WO2019218626A1 - 显示屏、显示装置及显示屏的制作方法 - Google Patents

显示屏、显示装置及显示屏的制作方法 Download PDF

Info

Publication number
WO2019218626A1
WO2019218626A1 PCT/CN2018/116273 CN2018116273W WO2019218626A1 WO 2019218626 A1 WO2019218626 A1 WO 2019218626A1 CN 2018116273 W CN2018116273 W CN 2018116273W WO 2019218626 A1 WO2019218626 A1 WO 2019218626A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattering
display screen
light
layer
region
Prior art date
Application number
PCT/CN2018/116273
Other languages
English (en)
French (fr)
Inventor
李晓玲
胡小叙
王盼盼
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810454353.7A external-priority patent/CN108649056B/zh
Priority claimed from CN201810453615.8A external-priority patent/CN108538900B/zh
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to US16/541,170 priority Critical patent/US20190372054A1/en
Publication of WO2019218626A1 publication Critical patent/WO2019218626A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present application relates to the field of display technologies, and in particular, to a thin film packaging structure, a thin film packaging method, and a display panel.
  • the thin film encapsulation structure of an OLED (Organic Light-Emitting Diode, OLED) device has a thin film layer and a large stress in the inorganic encapsulation layer, so that the inorganic encapsulation layer of the film encapsulation structure is prone to cracks, and water and oxygen are easy. Intrusion from these cracks into the interior of the OLED causes damage to the OLED device. Therefore, the package reliability of the current thin film package structure is difficult to improve.
  • OLED Organic Light-Emitting Diode
  • a display screen having outlines to define a range of effective display areas; the effective display area including an edge display area adjacent to the outline and a main display area remote from the outline; the edge display The area intersects the contour; and
  • the display screen includes a light-emitting layer and a light-emitting layer, and a first region of the light-emitting layer is provided with a scattering structure, and light emitted from the light-emitting layer passes through the scattering structure and deviates from a original propagation direction; and the first region At least a partial region corresponding to the edge display region on the light exit layer.
  • a display screen having outlines to define a range of effective display areas; the effective display area including an edge display area adjacent to the outline and a main display area remote from the outline; the edge display The area intersects the contour; and
  • the display screen includes a substrate, a light emitting structure and a cover plate, the light emitting structure is formed on the substrate, the cover plate is spaced apart from the light emitting structure, and at least part of the edge display area is provided with scattering a layer, the scattering layer being disposed on a surface of the cover.
  • a display device comprising:
  • a storage module for storing media information
  • the processing module is electrically connected to the display screen, the power module, and the storage module to control power supply of the power module, and display media information on the display screen.
  • a display screen manufacturing method for making a display screen as described above comprising:
  • the particle diameter and the density of the scattering particles to be laid, scattering particles are coated on the surface of the cover plate to reduce the brightness of the display screen of the edge display area.
  • FIG. 1 is a top view of a microstructure of a special-shaped display area of a display screen according to an embodiment of the present application
  • FIG. 2 is a top view of a microstructure of another display screen according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a display screen according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a display screen according to another embodiment of the present application.
  • FIG. 5 is a brightness comparison diagram of a display screen and a display screen not provided with a scattering layer according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for manufacturing a display screen according to an embodiment of the present application.
  • FIG. 1 a schematic top view of a partial area of a display screen 100 is provided in an embodiment of the present application.
  • the display screen 100 is different from a conventional rectangular shape.
  • the display screen 100 is based on a conventional rectangular shape on the display screen 100.
  • One end is slotted, that is, has an irregular shape at one end of the display screen 100.
  • the display screen 100 in this embodiment may be a display screen having a slotted area at one end (also referred to as an opening or a bang or a shaped area, and the slotted area has an arc chamfer, hereinafter referred to as a slot). It may be a display screen 100 having an edge curved chamfer (hereinafter referred to as an edge chamfer) on the basis of a conventional rectangular shape, and may also be a display screen 100 having both a groove and an edge chamfer, that is, an arc for any area.
  • the chamfered display screen 100, the solutions disclosed in this embodiment are applicable. In the following description, only the display screen 100 having a groove shown in FIG. 2 will be described as an example.
  • the display screen 100 has a contour line 101 which is a boundary line of the slotted area of the display screen 100, and is used to define a range of the effective display area, that is, the display screen area located within the outline 101 is an effective display area, located at The display area other than the outline 101 is an invalid display area, and the effective display area is used to present a picture or a dynamic display picture, and the invalid display area does not need to present a picture or a dynamic display picture, but when there are sub-pixels in the invalid display area,
  • the displayed picture or dynamic display will affect the display of the effective display area, such as the jaggedness of the edges of the picture.
  • the display screen 100 may be a flat screen or a curved screen, such as a curved screen of a television, or a curved screen of a mobile phone.
  • the effective display area includes an edge display area 102 adjacent to the outline 101 and a main display area 103 remote from the outline 101.
  • the main display area 103 is adjacent to the edge display area 102, and the edge display area 102 intersects the outline 101, that is, on the outline 101.
  • the majority of the display area within the main display area 103, the intersection of the outline 101 and the outline 101, and a small portion of the display area within the outline 101 and facing the outline 101 is the edge display area 102.
  • the portion 1022 of the main display area 103 and the edge display area 102 located within the defined area of the outline 101 is divided into effective display areas, and the portion 1021 outside the outline and the edge display area 102 are defined by the outline 101.
  • the portion outside the area is divided into invalid display areas.
  • the display screen 100 includes a light-emitting layer 10 and a light-emitting layer stacked in a stack.
  • the light-emitting layer 10 is a part of an OLED, and the light-emitting layer 10 may be a stacked structure formed by stacking a plurality of layers.
  • the light emitting layer 10 is a light emitting material layer in the OLED.
  • the OLED further includes a common layer, specifically, the common layer includes an electron injection layer, an electron transport layer, a hole blocking layer, an electron blocking layer, a hole transport layer, a hole injection layer, and the like, and more specifically, the light emitting layer is disposed on The stack of the electron injecting layer, the electron transporting layer, and the hole blocking layer is interposed between the electron blocking layer, the hole transport layer, and the hole injection layer.
  • the common layer includes an electron injection layer, an electron transport layer, a hole blocking layer, an electron blocking layer, a hole transport layer, a hole injection layer, and the like, and more specifically, the light emitting layer is disposed on The stack of the electron injecting layer, the electron transporting layer, and the hole blocking layer is interposed between the electron blocking layer, the hole transport layer, and the hole injection layer.
  • OLED is a carrier-injection double-injection type light-emitting device. Under the driving of external voltage, electrons and holes injected by the electrode recombine in the organic material to release energy and transfer energy to the molecules of the organic light-emitting substance to be excited. From the ground state to the excited state, when the excited molecule returns from the excited state to the ground state, it emits a luminescence phenomenon.
  • the first region of the light-emitting layer is provided with a scattering structure 30, and the light emitted from the light-emitting layer 10 passes through the scattering structure 30 and deviates from the original propagation direction, and the first region is at least a portion of the light-emitting layer corresponding to the edge display region 102.
  • the first area may be an area of the light exit layer corresponding to the portion 1021 of the edge display area 102 outside the defined area of the outline 101 (ie, the part between the outline 101 and the curve 104), or
  • the light-emitting layer area corresponding to the edge display area 102 is not limited in this embodiment, and is specifically described in the following description of the embodiments.
  • the light will deviate from the original propagation direction as it passes through the scattering structure 30 (at least part of the light is no longer perpendicular to the light exit layer after passing through the scattering structure 30), and then a portion of the light of the edge display region 102 is transmitted to
  • the non-display area of the display screen 100 reduces the amount of light emitted by the edge display area 102, and the brightness of the edge display area 102 and the non-display area are naturally connected, thereby reducing the edge jaggedness of the display screen 100.
  • the structure of the light-emitting layer is different, for example, for the top-emitting display screen, at least one of the light extraction layer, the cathode and the top cover; for the bottom light-emitting structure, the light-emitting layer may be Anode and / or bottom cover.
  • This embodiment is not limited thereto, and is described separately in the description of the following embodiments.
  • FIG. 3 it is a schematic cross-sectional view of an edge region of a top-emitting display screen disclosed in an embodiment of the present application.
  • the light-emitting layer in this embodiment is a cathode 20, and the cathode 20 is a unitary structure.
  • the cathode 20 is disposed on the light-emitting layer 10, and the cathode 20 contacts an electrode power supply line outside the display area, so that the electrode power supply line can receive an electrical signal.
  • the display screen 100 is a top-emitting display (i.e., a display of a top-emitting structure), that is, light emitted from the light-emitting layer 10 is emitted from the cathode 20 in a direction perpendicular to the cathode 20.
  • a scattering structure 30 is disposed in the first region of the cathode 20, and the light emitted from the luminescent layer 10 deviates from the original propagation direction after passing through the scattering structure 30.
  • the above-described scattering structure 30 may be provided on the upper surface of the first region of the cathode 20 (the surface facing away from the light-emitting layer 10), or may be on the lower surface of the first region of the cathode 20 (toward the surface of the light-emitting layer 10)
  • the scattering structure 30 is provided, and the scattering structure 30 may be disposed on the upper surface and the lower surface of the first region of the cathode 20, which may be selected according to actual needs, which is not limited in this embodiment.
  • the light will deviate from the original direction of propagation as it passes through the scattering structure 30 (at least part of the light is no longer perpendicular to the cathode 20 after passing through the scattering structure 30), then a portion of the light from the edge display region 102 propagates to
  • the non-display area of the display screen 100 reduces the amount of light emitted by the edge display area 102, and the brightness of the edge display area 102 and the non-display area are naturally connected, thereby reducing the edge jaggedness of the display screen 100.
  • the scattering structure 30 is a concave-convex structure provided in the first region of the cathode 20.
  • the upper surface of the first region of the cathode 20 may be formed by embossing to form the above-mentioned uneven structure.
  • the embossing changes the thickness of the material under the action of the mold, and the undulating pattern is pressed on the surface of the material. The process of the typeface.
  • the upper surface of the first region of the cathode 20 may be formed by etching to form the above-mentioned uneven structure.
  • the specific process may be: spin-coating the photoresist on the entire display screen, and then exposing and developing the photoresist by using a mask having an opening of the effective display area as a mask, exposing the invalid display area to be etched. a region, a photoresist layer having an effective display area pattern opening is formed on the entire display screen; and then the photoresist layer having the effective display area pattern opening is used as a mask, and the exposed etching process is performed by an etching process.
  • the concave-convex structure is formed on the ineffective display region region; after the uneven structure is formed, the photoresist layer is removed.
  • the scattering structure 30 is formed by vapor-depositing a scattering particle layer on the upper surface of the first region of the cathode 20 (the surface facing away from the light-emitting layer 10).
  • the scattering particle layer When the light passes through the scattering particle layer, the scattering particle layer When the light is scattered, a part of the light is necessarily directed to the non-display area, so that the brightness of the edge display area 102 and the non-display area are naturally connected.
  • the scattering structure 30 may be formed by vapor-depositing a scattering particle layer on the lower surface of the first region of the cathode 20 (toward the surface of the light-emitting layer 10), or at the first of the cathode 20.
  • the scattering layer 30 is formed by vapor-depositing a scattering particle layer on the upper and lower surfaces of the region.
  • the scattering particle layer is one or more of silicone, polyethylene, acrylic resin, nano barium sulfate, silica, and calcium carbonate.
  • the scattering effect of the scattering structure 30 is proportional to the particle size of the scattering particle layer, and the scattering effect of the scattering structure 30 is proportional to the density of the scattering particle layer, which is that the scattering particle layer occupies the cathode 20 and is provided with a scattering structure 30 portion. The percentage of the area. When the sawtooth feeling is slight, particles with a smaller particle size and a lower density are selected, and when the sawtooth feeling is severe, particles having a larger particle diameter and a higher density are selected.
