5的折射率,因此,在第二阻挡墙6的折射率为1.9的情况下,第二封装层5的折射率可以为1.9~2.0之间大于1.9的任意值;在第二封装层5的折射率为1.9的情况下,第二阻挡墙6的折射率可以为1.8~1.9之间小于1.9的任意值。
在一些示例中,如图7所示,第二阻挡墙6包括:靠近发光区域A一侧的第一侧面C以及靠近衬底基板1一侧的底面D,第一侧面C与底面D之间的夹角α(坡度角)的范围为40°~60°。此处,第二阻挡墙6的远离发光区域A一侧的侧面与底面D之间的夹角的范围也可以为40°~60°。
考虑第二阻挡墙6具有反射和/或散射从第一封装层3射出、并经第二封装层5入射至第二阻挡墙6的光线的作用机制,可以将坡度角α设置为40~60°,以确保第二阻挡墙6的较好的出光效果。
本公开的一些实施例所提供的发光面板100,在设置第一阻挡墙4的基础上,在非发光区域B设置第二阻挡墙6,可以利用第二阻挡墙6对第一封装层3中未被第一阻挡墙4导出的部分光线进行散射和/或反射,并使得光线从第二阻挡墙6射出,有利于进一步提高光面板100的出光效率,提高发光面板100的边缘亮度,对发光面板100的边缘进一步进行平滑化处理,进一步提高对边缘锯齿感的改善效果。
在一些示例中,如图6和图7所示,相对衬底基板1,第二阻挡墙6的背离衬底基板1一侧的表面,高于第一阻挡墙4背离衬底基板1一侧的表面。
需要说明的是,在制备形成第二封装层5的过程中,例如可以采用喷墨打印工艺制备形成,此时,在喷墨打印的过程中,第二封装层5的材料呈液态。通过设置第二阻挡墙6背离衬底基板1的一侧表面和第一 阻挡墙4背离衬底基板1的一侧表面相对衬底基板1的高度,可以在第二阻挡墙6和第一阻挡墙4之间形成缓冲区,这样在第二封装层5的材料出现略微过量的情况下,可以利用缓冲区容纳第二封装层5的材料,降低出现溢流的风险。
在一些示例中,第一阻挡墙4的厚度(也即第一阻挡墙4在垂直于衬底基板1的方向上的尺寸)的范围为5μm~9μm。相对衬底基板1,第二阻挡墙6的背离衬底基板1一侧的表面高于第一阻挡墙4背离衬底基板1一侧的表面的尺寸的范围为1μm~7μm。
示例性的,第一阻挡墙4的厚度可以为5μm、6μm、7μm、7.6μm、8.1μm或9μm。相对衬底基板1,第二阻挡墙6的背离衬底基板1一侧的表面高于第一阻挡墙4背离衬底基板1一侧的表面的尺寸可以为1μm、2.2μm、3.5μm、5μm、6μm或7μm。
在一些示例中,相对衬底基板1,第二封装层5背离衬底基板1的一侧表面与第二阻挡墙6背离衬底基板1的一侧表面相持平。此时,相对衬底基板1,第二封装层5的背离衬底基板1一侧的表面高于第一阻挡墙4背离衬底基板1一侧的表面的尺寸的范围也可以为1μm~7μm。
示例性的,第二封装层5中位于第一封装层3背离衬底基板1一侧的部分的厚度可以为10μm~12μm。例如,第二封装层5中位于第一封装层3背离衬底基板1一侧的部分的厚度可以为10μm、11μm、11.3μm或12μm。
在一些示例中,如图2~图4所示,第二阻挡墙6与第一阻挡墙4之间具有间距。也即,两者未形成连接。
此处,第二阻挡墙6与第一阻挡墙4之间的间距大小可以根据实际情况来确定,本公开实施例对其数值不作限定。
在一些示例中,第一阻挡墙4可以包括:第一有机基质,以及分布在第一有机基质中的多个第一纳米颗粒。该多个第一纳米颗粒例如可以均匀分布在第一有机基质内。第二阻挡墙6可以包括:第二有机基质,以及分布在第二有机基质中的多个第二纳米颗粒。
示例性的,发光面板100为顶发射型的发光面板。在发光面板100工作的过程中,发光器件22中的发光层222所产生的光有较大部分(例如大约为或大于40%)不能耦合到周围环境中,而是由于衬底基板1、电极层及封装层间的内反射(internal reflection)而损失,其中又有一部分光(例如大约为或大于10%)可能从发光面板100的边缘漏出。本公 开实施例通过控制第一阻挡墙4的材质,例如通过控制第一有机基质的折射率、第一纳米颗粒的粒径及分布密度,可以使得第一阻挡墙4对第一封装层3内传播的光线的至少一部分进行导出。通过控制第二阻挡墙6的材质,例如控制第二有机基质的折射率、第二纳米颗粒的粒径及分布密度,可以使得第二阻挡墙6对由第一封装层3射出、并经第二封装层5入射至第二阻挡墙6的光线进行散射和/或反射,进一步提高发光面板100的边缘亮度,消除边缘锯齿感现象。
示例性的,第一有机基质的材料可以包括丙烯酸酯类材料、环氧树脂类材料或聚氨酯类材料等,其折射率的范围可以为1.5~1.9。第二有机基质的材料也可以包括丙烯酸酯类材料、环氧树脂类材料或聚氨酯类材料等,其折射率的范围可以为1.5~1.9。
