WO2020233291A1 - 显示基板及其制备方法、显示面板 - Google Patents

显示基板及其制备方法、显示面板 Download PDF

Info

Publication number
WO2020233291A1
WO2020233291A1 PCT/CN2020/084884 CN2020084884W WO2020233291A1 WO 2020233291 A1 WO2020233291 A1 WO 2020233291A1 CN 2020084884 W CN2020084884 W CN 2020084884W WO 2020233291 A1 WO2020233291 A1 WO 2020233291A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
opening
display substrate
openings
light
Prior art date
Application number
PCT/CN2020/084884
Other languages
English (en)
French (fr)
Inventor
赵德江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020233291A1 publication Critical patent/WO2020233291A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate, a preparation method thereof, and a display panel.
  • Quantum dots refer to semiconductor crystal grains with a particle size ranging from 1 nm to 100 nm. Since the particle size of the quantum dot is smaller than or close to the exciton Bohr radius of its corresponding semiconductor material, it can produce quantum confinement effect. The continuous band structure will be transformed into a discrete energy level structure. Under the excitation of an external light source, the quantum dot The electrons in the dot will transition and emit light in a certain wavelength range.
  • the application of quantum dots to the display panel can make the display panel have many advantages such as long life and wide color gamut.
  • a display substrate in one aspect, includes: a substrate, a defining layer, and a plurality of quantum dot units.
  • the defining layer is disposed on the substrate, and the defining layer has a plurality of openings.
  • Each quantum dot unit is arranged in an opening, and the material of the quantum dot unit includes quantum dot material.
  • the refractive index of the material of the defining layer is smaller than the refractive index of the quantum dot material in the quantum dot unit.
  • the display substrate further includes: a reflective layer covering the sidewall of the opening; the reflective layer surrounds the quantum dot unit.
  • the thickness of the reflective layer ranges from 2 ⁇ m to 5 ⁇ m.
  • the material of the defining layer includes a reflective material.
  • the angle between the axis of the opening and the direction perpendicular to the substrate ranges from 15° to 60°.
  • the thickness of the quantum dot unit ranges from 3 ⁇ m to 8 ⁇ m.
  • the axes of the openings provided with the quantum dot unit are parallel to each other, or substantially parallel to each other.
  • the plurality of quantum dot units includes a plurality of red quantum dot units and a plurality of green quantum dot units.
  • the plurality of openings includes a plurality of first openings and a plurality of second openings. Each red quantum dot unit is arranged in a first opening, and each green quantum dot unit is arranged in a second opening.
  • the plurality of quantum dot units further includes a plurality of blue quantum dot units, and the plurality of openings further includes a plurality of third openings; each blue quantum dot unit is disposed in one third opening .
  • the display substrate further includes a plurality of transparent light-transmitting units, and the plurality of openings further includes a plurality of fourth openings; each light-transmitting unit is disposed in a fourth opening; the axis of the fourth opening is The axis of the first opening or the second opening is parallel or substantially parallel, or the axis of the fourth opening is perpendicular or substantially perpendicular to the substrate.
  • the display substrate has a plurality of sub-pixel areas; each sub-pixel area is provided with at least one opening.
  • a method for preparing a display substrate includes: forming a defined film on the substrate.
  • the delimiting film is patterned, and a plurality of openings are formed in the delimiting film to obtain a delimiting layer; the axis of at least a part of the openings is at an acute angle to a direction perpendicular to the substrate.
  • the quantum dot material is used to form a plurality of quantum dot units; each quantum dot unit is formed in one of the at least a part of the openings.
  • the opening in which the quantum dot unit is formed is configured such that light incident into the quantum dot unit and directed to the side wall of the opening is reflected in the opening at least once.
  • the patterning the delimiting film to form a plurality of openings in the delimiting film includes: curing the delimiting film; and using a laser drilling process to perform the curing process on the delimiting film
  • the defining film is patterned, and a plurality of openings are formed in the defining film after curing treatment.
  • the forming a plurality of quantum dot units includes: using an inkjet printing process or a coating process to fill the quantum dot material in at least a part of the opening to form the plurality of quantum dot units.
  • the quantum dot material includes a photosensitive quantum dot material.
  • the forming a plurality of quantum dot units includes: forming a quantum dot film on one side of the delimiting layer; a part of the quantum dot film is located in the at least a part of the opening, and the remaining part covers the delimiting layer and the at least Part of the opening.
  • a mask is used to expose and develop the quantum dot film, and the part of the quantum dot film covering the defining layer and the at least a part of the opening is removed, and the quantum dot film remains in the at least a part of the opening
  • the inner part forms the plurality of quantum dot units.
  • the preparation method before forming the plurality of quantum dot units, further includes: using an inkjet printing process or a photolithography process to fill the at least a part of the opening with a reflective material.
  • a laser drilling process is used to remove part of the reflective material, and the remaining part of the reflective material covers the sidewalls of the at least part of the opening to form a reflective layer.
  • a display device in another aspect, includes: the display substrate as described in any of the above embodiments.
  • Fig. 1 is a structural diagram of a thin film including quantum dot materials according to related technologies
  • FIG. 2 is a top view of a display substrate according to some embodiments of the present disclosure.
  • FIG. 3 is a top view of a sub-pixel area according to some embodiments of the present disclosure.
  • FIG. 4 is a top view of another sub-pixel region in some embodiments of the present disclosure.
  • Fig. 5 is a structural diagram of a display substrate according to some embodiments of the present disclosure.
  • FIG. 6 is a cross-sectional view of the display substrate in FIG. 5 along the M-M' direction;
  • FIG. 7 is another cross-sectional view of the display substrate in FIG. 5 along the M-M' direction;
  • FIG. 8 is another cross-sectional view of the display substrate in FIG. 5 along the M-M' direction;
  • FIG. 9 is a structural diagram of another display substrate according to some embodiments of the present disclosure.
  • FIG. 10 is a cross-sectional view of the display substrate in FIG. 9 along the N-N' direction;
  • FIG. 11 is another cross-sectional view of the display substrate in FIG. 9 along the N-N' direction;
  • FIG. 12 is another cross-sectional view of the display substrate in FIG. 9 along the N-N' direction;
  • FIG. 13 is a flowchart of a method for manufacturing a display substrate according to some embodiments of the present disclosure.
  • FIG. 14 is a flowchart of a method for preparing a defined layer according to some embodiments of the present disclosure.
  • FIG. 15 is a flowchart of a method for manufacturing a quantum dot unit in some embodiments of the present disclosure
  • FIG. 16 is a flowchart of another method for manufacturing a quantum dot unit in some embodiments of the present disclosure.
  • FIG. 17 is a flowchart of a method for preparing a reflective layer in some embodiments of the present disclosure.
  • FIG. 18 is a flow chart of manufacturing steps of a display substrate according to some embodiments of the present disclosure.
  • FIG. 19 is a flowchart of preparation steps of another display substrate according to some embodiments of the present disclosure.
  • FIG. 20 is a flow chart of preparation steps of still another display substrate according to some embodiments of the present disclosure.
  • FIG. 21 is a flow chart of preparation steps of still another display substrate according to some embodiments of the present disclosure.
  • FIG. 22 is a top view of a display device in some embodiments of the present disclosure.
  • FIG. 23 is a structural diagram of a display device in some embodiments of the present disclosure.
  • FIG. 24 is a structural diagram of another display device in some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • connection may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “if” is optionally interpreted to mean “when” or "when”.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances are conceivable. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviation due to, for example, manufacturing.
  • the etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the display device may include a substrate and a thin film (as shown in FIG. 1) that is provided on the light-exit side of the substrate and includes quantum dot materials.
  • the quantum dot material can emit monochromatic light with a relatively pure color under the irradiation of light emitted from the substrate. This helps to improve the color gamut of the display device, and makes the colors displayed by the display device more vivid.
  • the thickness of the film needs to be increased.
  • it is difficult to prepare a thin film with a larger thickness which not only increases the difficulty of preparing the thin film, but also easily causes the waste of the quantum dot material.
  • the display device 1000 includes: a display substrate 100 and a display panel 200 disposed opposite to the display substrate.
  • the display device 1000 has a display area A and a peripheral area B located beside the display area A.
  • the peripheral area B may be located on one side, both sides of the display area A, or set around the display area A, for example.
  • the display area A includes a plurality of sub-pixel areas S, and each sub-pixel area S is provided with one sub-pixel.
  • the sub-pixel can display one color.
  • each sub-pixel may display red, green or blue.
  • the multiple sub-pixels in the multiple sub-pixel regions S may include: multiple sub-pixels configured to display red, multiple sub-pixels configured to display green And a plurality of sub-pixels configured to display blue; or, each sub-pixel may display magenta, cyan, yellow, or white.
  • the plurality of sub-pixels in the plurality of sub-pixel regions S may include: configured to display A plurality of red sub-pixels, a plurality of sub-pixels configured to display cyan, a plurality of sub-pixels configured to display yellow, and a plurality of sub-pixels configured to display white.
  • the above-mentioned arrangement of multiple sub-pixels includes multiple, which can be selected and set according to actual needs.
  • the above multiple sub-pixels are arranged in a matrix form.
  • the types of the display device 1000 provided in the embodiments of the present disclosure include multiple types.
  • the display device 1000 may be an OLED (Organic Light Emitting Diode, organic electroluminescent diode) display device.
  • the display panel 200 includes, for example, an OLED backplane 210a disposed opposite to the display substrate 100, and a connecting structure 220a (such as acrylic glue) configured to connect the OLED backplane 210a and the display substrate 100.
  • the structure of the OLED backplane 210a is schematically described.
  • the sub-pixel regions S arranged in a row along the first direction X are referred to as the same row of sub-pixel regions S, and the sub-pixels in the same row of sub-pixel regions S may be connected to a gate line .
  • the sub-pixel regions S arranged in a row along the second direction Y are called sub-pixel regions of the same column, and the sub-pixels in the sub-pixel region S of the same column may be connected to one data line.
  • each sub-pixel may include a pixel driving circuit, and an OLED device 7 connected to the pixel driving circuit.
  • the pixel driving circuit is also electrically connected to the corresponding gate line and data line.
  • the pixel driving circuit is composed of multiple thin film transistors (TFT for short) and at least one storage capacitor and other electronic devices.
  • the multiple TFTs include one driving TFT and at least one switching TFT, and the driving TFT can be connected to the OLED device 7.
  • the aforementioned pixel driving circuit may be a 2T1C structure (T refers to thin film transistor, and C refers to storage capacitor) composed of two TFTs (including a switching TFT and a driving TFT) and a storage capacitor.
  • the above pixel circuit can also be composed of two or more TFTs (including multiple switching TFTs and one driving TFT) and at least one storage capacitor to form an mTnC structure (m ⁇ 3, n ⁇ 1, and both m and n are integers) ⁇ Pixel drive circuit.
  • the above-mentioned OLED device 7 includes an OLED cathode 72 and an OLED anode 71, and a light-emitting function layer located between the OLED cathode 72 and the OLED anode 71.
  • the light-emitting functional layer may include, for example, an organic light-emitting layer 73, a hole transport layer 74 between the organic light-emitting layer 73 and the OLED anode 71, and an electron transport layer 75 between the organic light-emitting layer 73 and the OLED cathode 72.
  • the light-emitting functional layer may also include a hole injection layer 76 disposed between the hole transport layer 74 and the OLED anode 71, and an electron injection layer disposed between the electron transport layer 75 and the OLED cathode 72.
  • the pixel driving circuit can be connected to the OLED device 7 through the OLED anode 71, for example, and apply a driving voltage to the OLED device 7 to control the light-emitting state of the OLED device 7. After the light emitted by the OLED device 7 passes through the display substrate 100, it can be Make the OLED display device realize image display.
  • the OLED backplane 210a may further include, for example, an encapsulation layer configured to encapsulate the OLED device 7.
  • the packaging layer may be a thin film packaging layer or a packaging substrate.
  • the above-mentioned display device 1000 may be a liquid crystal display device.
  • the display panel 200 may include, for example, an array substrate 210b disposed opposite to the display substrate 100 and a liquid crystal layer 220b disposed between the array substrate 210b and the display substrate 100.
  • the display panel 200 may also include a backlight module 230b disposed on the side of the array substrate 210b away from the display substrate 100.
  • the array substrate 210b and the display substrate 100 may be pasted together by a sealant, and the liquid crystal layer 220b is confined in the area enclosed by the array substrate 210b, the display substrate 100, and the sealant.
  • the structure of the array substrate 210a is schematically described.
  • the sub-pixel regions S arranged in a row along the first direction X are referred to as the same row of sub-pixel regions S, and the sub-pixels in the same row of sub-pixel regions S may be connected to a gate line .
  • the sub-pixel regions S arranged in a row along the second direction Y are called sub-pixel regions of the same column, and the sub-pixels in the sub-pixel region S of the same column may be connected to one data line.
  • each sub-pixel may include a TFT and a pixel electrode 8.
  • each sub-pixel may also include a liquid crystal capacitor (Capacitor of Liquid Crystal, C LC for short) formed with the pixel electrode 8.
  • the common electrode 9 wherein the common electrode 9 can be provided on the array substrate 210b, or can be provided on the display substrate 100.
  • the above-mentioned TFT includes a gate electrode, a source electrode and a drain electrode, wherein the gate electrode can be connected to a corresponding gate line, the source electrode can be connected to a corresponding data line, and the drain electrode can be connected to a corresponding pixel electrode 8.
  • the pixel electrode 8 and the common electrode 9 can generate an electric field under the action of their respective applied voltages to drive the liquid crystal molecules in the liquid crystal layer 220b to undergo angular deflection, and to control the state of the backlight emitted by the backlight module 230b passing through the liquid crystal layer 220b. After the light passes through the liquid crystal layer 220b and the display substrate 100 sequentially, the liquid crystal display device can realize image display.
  • Some embodiments of the present disclosure provide a display substrate 100.