  • the selected scattering particles have a particle size of 5 um to 100 um, but the particle size is not selected too much, and is selected according to actual needs, and the density (denseness) of the scattering particles is 10% to 40%, and the density is not selected. Too big, as long as it is suitable.
  • the display screen 100 further includes a pixel defining layer (PDL) (not shown) and a top cover (not shown).
  • the display screen 100 further includes a plurality of repeatedly arranged pixel units, and the pixel unit includes a first sub-pixel and a second a sub-pixel and a third sub-pixel, the pixel defining layer is provided with an opening corresponding to each sub-pixel (ie, exposing a central portion opening of each sub-pixel) for defining a sub-pixel, a first sub-pixel, a second sub-pixel, and a third sub-pixel
  • the pixels are respectively disposed in corresponding openings, and the top cover is used to protect the light-emitting layer 10 and other structural layers of the display screen 100.
  • the normal distance L between the edge display area 102 and the outline 101 is smaller than the preset distance threshold to determine whether a pixel unit is located in the edge display area 102.
  • the preset distance threshold is 3 mm.
  • the specific range of the preset distance threshold is related to the curvature of the contour and the size of the pixel unit.
  • the display screen 100 further includes a substrate (not shown), a thin film transistor (TFT) (not shown), and an anode 40.
  • the thin film transistor is disposed on the substrate, the anode 40 is disposed on the thin film transistor, and the light emitting layer 10 is disposed. On the anode 40.
  • the substrate has a first sub-pixel region, a second sub-pixel region, and a third sub-pixel region.
  • a set of first sub-pixel regions, second sub-pixel regions, and third sub-pixel regions may constitute one pixel region.
  • the substrate may have a plurality of pixel regions.
  • the thin film transistor controls the emission of each sub-pixel, or can control the amount of emission when each sub-pixel emits light.
  • the partial edge display area 102 intersects the outline 101, the edge display area 102 has a portion 1021 outside the defined area of the outline 101, and the scattering structure 30 is disposed on the outline of the edge display area 102.
  • the portion of the portion of the cathode 20 corresponding to the portion 1021 outside the region defined by the line 101 (i.e., the portion between the contour line 101 and the curve 104), that is, the first region of the cathode 20 is located at the contour line 101 with the edge display region 102.
  • the cathode region corresponding to the portion 1021 outside the defined area, that is, the surface of the cathode 20 of the portion 1022 in which the edge display region 102 is located within the defined area of the contour line 101 is not provided with the scattering structure 30. That is, in the present embodiment, the projection of the first region of the cathode 20 on the substrate of the display screen 100 is a first projection, and the portion 1021 of the edge display region 102 outside the defined area of the contour line 101 is on the substrate of the display screen 100.
  • the projection is a third projection, and the first projection overlaps with the third projection.
  • the surface of the cathode 20 of the edge display region 102 has a scattering structure 30, that is, when the projection of the first region of the cathode 20 on the substrate of the display screen 100 is the first projection, When the projection of the edge display area 102 on the substrate of the display screen 100 is the second projection, the first projection overlaps with the second projection, which is not limited herein.
  • the pixel unit when the ratio of a portion 1021 of a pixel unit outside the defined area of the outline 101 to the portion 1022 of the defined area of the outline 101 exceeds a certain ratio, such as 50%, the pixel unit is divided. It is an invalid pixel unit to remove the pixel unit (ie, the pixel unit is not evaporated), and when it is less than the ratio, the pixel unit is retained.
  • a certain ratio such as 50%
  • the anode 40 includes a first sub-pixel electrode, a second sub-pixel electrode, and a third sub-pixel electrode.
  • the first sub-pixel electrode is formed in the first sub-pixel region
  • the second sub-pixel electrode is formed in the second sub-pixel region
  • the third sub-pixel electrode is formed in the third sub-pixel region.
  • Each of the first sub-pixel electrode, the second sub-pixel electrode, and the third sub-pixel electrode may be electrically connected to the thin film transistor through a via.
  • the display screen 100 is a top light emitting structure
  • the light exiting layer is a light extraction layer
  • the light extraction layer is a unitary structure, and light emitted from the light emitting layer 10 is emitted from the light extraction layer in a direction perpendicular to the light extraction layer.
  • a scattering structure 30 is disposed in the first region of the light extraction layer, and the light emitted from the light emitting layer 10 deviates from the original propagation direction after passing through the scattering structure 30.
  • the scattering structure 30 may be disposed on the upper surface of the first region of the light extraction layer or on the lower surface of the first region of the light extraction layer, or may be disposed in the first region of the light extraction layer.
  • the above-described scattering structure 30 is provided on both the upper surface and the lower surface.
  • the scattering structure 30 is a concave-convex structure disposed in the first region of the light extraction layer, and the concave-convex structure is formed on the surface of the first region of the light extraction layer by imprinting or etching; or the scattering structure 30 is steamed A plating process is formed on the scattering particle layer of the first region of the light extraction layer.
  • the edge display area 102 intersects the contour line 101, the edge display area 102 has a portion 1021 outside the defined area of the contour line 101, and the scattering structure 30 is disposed on the edge display area 102 at the contour line.
  • the surface of the light extraction layer of the portion 1021 outside the defined area i.e., the portion between the contour line 101 and the curve 104) means the light extraction layer of the portion 1022 of the edge display region 102 located within the defined area of the contour line 101.
  • the surface is not provided with the scattering structure 30, that is, when the projection of the first region of the light extraction layer on the substrate of the display screen 100 is the first projection, the edge display region 102 is located outside the defined area of the contour 101.
  • the first projection overlaps with the third projection.
  • the projection of the edge display area 102 on the substrate of the display screen 100 is the second projection, the first projection overlaps with the second projection, which is not limited herein.
  • the display screen 100 is a top light emitting structure
  • the light exiting layer is a top cover
  • the top cover is a unitary structure
  • light emitted from the light emitting layer 10 is emitted from the top cover in a direction perpendicular to the top cover.
  • a scattering structure 30 is disposed in the first region of the top cover, and the light emitted from the luminescent layer 10 deviates from the original propagation direction after passing through the scattering structure 30.
  • the scattering structure 30 may be disposed on the upper surface of the first region of the top cover or may be disposed on the lower surface of the first region of the top cover, or may be disposed in the first region of the top cover.
  • the above-described scattering structure 30 is provided on both the upper surface and the lower surface.
  • the scattering structure 30 is a concave-convex structure disposed on the first region of the top cover plate, and the concave-convex structure is formed on the surface of the first region of the top cover plate by imprinting or etching; or the scattering structure 30 is steamed A plating process is formed on the scattering particle layer of the first region of the top cover.
  • the edge display area 102 intersects the contour line 101, the edge display area 102 has a portion 1021 outside the defined area of the contour line 101, and the scattering structure 30 is disposed on the edge display area 102 at the contour line.
  • the surface of the top cover region corresponding to the portion 1021 outside the defined area means the top cover of the portion 1022 of the edge display region 102 located within the defined area of the outline 101.
  • the surface of the board is not provided with a scattering structure 30, that is, when the projection of the first area of the top cover on the substrate of the display screen 100 is the first projection, the edge display area 102 is located outside the defined area of the outline 101.
  • the projection on the substrate of the display screen 100 is the third projection, the first projection overlaps the third projection.
  • the surface of the top cover of the edge display area 102 has a scattering structure 30, that is, when the first area of the top cover is projected on the substrate of the display screen 100 as a first projection
  • the first projection overlaps with the second projection, which is not limited herein.
  • the scattering structure 30 can be selectively disposed on each layer on the upper portion of the light emitting layer 10. The case where the scattering structure 30 is disposed for other structural layers will not be described in detail herein. .
  • the first embodiment of the light emitting layer is provided with the scattering structure 30 in the above embodiment, and may be used alone or in combination of various schemes, as long as the performance of the display screen 100 is ensured.
  • the scattering structure 30 may be disposed on the first region of the light-emitting layer.
  • the light-emitting layer is the anode 40.
  • the display screen 100 in this embodiment is a bottom-emitting display (ie, a display screen of a bottom-emitting structure), that is, from the light-emitting layer 10, different from the above embodiment.
  • the light rays are emitted from the anode 40 in a direction perpendicular to the anode 40.
  • a scattering structure 30 is disposed in the first region of the anode 40, and the light emitted from the luminescent layer 10 deviates from the original propagation direction after passing through the scattering structure 30.
  • the above-described scattering structure 30 may be provided on the upper surface of the first region of the anode 40 (toward the surface of the light-emitting layer 10), or may be on the lower surface of the first region of the anode 40 (the surface facing away from the light-emitting layer 10)
  • the scattering structure 30 is provided, and the scattering structure 30 may be disposed on both the upper surface and the lower surface of the first region of the anode 40, and may be selected according to actual needs.
  • the light will deviate from the original direction of propagation as it passes through the scattering structure 30 (at least part of the light is no longer perpendicular to the anode 40 after passing through the scattering structure 30), then a portion of the light from the edge display region 102 propagates to
  • the non-display area of the display screen 100 reduces the amount of light emitted by the edge display area 102, and the brightness of the edge display area 102 and the non-display area are naturally connected, thereby reducing the edge jaggedness of the display screen 100.
  • the scattering structure 30 is formed by vapor-depositing a scattering particle layer on the lower surface of the first region of the anode 40 (the surface facing away from the light-emitting layer 10), and the scattering particles scatter the light when the light passes through the scattering particles. Therefore, a part of the light must be directed to the non-display area, so that the edge display area 102 and the non-display area are naturally connected.
  • the scattering structure 30 may be formed by vapor-depositing scattering particles on the upper surface of the first region of the anode 40 (toward the surface of the light-emitting layer 10), which is not limited herein.
  • the scattering structure 30 is a relief structure disposed in the first region of the anode 40.
  • the relief structure is formed with the surface of the anode 40 by imprinting or etching.
  • the display screen 100 further includes a substrate (not shown) and a thin film transistor (not shown).
  • the thin film transistor is disposed on the substrate, the anode 40 is disposed on the thin film transistor, and the light emitting layer 10 is disposed on the anode 40.
  • the edge display area 102 intersects the contour line 101, the edge display area 102 has a portion 1021 outside the defined area of the contour line 101, and the scattering structure 30 is disposed on the edge display area 102 at the contour line 101.
  • the surface of the anode 40 outside the portion 1021 (the portion between the contour line 101 and the curve 104) outside the defined area, that is, the surface of the anode 40 of the portion 1022 in which the edge display region 102 is located within the defined area of the contour line 101 is not provided.
  • a scattering structure 30 that is, when the projection of the first region of the anode 40 on the substrate of the display screen 100 is the first projection, the portion 1021 of the edge display region 102 outside the defined area of the contour line 101 is on the display screen 100.
  • the projection on the substrate is the third projection
  • the first projection overlaps with the third projection.
  • the projection of the edge display area 102 on the substrate of the display screen 100 is the second projection, the first projection overlaps with the second projection, which is not limited herein.
  • the display screen 100 further includes a pixel defining layer (PDL) (not shown) and a cathode 20.
  • PDL pixel defining layer
  • the pixel defining layer (PDL) and the cathode in this embodiment may be referred to the above embodiment, and will not be described in detail herein. Narration.
  • the display screen 100 is a bottom light emitting structure
  • the light exiting layer is a bottom cover plate
  • the bottom cover plate is a unitary structure, and light emitted from the light emitting layer 10 is emitted from the bottom cover plate in a direction perpendicular to the bottom cover plate.
  • a scattering structure 30 is disposed in the first region of the bottom cover, and the light emitted from the luminescent layer 10 deviates from the original propagation direction after passing through the scattering structure 30.
  • the scattering structure 30 may be disposed on the upper surface of the first region of the bottom cover or may be disposed on the lower surface of the first region of the bottom cover, or may be disposed in the first region of the bottom cover
  • the above-described scattering structure 30 is provided on both the upper surface and the lower surface.
  • the scattering structure 30 is a concave-convex structure disposed on the first region of the bottom cover plate, and the concave-convex structure is formed on the surface of the first region of the bottom cover plate by imprinting or etching; or the scattering structure 30 is formed by an evaporation process. a layer of scattering particles in the first region of the bottom cover.
  • the edge display area 102 intersects the contour line 101, the edge display area 102 has a portion 1021 outside the defined area of the contour line 101, and the scattering structure 30 is disposed on the edge display area 102 at the contour line.