示例性的,第一纳米颗粒的材料可以包括银、铝或锌等,其粒径的范围可以为5nm~100nm;或者,第一纳米颗粒的材料可以为有机蒙脱土、二氧化钛或二氧化硅等,其粒径的范围可以为20nm~200nm。其中,第一纳米颗粒在第一有机基质中的分布密度的范围可以为0.5%wt~5%wt。
示例性的,第二纳米颗粒的材料可以包括银、铝或锌等,其粒径的范围可以为5nm~100nm;或者,第二纳米颗粒的材料可以为有机蒙脱土、二氧化钛或二氧化硅等,其粒径的范围可以为20nm~200nm。其中,第二纳米颗粒在第二有机基质中的分布密度的范围可以为0.5%wt~5%wt。
在一些示例中,第二有机基质的折射率可以大于第一有机基质的折射率,第二纳米颗粒的粒径可以大于第一纳米颗粒的粒径,第二纳米颗粒的分布密度可以大于第一纳米颗粒的分布密度。这样可以便于第一阻挡墙4能够更好地对第一封装层3中传播的光进行导出及散射,便于第二阻挡墙6能够更好地对由第一封装层3射出并经第二封装层6射向第二阻挡墙6的光进行反射和/或散射,提高出光效率,改善边缘锯齿感现象。
上述第一阻挡墙4和第二阻挡墙6的形状包括多种,可以根据实际需要选择设置。
在一些示例中,如图1所示,发光区域A中呈折线状的边界,构成至少一个台阶E。也即,发光区域A中呈折线状的边界,可以构成一个台阶,也可以构成多个台阶E。
此处,如图1所示,每个台阶E包括第一台阶面E1和第二台阶面E2。第一台阶面E1和第二台阶面E2之间具有夹角。
上述第一阻挡墙4可以呈柱状,第一阻挡墙4包括:与第一台阶面E1相对的第一柱面F1,以及与第二台阶面E2相对、且与第一柱面F1连接的第二柱面F2。其中,第一柱面F1和第二柱面F2之间的夹角,与第一台阶面E1和第二台阶面E2之间的夹角相等或大致相等。
这也就意味着,第一阻挡墙4朝向发光区域A中呈折线状的边界的部分的形状,与发光区域A中呈折线状的边界的形状相匹配。示例性的,如图1所示,在发光面板100的边缘,台阶E一般与两个子像素2相邻,通过设置与台阶E形状相匹配的第一阻挡墙4,能够利用第一阻挡墙4较为充分的导出并散射这两个相邻子像素2射入第一封装层3内的光线,使得与这两个子像素2交界的台阶E处的出光亮度得以较大幅度地提高,减小该台阶E处的出光亮度与该两个子像素2本身发光亮度的差异,可以模糊用户观察到的子像素2的边界,进而可以有效改善发光面板100的边缘锯齿感的问题。
基于此,例如,第一阻挡墙4的形状可以为三棱柱、四棱柱或五棱柱等。又如,第一阻挡墙4的形状可以为三棱台或四棱台等。
此外,如图1所示,在发光区域A中呈折线状的边界可以构成连续的多个台阶E的情况下,相应设置的多个第一阻挡墙4可以相互独立,也可以相互连接。
下面,以第一阻挡墙4的形状为三棱柱为例,对第二阻挡墙6的形状进行示意性说明。
基于此,如图1所示,第一阻挡墙4还包括:分别与第一柱面F1和第二柱面F2连接的第三柱面F3。第二阻挡墙6包括靠近发光区域A的第二侧面G,该第二侧面G与第三柱面F3相对。第二阻挡墙6的形状例如可以为如图3和4所示的四棱柱,也可以为如图2所示的环状。
在一些实施例中,如图7所示,发光面板100还可以包括:设置在第二封装层5和第二阻挡墙6背离衬底基板1一侧的第三封装层7。
在一些示例中,如图7所示,第二封装层5和第二阻挡墙6在衬底基板1上的正投影位于第三封装层7在衬底基板1上的正投影范围内。也即,第三封装层7对第二封装层5和第二阻挡墙6形成了覆盖和封装,这样可以利用第三封装层7对子像素2形成进一步的保护。
在一些示例中,第三封装层7的折射率小于第二阻挡墙6的折射率,也即,第二阻挡墙6的折射率介于第二封装层5的折射率和第三封装层7的折射率之间。
通过控制第二阻挡墙6的折射率介于第二封装层5和第三封装层7之间,可以使得通过第一封装层7射出并经过第二封装层5的光线(或称为边缘出光),能够较好的入射至第二阻挡墙6内,并在第二阻挡墙6的作用下(例如反射和/或散射)从发光面板100的出光面射出,从而可以进一步提高发光面板100的边缘出光效率,有效降低边缘漏光的损耗。
示例性的,第三封装层7的折射率的范围为1.7~1.8。例如,第三封装层7的折射率可以为1.7、1.73、1.76、1.78或1.8等。
此处,由于第三封装层6的折射率小于第二阻挡墙6的折射率,因此,在第二阻挡墙6的折射率为1.8的情况下,第三封装层7的折射率可以为1.7~1.8之间小于1.8的任意值;在第三封装层7的折射率为1.8的情况下,第二阻挡墙6的折射率可以为1.8~1.9之间大于1.8的任意值。