  • the display device 1000 has a display area A and a peripheral area B located beside the display area A. Therefore, the display substrate 100 also has a display area A and a peripheral area B located beside the display area A, and The display area A includes a plurality of sub-pixel areas S.
  • the arrangement of the display area A, the peripheral area B and the multiple sub-pixel areas S in the display area A in the display substrate 100 is the same as the arrangement in the display device 1000.
  • the display substrate 100 includes a substrate 1, a defining layer 2 and a plurality of quantum dot units 3.
  • the substrate 1 includes a rigid substrate, such as a glass substrate.
  • the substrate 1 includes a flexible substrate, such as a PET (Polyethylene terephthalate, polyethylene terephthalate) substrate, and a PEN (Polyethylene naphthalate two formal acid glycol ester). Ester) substrate or PI (Polyimide, polyimide) substrate.
  • the above-mentioned defining layer 2 is disposed on the substrate 1.
  • the above-mentioned defining layer 2 may be directly disposed on one side surface of the substrate 1.
  • at least one functional film such as a buffer layer or an encapsulation film may also be provided between the above-mentioned defining layer 2 and the substrate 1.
  • the above-mentioned defining layer 2 has a plurality of openings K. Among them, the number of openings K can be selected and set according to actual needs.
  • the shape of the above-mentioned opening K includes many kinds. Exemplarily, the shape of the above-mentioned opening K may be circular or rectangular as shown in FIG. 5. The shape of the opening K can be selected and set according to actual needs.
  • the material of each quantum dot unit 3 includes a quantum dot material.
  • the quantum dot material includes a plurality of quantum dots and ligands respectively combined with the plurality of quantum dots, wherein the quantum dots and the photosensitive ligand are usually combined in a coordinated bonding manner.
  • the quantum dot when the quantum dot is excited by light from the outside, the electrons therein will undergo a transition, causing the quantum dot to emit light. Therefore, the light incident on the quantum dot unit 3 will excite the quantum dots in the quantum dot unit 3, causing it to emit colored light.
  • the wavelength of the light emitted by the quantum dots will change with the change of the particle size of the quantum dots, that is, quantum dots of different particle sizes can emit light of different colors.
  • the particle size of the quantum dots can be adjusted so that multiple quantum dot units 3 emit light of different colors.
  • the material of the aforementioned quantum dots may be CdSe (cadmium selenide) nanocrystals.
  • the aforementioned multiple quantum dot units 3 are configured to emit light of multiple colors.
  • the multiple colors include, for example, three primary colors.
  • the three primary colors are, for example, red, green, and blue. That is, the plurality of quantum dot units 3 includes: a quantum dot unit configured to emit red light, a quantum dot unit configured to emit green light, and a quantum dot unit configured to emit blue light.
  • the particle size of the quantum dots in the quantum dot unit configured to emit red light the particle size of the quantum dots in the quantum dot unit configured to emit green light
  • the size of the quantum dots in the quantum dot unit configured to emit blue light The particle size is different from each other.
  • the particle size of the quantum dots in the quantum dot unit configured to emit red light may be, for example, 2.4 nm
  • the particle size of the quantum dots in the quantum dot unit configured to emit green light may be, for example, 1.7 nm.
  • the particle size of the quantum dots in the quantum dot unit that emits blue light may be 1.0 nm, for example.
  • each quantum dot unit 3 is disposed in an opening K.
  • the multiple quantum dot units 3 can be arranged in multiple ways.
  • the plurality of quantum dot units 3 are arranged in the plurality of openings K in a one-to-one correspondence.
  • the plurality of quantum dot units 3 are arranged in a part of the openings K in a one-to-one correspondence.
  • the axis of the opening K provided with the quantum dot unit 3 has an included angle ⁇ between the axis perpendicular to the substrate 1 and the included angle ⁇ At an acute angle.
  • the opening K provided with the quantum dot unit 3 is configured such that the light incident into the quantum dot unit 3 and incident on the side wall of the opening K is reflected in the opening K at least once.
  • the quantum dot unit 3 After the light enters the quantum dot unit 3, part of it will be absorbed by the quantum dot unit 3, so that the quantum dots emit light.
  • the light incident on the side wall of the opening K provided with the quantum dot unit 3 includes at least a part of the light from outside the quantum dot unit 3.
  • the light incident on the side wall of the opening K may also include light emitted by at least a part of the quantum dot material in the quantum dot unit 3.
  • the light emitted after passing through the quantum dot unit 3 includes the light emitted by the quantum dots in the quantum dot unit 3.
  • the propagation distance of the light in the quantum dot unit 3 can be effectively increased, and the quantum dot unit 3 can be lengthened.
  • the interaction time between the quantum dot material in the quantum dot unit 3 and the light beam makes the interaction between the quantum dot material in the quantum dot unit 3 and the light beam relatively sufficient, which improves the utilization rate of the light beam and the quantum dot material.
  • the reflection occurring in the opening K may also include total reflection, which is beneficial to further improve the utilization of the light and quantum dot materials.
  • the axis of the opening K provided with the quantum dot unit 3 is adjusted so that the angle between the axis of the opening K and the direction perpendicular to the substrate 1 ⁇ is an acute angle, and makes the light incident into the quantum dot unit 3 and directed to the side wall of the opening K to be reflected at least once in the opening K, which can effectively increase the light incident into the quantum dot unit 3 in the quantum dot
  • the internal propagation distance of the unit 3 prolongs the interaction time between the quantum dot material in the quantum dot unit 3 and the above light, so that the quantum dot material in the quantum dot unit 3 can interact with the above light more fully. Therefore, the utilization rate of the above-mentioned light and quantum dot materials is improved.
  • some embodiments of the present disclosure can improve the utilization rate of light. In this case, it is avoided to increase the thickness L3 of the quantum dot unit 3, thereby reducing the amount of quantum dot material used in the process of preparing the quantum dot unit 3, and avoiding increasing the process difficulty of preparing the quantum dot unit 3.
  • the light incident to the quantum dot unit 3 is the light emitted by the backlight module 230b and transmitted through the liquid crystal layer 220b.
  • the light incident to the quantum dot unit 3 is the light emitted by the OLED device 7.
  • the light incident to the quantum dot unit 3 may be referred to as a backlight.
  • the direction in which the backlight enters the quantum dot unit 3 may include multiple, which may be selected and set according to actual needs.
  • the backlight may be incident into the quantum dot unit 3 along the direction from the substrate 1 to the boundary layer 2 (as shown in FIG. 6 ).
  • the substrate 1 is disposed on the side of the boundary layer 2 close to the display panel 200.
  • the backlight can also be incident into the quantum dot unit 3 along the direction from the boundary layer 2 to the substrate 1 (as shown in FIG. 7). At this time, the substrate 1 is disposed on the side of the boundary layer 2 away from the display panel 200. .
  • the incident angle of the backlight to the quantum dot unit 3 may include multiple types.
  • the backlight may be incident on the quantum dot unit 3 in a direction perpendicular to the substrate 1 (as shown in FIG. 6).
  • the incident direction of the backlight to the quantum dot unit 3 may also be an acute angle with the direction perpendicular to the substrate 1.
  • the axis of the opening K can also increase the propagation distance of the backlight in the quantum dot unit 3, prolong the interaction time between the quantum dot material in the quantum dot unit 3 and the backlight, and improve the utilization rate of the backlight .
  • the light incident on the side wall of any opening K will not pass through the defining layer 2 and be incident on the quantum dot unit 3 in the adjacent opening K, which can avoid the occurrence of quantum dots in the adjacent opening K.
  • the unit 3 is ignited by mistake and emits light.
  • the light emitted by the quantum dots in each quantum dot unit 3 will be reflected at the side wall of the defining layer 2 and propagate in a direction away from the side where the backlight is incident, so that adjacent quantum dot units 3 can be avoided.
  • the emitted light has crosstalk, avoiding color mixing, which is beneficial to improve the color gamut and contrast of the display product to which the display substrate 100 is applied.
  • the axis of the opening K of the quantum dot unit 3 is provided with the angle range of the angle ⁇ between the direction perpendicular to the substrate 1 It can be 15° ⁇ 60°.
  • the angle of the aforementioned included angle ⁇ may be 15°, 20°, 30°, 45°, or 60°. This is beneficial to enable the light to be reflected once in the opening K provided with the quantum dot unit 3, thereby improving the utilization rate of the light.
  • the size of the aforementioned included angle ⁇ can be adjusted according to the light absorption characteristics of the quantum dot material in the quantum dot unit 3. Exemplarily, if the light absorption of the quantum dot material is good, the angle ⁇ may be slightly smaller; if the light absorption of the quantum dot material is weak, the angle ⁇ may be slightly larger.
  • the axes of the openings K provided with the quantum dot unit 3 are parallel to each other or substantially parallel to each other. That is, the inclination direction and the inclination angle of the axis of each opening K provided with the quantum dot unit 3 are substantially the same.
  • the inclination angle or direction of the axis of each opening K provided with the quantum dot unit 3 may have some changes, but the actual comparison due to the process error Small, which makes the axis tilt direction and tilt angle of each opening approximately the same.
  • This is beneficial to simplify the process of preparing the openings K provided with the quantum dot unit 3.
  • this is also beneficial to improve the distribution uniformity of the openings K, and improve the distribution uniformity of the light exit area on the light exit side of the display substrate 100.
  • the thickness L3 of the quantum dot unit 3 may be 3 ⁇ m-8 ⁇ m along the direction perpendicular to the substrate 1.
  • the thickness L3 of the quantum dot unit 3 may be 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, or 8 ⁇ m. In this way, while ensuring a high light utilization rate, the quantum dot unit 3 can have a smaller thickness, reduce the amount of quantum dot material used, and avoid increasing the process difficulty of preparing the quantum dot unit 3.
  • the refractive index of the material of the defining layer 2 is smaller than the refractive index of the quantum dot material in the quantum dot unit 3. That is, the material of the defining layer 2 is an optically thin medium relative to the quantum dot material in the quantum dot unit 3, and the quantum dot material is an optically dense medium relative to the material of the defining layer 2.
  • the material of the defining layer 2 includes multiple types, which can be selected and set according to actual needs.
  • the material of the defining layer 2 may be an organic material.
  • the display substrate 100 further includes a reflective layer 5 covering the sidewall of the opening K, and the reflective layer 5 surrounds the quantum dot unit 3.
  • the opening K covered with the reflective layer 5 is the opening K provided with the quantum dot unit 5.
  • the opening K covered with the reflective layer 5 may also include the opening K without the quantum dot unit 5.
  • the reflective layer 5 includes multiple materials, which can be selected and set according to actual needs.
  • the material of the reflective layer 5 may be a material with a reflectivity greater than or equal to 70%, which can ensure that the reflective layer 5 has a good light reflection effect.
  • the material of the reflective layer 5 may be ink or metal material (such as silver, molybdenum, aluminum, nickel, etc.) with higher reflectivity.
  • the reflective layer 5 covers the sidewall of the opening K and surrounds the quantum dot unit 3, so that the reflective layer 5 has a tubular structure. In this way, the light incident on the reflective layer 5 at any incident angle can be reflected (or totally reflected), which is beneficial to improve the reflection efficiency of the light and further improve the utilization rate of the light.
  • the thickness L5 of the reflective layer 5 can be selected and set according to actual needs.
  • the thickness L5 of the reflective layer 5 may be 2 ⁇ m to 5 ⁇ m.
  • the thickness L5 of the reflective layer 5 may be 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m, for example. This can not only ensure that the reflective layer 5 has a good light reflection effect, but also avoid the waste of materials forming the reflective layer 5.
  • the material defining the layer 2 may also include a reflective material.
  • the reflective material may be, for example, a material with increased reflection function.
  • the color of the backlight provided to the display substrate 100 in the above-mentioned display device 1000 includes multiple types, such as white or blue.
  • the types of colors to be displayed by the multiple sub-pixels in the above-mentioned display device 1000 include multiple types, such as red, green, and blue, and also magenta, cyan, yellow, and white.
  • the quantum dot units 3 in the display substrate 100 have multiple arrangements.
  • the backlight provided by the display device 1000 to the display substrate 100 is white light or blue light, and the colors required to be displayed by multiple sub-pixels in the display device 1000 include red, green, and blue as an example.
  • the arrangement of the quantum dot unit 3 is schematically illustrated.
  • the backlight provided by the display device 1000 to the display substrate 100 is white light.
  • the plurality of quantum dot units 3 in the display substrate 100 and the plurality of openings K in the defining layer 2 are arranged in one-to-one correspondence.
  • the plurality of quantum dot units 3 includes a plurality of red quantum dot units 31, a plurality of green quantum dot units 32 and a plurality of blue quantum dot units 33.
  • the plurality of openings K includes a plurality of first openings K1, a plurality of second openings K2, and a plurality of third openings K3.
  • each red quantum dot unit 31 is disposed in a first opening K1
  • each green quantum dot unit 32 is disposed in a second opening K2
  • each blue quantum dot unit 33 is disposed in a third opening K3 .
  • the red quantum dot unit 31 can emit red light when it is excited by the backlight; the green quantum dot unit 32 can emit green light when it is excited by the backlight; the blue quantum dot unit 33 can emit green light when it is excited by the backlight. When excited, blue light can be emitted.
  • the backlight provided by the display device 1000 to the display substrate 100 is blue light.
  • the plurality of quantum dot units 3 in the display substrate 100 are arranged in a one-to-one correspondence with some of the openings K of the defining layer 2.
  • the plurality of quantum dot units 3 includes a plurality of red quantum dot units 31 and a plurality of green quantum dot units 32.
  • the plurality of openings K includes a plurality of first openings K1 and a plurality of second openings K2. Wherein, each red quantum dot unit 31 is disposed in a first opening K1, and each green quantum dot unit 32 is disposed in a second opening K2.
  • the plurality of red quantum dot units 31 can emit red light when they are excited by the backlight.
  • the plurality of green quantum dot units 32 can emit green light when being excited by the backlight.
  • the display substrate 100 further includes a plurality of transparent light-transmitting units 4.
  • the plurality of openings K further includes a plurality of fourth openings K4.
  • Each light transmitting unit 4 is arranged in a fourth opening K4.
  • Each light-transmitting unit 4 and between each light-transmitting unit 4 and a plurality of quantum dot units 3 can be separated from each other by a boundary layer 2.
