WO2021196995A1 - 显示装置、显示装置的盖板的制作方法 - Google Patents

显示装置、显示装置的盖板的制作方法 Download PDF

Info

Publication number
WO2021196995A1
WO2021196995A1 PCT/CN2021/079800 CN2021079800W WO2021196995A1 WO 2021196995 A1 WO2021196995 A1 WO 2021196995A1 CN 2021079800 W CN2021079800 W CN 2021079800W WO 2021196995 A1 WO2021196995 A1 WO 2021196995A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
base substrate
display device
black matrix
Prior art date
Application number
PCT/CN2021/079800
Other languages
English (en)
French (fr)
Inventor
韩影
王玲
徐攀
林奕呈
高展
王国英
张星
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/770,595 priority Critical patent/US20220399530A1/en
Publication of WO2021196995A1 publication Critical patent/WO2021196995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a method for manufacturing a display device and a cover plate of the display device.
  • Quantum Dot (QD) display devices have the characteristics of narrow spectrum, high color purity, and wide color gamut, and they have unique advantages in the field of wide color gamut displays.
  • a display device in one aspect, includes a cover plate and a display substrate arranged opposite to the cover plate.
  • the cover plate includes: a first base substrate, a black matrix and a supporting layer stacked on a side of the first base substrate close to the display substrate, and a black matrix and a supporting layer disposed on the first base substrate close to the display substrate.
  • the quantum dot layer on one side of the display substrate. Both the black matrix and the supporting layer have a plurality of openings, and the plurality of openings of the black matrix respectively at least partially overlap the plurality of openings of the supporting layer to form a plurality of opening regions.
  • the quantum dot layer includes a plurality of quantum dot units, and each quantum dot unit is located in an opening area.
  • the display substrate includes: a second base substrate, a driving circuit structure disposed on the second base substrate close to the cover plate, and a driving circuit structure disposed on the driving circuit structure away from the second substrate
  • the light-emitting device on the side of the base substrate.
  • the light emitting device is coupled to the driving circuit structure, and the light emitting device emits light under the driving of the driving circuit structure.
  • the black matrix is away from the first base substrate with respect to the support layer.
  • the supporting layer has a main surface away from the first base substrate and a slope surface surrounding each opening thereof.
  • the cover plate further includes: a light reflection layer disposed between the black matrix and the support layer, the light reflection layer covering at least the slope of the support layer.
  • the edge of the orthographic projection of the black matrix on the first base substrate coincides with or substantially coincides with the edge of the orthographic projection of the main surface of the support layer on the first base substrate .
  • the material of the light reflection layer includes a metal material.
  • the light reflection layer is a laminated structure formed by stacking a transparent metal oxide layer, a reflective metal layer and a transparent metal oxide layer in sequence, or a stacked structure formed by stacking at least two metal layers.
  • the light reflection layer is a laminated structure formed by sequentially stacking an indium tin oxide layer, a silver layer, and an indium tin oxide layer, or a stacked layer formed by sequentially stacking a molybdenum layer, an aluminum layer, and a nickel layer. structure.
  • the thickness of the light reflection layer ranges from 100 nm to 300 nm.
  • the edge of the orthographic projection of the quantum dot unit on the first base substrate is at an inner edge of the orthographic projection of the support layer on the first base substrate. Between the outer edges. Wherein, the inner edge is an edge close to the center of the opening surrounded by the slope in the orthographic projection of the slope; the outer edge is an edge far away from the center of the opening surrounded by the slope in the orthographic projection of the slope.
  • the supporting layer has a main surface away from the first base substrate and a slope surface surrounding each opening of the supporting layer.
  • the black matrix covers the main surface and the slope surface of the support layer.
  • the black matrix is close to the first base substrate relative to the support layer.
  • the thickness of the support layer ranges from 10 ⁇ m to 30 ⁇ m.
  • the thickness of the black matrix ranges from 1 ⁇ m to 2 ⁇ m.
  • the cover plate further includes: a color filter layer disposed between the quantum dot layer and the first base substrate.
  • the color film layer includes a plurality of filter units, and each filter unit is located in an opening area.
  • the quantum dot layer when the light emitted by the light-emitting device driven by the driving circuit structure is blue, the quantum dot layer includes a red quantum dot unit and a green quantum dot unit; the color film layer Including red filter unit, green filter unit and blue filter unit. Wherein, one red quantum dot unit and one red filter unit are located in the same opening area; one green quantum dot unit and one green filter unit are located in the same opening area.
  • the quantum dot layer when the light emitted by the light-emitting device driven by the driving circuit structure is white light, the quantum dot layer includes a red quantum dot unit, a green quantum dot unit, and a blue quantum dot unit
  • the color film layer includes a red filter unit, a green filter unit, and a blue filter unit; wherein, one of the red quantum dot units and one of the red filter units are located in the same opening area; one green quantum dot The unit and a green filter unit are located in the same opening area; a blue quantum dot unit and a blue filter unit are located in the same opening area.
  • the display device includes: a plurality of pixel units arranged in an array, each pixel unit includes a red sub-pixel, a blue sub-pixel and two green sub-pixels, each pixel
  • the sub-pixels included in the unit are arranged along the row direction; along the column direction, the red sub-pixels and the blue sub-pixels are alternately arranged to form a red and blue sub-pixel column; along the column direction, the green sub-pixels are arranged in sequence to form a green sub-pixel column, Along the row direction, the red and blue sub-pixel columns and the green sub-pixel columns are alternately arranged.
  • a method for manufacturing a cover plate of a display device for manufacturing the cover plate of the display device described in any of the above embodiments.
  • the manufacturing method includes: providing a first base substrate.
  • a black matrix and a supporting layer are formed on the first base substrate.
  • the black matrix and the supporting layer are stacked, and both the black matrix and the supporting layer have a plurality of openings, and the plurality of openings of the black matrix at least partially overlap with the plurality of openings of the supporting layer,
  • a plurality of open areas are formed.
  • a quantum dot layer is formed on the first base substrate, the quantum dot layer includes a plurality of quantum dot units, and each quantum dot unit is located in an opening area.
  • the forming the black matrix and the support layer on the first base substrate includes: forming the support layer on the first base substrate; the support layer has a distance away from the first base substrate. The main surface of the base substrate and the slope surface surrounding each opening of the supporting layer. The black matrix is formed on a side of the supporting layer away from the first base substrate, and the black matrix covers at least the main surface of the supporting layer.
  • the method for manufacturing the cover plate of the display device when the black matrix does not cover the slope of the support layer, further includes: forming the support layer and forming the support layer. Between the steps of the black matrix, a light reflection layer is formed on the side of the support layer away from the first base substrate; the light reflection layer at least covers the slope of the support layer.
  • FIG. 1 is a top structural view of a display device according to some embodiments of the present disclosure
  • 2A is a cross-sectional view of a display device along the section line AA' according to some embodiments of the present disclosure
  • 2B is a cross-sectional view of another display device along the section line AA' according to some embodiments of the present disclosure
  • 2C is a cross-sectional view of still another display device provided according to some embodiments of the present disclosure along the section line AA';
  • FIG. 3 is a structural diagram of a cover plate of a display device according to some embodiments of the present disclosure.
  • FIG. 4A is a cross-sectional view of a cover plate of a display device provided according to some embodiments of the present disclosure along the section line BB';
  • 4B is a cross-sectional view of the cover plate of another display device provided according to some embodiments of the present disclosure along the section line BB';
  • 4C is a cross-sectional view of another cover plate of a display device provided according to some embodiments of the present disclosure along the section line BB';
  • FIG. 5 is a structural diagram of another cover plate of a display device according to some embodiments of the present disclosure.
  • FIG. 6 is a structural diagram of another cover plate of a display device according to some embodiments of the present disclosure.
  • Fig. 7 is a structural diagram of a supporting layer provided according to some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of another cover plate of a display device according to some embodiments of the present disclosure.
  • FIG. 9 is a structural diagram of a cover plate of a display device provided according to the related art.
  • FIG. 10 is a flowchart of a method for manufacturing a cover plate of a display device according to some embodiments of the present disclosure
  • FIG. 11 is a diagram of various manufacturing steps of a cover plate of a display device according to some embodiments of the present disclosure.
  • FIG. 12 is a diagram of various manufacturing steps of a cover plate of another display device according to some embodiments of the present disclosure.
  • FIG. 13 is a diagram of various manufacturing steps of another cover plate of a display device according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • an embodiment of the present disclosure provides a display device 100.
  • the display device 100 may be a display device with a display function such as a mobile phone or a tablet computer.
  • the display device 100 includes a cover plate 1 and a display substrate 2 of the display device, and the cover plate 1 and the display substrate 2 are arranged oppositely.
  • the display device 100 may be a self-luminous display device.
  • the display device 100 may be an OLED (Organic Light Emitting Diode, organic electroluminescent diode) display device.
  • OLED Organic Light Emitting Diode, organic electroluminescent diode
  • the display substrate 2 is used to provide a light source, that is, the display substrate 2 emits light for display.
  • the cover 1 of the display device is arranged on the light-emitting side of the display substrate 2.
  • the display device 100 displays, the light emitted by the display substrate 2 passes through the cover plate 1 of the display device and enters human eyes, thereby realizing the display of the picture.
  • the display device 100 includes a display area AA.
  • a plurality of pixel units 101 arranged in an array are provided in the display area AA.
  • Each pixel unit 101 includes a plurality of sub-pixels P of three different colors.
  • each pixel unit 101 includes a red sub-pixel (marked as R in FIG. 1), two green sub-pixels (marked as G in FIG. 1), and one blue sub-pixel (marked as B in FIG. 1) .
  • the sub-pixels P included in each pixel unit 101 are arranged along the row direction.
  • red sub-pixels and blue sub-pixels are alternately arranged to form a red and blue sub-pixel column 102; along the column direction, green sub-pixels are arranged in sequence to form a green sub-pixel column 103.
  • the red and blue sub-pixel columns 102 and the green sub-pixel columns 103 are alternately arranged.
  • each sub-pixel P of the display device 100 includes some structures located in the display substrate 2 and some structures located in the cover plate 1 of the display device.
  • the display substrate 2 includes a second base substrate 21.
  • the structures located in the display substrate 2 include a driving circuit structure 22 disposed on the side of the second base substrate 21 close to the cover plate 1, and the driving circuit structure 22 disposed far away from the second base substrate 21 side of the light-emitting device 23.
  • the light emitting device 23 is coupled to the driving circuit structure 22. Driven by the driving circuit structure 22, the light emitting device 23 emits light.
  • the driving circuit structure 22 includes a plurality of thin film transistors (TFTs for short).
  • the TFT includes an active layer (Active) 221, a gate insulating layer 222, a gate electrode (Gate) 223, an interlayer insulating layer 226, and a source electrode 225 and a drain electrode 224.
  • the drain electrode 224 and the source electrode 225 are arranged in the same layer, and both are electrically connected to the active layer 221.
  • the TFT in the embodiments of the present disclosure may be a bottom-gate thin film transistor or a top-gate thin film transistor.
  • the TFT is a top-gate thin film transistor as an example for illustration.
  • the display substrate 2 may further include a light shielding layer 24 and a buffer layer 25 disposed on the side of the TFT close to the second base substrate 21.
  • the light-shielding layer 24 is disposed away from the TFT relative to the buffer layer 25.
  • the display substrate 2 may further include a passivation layer 26 and a flat layer 27 laminated between the driving circuit structure 22 and the light emitting device 23.
  • the passivation layer 26 is disposed close to the driving circuit structure 22, and the flat layer 27 is disposed close to the light emitting device 23.
  • the light emitting device 23 includes an anode 231, a pixel defining layer 232, a light emitting function layer 233, and a cathode 234 that are sequentially stacked in layers.
  • the anode 231 is coupled to the drain 224 of the TFT.
  • the pixel defining layer 232 has a plurality of openings, and each opening of the pixel defining layer 232 corresponds to the opening area of each sub-pixel P of the display device 100 in a one-to-one correspondence.
  • the light-emitting function layer 233 covers the pixel defining layer 232 and a plurality of openings of the pixel defining layer 232. It is understandable that, referring to FIG. 2A, FIG. 2B and FIG. 2C, the part of the light-emitting functional layer 233 located in the plurality of openings of the pixel defining layer 232 is in contact with the anode 231, and the light-emitting functional layer 233 covers the pixel defining layer The part on 232 is not in contact with the anode 231.