  • the surface of the bottom cover of the portion 1021 outside the defined area (the portion between the outline 101 and the curve 104), that is, the bottom cover of the portion 1022 of the edge display area 102 located within the defined area of the outline 101
  • the surface is not provided with the scattering structure 30, that is, when the projection of the first region of the bottom cover on the substrate of the display screen 100 is the first projection, the portion 1021 of the edge display region 102 outside the defined area of the contour 101 is When the projection on the substrate of the display screen 100 is the third projection, the first projection overlaps with the third projection.
  • the surface of the bottom cover of the edge display area 102 has a scattering structure 30, that is, when the first area of the bottom cover is projected on the substrate of the display screen 100 as a first projection.
  • the projection of the edge display area 102 on the substrate of the display screen 100 is the second projection, the first projection overlaps with the second projection, which is not limited herein.
  • the scattering structure 30 can be selectively disposed on each layer located under the light emitting layer, and the case where the scattering structure 30 is disposed for other structural layers will not be described in detail herein.
  • the first embodiment of the light emitting layer is provided with the scattering structure 30 in the above embodiment, and may be used alone or in combination of various schemes, as long as the performance of the display screen 100 is ensured.
  • the scattering structure 30 may be disposed on the first region of the light-emitting layer.
  • the edge A part of the light of the display area 102 is transmitted to the non-display area of the display screen 100, so that the amount of light emitted from the edge display area 102 is lowered, and the brightness of the edge display area 102 and the non-display area are naturally connected, thereby reducing the edge sawtooth of the display screen 100. sense.
  • the display screen 100 includes a substrate, a light emitting structure, and a cover plate.
  • the light emitting structure is formed on the substrate, and the cover plate is spaced apart from the light emitting structure.
  • the substrate may be formed of a suitable material such as a glass material, a metal material, or a plastic material including polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polyimide.
  • a suitable material such as a glass material, a metal material, or a plastic material including polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polyimide.
  • the substrate includes a first sub-pixel region, a second sub-pixel region, and a third sub-pixel region, and the first sub-pixel region, the second sub-pixel region, and the third sub-pixel region constitute one pixel region, and the substrate has a plurality of Pixel area. More specifically, the first sub-pixel region is a sub-pixel region that emits red light, the second sub-pixel region is a sub-pixel region that emits green light, and the third sub-pixel region is a sub-pixel region that emits blue light.
  • the display screen 100 further includes a thin film transistor (TFT), the thin film transistor is disposed on the substrate, and the light emitting structure is disposed on the thin film transistor.
  • the thin film transistor can control the emission of each sub-pixel, or can control the amount of emission when each sub-pixel emits light.
  • TFT thin film transistor
  • the light emitting structure includes an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, and an electron layer which are sequentially stacked in a layer from a side close to the substrate to a side away from the substrate.
  • the anode injects holes into the hole injection layer, passes through the hole transport layer to the light emitting layer, the cathode injects electrons into the electron injection layer, and the electron transport layer reaches the light emitting layer, electrons and holes Recombining in the luminescent layer releases energy and transmits energy to the molecules of the luminescent layer, causing them to be excited, transitioning from the ground state to the excited state, and illuminating when the excited molecules return from the excited state to the ground state.
  • the display screen 100 further includes a pixel defining layer (PDL) disposed on the thin film transistor, the display screen 100 includes a plurality of repeatedly arranged pixel units, each of the pixel units including the first sub-pixel, the second sub-pixel, and the third sub-pixel, the pixel
  • the defining layer is provided with an opening corresponding to each sub-pixel (ie, an opening exposing a central portion of each sub-pixel) for defining a sub-pixel, and the first sub-pixel, the second sub-pixel, and the third sub-pixel are respectively disposed at corresponding openings Inside.
  • the first sub-pixel is a red sub-pixel
  • the second sub-pixel is a green sub-pixel
  • the third sub-pixel is a blue sub-pixel
  • a transparent metal mask can be used to vapor-evaporate red light, green light, and a blue light emitting material to respectively form a red sub-pixel, a green sub-pixel and a blue sub-pixel
  • each pixel unit is opposite to each pixel region on the substrate, and the first sub-pixel and the second sub-pixel in each pixel unit
  • the third sub-pixel are respectively opposed to the first sub-pixel region, the second sub-pixel region, and the third sub-pixel region in the corresponding pixel region.
  • the cover plate is disposed on the light-emitting structure for protecting the light-emitting structure and other structural layers of the display screen 100, and the light emitted from the light-emitting layer is transmitted from the cover plate in a direction perpendicular to the cover plate.
  • the display screen 100 further includes a scattering layer disposed on a surface of the cover plate at least a portion of the edge display region 102.
  • the light will deviate from the original propagation direction when passing through the scattering layer (at least part of the light is no longer perpendicular to the cover plate after passing through the scattering layer), and a part of the light of the edge display region 102 is transmitted to the display screen 100.
  • the non-display area so that the amount of light located in the edge display area 102 is reduced, and the presence of the scattering layer can blur the image, and the brightness of the edge display area 102 and the non-display area are naturally connected, thereby reducing the edge sawtooth of the display screen 100. sense.
  • the horizontal axis represents the distance between the pixel unit located in the edge display area 102 and the pixel unit located at the center of the main display area 103
  • the vertical axis represents the luminance value.
  • the display screen 100 provided by an embodiment of the present application has a first brightness curve S1
  • the display screen not provided with the scattering layer in the prior art has a second brightness curve S2
  • the position of the edge display area 102 ie, the horizontal axis coordinate in FIG. 5
  • the position away from the origin) the brightness of the first brightness curve S1 is significantly smaller than the brightness of the second brightness curve S2, and the result coincides with the above analysis result, thereby demonstrating that the scattering layer can reduce the brightness of the edge display area 102.
  • the normal distance L between the edge display area 102 and the outline 101 is smaller than the preset distance threshold to determine whether a pixel unit is located in the edge display area 102.
  • the preset distance threshold for a pixel unit of a specific size, when the outline is shifted inward by 3 mm, the main display area 103 is reached, and the 3 mm can be set as a preset distance threshold.
  • the preset distance threshold of 3 mm is only an example.
  • the specific range of the preset distance threshold is related to the curvature of the contour line 101, the size of the pixel unit, and the arrangement of the pixel units.
  • edge display area 102 intersects the contour line 101, it may be indicated that there are sub-pixels overlapping the contour line 101 in the edge display area 102, and the sub-pixels overlapping the contour line 101 may be the first sub-pixel and the second sub-pixel. One or more of a pixel and a third sub-pixel.
  • a scattering layer is disposed on the cover of the portion 1021 (the portion between the contour line 101 and the curved line 104) of the edge display region 102 outside the defined area of the contour line 101, which means The cover plate 102 is not provided with a scattering layer on the cover of the portion 1022 located within the defined area of the outline 101.
  • a scattering layer may be disposed on the cover plate of the edge display area 102, which is not limited herein.
  • the pixel unit when the ratio of a portion 1021 of a pixel unit outside the defined area of the outline 101 to the portion 1022 of the defined area of the outline 101 exceeds a certain ratio, such as 50%, the pixel unit is divided. It is an invalid pixel unit to remove the pixel unit (ie, the pixel unit is not evaporated), and when it is less than the ratio, the pixel unit is retained.
  • a certain ratio such as 50%
  • the scattering layer is disposed on the surface of the cover plate facing the light emitting structure, that is, in normal use, the scattering layer is disposed on the lower surface of the cover plate. It can be understood that in other embodiments, the scattering layer may also be disposed on the surface of the cover plate facing away from the light emitting structure, that is, in normal use, the scattering layer is disposed on the upper surface of the cover plate. In other embodiments, a scattering layer may also be disposed on both the upper and lower surfaces of the cover.
  • the scattering layer is a scattering particle layer disposed on a surface of the cover plate, and the scattering particles are one or more of silicone, polyethylene, acrylic resin, nano barium sulfate, silicon dioxide, and calcium carbonate. It can be understood that the scattering particles can be made of other materials in addition to the types listed above, and will not be described herein.
  • the scattering effect of the scattering layer is proportional to the particle diameter of the scattering particles
  • the selected scattering particles have a particle diameter of 5 um to 100 um, and the scattering particles have a density (density) of 10% to 40%.
  • the light due to the existence of the scattering layer, the light will deviate from the original propagation direction when passing through the scattering layer (at least part of the light is no longer perpendicular to the cover plate after passing through the scattering layer), and then part of the edge display area
  • the light propagates to the non-display area of the display screen, so that the amount of light located in the edge display area is reduced, and the presence of the scattering layer can blur the image, and the brightness of the edge display area and the non-display area are naturally connected, thereby reducing the display screen.
  • the edge is jagged.
  • the arrangement areas of the scattering particles are different, but they are all disposed in the entire edge display area or in the edge display area outside the contour line (ie, located in FIG. 1). The portion between the contour line 101 and the curve 104).
  • the edge display area in the slotted area (the slotted area also has a chamfer of a circular arc) is provided with scattering particles, and at the edge of the edge chamfered display area Scattering particles are also provided to reduce the jaggedness of the edge regions.
  • scattering particles are also provided only in the edge display area of the edge chamfer; for display screens with only slotted areas, and the edges are regular right angles, only in the slotted area There are scattering particles.
  • An embodiment of the present application further provides a display device, including the display screen 100 of any of the above embodiments, further comprising a power module, a storage module, and a processing module, wherein the power module is used to supply power to the display screen 100, and the storage module is configured to store The media information is electrically connected to the display screen, the power module, and the storage module, and is used for controlling the power supply of the power module, and displaying the media information on the display screen 100.
  • an embodiment of the present application further provides a method for fabricating a display screen.
  • the various steps in the flowchart of FIG. 6 are sequentially displayed as indicated by the arrows, these steps are not necessarily performed in the order indicated by the arrows. Except as explicitly stated herein, the execution of these steps is not strictly limited, and may be performed in other sequences. Moreover, at least some of the steps in FIG. 6 may include a plurality of sub-steps or stages, which are not necessarily performed at the same time, but may be executed at different times, and the order of execution thereof is not necessarily This may be performed in sequence, but may be performed alternately or alternately with other steps or at least a portion of the sub-steps or stages of the other steps.
  • the display method includes the following steps:
  • S110 providing a substrate, wherein the substrate is provided with a light emitting structure
  • S120 placing a cover plate above the light emitting structure, determining a laying area of the scattering particles to be laid according to the display condition of the edge display area of the light emitting structure, and adjusting the display screen of the edge display area;
  • the light emitting structure emits light
  • a sawtooth image exists in the edge display area of the light emitting structure
  • the display area of the sawtooth image on the cover plate can be determined to determine the laying area of the scattering particles on the cover plate. And adjust the display screen of the edge display area to prepare for the follow-up work.
  • S130 determining a particle size and a density of the scattering particles to be laid according to the laying area of the scattering particles to be laid, and the degree of adjustment;
  • S140 Coating scattering particles on the surface of the cover plate according to the laying area, the particle diameter and the density of the scattering particles to be laid.
  • the brightness of the display screen of the edge display area is lowered, thereby improving the sawtooth feeling of the display screen of the edge display area.
  • scattering particles are coated on the surface of the cover plate in accordance with the laying area, particle diameter, and density of the laid particles. More specifically, the scattering particles are applied to the surface of the cover plate facing the light-emitting structure, that is, the lower surface of the cover plate. In other embodiments, the scattering particles may be coated on the surface of the cover plate facing away from the light-emitting structure, that is, the upper surface of the cover plate, which is not limited herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请涉及一种显示屏、显示装置及显示屏的制作方法,显示屏具有轮廓线以界定有效显示区的范围;有效显示区包括邻近轮廓线的边缘显示区和远离轮廓线的主显示区;边缘显示区与轮廓线相交;显示屏包括发光层及出光层,出光层的第一区域上设置有散射结构,从发光层发出的光线经过散射结构后偏离原传播方向;第一区域为出光层上与边缘显示区对应的至少部分区域。显示屏具有轮廓线以界定有效显示区的范围;有效显示区包括邻近轮廓线的边缘显示区和远离轮廓线的主显示区;边缘显示区与轮廓线相交;显示屏包括基板、发光结构及盖板,发光结构形成于基板上,盖板间隔设置于发光结构上,在边缘显示区的至少部分设置有散射层,散射层设置于盖板的表面。