本公开的一些实施例还提供了一种发光面板的制备方法,采用该制备方法可以制备得到上述任一实施例所述的发光面板100。其中,发光面板100具有发光区域A和位于发光区域A旁侧的非发光区域B,发光区域A的边界的至少一部分呈折线状。如图10所示,该制备方法包括:S100~S400。
S100,提供衬底基板1。
此处,衬底基板1的类型可以参照上述一些实施例中对衬底基板1的说明,此处不再赘述。
S200,在衬底基板1的一侧形成多个子像素2。该多个子像素2位于发光区域A。
示例性的,在衬底基板1的一侧形成多个子像素2,包括:S210~S250。
S210,在衬底基板1的一侧形成多个像素驱动电路21。每个像素驱动电路21包括多个薄膜晶体管和至少一个存储电容器。
S220,在每个像素驱动电路21背离衬底基板1的一侧形成第二电极层221(也即阳极层)。
S230,在第二电极层221远离衬底基板1的一侧形成像素界定层8。像素界定层8具有多个开口,该多个开口分别暴露多个第二电极层221远离衬底基板1一侧的表面。
S240,在像素界定层8远离衬底基板1的一侧形成多个发光层222。每个发光层222位于一个开口内,或者,每个发光层222的一部分位于一个开口内,另一部分搭接在像素界定层8远离衬底基板1的一侧表面 上。
S250,步骤503:在发光层222背离衬底基板1的一侧形成第一电极层223(也即阴极层)。
此处,相互连接的第二电极层221、发光层222和第一电极层223构成发光器件22。多个发光器件22的第一电极层223例如可以相互连接,呈一体结构。
S300,在上述多个子像素2背离衬底基板1的一侧形成第一封装层3。该多个子像素2在衬底基板1上的正投影位于第一封装层3在衬底基板1上的正投影范围内。
示例性的,可以采用低温等离子体化学气相沉积(Plasma Chemical Vapor Ddeposition,简称PCVD)技术在上述多个子像素2背离衬底基板1的一侧形成第一封装层3,以便于利用第一封装层3保护第一电极层223与发光层222等结构。
S400,在第一封装层3背离衬底基板1的一侧、及发光区域A中呈折线状的至少一部分边界的旁侧形成至少一个第一阻挡墙4。第一阻挡墙4位于非发光区域B,且位于发光区域A中呈折线状的边界的靠近非发光区域B的一侧。其中,第一阻挡墙4的折射率大于第一封装层3的折射率。第一阻挡墙4被配置为,将在第一封装层3内传播的光线导出,并进行散射,使得散射后的光线在发光面板100的出光面射出。
示例性的,可以采用喷墨打印技术或者涂布、曝光、显影技术形成第一阻挡墙4。
需要说明的是,在采用喷墨打印技术形成第一阻挡墙4的情况下,在完成打印之后,还需要进行固化处理,以使得第一阻挡墙4能够具有较为稳定的形态。
此处,可以根据第一阻挡墙4的第一有机基质41的材料,选择固化处理的工艺类型。示例性的,可以采用热固化工艺对第一阻挡墙4进行固化处理,此时,固化处理的温度可以为80℃~120℃,固化处理的时间可以为3h~5h。示例性的,可以采用光固化工艺对第一阻挡墙4进行固化处理,此时,例如可以采用UV光,在温度为50℃的条件下,进行20min~30min的处理。
在采用涂布、曝光、显影技术形成第一阻挡墙4的情况下,可以对第一纳米颗粒进行表面处理,以避免第一纳米颗粒在涂胶过程中团聚,较为顺利的进行曝光、显影,确保形成的第一阻挡墙4的厚度为所需的 厚度。
示例性的,在对第一纳米颗粒进行表面处理的过程中,可以在第一有机基质中加入高分子表面活性剂,对第一纳米颗粒进行包裹,使得第一纳米颗粒能够较为均匀、稳定地分布在第一有机基质中。
本公开的一些实施例所提供的发光面板的制备方法所能实现的有益效果,与上述一些实施例中所提供的发光面板100所能实现的有益效果相同,此处不再赘述。
在一些实施例中,如图11所示,上述制备方法还可以包括:S500~S600。
S500,在第一封装层3的旁侧形成至少一个第二阻挡墙6,第二阻挡墙6位于非发光区域B,第二阻挡墙6相比于第一阻挡墙4远离发光区域A。第二阻挡墙6被配置为,对入射至第二阻挡墙6的光线进行反射和/或散射,并使得光线从发光面板100的出光面射出。
示例性的,可以采用喷墨打印工艺或者采用涂布、曝光、显影技术形成第二阻挡墙6。