  • the part of the light-emitting function layer 233 located in the multiple openings of the pixel defining layer 232 emits light, and the part of the light-emitting function layer 233 covering the pixel defining layer 232 does not emit light.
  • the cathode 234 is located on the side of the light-emitting function layer 233 facing away from the second base substrate 21.
  • the light-emitting functional layer 233 includes a light-emitting layer.
  • the light emitted by the light-emitting layer is, for example, white light or blue light.
  • the light-emitting functional layer 233 also includes an electron transport layer (election transporting layer, ETL), an electron injection layer (election injection layer, EIL), and a hole transporting layer (hole transporting layer). layer, HTL for short) and one or more of the hole injection layer (HIL for short).
  • ETL electron transport layer
  • EIL electron injection layer
  • hole transporting layer hole transporting layer
  • the display substrate 2 further includes a second thin-film encapsulation layer 28.
  • the second thin-film encapsulation layer 28 covers the side of the cathode 234 facing away from the second base substrate 21 and functions to encapsulate the light-emitting device 23.
  • the second thin-film encapsulation layer 28 may be a high water-blocking film layer, which may be used to prevent external water and oxygen from affecting the light-emitting device 23.
  • the second thin-film encapsulation layer 28 may be made of materials such as silicon nitride or silicon oxide.
  • the display device 100 of the embodiment of the present disclosure further includes a filler 29 disposed between the cover 1 and the display substrate 2 of the display device.
  • the filler 29 fills the gap between the cover plate 1 of the display device and the display substrate 2 behind the box.
  • the filler 29 can play a role of supporting the cover plate 1 of the display device on the one hand, and can play a role of packaging the cover plate 1 and the display substrate 2 of the display device on the other hand.
  • the filler 29 may be a curable transparent liquid
  • the display device 100 further includes a filler wall structure disposed on the side of the second film encapsulation layer 28 of the display substrate 2 away from the second base substrate 21 (The filler retaining wall structure is not shown in the drawings of the present disclosure), the filler retaining wall structure surrounds the periphery of the second film encapsulation layer 28 in a ring shape, and the filler 29 is filled in the area surrounded by the filler retaining wall structure .
  • the display device 100 provided by the embodiment of the present disclosure may be a top-emission display device.
  • the anode 231 close to the second base substrate 21 is opaque, and the cathode 234 far away from the second base substrate 21 is transparent. Or translucent.
  • an embodiment of the present disclosure also provides a cover plate 1 of a display device, which can be applied to the above-mentioned display device 100.
  • the cover 1 of the display device has a plurality of opening regions S.
  • Each opening area S corresponds to the opening area of each sub-pixel P of the display device 100 on a one-to-one basis. It should be noted that in FIG. 3, the opening area S corresponding to the red sub-pixel is marked as R, the opening area S corresponding to the green sub-pixel is marked as G, and the opening area S corresponding to the blue sub-pixel is marked as B.
  • each opening of the pixel defining layer 232 of the display substrate 2 corresponds to the opening area of each sub-pixel P of the display device 100 one-to-one.
  • each opening area S of the cover plate 1 of the display device corresponds to each opening of the pixel defining layer 232 of the display substrate 2 in a one-to-one correspondence.
  • the cover 1 of the display device provided by the embodiment of the present disclosure includes a first base substrate 11, and a black matrix layered on the side of the first base substrate 11 close to the display substrate 2.
  • 12 and support layer 13 Both the black matrix 12 and the support layer 13 have a plurality of openings, and the plurality of openings of the black matrix 12 respectively overlap the plurality of openings of the support layer 13 at least partially (for example, most overlap, or substantially overlap) to form the above-mentioned plurality of opening regions S.
  • the black matrix 12 is used to prevent the lateral light emitted by the light-emitting function layer 233 of the display substrate 2 from being irradiated to the phase. Adjacent sub-pixels P, thereby avoiding color mixing in the display device 100.
  • the support layer 13 has a specific height and can be used as a spacer. After the display substrate 2 and the cover plate 1 of the display device are boxed together, the support layer 13 is used to support the cover plate 1 of the display device.
  • the cover plate 1 of the display device provided by the embodiment of the present disclosure further includes a quantum dot layer 14 disposed on the first base substrate 11.
  • the quantum dot layer 14 includes a plurality of quantum dot units 141, and each quantum dot unit 141 is located in an open area S.
  • each quantum dot unit 141 located in each opening area S also It corresponds to each opening of the pixel defining layer 232 one-to-one. In this way, the light emitted from the light emitting function layer 233 of the display substrate 2 located in the openings of the pixel defining layer 232 passes through the quantum dot units 141 in the process of passing through the opening regions S.
  • quantum dots are spherical semiconductor nanoparticles composed of II-VI or III-V group elements, and the particle size is generally between a few nanometers and tens of nanometers. Due to the existence of the quantum confinement effect, the original continuous energy band of the quantum dot material becomes a discrete energy level structure, which can emit visible light after being excited by external light. The frequency of the emitted visible light changes with the change of the particle size of the quantum dots. Therefore, the color of the light emitted by the quantum dot can be controlled by adjusting the particle size of the quantum dot.
  • each quantum dot unit 141 can emit light of a corresponding color under the excitation of the light emitted by the light-emitting function layer 233 of the display substrate 2.
  • the light emitted by the light-emitting functional layer 233 may be white light or blue light.
  • the plurality of quantum dot units 141 when the light (also referred to as excitation light) emitted by the light-emitting functional layer 233 is white light, the plurality of quantum dot units 141 includes a plurality of red quantum dot units (FIG. (Labeled as R in Figure 5), multiple green quantum dot units (labeled as G in Figure 5), and multiple blue quantum dot units (labeled as B in Figure 5).
  • the red quantum dot unit can absorb the excitation light irradiated to the red quantum dot unit and emit red light; the green quantum dot unit can absorb the excitation light irradiated to the green quantum dot unit and emit green light; the blue quantum dot unit can absorb the irradiation The excitation light to the blue quantum dot unit emits blue light.
  • the plurality of quantum dot units 141 when the light emitted by the light-emitting functional layer 233 is blue light, the plurality of quantum dot units 141 includes a plurality of red quantum dot units (marked as R in FIG. 6) and multiple quantum dot units. A green quantum dot unit (marked as G in Figure 6).
  • the quantum dot layer 14 further includes a plurality of light-transmitting units 142.
  • the light transmitting unit 142 is used to transmit blue light. It is explained here that the light-transmitting unit 142 refers to the opening area S in which the quantum dot unit 141 is not provided in the plurality of opening areas S formed by the black matrix 12 and the support layer 13.
  • the material of the light-transmitting unit 142 may be the material of the first thin-film encapsulation layer 15 to be formed later, that is, the light-transmitting unit 142 may be formed at the same time in the step of forming the first thin-film encapsulation layer 15 to save Process steps.
  • the red quantum dot unit can absorb the excitation light irradiated to the red quantum dot unit to emit red light
  • the green quantum dot unit can absorb the excitation light irradiated to the green quantum dot unit to emit green light
  • the light-transmitting unit can directly transmit Blue rays. Therefore, there is no need to set a quantum dot unit emitting blue light, which simplifies the process and saves materials.
  • the quantum dot unit may not be able to completely absorb the excitation light irradiated to the quantum dot unit.
  • the quantum dot unit can absorb as much excitation light as possible and improve the luminous efficiency of the quantum dot unit.
  • a black matrix is used as a barrier structure to isolate each quantum dot unit to ensure that there will be no color mixing phenomenon between quantum dot units of different colors. Affected by the material and manufacturing process of the black matrix, the thickness of the black matrix cannot be above 2 ⁇ m, so the thickness of each quantum dot unit cannot be above 2 ⁇ m. Therefore, relying solely on the black matrix as a barrier structure to isolate each quantum dot unit, it is difficult to make the quantum dot unit thick, which restricts the thickness of the quantum dot unit.
  • each quantum dot unit 141 is located in the opening area S formed by the black matrix 12 and the supporting layer 13, and the black matrix 12 and the supporting layer 13 constitute the quantum dot unit 141.
  • the material of the support layer 13 can be made of thicker materials. In this way, since the support layer 13 can be made thicker, the retaining wall structure formed by the black matrix 12 and the support layer 13 can also be made thicker.
  • the thickness of each quantum dot unit 141 is made thicker.
  • the quantum dot unit 14 can be made thicker, so that the quantum dot unit 14 can absorb as much excitation light as possible and improve the quantum dot unit’s performance.
  • the luminous efficiency further improves the luminous efficiency of the display panel display device 100.
  • the material of the support layer 13 is a thicker material that can be made.
  • the support layer 13 is made of photoresist, and the thickness of the support layer 13 made of photoresist can reach a level of 10 ⁇ m or more.
  • the photoresist includes acrylate.
  • the thickness of the support layer 13 ranges from 10 ⁇ m to 30 ⁇ m.
  • the thickness of the support layer 13 is 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, or 25 ⁇ m.
  • the thickness of the black matrix 12 ranges from 1 ⁇ m to 2 ⁇ m.
  • the thickness of the black matrix 12 is 1.1 ⁇ m, 1.5 ⁇ m, or 1.7 ⁇ m.
  • the thickness of the supporting layer 13 is 10 ⁇ m and the thickness of the black matrix 12 is 1 ⁇ m
  • the thickness of the retaining wall structure formed by the black matrix 12 and the supporting layer 13 can reach 11 ⁇ m.
  • the thickness of each quantum dot unit 141 located in each opening region S can also be made to 11 ⁇ m.
  • the thickness of each quantum dot unit 141 in the embodiment of the present disclosure is increased by at least 9 ⁇ m.
  • the quantum dot unit 14 can be made thicker, so that the quantum dot unit 14 can absorb as much excitation light as possible and improve the luminous efficiency of the quantum dot unit.
  • the light emitted from the light-emitting function layer 233 is blue light
  • the plurality of quantum dot units 141 includes a plurality of red quantum dot units (marked as R in FIG. 6) and a plurality of green quantum dot units (in FIG. 6).
  • the green quantum dot unit and the red quantum dot unit when the blue light is directly displayed without the processing of the quantum dot unit, the green quantum dot unit and the red quantum dot unit can be made thicker, so that the green quantum dot unit and the red quantum dot unit can be paired as much as possible.
  • the excitation light is absorbed to improve the conversion efficiency of the green quantum dot unit and the red quantum dot unit to blue light, thereby increasing the red and green brightness of the display device 100, and reducing the brightness difference between red light and green light and blue light.
  • the uniformity of the overall brightness of the display device 100 is improved.
  • the embodiment of the present disclosure does not limit the material of the black matrix 12, and the material can be selected based on the function of preventing pixel light leakage.
  • the material of the black matrix 12 may be a metal material, for example, chromium, aluminum, silver, or aluminum-silver alloy.
  • the cover plate 1 of the display device provided by the embodiment of the present disclosure further includes a first thin film encapsulation layer 15 for encapsulating the quantum dot layer 14.
  • the first thin-film encapsulation layer 15 is disposed on the side of the supporting layer 13 and the quantum dot layer 14 away from the first base substrate 11. As shown in FIGS.
  • the first thin-film encapsulation layer 15 and the second thin-film encapsulation layer 28 are arranged oppositely, as mentioned above
  • the obtained filler 29 is disposed between the first thin-film encapsulation layer 15 and the second thin-film encapsulation layer 28.
  • the first thin-film encapsulation layer 15 and the second thin-film encapsulation layer 28, and the filler 29 disposed therebetween constitute an encapsulation structure, and play a role in encapsulating the display device 100.
  • the display device 100 may be a top-emission display device.
  • the light emitted by the light-emitting function layer 233 of the display substrate 1 is sequentially irradiated to the quantum dot layer 14 through the cathode 234, the second thin film encapsulation layer 28, and the first thin film encapsulation layer 15.
  • Each quantum dot unit 141 in the quantum dot layer 14 absorbs light irradiated to the quantum dot unit 141 and emits light of a corresponding color to realize color display.
  • the black matrix 12 blocks the light of each sub-pixel, and prevents the light of each sub-pixel from irradiating adjacent sub-pixels as much as possible, thereby avoiding color mixing in the display device 100 as much as possible.
  • each film layer located between the black matrix 12 and the anode 231 (opaque) is made of transparent material, the light of each sub-pixel can easily pass through each film layer located between the black matrix 12 and the anode 231 (opaque) to irradiate adjacent , Resulting in color mixing in the display device 1A.
  • the distance L between the black matrix 12 and the anode 231 means that in the direction perpendicular to the first base substrate 11, the black matrix 12 is far away from the first base substrate 11 The distance between the surface on the side and the surface of the anode 231 on the side away from the second base substrate 21. That is to say, the distance L between the black matrix 12 and the anode 231 is equal to the sum of the thickness of each film layer located between the black matrix 12 and the anode 231.
  • the black matrix 12 may be far away from the first base substrate 11 relative to the support layer 13, or the black matrix 12 may be closer to the first base substrate 11 relative to the support layer 13.
  • the black matrix 12 is close to the first base substrate 11 relative to the support layer 13.