Description

显示屏、显示装置及显示屏的制作方法
本申请要求于2018年5月14日提交中国专利局,申请号为201810453615.8,发明名称为“显示屏及显示装置”的中国专利申请以及申请号为201810454353.7,发明名称为“显示屏、显示装置及显示屏的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种薄膜封装结构、薄膜封装方法及显示面板。
背景技术
目前OLED(有机发光二极管,Organic Light-Emitting Diode,OLED)器件的薄膜封装结构,其无机封装层的膜层较薄且应力大,因此薄膜封装结构的无机封装层四周容易出现裂缝,水氧容易从这些裂缝侵入OLED内部,对OLED器件造成损伤。因此目前的薄膜封装结构的封装可靠性难以提升。
发明内容
根据本申请的各种实施例,提供:
一种显示屏,所述显示屏具有轮廓线以界定有效显示区的范围;所述有效显示区包括邻近所述轮廓线的边缘显示区和远离所述轮廓线的主显示区;所述边缘显示区与所述轮廓线相交;以及
所述显示屏包括发光层及出光层,所述出光层的第一区域上设置有散射结构,从所述发光层发出的光线经过所述散射结构后偏离原传播方向;并且所述第一区域为所述出光层上与所述边缘显示区对应的至少部分区域。
一种显示屏,所述显示屏具有轮廓线以界定有效显示区的范围;所述有效显示区包括邻近所述轮廓线的边缘显示区和远离所述轮廓线的主显示区;所述边缘显示区与所述轮廓线相交;以及
所述显示屏包括基板、发光结构及盖板,所述发光结构形成于所述基板上,所述盖板间隔设置于所述发光结构上,并且在所述边缘显示区的至少部分设置有散射层,所述散射层设置于所述盖板的表面。
一种显示装置,包括:
如上所述的显示屏;
电源模块,用于为所述显示屏供电;
存储模块,用于存储媒体信息;以及
处理模块,与所述显示屏、所述电源模块和所述存储模块均电性连接,用以控制所述电源模块的电能供给,并且将媒体信息显示于所述显示屏。
一种显示屏的制作方法,用于制作如上所述的显示屏,包括:
提供基板,所述基板上设置有发光结构;
将盖板放置于所述发光结构上方,根据所述发光结构边缘显示区的显示情况,确定待铺设的散射粒子的铺设区域,以及对所述边缘显示区显示画面的调整程度;
根据所述待铺设的散射粒子的铺设区域,以及所述调整程度,确定所述待铺设的散射粒子的粒径及密度;以及
根据所述待铺设的散射粒子的铺设区域、粒径及密度,在所述盖板表面涂布散射粒子,以降低所述边缘显示区显示画面的亮度。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1为本申请实施例提供的一幅显示屏异形区的微观结构俯视图;
图2为本申请实施例提供的另一幅显示屏的微观结构俯视图;
图3为本申请一实施例提供的显示屏的结构示意图;
图4为本申请另一实施例提供的显示屏的结构示意图;
图5为本申请一实施例提供的显示屏与未设置有散射层的显示屏的亮度对比图;及
图6为本申请一实施例提供的显示屏的制作方法的流程图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
正如背景技术所述,采用现有技术的显示屏,在微观尺度上观察存在明显的锯齿感问题,发明人研究发现,出现这种问题的根本原因在于,像素一般为规则的长方形,而显示屏的轮廓线一般为弧形,则长方形的像素不可能与弧形的轮廓线完全匹配,则必然会在轮廓线周缘出现参差不齐的锯齿状,从而导致显示屏在微观尺度上观察时会出现明显的锯齿感。
参阅图1,本申请实施例提供的一种显示屏100的部分区域的俯视示意图,该显示屏100不同于传统的矩形外形,该显示屏100在传统的矩形外形的基础上,在显示屏100的一端开槽,即在显示屏100的一端具有异形形状。
需要说明的是,本实施例中的显示屏100可以是在一端具有开槽区(又称开口或刘海或异形区,开槽区具有弧形倒角,以下简称开槽)的显示屏,还可以是在传统矩形外形的基础上具有边缘弧形倒角(以下简称边缘倒角)的显示屏100,还可以是同时具有开槽和边缘倒角的显示屏100,即,对于任何区域具有弧形倒角的显示屏100,本实施例公开的方案均适用。以下描述中,仅以图2所示的具有开槽的显示屏100为例进行说明。
显示屏100具有轮廓线101,轮廓线101为显示屏100的开槽区的边界线,以及以便用于界定有效显示区的范围,即位于轮廓线101以内的显示屏区域为有效显示区,位于轮廓线101以外的显示屏区域为无效显示区,有效显示区用于呈现一幅图片或动态显示画面,无效显示区不需要呈现图片或者动态显示画面,但是当无效显示区内有子像素时,其显示的图片或动态显示画面会影响有效显示区的显示效果,如画面边缘的锯齿感。在具体应用中, 显示屏100可以是平面屏,也可以是曲面屏,如电视的曲面屏,或者手机的曲面屏。
有效显示区包括邻近轮廓线101的边缘显示区102和远离轮廓线101的主显示区103,主显示区103与边缘显示区102邻接,边缘显示区102与轮廓线101相交,即位于轮廓线101以内的绝大部分显示屏区域为主显示区103,与轮廓线101相交及位于轮廓线101以外的,且位于轮廓线101以内的且朝向轮廓线101的小部分显示屏区域为边缘显示区102。则在本实施例中,主显示区103以及边缘显示区102位于轮廓线101限定区域之内的部分1022划分为有效显示区,位于轮廓线以外的部分1021以及边缘显示区102位于轮廓线101限定区域之外的部分划分为无效显示区。
参阅图2及图3,该显示屏100包括层叠设置的发光层10与出光层,该发光层10为OLED的一部分,该发光层10可以为多层结构叠加形成的叠层结构。在本实施例中,发光层10为OLED中的发光材料层。此外,OLED还包括公共层,具体地,公共层包括电子注入层、电子传输层、空穴阻挡层、电子阻挡层、空穴传输层与空穴注入层等,更具体地,发光层设置于电子注入层、电子传输层、空穴阻挡层形成的叠层,与电子阻挡层、空穴传输层与空穴注入层形成的叠层之间。
OLED属载流子双注入型发光器件,在外界电压的驱动下,由电极注入的电子和空穴在有机材料中复合而释放出能量并将能量传递给有机发光物质的分子,使其受到激发,从基态跃迁到激发态,当受激分子从激发态回到基态时辐射而产生发光现象。
具体地,出光层的第一区域上设置有散射结构30,从发光层10发出的光线经过散射结构30后偏离原传播方向,第一区域为出光层上与边缘显示区102对应的至少部分区域。具体的,参见图1,第一区域可以为与边缘显示区102位于轮廓线101限定区域之外的部分1021(即轮廓线101与曲线104之间的部分)对应的出光层区域,也可以为与边缘显示区102对应的出光层区域,本实施例对此不做限定,具体在以下实施例的描述中说明。如此,由于 散射结构30的存在,光线在经过散射结构30时会偏离原来的传播方向(至少部分光线在经过散射结构30后不再与出光层垂直),则边缘显示区102的一部分光线传播到显示屏100的非显示区,从而使位于边缘显示区102的出光量降低,边缘显示区102与非显示区的亮度衔接自然,从而降低了显示屏100的边缘锯齿感。
需要说明的是,对于不同结构的显示屏,出光层的结构不同,如对于顶发光的显示屏,光取出层、阴极和顶部盖板中的至少一层;对于底发光结构,出光层可以为阳极和/或底部盖板。本实施例对此不做限定,以下实施例的描述中进行分别说明。
具体地,参阅图3,为本申请一实施例公开的顶发光显示屏边缘区域的剖面示意图。本实施例中的出光层为阴极20,阴极20为一整体结构,阴极20设置于发光层10上,阴极20接触显示区域外侧的电极供电线,从而电极供电线可以接收电信号。显示屏100为顶发光显示屏(即顶发光结构的显示屏),即从发光层10发出的光线以垂直于阴极20的方向从阴极20射出。在阴极20的第一区域设置有散射结构30,从发光层10发出的光线在经过散射结构30后偏离原传播方向。
更具体地,可以在阴极20的第一区域的上表面(背向发光层10的表面)设置有上述散射结构30,也可以在阴极20的第一区域的下表面(朝向发光层10的表面)设置有上述散射结构30,还可以在阴极20的第一区域的上表面及下表面均设置有上述散射结构30,可以根据实际需要选择,本实施例对此不做限定。
如此,由于散射结构30的存在,光线在经过散射结构30时会偏离原来的传播方向(至少部分光线在经过散射结构30后不再与阴极20垂直),则边缘显示区102的一部分光线传播到显示屏100的非显示区,从而使位于边缘显示区102的出光量降低,边缘显示区102与非显示区的亮度衔接自然,从而降低了显示屏100的边缘锯齿感。
具体地,在本实施例中,散射结构30为设置于阴极20的第一区域的凹 凸结构。
更具体地,可以通过压印的方式使阴极20的第一区域的上表面形成上述凹凸结构,压印是在模具的作用下使材料的厚度发生变化,在材料的表面上压出起伏花纹或字样的工序。
在另一个实施例中,还可以通过刻蚀的方式使阴极20的第一区域的上表面形成上述凹凸结构。
具体过程可以为:在整个显示屏上旋涂光刻胶,之后以具有有效显示区图形开口的掩膜板为掩膜,对光刻胶进行曝光,显影,暴露出待刻蚀的无效显示区区域,在整个显示屏上形成具有有效显示区图形开口的光刻胶层;之后以该具有有效显示区图形开口的光刻胶层为掩膜,采用刻蚀工艺在暴露出的待刻蚀的无效显示区区域上形成上述凹凸结构;形成上述凹凸结构之后,再去除所述光刻胶层。
在另一实施例中,通过在阴极20的第一区域的上表面(背向发光层10的表面)蒸镀散射粒子层形成上述散射结构30,当光线经过散射粒子层时,散射粒子层会将光线散射,则必然有一部分光线射向非显示区,从而使边缘显示区102与非显示区的亮度衔接自然。
可以理解的是,在其他实施例中,还可以通过在阴极20的第一区域的下表面(朝向发光层10的表面)蒸镀散射粒子层形成上述散射结构30,或者在阴极20的第一区域的上下表面均蒸镀散射粒子层形成上述散射结构30。
具体地,散射粒子层为有机硅、聚乙烯、丙烯酸树脂、纳米硫酸钡、二氧化硅和碳酸钙中的一种或多种。具体地,散射结构30的散射效果与散射粒子层的粒径成正比,且散射结构30的散射效果与散射粒子层的密度成正比,该密度为散射粒子层占据阴极20设有散射结构30部分的面积的百分比。当锯齿感较轻微时,选择粒径较小且密度较小的粒子,当锯齿感较严重时,选择粒径较大且密度较大的粒子。
更具体地,选择的散射粒子的粒径为5um-100um,但是粒径也不要选择太大,根据实际需要选择,且散射粒子的密度(密集程度)为10%-40%,密 度也不要选择太大,只要适宜即可。其中,散射粒子的密度为:散射粒子所占据出光层的面积与出光层设置有散射结构的部分的面积的比值。例如,如图1所示,若将散射粒子仅设置于轮廓线101与曲线104之间,则散射粒子的密度=散射粒子的总面积:位于轮廓线101与曲线104之间的盖板区域的面积。