此处,在采用喷墨打印工艺形成第二阻挡墙6的情况下,后续进行固化处理的条件可以参照对第一阻挡墙4的说明;在采用涂布、曝光、显影技术形成第二阻挡墙6的情况下,对第二纳米颗粒的表面处理可以参照对第一纳米颗粒的说明,此处不再赘述。
需要说明的是,在制备形成像素界定层8的过程中,可以在同依次构图工艺中制备形成第二阻挡墙6的一部分(可称为底座部分),之后可以采用喷墨打印工艺,在该底座部分上打印较少的第二阻挡墙6的材料即可完成第二阻挡墙6的制备。
在一些示例中,考虑第二阻挡墙6对由第一封装层3射出、并经第二封装层5射向第二阻挡墙6的光线的反射和/或散射的作用机制,可以对其坡度角进行定义。例如,可以控制第二阻挡墙6的坡度角的范围为40°~60°,以便于使得第二阻挡墙6具有较好的出光效果。
示例性的,在采用喷墨打印技术制备第二阻挡墙6的过程中,可以通过选择墨水(也即第二阻挡墙6的形成材料)的疏水特性,形成40°~60°的疏水角。在采用涂布、曝光及显影工艺制备第二阻挡墙6的过程中,可以控制显影工艺对刻蚀膜层(也即由第二阻挡墙6的材料形成的膜层)的刻蚀角度,例如可调整物理性蚀刻与化学性蚀刻配比、调整工艺时间、选择合适的蚀刻化学试剂等,以形成40°~60°的疏水角。
通过形成第二阻挡墙6,可以进一步提高出光面板100的边缘出光效率,提高出光面板100的边缘的亮度,消除边缘锯齿感现象。
S600,在第一封装层3和第一阻挡墙4背离衬底基板1的一侧、以及第一阻挡墙4和第二阻挡墙6之间形成第二封装层5。第二封装层5的折射率大于第一阻挡墙4的折射率,且大于第二阻挡墙6的折射率。
示例性的,可以采用喷墨打印技术在第一封装层3和第一阻挡墙4上以及第一阻挡墙4和第二阻挡墙6之间形成第二封装层5。第二阻挡墙6可以限制第二封装层5的边界。
在此步骤中,由于相对衬底基板1,第二阻挡墙6背离衬底基板1的一侧表面高于第一阻挡墙4背离衬底基板1的一侧表面,可以在第二阻挡墙6与第一阻挡墙4之间形成缓冲区,在采用喷墨打印技术形成第二封装层5的过程中,打印的墨水(也即用于形成第二封装层5的材料)可以溢至缓冲区,避免墨水溢流的风险,使得第二封装层5具有良好的封装效果。
本公开的一些实施例提供的制备方法,在非发光区域B内、且靠近发光区域A中呈折线状的至少一部分边界的旁侧形成第一阻挡墙4,可以利用第一阻挡墙4对在第一封装层3内传播的光线进行导出及散射,提高发光面板100的边缘亮度,达到削弱甚至消除边缘锯齿感的效果,进一步地,在第一阻挡墙4远离发光区域A的一侧形成第二阻挡墙6,可以利用第二阻挡墙6对未被第一阻挡墙4导出、并经由第二封装层5射向第二阻挡墙6的光线进行散射和/或反射,进一步提高发光面板100的边缘亮度,对发光面板100的边缘进一步平滑化处理,确保对边缘锯齿感的改善效果。
在一些实施例中,如图11所示,上述制备方法还可以包括:S700。
S700,在第二封装层5和第二阻挡墙6背离衬底基板1的一侧形成第三封装层7。第二封装层5和第二阻挡墙6在衬底基板1上的正投影位于第三封装层7在衬底基板1上的正投影范围内,第三封装层7的折射率小于第二阻挡墙6的折射率。
示例性的,可以采用化学气相沉积(Chemical Vapor Deposition,简称CVD)技术在第二封装层5及第二阻挡墙6背离衬底基板1的一侧形成第三封装层7。第三封装层7覆盖第二封装层5和第二阻挡墙6,能够对发光区域A内的发光器件22起到良好的水氧阻隔作用。
需要说明的是,本公开实施例可以通过控制封装材料(例如第一封 装层3、第二封装层5以及第三封装层7的材料)的种类和厚度,实现较好的柔性封装效果。此处,封装材料可选择无机、有机复合材料,这样即使封装层具有较高的厚度依旧可以保证较好的柔性;或者,可以采用原子层沉积(Atomic Layer Deposition,简称ALD)技术制备采用无机材料制备的封装层,以便于控制该封装层的厚度,进而可以使得该封装层以较小的厚度实现封装效果并且也可保持较好的柔性。
本公开的一些实施例还提供了一种显示装置1000。如图12所示,该显示装置1000可以包括:上述任一实施例中所述的发光面板100。
本公开的一些实施例所提供的显示装置1000具有与前述一些实施例所提供的发光面板100相同的有益效果,此处不再赘述。
在一些实施例中,上述显示装置1000可以为手机、平板电脑、电视机、显示器、笔记本电脑、可折叠笔记本电脑、数码相框、导航仪、灯具等任何具有显示功能或照明功能的产品或部件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种发光面板,具有发光区域和位于所述发光区域旁侧的非发光区域,所述发光区域的边界的至少一部分呈折线状;所述发光面板包括:
