WO2021017353A1 - 柔性光热转换材料及其制备方法、在海水淡化中的用途 - Google Patents

柔性光热转换材料及其制备方法、在海水淡化中的用途 Download PDF

Info

Publication number
WO2021017353A1
WO2021017353A1 PCT/CN2019/122616 CN2019122616W WO2021017353A1 WO 2021017353 A1 WO2021017353 A1 WO 2021017353A1 CN 2019122616 W CN2019122616 W CN 2019122616W WO 2021017353 A1 WO2021017353 A1 WO 2021017353A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
conversion material
heat conversion
light
flexible substrate
Prior art date
Application number
PCT/CN2019/122616
Other languages
English (en)
French (fr)
Inventor
曲良体
姚厚泽
程虎虎
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021017353A1 publication Critical patent/WO2021017353A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • This application relates to the field of energy conversion technology, in particular, to flexible light-to-heat conversion materials and preparation methods thereof, and their use in seawater desalination.
  • this application proposes a flexible light-to-heat conversion material.
  • the flexible light-to-heat conversion material includes: a flexible substrate; and a light-to-heat conversion active material supported on the flexible substrate, and the light-to-heat conversion active material includes graphene and a binder. Therefore, the binder can better load graphene on the flexible substrate, the preparation process is simple, and it is convenient for large-scale production, and the flexible light-to-heat conversion material has high light-to-heat conversion efficiency and good recycling performance. It can be folded arbitrarily and has a wide range of applications.
  • the flexible substrate includes at least one of non-woven fabric and fabric. Therefore, the flexible substrate is cheap and easy to obtain, and is convenient for mass production.
  • the pore size of the flexible substrate is 10 ⁇ m to 1 mm. Therefore, when the pore size of the flexible substrate is in the above range, it is beneficial to the loading of graphene and further improves the performance of the flexible light-to-heat conversion material.
  • the adhesive includes an aqueous adhesive. Therefore, the adhesive is beneficial to the connection of graphene and the flexible substrate, and the formed flexible light-to-heat conversion material has a stable structure and good recycling performance; the adhesive has good hydrophilic properties, and the flexible light-to-heat conversion material When used in sewage treatment, seawater desalination, etc., it can further improve the water treatment effect.
  • the binder includes at least one of polyvinyl alcohol, hydroxymethyl cellulose, and polyacrylate. Therefore, the adhesive is cheap and easy to obtain, is beneficial to the connection of graphene and the flexible substrate, and has good hydrophilic properties.
  • the flexible light-to-heat conversion material is used in sewage treatment, seawater desalination, etc.
  • the flexible light has a better affinity with water, which further improves the water treatment effect.
  • the flexible light-to-heat conversion material further includes: a crosslinking agent. Therefore, the crosslinking agent facilitates the crosslinking of the binder, and can further improve the bonding force between the graphene and the flexible matrix.
  • the mass ratio of the crosslinking agent and the binder is (0.05-0.4):1. Therefore, when the mass ratio of the cross-linking agent to the adhesive is in the above range, the cross-linking agent facilitates the cross-linking of the binder, can further improve the bonding force between the graphene and the flexible matrix, and further improve the flexible light-to-heat conversion
  • the structural stability of the material improves the light-to-heat conversion efficiency and recycling efficiency of the flexible light-to-heat conversion material.
  • the crosslinking agent includes glutaraldehyde. Therefore, the crosslinking agent formed by glutaraldehyde can promote the crosslinking of the binder and improve the stability of the combination of graphene and the flexible matrix.
  • the mass ratio of the graphene to the binder is (0.5-3):1. Therefore, when the mass ratio of the graphene to the adhesive is in the above range, it is beneficial to the connection of the graphene and the flexible substrate, and further improves the light-to-heat conversion efficiency and the recycling performance of the flexible light-to-heat conversion material.
  • the present application proposes a method for preparing a flexible light-to-heat conversion material.
  • the method includes: mixing graphene oxide, a binder, and a solvent to form a mixed solution; placing a flexible substrate in the Soaking in the mixed solution to form the flexible matrix loaded with the graphene oxide; performing reduction treatment on the flexible matrix loaded with the graphene oxide to form the graphene loaded A flexible matrix to form the flexible light-to-heat conversion material. Therefore, the method is simple to operate and is beneficial to large-scale production; and the flexible light-to-heat conversion material prepared by the method has high light-to-heat conversion efficiency, good recycling performance, and can be folded at will, and has a wide application range.
  • the concentration of the graphene oxide in the mixed solution is 0.5-5 mg/mL. Therefore, when the concentration of graphene oxide is within the above range, the concentration of graphene oxide is moderate, and the dispersion effect of graphene oxide on the flexible substrate is better, and the dispersion is more uniform, which can prevent the accumulation of graphene oxide on the flexible substrate Or separate, improve the light-to-heat conversion efficiency and recycling performance of the prepared flexible light-to-heat conversion material.
  • the concentration of the binder is 0.5-5 mg/mL. Therefore, when the concentration of the binder is in the above range, the binder can provide appropriate adhesion for graphene oxide, which is beneficial for graphene oxide to better adhere to the flexible substrate, and the prepared flexibility is improved.
  • the photothermal conversion efficiency and recycling performance of photothermal conversion materials are 0.5-5 mg/mL.
  • the mass ratio of the graphene oxide and the binder is (0.5-3):1. Therefore, when the mass ratio of graphene oxide and binder is in the above range, the mixture of graphene oxide and binder has better dispersibility and moderate viscosity, and the distribution of graphene oxide on the flexible substrate is more uniform. Well, the light-to-heat conversion efficiency and recycling performance of the prepared flexible light-to-heat conversion material are improved.
  • the method before putting the flexible substrate into the mixed liquid for soaking, the method further includes: adding a crosslinking agent to the mixed liquid. Therefore, the crosslinking agent facilitates the crosslinking of the binder, and can further improve the bonding force between the graphene and the flexible matrix.
  • the mass ratio of the crosslinking agent and the binder is (0.05-0.4):1. Therefore, when the mass ratio of the cross-linking agent to the adhesive is in the above range, it is beneficial to the cross-linking of the binder, further improving the bonding force between the graphene oxide and the flexible matrix, and can prevent the graphene oxide from becoming flexible.
  • the substrate falls off; and the viscosity of the mixed solution is moderate, the graphene is more uniformly distributed on the flexible substrate, which further improves the light-to-heat conversion efficiency and recycling performance of the prepared flexible light-to-heat conversion material.
  • the method further includes: adjusting the pH of the mixed liquid to greater than 7, and performing ultrasonic dispersion on the mixed liquid, and the time for the ultrasonic dispersion is 0.5 ⁇ 2h. Therefore, the graphene oxide and the binder in the mixed solution can be further uniformly dispersed, and the use performance of the prepared flexible light-to-heat conversion material can be further improved.
  • the flexible substrate is put into the mixed liquid for soaking, and the soaking time is 5-50 min. Therefore, it is advantageous for the graphene oxide in the mixed solution to be fully supported on the flexible substrate, and the use performance of the prepared flexible light-to-heat conversion material is further improved.
  • the mixed solution in which the flexible matrix is placed is dried for 5-50 minutes, so as to form the flexible graphene oxide-loaded Matrix. Therefore, the performance of the prepared flexible light-to-heat conversion material is further improved.
  • the reduction treatment further includes: soaking the flexible substrate loaded with the graphene oxide in an ascorbic acid solution for reduction, and the concentration of the ascorbic acid solution is 0.5-5 mg/mL, The pH value of the ascorbic acid solution is less than 5, the reduction time is 15-30 min, and the reduction temperature is 70-100°C. Therefore, the method is easy to operate and further improves the usability of the prepared flexible light-to-heat conversion material.
  • this application proposes the use of the aforementioned flexible photothermal conversion material or the flexible photothermal conversion material prepared by the aforementioned method in seawater desalination.