进一步,显示屏100还包括像素限定层(PDL)(图未示)与顶部盖板(图未示),显示屏100还包括若干重复排列的像素单元,像素单元包括第一子像素、第二子像素及第三子像素,像素限定层设有对应每个子像素的开口(即暴露每个子像素的中心部分开口),用于限定子像素,第一子像素、第二子像素及第三子像素分别设置于相对应的开口内,顶部盖板用于保护发光层10及显示屏100其他结构层。
在本实施例中,边缘显示区102与轮廓线101之间的法向距离L小于预设距离阈值,以确定一个像素单元是否位于边缘显示区102。例如,根据统计数据发现,对于特定尺寸的像素单元,从轮廓线101向内偏移3mm时,均会到达主显示区103,则可以设定该3mm为预设距离阈值。当然,这里的预设距离阈值取3mm仅是一种举例,具体的预设距离阈值的取值范围与轮廓线的曲率和像素单元的尺寸有关。
显示屏100还包括基板(图未示)、薄膜晶体管(Thin-film transistor,TFT)(图未示)及阳极40,薄膜晶体管设置在基板上,阳极40设置在薄膜晶体管上,发光层10设置于阳极40上。
基板具有第一子像素区域、第二子像素区域和第三子像素区域。一组第一子像素区域、第二子像素区域和第三子像素区域可以构成一个像素区域。基板可以具有多个像素区域。薄膜晶体管控制每个子像素的发射,或者可以控制每个子像素发射光时发射的量。
具体地,在本实施例中,部分边缘显示区102与轮廓线101相交,则边缘显示区102具有位于轮廓线101限定区域之外的部分1021,散射结构30设置于与边缘显示区102位于轮廓线101限定区域之外的部分1021(即轮廓 线101与曲线104之间的部分)对应的阴极20的区域的表面,即,阴极20的第一区域为,与边缘显示区102位于轮廓线101限定区域之外的部分1021对应的阴极区域,也就是说,边缘显示区102位于轮廓线101限定区域之内的部分1022的阴极20的表面未设置有散射结构30。也即,本实施例中,阴极20的第一区域在显示屏100的基板上的投影为第一投影,边缘显示区102位于轮廓线101限定区域之外的部分1021在显示屏100的基板上的投影为第三投影,第一投影与第三投影重叠。
在其他实施例中,可以设置只要处于边缘显示区102的阴极20的表面均有散射结构30,也即为当阴极20的第一区域在显示屏100的基板上的投影为第一投影时,边缘显示区102在显示屏100的基板上的投影为第二投影时,第一投影与第二投影重叠,在此不作限定。
在具体应用中,当一个像素单元处于轮廓线101限定区域之外的部分1021与处于轮廓线101限定区域之内的部分1022的比例超过一定比值时,如50%时,会将该像素单元划分为无效像素单元,以将该像素单元去除(即不蒸镀该像素单元),而小于该比值时则保留该像素单元。
阳极40包括第一子像素电极、第二子像素电极和第三子像素电极。第一子像素电极形成在第一子像素区域,第二子像素电极形成在第二子像素区域,第三子像素电极形成在第三子像素区域。第一子像素电极、第二子像素电极和第三子像素电极中的每一个可以经过通孔电连接到薄膜晶体管。
在另一个实施例中,显示屏100为顶发光结构,出光层为光取出层,光取出层为一整体结构,从发光层10发出的光线以垂直于光取出层的方向从光取出层射出。在光取出层的第一区域设置有散射结构30,从发光层10发出的光线在经过散射结构30后偏离原传播方向。
具体地,和上述实施例相同,散射结构30可以设置于光取出层的第一区域的上表面也可以设置于光取出层的第一区域的下表面,还可以在光取出层的第一区域的上表面与下表面均设置有上述散射结构30。
更具体地,散射结构30为设置于光取出层的第一区域的凹凸结构,凹凸结构通过压印或刻蚀的方式形成于光取出层的第一区域的表面;或者散射结构30为采用蒸镀工艺形成于光取出层的第一区域的散射粒子层。
更具体地,在本实施例中,边缘显示区102与轮廓线101相交,则边缘显示区102具有位于轮廓线101限定区域之外的部分1021,散射结构30设置于边缘显示区102位于轮廓线101限定区域之外的部分1021(即轮廓线101与曲线104之间的部分)的光取出层的表面,意思即为边缘显示区102位于轮廓线101限定区域之内的部分1022的光取出层的表面未设置有散射结构30,也即为当光取出层的第一区域在显示屏100的基板上的投影为第一投影时,边缘显示区102位于轮廓线101限定区域之外的部分1021在显示屏100的基板上的投影为第三投影时,第一投影与第三投影重叠。在其他实施例中,可以设置只要处于边缘显示区102的光取出层的表面均有散射结构30,也即为当光取出层的第一区域在显示屏100的基板上的投影为第一投影时,边缘显示区102在显示屏100的基板上的投影为第二投影时,第一投影与第二投影重叠,在此不作限定。
在另一个实施例中,显示屏100为顶发光结构,出光层为顶部盖板,顶部盖板为一整体结构,从发光层10发出的光线以垂直于顶部盖板的方向从顶部盖板射出。在顶部盖板的第一区域设置有散射结构30,从发光层10发出的光线在经过散射结构30后偏离原传播方向。
具体地,和上述实施例相同,散射结构30可以设置于顶部盖板的第一区域的上表面也可以设置于顶部盖板的第一区域的下表面,还可以在顶部盖板的第一区域的上表面与下表面均设置有上述散射结构30。
更具体地,散射结构30为设置于顶部盖板的第一区域的凹凸结构,凹凸结构通过压印或刻蚀的方式形成于顶部盖板的第一区域的表面;或者散射结构30为采用蒸镀工艺形成于顶部盖板的第一区域的散射粒子层。
更具体地,在本实施例中,边缘显示区102与轮廓线101相交,则边缘 显示区102具有位于轮廓线101限定区域之外的部分1021,散射结构30设置于边缘显示区102位于轮廓线101限定区域之外的部分1021(轮廓线101与曲线104之间的部分)对应的顶部盖板区域的表面,意思即为边缘显示区102位于轮廓线101限定区域之内的部分1022的顶部盖板的表面未设置有散射结构30,也即为当顶部盖板的第一区域在显示屏100的基板上的投影为第一投影时,边缘显示区102位于轮廓线101限定区域之外的部分1021在显示屏100的基板上的投影为第三投影时,第一投影与第三投影重叠。
在其他实施例中,可以设置只要处于边缘显示区102的顶部盖板的表面均有散射结构30,也即为当顶部盖板的第一区域在显示屏100的基板上的投影为第一投影时,边缘显示区102在显示屏100的基板上的投影为第二投影时,第一投影与第二投影重叠,在此不作限定。
可以理解的是,当显示屏100为顶发光结构时,位于发光层10上部的各个层上都可以选择性的设置散射结构30,针对其他结构层设置散射结构30的情况在此不再详细介绍。
并且,针对显示屏100为顶发光结构时,以上实施例中使出光层的第一区域上设置有散射结构30的方案,可以单独使用,也可以多种方案组合使用,只要保证显示屏100性能的基础上,实现出光层的第一区域上设置有散射结构30即可。
参阅图4,为底发光显示屏边缘区域的剖面示意图。在又一个实施例中,出光层为阳极40,与上述实施例不同的是,本实施例中的显示屏100为底发光显示屏(即底发光结构的显示屏),即从发光层10发出的光线以垂直于阳极40的方向从阳极40射出。在位于阳极40的第一区域设置有散射结构30,从发光层10发出的光线在经过散射结构30后偏离原传播方向。
更具体地,可以在阳极40的第一区域的上表面(朝向发光层10的表面)设置有上述散射结构30,也可以在阳极40的第一区域的下表面(背向发光层10的表面)设置有上述散射结构30,还可以在阳极40的第一区域的上表 面及下表面均设置有上述散射结构30,可以根据实际需要选择。
如此,由于散射结构30的存在,光线在经过散射结构30时会偏离原来的传播方向(至少部分光线在经过散射结构30后不再与阳极40垂直),则边缘显示区102的一部分光线传播到显示屏100的非显示区,从而使位于边缘显示区102的出光量降低,边缘显示区102与非显示区的亮度衔接自然,从而降低了显示屏100的边缘锯齿感。
在本实施例中,通过在阳极40的第一区域的下表面(背向发光层10的表面)蒸镀散射粒子层形成上述散射结构30,当光线经过散射粒子时,散射粒子会将光线散射,则必然有一部分光射向非显示区,从而使边缘显示区102与非显示区衔接自然。在其他实施例中,还可以在阳极40的第一区域的上表面(朝向发光层10的表面)蒸镀散射粒子形成上述散射结构30,在此不作限定。
在其他实施例中,散射结构30为设置于阳极40的第一区域的凹凸结构,具体地,凹凸结构通过压印或者刻蚀形成与阳极40的表面。
显示屏100还包括基板(图未示)及薄膜晶体管(图未示),薄膜晶体管设置在基板上,阳极40设置在薄膜晶体管上,发光层10设置于阳极40上。
具体地,在本实施例中,边缘显示区102与轮廓线101相交,则边缘显示区102具有位于轮廓线101限定区域之外的部分1021,散射结构30设置于边缘显示区102位于轮廓线101限定区域之外的部分1021(轮廓线101与曲线104之间的部分)的阳极40的表面,意思即为边缘显示区102位于轮廓线101限定区域之内的部分1022的阳极40的表面未设置有散射结构30,也即为当阳极40的第一区域在显示屏100的基板上的投影为第一投影时,边缘显示区102位于轮廓线101限定区域之外的部分1021在显示屏100的基板上的投影为第三投影时,第一投影与第三投影重叠。在其他实施例中,可以设置只要处于边缘显示区102的阳极40的表面均有散射结构30,也即为当阳极40的第一区域在显示屏100的基板上的投影为第一投影时,边缘显示区102在显示屏100的基板上的投影为第二投影时,第一投影与第二投影重叠, 在此不作限定。
进一步,该显示屏100还包括像素限定层(PDL)(图未示)与阴极20,该实施例中的像素限定层(PDL)、与阴极的设置可以参考上述实施例,在此不再详细赘述。
在另一个实施例中,显示屏100为底发光结构,出光层为底部盖板,底部盖板为一整体结构,从发光层10发出的光线以垂直于底部盖板的方向从底部盖板射出。在底部盖板的第一区域设置有散射结构30,从发光层10发出的光线在经过散射结构30后偏离原传播方向。
具体地,和上述实施例相同,散射结构30可以设置于底部盖板的第一区域的上表面也可以设置于底部盖板的第一区域的下表面,还可以在底部盖板的第一区域的上表面与下表面均设置有上述散射结构30。
且散射结构30为设置于底部盖板的第一区域的凹凸结构,凹凸结构通过压印或刻蚀的方式形成于底部盖板的第一区域的表面;或者散射结构30为采用蒸镀工艺形成于底部盖板的第一区域的散射粒子层。