    衬底基板;
    设置在所述衬底基板的一侧、且位于所述发光区域的多个子像素;
    设置在所述多个子像素背离所述衬底基板一侧的第一封装层,所述多个子像素在所述衬底基板上的正投影位于所述第一封装层在所述衬底基板上的正投影范围内;以及,
    设置在所述第一封装层背离所述衬底基板的一侧的至少一个第一阻挡墙,所述第一阻挡墙位于所述非发光区域,且设置在所述发光区域中呈折线状的边界的靠近所述非发光区域的一侧;
    其中,所述第一阻挡墙的折射率大于所述第一封装层的折射率;所述第一阻挡墙被配置为,将在所述第一封装层内传播的光线导出,并进行散射,使得散射后的光线从所述发光面板的出光面射出。
  2. 根据权利要求1所述的发光面板,其中,所述第一阻挡墙的折射率的范围为1.7~1.9,所述第一封装层的折射率的范围为1.6~1.7。
  3. 根据权利要求1或2所述的发光面板,还包括:设置在所述第一阻挡墙背离所述衬底基板一侧的第二封装层;
    其中,所述第一封装层在所述衬底基板上的正投影位于所述第二封装层在所述衬底基板上的正投影范围内;
    所述第二封装层的折射率大于所述第一阻挡墙的折射率。
  4. 根据权利要求3所述的发光面板,其中,所述第二封装层的折射率的范围为1.9~2.0。
  5. 根据权利要求3或4所述的发光面板,还包括:设置在所述非发光区域、且位于所述第二封装层旁侧的至少一个第二阻挡墙;
    所述第二阻挡墙的折射率小于所述第二封装层的折射率;
    所述第二阻挡墙被配置为,对入射至所述第二阻挡墙的光线进行反射和/或散射,并使得光线从所述发光面板的出光面射出。
  6. 根据权利要求5所述的发光面板,其中,所述第二阻挡墙的折射率的范围为1.8~1.9。
  7. 根据权利要求5或6所述的发光面板,其中,所述第二阻挡墙包括:靠近所述发光区域一侧的第一侧面以及靠近所述衬底基板一侧的底面,所述第一侧面与所述底面之间的夹角的范围为40°~60°。
  8. 根据权利要求5~7中任一项所述的发光面板,其中,所述发光区域中呈折线状的边界,构成至少一个台阶;所述台阶包括第一台阶面和第二台阶面;
    所述第一阻挡墙呈柱状,所述第一阻挡墙包括:与所述第一台阶面相对的第一柱面,以及与所述第二台阶面相对、且与所述第一柱面连接的第二柱面;所述第一柱面和所述第二柱面之间的夹角,与所述第一台阶面和所述第二台阶面之间的夹角相等或大致相等。
  9. 根据权利要求8所述的发光面板,其中,所述第一阻挡墙还包括:分别与所述第一柱面和所述第二柱面连接的第三柱面;
    所述第二阻挡墙包括靠近所述发光区域的第二侧面,所述第二侧面与所述第三柱面相对。
  10. 根据权利要求5~9中任一项所述的发光面板,其中,相对所述衬底基板,所述第二阻挡墙的背离所述衬底基板一侧的表面,高于所述第一阻挡墙背离所述衬底基板一侧的表面。
  11. 根据权利要求10所述的发光面板,其中,所述第一阻挡墙的厚度的范围为5μm~9μm;
    相对所述衬底基板,所述第二阻挡墙的背离所述衬底基板一侧的表面高于所述第一阻挡墙背离所述衬底基板一侧的表面的尺寸的范围为1μm~7μm。
  12. 根据权利要求5~11中任一项所述的发光面板,其中,所述第二阻挡墙与所述第一阻挡墙之间具有间距。
  13. 根据权利要求5~12中任一项所述的发光面板,其中,所述第一阻挡墙包括第一有机基质以及分布在所述第一有机基质内的多个第一纳米颗粒;
    所述第二阻挡墙包括第二有机基质以及分布在所述第二有机基质内的多个第二纳米颗粒;
    其中,第二纳米颗粒的粒径大于第一纳米颗粒的粒径,所述第二纳米颗粒的分布密度大于所述第一纳米颗粒的分布密度。
  14. 根据权利要求13所述的发光面板,其中,所述第一纳米颗粒的粒径的范围为5nm~200nm,所述第二纳米颗粒的粒径的范围为5nm~200nm;
    所述第一纳米颗粒的分布密度的范围为0.5%wt~5%wt,所述第二纳米颗粒的分布密度的范围为0.5%wt~5%wt。
  15. 根据权利要求5~14中任一项所述的发光面板,还包括:设置在所述第二封装层和所述第二阻挡墙背离所述衬底基板一侧的第三封装层;
    所述第二封装层和所述第二阻挡墙在所述衬底基板上的正投影位于所述 第三封装层在所述衬底基板上的正投影范围内;
    所述第三封装层的折射率小于所述第二阻挡墙的折射率。