  • the aforementioned flexible light-to-heat conversion material has better light absorption performance, lower thermal conductivity, and higher light-to-heat conversion efficiency, which can improve seawater desalination efficiency and water purification effect.
  • Figure 1 shows a flow chart of a method for preparing a flexible light-to-heat conversion material according to an embodiment of the present application
  • Figure 2 shows a scanning electron microscope test diagram of a flexible light-to-heat conversion material according to an embodiment of the present application
  • Figure 3 shows a scanning electron microscope test diagram of a flexible light-to-heat conversion material according to another embodiment of the present application
  • Figure 4 shows a solar full-spectrum absorption test chart of a flexible light-to-heat conversion material according to an embodiment of the present application
  • Fig. 5 shows a test chart of water evaporation rate of a flexible light-to-heat conversion material according to some embodiments of the present application
  • Fig. 6 shows a test chart of water evaporation rate of flexible light-to-heat conversion materials according to other embodiments of the present application.
  • this application proposes a flexible light-to-heat conversion material.
  • the flexible light-to-heat conversion material includes: a flexible substrate and a light-to-heat conversion active material carried on the flexible substrate, and the light-to-heat conversion active material includes graphene and a binder. Therefore, the binder can better load graphene on the flexible substrate, the flexible photothermal conversion material has a simple preparation process, and is convenient for mass production; and the specific surface area of the flexible substrate is large, the flexible photothermal conversion material The light-to-heat conversion efficiency is high, and the recycling performance is good; and the flexible light-to-heat conversion material can be folded arbitrarily and has a wide range of applications.
  • the specific type of the flexible substrate is not particularly limited, as long as it is flexible and foldable and has pores.
  • the flexible substrate may include non-woven fabrics, fabrics, etc., such as pure woven fabrics, blended fabrics, interwoven fabrics, and the like. Therefore, the flexible substrate is cheap and easy to obtain, which facilitates the loading of the light-to-heat conversion active material and is convenient for mass production; and the prepared flexible light-to-heat conversion material can be folded arbitrarily and has a wide range of applications.
  • the pore diameter of the flexible substrate may be 10 ⁇ m to 1 mm, for example, it may be 50 ⁇ m, it may be 100 ⁇ m, it may be 200 ⁇ m, it may be 500 ⁇ m, it may be 800 ⁇ m, etc. Therefore, when the pore size of the flexible substrate is in the above range, it is beneficial to the load of graphene and further improves the light-to-heat conversion efficiency of the flexible light-to-heat conversion material. When the pore size of the flexible substrate is too small (for example, less than 10 ⁇ m), the loaded graphene is likely to cause blockage of the pores.
  • the flexible light-to-heat conversion material When the flexible light-to-heat conversion material is used for water treatment, it is not conducive to water transmission and evaporation; when the pore size is too large (for example, larger than 1mm), graphene is difficult to fully cover the flexible substrate, and the pores are too large.
  • the photothermal conversion efficiency is low.
  • graphene can be supported on the surface and inside of the flexible substrate, for example, in the pores inside the flexible substrate, the specific surface area of the flexible substrate is relatively large, and the light-to-heat conversion active material per unit area can be loaded. The amount is large, therefore, the light-to-heat conversion efficiency of the flexible light-to-heat conversion material is high, and the use performance is good.
  • the specific type of the adhesive is not particularly limited, as long as it can bond the graphene to the flexible substrate well.
  • the binder may include an aqueous binder, such as polyvinyl alcohol, hydroxymethyl cellulose, polyacrylate, and the like. Therefore, the above-mentioned adhesive is cheap and easy to obtain, and is conducive to the connection between graphene and the flexible substrate, the graphene is not easy to fall off, the flexible light-to-heat conversion material has good stability, can be reused, and has good recycling performance;
  • the binder has good hydrophilic properties. When the flexible light-to-heat conversion material is used in sewage treatment, seawater desalination, etc., the flexible light-to-heat conversion material has a good affinity for water, which further improves the water treatment effect.
  • the mass ratio of graphene and binder in the photothermal conversion active may be (0.5-3):1.
  • the mass ratio of graphene and adhesive can be 0.6:1, 0.8:1, 1.0:1, 1.2:1, 1.4:1, 1.6:1, and 2 :1. It can be 2.5:1, etc. Therefore, when the mass ratio of graphene and adhesive is in the above range, it is not only conducive to the connection of graphene and the flexible matrix, but also improves the structural stability and recycling performance of the flexible light-to-heat conversion material.
  • the thermal conversion material has a high light-to-heat conversion efficiency.
  • the mass ratio of graphene and adhesive is too large (for example, greater than 3:1), the adhesion between the graphene and the flexible substrate is small, and the graphene may fall off from the flexible substrate, which reduces The light-to-heat conversion efficiency and recycling performance of the flexible light-to-heat conversion material; when the mass ratio of graphene and adhesive is too small (for example, less than 0.5:1), the content of graphene loaded on the flexible substrate is too low, the same The light-to-heat conversion efficiency of the flexible light-to-heat conversion material is reduced. Therefore, when the mass ratio of the graphene and the adhesive is in the above range, the light-to-heat conversion efficiency of the flexible conversion material is higher, and the recycling performance is better.
  • the flexible light-to-heat conversion material may further include a cross-linking agent, which can promote the cross-linking of the binder (for example, polyethylene glycol), and can further improve the adhesion between the graphene and the flexible matrix.
  • the bonding force can further prevent the graphene from falling off the flexible substrate, and improve the structural stability of the flexible light-to-heat conversion material.
  • the mass ratio of the crosslinking agent and the binder may be (0.05-0.4):1.
  • the mass ratio of the crosslinking agent and the adhesive can be 0.08:1, can be 0.1:1, can be 0.15:1, can be 0.2:1, can be 0.27:1, can be 0.3:1, and can be 0.39:1 etc. Therefore, when the ratio of the crosslinking agent to the adhesive falls within the above range, the viscosity of the binder after crosslinking is moderate, which can not only improve the bonding force between the graphene and the flexible substrate, but also the graphene on the flexible substrate The distribution is relatively uniform, which further improves the light-to-heat conversion efficiency and recycling performance of the prepared flexible light-to-heat conversion material.
  • this application proposes a method for preparing a flexible light-to-heat conversion material.
  • this method can be used to prepare the aforementioned flexible photothermal conversion material. Therefore, the flexible photothermal conversion material prepared by this method has all the features of the aforementioned flexible photothermal conversion material and The advantages will not be repeated here.
  • the method is simple to operate and convenient for large-scale production; and the flexible light-to-heat conversion material prepared by the method has high light-to-heat conversion efficiency, good recycling performance, and can be arbitrarily folded, and has a wide application range.
  • the method includes:
  • the concentration of graphene oxide may be 0.5-5 mg/mL.
  • the concentration of graphene oxide can be 1mg/mL, can be 1.2mg/mL, can be 1.5mg/mL, can be 1.8mg/mL, can be 2mg/mL, can be 2.5mg/mL, can be 3mg /mL, can be 3.5mg/mL, can be 4mg/mL, can be 4.5mg/mL, etc.
  • the concentration of graphene oxide is within the above range, the concentration of graphene oxide is appropriate.
  • the graphene oxide with the above concentration is dispersed on the flexible substrate. The effect is good, the graphene oxide can be more evenly distributed on the flexible substrate, effectively avoiding the accumulation or separation of graphene oxide on the flexible substrate, and improving the light-to-heat conversion efficiency and recycling of the prepared flexible light-to-heat conversion material performance.
  • the concentration of graphene oxide is too large (for example, greater than 5 mg/mL), the uniformity of the dispersion of graphene oxide on the flexible substrate is poor, the graphene oxide is easy to accumulate and fall off, and the final flexible photothermal conversion material is formed.
  • the light-to-heat conversion performance and recycling performance are poor; when the concentration of graphene oxide is too small (for example, less than 0.5 mg/mL), the amount of graphene oxide loaded on the flexible substrate is less, which also causes the final flexible conversion The light-to-heat conversion performance of the material is poor.