更具体地,在本实施例中,边缘显示区102与轮廓线101相交,则边缘显示区102具有位于轮廓线101限定区域之外的部分1021,散射结构30设置于边缘显示区102位于轮廓线101限定区域之外的部分1021(轮廓线101与曲线104之间的部分)的底部盖板的表面,意思即为边缘显示区102位于轮廓线101限定区域之内的部分1022的底部盖板的表面未设置有散射结构30,也即为当底部盖板的第一区域在显示屏100的基板上的投影为第一投影时,边缘显示区102位于轮廓线101限定区域之外的部分1021在显示屏100的基板上的投影为第三投影时,第一投影与第三投影重叠。在其他实施例中,可以设置只要处于边缘显示区102的底部盖板的表面均有散射结构30,也即为当底部盖板的第一区域在显示屏100的基板上的投影为第一投影时,边缘显示区102在显示屏100的基板上的投影为第二投影时,第一投影与第二投影重叠,在此不作限定。
可以理解的是,针对显示屏100为底发光结构时,位于发光层下部的各个层上都可以选择性的设置散射结构30,针对其他结构层设置散射结构30的情况在此不再详细介绍。
并且,针对显示屏100为底发光结构时,以上实施例中使出光层的第一区域上设置有散射结构30的方案,可以单独使用,也可以多种方案组合使用,只要保证显示屏100性能的基础上,实现出光层的第一区域上设置有散射结构30即可。
本申请实施例提供的显示屏100,由于散射结构30的存在,光线在经过散射结构30时会偏离原来的传播方向(至少部分光线在经过散射结构30后不再与出光层垂直),则边缘显示区102的一部分光线传播到显示屏100的非显示区,从而使位于边缘显示区102的出光量降低,边缘显示区102与非显示区的亮度衔接自然,从而降低了显示屏100的边缘锯齿感。
在另一个实施例中,显示屏100包括基板、发光结构及盖板,发光结构形成于基板上,盖板间隔设置于发光结构上。
基板可以由诸如玻璃材料、金属材料或包括聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)或聚酰亚胺等的塑胶材料中合适的材料形成。
具体地,基板包括第一子像素区域、第二子像素区域和第三子像素区域,一组第一子像素区域、第二子像素区域及第三子像素区域构成一个像素区域,基板具有多个像素区域。更具体地,第一子像素区域为发射红光的子像素区域,第二子像素区域为发射绿光的子像素区域,第三子像素区域为发射蓝光的子像素区域。
在本实施例中,显示屏100还包括薄膜晶体管(Thin-film transistor;TFT),薄膜晶体管设置在基板上,发光结构设置在薄膜晶体管上。薄膜晶体管可以控制每个子像素的发射,或者可以控制每个子像素发射光时发射的量。至于薄膜晶体管的具体结构请参看现有技术,在此不再详细赘述。
在本实施例中,发光结构从靠近基板的一侧到远离基板的一侧包括依次层叠设置的阳极、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层及阴极,阳极注入空穴到空穴注入层,并经过空穴传输层到发光层,阴极注入电子到电子注入层,并由电子传输层到发光层,电子和空穴在发光层中复合而释放出能量,并将能量传递给发光层的分子,使其受到激发,从基态跃迁到激发态,当受激分子从激发态回到基态时辐射而产生发光现象。
显示屏100还包括设置于薄膜晶体管上的像素限定层(PDL),显示屏100包括若干重复排列的像素单元,每个像素单元包括第一子像素、第二子像素及第三子像素,像素限定层设有对应每个子像素的开口(即暴露每个子像素的中心部分的开口),用于限定子像素,第一子像素、第二子像素及第三子像素分别设置于相对应的开口内。
具体地,第一子像素为红色子像素,第二子像素为绿色子像素,第三子像素为蓝色子像素,可以使用精密金属掩模板在上述开口内蒸镀发射红光、绿光和蓝光的发光材料以分别形成红色子像素、绿色子像素与蓝色子像素,且每个像素单元与基板上每个像素区域相对,且每个像素单元内的第一子像素、第二子像素与第三子像素分别与对应像素区域内的第一子像素区域、第二子像素区域与第三子像素区域相对。
盖板设于发光结构上用于保护发光结构及显示屏100的其他结构层,从发光层发出的光线沿垂直于盖板的方向从盖板传出显示屏。
具体地,在本实施例中,显示屏100还包括散射层,散射层设置于位于边缘显示区102的至少部分的盖板的表面。
如此,由于散射层的存在,光线在经过散射层时会偏离原来的传播方向(至少部分光线在经过散射层后不再与盖板垂直),则边缘显示区102的一部分光线传播到显示屏100的非显示区,从而使位于边缘显示区102的出光量降低,且散射层的存在可以使成像模糊,则边缘显示区102与非显示区的亮度衔接自然,从而降低了显示屏100的边缘锯齿感。
参阅图5,横轴表示位于边缘显示区102的像素单元与位于主显示区103的中心的像素单元之间的距离,纵轴表示亮度值。本申请一实施例提供的显示屏100具有第一亮度曲线S1,现有技术未设置有散射层的显示屏具有第二亮度曲线S2,在边缘显示区102的位置(即图5中横轴坐标远离原点的位置),第一亮度曲线S1的亮度明显小于第二亮度曲线S2的亮度,则该结果与上述分析结果相吻合,从而证明了散射层可以降低边缘显示区102的亮度。
在本实施例中,边缘显示区102与轮廓线101之间的法向距离L小于预设距离阈值,以确定一个像素单元是否位于边缘显示区102。例如,根据统计数据发现,对于特定尺寸的像素单元,从轮廓线向内偏移3mm时,均会到达主显示区103,则可以设定该3mm为预设距离阈值。当然,这里的预设距离阈值取3mm仅是一种举例,具体的预设距离阈值的取值范围与轮廓线101的曲率、像素单元的尺寸及像素单元的排布有关。
进一步,由于边缘显示区102与轮廓线101相交,则可以表明在边缘显示区102存在与轮廓线101搭界的子像素,该与轮廓线101搭界的子像素可以为第一子像素、第二子像素与第三子像素其中的一种或者多种。
具体地,在本实施例中,在边缘显示区102位于轮廓线101限定区域之外的部分1021(位于轮廓线101与曲线104之间的部分)的盖板上设置有散射层,意思即为边缘显示区102位于轮廓线101限定区域之内的部分1022的盖板上未设置有散射层。在其他实施例中,可以在处于边缘显示区102的盖板上均设置有散射层,在此不做限定。
在具体应用中,当一个像素单元处于轮廓线101限定区域之外的部分1021与处于轮廓线101限定区域之内的部分1022的比例超过一定比值时,如50%时,会将该像素单元划分为无效像素单元,以将该像素单元去除(即不蒸镀该像素单元),而小于该比值时则保留该像素单元。
进一步,散射层设置于盖板朝向发光结构的表面,即在正常使用时,散射层设置于盖板的下表面。可以理解的是,在其他实施例中,散射层也可以选择设置于盖板背向发光结构的表面,即在正常使用时,散射层设置于盖板 的上表面。在另一些实施例中,还可以在盖板的上表面与下表面均设置有散射层。
具体地,散射层为设置于盖板表面的散射粒子层,散射粒子为有机硅、聚乙烯、丙烯酸树脂、纳米硫酸钡、二氧化硅和碳酸钙其的一种或多种。可以理解的是,散射粒子除了上述所列出的种类外,还可以选择其他材料制成,在此不再赘述。
具体地,散射层的散射效果与散射粒子的粒径成正比,且散射层的散射效果与散射粒子的密度成正比,其中,散射粒子的密度为:散射粒子所占据盖板的面积与盖板设置有散射层的部分的面积的比值。例如,如图5所示,若将散射粒子仅设置于轮廓线101与曲线104之间,则散射粒子的密度=散射粒子的总面积:位于轮廓线101与曲线104之间的盖板区域的面积。
更具体地,选择的散射粒子的粒径为5um-100um,且散射粒子的密度(密集程度)为10%-40%。
本申请实施例公开的显示屏,由于散射层的存在,光线在经过散射层时会偏离原来的传播方向(至少部分光线在经过散射层后不再与盖板垂直),则边缘显示区的一部分光线传播到显示屏的非显示区,从而使位于边缘显示区的出光量降低,且散射层的存在可以使成像模糊,则边缘显示区与非显示区的亮度衔接自然,从而降低了显示屏的边缘锯齿感。
本领域技术人员可以理解,对于不同形状的显示屏,散射粒子的设置区域不同,但均是要么设置在整个边缘显示区,要么设置在被轮廓线之外的边缘显示区(即图1中位于轮廓线101与曲线104之间的部分)。
例如,对于既有开槽又有边缘倒角的显示屏,在开槽区域(开槽区域也具有圆弧的倒角)的边缘显示区域设置有散射粒子,同时在边缘倒角的边缘显示区域也设置有散射粒子,从而降低边缘区域的锯齿感。对于仅有边缘倒角的显示屏,则仅在边缘倒角的边缘显示区域也设置有散射粒子;对于仅有开槽区域的显示屏,而边缘为规则的直角,则仅在开槽区域设置有散射粒子。
本申请的一实施例还提供一种显示装置,包括上述任一实施例的显示屏100,还包括电源模块、存储模块及处理模块,电源模块用于为显示屏100供电,存储模块用于存储媒体信息,处理模块与显示屏、电源模块及存储模块电性连接,用于控制电源模块的电能供给,并将媒体信息显示于显示屏100。
参阅图6,本申请一实施例还提供一种显示屏的制作方法。应该理解的是,虽然图6的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图6中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
该显示屏的制作方法包括步骤:
S110:提供基板,所述基板上设置有发光结构;
S120:将盖板放置于所述发光结构上方,根据所述发光结构边缘显示区的显示情况,确定待铺设的散射粒子的铺设区域,以及对所述边缘显示区显示画面的调整程度;
具体地,当将盖板放置于发光结构上后,发光结构发光,则在发光结构的边缘显示区存在锯齿画面,可以锯齿画面在盖板上的显示情况确定散射粒子在盖板上的铺设区域以及对边缘显示区显示画面的调整程度,为后续工作做准备。
S130:根据所述待铺设的散射粒子的铺设区域,以及所述调整程度,确定所述待铺设的散射粒子的粒径及密度;
具体地,散射粒子的粒径越大,散射性能越好,散射粒子的密度越大,穿透率越低,散射性能也越好。因此,当锯齿画面较轻微时,选择粒径较小且密度较小的粒子,当锯齿画面较严重时,选择粒径较大且密度较大的粒子。一般选择粒径在5um-100um之间的粒子,但是粒径也不要选择太大,根据实 际需要选择,密度一般选择10%-40%,密度也不要选择太大,只要适宜即可。
S140:根据所述待铺设的散射粒子的铺设区域、粒径及密度,在所述盖板表面涂布散射粒子。
以通过散射粒子的散射,降低边缘显示区显示画面的亮度,从而改善边缘显示区显示画面的锯齿感。
具体地,根据铺设的粒子的铺设区域、粒径及密度在盖板的表面涂布散射粒子。更具体地,将散射粒子涂布在盖板朝向发光结构的表面,也即为盖板的下表面。在其他实施例中,还可以将散射粒子涂布在盖板背向发光结构的表面,也即为盖板的上表面,在此不作限定。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (23)