  16. 根据权利要求15所述的发光面板,其中,所述第三封装层的折射率的范围为1.7~1.8。
  17. 根据权利要求1~16中任一项所述的发光面板,其中,每个子像素包括:
    设置在所述衬底基板和所述第一封装层之间的像素驱动电路;以及,
    设置在所述像素驱动电路和所述第一封装层之间、且与所述像素驱动电路电连接的发光器件;
    其中,所述发光器件包括:
    与所述像素驱动电路电连接的第二电极层;
    设置在所述第二电极层远离所述像素驱动电路一侧的发光层;以及,
    设置在所述发光层远离所述像素驱动电路一侧的第一电极层。
  18. 一种发光面板的制备方法,所述发光面板具有发光区域和位于所述发光区域旁侧的非发光区域,所述发光区域的边界的至少一部分呈折线状;所述制备方法包括:
    提供衬底基板;
    在所述衬底基板的一侧形成多个子像素;所述多个子像素位于所述发光区域;
    在所述多个子像素背离所述衬底基板的一侧形成第一封装层;所述多个子像素在所述衬底基板上的正投影位于所述第一封装层在所述衬底基板上的正投影范围内;
    在所述第一封装层背离所述衬底基板的一侧、及所述发光区域中呈折线状的至少一部分边界的旁侧形成至少一个第一阻挡墙;所述第一阻挡墙位于所述非发光区域,且位于所述发光区域中呈折线状的边界的靠近所述非发光区域的一侧;
    其中,所述第一阻挡墙的折射率大于所述第一封装层的折射率;所述第一阻挡墙被配置为,将在所述第一封装层内传播的光线导出,并进行散射,使得散射后的光线在所述发光面板的出光面射出。
  19. 根据权利要求18所述的制备方法,还包括:
    在所述第一封装层的旁侧形成至少一个第二阻挡墙;所述第二阻挡墙位于所述非发光区域,所述第二阻挡墙相比于所述第一阻挡墙远离所述发光区域;所述第二阻挡墙被配置为,对入射至所述第二阻挡墙的光线进行反射和/ 或散射,并使得光线从所述发光面板的出光面射出;
    在所述第一封装层和所述第一阻挡墙背离所述衬底基板的一侧、以及所述第一阻挡墙和所述第二阻挡墙之间形成第二封装层;所述第二封装层的折射率大于所述第一阻挡墙的折射率,且大于所述第二阻挡墙的折射率。
  20. 一种显示装置,包括:如权利要求1~17中任一项所述的发光面板。
PCT/CN2020/105859 2019-07-31 2020-07-30 发光面板及其制备方法、显示装置 WO2021018249A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/415,015 US11864446B2 (en) 2019-07-31 2020-07-30 Light emitting panel and method for manufacturing the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910702199.5A CN110416432B (zh) 2019-07-31 2019-07-31 一种oled面板的制备方法、oled面板及oled装置
CN201910702199.5 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021018249A1 true WO2021018249A1 (zh) 2021-02-04

Family

ID=68364730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105859 WO2021018249A1 (zh) 2019-07-31 2020-07-30 发光面板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US11864446B2 (zh)
CN (1) CN110416432B (zh)
WO (1) WO2021018249A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416432B (zh) 2019-07-31 2021-12-14 京东方科技集团股份有限公司 一种oled面板的制备方法、oled面板及oled装置
CN111106260B (zh) * 2019-12-04 2020-12-08 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN111081751B (zh) * 2020-01-02 2023-01-24 京东方科技集团股份有限公司 一种显示装置及其制作方法