  • the specific type of the above-mentioned adhesive is not particularly limited, as long as the graphene oxide can be adhered to the flexible substrate.
  • the adhesive may be the adhesive described above, which will not be repeated here.
  • the adhesive may include polyvinyl alcohol.
  • the concentration of the binder can be 0.5-5 mg/mL, for example, the concentration of the binder can be 1 mg/mL, can be 1.5 mg/mL, can be 2 mg/mL, can be 2.5 mg/mL, can be 3 mg/mL, can be 3.5 mg/mL, can be 4 mg/mL, can be 4.5 mg/mL, and so on.
  • polyvinyl alcohol can provide adequate adhesion and help graphene oxide adhere to the flexible substrate in the subsequent steps. , And the bonding between graphene oxide and the flexible substrate is relatively strong, and the finally prepared flexible light-to-heat conversion material can be reused and has good recycling performance.
  • polyvinyl alcohol has good hydrophilicity.
  • the mass ratio of graphene oxide and polyvinyl alcohol may be (0.5-3):1.
  • the mass ratio of graphene oxide and polyvinyl alcohol can be: 0.5:1, can be 0.8:1, can be 1:1, can be 1.2:1, can be 1.5:1, can be 2:1, can be It is 2.2:1, can be 2.5:1, etc. Therefore, when the mass ratio of graphene oxide and polyvinyl alcohol is in the above range, the mixed liquid has better dispersibility, more uniform dispersion, and moderate viscosity.
  • the graphene oxide can be more uniformly dispersed on the flexible substrate, and the adhesion between the graphene oxide and the flexible substrate is relatively strong, and the finally prepared flexible photothermal conversion material has higher photothermal conversion efficiency and better recycling performance.
  • the mass ratio of graphene oxide and adhesive is too large (for example, greater than 3:1), the adhesion between graphene oxide and the flexible substrate is small, and the graphene oxide may fall off from the flexible substrate , Reducing the light-to-heat conversion efficiency and recycling performance of the flexible light-to-heat conversion material; when the mass ratio of graphene oxide and adhesive is too small (for example, less than 0.5:1), the graphene oxide supported on the flexible substrate Too low content also reduces the light-to-heat conversion efficiency of the flexible light-to-heat conversion material. Therefore, when the mass ratio of the graphene oxide and the adhesive is in the above range, the flexible conversion material prepared by this method has higher light-to-heat conversion efficiency and better performance in use.
  • the method before immersing the flexible substrate in the mixed liquid, the method may further include: adding a crosslinking agent to the mixed liquid.
  • the cross-linking agent may include glutaraldehyde
  • the mass ratio of the added cross-linking agent and the aforementioned binder may be (0.05-0.4):1.
  • the mass ratio of the crosslinking agent and the adhesive can be 0.08:1, can be 0.1:1, can be 0.15:1, can be 0.2:1, can be 0.27:1, can be 0.3:1, and can be 0.39:1 etc.
  • the crosslinking agent when added to the mixed solution, and when the ratio of the crosslinking agent to the adhesive falls within the above range, it is beneficial to the crosslinking of the binder and further improves the relationship between the graphene oxide and the flexible matrix.
  • the binding force can prevent the graphene oxide from falling off the flexible substrate, and the viscosity of the mixed solution is moderate, and the graphene distribution on the flexible substrate is more uniform, which further improves the light-to-heat conversion efficiency of the prepared flexible light-to-heat conversion material. Recycling performance.
  • the method before immersing the flexible substrate in the mixed liquid, the method may further include: adjusting the pH of the mixed liquid to greater than 7, and ultrasonically dispersing the mixed liquid.
  • the time for ultrasonic dispersion can be 0.5-2h. Therefore, the graphene oxide and polyethanol in the mixed solution can be further uniformly dispersed, and the use performance of the prepared flexible light-to-heat conversion material can be further improved.
  • the flexible substrate is put into the mixed liquid for soaking, so as to form a flexible substrate loaded with the graphene oxide.
  • the flexible substrate may be the aforementioned one, which will not be repeated here.
  • the flexible substrate may include non-woven fabrics and fabrics, and the pore diameter of the flexible substrate may be 10 ⁇ m to 1 mm. Therefore, the flexible substrate is cheap and easy to obtain, and is convenient for large-scale production; the flexible substrate can be folded arbitrarily, and the prepared flexible light-to-heat conversion material has a wide application range; and when the pore diameter of the flexible substrate is in the above range, it is beneficial to graphene oxide The load further improves the performance of the prepared flexible light-to-heat conversion material.
  • the soaking time when the flexible substrate is put into the mixed liquid for soaking, the soaking time may be 5-50 minutes.
  • the soaking time can be 10 minutes, can be 15 minutes, can be 20 minutes, can be 25 minutes, can be 30 minutes, can be 35 minutes, can be 40 minutes, can be 45 minutes, and so on. Therefore, when the immersion time is in the above range, it is advantageous for the graphene oxide to fully adhere to the flexible substrate.
  • the mixed solution into which the flexible substrate is put can be dried to form a flexible substrate loaded with graphene oxide.
  • the drying time may be 5-50min, for example, the drying time may be 10min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, etc. Therefore, when the drying time is in the above range, it is advantageous for the graphene oxide to sufficiently adhere to the flexible substrate.
  • the graphene oxide-loaded flexible matrix prepared in the previous step is subjected to reduction treatment to form a graphene-loaded flexible matrix to form a flexible light-to-heat conversion material.
  • the aforementioned flexible substrate loaded with graphene oxide can be immersed in an ascorbic acid solution for reduction.
  • the concentration of the ascorbic acid solution can be 0.5-5 mg/mL, for example, the concentration of the ascorbic acid can be 1 mg/mL, can be 1.5 mg/mL, can be 2 mg/mL, can be 2.5 mg/mL, can be 3mg/mL, can be 3.5mg/mL, can be 4mg/mL, can be 4.5mg/mL, etc.;
  • the pH value of the ascorbic acid solution is less than 5, for example, the pH value of the ascorbic acid can be 4.7, can be 4.4, can be It can be 4.1, can be 3.8, can be 3.5, can be 3.2, etc.; reduction time is 15-30min, for example, can be 16min, can be 18min, can be 20min, can be 22min, can be 24min, can be 26min and can be 28min, etc.
  • the reduction temperature is 70-100°C, for example, it can be 75°C, 80°C, 85°C, 90°C, 95°C, etc.
  • the method has simple process, cheap and easily available raw materials, low production cost, and is convenient for large-scale production; and the flexible photothermal conversion material prepared by this method has high photothermal conversion efficiency, good recycling performance, and It can be folded arbitrarily and has a wide range of applications.
  • this application proposes the use of the aforementioned flexible light-to-heat conversion material in seawater desalination.
  • the aforementioned flexible light-to-heat conversion material has better light absorption performance, lower thermal conductivity, and higher light-to-heat conversion efficiency, which can improve seawater desalination efficiency and water purification effect; and the flexible light-to-heat
  • the preparation process of the conversion material is simple, the production cost is low, and it can be reused and has good recycling performance. Therefore, the cost of seawater desalination can be reduced; and the above-mentioned flexible light-to-heat conversion material can be folded arbitrarily, which can be applied to various In the shape of the seawater desalination device, the application range is wide.
  • Example 2 Other preparation methods are the same as in Example 1, except that the concentration of the graphene oxide solution prepared in step (1) is 0.3 mg/mL.
  • Example 2 Other preparation methods are the same as in Example 1, except that the concentration of the polyvinyl alcohol solution configured in step (2) is 0.3 mg/mL.
  • a scanning electron microscope (SEM) test (Scanning Electron Microscope (JSM-7500F, Shimadzu Corporation) was performed on the flexible light-to-heat conversion material A prepared in Example 1.
  • SEM scanning electron microscope
  • JSM-7500F Joint Electron Microscope
  • Shimadzu Corporation Shimadzu Corporation
  • the flexible light-to-heat conversion material A prepared in Example 1 has a good solar light absorption rate (for example, the solar light absorption rate is above 80%) in the entire solar energy spectrum, while the pure fabric The absorption rate in the solar energy spectrum is poor. Therefore, it can be explained that the flexible light-to-heat conversion material according to the embodiments of the present application has good solar light absorption.