  1. 一种显示屏,所述显示屏具有轮廓线以界定有效显示区的范围;所述有效显示区包括邻近所述轮廓线的边缘显示区和远离所述轮廓线的主显示区;所述边缘显示区与所述轮廓线相交;以及
    所述显示屏包括发光层及出光层,所述出光层的第一区域上设置有散射结构,从所述发光层发出的光线经过所述散射结构后偏离原传播方向;并且所述第一区域为所述出光层上与所述边缘显示区对应的至少部分区域。
  2. 根据权利要求1所述的显示屏,其中所述第一区域在所述显示屏的基板上的投影为第一投影,所述边缘显示区在所述显示屏的基板上的投影为第二投影,所述第一投影与所述第二投影重合。
  3. 根据权利要求1所述的显示屏,其中所述第一区域在所述显示屏的基板上的投影为第一投影,位于轮廓线限定区域外部的边缘显示区在所述显示屏的基板上的投影为第三投影,所述第一投影与所述第三投影重合。
  4. 根据权利要求2或3所述的显示屏,其中所述显示屏为顶发光结构,所述出光层为光取出层、阴极和顶部盖板中的至少一种;或所述显示屏为底发光结构,所述出光层为阳极和/或底部盖板。
  5. 根据权利要求4所述的显示屏,其中所述显示屏为顶发光结构,所述出光层为光取出层时,所述散射结构为设置于所述光取出层第一区域的凹凸结构或散射粒子层;所述出光层为阴极时,所述散射结构为设置于所述阴极第一区域的凹凸结构或散射粒子层;所述出光层为顶部盖板时,所述散射结构为设置于所述顶部盖板第一区域的凹凸结构或散射粒子层;
    或所述显示屏为底发光结构,所述出光层为阳极时,所述散射结构为设置于所述阳极第一区域的凹凸结构或散射粒子层;所述出光层为底部盖板时,所述散射结构为设置于所述底部盖板第一区域的凹凸结构或散射粒子层。
  6. 根据权利要求5所述的显示屏,其中所述散射结构为设置于所述出光层第一区域的凹凸结构,所述凹凸结构通过压印或刻蚀工艺,形成于所述出光层上;所述散射粒子层通过蒸镀工艺,形成于所述出光层表面。
  7. 根据权利要求5所述的显示屏,其中所述散射结构为设置于所述出光层第一区域的散射粒子层,所述散射粒子层为有机硅、聚乙烯、丙烯酸树脂、纳米硫酸钡、二氧化硅和碳酸钙中的一种或多种。
  8. 根据权利要求7所述的显示屏,其中所述散射结构的散射效果与所述散射粒子层的粒径成正比,且所述散射结构的散射效果与所述散射粒子层的密度成正比。
  9. 根据权利要求8所述的显示屏,其中所述散射粒子层的粒径在5um-100um以内。
  10. 根据权利要求8所述的显示屏,其中所述散射粒子层的密度在10%-40%以内。
  11. 根据权利要求1所述的显示屏,其中所述散射结构设置于所述出光层朝向或背离所述发光层的表面。
  12. 根据权利要求1所述的显示屏,其中所述边缘显示区与所述轮廓线之间的法向距离小于3mm。
  13. 一种显示屏,所述显示屏具有轮廓线以界定有效显示区的范围;所述有效显示区包括邻近所述轮廓线的边缘显示区和远离所述轮廓线的主显示区;所述边缘显示区与所述轮廓线相交;以及
    所述显示屏包括基板、发光结构及盖板,所述发光结构形成于所述基板上,所述盖板间隔设置于所述发光结构上,并且在所述边缘显示区的至少部分设置有散射层,所述散射层设置于所述盖板的表面。
  14. 根据权利要求13所述的显示屏,其中所述散射层设置于所述盖板朝向或背离所述发光结构的表面。
  15. 根据权利要求13所述的显示屏,其中所述边缘显示区与所述轮廓线之间的法向距离小于3mm。
  16. 根据权利要求13所述的显示屏,其中所述散射层设置于位于所述轮廓线限定区域之外的所述边缘显示区的区域所对应的所述盖板上。
  17. 根据权利要求13-16任一项所述的显示屏,其中所述散射层为设置 于所述盖板上的散射粒子层。
  18. 根据权利要求17所述的显示屏,其中所述散射粒子为有机硅、聚乙烯、丙烯酸树脂、纳米硫酸钡、二氧化硅和碳酸钙中的一种或多种。
  19. 根据权利要求17所述的显示屏,其中所述散射层的散射效果与所述散射粒子的粒径成正比,且所述散射层的散射效果与所述散射粒子的密度成正比。
  20. 根据权利要求19所述的显示屏,其中所述散射粒子的粒径在5um-100um以内。
  21. 根据权利要求19所述的显示屏,其中所述散射粒子的密度在10%-40%以内。
  22. 一种显示装置,包括:
    如权利要求1-21中任一项所述的显示屏;
    电源模块,用于为所述显示屏供电;
    存储模块,用于存储媒体信息;以及
    处理模块,与所述显示屏、所述电源模块和所述存储模块均电性连接,用以控制所述电源模块的电能供给,并且将媒体信息显示于所述显示屏。
  23. 一种显示屏的制作方法,用于制作如权利要求13-21中任一项所述的显示屏,包括:
    提供基板,所述基板上设置有发光结构;
    将盖板放置于所述发光结构上方,根据所述发光结构边缘显示区的显示情况,确定待铺设的散射粒子的铺设区域,以及对所述边缘显示区显示画面的调整程度;
    根据所述待铺设的散射粒子的铺设区域,以及所述调整程度,确定所述待铺设的散射粒子的粒径及密度;以及
    根据所述待铺设的散射粒子的铺设区域、粒径及密度,在所述盖板表面涂布散射粒子,以降低所述边缘显示区显示画面的亮度。
PCT/CN2018/116273 2018-05-14 2018-11-19 显示屏、显示装置及显示屏的制作方法 WO2019218626A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/541,170 US20190372054A1 (en) 2018-05-14 2019-08-15 Display screen, display device and method for manufacturing a display screen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810453615.8 2018-05-14
CN201810454353.7A CN108649056B (zh) 2018-05-14 2018-05-14 显示屏、显示装置及显示屏的制作方法
CN201810453615.8A CN108538900B (zh) 2018-05-14 2018-05-14 显示屏及显示装置
CN201810454353.7 2018-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/541,170 Continuation US20190372054A1 (en) 2018-05-14 2019-08-15 Display screen, display device and method for manufacturing a display screen