  • the black matrix 12 is far away from the first base substrate 11 relative to the support layer 13.
  • each film layer located between the black matrix 12 and the anode 231 includes the support layer 13 and the first thin film encapsulation layer 17.
  • the distance L between the black matrix 12 and the anode 231 is equal to the sum of the thickness of the support layer 13, the first thin film encapsulation layer 15, the second thin film encapsulation layer 28, the cathode 234, the light-emitting function layer 233 and the pixel defining layer 232.
  • the thickness of the pixel defining layer 232 here refers to the pixel defining layer 232 except for the via holes located in the flat layer 27 and the passivation layer 26 (that is, the via holes used to contact the drain electrode 224 of the TFT) The thickness of the part outside the inner part.
  • each film layer located between the black matrix 12 and the anode 231 includes a first thin film encapsulation layer 17, a second Two thin film encapsulation layer 28, cathode 234, light-emitting function layer 233 and pixel defining layer 232.
  • the distance L between the black matrix 12 and the anode 231 is equal to the sum of the thickness of the first thin-film encapsulation layer 17, the second thin-film encapsulation layer 28, the cathode 234, the light-emitting function layer 233 and the pixel defining layer 232.
  • the supporting layer 13 has a main surface 131 away from the first base substrate 11 and a slope surface 132 surrounding each opening of the supporting layer 13.
  • the support layer 13 has a terrace structure (FIG. 2A, FIG. 2B, FIG. 2C, FIG. 4A, FIG. 4B, and FIG. 4C only show a part of the terrace structure) ).
  • the cross section of the supporting layer 13 in a direction perpendicular to the first base substrate 11 away from the first base substrate 11 is trapezoidal.
  • the cross section of the main surface 131 of the support layer 13 forms the bottom side of the trapezoid away from the first base substrate 11, and the cross section of the slope surface 132 of the support layer 13 forms the side side of the trapezoid.
  • the supporting layer 13 has a positive terrace structure.
  • the so-called “support layer 13 has a positive terrace structure” specifically refers to: as shown in FIGS. 4A, 4B, and 4C, the cross section of the support layer 13 in the direction perpendicular to the first base substrate 11 is a regular trapezoid. Among the two sides of the cross section parallel to the first base substrate 11, the side length of the side far away from the first base substrate 11 is smaller than the side length of the side close to the first base substrate 11.
  • the supporting layer 13 has a positive terrace structure, as shown in FIG. 7, due to the angle ⁇ between its slope 132 and its bottom surface 133 (that is, the side of the supporting layer 13 close to the first base substrate 11)
  • the openings of the support layer 13 surrounded by the slope surface 132 have an acute angle.
  • the width D1 of the openings away from the first base substrate 11 is larger than the width D2 near the first base substrate 11, which reduces the support layer.
  • the inkjet printing process refers to fabricating a barrier structure on a substrate in advance, and then dropping ink droplets into an area defined by the barrier structure.
  • using an inkjet printing process to form the quantum dot layer 14 refers to dropping the quantum dot material into each opening area S.
  • the black matrix 12 when the black matrix 12 is close to the first base substrate 11 relative to the support layer 13, the black matrix 12 and the bottom surface of the support layer 13 (that is, the support layer 13 is close to the first substrate One side of the substrate 11) overlaps.
  • the black matrix 12 when the black matrix 12 is far away from the first base substrate 11 relative to the supporting layer 13, the black matrix 12 covers at least the main surface 131 of the supporting layer 13. And in this case, in order to prevent the lateral light emitted by the light emitting device 23 of each sub-pixel from passing through the supporting layer 13 and irradiating the adjacent sub-pixels, the slope 132 of the supporting layer 13 needs to be shielded from light.
  • the black matrix 12 may be used to shield the slope surface 132 of the supporting layer 13, that is, the black matrix 12 not only covers the main surface 131 of the supporting layer 13, but also covers the slope surface 132 of the supporting layer 13. As shown in FIG. 2B, this can prevent the lateral light emitted by the light-emitting device 23 of each sub-pixel from passing through the support layer 13 to irradiate the adjacent sub-pixel, thereby avoiding color mixing in the display panel 100.
  • the slope surface 132 of the support layer 13 can be shielded from light by covering the reflective layer 16 on the slope surface 132 of the support layer 13.
  • the cover plate 1 of the display device provided by the embodiment of the present disclosure further includes: a light reflection layer 16 arranged between the black matrix 12 and the support layer 13.
  • the light reflection layer 16 covers at least the slope surface 132 of the support layer 13 (for example, covers most or all of the slope surface 132). In this way, the portion of the light reflection layer 16 covering the slope 132 of the support layer 13 can reflect the lateral light emitted by the light-emitting device 23 of each sub-pixel back to the opening area of the sub-pixel.
  • the light reflective layer 16 on the one hand, can confine the light emitted by each pixel to the sub-pixel and prevent it from being emitted to adjacent sub-pixels, thereby avoiding color mixing in the display device 100; on the other hand, it can improve the The light extraction efficiency inside improves the light utilization rate.
  • the slope of the slope 132 (that is, the angle ⁇ between the slope 132 and the bottom surface 133) after exposure and development is relatively large.
  • the slope length H is small and the slope length H is long, so the width D3 of the slope surface 132 is large.
  • the width D3 of the slope 132 can be up to 5.5 ⁇ m.
  • the width D3 of the slope surface 132 refers to the distance between the inner edge 132a and the outer edge 132b of the orthographic projection of the slope surface 132 on the first base substrate 11 as shown in FIG. 8.
  • the inner edge 132a is the edge close to the center O of the opening surrounded by the slope 132 in the orthographic projection of the slope surface 132;
  • the outer edge 132b is the edge away from the center O of the opening surrounded by the slope surface 132 in the orthographic projection of the slope surface 132.
  • the light reflection layer 16 can reflect the light irradiated on the slope surface 132 back into the sub-pixels for reuse.
  • This is equivalent to adding a part of the opening area of the sub-pixel (that is, the shaded part in FIG. 8).
  • the increased portion corresponds to the portion between the inner edge 132a and the outer edge 132b of the support layer 13, that is, the edge corresponding to the opening area of the sub-pixel expands outward by D3.
  • the material of the light reflection layer 15 includes a metal material.
  • the light reflection layer 15 is made of metal materials such as silver, molybdenum, aluminum, or nickel.
  • the light reflection layer 15 may be a single-layer structure or a stacked-layer structure.
  • the light reflection layer 15 may be a single-layer silver, a single-layer molybdenum, a single-layer aluminum, or a single-layer nickel.
  • the light reflection layer 15 may be a laminated structure formed by stacking an indium tin oxide layer, a silver layer, and an indium tin oxide layer in sequence; for example, it may be formed by stacking at least two metal layers.
  • the laminated structure is, for example, a laminated structure formed by sequentially stacking a molybdenum layer, an aluminum layer, and a nickel layer.
  • the thickness of the light reflection layer 15 ranges from 100 nm to 300 nm, for example, the thickness of the light reflection layer 15 is 100 nm, 200 nm, or 300 nm.
  • the quantum dot unit 141' is formed by an inkjet printing process. In the actual printing process, affected by the barrier structure 013, the quantum dot unit 141' is mostly formed as a film. The middle thickness is thin on both sides, that is, the quantum dot unit 141' is thinner near the retaining wall structure 013, and thicker at the distance away from the retaining wall structure 013.
  • the edge of the orthographic projection of the quantum dot unit 141' on the first base substrate 11' coincides with the outer edge of the orthographic projection of the slope of the retaining wall structure 013 on the first base substrate 11, the quantum dot unit 141' is far away
  • One side of the first base substrate 11' will protrude from the side of the barrier structure 013 away from the first base substrate 11', which is not conducive to the packaging of the quantum dot unit 141'.
  • the edge of the orthographic projection of the quantum dot unit 141 on the first base substrate 11 is at the edge of the orthographic projection of the slope 132 of the support layer 13 on the first base substrate 11 Between the inner edge 132a and the outer edge 132b. It can also be said that the orthographic projection of the slope 132 of the supporting layer 13 on the first base substrate 11 at least partially overlaps with the orthographic projection of the quantum dot unit 141 on the first base substrate 11.
  • the quantum dot unit 141 is confined in the opening of the support layer 13, that is, the side of the quantum dot unit 141 away from the first base substrate 11 does not protrude or substantially does not protrude from the support layer 13 away from the first substrate.
  • One side of the base substrate 11 facilitates subsequent packaging of the quantum dot unit 141.
  • the cover plate 1 of the display device provided by the embodiment of the present disclosure further includes a color set between the quantum dot unit 141 and the first base substrate 11. ⁇ 17 ⁇ Film layer 17.
  • the color film layer 17 includes a plurality of filter units 171, and each filter unit 171 is located in an opening area S.
  • the color of the filter unit 171 and the quantum dot unit 141 located in an opening area S are the same.
  • the multiple filter units 171 include multiple red filter units, multiple green filter units, and multiple blue filter units, and multiple quantum dot units 141
  • multiple red filter units and multiple red quantum dot units are located in one opening area S; multiple green filter units and multiple green quantum dots The unit is located in an open area S.
  • the quantum dot unit cannot completely absorb the excitation light irradiated to the quantum dot unit, some of the light emitted by the light-emitting functional layer 233 of the display substrate 2 is still displayed as it after passing through each quantum dot unit. The original color.
  • the filter unit 171 can filter this part of the light to avoid color mixing in the display device 100.
  • an embodiment of the present disclosure also provides a method for manufacturing a cover plate of a display device, which is used to manufacture the cover plate 1 of a display device according to any one of the foregoing embodiments.
  • the production method includes S1 ⁇ S3:
  • the black matrix 12 and the supporting layer 13 are stacked. Both the black matrix 12 and the supporting layer 13 have a plurality of openings, and the plurality of openings of the black matrix 12 respectively at least partially overlap the plurality of openings of the supporting layer 13 to form a plurality of opening regions S.
  • forming the black matrix 12 includes: spin coating or blade coating can be used to form a black matrix material layer on the first base substrate using a solution of black matrix material, and then to bake the black matrix material layer. The solvent in the black matrix material layer is removed, and then the baked black matrix material layer is sequentially exposed and developed to pattern the black matrix material layer to form a plurality of openings to obtain the black matrix 12, and finally the black matrix 12 is obtained by baking. The matrix is cured.
  • forming the support layer 13 includes: forming a photoresist on the first base substrate by spin coating or blade coating, removing the solvent in the photoresist to obtain a photoresist film layer, and then facing the photoresist The resist film layer is sequentially exposed and developed, and the photoresist film layer is patterned to form a plurality of openings to obtain the support layer 13.
  • the order of forming the black matrix 12 and the support layer 13 is not limited.
  • the black matrix 12 is formed first, and then the support layer 13 is formed.
  • the shape and structure of the black matrix 12 and the supporting layer 13 can be referred to the previous related description of the embodiment corresponding to FIG. 2A and FIG. 4A, and details are not repeated here.
  • the support layer 13 is formed first, and then the black matrix 12 is formed.
  • forming the black matrix 12 and the supporting layer 13 on the first base substrate 11 in S2 includes:
  • a supporting layer 13 is formed on the first base substrate 11.
  • the supporting layer 13 has a main surface 131 away from the first base substrate 11 and a slope surface 132 surrounding each opening of the supporting layer 13.
  • a black matrix is formed on the side of the supporting layer 13 away from the first base substrate 11.
  • the black matrix 12 covers at least the main surface 131 of the support layer, for example, the black matrix 12 covers the main surface 131 and the slope surface 132 of the support layer.
  • forming the black matrix 12 and the supporting layer 13 on the first base substrate 11 in S2 includes:
  • a supporting layer 13 is formed on the first base substrate 11.
  • the supporting layer 13 has a main surface 131 away from the first base substrate 11 and a slope surface 132 surrounding each opening of the supporting layer 13.
  • a light reflection layer 16 is formed on the side of the supporting layer 13 away from the first base substrate 11.
  • the light reflection layer 16 covers at least the slope surface 132 of the support layer 13, for example, the light reflection layer 16 covers the main surface 131 and the slope surface 132 of the support layer.
  • a black matrix is formed on the side of the supporting layer 13 away from the first base substrate 11.
  • the black matrix 12 covers the main surface 131 of the support layer.
  • the quantum dot layer 14 includes a plurality of quantum dot units 141, and each quantum dot unit 141 is located in an open area S.
  • an inkjet printing process may be used to print quantum dot materials in the opening area S, and solidify the quantum dot materials to obtain the quantum dot unit 141.
  • the shape and structure of the quantum dot layer 14 can be referred to the previous related description, and will not be repeated here.
  • the manufacturing method of the cover plate of the above-mentioned display device further includes a step of forming a color film layer.
  • the shape, structure, etc. can be referred to the previous related description, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种显示装置。显示装置包括盖板和与盖板相对设置的显示基板。其中,盖板包括第一衬底基板、层叠设置于第一衬底基板靠近显示基板一侧的黑矩阵和支撑层,以及设置于第一衬底基板靠近显示基板一侧的量子点层。黑矩阵和支撑层均具有多个开口,且黑矩阵的多个开口分别与支撑层的多个开口至少部分重叠,形成多个开口区域。量子点层包括多个量子点单元,每个量子点单元位于一个开口区域内。显示基板包括:第二衬底基板、设置于第二衬底基板上靠近盖板一侧的驱动电路结构,及设置于驱动电路结构远离第二衬底基板一侧的发光器件;发光器件与驱动电路结构耦接,发光器件在驱动电路结构的驱动下发出光。