  • the flexible light-to-heat conversion materials AJ prepared in Examples 1-5 and Comparative Examples 1-6 were placed in a glass beaker containing water, and placed in a solar simulator (CEL-HXF300, Beijing Zhongjiao Jinyuan ), test the water evaporation rate under the sunlight intensity of 1kW m -2 , and measure the water loss with an electronic balance with an accuracy of 0.0001g.
  • the test results refer to Table 1 and Figure 5. (Note: The water evaporation rate is calculated by the mass of water reduction, so all are negative values)
  • Comparing Example 1 and Comparative Example 1 it can be seen that adding a cross-linking agent to the mixed solution can promote the cross-linking of the binder polyvinyl alcohol, increase the bonding force between the graphene oxide and the flexible matrix, and improve the flexible light-to-heat conversion material The light-to-heat conversion efficiency.
  • Comparing Example 1 and Comparative Example 2 it can be seen that the amount of crosslinking agent added to the mixed solution is too large. For example, when the mass ratio of glutaraldehyde to polyvinyl alcohol in Comparative Example 2 is 0.6, the polyvinyl alcohol is cross-linked excessively and oxidized. Graphene is easy to agglomerate and cannot adhere well to the flexible substrate to form a flexible light-to-heat conversion material.
  • the mass ratio of glutaraldehyde and polyvinyl alcohol is in the range of (0.05 ⁇ 0.4):1, the degree of crosslinking of polyvinyl alcohol is moderate, and graphene oxide can be better adhered to the flexible substrate.
  • the prepared flexible light-to-heat conversion material has high light-to-heat conversion efficiency.
  • Comparing Example 1 with Comparative Example 3 and Comparative Example 4 it can be seen that when the concentration of graphene oxide is 0.5-5 mg/mL, the prepared flexible photothermal conversion material has higher photothermal conversion efficiency, and the concentration of graphene oxide is too large Graphene oxide is easy to agglomerate. After the flexible substrate is soaked in the mixture of graphene oxide and the binder, the graphene oxide cannot be uniformly supported on the flexible substrate, and the graphene-loaded flexibility cannot be formed well. Substrate; the concentration of graphene oxide is too small, the amount of graphene oxide supported on the flexible substrate is also small, and the prepared flexible photothermal conversion material has low photothermal conversion efficiency.
  • a thermal infrared imager (Fluke, USA) was used to monitor the surface temperature of the flexible light-to-heat conversion material A prepared in Example 1 during the solar water evaporation rate test in real time. The test results show that the solar water evaporation is being performed. During the rate test, the temperature of the surface of the flexible photothermal conversion material A can be as high as 72.7 degrees Celsius, which proves that the flexible photothermal conversion material A has a high photothermal conversion efficiency.
  • the flexible light-to-heat conversion material A prepared in Example 1 was put into a beaker containing water and subjected to ultrasound. After 30 minutes of ultrasound, no drop of graphene particles was observed with naked eyes.
  • the solar water evaporation rate test was performed on the flexible light-to-heat conversion material A before and after ultrasound.
  • the specific test method is the same as that described above, and the test result is shown in Figure 6. It can be seen from Fig. 6 that the water evaporation rate of the flexible light-to-heat conversion material A before and after ultrasound is almost unchanged, and both are higher than the water evaporation rate of the fabric without graphene.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提出了一种柔性光热转换材料,包括:柔性基体;以及负载在所述柔性基体上的光热转换活性物,所述光热转换活性物包括石墨烯以及粘结剂。