Publications (1)

Publication Number Publication Date
WO2019218626A1 true WO2019218626A1 (zh) 2019-11-21

Family

ID=68539426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116273 WO2019218626A1 (zh) 2018-05-14 2018-11-19 显示屏、显示装置及显示屏的制作方法

Country Status (2)

Country Link
US (1) US20190372054A1 (zh)
WO (1) WO2019218626A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110910393B (zh) * 2018-09-18 2023-03-24 北京市商汤科技开发有限公司 数据处理方法及装置、电子设备及存储介质
CN109188751B (zh) * 2018-09-29 2021-11-05 武汉天马微电子有限公司 显示面板、显示装置以及显示面板的制作方法
CN110416432B (zh) 2019-07-31 2021-12-14 京东方科技集团股份有限公司 一种oled面板的制备方法、oled面板及oled装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206059444U (zh) * 2016-09-30 2017-03-29 昆山国显光电有限公司 有机发光二极管显示面板和有机发光二极管显示装置
CN107316882A (zh) * 2017-06-09 2017-11-03 深圳市华星光电技术有限公司 Oled拼接显示面板
US20170343852A1 (en) * 2016-05-26 2017-11-30 Samsung Display Co., Ltd. Display device
US9936543B2 (en) * 2014-11-14 2018-04-03 Samsung Display Co., Ltd. Display device
CN108538900A (zh) * 2018-05-14 2018-09-14 昆山国显光电有限公司 显示屏及显示装置
CN108649056A (zh) * 2018-05-14 2018-10-12 昆山国显光电有限公司 显示屏、显示装置及显示屏的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9936543B2 (en) * 2014-11-14 2018-04-03 Samsung Display Co., Ltd. Display device
US20170343852A1 (en) * 2016-05-26 2017-11-30 Samsung Display Co., Ltd. Display device
CN206059444U (zh) * 2016-09-30 2017-03-29 昆山国显光电有限公司 有机发光二极管显示面板和有机发光二极管显示装置
CN107316882A (zh) * 2017-06-09 2017-11-03 深圳市华星光电技术有限公司 Oled拼接显示面板
CN108538900A (zh) * 2018-05-14 2018-09-14 昆山国显光电有限公司 显示屏及显示装置
CN108649056A (zh) * 2018-05-14 2018-10-12 昆山国显光电有限公司 显示屏、显示装置及显示屏的制作方法

Also Published As

Publication number Publication date
US20190372054A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
CN110164938B (zh) 一种显示面板及显示装置
US10573842B2 (en) Organic electroluminescent device, method for manufacturing the same and display device
TWI257825B (en) Electro-optical device and electronic apparatus
TWI610434B (zh) 顯示裝置
CN108538900B (zh) 显示屏及显示装置
WO2019179395A1 (zh) 显示基板及其制造方法
WO2021196995A1 (zh) 显示装置、显示装置的盖板的制作方法
WO2019218626A1 (zh) 显示屏、显示装置及显示屏的制作方法
US20210028403A1 (en) Array substrate, method for fabricating the same, and display device
WO2019196336A1 (zh) Oled面板
CN107565043A (zh) 有机发光显示装置
US11417714B2 (en) Display apparatus
US10923683B2 (en) Substrate, method for manufacturing the same, and display device
US10658442B2 (en) Electroluminescent display device
US20200075688A1 (en) Display substrate, fabricating method thereof and display device
WO2021238645A1 (zh) 显示用基板及其制备方法、显示装置
US9972667B2 (en) Display device
JP2006253097A (ja) 自発光パネルおよび自発光パネルの製造方法
WO2022247180A1 (zh) 显示面板及显示装置
CN108649056B (zh) 显示屏、显示装置及显示屏的制作方法
WO2021258927A1 (zh) 显示基板、显示面板、电子设备和显示方法
US20230329039A1 (en) Display panel and display device
CN109856719B (zh) 显示面板和显示装置
KR100490350B1 (ko) 상부발광 방식 유기전계발광 소자 및 그의 제조방법
TWI261868B (en) Electrode partition wall

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919256

Country of ref document: EP

Kind code of ref document: A1