Description

显示装置、显示装置的盖板的制作方法
本申请要求于2020年04月02日提交的、申请号为202010256762.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示装置、显示装置的盖板的制作方法。
背景技术
随着显示技术的不断发展,显示装置能够实现更广色域的显示。量子点(Quantum Dot,QD)显示装置具有光谱窄、色纯度高以及色域广等特点,在广色域的显示领域中具有独特的优势。
发明内容
一方面,提供一种显示装置。所述显示装置包括:盖板和与所述盖板相对设置的显示基板。其中,所述盖板包括:第一衬底基板、层叠设置于所述第一衬底基板靠近所述显示基板一侧的黑矩阵和支撑层,以及设置于所述第一衬底基板靠近所述显示基板一侧的量子点层。所述黑矩阵和所述支撑层均具有多个开口,且所述黑矩阵的多个开口分别与所述支撑层的多个开口至少部分重叠,形成多个开口区域。所述量子点层包括多个量子点单元,每个量子点单元位于一个开口区域内。其中,所述显示基板包括:第二衬底基板、设置于所述第二衬底基板上靠近所述盖板一侧的驱动电路结构,及设置于所述驱动电路结构远离所述第二衬底基板一侧的发光器件。所述发光器件与所述驱动电路结构耦接,所述发光器件在所述驱动电路结构的驱动下发出光。
在一些实施例中,所述黑矩阵相对于所述支撑层远离所述第一衬底基板。
在一些实施例中,所述支撑层具有远离所述第一衬底基板的主表面和围成其每个开口的坡面。所述盖板还包括:设置于所述黑矩阵和所述支撑层之间的光反射层,所述光反射层至少覆盖所述支撑层的坡面。
在一些实施例中,所述黑矩阵在所述第一衬底基板上的正投影的边缘与所述支撑层的主表面在所述第一衬底基板上的正投影的边缘重合或大致重合。
在一些实施例中,所述光反射层的材料包括金属材料。
在一些实施例中,所述光反射层为透明金属氧化物层、反光金属层和透明金属氧化物层依次层叠形成的叠层结构,或者为至少两层金属层层叠形成的叠层结构。
在一些实施例中,所述光反射层为铟锡氧化物层、银层和铟锡氧化物层 依次层叠形成的叠层结构,或者为钼层、铝层和镍层依次层叠形成的叠层结构。
在一些实施例中,所述光反射层的厚度范围100nm~300nm。
在一些实施例中,所述量子点单元在所述第一衬底基板上的正投影的边缘处于,所述支撑层的坡面在所述第一衬底基板上的正投影的内边缘与外边缘之间。其中,所述内边缘为,该坡面正投影中靠近该坡面所围开口的中心的边缘;所述外边缘为,该坡面正投影中远离该坡面所围开口的中心的边缘。
在一些实施例中,所述支撑层具有远离所述第一衬底基板的主表面和围成所述支撑层的每个开口的坡面。所述黑矩阵覆盖所述支撑层的主表面和坡面。
在一些实施例中,所述黑矩阵相对于所述支撑层靠近所述第一衬底基板。
在一些实施例中,所述支撑层的厚度范围为10μm~30μm。
在一些实施例中,所述黑矩阵的厚度范围为1μm~2μm。
在一些实施例中,所述盖板还包括:设置于所述量子点层与所述第一衬底基板之间的彩膜层。所述彩膜层包括多个滤光单元,每个滤光单元位于一个开口区域内。
在一些实施例中,在所述发光器件在所述驱动电路结构的驱动下发出的光为蓝光的情况下,所述量子点层包括红色量子点单元和绿色量子点单元;所述彩膜层包括红色滤光单元、绿色滤光单元和蓝色滤光单元。其中,一个所述红色量子点单元与一个所述红色滤光单元位于同一开口区域内;一个绿色量子点单元与一个绿色滤光单元位于同一开口区域内。
在一些实施例中,在所述发光器件在所述驱动电路结构的驱动下发出的光为白光的情况下,所述量子点层包括红色量子点单元、绿色量子点单元和蓝色量子点单元;所述彩膜层包括红色滤光单元、绿色滤光单元和蓝色滤光单元;其中,一个所述红色量子点单元与一个所述红色滤光单元位于同一开口区域内;一个绿色量子点单元与一个绿色滤光单元位于同一开口区域内;一个蓝色量子点单元与一个蓝色滤光单元位于同一开口区域内。
在一些实施例中,所述的显示装置,包括:包括阵列式排布的多个像素单元,每个像素单元包括一个红色子像素、一个蓝色子像素和两个绿色子像素,每个像素单元所包括的各子像素沿行方向排列;沿列方向,红色子像素和蓝色子像素交替设置,形成红蓝子像素列;沿列方向,绿色子像素依次排列,形成绿色子像素列,沿行方向,所述红蓝子像素列和所述绿色子像素列交替设置。
另一方面,提供一种显示装置的盖板的制作方法,用于制作上述任一实施例所述的显示装置的盖板。该制作方法包括:提供第一衬底基板。在所述第一衬底基板上形成黑矩阵和支撑层。所述黑矩阵与所述支撑层层叠设置,所述黑矩阵和所述支撑层均具有多个开口,且所述黑矩阵的多个开口分别与所述支撑层的多个开口至少部分重叠,形成多个开口区域。在所述第一衬底基板上形成量子点层,所述量子点层包括多个量子点单元,每个量子点单元位于一个开口区域内。
在一些实施例中,所述在所述第一衬底基板上形成黑矩阵和支撑层包括:在所述第一衬底基板上形成所述支撑层;所述支撑层具有远离所述第一衬底基板的主表面和围成所述支撑层的每个开口的坡面。在所述支撑层远离所述第一衬底基板的一侧形成所述黑矩阵,所述黑矩阵至少覆盖所述支撑层的主表面。
在一些实施例中,所述显示装置的盖板的制作方法,在所述黑矩阵不覆盖所述支撑层的坡面的情况下,还包括:在形成所述支撑层的步骤与形成所述黑矩阵的步骤之间,在所述支撑层远离所述第一衬底基板的一侧形成光反射层;所述光反射层至少覆盖所述支撑层的坡面。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开的一些实施例提供的一种显示装置的俯视结构图;
图2A为根据本公开的一些实施例提供的一种显示装置沿剖面线AA'的剖视图;
图2B为根据本公开的一些实施例提供的另一种显示装置沿剖面线AA'的剖视图;
图2C为根据本公开的一些实施例提供的又一种显示装置沿剖面线AA'的剖视图;
图3为根据本公开的一些实施例提供的一种显示装置的盖板的结构图;
图4A为根据本公开的一些实施例提供的一种显示装置的盖板沿剖面线BB'的剖视图;
图4B为根据本公开的一些实施例提供的另一种显示装置的盖板沿剖面线BB'的剖视图;
图4C为根据本公开的一些实施例提供的又一种显示装置的盖板沿剖面线BB'的剖视图;
图5为根据本公开的一些实施例提供的又一种显示装置的盖板的结构图;
图6为根据本公开的一些实施例提供的又一种显示装置的盖板的结构图;
图7为根据本公开的一些实施例提供的一种支撑层的结构图;
图8为根据本公开的一些实施例提供的又一种显示装置的盖板的结构图;
图9为根据相关技术提供的一种显示装置的盖板的结构图;
图10为根据本公开的一些实施例提供的一种显示装置的盖板的制作方法的流程图;
图11为根据本公开的一些实施例提供的一种显示装置的盖板的各制作步骤图;
图12为根据本公开的一些实施例提供的另一种显示装置的盖板的各制作步骤图;
图13为根据本公开的一些实施例提供的又一种显示装置的盖板的各制作步骤图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)” 或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
如图1、图2A、图2B和图2C所示,本公开实施例提供一种显示装置100,该显示装置100可以为手机、平板电脑等具有显示功能的显示装置。
该显示装置100包括显示装置的盖板1和显示基板2,盖板1和显示基板2相对设置。
在一些实施例中,显示装置100可以为自发光型显示装置。示例性地,显示装置100可以为OLED(Organic Light Emitting Diode,有机电致发光二极管)显示装置。在显示装置100为自发光型显示装置的情况下,显示基板2用于提供光源,即显示基板2发射出显示用的光线。显示装置的盖板1设置于显示基板2的出光侧。在显示装置100显示时,显示基板2发射出的光线穿过显示装置的盖板1后进入人眼,从而实现画面的显示。
请参阅图1,显示装置100包括显示区域AA。显示区域AA中设置有阵列式排布的多个像素单元101。每个像素单元101包括三种不同颜色的多个子像素P。示例性地,每个像素单元101包括一个红色子像素(图1中标记为R)、两个绿色子像素(图1中标记为G)和一个蓝色子像素(图1中标记为B)。每个像素单元101所包括的各子像素P沿行方向排列。沿列方向,红色子像素和蓝色子像素交替设置,形成红蓝子像素列102;沿列方向,绿色子像素依次排列,形成绿色子像素列103。沿行方向,红蓝子像素列102和绿色子像素列103交替设置。
可以理解的是,请参阅图2A、图2B和图2C,显示装置100的每个子像素P包括位于显示基板2中的一些结构和位于显示装置的盖板1中的一些结构。
请参阅图2A、图2B和图2C,显示基板2包括第二衬底基板21。在每个子像素P中,位于显示基板2中的该些结构包括设置于第二衬底基板21靠近盖板1一侧的驱动电路结构22,以及设置于驱动电路结构22远离第二衬底基板21一侧的发光器件23。其中发光器件23与驱动电路结构22耦接。在驱动电路结构22的驱动下,发光器件23发光。
请继续参阅图2A、图2B和图2C,驱动电路结构22包括多个薄膜晶体管(Thin Film Transistor,简称TFT)。示例性地,TFT包括有源层(Active)221、栅绝缘层222、栅极(Gate)223、层间绝缘层226以及源极225和漏极224。其中,漏极224和源极225同层设置,且均与有源层221电连接。
需要说明的是,本公开实施例中的TFT可以是底栅型薄膜晶体管,也可以是顶栅型薄膜晶体管。本公开实施例的附图中以TFT是顶栅型薄膜晶体管为例进行示意。
请继续参阅图2A、图2B和图2C,显示基板2还可包括设置于TFT靠近第二衬底基板21一侧的遮光层24和缓冲层25。其中,遮光层24相对于缓冲层25远离TFT设置。
请继续参阅图2A、图2B和图2C,显示基板2还可包括叠层设置于驱动电路结构22和发光器件23之间的钝化层26和平坦层27。其中,钝化层26靠近驱动电路结构22设置,平坦层27靠近发光器件23设置。
示例性地,请继续参阅图2A、图2B和图2C,发光器件23包括依次叠层设置的阳极231、像素界定层232、发光功能层233以及阴极234。