  • the plurality of transparent light-transmitting units 4 can allow the backlight to pass through without obstruction. In this way, there is no need to additionally provide a quantum dot unit capable of emitting blue light, which is beneficial to simplify the process of preparing and forming the display substrate 100 and save the amount of quantum dot material used.
  • the fourth opening K4 can be arranged in multiple ways, which can be selected and arranged according to actual needs.
  • the axis of the fourth opening K4 is parallel or substantially parallel to the axis of the first opening K1 or the second opening K2, that is, the axis of the fourth opening K4 is parallel to the axis of the first opening K1 or the
  • the inclination directions and inclination angles of the axes of the two openings K2 are the same or approximately the same.
  • the multiple first openings K1, multiple second openings K2, and multiple fourth openings K4 can be prepared and formed simultaneously in a single patterning process, which is beneficial to simplify the process of preparing and forming the display substrate 100 and improve the production efficiency of the display substrate 100 .
  • the axis of the fourth opening K4 is perpendicular or substantially perpendicular to the substrate 1. This can make the process of preparing and forming the above-mentioned multiple openings K4 relatively simple and easy to implement, and avoid increasing the difficulty of preparing and forming the display substrate 100.
  • the display substrate 100 further includes a protective layer disposed on the side of the defining layer 2 away from the substrate 1, so as to use the protective layer to planarize the surface of the side of the defining layer 2 away from the substrate 1.
  • the protective layer and the light-transmitting unit 4 may be an integral structure, that is, the two are made of the same material simultaneously. This is beneficial to simplify the manufacturing process of the display substrate 100.
  • the light-transmitting unit 4 can also be separately prepared from transparent materials.
  • the material of the light transmission unit 4 may be acrylic glue or organic resin material.
  • each sub-pixel region S is provided with at least one opening K.
  • an opening K is provided in each sub-pixel area S. That is, the multiple openings K of the display substrate 100 are provided in the multiple sub-pixel regions S in a one-to-one correspondence.
  • each quantum dot unit 3 corresponds to the sub-pixels in the above-mentioned display device 1000 one by one.
  • multiple openings K are provided in each sub-pixel area S.
  • one sub-pixel in the above-mentioned display device 1000 corresponds to a plurality of quantum dot units 3.
  • each quantum dot unit 3 is arranged in a one-to-one correspondence with the sub-pixels, the size of the corresponding quantum dot unit 3 will also be relatively large. In this way, after the backlight enters the quantum dot unit 3 and the quantum dot unit 3 is excited, the phenomenon of uneven light emission is likely to occur.
  • each sub-pixel in the display device 1000 can be divided into a plurality of sub-sub-pixels arranged at intervals.
  • Each sub-pixel area S in the display substrate 100 may be divided into a plurality of sub-sub-pixel areas S0 arranged at intervals.
  • the boundary pattern of each sub-sub-pixel area S0 may be a circle (as shown in FIG. 3) or a quadrilateral (as shown in FIG. 4), for example.
  • each quantum dot unit 3 corresponds to one sub-sub-pixel arrangement one by one.
  • Some embodiments of the present disclosure also provide a method for preparing a display substrate. As shown in Figure 13, the preparation method includes S100-S300.
  • a defining film 20 is formed on the substrate 1.
  • a coating process may be used to form the defining film 20 on the substrate 1.
  • the type of the substrate 1 can refer to the type of the substrate 1 provided in some of the above-mentioned embodiments, which will not be repeated here.
  • the defining film 20 is patterned, a plurality of openings K are formed in the defining film 20, and the defining layer 2 is obtained.
  • the angle ⁇ between the axis of at least a part of the openings K and the direction perpendicular to the substrate 1 is an acute angle.
  • the defining film 20 is patterned, and a plurality of openings K are formed in the defining film 20, including S210 to S220.
  • the process of curing the defining film 20 can be selected and set according to the nature of the material of the defining film 20.
  • the material of the defining film 20 is sensitive to temperature.
  • a thermal strengthening process can be used to cure the defining film 20.
  • the material of the defining film 20 is more sensitive to ultraviolet rays.
  • an ultraviolet curing process can be used to cure the defining film 20.
  • the structure of the defining film 20 can be made more stable.
  • the overall shape of the delimiting film 20 can be made relatively stable and not easily deformed.
  • a laser drilling process is used to pattern the cured defining film 20 to form a plurality of Opening K.
  • each opening K having an included angle ⁇ between the axis and the direction perpendicular to the substrate 1 the axes are parallel to each other or substantially parallel to each other. That is, the inclination direction and the inclination angle of each opening K are the same or approximately the same.
  • the inclination angle or direction of each opening K may have some changes, but because the error in the process is actually relatively small, the axis of each opening is The tilt direction and tilt angle are approximately the same.
  • the aforementioned included angle ⁇ may range from 15° to 60°.
  • the angle ⁇ may be 15°, 20°, 30°, 45°, or 60°. This is beneficial to enable the light to be reflected once in the opening K provided with the quantum dot unit 3, thereby improving the utilization rate of the light.
  • the equipment used in the laser drilling process may be a laser, for example.
  • the aforementioned angle ⁇ is the angle between the propagation direction of the laser light emitted by the laser and the direction perpendicular to the substrate 1.
  • the propagation angle of the laser light emitted by the laser can be adjusted according to the light absorption characteristics of the quantum dot material to be formed into the quantum dot unit 3, and the inclination angle of the opening K can be determined.
  • the aperture size of the opening K can be determined by controlling the position of the laser and the punching capability of the laser.
  • a plurality of quantum dot units 3 are formed by using a quantum dot material.
  • Each quantum dot unit 3 is formed in one of the above-mentioned at least a part of the opening K.
  • the opening K in which the quantum dot unit 3 is formed is configured such that light incident into the quantum dot unit 3 and directed to the side wall of the opening K is reflected in the opening K at least once.
  • the light incident on the side wall of the opening K provided with the quantum dot unit 3 includes a backlight from outside the quantum dot unit 3 (for example, the backlight provided by the display device 1000 to which the display substrate 100 is applied) and the quantum dot unit The light emitted by the quantum dots in 3.
  • a plurality of openings K having an included angle ⁇ between the axis and the direction perpendicular to the substrate 1 are formed on one side of the substrate 1, and
  • the quantum dot unit 3 is formed in the opening K, so that the light incident into the quantum dot unit 3 and directed to the sidewalls of the openings K will be reflected at least once in the openings K.
  • the axis of all openings K provided with the quantum dot unit 3 is perpendicular to the substrate 1, which increases the propagation distance of the light in the quantum dot unit 3, and extends the interaction between the quantum dot material and the light. Time enables the quantum dot material in the quantum dot unit 3 to have a relatively sufficient interaction with the above-mentioned light, which improves the utilization rate of light and the quantum dot material.
  • the embodiments of the present disclosure can avoid Increasing the thickness of the quantum dot unit 3 can further reduce the amount of quantum dot material used in the process of forming the quantum dot unit 3 and avoid increasing the process difficulty of forming the quantum dot unit 3.
  • the refractive index of the material defining the layer 2 is less than the refractive index of the quantum dot material.
  • the material of the delimiting layer 2 is an optically dense medium relative to the quantum dot material in the quantum dot unit 3
  • the quantum dot material of the quantum dot unit 3 is an optically dense medium relative to the material of the delimiting layer 2.
  • the light that enters the quantum dot unit 3 and is directed to the side wall of the opening K is equivalent to being directed from the optically dense medium to the lightly thinned medium.
  • the material of the defining layer 2 is a reflective material.
  • the light-reflecting material may be, for example, a material having an increased reflection function. This can avoid being limited by the size of the material of the defining layer 2 and the refractive index of the quantum dot material, and can also avoid being limited by the size of the incident angle of the light incident on the side wall of the opening K, so that the light is incident on the opening K. After the side wall is on, reflection or total reflection will occur, and the incident light can be basically reflected back to the inside of the quantum dot unit 3. This helps to improve the utilization of light.
  • a plurality of quantum dot units 3 are formed, including S310a.
  • an inkjet printing process or a coating process is used to fill the quantum dot material in at least a part of the opening K to form a plurality of quantum dot units 3.
  • the quantum dot material can be directly formed in at least a part of the opening K, and a plurality of quantum dot units 3 can be directly formed. This is beneficial to simplify the process flow of preparing and forming a plurality of quantum dot units 3, and simplify the process flow of preparing and forming the display substrate 100.
  • a plurality of quantum dot units 3 are formed, including S310b to 320b.
  • a quantum dot film 30 is formed on one side of the defining layer 2.
  • a part of the quantum dot film 30 is located in at least a part of the opening K, and the remaining part covers the defining layer 2 and at least a part of the opening K.
  • a coating process (such as a spraying process or a spin coating process) may be used to coat a photosensitive quantum dot material on one side of the defining layer 2 to form the quantum dot film 30.
  • a part of the photosensitive quantum dot material will fall into the plurality of openings K (including at least a part of the above-mentioned openings K) in the defining layer 2, and naturally fill the plurality of openings K, Another part of the photosensitive quantum dot material covers the defining layer 2 and the plurality of openings K.
  • the quantum dot material in the quantum dot film 30 includes a photosensitive quantum dot material.
  • the photosensitive quantum dot material includes a plurality of quantum dots, and photosensitive ligands respectively combined with the plurality of quantum dots.
  • the photosensitive ligand has photosensitive properties, that is, under the irradiation of light (such as ultraviolet light), the photosensitive ligand will be cured or degraded according to the material used.
  • the material of the photosensitive ligand includes a photocurable material, or the material of the photosensitive ligand includes a photodegradable material.
  • the quantum dot film 30 is exposed and developed using a mask, and the part of the quantum dot film 30 covering the defining layer 2 and at least a part of the opening K is removed.
  • the quantum dot The portion of the thin film 30 remaining in at least a part of the opening K forms a plurality of quantum dot units 3.
  • exposing and developing the quantum dot film 30 is represented by setting a mask on the side of the quantum dot film 30 away from the substrate 1.
  • the membrane includes a thin film retention area (the corresponding part of the quantum dot film 30 is not shielded) and a film removal area (the corresponding part of the quantum dot film 30 is shielded), and then the quantum dot film 30 and the film are retained
  • the part corresponding to the area is exposed to solidify, and then the quantum dot film 30 is developed to remove the part of the quantum dot film 30 corresponding to the completely removed area.
  • the remaining part of the quantum dot film 30 (by The cured part) is a plurality of quantum dot units 3.
  • exposing and developing the quantum dot film 30 is expressed as: a mask is provided on the side of the quantum dot film 30 away from the substrate 1.
  • the membrane plate includes a thin film retention area (to shield the corresponding part of the quantum dot film 30) and a thin film removal area (not to shield the corresponding part of the quantum dot film 30), and then the quantum dot film 30 and the film are removed Expose the corresponding part of the zone to degrade the part, and then develop the quantum dot film 30 to remove the part of the quantum dot film 30 that corresponds to the film removal zone, so that the quantum dot film 30 is not degraded , That is, multiple quantum dot units 3 are obtained.
  • the developing material used is different.
  • a post-baking process can also be used to shape the quantum dot unit 3 to stabilize the structure of the quantum dot unit 3.
  • the preparation method of the display substrate further includes S250-S260.
  • the reflective material when the reflective material is filled in the at least part of the opening K using an inkjet printing process, the reflective material may naturally fall into the at least part of the opening K to fill the at least part of the opening K.
  • a reflective film may be formed on one side of the defining layer 2 (a part of the reflective film is located in the at least part of the opening K). Inside, the remaining part covers the defining layer 2 and the above-mentioned at least part of the opening K), and then the reflective film is patterned by a photolithography process, leaving the part of the reflective film in the above-mentioned at least part of the opening K. In this way, the reflective material is filled in at least a part of the opening K.
  • a laser drilling process is used to remove a part of the reflective material, and the remaining part of the reflective material covers at least a part of the sidewalls of the opening K to form the reflective layer 5.
  • a laser perforating process is used to form the reflective layer 5
  • a laser perforating process is used to form at least a portion of the opening K in the defining film 20.
  • the incident angle of the laser in the two laser perforating processes is It can be unchanged.
  • the reflective layer 5 is formed in at least a part of the opening K, that is, the aperture of the at least part of the opening K is larger than the aperture of the reflective layer 5. Therefore, the laser spot diameter in S260 is smaller than the laser spot diameter in S220.
  • the reflective layer 5 in the at least a part of the opening K may cover the sidewall of the at least a part of the opening K.
  • the thickness of the reflective layer 3 may be 2 ⁇ m to 5 ⁇ m.
  • the thickness L5 of the reflective layer 5 may be 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m, for example.
  • the reflective material may be, for example, ink or metal with higher reflectivity.
  • the distribution of the plurality of openings K can be adjusted by referring to the correspondence between the sub-pixel regions S and the openings K in some of the above embodiments. Location, I won’t repeat it here.
  • the display device 1000 includes the display substrate 100 provided in some of the above embodiments.
  • the above-mentioned display device may be, for example, a liquid crystal display device, or, for example, may be an OLED display device.
  • the display substrate 100 when the display substrate 100 is applied to a liquid crystal display device or an OLED display device, the display substrate may further include a black matrix 6, for example.
  • the black matrix 6 may be arranged between every two adjacent openings K, between the black matrix 6 and the quantum dot unit 3, or between the black matrix and the light-transmitting unit 4 through a defining layer. 2 separated.
  • the display substrate 100 included in the above-mentioned display device 1000 has the same structure and beneficial technical effects as the display substrate 100 provided in some of the above-mentioned embodiments, and will not be repeated here.
  • the above-mentioned display device 200 is any product or component with a display function, such as electronic paper, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator, etc.