Description

柔性光热转换材料及其制备方法、在海水淡化中的用途
优先权信息
本申请请求2019年07月30日向中国国家知识产权局提交的、专利申请号为201910693468.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及能量转换技术领域,具体地,涉及柔性光热转换材料及其制备方法、在海水淡化中的用途。
背景技术
目前,人类面临着严峻的淡水资源短缺问题。通过污水处理以及海水淡化等技术,可以将不可用水变成可用水,增加人类可用淡水资源的总量,能够在一定程度上缓解水资源短缺的问题。目前,有很多污水处理以及海水淡化技术,例如吸附法、超过滤法、膜蒸馏法、反渗透、电渗析法和太阳能海水淡化法等。太阳能光热转换技术由于不消耗常规能源、无污染、所得淡水纯度高等优点,被广泛应用于污水处理以及海水淡化领域,具有很好的发展前景。因此,能实现太阳能光热转换的光热转换材料获得了广泛地研究与关注。
申请内容
在本申请的一个方面,本申请提出了一种柔性光热转换材料。根据本申请的实施例,该柔性光热转换材料包括:柔性基体;以及负载在所述柔性基体上的光热转换活性物,所述光热转换活性物包括石墨烯以及粘结剂。由此,该粘结剂可以较好地将石墨烯负载在柔性基体上,制备工艺简单,便于大规模生产,且该柔性光热转换材料光热转换效率较高,循环使用性能较好,可以任意折叠,应用范围广泛。
根据本申请的实施例,所述柔性基体包括无纺布、织物的至少之一。由此,该柔性基体廉价易得,便于大规模生产。
根据本申请的实施例,所述柔性基体的孔径为10μm~1mm。由此,该柔性基体的孔径在上述范围时,有利于石墨烯的负载,进一步提高了该柔性光热转换材料的使用性能。
根据本申请的实施例,所述粘结剂包括水性粘结剂。由此,该粘结剂有利于石墨烯和柔性基体的连结,形成的柔性光热转换材料结构稳定,循环使用性能较好;该粘接剂具有良好的亲水性能,该柔性光热转换材料用于污水处理、海水淡化等时,可以进一步提高水处理效果。
根据本申请的实施例,所述粘结剂包括聚乙烯醇、羟甲基纤维素以及聚丙烯酸酯的至少之一。由此,该粘结剂廉价易得,且有利于石墨烯与柔性基体的连结,并且具有较好的亲水性能,该柔性光热转换材料用于污水处理、海水淡化等时,该柔性光热转换材料和水的亲和力较好,进一步提高了水处理效果。
根据本申请的实施例,所述柔性光热转换材料进一步包括:交联剂。由此,该交联剂有利于粘结剂交联,可以进一步提高石墨烯和柔性基体的结合力。
根据本申请的实施例,所述交联剂和所述粘结剂的质量比为(0.05~0.4):1。由此,当交联剂和粘接剂的质量比在上述范围时,该交联剂有利于粘结剂交联,可以进一步提高石墨烯和柔性基体的结合力,进一步提高了柔性光热转换材料的结构稳定性,提高柔性光热转换材料的光热转换效率以及循环使用效率。
根据本申请的实施例,所述交联剂包括戊二醛。由此,戊二醛形成的交联剂可以促进粘结剂交联,提高石墨烯和柔性基体结合的稳定性。
根据本申请的实施例,所述光热转换活性物中,所述石墨烯和所述粘结剂的质量比为(0.5~3):1。由此,当石墨烯和粘接剂的质量比在上述范围时,有利于石墨烯和柔性基体的连结,进一步提高了该柔性光热转换材料的光热转换效率以及循环使用性能。
在本申请的另一方面,本申请提出了一种制备柔性光热转换材料的方法,该方法包括:将氧化石墨烯、粘结剂和溶剂混合,以便形成混合液;将柔性基体放入所述混合液中进行浸泡,以便形成负载有所述氧化石墨烯的所述柔性基体;对所述负载有所述氧化石墨烯的所述柔性基体进行还原处理,以便形成负载有石墨烯的所述柔性基体,以便形成所述柔性光热转换材料。由此,该方法操作简便,有利于大规模生产;并且通过该方法制备的柔性光热转换材料光热转换效率较高,循环使用性能良好,且可以任意折叠,应用范围较广。
根据本申请的实施例,所述混合液中,所述氧化石墨烯的浓度为0.5~5mg/mL。由此,当氧化石墨烯的浓度在上述范围内时,氧化石墨烯的浓度适中,氧化石墨烯在柔性基体上的分散效果较好,分散较为均匀,可以防止氧化石墨烯在柔性基体上的堆积或分离,提高了所制备的柔性光热转换材料的光热转换效率以及循环使用性能。
根据本申请的实施例,所述粘结剂的浓度为0.5~5mg/mL。由此,当粘结剂的浓度在上述范围时,粘结剂可为氧化石墨烯提供适当的粘附力,有利于氧化石墨烯较好地粘附在柔性基体上,提高了所制备的柔性光热转换材料的光热转换效率以及循环使用性能。
根据本申请的实施例,所述氧化石墨烯和所述粘结剂的质量比为(0.5~3):1。由此,当氧化石墨烯和粘结剂的质量比在上述范围时,氧化石墨烯和粘结剂的混合液的分散性较好,粘度适中,氧化石墨烯在柔性基体上的分布均匀性较好,提高了所制备的柔性光热转换材料的光热转换效率以及循环使用性能。
根据本申请的实施例,所述将柔性基体放入所述混合液中进行浸泡之前,所述方法进一步包括:在所述混合液中加入交联剂。由此,该交联剂有利于粘结剂交联,可以进一步提高石墨烯和柔性基体的结合力。
根据本申请的实施例,所述交联剂和所述粘结剂的质量比为(0.05~0.4):1。由此,当交联剂与粘接剂的质量比在上述范围时,有利于粘结剂的交联,进一步提高了氧化石墨烯和柔性基体之间的结合力,可以避免氧化石墨烯从柔性基体上脱落;并且该混合液的粘度适中,石墨烯在柔性基体上的分布较为均匀,进一步提高了所制备的柔性光热转换材料的光热转换效率以及循环使用性能。
根据本申请的实施例,所述形成混合液之后,所述方法进一步包括:将所述混合液的pH值调至大于7,并对所述混合液进行超声分散,所述超声分散的时间为0.5~2h。由此,可以进一步令混合液中的氧化石墨烯和粘结剂分散均匀,进一步提高了所制备的柔性光热转换材料的使用性能。
根据本申请的实施例,所述超声分散之后,将所述柔性基体放入所述混合液中进行浸泡,浸泡时间为5-50min。由此,有利于混合液中的氧化石墨烯充分负载在柔性基体上,进一步提高了所制备的柔性光热转换材料的使用性能。
根据本申请的实施例,所述浸泡之后,对放入了所述柔性基体的所述混合液进行干燥,干燥时间为5-50min,以便形成所述负载有所述氧化石墨烯的所述柔性基体。由此,进一步提高了所制备的柔性光热转换材料的使用性能。
根据本申请的实施例,所述还原处理进一步包括:将所述负载有所述氧化石墨烯的所述柔性基体浸泡在抗坏血酸溶液中进行还原,所述抗坏血酸溶液的浓度为0.5-5mg/mL,所述抗坏血酸溶液的pH值小于5,还原时间为15-30min,还原温度为70~100℃。由此,该方法操作简便,进一步提高了所制备的柔性光热转换材料的使用性能。
在本申请的又一方面,本申请提出了一种前面所述的柔性光热转换材料或前面所述的方法所制备的柔性光热转换材料在海水淡化中的用途。前面所述的柔性光热转换材料的光吸收性能较佳,热导率较低,光热转换效率较高,可以提高海水淡化效率,提高净水效果。
附图说明
图1显示了根据本申请一个实施例的制备柔性光热转换材料的方法流程图;
图2显示了根据本申请一个实施例的柔性光热转换材料的扫描电子显微镜测试图;
图3显示了根据本申请另一个实施例的柔性光热转换材料的扫描电子显微镜测试图;
图4显示了根据本申请一个实施例的柔性光热转换材料的太阳光全光谱吸收测试图;
图5显示了根据本申请一些实施例的柔性光热转换材料的水蒸发速率测试图;
图6显示了根据本申请另一些实施例的柔性光热转换材料的水蒸发速率测试图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在本申请的一个方面,本申请提出了一种柔性光热转换材料。根据本申请的实施例,该柔性光热转换材料包括:柔性基体以及负载在柔性基体上的光热转换活性物,光热转换活性物包括石墨烯以及粘结剂。由此,该粘结剂可以较好地将石墨烯负载在柔性基体上,该柔性光热转换材料制备工艺简单,便于大规模生产;且该柔性基体的比表面积大,该柔性光热转换材料的光热转换效率较高,循环使用性能较好;且该柔性光热转换材料可以任意折叠,应用范围广泛。
根据本申请的实施例,柔性基体的具体类型不受特别限制,只要柔软可折叠,且具有孔隙即可。具体的,柔性基体可以包括无纺布、织物等,例如纯纺织物、混纺织物、交织物等等。由此,该柔性基体廉价易得,有利于光热转换活性物的负载,便于大规模生产;且制备的柔性光热转换材料可以任意折叠,应用范围广泛。