其中,阳极231与TFT的漏极224耦接。
其中,像素界定层232具有多个开口,像素界定层232的各开口与显示装置100的各子像素P的开口区域一一对应。
其中,在一些实施例中,发光功能层233覆盖像素界定层232以及像素界定层232的多个开口。可以理解的是,请参阅图2A、图2B和图2C,发光功能层233中位于像素界定层232所具有的多个开口内的部分与阳极231接触,发光功能层233中覆盖在像素界定层232上的部分不与阳极231接触。这样,在发光功能层233实现发光功能时,发光功能层233中位于像素界定层232所具有的多个开口的部分发光,发光功能层233中覆盖在像素界定层 232上的部分不发光。
阴极234位于发光功能层233背向第二衬底基板21的一侧。
在一些实施例中,发光功能层233包括发光层。发光层发出的光例如为白光或蓝光。
在另一些实施例中,发光功能层233除包括发光层外,还包括电子传输层(election transporting layer,简称ETL)、电子注入层(election injection layer,简称EIL)、空穴传输层(hole transporting layer,简称HTL)以及空穴注入层(hole injection layer,简称HIL)中的一层或多层。
请继续参阅图2A、图2B和图2C,显示基板2还包括第二薄膜封装层28。第二薄膜封装层28覆盖在阴极234背向第二衬底基板21的一侧,起到封装发光器件23的作用。
示例性地,第二薄膜封装层28可以为高阻水型膜层,可以用于防止外界的水和氧气对发光器件23造成影响。例如第二薄膜封装层28可以由氮化硅或氧化硅等材料制作而成。
请继续参阅图2A、图2B和图2C,本公开实施例的显示装置100还包括设置于显示装置的盖板1和显示基板2之间的填充物29。填充物29填充显示装置的盖板1和显示基板2对盒后之间的空隙。填充物29一方面可以起到对显示装置的盖板1支撑的作用,另一方面可以起到对显示装置的盖板1和显示基板2的封装作用。
在一些实施例中,填充物29可以是可固化的透明液体,显示装置100还包括设置在显示基板2的第二薄膜封装层28远离第二衬底基板21的一侧的填充物挡墙结构(本公开的附图中未示意出填充物挡墙结构),填充物挡墙结构呈环形围绕在第二薄膜封装层28的周边,填充物29填充在填充物挡墙结构所围绕的区域内。
需要说明的是,本公开实施例提供的显示装置100可以为顶发射型显示装置,在此情况下,靠近第二衬底基板21的阳极231不透明,远离第二衬底基板21的阴极234透明或半透明。
如图3、图4A~图4B所示,本公开实施例还提供一种显示装置的盖板1,可以应用于上述的显示装置100中。该显示装置的盖板1具有多个开口区域S。各开口区域S与显示装置100的各子像素P的开口区域一一对应。需要说明的是,在图3中,与红色子像素对应的开口区域S标记为R、与绿色子像素对应的开口区域S标记为G,与蓝色子像素对应的开口区域S标记为B。
由前述对显示装置100的显示基板2的结构说明可知,显示基板2的像 素界定层232的各开口与显示装置100的各子像素P的开口区域一一对应。这样,显示装置的盖板1的各开口区域S与显示基板2的像素界定层232的各开口一一对应。基于此,在显示装置100实现显示功能时,显示基板2的发光功能层233中位于像素界定层232的各开口内的部分发射出的光线,通过显示装置的盖板1的各开口区域S后进入人眼,从而实现画面的显示。
请参阅图4A、图4B和图4C,本公开实施例提供的显示装置的盖板1包括第一衬底基板11,以及层叠设置于第一衬底基板11靠近显示基板2一侧的黑矩阵12和支撑层13。黑矩阵12和支撑层13均具有多个开口,且黑矩阵12的多个开口分别与支撑层13的多个开口至少部分重叠(例如大部分重叠,或者基本重叠),形成上述多个开口区域S。
需要说明的是,在本公开的实施例中,请结合图1、图2A、图2B和图2C,黑矩阵12用于避免显示基板2的发光功能层233发射出的侧向光线照射至相邻的子像素P,从而避免显示装100出现混色。
在本公开的实施例中,请参阅图2A、图2B和图2C,支撑层13具有特定的高度,可以用于作为隔垫物。在显示基板2和显示装置的盖板1对盒后,支撑层13用于支撑显示装置的盖板1。
请参阅图4A、图4B和图4C,本公开实施例提供的显示装置的盖板1还包括设置于第一衬底基板11上的量子点层14。量子点层14包括多个量子点单元141,每个量子点单元141位于一个开口区域S内。
需要说明的是,参阅图4A、图4B和图4C,由于各开口区域S与显示基板2的像素界定层232的各开口一一对应,因此位于各开口区域S内的各量子点单元141也与像素界定层232的各开口一一对应。这样,显示基板2的发光功能层233中位于像素界定层232的各开口内的部分发射出的光线,在通过各开口区域S的过程中,会穿过各量子点单元141。
应当理解的是,量子点是一种由Ⅱ-Ⅵ、或Ⅲ-Ⅴ族元素组成的球形半导体纳米微粒,粒径一般在几纳米至数十纳米之间。量子点材料由于量子限域效应的存在,原本连续的能带变成分立的能级结构,受外界光线激发后可发射可见光。发射出的可见光的频率会随着量子点的粒径的改变而变化。因而通过调节量子点的粒径就可以控制其发射出的光的颜色。在本公开实施例中,各量子点单元141在显示基板2的发光功能层233发射出的光线的激发下可以发出相应颜色的光。
由前述可知,发光功能层233发射出的光线可以为白光,也可以为蓝光。
在一些实施例中,如图5所示,在发光功能层233发射出的光线(也可 称为激发光线)为白光的情况下,多个量子点单元141包括多个红色量子点单元(图5中标记为R)、多个绿色量子点单元(图5中标记为G)和多个蓝色量子点单元(图5中标记为B)。红色量子点单元可以吸收照射至该红色量子点单元的激发光线发射出红色光线;绿色量子点单元可以吸收照射至该绿色量子点单元的激发光线发射出绿色光线;蓝色量子点单元可以吸收照射至该蓝色量子点单元的激发光线发射出蓝色光线。
在一些实施例中,如图6所示,在发光功能层233发射出的光线为蓝光的情况下,多个量子点单元141包括多个红色量子点单元(图6中标记为R)和多个绿色量子点单元(图6中标记为G)。量子点层14还包括多个透光单元142。透光单元142用于透射蓝光。此处说明的是,透光单元142是指黑矩阵12和支撑层13所形成的多个开口区域S中未设置有量子点单元141的开口区域S。应当理解的是,透光单元142的材料可以是后续形成的第一薄膜封装层15的材料,也就是说,可以在形成第一薄膜封装层15的步骤中同时形成透光单元142,以节省工艺步骤。这样,红色量子点单元可以吸收照射至该红色量子点单元的激发光线发射出红色光线;绿色量子点单元可以吸收照射至该绿色量子点单元的激发光线发射出绿色光线;透光单元可以直接透射蓝色光线。从而无需设置发出蓝色光线的量子点单元,简化工艺,节省材料。
受量子点材料性能的影响,量子点单元可能无法完全吸收照射至上述量子点单元的激发光线。在相关技术中,通过增加量子点单元的厚度,可以使量子点单元尽可能多的对激发光线进行吸收,提高量子点单元的发光效率。在相关技术中,将黑矩阵作为挡墙结构隔离各量子点单元,以保证不同颜色的量子点单元之间不会出现混色现象。受黑矩阵的材料以及制造工艺的影响,黑矩阵的厚度还不能做到2μm以上的水准,这样,各量子点单元的厚度也就不能做到2μm以上的水准。因此单纯依靠黑矩阵作为挡墙结构隔离各量子点单元,很难将量子点单元做厚,这样就制约了量子点单元的厚度。
本公开实施例提供的显示装置的盖板1,每个量子点单元141位于黑矩阵12和支撑层13形成的开口区域S内,黑矩阵12和支撑层13构成了每个量子点单元141的挡墙结构。支撑层13的材料可以采用能够制作的较厚的材料,这样,由于支撑层13可以制作的较厚,从而使得黑矩阵12和支撑层13构成的挡墙结构也可以制作的较厚,进而可以将各量子点单元141的厚度制作的较厚。因此,由于本公开实施例提供的显示面板显示装置的盖板1,可以将量子点单元14制作的较厚,从而使量子点单元14尽可能多的对激发光线进行吸收,提高量子点单元的发光效率,进而提高了显示面板显示装置100的发 光效率。
需要说明的是,在本公开实施例中,支撑层13的材料是能够制作的较厚的材料。示例性的,支撑层13由光刻胶制作而成,由光刻胶制作而成的支撑层13的厚度可以达到10μm以上的水准。例如,光刻胶包括包括丙烯酸酯。
示例性地,支撑层13的厚度范围为10μm~30μm。例如,支撑层13的厚度为10μm、15μm、20μm或25μm。
示例性地,黑矩阵12的厚度范围为1μm~2μm。例如,黑矩阵12的厚度为1.1μm、1.5μm或1.7μm。
例如,在支撑层13的厚度为10μm,黑矩阵12的厚度为1μm的情况下,黑矩阵12和支撑层13构成的挡墙结构的厚度可以达到11μm。这样,位于各开口区域S内的各量子点单元141的厚度也可以制作到11μm。相对于相关技术中,量子点单元141的厚度还不能做到2μm以上的水准的情况,本公开实施例中的各量子点单元141的厚度至少增加了9μm。
另外,由于本公开实施例提供的显示装置的盖板1,可以将量子点单元14制作得较厚,从而使量子点单元14尽可能多的对激发光线进行吸收,提高量子点单元的发光效率。如图6所示,在发光功能层233发射出的光线为蓝光,多个量子点单元141包括多个红色量子点单元(图6中标记为R)和多个绿色量子点单元(图6中标记为G),蓝光未经量子点单元处理直接显示的情况下,可以将绿色量子点单元和红色量子点单元制作得较厚,从而使绿色量子点单元和红色量子点单元尽可能多的对激发光线进行吸收,提高绿色量子点单元和红色量子点单元对蓝光的转化效率,进而提高显示装置100的红光和绿光亮度,减小红光和绿光与蓝光之间的亮度差,以提高显示装置100的整体亮度的均一性。
本公开实施例对于黑矩阵12的材料不进行限定,可以以能够达到防止像素漏光的功能为标准进行材料的选取。示例性地,黑矩阵12的材料可以为金属材料,例如,铬、铝、银或铝银合金等。