Abstract

一种显示基板,包括:衬底、界定层以及多个量子点单元。所述界定层设置在所述衬底上,所述界定层中具有多个开口。每个量子点单元设置于一个开口内,所述量子点单元的材料包括量子点材料。其中,设置有所述量子点单元的开口的轴线与垂直于所述衬底的方向之间呈锐角;所述开口被配置为,使入射至所述量子点单元内并射向所述开口的侧壁的光线,在所述开口内发生至少一次反射。

Description

显示基板及其制备方法、显示面板
本申请要求于2019年05月22日提交的、申请号为201910430826.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及其制备方法、显示面板。
背景技术
随着显示技术的不断发展,人们对显示器件的显示质量要求也越来越高。
量子点是指粒径范围为1nm~100nm的半导体晶粒。由于量子点的粒径小于或接近其对应的半导体材料的激子玻尔半径,能够产生量子限域效应,连续的能带结构会转变为分立的能级结构,在外部光源的激发下,量子点中的电子会发生跃迁并发出一定波长范围的光。将量子点应用于显示面板,可以使得显示面板具有寿命长、色域广等多个优点。
发明内容
一方面,提供一种显示基板。所述显示基板包括:衬底、界定层以及多个量子点单元。所述界定层设置在所述衬底上,所述界定层中具有多个开口。每个量子点单元设置于一个开口内,所述量子点单元的材料包括量子点材料。其中,设置有所述量子点单元的开口的轴线与垂直于所述衬底的方向之间呈锐角;所述开口被配置为,使入射至所述量子点单元内并射向所述开口的侧壁的光线,在所述开口内发生至少一次反射。
在一些实施例中,所述界定层的材料的折射率小于所述量子点单元中量子点材料的折射率。
在一些实施例中,所述显示基板,还包括:覆盖在所述开口的侧壁上的反射层;所述反射层包围所述量子点单元。
在一些实施例中,沿垂直于所述开口的轴线方向,所述反射层的厚度的范围为2μm~5μm。
在一些实施例中,所述界定层的材料包括反光材料。
在一些实施例中,所述开口的轴线与垂直于所述衬底的方向之间的角度的范围为15°~60°。
在一些实施例中,沿垂直于所述衬底的方向,所述量子点单元的厚度的范围为3μm~8μm。
在一些实施例中,设置有所述量子点单元的各开口的轴线相互平行,或 大致相互平行。
在一些实施例中,所述多个量子点单元包括多个红色量子点单元和多个绿色量子点单元。所述多个开口包括多个第一开口和多个第二开口。每个红色量子点单元设置于一个第一开口内,每个绿色量子点单元设置于一个第二开口内。
在一些实施例中,所述多个量子点单元还包括多个蓝色量子点单元,所述多个开口还包括多个第三开口;每个蓝色量子点单元设置于一个第三开口内。或者,所述显示基板还包括多个透明的透光单元,所述多个开口还包括多个第四开口;每个透光单元设置在一个第四开口内;所述第四开口的轴线与所述第一开口或所述第二开口的轴线平行或大致平行,或者,所述第四开口的轴线垂直或大致垂直于所述衬底。
在一些实施例中,所述显示基板具有多个子像素区域;每个子像素区域内设置有至少一个开口。
另一方面,提供一种显示基板的制备方法。所述显示基板的制备方法包括:在衬底上形成界定薄膜。图案化所述界定薄膜,在所述界定薄膜中形成多个开口,得到界定层;所述多个开口中的至少一部分开口的轴线与垂直于所述衬底的方向呈锐角。采用量子点材料形成多个量子点单元;每个量子点单元形成在所述至少一部分开口中的一个开口内。其中,形成有所述量子点单元的开口被配置为,使入射至所述量子点单元内并射向所述开口的侧壁的光线,在所述开口内发生至少一次反射。
在一些实施例中,所述图案化所述界定薄膜,在所述界定薄膜中形成多个开口,包括:对所述界定薄膜进行固化处理;采用激光打孔工艺对经固化处理后的界定薄膜界定薄膜进行图案化,在所述经固化处理后的界定薄膜中形成多个开口。
在一些实施例中,所述形成多个量子点单元,包括:采用喷墨打印工艺或涂覆工艺,将所述量子点材料填充在至少一部分开口内,形成所述多个量子点单元。
在一些实施例中,所述量子点材料包括感光量子点材料。所述形成多个量子点单元,包括:在所述界定层的一侧形成量子点薄膜;所述量子点薄膜的一部分位于所述至少一部分开口内,其余部分覆盖所述界定层和所述至少一部分开口。采用掩膜板对所述量子点薄膜进行曝光和显影,去除所述量子点薄膜中覆盖所述界定层和所述至少一部分开口的部分,所述量子点薄膜中的保留在所述至少一部分开口内的部分,形成所述多个量子点单元。
在一些实施例中,在所述形成多个量子点单元之前,所述制备方法还包括:采用喷墨打印工艺或光刻工艺,将反光材料填充在所述至少一部分开口中。采用激光打孔工艺,去除一部分反光材料,剩余部分反光材料覆盖在所述至少一部分开口的侧壁上,形成反射层。
又一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的显示基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程等的限制。
图1为根据相关技术中的一种包括量子点材料的薄膜的结构图;
图2为根据本公开一些实施例中的一种显示基板的俯视图;
图3为根据本公开一些实施例中的一种子像素区域的俯视图;
图4为根据本公开一些实施例中的另一种子像素区域的俯视图;
图5为根据本公开一些实施例中的一种显示基板的结构图;
图6为图5中的显示基板沿M-M'向的一种剖视图;
图7为图5中的显示基板沿M-M'向的另一种剖视图;
图8为图5中的显示基板沿M-M'向的另一种剖视图;
图9为根据本公开一些实施例中的另一种显示基板的结构图;
图10为图9中的显示基板沿N-N'向的一种剖视图;
图11为图9中的显示基板沿N-N'向的另一种剖视图;
图12为图9中的显示基板沿N-N'向的又一种剖视图;
图13为根据本公开一些实施例中的一种显示基板的制备方法的流程图;
图14为根据本公开一些实施例中的一种界定层的制备方法的流程图;
图15为根据本公开一些实施例中的一种量子点单元的制备方法的流程图;
图16为根据本公开一些实施例中的另一种量子点单元的制备方法的流程图;
图17为根据本公开一些实施例中的一种反射层的制备方法的流程图;
图18为根据本公开一些实施例中的一种显示基板的制备步骤流程图;
图19为根据本公开一些实施例中的另一种显示基板的制备步骤流程图;
图20为根据本公开一些实施例中的又一种显示基板的制备步骤流程图;
图21为根据本公开一些实施例中的又一种显示基板的制备步骤流程图;
图22为根据本公开一些实施例中的一种显示装置的俯视图;
图23为根据本公开一些实施例中的一种显示装置的结构图;
图24为根据本公开一些实施例中的另一种显示装置的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描 述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
在相关技术中,显示装置可以包括基板,以及设置在基板的出光侧、且包括量子点材料的薄膜(如图1所示)。该量子点材料在由基板射出的光线的照射下,能够发出颜色较为纯正的单色光。这样有利于提升显示装置的色域,使得显示装置所显示的色彩更为鲜明。目前,为了提高由基板射出的光线的利用率,并避免包括量子点材料的薄膜出现漏光的情况,需要增大该薄膜的厚度。然而,基于量子点材料本身的特性,难以制备较大厚度的薄膜,这样既增加了制备形成该薄膜的工艺难度,还容易造成量子点材料的浪费。
基于此,本公开的一些实施例提供了一种显示装置1000。如图23和图24所示,该显示装置1000包括:显示基板100,以及与该显示基板相对设置的显示面板200。
在一些示例中,如图22所示,显示装置1000具有显示区A和位于显示区A旁侧的周边区B。此处,周边区B例如可以位于显示区A的一侧、两侧或者围绕显示区A的一周设置。
示例性的,显示区A包括多个子像素区域S,每个子像素区域S内设置 有一个子像素。该子像素能够显示一种颜色。例如,每个子像素可以显示红色、绿色或蓝色,此时,多个子像素区域S内的多个子像素,可以包括:被配置为显示红色的多个子像素、被配置为显示绿色的多个子像素以及被配置为显示蓝色的多个子像素;或者,每个子像素可以显示品红色、青色、黄色或白色,此时,多个子像素区域S内的多个子像素,可以包括:被配置为显示品红色的多个子像素、被配置为显示青色的多个子像素、被配置为显示黄色的多个子像素以及被配置为显示白色的多个子像素。
此处,上述多个子像素的排布方式包括多种,可以根据实际需要选择设置。示例性的,上述多个子像素以矩阵形式排列。
本公开实施例所提供的显示装置1000的类型包括多种。
在一些实施例中,如图23所示,显示装置1000可以为OLED(Organic Light Emitting Diode,有机电致发光二极管)显示装置。此时,显示面板200例如包括:与显示基板100相对设置的OLED背板210a,以及被配置为连接OLED背板210a与显示基板100的连接结构220a(例如亚克力胶)。
下面以上述多个子像素以矩阵形式排列为例,对OLED背板210a的结构进行示意性说明。示例性的,如图22所示,将沿第一方向X排列成一排的子像素区域S称为同一行子像素区域S,同一行子像素区域S中的子像素可以与一根栅线连接。将沿第二方向Y排列成一排的子像素区域S称为同一列子像素区域,同一列子像素区域S中的子像素可以与一根数据线连接。
如图23所示,每个子像素可以包括像素驱动电路,以及与该像素驱动电路连接的OLED器件7。该像素驱动电路还与相应的栅线和数据线电连接。
在一些示例中,像素驱动电路由多个薄膜晶体管(Thin Film Transistor,简称TFT)以及至少一个存储电容等电子器件组成。其中,该多个TFT包括一个驱动TFT以及至少一个开关TFT,驱动TFT可以与OLED器件7连接。例如,上述像素驱动电路可以是由两个TFT(包括一个开关TFT和一个驱动TFT)和一个存储电容构成的2T1C结构(T指的是薄膜晶体管,C指的是存储电容)的像素驱动电路。当然,上述像素电路还可以是由两个以上的TFT(包括多个开关TFT和一个驱动TFT)和至少一个存储电容构成mTnC结构(m≥3,n≥1,且m、n均为整数)的像素驱动电路。
示例性的,如图23所示,上述OLED器件7包括OLED阴极72和OLED阳极71,以及位于OLED阴极72和OLED阳极71之间的发光功能层。其中,发光功能层例如可以包括有机发光层73、位于有机发光层73和OLED阳极71之间的空穴传输层74以及位于有机发光层73和OLED阴极72之间的电 子传输层75。当然,发光功能层还可以包括设置在空穴传输层74和OLED阳极71之间的空穴注入层76,以及设置在电子传输层75和OLED阴极72之间的电子注入层。
此处,像素驱动电路例如可以通过OLED阳极71与OLED器件7连接,施加驱动电压至OLED器件7,控制OLED器件7的发光状态,在OLED器件7所发出的光线经过显示基板100后,便可以使得OLED显示装置实现图像显示。
在上述基础上,OLED背板210a例如还可以包括:被配置为对OLED器件7进行封装的封装层。示例性的,该封装层可以是薄膜封装层,也可以是封装基板。
在另一些实施例中,如图24所示,上述显示装置1000可以为液晶显示装置。此时,显示面板200例如可以包括:与显示基板100相对设置的阵列基板210b以及设置在阵列基板210b和显示基板100之间的液晶层220b。当然,显示面板200还可以包括设置在阵列基板210b远离显示基板100一侧的背光模组230b。