根据本申请的实施例,柔性基体的孔径可以为10μm~1mm,例如可以为50μm,可以为100μm,可以为200μm,可以为500μm,可以为800μm等。由此,该柔性基体的孔径在上述范围时,有利于石墨烯的负载,进一步提高了该柔性光热转换材料的光热转换效率。当柔性基体的孔径过小(例如小于10μm)时,负载的石墨烯容易造成孔道堵塞,将该柔性光热转换材料用于水处理时,不利于水分传输蒸发;当该孔径过大(例如大于1mm)时,石墨烯难以全面覆盖柔性基体,孔隙过大,该柔性光热转换材料用于水处理时,光热转化效率低。
根据本申请的实施例,石墨烯可以负载在该柔性基体的表面以及内部,例如负载在柔性基体内部的孔隙中,该柔性基体的比表面积较大,单位面积可以负载的光热转换活性物的量较多,因此,该柔性光热转换材料的光热转换效率较高,使用性能良好。
根据本申请的实施例,粘结剂的具体类型不受特别限制,只要能较好地将石墨烯粘接在柔性基体上即可。具体地,粘结剂可以包括水性粘结剂,例如可以包括聚乙烯醇、羟甲 基纤维素以及聚丙烯酸酯等。由此,上述粘接剂廉价易得,且有利于石墨烯和柔性基体的连结,石墨烯不易脱落,该柔性光热转换材料的稳定性较好,可重复使用,循环使用性能较好;该粘结剂具有较好的亲水性能,该柔性光热转换材料用于污水处理、海水淡化等时,该柔性光热转换材料和水的亲和力较好,进一步提高了水处理效果。
根据本申请的实施例,该光热转换活性物中,石墨烯和粘结剂的质量比可以为(0.5~3):1。例如,石墨烯和粘接剂的质量比可以为0.6:1、可以为0.8:1、可以为1.0:1、可以为1.2:1、可以为1.4:1、可以为1.6:1、可以为2:1。可以为2.5:1等。由此,当石墨烯和粘接剂的质量比在上述范围时,不仅有利于石墨烯和柔性基体的连结,提高了该柔性光热转换材料的结构稳定性以及循环使用性能,且该柔性光热转换材料的光热转换效率较高。具体地,当石墨烯和粘接剂的质量比过大(例如大于3:1)时,石墨烯和柔性基体之间的粘接力较小,石墨烯可能会从柔性基体上脱落,降低了柔性光热转换材料的光热转换效率以及循环使用性能等;当石墨烯和粘接剂的质量比过小(例如小于0.5:1)时,柔性基体上负载的石墨烯的含量过低,同样降低了柔性光热转换材料的光热转换效率。由此,当石墨烯和粘接剂的质量比在上述范围时,该柔性转换材料的光热转换效率较高,循环使用性能较佳。
根据本申请的实施例,该柔性光热转换材料可以进一步包括交联剂,该交联剂可以促进粘结剂(例如聚乙二醇)交联,可以进一步提高石墨烯和柔性基体之间的结合力,可以进一步避免石墨烯从柔性基体上脱落,提高了该柔性光热转换材料的结构稳定性。
根据本申请的实施例,交联剂和粘结剂的质量比可以为(0.05~0.4):1。例如,交联剂和粘接剂的质量比可以为0.08:1、可以为0.1:1、可以为0.15:1、可以为0.2:1,可以为0.27:1,可以为0.3:1以及可以为0.39:1等。由此,当交联剂和粘接剂的比例落在上述范围时,粘结剂交联后的粘度适中,不仅可以提高石墨烯和柔性基体之间的结合力,并且石墨烯在柔性基体上的分布较为均匀,进一步提高了所制备的柔性光热转换材料的光热转换效率以及循环使用性能。
在本申请的另一方面,本申请提出了一种制备柔性光热转换材料的方法。根据本申请的实施例,该方法可用于制备前面所述的柔性光热转换材料,因此,该方法所制备的柔性光热转换材料具有前面所述的柔性光热转换材料所具有的全部特征以及优点,在此不再赘述。总的来说,该方法操作简便,便于大规模生产;并且通过该方法制备的柔性光热转换材料光热转换效率较高,循环使用性能良好,且可以任意折叠,应用范围较广。
根据本申请的实施例,参考图1,该方法包括:
S100:将氧化石墨烯、粘结剂和溶剂混合,形成混合液
在该步骤中,将氧化石墨烯、粘结剂和溶剂混合,以便形成混合液。根据本申请的实施例,在上述混合液中,氧化石墨烯的浓度可以为0.5~5mg/mL。例如,氧化石墨烯的浓度 可以为1mg/mL、可以为1.2mg/mL、可以为1.5mg/mL、可以为1.8mg/mL、可以为2mg/mL、可以为2.5mg/mL、可以为3mg/mL、可以为3.5mg/mL、可以为4mg/mL以及可以为4.5mg/mL等。由此,当氧化石墨烯的浓度在上述范围内时,氧化石墨烯的浓度适宜,在后续步骤中将氧化石墨烯负载在柔性基体上时,具有上述浓度的氧化石墨烯在柔性基体上的分散效果好,氧化石墨烯可以较为均匀地分布在柔性基体上,有效地避免了氧化石墨烯在柔性基体上的堆积或分离,提高了所制备的柔性光热转换材料的光热转换效率以及循环使用性能。例如,当氧化石墨烯的浓度过大(例如大于5mg/mL)时,氧化石墨烯在柔性基体上的分散均匀性较差,氧化石墨烯容易堆积和脱落,最终形成的柔性光热转换材料的光热转换性能以及循环使用性能较差;当氧化石墨烯的浓度过小(例如小于0.5mg/mL)时,负载在柔性基体上的氧化石墨烯的量较少,同样造成最终形成的柔性转换材料的光热转换性能较差。
根据本申请的实施例,上述粘结剂的具体类型不受特别限制,只要能将氧化石墨烯粘接在柔性基体上即可。具体地,该粘结剂可以为前面所述的粘结剂,在此不再赘述,例如,该粘结剂可以包括聚乙烯醇。具体地,在上述混合液中,粘结剂的浓度可以为0.5~5mg/mL,例如,粘结剂的浓度可以为1mg/mL、可以为1.5mg/mL、可以为2mg/mL、可以为2.5mg/mL、可以为3mg/mL、可以为3.5mg/mL、可以为4mg/mL以及可以为4.5mg/mL等。由此,当粘结剂(例如聚乙烯醇)的浓度在上述范围时,一方面,聚乙烯醇可提供适当的粘附力,有助于后续步骤中,氧化石墨烯粘附在柔性基体上,且氧化石墨烯和柔性基体的粘接较为牢固,最终制得的柔性光热转换材料可重复使用,循环使用性能较好;另一方面,聚乙烯醇具有较好的亲水性,当制备的柔性光热转换材料用于水处理时,可以提高柔性光热转换材料和水的亲和力,进一步提高了水处理效果。
根据本申请的实施例,在上述混合液中,氧化石墨烯和聚乙烯醇的质量比为可以(0.5~3):1。例如,氧化石墨烯和聚乙烯醇的质量比可以为:0.5:1、可以为0.8:1、可以为1:1,可以为1.2:1、可以为1.5:1、可以为2:1、可以为2.2:1、可以为2.5:1等。由此,当氧化石墨烯和聚乙烯醇的质量比在上述范围时,该混合液的分散性较好,分散较为均匀,且粘度适中,后续将柔性基体放入该混合液中进行浸渍时,氧化石墨烯可以较为均匀地分散在柔性基体上,且氧化石墨烯和柔性基体的粘接较为牢固,最终制得的柔性光热转换材料光热转换效率较高,循环使用性能较佳。具体地,当氧化石墨烯和粘接剂的质量比过大(例如大于3:1)时,氧化石墨烯和柔性基体之间的粘接力较小,氧化石墨烯可能会从柔性基体上脱落,降低了柔性光热转换材料的光热转换效率以及循环使用性能等;当氧化石墨烯和粘接剂的质量比过小(例如小于0.5:1)时,柔性基体上负载的氧化石墨烯的含量过低,同样降低了柔性光热转换材料的光热转换效率。由此,当氧化石墨烯和粘接剂的质量比在上 述范围时,该方法制备的柔性转换材料的光热转换效率较高,使用性能较佳。
根据本申请的实施例,在将柔性基体放入混合液中浸泡之前,该方法可以进一步包括:在混合液中加入交联剂。具体地,交联剂可以包括戊二醛,加入的交联剂和前面所述的粘结剂的质量比可以为(0.05~0.4):1。例如,交联剂和粘接剂的质量比可以为0.08:1、可以为0.1:1、可以为0.15:1、可以为0.2:1,可以为0.27:1,可以为0.3:1以及可以为0.39:1等。由此,在混合液中加入交联剂,且当交联剂与粘接剂的比例落在上述范围时,有利于粘结剂的交联,进一步提高了氧化石墨烯和柔性基体之间的结合力,可以避免氧化石墨烯从柔性基体上脱落,并且该混合液的粘度适中,石墨烯在柔性基体上的分布较为均匀,进一步提高了所制备的柔性光热转换材料的光热转换效率以及循环使用性能。
根据本申请的实施例,在将柔性基体放入混合液中浸泡之前,该方法可以进一步包括:将混合液的pH值调至大于7,并对混合液进行超声分散。具体的,超声分散的时间可以为0.5~2h。由此,由此,可以进一步令混合液中的氧化石墨烯和聚乙醇分散均匀,进一步提高了所制备的柔性光热转换材料的使用性能。
S200:将柔性基体放入混合液中进行浸泡,形成负载有氧化石墨烯的柔性基体
在该步骤中,将柔性基体放入混合液中进行浸泡,以便形成负载有所述氧化石墨烯的柔性基体。根据本申请的实施例,柔性基体可以为前面所述的,在此不再赘述,例如柔性基体可以包括无纺布以及织物等,该柔性基体的孔径可以为10μm~1mm。由此,该柔性基体廉价易得,便于大规模生产;该柔性基体可以任意折叠,制备的柔性光热转换材料应用范围较广;且该柔性基体的孔径在上述范围时,有利于氧化石墨烯的负载,进一步提高了所制备的柔性光热转换材料的使用性能。