CN113937240A (zh) * 2021-10-09 2022-01-14 南京迪视泰光电科技有限公司 Oled显示屏及其阳极背板制备方法
CN115332271A (zh) * 2022-10-11 2022-11-11 罗化芯显示科技开发(江苏)有限公司 一种显示面板及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124103A (ja) * 2010-12-10 2012-06-28 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス表示装置用対向基板および有機エレクトロルミネッセンス表示装置
CN102779946A (zh) * 2011-05-12 2012-11-14 佳能株式会社 有机el元件
CN103187485A (zh) * 2011-12-27 2013-07-03 展晶科技(深圳)有限公司 发光二极管的制造方法
CN108538900A (zh) * 2018-05-14 2018-09-14 昆山国显光电有限公司 显示屏及显示装置
CN110416432A (zh) * 2019-07-31 2019-11-05 京东方科技集团股份有限公司 一种oled面板的制备方法、oled面板及oled装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102642398B1 (ko) 2015-06-22 2024-02-29 삼성디스플레이 주식회사 표시 장치
KR101747268B1 (ko) 2015-11-30 2017-06-14 엘지디스플레이 주식회사 유기발광 표시장치와 그를 포함한 헤드 장착형 디스플레이
CN109870846B (zh) 2016-02-02 2022-01-11 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
KR102518130B1 (ko) * 2016-08-04 2023-04-06 삼성디스플레이 주식회사 유기발광 표시장치
CN107768400B (zh) 2016-08-19 2024-05-14 京东方科技集团股份有限公司 一种照明面板及照明装置
KR102386505B1 (ko) 2016-12-05 2022-04-15 삼성디스플레이 주식회사 데코 필름, 데코 필름을 포함하는 커버 패널 및 데코 필름의 제조방법
DE102017107696A1 (de) * 2017-01-12 2018-07-12 Osram Oled Gmbh Organisches Licht emittierendes Bauelement
CN107170904B (zh) * 2017-06-30 2019-10-15 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
WO2019218626A1 (zh) 2018-05-14 2019-11-21 昆山国显光电有限公司 显示屏、显示装置及显示屏的制作方法
CN109188751B (zh) 2018-09-29 2021-11-05 武汉天马微电子有限公司 显示面板、显示装置以及显示面板的制作方法
CN109686868B (zh) * 2019-01-31 2021-08-24 上海天马微电子有限公司 显示面板和显示装置
CN112310300A (zh) * 2019-07-23 2021-02-02 群创光电股份有限公司 发光装置以及制作发光装置的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124103A (ja) * 2010-12-10 2012-06-28 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス表示装置用対向基板および有機エレクトロルミネッセンス表示装置
CN102779946A (zh) * 2011-05-12 2012-11-14 佳能株式会社 有机el元件
CN103187485A (zh) * 2011-12-27 2013-07-03 展晶科技(深圳)有限公司 发光二极管的制造方法