在一些示例中,阵列基板210b和显示基板100可以通过封框胶粘贴在一起,并将液晶层220b限定在阵列基板210b、显示基板100以及封框胶所围成的区域内。
下面以液晶显示装置中的多个子像素以矩阵形式排列为例,对阵列基板210a的结构进行示意性说明。示例性的,如图33所示,将沿第一方向X排列成一排的子像素区域S称为同一行子像素区域S,同一行子像素区域S中的子像素可以与一根栅线连接。将沿第二方向Y排列成一排的子像素区域S称为同一列子像素区域,同一列子像素区域S中的子像素可以与一根数据线连接。
如图24所示,在阵列基板210b上,每个子像素可以包括一个TFT和像素电极8,当然,每个子像素也可以包括与上述像素电极8构成液晶电容(Capacitor of Liquid Crystal,简称C LC)的公共电极9;其中,该公共电极9可以设置在阵列基板210b上,也可以设置在显示基板100上。
在一些示例性,上述TFT包括栅极、源极和漏极,其中,栅极可以与相应的栅线连接,源极可以与相应的数据线连接,漏极可以与相应的像素电极8连接。像素电极8和公共电极9能够在各自施加的电压的作用下产生电场,驱动液晶层220b中的液晶分子发生角度偏转,控制背光模组230b所发出的背光透过该液晶层220b的状态,在该光线依次透过液晶层220b和显示基板 100后,便可以使得液晶显示装置实现图像显示。
本公开的一些实施例提供了一种显示基板100。如图2所示,基于显示装置1000具有显示区A和位于显示区A旁侧的周边区B,因此,显示基板100也便具有显示区A和位于显示区A旁侧的周边区B,并且显示区A包括多个子像素区域S。其中,显示基板100中显示区A、周边区B以及显示区A中的多个子像素区域S的设置方式与显示装置1000中的设置方式相同。
如图6~图8以及图10~图12所示,该显示基板100包括:衬底1、界定层2以及多个量子点单元3。
上述衬底1的类型包括多种,可以根据实际需要选择设置。在一些示例中,衬底1包括刚性衬底,例如玻璃衬底。在另一些示例中,衬底1包括柔性衬底,例如PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)衬底、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸乙二醇酯)衬底或PI(Polyimide,聚酰亚胺)衬底。
在一些示例中,如图6~图8以及图10~图12所示,上述界定层2设置于衬底1上。示例性的,上述界定层2可以直接设置在衬底1的一侧表面上。当然,上述界定层2和衬底1之间也可以设置有至少一层功能薄膜(例如缓冲层或封装薄膜)。
上述界定层2具有多个开口K。其中,开口K的数量可以根据实际需要选择设置。上述开口K的形状包括多种。示例性的,上述开口K的形状可以为圆形,也可以为如图5所示的矩形。开口K的形状可以根据实际需要选择设置。
在一些示例中,上述多个量子点单元3中,每个量子点单元3的材料包括量子点材料。量子点材料包括多个量子点,以及与该多个量子点分别结合的配体,其中,量子点与感光配体之间通常采用配位结合的方式结合。
此处,量子点在来自外部的光线的激发下,其中的电子会发生跃迁,使得量子点发射出光线。因此,入射至量子点单元3的光线,会激发量子点单元3中的量子点,使其发出具有颜色的光线。
另外,由于量子点存在量子限域效应,其所发出的光线的波长会随量子点的粒径的变化而变化,也即,不同粒径的量子点能够发出不同颜色的光线。这样在量子点的材料相同的情况下,可以通过调整量子点的粒径,使得多个量子点单元3发出不同颜色的光。示例性的,上述量子点的材料可以采用CdSe(硒化镉)纳米晶体。
示例性的,上述多个量子点单元3被配置为发出多种颜色的光线。该多 种颜色例如包括三原色。其中,三原色例如为红色、绿色和蓝色。也即,多个量子点单元3包括:被配置为发出红色光线的量子点单元、被配置为发出绿色光线的量子点单元和被配置为发出蓝色光线的量子点单元。
基于此,被配置为发出红色光线的量子点单元中量子点的粒径、被配置为发出绿色光线的量子点单元中量子点的粒径以及被配置为发出蓝色量子点单元中量子点的粒径互不相同。示例性的,被配置为发出红色光线的量子点单元中量子点的粒径例如可以为2.4nm,被配置为发出绿色光线的量子点单元中量子点的粒径例如可以为1.7nm,被配置为发出蓝色光线的量子点单元中量子点的粒径例如可以为1.0nm。
在一些示例中,上述多个量子点单元3中,每个量子点单元3设置在一个开口K内。
上述多个量子点单元3的设置方式包括多种。例如,该多个量子点单元3一一对应地设置在上述多个开口K内。又如,该多个量子点单元3一一对应地设置在上述多个开口K中的一部分开口K内。
在一些示例中,如图6~图8以及图10~图12所示,设置有量子点单元3的开口K的轴线与垂直于衬底1的方向之间具有夹角α,该夹角α呈锐角。其中,设置有量子点单元3的开口K被配置为,使入射至量子点单元3内并入射至该开口K的侧壁的光线,在该开口K内发生至少一次反射。
由于光线在入射至量子点单元3内后,其中的一部分会被量子点单元3吸收,以使得量子点发出光线。由此,入射至设置有量子点单元3的开口K的侧壁的光线,包括来自量子点单元3外部的光线中的至少一部分。当然,入射至上述开口K的侧壁的光线还可以包括由量子点单元3中的至少一部分量子点材料所发出的光线。穿过量子点单元3后射出的光线,包括由量子点单元3中的量子点所发出的光线。
通过使得入射至量子点单元3内并入射至该开口K的侧壁的光线,在该开口K内发生至少一次反射,可以有效增加光线在量子点单元3内的传播路程,延长量子点单元3中的量子点材料与上述光线之间发生相互作用的时间,使得量子点单元3中的量子点材料与上述光线所发生的相互作用较为充分,提高了上述光线以及量子点材料的利用率。
此处,在上述开口K内发生的反射例如也可以包括全反射,这样有利于进一步提高上述光线以及量子点材料的利用率。
由此,本公开的一些实施例所提供的显示基板100,通过调整设置有量子点单元3的开口K的轴线方向,使得该开口K的轴线与垂直于衬底1的方向 之间的夹角α呈锐角,并使得入射至量子点单元3内且射向该开口K的侧壁的光线能够在该开口K内发生至少一次反射,能够有效增加入射至量子点单元3内的光线在量子点单元3的内部的传播路程,延长量子点单元3中的量子点材料与上述光线之间发生相互作用的时间,使得量子点单元3中的量子点材料能够与上述光线发生较为充分的相互作用,从而提高了上述光线及量子点材料的利用率。
此外,相对于相关技术中,通过增加量子点单元3的厚度,来延长光线在量子点单元3内部的传播时间,以提高光线的利用率,本公开的一些实施例能够在提高光线利用率的情况下,避免增加量子点单元3的厚度L3,,进而可以减少制备量子点单元3的过程中量子点材料的使用量,避免增加制备量子点单元3的工艺难度。
可以理解的是,在将显示基板100应用在液晶显示装置中的情况下,入射至量子点单元3的光线则为背光模组230b所发出的且透过液晶层220b的光线。在将显示基板100应用在OLED显示装置中的情况下,入射至量子点单元3的光线则为OLED器件7所发出的光线。
此处,可以将入射至量子点单元3的光线称为背光。
示例性的,背光入射至量子点单元3内的方向可以包括多种,可以根据实际需要选择设置。例如,背光可以沿由衬底1指向界定层2的方向入射至量子点单元3内(如图6所示),此时,衬底1设置在界定层2靠近显示面板200的一侧。又如,背光也可以沿由界定层2指向衬底1的方向入射至量子点单元3内(如图7所示),此时,衬底1设置在界定层2远离显示面板200的一侧。
示例性的,背光入射至量子点单元3的入射角度可以包括多种。例如,背光可以沿垂直于衬底1的方向入射至量子点单元3(如图6所示)。又如,背光入射至量子点单元3的入射方向也可以与垂直于衬底1的方向之间呈锐角。
此处,在背光入射至量子点单元3的入射方向与垂直于衬底1的方向之间呈锐角的情况下,示例性的,如图6所示,即便背光的入射方向平行或大致平行于开口K的轴线,相比于相关技术,也可以增加背光在量子点单元3内的传播路程,延长量子点单元3中的量子点材料与背光之间发生相互作用的时间,提高背光的利用率。
需要说明的是,入射至任一个开口K的侧壁的光线,不会穿过界定层2射向相邻开口K内的量子点单元3上,这样可以避免出现相邻开口K内的量 子点单元3被误激发而发出光线的情况。并且,每个量子点单元3中的量子点所发出的光线会在界定层2的侧壁处发生反射,并向远离背光入射的一侧的方向传播,这样可以避免相邻的量子点单元3所发出的光线发生串扰,避免出现混色现象,进而有利于提高应用有显示基板100的显示产品的色域和对比度。
在一些实施例中,如图6~图8以及图10~图12所示,设置有量子点单元3的开口K的轴线,与垂直于衬底1的方向之间的夹角α的角度范围可以为15°~60°。示例性的,上述夹角α的角度可以为15°、20°、30°、45°或者60°。这样有利于使得光线能够在设置有量子点单元3的开口K内发生之时一次反射,提高光线的利用率。
此处,可以根据量子点单元3中的量子点材料的吸光特性,对上述夹角α的角度大小进行调整。示例性的,若量子点材料的吸光性较好,则上述夹角α的角度可以稍小一些;若量子点材料的吸光性较弱,则上述夹角α的角度可以稍大一些。
在一些示例中,如图6~图8以及图10~图12所示,设置有量子点单元3的各开口K的轴线相互平行,或大致相互平行。也即,设置有量子点单元3的各开口K的轴线倾斜方向和倾斜角度基本一致。当然,考虑到制备形成各开口K的工艺的误差是难以避免的,设置有量子点单元3的各开口K的轴线的倾斜角度或倾斜方向可能会发生一些变化,但由于工艺上的误差实际比较小,也就使得各开口的轴线倾斜方向和倾斜角度大致是相同的。这样有利于简化制备形成设置有量子点单元3的各开口K的工艺。并且,这样还有利于提高各开口K的分布均匀度,提高显示基板100的出光侧的出光区域的分布均匀性。
在一些实施例中,如图6~图8所示,沿垂直于衬底1的方向,量子点单元3的厚度L3可以为3μm~8μm。示例性的,量子点单元3的厚度L3可以为3μm、4μm、5μm、6μm、7μm或者8μm。这样可以在确保较高的光线利用率的同时,使得量子点单元3具有较小的厚度,减少量子点材料的使用量,避免增加制备量子点单元3的工艺难度。
在一些实施例中,界定层2的材料的折射率小于量子点单元3中量子点材料的折射率。也即,界定层2的材料相对于量子点单元3中量子点材料来说为光疏介质,量子点材料相对于界定层2的材料来说为光密介质。
因此,光线在入射至量子点单元3内并射向设置有量子点单元3的开口K的侧壁时,相当于光线从光密介质射向光疏介质。在光线射向该开口K的侧 壁的入射角满足全反射条件的情况下,便会发生全反射,使得光线从该开口K的侧壁处全部反射回量子点单元3的内部。这样有利于提高光线的利用率。
此处,界定层2的材料包括多种,可以根据实际需要选择设置。示例性的,界定层2的材料可以为有机材料。
在一些实施例中,如图9~图12所示,显示基板100还包括:覆盖在开口K的侧壁上的反射层5,该反射层5包围量子点单元3。
在一些示例中,如图12所示,覆盖有反射层5的开口K,为设置有量子点单元5的开口K。当然,如图11所示,覆盖有反射层5的开口K,还可以包括未设置有量子点单元5的开口K。
在一些示例中,反射层5的材料包括多种,可以根据实际需要选择设置。示例性的,反射层5的材料可以为反射率大于或等于70%的材料,这样可以确保反射层5具有良好的光线反射效果。
例如,反射层5的材料可以为具有较高反射率的油墨或者金属材料(例如银、钼、铝或镍等)。