根据本申请的实施例,该步骤中,将柔性基体放入混合液中进行浸泡时,浸泡时间为可以为5-50min。例如,浸泡时间可以为10min、可以为15min、可以为20min、可以为25min、可以为30min、可以为35min、可以为40min以及可以为45min等。由此,浸泡时间在上述范围时有利于氧化石墨烯充分地粘附在柔性基体上。
根据本申请的实施例,上述浸泡之后,可以对放入了柔性基体的混合液进行干燥,以便形成负载有氧化石墨烯的柔性基体。具体地,干燥时间可以为5-50min,例如,干燥的时间可以为10min、可以为15min、可以为20min、可以为25min、可以为30min、可以为35min、可以为40min以及可以为45min等。由此,干燥时间在上述范围时有利于氧化石墨烯充分地粘附在柔性基体上。
S300:进行还原处理,形成负载有石墨烯的柔性基体
在该步骤中,对前面步骤制备的负载有氧化石墨烯的柔性基体进行还原处理,以便形成负载有石墨烯的柔性基体,以便形成柔性光热转换材料。根据本申请的实施例,可以将 前面所述的负载有氧化石墨烯的柔性基体浸泡在抗坏血酸溶液中进行还原。具体地,抗坏血酸溶液的浓度可以为0.5-5mg/mL,例如,所述抗坏血酸的浓度可以为1mg/mL、可以为1.5mg/mL、可以为2mg/mL、可以为2.5mg/mL、可以为3mg/mL、可以为3.5mg/mL、可以为4mg/mL以及可以为4.5mg/mL等;抗坏血酸溶液的pH值小于5,例如,所述抗坏血酸的pH值可以为4.7、可以为4.4、可以为4.1、可以为3.8、可以为3.5以及可以为3.2等;还原时间为15-30min,例如,可以为16min、可以为18min、可以为20min、可以22min、可以为24min、可以为26min以及可以为28min等;还原温度为70~100℃,例如,可以为75℃、可以为80℃、可以85℃、可以为90℃以及可以为95℃等。由此,原料方便易得,制备环境条件温和,操作简单、方便,易于实现。
综上可知,该方法工艺简单,且原料廉价易得,生产成本较低,便于大规模生产;并且,通过该方法制备得到的柔性光热转换材料光热转化效率高,循环使用性能良好,且可以任意折叠,应用范围较广。
在本申请的又一方面,本申请提出了前面所述的柔性光热转换材料在海水淡化中的用途。如前所述,前面所述的柔性光热转换材料的光吸收性能较佳,热导率较低,光热转换效率较高,可以提高海水淡化效率,提高净水效果;且该柔性光热转换材料的制备工艺简单,生产成本较低,并且可重复使用,循环使用性能较好,因此,可以降低海水淡化的成本;并且,上述柔性光热转换材料可任意折叠,从而可以应用于各种形状的海水淡化装置中,应用范围较广。
下面将结合实施例对本申请的方案进行解释。本领域技术人员将会理解,下面的实施例仅用于说明本申请,而不应视为限定本申请的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市面购买获得的常规产品。
实施例1、制备柔性光热转换材料A
(1)制备浓度为3mg/mL氧化石墨烯溶液;
(2)配置5mg/mL的聚乙烯醇(1788)溶液;
(3)将上述氧化石墨烯溶液和聚乙烯醇溶液等体积混合,并在所述混合液中加入戊二醛,加入的戊二醛与聚乙烯醇的质量比为0.08:1,然后超声分散0.5h,再加入适量氨水调节混合液的pH=10;
(4)将布料浸入混合溶液中,充分浸泡之后,烘干至表面微湿,得到氧化石墨烯负载的布料;
(5)配置1mg mL -1的抗坏血酸溶液,用盐酸调节pH=4;
(6)将前面制备的氧化石墨烯负载的布料浸入上述抗坏血酸溶液中,在95℃下还原 15分钟,得到石墨烯负载的柔性光热转换材料A。
实施例2、制备柔性光热转换材料B
其他制备方式同实施例1,所不同的是,步骤(1)中制备的氧化石墨烯溶液的浓度为5mg/mL。
实施例3、制备柔性光热转换材料C
其他制备方式同实施例1,所不同的是,步骤(1)中制备的氧化石墨烯溶液的浓度为5mg/mL,步骤(2)中配置的聚乙烯醇溶液的浓度为2.5mg/mL。
实施例4、制备柔性光热转换材料D
其他制备方式同实施例1,所不同的是,步骤(2)中配置的聚乙烯醇溶液的浓度为2.5mg/mL。
对比例1、制备不加入交联剂的柔性光热转换材料E
其他制备方式同实施例1,所不同的是,步骤(3)中不加入戊二醛。
对比例2、制备柔性光热转换材料F
其他制备方式同实施例1,所不同的是,步骤(3)中加入戊二醛,戊二醛和聚乙烯醇的质量比为0.6。
对比例3、制备柔性光热转换材料G
其他制备方式同实施例1,所不同的是,步骤(1)中制备的氧化石墨烯溶液的浓度为0.3mg/mL。
对比例4、制备柔性光热转换材料H
其他制备方式同实施例1,所不同的是,步骤(1)中制备的氧化石墨烯溶液的浓度为6mg/mL。
对比例5、制备柔性光热转换材料I
其他制备方式同实施例1,所不同的是,步骤(2)中配置的聚乙烯醇溶液的浓度为0.3mg/mL。
对比例6、制备不加入交联剂的柔性光热转换材料J
其他制备方式同实施例1,所不同的是,步骤(2)中配置的聚乙烯醇溶液的浓度为6mg/mL。
性能测试:
1、形貌表征
对实施例1中制备的柔性光热转换材料A进行扫描电子显微镜(SEM)测试(扫描电子显微镜(JSM-7500F,日本岛津公司)),测试结果参考附图2以及附图3。证明了纤维表面均匀覆盖了石墨烯薄片,石墨烯薄片的尺寸大约在10~50微米,可以增强织物对光的吸 收,增大水的有效蒸发面积,有利于水的快速蒸发。
2、太阳光全光谱吸收率测试
使用紫外近红外可见光谱分光光度计积分球(Cary 5000,美国瓦里安)对实施例1中制备的柔性光热转换材料A以及制备该柔性光热转换材料A所用的织物在太阳光全光谱范围内吸收率进行测试,测试结果参考图4。从图4中可以看出,实施例1中制备的柔性光热转换材料A在整个太阳能光谱范围内均具有良好的太阳光吸收率(例如太阳光吸收率在80%以上),而单纯的织物在太阳能光谱范围内的吸收率较差。因此,可以说明根据本申请实施例的柔性光热转换材料具有良好的太阳光吸收率。
3、太阳能水蒸发速率测试
分别将实施例1-5以及对比例1-6中所制备的柔性光热转换材料A-J置于盛有水的玻璃烧杯中,并置于太阳光模拟器(CEL-HXF300,北京中教金源)下,测试在1kW m -2太阳光强度下的水蒸发速率,用精确度为0.0001g的电子天平对水的损失进行测量,测试结果参考表1以及图5。(注:水蒸发速率由水减少的质量计算,故均为负值)
表1:太阳能水蒸发速率测试:
Figure PCTCN2019122616-appb-000001
由上表以及图5中的测试数据可以看出,根据本申请实施例的柔性光热转换材料,其太阳能水蒸发效率较高,在1.2Kg/(m 2.h)以上。并且:
对比实施例1和对比例1可知,在混合液中加入交联剂,可以促进粘结剂聚乙烯醇交联,可以提高氧化石墨烯和柔性基体之间的结合力,提高柔性光热转换材料的光热转换效率。对比实施例1和对比例2可知,在混合液中加入交联剂的量过大,例如对比例2中戊二醛和聚乙烯醇质量比比值为0.6时,聚乙烯醇交联过度,氧化石墨烯容易团聚,无法较好地附着在柔性基体上形成柔性光热转换材料。证明了本申请中,戊二醛和聚乙烯醇的质量比在(0.05~0.4):1范围时,聚乙烯醇的交联度适中,可以较好地将氧化石墨烯粘附在柔性基体上,并且所制备的柔性光热转换材料的光热转换效率较高。
对比实施例1和对比例3、对比例4可知,氧化石墨烯的浓度在0.5-5mg/mL时,所制备的柔性光热转换材料的光热转换效率较高,氧化石墨烯的浓度过大,氧化石墨烯容易团聚,将柔性基体放入氧化石墨烯和粘结剂的混合液中进行浸泡后,氧化石墨烯无法均匀地负载在柔性基体上,无法较好地形成负载有石墨烯的柔性基体;氧化石墨烯的浓度过小,柔性基体上负载的氧化石墨烯的量也较小,所制备的柔性光热转换材料的光热转换效率较低。
对比实施例1和对比例5、对比例6可知,聚乙烯醇的浓度在0.5-5mg/mL时,所制备的柔性光热转换材料的光热转换效率较高,聚乙烯醇的浓度过大,容易造成混合液的粘度过大,且将柔性基体放入氧化石墨烯和粘结剂的混合液中进行浸泡后,氧化石墨烯容易团聚,无法均匀地负载在柔性基体上,无法较好地形成负载有石墨烯的柔性基体;聚乙烯醇的浓度过小,柔性基体上负载的氧化石墨烯的量也较小,所制备的柔性光热转换材料的光热转换效率较低。
4、样品表面温度测试
采用热红外成像仪(Fluke,美国福禄克公司)对实施例1中制备的柔性光热转换材料A在进行太阳能水蒸发速率测试中的表面温度进行实时监测,由测试结果可知,在进行太阳能水蒸发速率测试时,柔性光热转换材料A表面的温度可高达72.7摄氏度,由此,证明了该柔性光热转换材料A的光热转化效率较高。