需要说明的是,如图4A、图4B和图4C所示,本公开实施例提供的显示装置的盖板1还包括用于封装量子点层14的第一薄膜封装层15。第一薄膜封装层15设置于支撑层13和量子点层14远离第一衬底基板11的一侧。如图2A、图2B和图2C所示,在显示基板2和显示装置的盖板1对盒形成显示装置100后,第一薄膜封装层15和第二薄膜封装层28相对设置,前文中提到的填充物29设置于第一薄膜封装层15和第二薄膜封装层28之间。第一薄膜封装层15和第二薄膜封装层28,以及设置于二者之间的填充物29构成封装 结构,起到对显示装置100封装的作用。
另外,由前述可知,显示装置100可以是顶发射型显示装置。请参阅图2A、图2B和图2C,显示基板1的发光功能层233发出的光依次透过阴极234、第二薄膜封装层28和第一薄膜封装层15照射至量子点层14。量子点层14中的各量子点单元141吸收照射至该量子点单元141的光线发射出相应颜色的光线,实现彩色显示。
黑矩阵12遮挡各子像素的光线,尽可能地防止各子像素的光线照射至相邻的子像素,从而尽可能地避免显示装置100出现混色。然而由于位于黑矩阵12和阳极231(不透明)之间的各膜层为透明材料,各子像素的光线容易穿过位于黑矩阵12和阳极231(不透明)之间的各膜层照射至相邻的子像素,造成显示装置1A出现混色。
可以理解的是,黑矩阵12和阳极231(不透明)之间的距离L越大,各子像素的光线越容易穿过位于黑矩阵12和阳极231(不透明)之间的各膜层照射至相邻的子像素;黑矩阵12和阳极231(不透明)之间的距离L越小,各子像素的光线越不容易穿过位于黑矩阵12和阳极231(不透明)之间的各膜层照射至相邻的子像素。
请继续参阅图2A、图2B和图2C,黑矩阵12和阳极231之间的距离L是指,在垂直于第一衬底基板11的方向上,黑矩阵12远离第一衬底基板11一侧的表面,与阳极231远离第二衬底基板21一侧的表面之间的距离。也就是说,黑矩阵12和阳极231之间的距离L等于位于黑矩阵12和阳极231之间的各膜层的厚度之和。
在本公开实施例中,可以是黑矩阵12相对于支撑层13远离第一衬底基板11,也可以是黑矩阵12相对于支撑层13靠近第一衬底基板11。例如,在一些实施例中,如图4A所示,黑矩阵12相对于支撑层13靠近第一衬底基板11。在另一些实施例中,如图4B和图4C所示,黑矩阵12相对于支撑层13远离第一衬底基板11。
如图2A所示,在黑矩阵12相对于支撑层13靠近第一衬底基板11的情况下,位于黑矩阵12和阳极231之间的各膜层包括支撑层13、第一薄膜封装层17、第二薄膜封装层28、阴极234、发光功能层233以及像素界定层232。黑矩阵12和阳极231之间的距离L,等于支撑层13、第一薄膜封装层15、第二薄膜封装层28、阴极234、发光功能层233以及像素界定层232的厚度的总和。
需要说明的是,此处像素界定层232的厚度是指,像素界定层232中, 除位于平坦层27和钝化层26中的过孔(即用于接触TFT的漏极224的过孔)内的部分以外的部分的厚度。
如图2B和图2C所示,在黑矩阵12相对于支撑层13远离第一衬底基板11情况下,位于黑矩阵12和阳极231之间的各膜层包括第一薄膜封装层17、第二薄膜封装层28、阴极234、发光功能层233以及像素界定层232。黑矩阵12和阳极231之间的距离L等于,第一薄膜封装层17、第二薄膜封装层28、阴极234、发光功能层233以及像素界定层232的厚度的总和。
可见,在此情况下,本公开实施例提供的显示装置的盖板1即使设置了支撑层13,也不会导致黑矩阵12和阳极231之间的距离L增加。这样本公开实施例提供的显示装置的盖板1在应用于显示装置100时,在能够提高显示装置100发光效率的同时,不会影响黑矩阵12的遮光效果和防混色效果。
可以理解的是,如图4A、图4B和图4C所示,支撑层13具有远离第一衬底基板11的主表面131和围成支撑层13的每个开口的坡面132。
示例性地,如图4A、图4B和图4C所示,支撑层13呈梯台结构(图2A、图2B、图2C、图4A、图4B和图4C仅示意出该梯台结构的一部分)。如图7所示,支撑层13在垂直于第一衬底基板11远离第一衬底基板11的方向上的截面为梯形。支撑层13的主表面131的截面形成该梯形远离第一衬底基板11的底边,支撑层13的坡面132的截面形成该梯形的侧边。
在一些实施例中,如图4A、图4B和图4C所示,支撑层13呈正梯台结构。
此处,所谓“支撑层13呈正梯台结构”具体是指:如图4A、图4B和图4C所示,支撑层13在垂直于第一衬底基板11方向上的截面为正梯形,该截面平行于第一衬底基板11的两边中,远离第一衬底基板11的一边的边长小于靠近第一衬底基板11的一边的边长。
需要指出的是,在支撑层13呈正梯台结构的情况下,如图7所示,由于其坡面132与其底面133(即支撑层13靠近第一衬底基板11的一面)的夹角α呈锐角,因此坡面132所围成的支撑层13的各开口,在远离第一衬底基板11处的宽度D1大于在靠近第一衬底基板11处的宽度D2,这样减小了支撑层13对后续采用喷墨打印工艺形成量子点层14的过程的影响。
需要说明的是,喷墨打印工艺是指预先在基板上制作挡墙结构,然后将墨滴滴入挡墙结构限定的区域内。例如在本公开实施例中,采用喷墨打印工艺形成量子点层14是指将量子点材料滴入各开口区域S内。
在一些实施例中,请参阅图2A,在黑矩阵12相对于支撑层13靠近第一 衬底基板11的情况下,黑矩阵12与支撑层13的底面(即支撑层13靠近第一衬底基板11的一面)重合。
在一些实施例中,请参阅图2B和图2C,在黑矩阵12相对于支撑层13远离第一衬底基板11的情况下,黑矩阵12至少覆盖支撑层13的主表面131。并且在此情况下,为了防止各子像素的发光器件23发射出的侧向光线穿过支撑层13照射至相邻的子像素,需要对支撑层13的坡面132进行遮光。
示例性地,请参阅图4B,可以采用黑矩阵12对支撑层13的坡面132进行遮光,即黑矩阵12不仅覆盖支撑层13的主表面131,还覆盖支撑层13的坡面132。如图2B所示,这样可以防止各子像素的发光器件23发射出的侧向光线穿过支撑层13照射至相邻的子像素,从而避免显示面板100出现混色。
示例性地,请参阅图4C,可以通过在支撑层13的坡面132上覆盖反射层16对支撑层13的坡面132进行遮光。例如,本公开实施例提供的显示装置的盖板1还包括:设置于黑矩阵12和支撑层13之间的光反射层16。光反射层16至少覆盖支撑层13的坡面132(例如覆盖坡面132的大部分或者全部)。这样,光反射层16覆盖在支撑层13的坡面132的部分可以将各子像素的发光器件23发射出的侧向光线反射回该子像素的开口区域。因此,光反射层16,一方面,可以将各个像素发出的光限制在该子像素内,防止其射至相邻的子像素,从而避免显示装置100出现混色;另一方面,可以提高各个像素内的出光效率,提高光的利用率。
需要说明的是,在本公开实施例中,如图7所示,由于支撑层13的厚度较大,经过曝光显影之后坡面132的坡度(即坡面132与其底面133的夹角α)较小、坡长H较长,因此坡面132的宽度D3较大。例如,坡面132的宽度D3可达5.5μm。
此处,坡面132的宽度D3是指,如图8所示,坡面132在第一衬底基板11上的正投影的内边缘132a与外边缘132b之间的距离。其中,内边缘132a是坡面132正投影中靠近坡面132所围开口的中心O的边缘;外边缘132b是坡面132正投影中远离坡面132所围开口的中心O的边缘。
可以理解的是,在支撑层13的坡面132覆盖有光反射层16的情况下,如图8所示,光反射层16可以将照射至坡面132上的光线反射回子像素内重新利用,这就相当于将子像素的开口区域增加了一部分(即图8中的阴影部分)。具体地,该增加的部分对应于支撑层13的内边缘132a与外边缘132b之的部分,即相当于子像素的开口区域的边缘向外扩宽D3。
在本公开实施例中,光反射层15的材料包括金属材料。例如光反射层15 由银、钼、铝或镍等金属材料制成。
在本公开实施例中,光反射层15可以是单层结构还可以是叠层结构。在光反射层15是单层结构的情况下,例如可以是单层银、单层钼、单层铝或单层镍。在光反射层15是叠层结构的情况下,例如可以是铟锡氧化物层、银层和铟锡氧化物层依次层叠形成的叠层结构;又如可以是至少两层金属层层叠形成的叠层结构,示例性地,钼层、铝层和镍层依次层叠形成的叠层结构。
在一些实施例中,光反射层15的厚度范围为100nm~300nm,例如,光反射层15的厚度为100nm、200nm或300nm。
在相关技术中,如图9所示,量子点单元141'采用喷墨打印工艺形成,在实际打印过程中,受到挡墙结构013的影响,量子点单元141'成膜后的形貌多为中间厚两边薄,即量子点单元141'在靠近挡墙结构013处较薄,在远离挡墙结构013处较厚。若量子点单元141'在第一衬底基板11'上的正投影的边缘与挡墙结构013的坡面在第一衬底基板11上的正投影的外边缘重合,量子点单元141'远离第一衬底基板11'的一面将会凸出于挡墙结构013远离第一衬底基板11'的一面,这样将不利于量子点单元141'的封装。
因此,请参阅图8,在一些实施例中,量子点单元141在第一衬底基板11上的正投影的边缘处于,支撑层13的坡面132在第一衬底基板11上的正投影的内边缘132a与外边缘132b之间。也可以说,支撑层13的坡面132在第一衬底基板11上的正投影至少部分与量子点单元141在第一衬底基板11上的正投影重合。这样可以保证量子点单元141被限定在支撑层13的开口内,即,量子点单元141远离第一衬底基板11的一面不会凸出或者大致地不会凸出于支撑层13远离第一衬底基板11的一面,有利于后续对量子点单元141的封装。
在一些实施例中,如图4A、图4B和图4C所示,本公开实施例提供的显示装置的盖板1,还包括设置于量子点单元141与第一衬底基板11之间的彩膜层17。彩膜层17包括多个滤光单元171,每个滤光单元171位于一个开口区域S内。
位于一个开口区域S内的滤光单元171和量子点单元141所对应的颜色相同。例如,如图6所示,在一些实施例中,在多个滤光单元171包括多个红色滤光单元、多个绿色滤光单元和多个蓝色滤光单元,多个量子点单元141包括多个红色量子点单元、多个绿色量子点单元的情况下,多个红色滤光单元和多个红色量子点单元位于一个开口区域S内;多个绿色滤光单元和多个绿色量子点单元位于一个开口区域S内。