在一些示例中,如图9所示,反射层5覆盖开口K的侧壁,并包围量子点单元3,也就使得反射层5呈管状结构。这样可以使得以任意入射角度入射至反射层5上的光线,均可以发生反射(或全反射),有利于提高光线的反射效率,进一步提高光线的利用率。
此处,如图10所示,反射层5的厚度L5可以根据实际需要选择设置。示例性的,反射层5的厚度L5可以为2μm~5μm。例如,反射层5的厚度L5例如可以为2μm、3μm、4μm或者5μm。这样既可以确保反射层5具有良好的光线反射效果,又可以避免造成形成反射层5的材料的浪费。
在一些实施例中,界定层2的材料还可以包括反光材料。其中,该反光材料可以是例如具有增加反射功能的材料。
基于此,可以避免受到界定层2的材料与量子点材料的折射率之间的限制,也可以避免受到光入射至开口K的侧壁的入射角度的大小限制,使得光线在入射至开口K的侧壁上后,即会发生反射或全反射,并使得入射的光线能够基本全部反射回量子点单元3的内部。这样有利于提高光线的利用率。
在一些实施例中,上述显示装置1000中提供给显示基板100的背光的颜色种类包括多种,例如白色或蓝色。上述显示装置1000中的多个子像素所需显示的颜色的种类包括多种,例如红色、绿色和蓝色,又如品红、青色、黄色和白色。
考虑到上述显示装置1000提供给显示基板100的背光的颜色种类,以及 显示装置1000中的多个子像素所需显示的颜色的种类,显示基板100中的量子点单元3具有多种设置方式。
下面以上述显示装置1000提供给显示基板100的背光为白色光线或蓝色光光线、显示装置1000中的多个子像素所需显示的颜色包括红色、绿色和蓝色为例,对显示基板100中的量子点单元3的设置方式进行示意性说明。
在一些示例中,显示装置1000提供给显示基板100的背光为白色光线。
示例性的,如图6和图10所示,显示基板100中的多个量子点单元3与界定层2中的多个开口K一一对应设置。
此时,上述多个量子点单元3包括多个红色量子点单元31、多个绿色量子点单元32以及多个蓝色量子点单元33。上述多个开口K包括多个第一开口K1、多个第二开口K2和多个第三开口K3。其中,每个红色量子点单元31设置于一个第一开口K1内,每个绿色量子点单元32设置于一个第二开口K2内,每个蓝色量子点单元33设置于一个第三开口K3内。
这样上述红色量子点单元31在受到背光的激发的情况下,可以发出红色光线;绿色量子点单元32在受到背光的激发的情况下,可以发出绿色光线;蓝色量子点单元33在受到背光的激发的情况下,可以发出蓝色光线。
在另一些示例中,显示装置1000提供给显示基板100的背光为蓝色光线。
示例性的,如图7~图8以及图11~图12所示,显示基板100中的多个量子点单元3,与界定层2的多个开口K中的一部分开口K一一对应设置。
此时,上述多个量子点单元3包括多个红色量子点单元31和多个绿色量子点单元32。上述多个开口K包括多个第一开口K1和多个第二开口K2。其中,每个红色量子点单元31设置于一个第一开口K1内,每个绿色量子点单元32设置于一个第二开口K2内。
这样上述多个红色量子点单元31在受到背光的激发的情况下,可以发出红色光线。上述多个绿色量子点单元32在受到背光的激发的情况下,可以发出绿色光线。
此外,显示基板100还包括多个透明的透光单元4。上述多个开口K还包括多个第四开口K4。每个透光单元4设置在一个第四开口K4内。各透光单元4之间以及各透光单元4与多个量子点单元3之间,可以通过界定层2相互隔离开。
上述多个透明的透光单元4可以供背光基本无阻碍地穿过。这样无需额外设置能够发出蓝色光线的量子点单元,有利于简化制备形成显示基板100的工艺,节省量子点材料的使用量。
此处,第四开口K4可以有多种设置方式,可以根据实际需要选择设置。
例如,如图7和图11所示,第四开口K4的轴线与第一开口K1或第二开口K2的轴线平行或大致平行,也即,第四开口K4的轴线与第一开口K1或第二开口K2的轴线的倾斜方向以及倾斜角度相同或大致相同。这样可以在一次构图工艺中同时制备形成上述多个第一开口K1、多个第二开口K2以及多个第四开口K4,有利于简化制备形成显示基板100的工艺,提高显示基板100的生产效率。
又如,如图8和图12所示,第四开口K4的轴线垂直或大致垂直于衬底1。这样可以使得制备形成上述多个开口K4的工艺较为简便易实施,避免增加制备形成显示基板100的难度。
在一些示例中,显示基板100还包括设置在界定层2远离衬底1一侧的保护层,以利用该保护层对界定层2远离衬底1的一侧表面进行平坦化。在该保护层的材料为透明的材料的情况下,该保护层可以与透光单元4为一体结构,也即两者采用相同的材料同时制备形成。这样有利于简化显示基板100的制备工艺。
当然,透光单元4也可以采用透明的材料单独制备形成。
示例性的,透光单元4的材料可以为亚克力胶或有机树脂材料。
在一些实施例中,如图5和图9所示,显示基板100所具有的多个子像素区域S中,每个子像素区域S内设置有至少一个开口K。
在一些示例中,如图5所示,每个子像素区域S内设置有一个开口K。也即,显示基板100所具有的多个开口K一一对应设置于上述多个子像素区域S内。
可以理解的是,在每个开口K内设置有量子点单元3的情况下,每个量子点单元3一一对应于上述显示装置1000中的子像素。
在另一些示例中,如图9所示,每个子像素区域S内设置有多个开口K。
可以理解的是,在每个开口K内设置有量子点单元3的情况下,上述显示装置1000中的一个子像素与多个量子点单元3相对应。
此时,在显示装置1000中的子像素的尺寸较大的情况下,若将每个量子点单元3与子像素一一对应设置,则对应的量子点单元3的尺寸也会相对较大。这样在背光入射至量子点单元3内,并使得量子点单元3受到激发后,容易出现所发出的光线不均匀的现象。通过将每个子像素与多个量子点单元3对应设置,有利于改善所发出的光线的均匀性。
此外,根据实际应用的需要,显示装置1000中的每个子像素可以分割为 多个间隔排列的子亚像素。显示基板100中的每个子像素区域S,可以对应分割为多个间隔排列的子亚像素区域S0。每个子亚像素区域S0的边界图形例如可以为圆形(如图3所示),也可以为四边形(如图4所示)。
在此示例中,每个子亚像素区域S0内可以设置有一个开口K。在每个开口K内设置有量子点单元3的情况下,每个量子点单元3一一对应于一个子亚像素设置。
本公开的一些实施例还提供了一种显示基板的制备方法。如图13所示,该制备方法包括S100~S300。
S100,如图18中(a)、图19中(a)以及图20中(a)所示,在衬底1上形成界定薄膜20。
示例性的,可以采用涂覆工艺在衬底1上形成界定薄膜20。
此处,衬底1的类型可以参照上述一些实施例中所提供的衬底1的类型,此处不再赘述。
S200,如图18中(b)、图19中(c)以及图20中(b)所示,图案化界定薄膜20,在界定薄膜20中形成多个开口K,得到界定层2。所述多个开口K中的至少一部分开口K的轴线与垂直于衬底1的方向之间的夹角α呈锐角。
在一些示例中,如图14所示,在上述S200中,图案化界定薄膜20,在界定薄膜20中形成多个开口K,包括S210~S220。
S210,如图19中(b)所示,对界定薄膜20进行固化处理。
此处,对界定薄膜20进行固化处理的工艺,可以根据界定薄膜20的材料的性质选择设置。示例性的,界定薄膜20的材料对温度较为敏感,此时,可以采用热加固处理工艺对界定薄膜20进行固化处理。示例性的,界定薄膜20的材料对紫外线较为敏感,此时,可以采用紫外线固化工艺对界定薄膜20进行固化处理。
通过对界定薄膜20进行固化处理,可以使得界定薄膜20的结构较为稳定。在对界定薄膜20进行后续处理的过程中,可以使得界定薄膜20的整体形貌较为稳定,不易发生变形。
S220,如图19中(c)和图20中(b)所示,采用激光打孔工艺,对经固化处理后的界定薄膜20进行图案化,在经固化处理后的界定薄膜中形成多个开口K。
所形成的多个开口K中的至少一部分开口K的轴线与垂直于衬底1的方向之间具有夹角α,也即,上述多个开口K中的每个开口K的轴线均与垂直 于衬底1的方向之间具有夹角α,或者,上述多个开口K中的一部分开口K的轴线与垂直于衬底1的方向之间具有夹角α,另一部分开口K的轴线直于衬底1。
在一些示例中,轴线与垂直于衬底1的方向之间具有夹角α的各开口K中,轴线相互平行或大致相互平行。也即,各开口K的倾斜方向和倾斜角度均一致或大约一致。当然,考虑到制备形成各开口K的工艺的误差是难以避免的,各开口K的倾斜角度或倾斜方向可能会发生一些变化,但由于工艺上的误差实际比较小,也就使得各开口的轴线倾斜方向和倾斜角度大致是相同的。
这样有利于降低形成多个开口K的工艺难度,提高形成多个开口K的效率。并且,这样还有利于提高各开口K的分布均匀度,提高显示基板100的出光侧的出光区域的分布均匀性。
在一些示例中,上述夹角α的范围可以为15°~60°。例如该夹角α的角度可以为15°、20°、30°、45°或者60°。这样有利于使得光线能够在设置有量子点单元3的开口K内发生之时一次反射,提高光线的利用率。
在一些示例中,激光打孔工艺中所使用的设备例如可以为激光器。
需要说明的是,上述夹角α,也即激光器所发射的激光的传播方向与垂直于衬底1的方向之间的夹角。本公开实施例可以根据待形成量子点单元3的量子点材料的吸光特性,调整激光器所发射的激光的传播角度,确定开口K的倾斜角度。并且,可以通过控制激光器的位置和激光的打孔能力,确定开口K的孔径大小。
S300,如图18中(c)、图19中(d)以及图20中(e)所示,采用量子点材料形成多个量子点单元3。每个量子点单元3形成在上述至少一部分开口K中的一个开口K内。其中,形成有量子点单元3的开口K被配置为,使入射至量子点单元3内并射向该开口K的侧壁的光线,在开口K内发生至少一次反射。
可以理解的是,入射至设置有量子点单元3的开口K的侧壁的光线包括来自量子点单元3外部的背光(例如显示基板100所应用的显示装置1000所提供的背光)以及量子点单元3中的量子点所发出的光。
本公开的一些实施例所提供的显示基板的制备方法,通过在衬底1的一侧形成轴线与垂直于衬底1的方向之间具有夹角α的多个开口K,并在该多个开口K内形成量子点单元3,可以使得入射至该量子点单元3内部并射向该多个开口K的侧壁的光线,在该多个开口K内发生至少一次反射,相对于 相关技术(也即设置有量子点单元3的全部开口K的轴线垂直于衬底1),增加了该光线在量子点单元3的内部的传播路程,延长了量子点材料与该光线之间发生相互作用的时间,使得量子点单元3中量子点材料能够与上述光线发生较为充分的相互作用,提高了光线和量子点材料的利用率。
而且,相对于通过增加量子点单元3的厚度的方式,来延长光线在量子点单元3内部的传播时间,以提高光线的利用率,本公开实施例可以在提高光线利用率的情况下,避免增加量子点单元3的厚度,进而可以减少形成量子点单元3的过程中量子点材料的使用量,避免增加形成量子点单元3的工艺难度。
在一些实施例中,界定层2的材料的折射率小于量子点材料的折射率。这样界定层2的材料相对于量子点单元3中的量子点材料为光疏介质,量子点单元3中的量子点材料相对于界定层2的材料为光密介质。入射至量子点单元3内部并射向开口K的侧壁的光线,相当于从光密介质射向光疏介质,在该光线入射至开口K的侧壁的入射角满足全反射条件的情况下,该光线便会发生全反射,并从开口K的侧壁处全部返回量子点单元3的内部。这样有利于提高光线的利用率。
在一些实施例中,界定层2的材料为反光材料。该反光材料可以是例如具有增加反射功能的材料。这样可以避免受到界定层2的材料与量子点材料的折射率之间的大小限制,也可以避免受到光线入射至开口K的侧壁处的入射角的大小限制,使得光线在入射至开口K的侧壁上后,即都会发生反射或全反射,并使的入射的光线能够基本全部反射回量子点单元3内部。这样有利于提高光线的利用率。