CN108538900A (zh) * 2018-05-14 2018-09-14 昆山国显光电有限公司 显示屏及显示装置
CN110416432A (zh) * 2019-07-31 2019-11-05 京东方科技集团股份有限公司 一种oled面板的制备方法、oled面板及oled装置

Also Published As

Publication number Publication date
CN110416432B (zh) 2021-12-14
US11864446B2 (en) 2024-01-02
CN110416432A (zh) 2019-11-05
US20220069029A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2021018249A1 (zh) 发光面板及其制备方法、显示装置
EP3211683A1 (en) Top emission oled device and manufacturing method thereof, and display device
WO2016127581A1 (zh) 像素结构、显示装置以及像素结构的制作方法
WO2020186932A1 (zh) 发光器件及其制造方法、显示装置
US20180138458A1 (en) Display device
WO2015184712A1 (zh) 一种有机发光显示装置及其制造方法
KR101727789B1 (ko) 광원 및 그 광원을 이용한 표시장치
WO2020233291A1 (zh) 显示基板及其制备方法、显示面板
US20150021581A1 (en) Organic light emitting diode display and manufacturing method thereof
US11029789B2 (en) Touch structure and method of manufacturing the same, touch substrate and touch display device
US11609366B2 (en) Flexible substrate, method of manufacturing the same, and display device
US20160293682A1 (en) Organic light-emitting display device
WO2022111076A1 (zh) 显示基板及其制造方法和显示装置
WO2023246492A1 (zh) 显示面板、显示装置和车载显示系统
CN106847861B (zh) 底发光型oled显示单元及其制作方法
US9978995B2 (en) Display substrate having a black matrix with a curved surface, method for manufacturing the same and display device
WO2022247180A1 (zh) 显示面板及显示装置
CN111883563A (zh) 显示设备
US11402685B2 (en) Display substrate and method for manufacturing the same, and display apparatus
JP7348075B2 (ja) 画素構造、表示装置及び画素構造の製造方法
CN113178530B (zh) 显示面板与显示装置
WO2022094973A1 (zh) 显示面板及显示装置
CN111667761B (zh) 显示模组和显示装置
CN114551511A (zh) 显示装置
CN115702610A (zh) 显示基板及其制备方法和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846270

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20846270

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20846270

Country of ref document: EP

Kind code of ref document: A1