可以理解的是,由于量子点单元无法完全吸收照射至该量子点单元的激发光线,因此显示基板2的发光功能层233发出的光线在穿过各量子点单元后,有部分光线仍然显示为其原先的颜色。滤光单元171可以对该部分光线进行滤光,避免显示装100出现混色。
如图10~图13所示,本公开实施例还提供一种显示装置的盖板的制作方法,用于制作上述任一实施例所述的显示装置的盖板1。该制作方法包括S1~S3:
S1:提供第一衬底基板11。
S2:在第一衬底基板11上形成黑矩阵12和支撑层13。
其中,黑矩阵12和支撑层13层叠设置。黑矩阵12和支撑层13均具有多个开口,且黑矩阵12的多个开口分别与支撑层13的多个开口至少部分重叠,形成多个开口区域S。
示例性地,形成黑矩阵12包括:可以采用旋涂或刮涂等工艺,采用黑矩阵材料的溶液,在第一衬底基板上形成黑矩阵材料层,接着对黑矩阵材料层进行烘烤,去除黑矩阵材料层中的溶剂,然后对烘烤以后的黑矩阵材料层依次进行曝光和显影,图案化黑矩阵材料层,形成多个开口,得到黑矩阵12,最后通过烘烤的方式对黑矩阵进行固化。
示例性地,形成支撑层13包括:可以采用旋涂或刮涂等工艺,在第一衬底基板上形成光刻胶,除去光刻胶中的溶剂,得到光刻胶膜层,然后对光刻胶膜层依次进行曝光和显影,图案化光刻胶膜层,形成多个开口,得到支撑层13。
在上述S2中,对黑矩阵12和支撑层13的形成次序并不设限。
示例性地,如图11所示,先形成黑矩阵12,再形成支撑层13。在此情况下,黑矩阵12和支撑层13的形状、结构等可参见前面对于图2A和图4A所对应的实施例的相关描述,此处不再赘述。
示例性地,如图12和图13所示,先形成支撑层13,再形成黑矩阵12。
在此情况下,例如,如图12所示,S2中在第一衬底基板11上形成黑矩阵12和支撑层13包括:
在第一衬底基板11上形成支撑层13。支撑层13具有远离第一衬底基板11的主表面131和围成支撑层13的每个开口的坡面132。
在支撑层13远离第一衬底基板11的一侧形成黑矩阵。黑矩阵12至少覆盖支撑层的主表面131,例如,黑矩阵12覆盖支撑层的主表面131和坡面132。
又如,如图13所示,S2中在第一衬底基板11上形成黑矩阵12和支撑层13包括:
在第一衬底基板11上形成支撑层13。支撑层13具有远离第一衬底基板11的主表面131和围成支撑层13的每个开口的坡面132。
在支撑层13远离第一衬底基板11的一侧形成光反射层16。光反射层16至少覆盖支撑层13的坡面132,例如,光反射层16覆盖支撑层的主表面131和坡面132。
在支撑层13远离第一衬底基板11的一侧形成黑矩阵。黑矩阵12覆盖支撑层的主表面131。
S3:在第一衬底基板上形成量子点层14。量子点层14包括多个量子点单元141,每个量子点单元141位于一个开口区域S内。
示例性地,可以采用喷墨打印工艺在开口区域S内中打印量子点材料,并对量子点材料进行固化得到量子点单元141。
量子点层14的形状、结构等可参见前面的相关描述,此处不再赘述。
另外,在一些实施例中,上述显示装置的盖板的制作方法还包括形成彩膜层的步骤,形成彩膜层的步骤例如可在形成黑矩阵12和支撑层13的步骤之前,彩膜层的形状、结构等可参见前面的相关描述,此处不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种显示装置,包括:
    盖板和与所述盖板相对设置的显示基板;
    其中,所述盖板包括:第一衬底基板;
    层叠设置于所述第一衬底基板靠近所述显示基板一侧的黑矩阵和支撑层,所述黑矩阵和所述支撑层均具有多个开口,且所述黑矩阵的多个开口分别与所述支撑层的多个开口至少部分重叠,形成多个开口区域;及
    设置于所述第一衬底基板靠近所述显示基板一侧的量子点层,所述量子点层包括多个量子点单元,每个量子点单元位于一个开口区域内;
    所述显示基板包括:
    第二衬底基板;
    设置于所述第二衬底基板靠近所述盖板一侧的驱动电路结构;及
    设置于所述驱动电路结构远离所述第二衬底基板一侧的发光器件,所述发光器件与所述驱动电路结构耦接,所述发光器件在所述驱动电路结构的驱动下发出光。
  2. 根据权利要求1所述的显示装置,其中,所述黑矩阵相对于所述支撑层远离所述第一衬底基板。
  3. 根据权利要求2所述的显示装置,其中,所述支撑层具有远离所述第一衬底基板的主表面和围成其每个开口的坡面;
    所述盖板还包括:
    设置于所述黑矩阵和所述支撑层之间的光反射层,所述光反射层至少覆盖所述支撑层的坡面。
  4. 根据权利要求3所述的显示装置,其中,所述黑矩阵在所述第一衬底基板上的正投影的边缘与所述支撑层的主表面在所述第一衬底基板上的正投影的边缘重合或大致重合。
  5. 根据权利要求3或4所述的显示装置,其中,所述光反射层的材料包括金属材料。
  6. 根据权利要求3~5中任一项所述的显示装置,其中,所述光反射层为透明金属氧化物层、反光金属层和透明金属氧化物层依次层叠形成的叠层结构,或者为至少两层金属层层叠形成的叠层结构。
  7. 根据权利要求6所述的显示装置,其中,所述光反射层为铟锡氧化物层、银层和铟锡氧化物层依次层叠形成的叠层结构,或者为钼层、铝层和镍层依次层叠形成的叠层结构。
  8. 根据权利要求3~7中任一项所述的显示装置,其中,所述光反射层的 厚度范围为100nm~300nm。
  9. 根据权利要求3~8中任一项所述的显示装置,其中,所述量子点单元在所述第一衬底基板上的正投影的边缘处于,所述支撑层的坡面在所述第一衬底基板上的正投影的内边缘与外边缘之间;其中,所述内边缘为,该坡面正投影中靠近该坡面所围开口的中心的边缘;所述外边缘为,该坡面正投影中远离该坡面所围开口的中心的边缘。
  10. 根据权利要求2所述的显示装置,其中,所述支撑层具有远离所述第一衬底基板的主表面和围成所述支撑层的每个开口的坡面;
    所述黑矩阵覆盖所述支撑层的主表面和坡面。
  11. 根据权利要求1所述的显示装置的盖板,其中,所述黑矩阵相对于所述支撑层靠近所述第一衬底基板。
  12. 根据权利要求1~11中任一项所述的显示装置,其中,所述支撑层的厚度范围为10μm~30μm。
  13. 根据权利要求1~12中任一项所述的显示装置,其中,所述黑矩阵的厚度范围为1μm~2μm。
  14. 根据权利要求1~13任一项所述的显示装置,其中,所述盖板还包括:
    设置于所述量子点层与所述第一衬底基板之间的彩膜层;
    所述彩膜层包括多个滤光单元,每个滤光单元位于一个开口区域内。
  15. 根据权利要求14所述的显示装置,其中,在所述发光器件在所述驱动电路结构的驱动下发出的光为蓝光的情况下,
    所述量子点层包括红色量子点单元和绿色量子点单元;
    所述彩膜层包括红色滤光单元、绿色滤光单元和蓝色滤光单元;
    其中,一个所述红色量子点单元与一个所述红色滤光单元位于同一开口区域内;一个绿色量子点单元与一个绿色滤光单元位于同一开口区域内。
  16. 根据权利要求14所述的显示装置,其中,在所述发光器件在所述驱动电路结构的驱动下发出的光为白光的情况下,
    所述量子点层包括红色量子点单元、绿色量子点单元和蓝色量子点单元;
    所述彩膜层包括红色滤光单元、绿色滤光单元和蓝色滤光单元;
    其中,一个所述红色量子点单元与一个所述红色滤光单元位于同一开口区域内;一个绿色量子点单元与一个绿色滤光单元位于同一开口区域内;一个蓝色量子点单元与一个蓝色滤光单元位于同一开口区域内。
  17. 根据权利要求1~16任一项所述的显示装置,包括:
    包括阵列式排布的多个像素单元,每个像素单元包括一个红色子像素、 一个蓝色子像素和两个绿色子像素,每个像素单元所包括的各子像素沿行方向排列;
    沿列方向,红色子像素和蓝色子像素交替设置,形成红蓝子像素列;沿列方向,绿色子像素依次排列,形成绿色子像素列,
    沿行方向,所述红蓝子像素列和所述绿色子像素列交替设置。
  18. 一种显示装置的盖板的制作方法,用于制作权利要求1~17任一项所述的显示装置的盖板,包括:
    提供第一衬底基板;
    在所述第一衬底基板上形成黑矩阵和支撑层;所述黑矩阵与所述支撑层层叠设置,所述黑矩阵和所述支撑层均具有多个开口,且所述黑矩阵的多个开口分别与所述支撑层的多个开口至少部分重叠,形成多个开口区域;
    在所述第一衬底基板上形成量子点层;所述量子点层包括多个量子点单元,每个量子点单元位于一个开口区域内。
  19. 根据权利要求18所述的显示装置的盖板的制作方法,其中,所述在所述第一衬底基板上形成黑矩阵和支撑层,包括:
    在所述第一衬底基板上形成所述支撑层;所述支撑层具有远离所述第一衬底基板的主表面和围成所述支撑层的每个开口的坡面;
    在所述支撑层远离所述第一衬底基板的一侧形成所述黑矩阵;所述黑矩阵至少覆盖所述支撑层的主表面。
  20. 根据权利要求19所述的显示装置的盖板的制作方法,其中,在所述黑矩阵不覆盖所述支撑层的坡面的情况下,所述制作方法还包括:
    在形成所述支撑层的步骤与形成所述黑矩阵的步骤之间,在所述支撑层远离所述第一衬底基板的一侧形成光反射层;所述光反射层至少覆盖所述支撑层的坡面。
PCT/CN2021/079800 2020-04-02 2021-03-09 显示装置、显示装置的盖板的制作方法 WO2021196995A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/770,595 US20220399530A1 (en) 2020-04-02 2021-03-09 Display apparatus, and method for manufacturing cover plate of display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010256762.3 2020-04-02
CN202010256762.3A CN111416048B (zh) 2020-04-02 2020-04-02 显示装置、显示装置的盖板的制作方法