在本公开实施例中,上述S300中,采用量子点材料形成多个量子点单元3的方法包括多种,可以根据实际需要选择设置。
在一些实施例中,如图15所示,上述S300中,形成多个量子点单元3,包括S310a。
S310a,采用喷墨打印工艺或涂覆工艺,将量子点材料填充在上述至少一部分开口K内,形成多个量子点单元3。
此处,采用喷墨打印工艺或涂覆工艺,便可以直接把量子点材料形成在上述至少一部分开口K内,并直接形成多个量子点单元3。这样有利于简化制备形成多个量子点单元3的工艺流程,并简化制备形成显示基板100的工艺流程。
在另一些实施例中,如图16所示,上述S300中,形成多个量子点单元3, 包括S310b~320b。
S310b,如图21中(a)和(b)所示,在界定层2的一侧形成量子点薄膜30。该量子点薄膜30的一部分位于上述至少一部分开口K内,其余部分覆盖界定层2和上述至少一部分开口K。
示例性的,可以采用涂覆工艺(例如喷涂工艺或旋涂工艺),在界定层2的一侧涂覆感光量子点材料,形成量子点薄膜30。在涂覆感光量子点材料的过程中,一部分感光量子点材料会落入界定层2中的多个开口K(包括上述至少一部分开口K)内,自然而然地填充在了该多个开口K中,另一部分感光量子点材料便覆盖在界定层2和该多个开口K上。
此处,量子点薄膜30中的量子点材料包括感光量子点材料。其中,感光量子点材料包括多个量子点,以及与该多个量子点分别结合的感光配体。该感光配体具有感光特性,也即在光线(例如紫外光)照射下,感光配体根据其所采用的材料会发生固化或降解。示例性的,感光配体的材料包括光固化材料,或者,感光配体的材料包括光降解材料。
S320b,如图21中(c)和(d)所示,采用掩模板对量子点薄膜30进行曝光和显影,去除量子点薄膜30中覆盖界定层2和上述至少一部分开口K的部分,量子点薄膜30中的保留在上述至少一部分开口K的部分,形成多个量子点单元3。
此处,在感光配体的材料包括光固化材料的情况下,对量子点薄膜30进行曝光和显影,表现为:在量子点薄膜30的远离衬底1的一侧设置掩膜板,该掩膜板包括薄膜保留区(未对量子点薄膜30中相对应的部分形成遮挡)和薄膜去除区(对量子点薄膜30中相对应的部分形成遮挡),然后对量子点薄膜30的与薄膜保留区相对应的部分进行曝光,使该部分得到固化,之后对量子点薄膜30进行显影,使量子点薄膜30的与完全去除区相对应的部分去除,量子点薄膜30中保留下来的部分(被固化的部分)即为多个量子点单元3。
此处,在感光配体的材料包括光降解材料的情况下,对量子点薄膜30进行曝光和显影,表现为:在量子点薄膜30的远离衬底1的一侧设置掩膜板,该掩膜板包括薄膜保留区(对量子点薄膜30中相对应的部分形成遮挡)和薄膜去除区(未对量子点薄膜30中相对应的部分形成遮挡),然后对量子点薄膜30中与薄膜去除区相对应的部分进行曝光,使该部分发生降解,之后对量子点薄膜30进行显影,使量子点薄膜30中与薄膜去除区相对应的部分去除,便可以得到量子点薄膜30中未被降解的部分,也即得到多个量子点单元3。
需要说明的是,在感光配体的材料包括光固化材料的情况下和感光配体 的材料包括光降解材料的情况下,所使用的显影材料不相同。
在一些示例中,在对量子点薄膜30进行曝光和显影之后,还可以采用后烘工艺对量子点单元3进行定型,以稳定量子点单元3的结构。
在一些实施例中,如图17所示,在上述S300之前,显示基板的制备方法还包括S250~S260。
S250,如图20中(c)所示,采用喷墨打印工艺或光刻工艺,将反光材料填充在上述至少一部分开口K中。
在一些示例中,在采用喷墨打印工艺将反光材料填充在上述至少一部分开口K中的情况下,反光材料可以自然而然地落入上述至少一部分开口K中,对上述至少一部分开口K进行填充。
在另一些示例中,在采用光刻工艺将反光材料填充在上述至少一部分开口K中的情况下,可以先在界定层2的一侧形成反射薄膜(该反射薄膜的一部分位于上述至少一部分开口K内,其余部分覆盖界定层2和上述至少一部分开口K),然后采用光刻工艺对该反射薄膜进行图案化处理,保留反射薄膜中位于上述至少一部分开口K中的部分。这样也便使得反光材料填充在了上述至少一部分开口K中。
S260,如图20中(d)所示,采用激光打孔工艺,去除一部分反光材料,剩余部分反光材料覆盖在上述至少一部分开口K的侧壁上,形成反射层5。
此处,在S260中采用激光打孔工艺形成反射层5,和上述S220中采用激光打孔工艺在界定薄膜20中形成上述至少一部分开口K,该两次激光打孔工艺中的激光的入射角可以不变。
由于反射层5形成在上述至少一部分开口K内,也即该至少一部分开口K的孔径大于反射层5的孔径,因此,在S260中激光的光斑直径小于S220中激光的光斑直径,进而可以使得形成在该至少一部分开口K内的反射层5可以覆盖在该至少一部分开口K的侧壁上。
在一些示例中,反射层3的厚度可以为2μm~5μm。例如,反射层5的厚度L5例如可以为2μm、3μm、4μm或者5μm。
在一些示例中,反光材料可以是例如具有较高反射率的油墨或者金属。
这样可以使得以任意角度入射至反射层3的侧壁的光线,均可以发生反射(或全反射),有利于提高光线的反射效率,提高光线的利用率。
此处,需要说明的是,在界定薄膜20中形成多个开口K的过程中,可以参照上述一些实施例中对子像素区域S和开口K之间的对应关系,调整多个开口K的分布位置,此处不再赘述。
本公开的一些实施例还提供了了一种显示装置1000。如图23和图24所示,该显示装置1000包括上述一些实施例中提供的显示基板100。
上述显示装置例如可以为液晶显示装置,或者,例如可以为OLED显示装置。
需要说明的是,如图23和图24所示,在将显示基板100应用在液晶显示装置或OLED显示装置中的情况下,显示基板例如还可以包括黑矩阵6。
如图23和图24所示,黑矩阵6例如可以设置在每相邻的两个开口K之间,黑矩阵6和量子点单元3之间或者黑矩阵和透光单元4之间通过界定层2相隔开。通过设置黑矩阵6,可以避免出现漏光以及光线的串扰等问题。
上述显示装置1000所包括的显示基板100,具有与上述一些实施例中提供的显示基板100相同的结构和有益技术效果,在此不再赘述。
在一些实施例中,上述显示装置200为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种显示基板,包括:
    衬底;
    设置于所述衬底上的界定层,所述界定层中具有多个开口;以及,
    多个量子点单元,每个量子点单元设置在一个开口内,所述量子点单元的材料包括量子点材料;
    其中,设置有所述量子点单元的开口的轴线与垂直于所述衬底的方向之间呈锐角;所述开口被配置为,使入射至所述量子点单元内并射向所述开口的侧壁的光线,在所述开口内发生至少一次反射。
  2. 根据权利要求1所述的显示基板,其中,所述界定层的材料的折射率小于所述量子点单元中量子点材料的折射率。
  3. 根据权利要求1或2所述的显示基板,还包括:
    覆盖在所述开口的侧壁上的反射层;所述反射层包围所述量子点单元。
  4. 根据权利要求3所述的显示基板,其中,沿垂直于所述开口的轴线方向,所述反射层的厚度的范围为2μm~5μm。
  5. 根据权利要求1~4中任一项所述的显示基板,其中,所述界定层的材料包括反光材料。
  6. 根据权利要求1~5中任一项所述的显示基板,其中,所述开口的轴线与垂直于所述衬底的方向之间的角度的范围为15°~60°。
  7. 根据权利要求1~6中任一项所述的显示基板,其中,沿垂直于所述衬底的方向,所述量子点单元的厚度的范围为3μm~8μm。
  8. 根据权利要求1~7中任一项所述的显示基板,其中,设置有所述量子点单元的各开口的轴线相互平行,或大致相互平行。
  9. 根据权利要求1~8中任一项所述的显示基板,其中,所述多个量子点单元包括多个红色量子点单元和多个绿色量子点单元;
    所述多个开口包括多个第一开口和多个第二开口;
    每个红色量子点单元设置于一个第一开口内,每个绿色量子点单元设置于一个第二开口内。
  10. 根据权利要求9所述的显示基板,其中,
    所述多个量子点单元还包括多个蓝色量子点单元,所述多个开口还包括多个第三开口;每个蓝色量子点单元设置于一个第三开口内;或者,
    所述显示基板还包括多个透明的透光单元,所述多个开口还包括多个第四开口;每个透光单元设置在一个第四开口内;所述第四开口的轴线与所述 第一开口或所述第二开口的轴线平行或大致平行,或者,所述第四开口的轴线垂直或大致垂直于所述衬底。
  11. 根据权利要求1~10中任一项所述的显示基板,其中,所述显示基板具有多个子像素区域;每个子像素区域内设置有至少一个开口。
  12. 一种显示基板的制备方法,包括:
    在衬底上形成界定薄膜;
    图案化所述界定薄膜,在所述界定薄膜中形成多个开口,得到界定层;所述多个开口中的至少一部分开口的轴线与垂直于所述衬底的方向呈锐角;
    采用量子点材料形成多个量子点单元;每个量子点单元形成在所述至少一部分开口中的一个开口内;
    其中,形成有所述量子点单元的开口被配置为,使入射至所述量子点单元内并射向所述开口的侧壁的光线,在所述开口内发生至少一次反射。
  13. 根据权利要求12所述的显示基板的制备方法,其中,
    所述图案化所述界定薄膜,在所述界定薄膜中形成多个开口,包括:
    对所述界定薄膜进行固化处理;
    采用激光打孔工艺对经固化处理后的界定薄膜界定薄膜进行图案化,在所述经固化处理后的界定薄膜中形成多个开口。
  14. 根据权利要求12或13所述的显示基板的制备方法,其中,
    所述形成多个量子点单元,包括:
    采用喷墨打印工艺或涂覆工艺,将所述量子点材料填充在至少一部分开口内,形成所述多个量子点单元。
  15. 根据权利要求12或13所述的显示基板的制备方法,其中,所述量子点材料包括感光量子点材料;
    所述形成多个量子点单元,包括:
    在所述界定层的一侧形成量子点薄膜;所述量子点薄膜的一部分位于所述至少一部分开口内,其余部分覆盖所述界定层和所述至少一部分开口;
    采用掩膜板对所述量子点薄膜进行曝光和显影,去除所述量子点薄膜中覆盖所述界定层和所述至少一部分开口的部分,所述量子点薄膜中的保留在所述至少一部分开口内的部分,形成所述多个量子点单元。
  16. 根据权利要求12~15中任一项所述的显示基板的制备方法,其中,在所述形成多个量子点单元之前,所述制备方法还包括:
    采用喷墨打印工艺或光刻工艺,将反光材料填充在所述至少一部分开口中;
    采用激光打孔工艺,去除一部分反光材料,剩余部分反光材料覆盖在所述至少一部分开口的侧壁上,形成反射层。
  17. 一种显示面板,包括:如权利要求1~11中任一项所述的显示基板。
PCT/CN2020/084884 2019-05-22 2020-04-15 显示基板及其制备方法、显示面板 WO2020233291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910430826.4A CN110098242B (zh) 2019-05-22 2019-05-22 一种彩膜层及其制备方法、显示面板
CN201910430826.4 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020233291A1 true WO2020233291A1 (zh) 2020-11-26