Publications (1)

Publication Number Publication Date
WO2021196995A1 true WO2021196995A1 (zh) 2021-10-07

Family

ID=71494799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079800 WO2021196995A1 (zh) 2020-04-02 2021-03-09 显示装置、显示装置的盖板的制作方法

Country Status (3)

Country Link
US (1) US20220399530A1 (zh)
CN (1) CN111416048B (zh)
WO (1) WO2021196995A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447094A (zh) * 2022-04-11 2022-05-06 北京京东方技术开发有限公司 显示基板以及显示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416048B (zh) * 2020-04-02 2022-09-09 京东方科技集团股份有限公司 显示装置、显示装置的盖板的制作方法
AU2020450961B2 (en) * 2020-09-10 2023-07-06 Boe Technology Group Co., Ltd. Pixel array and display device
CN112382733A (zh) * 2020-11-16 2021-02-19 京东方科技集团股份有限公司 一种柔性显示面板、柔性显示装置以及制作方法
CN112951888A (zh) * 2021-01-28 2021-06-11 上海天马微电子有限公司 显示面板及显示装置
CN113130613B (zh) * 2021-04-13 2023-08-18 京东方科技集团股份有限公司 显示基板、装置及其制备方法
CN113178138A (zh) * 2021-04-23 2021-07-27 京东方科技集团股份有限公司 一种显示面板、显示装置及其制备方法
CN113571663B (zh) * 2021-07-22 2023-07-28 京东方科技集团股份有限公司 显示面板及其制备方法、显示设备
CN113644219A (zh) * 2021-08-10 2021-11-12 京东方科技集团股份有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377226A (zh) * 2013-08-14 2015-02-25 业鑫科技顾问股份有限公司 显示面板
CN108345142A (zh) * 2017-01-25 2018-07-31 群创光电股份有限公司 显示设备
CN109491136A (zh) * 2019-01-16 2019-03-19 京东方科技集团股份有限公司 一种滤光结构及其制备方法、显示装置
US20190157354A1 (en) * 2017-11-21 2019-05-23 Samsung Electronics Co., Ltd. Color control encapsulation layer and display apparatus including the same
CN111416048A (zh) * 2020-04-02 2020-07-14 京东方科技集团股份有限公司 显示装置、显示装置的盖板的制作方法
CN111863874A (zh) * 2019-04-26 2020-10-30 群创光电股份有限公司 显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580031B (zh) * 2013-12-26 2017-04-21 鴻海精密工業股份有限公司 顏色轉換層、有機電致發光顯示面板及液晶顯示面板
CN106707607A (zh) * 2017-03-20 2017-05-24 青岛海信电器股份有限公司 一种量子点彩色滤光片及其制造方法、显示装置
CN108922914A (zh) * 2018-08-03 2018-11-30 京东方科技集团股份有限公司 一种oled显示面板及显示装置
CN108873465B (zh) * 2018-09-04 2022-07-01 京东方科技集团股份有限公司 量子点显示基板及其制作方法、显示装置
CN109375410A (zh) * 2018-10-25 2019-02-22 武汉华星光电技术有限公司 彩色滤光基板及液晶显示装置
CN110618555B (zh) * 2019-09-26 2022-07-29 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377226A (zh) * 2013-08-14 2015-02-25 业鑫科技顾问股份有限公司 显示面板
CN108345142A (zh) * 2017-01-25 2018-07-31 群创光电股份有限公司 显示设备
US20190157354A1 (en) * 2017-11-21 2019-05-23 Samsung Electronics Co., Ltd. Color control encapsulation layer and display apparatus including the same
CN109491136A (zh) * 2019-01-16 2019-03-19 京东方科技集团股份有限公司 一种滤光结构及其制备方法、显示装置
CN111863874A (zh) * 2019-04-26 2020-10-30 群创光电股份有限公司 显示装置
CN111416048A (zh) * 2020-04-02 2020-07-14 京东方科技集团股份有限公司 显示装置、显示装置的盖板的制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447094A (zh) * 2022-04-11 2022-05-06 北京京东方技术开发有限公司 显示基板以及显示装置
CN114447094B (zh) * 2022-04-11 2022-09-02 北京京东方技术开发有限公司 显示基板以及显示装置

Also Published As

Publication number Publication date
US20220399530A1 (en) 2022-12-15
CN111416048B (zh) 2022-09-09
CN111416048A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2021196995A1 (zh) 显示装置、显示装置的盖板的制作方法
CN109616500B (zh) 有机发光二极管面板及其制备方法、显示装置
US20210050388A1 (en) Display device
KR102093628B1 (ko) 유기전계 발광소자 및 이의 제조 방법
US9305489B2 (en) Organic light emitting diode display
JP5601025B2 (ja) 電気光学装置及び電気光学装置の製造方法、並びに電子機器
KR102409060B1 (ko) 표시 장치
CN108172600B (zh) 用于woled显示器的彩膜基板及woled显示器
CN113675353A (zh) 彩膜基板及其制作方法、显示面板
KR20170080790A (ko) 유기발광다이오드 표시장치 및 그의 제조 방법
CN110098242B (zh) 一种彩膜层及其制备方法、显示面板
US20220052130A1 (en) Display panel and manufacturing method thereof
WO2021238129A1 (zh) 显示面板及显示面板制作方法
CN111430445B (zh) 一种显示基板及其制备方法、显示装置
CN112534583A (zh) 显示基板、显示装置及高精度金属掩模板
KR20200040303A (ko) 유기 발광 다이오드 디스플레이 패널 및 그 제조 방법
US20210408489A1 (en) Display panel and mirror display apparatus
CN111341812B (zh) 一种显示基板及其制备方法、显示装置
WO2019010817A1 (zh) 主动发光显示面板及其制造方法
CN115485848A (zh) 显示基板、显示装置及高精度金属掩模板
US20210336224A1 (en) Display device and method of manufacturing the same
KR20180077856A (ko) 전계발광 표시장치
WO2022094973A1 (zh) 显示面板及显示装置
US11609368B2 (en) Display device having bank layers
WO2021218587A1 (zh) 阵列基板及其制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781509

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21781509

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21781509

Country of ref document: EP

Kind code of ref document: A1