Family

ID=67448905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084884 WO2020233291A1 (zh) 2019-05-22 2020-04-15 显示基板及其制备方法、显示面板

Country Status (2)

Country Link
CN (1) CN110098242B (zh)
WO (1) WO2020233291A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113012562A (zh) * 2021-02-24 2021-06-22 北京京东方技术开发有限公司 一种显示面板及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098242B (zh) * 2019-05-22 2021-10-08 京东方科技集团股份有限公司 一种彩膜层及其制备方法、显示面板
CN110568654A (zh) * 2019-08-20 2019-12-13 苏州星烁纳米科技有限公司 量子点彩膜及显示装置
CN110962427A (zh) * 2019-11-25 2020-04-07 Tcl华星光电技术有限公司 量子点膜
CN110738940B (zh) * 2019-11-28 2022-02-01 京东方科技集团股份有限公司 量子点膜、彩膜层和显示装置
CN111474767B (zh) * 2020-04-17 2023-05-12 京东方科技集团股份有限公司 背光模组结构、显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054908A (zh) * 2009-10-29 2011-05-11 财团法人工业技术研究院 偏光发光二极管组件及其制造方法
CN108107627A (zh) * 2017-10-03 2018-06-01 友达光电股份有限公司 显示面板及其使用的光学片
CN108345142A (zh) * 2017-01-25 2018-07-31 群创光电股份有限公司 显示设备
US10048530B1 (en) * 2017-07-27 2018-08-14 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN109765728A (zh) * 2019-03-29 2019-05-17 京东方科技集团股份有限公司 量子点彩膜及其制备方法、显示面板、显示装置
CN110098242A (zh) * 2019-05-22 2019-08-06 京东方科技集团股份有限公司 一种彩膜层及其制备方法、显示面板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654710B (zh) * 2011-11-23 2014-12-17 京东方科技集团股份有限公司 一种电子纸显示器件及其制作方法
KR20170014755A (ko) * 2015-07-31 2017-02-08 삼성전자주식회사 디스플레이 패널 및 이를 포함하는 디스플레이 장치
KR20170026936A (ko) * 2015-08-31 2017-03-09 삼성디스플레이 주식회사 도광판 및 이를 포함하는 표시장치
CN105204104B (zh) * 2015-10-30 2018-05-25 京东方科技集团股份有限公司 滤光片及其制作方法、显示基板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054908A (zh) * 2009-10-29 2011-05-11 财团法人工业技术研究院 偏光发光二极管组件及其制造方法
CN108345142A (zh) * 2017-01-25 2018-07-31 群创光电股份有限公司 显示设备
US10048530B1 (en) * 2017-07-27 2018-08-14 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN108107627A (zh) * 2017-10-03 2018-06-01 友达光电股份有限公司 显示面板及其使用的光学片
CN109765728A (zh) * 2019-03-29 2019-05-17 京东方科技集团股份有限公司 量子点彩膜及其制备方法、显示面板、显示装置
CN110098242A (zh) * 2019-05-22 2019-08-06 京东方科技集团股份有限公司 一种彩膜层及其制备方法、显示面板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113012562A (zh) * 2021-02-24 2021-06-22 北京京东方技术开发有限公司 一种显示面板及其制备方法

Also Published As

Publication number Publication date
CN110098242B (zh) 2021-10-08
CN110098242A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020233291A1 (zh) 显示基板及其制备方法、显示面板
US11860382B2 (en) Optical lens structure, method for manufacturing the same, and display apparatus
US11480822B2 (en) Display substrate comprising a light-reflecting wall having a light-transmissive wall and a light-reflecting layer covering a top surface and side surfaces of the light-transmissive wall, method for manufacturing the same, and display device
US11637217B2 (en) Method of manufacturing light emitting device
WO2021196995A1 (zh) 显示装置、显示装置的盖板的制作方法
CN110908168A (zh) 显示设备
US11244985B2 (en) Color film assembly, display substrate and method for fabricating same, and display apparatus
US11335874B2 (en) Quantum dot color filter substrate, fabricating method thereof, and display panel
US20120268042A1 (en) Display apparatus
US20200335728A1 (en) Organic light emitting diode display device
US11910685B2 (en) Display device having through hole at light blocking region and method of providing the same
US11493802B2 (en) Backlight unit and display device including the same
CN108628035B (zh) 光致发光设备
WO2013039141A1 (ja) 色変換基板、画像表示装置および色変換基板の製造方法
CN110581230A (zh) 显示面板及制作方法、显示装置
WO2023246492A1 (zh) 显示面板、显示装置和车载显示系统
CN111430444B (zh) 量子点显示面板及其制备方法
CN114388560A (zh) 显示面板及其制备方法、显示装置
WO2022247180A1 (zh) 显示面板及显示装置
TWI778203B (zh) 具有光反射層而用於防止網格效應的顯示器
US20240047626A1 (en) Color film substrate, method for preparing color film substrate, and display panel
US11402685B2 (en) Display substrate and method for manufacturing the same, and display apparatus
KR102332108B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
KR20180026267A (ko) 유기발광표시장치 및 그 제조방법
US20220091445A1 (en) Display device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809908

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20809908

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20809908

Country of ref document: EP

Kind code of ref document: A1