5、循环性能测试
将实施例1中制备的柔性光热转换材料A放入盛有水的烧杯中,进行超声,在超声30min后,肉眼未观察到石墨烯颗粒的脱落。对超声前后的柔性光热转换材料A进行太阳能水蒸发速率测试,具体测试方法和前面所述的相同,测试结果参考图6。从图6中可以看出,超声前后的柔性光热转换材料A,其水蒸发速率几乎不变,且均高于未负载石墨烯的织物的水蒸发速率。
以上详细描述了本申请的实施方式,但是,本申请并不限于此。在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适 方式进行组合,这些简单变型和组合同样应当视为本申请所公开的内容,均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (20)

  1. 一种柔性光热转换材料,其特征在于,包括:
    柔性基体;以及
    负载在所述柔性基体上的光热转换活性物,所述光热转换活性物包括石墨烯以及粘结剂。
  2. 根据权利要求1所述的柔性光热转换材料,其特征在于,所述柔性基体包括无纺布、织物的至少之一。
  3. 根据权利要求1或2所述的柔性光热转换材料,其特征在于,所述柔性基体的孔径为10μm~1mm。
  4. 根据权利要求1-3任一项所述的柔性光热转换材料,其特征在于,所述粘结剂包括水性粘结剂。
  5. 根据权利要求1-4任一项所述的柔性光热转换材料,其特征在于,所述粘结剂包括聚乙烯醇、羟甲基纤维素以及聚丙烯酸酯的至少之一。
  6. 根据权利要求4或5所述的柔性光热转换材料,其特征在于,所述柔性光热转换材料进一步包括:交联剂。
  7. 根据权利要求6所述的柔性光热转换材料,其特征在于,所述交联剂和所述粘结剂的质量比为(0.05~0.4):1。
  8. 根据权利要求6或7所述的柔性光热转换材料,其特征在于,所述交联剂包括戊二醛。
  9. 根据权利要求1-8任一项所述的柔性光热转换材料,其特征在于,所述光热转换活性物中,所述石墨烯和所述粘结剂的质量比为(0.5~3):1。
  10. 一种制备权利要求1-9任一项所述的柔性光热转换材料的方法,其特征在于,包括:
    将氧化石墨烯、粘结剂和溶剂混合,以便形成混合液;
    将柔性基体放入所述混合液中进行浸泡,以便形成负载有所述氧化石墨烯的所述柔性基体;
    对所述负载有所述氧化石墨烯的所述柔性基体进行还原处理,以便形成负载有石墨烯的所述柔性基体,以便形成所述柔性光热转换材料。
  11. 根据权利要求10所述的方法,其特征在于,所述混合液中,所述氧化石墨烯的浓度为0.5~5mg/mL。
  12. 根据权利要求10或11所述的方法,其特征在于,所述粘结剂的浓度为0.5~5mg/mL。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述氧化石墨烯和所述粘结剂质量比为(0.5~3):1。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述将柔性基体放入所述混合液中进行浸泡之前,所述方法进一步包括:
    在所述混合液中加入交联剂。
  15. 根据权利要求14所述的方法,其特征在于,所述交联剂和所述粘结剂的质量比为(0.05~0.4):1。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述形成混合液之后,所述方法进一步包括:
    将所述混合液的pH值调至大于7,并对所述混合液进行超声分散,所述超声分散的时间为0.5~2h。
  17. 根据权利要求16所述的方法,其特征在于,所述超声分散之后,将所述柔性基体放入所述混合液中进行浸泡,浸泡时间为5-50min。
  18. 根据权利要求17所述的方法,其特征在于,所述浸泡之后,对放入了所述柔性基体的所述混合液进行干燥,干燥时间为5-50min,以便形成所述负载有所述氧化石墨烯的所述柔性基体。
  19. 根据权利要求10-18任一项所述的方法,其特征在于,所述还原处理进一步包括:
    将所述负载有所述氧化石墨烯的所述柔性基体浸泡在抗坏血酸溶液中进行还原,所述抗坏血酸溶液的浓度为0.5-5mg/mL,所述抗坏血酸溶液的pH值小于5,还原时间为15-30min,还原温度为70~100℃。
  20. 一种权利要求1-9任一项或权利要求10-19任一项所述的方法所制备的柔性光热转换材料在海水淡化中的用途。
PCT/CN2019/122616 2019-07-30 2019-12-03 柔性光热转换材料及其制备方法、在海水淡化中的用途 WO2021017353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910693468.6 2019-07-30
CN201910693468.6A CN110284323B (zh) 2019-07-30 2019-07-30 柔性光热转换材料及其制备方法、在海水淡化中的用途

Publications (1)

Publication Number Publication Date
WO2021017353A1 true WO2021017353A1 (zh) 2021-02-04

Family

ID=68024271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122616 WO2021017353A1 (zh) 2019-07-30 2019-12-03 柔性光热转换材料及其制备方法、在海水淡化中的用途

Country Status (2)

Country Link
CN (1) CN110284323B (zh)
WO (1) WO2021017353A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023812A (zh) * 2021-03-02 2021-06-25 中国矿业大学 一种含铜碳基复合高效光热转换材料及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284323B (zh) * 2019-07-30 2021-05-25 清华大学 柔性光热转换材料及其制备方法、在海水淡化中的用途
CN110924194A (zh) * 2019-11-14 2020-03-27 南通大学 一种高效光热蒸汽转化材料的制备方法
CN110846896A (zh) * 2019-11-14 2020-02-28 南通大学 一种用于光热海水淡化的纺织材料的制备方法
CN111233064A (zh) * 2020-02-04 2020-06-05 孔令斌 一种太阳能海水淡化装置
CN112898954B (zh) * 2021-01-22 2021-11-16 武汉纺织大学 杏鲍菇基光热转化材料及其制备方法
CN114853444B (zh) * 2021-02-04 2023-03-17 中北大学 利用凝胶稳定纳米颗粒制备光热转换材料的方法
CN114045073A (zh) * 2021-11-26 2022-02-15 安徽工业大学 一种亲水性光热涂料、其制备方法及亲水性光热材料、其制备方法
CN116621262B (zh) * 2023-06-25 2024-05-14 佛山市南伽科技有限公司 一种基于MoS2三维动态海水淡化装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110073847A1 (en) * 2009-09-29 2011-03-31 Dai Nippon Printing Co., Ltd. Laminate, preparatory support, method for producing laminate, and method for producing device
CN106256768A (zh) * 2016-04-11 2016-12-28 南京大学 一种多层体及其制备方法和用途
CN106744831A (zh) * 2016-11-24 2017-05-31 湖北大学 一种可重复使用的还原氧化石墨烯基光热转化薄膜及其制法
CN106958141A (zh) * 2017-04-24 2017-07-18 东华大学 一种制备光热转换织物的方法
CN107338642A (zh) * 2017-06-16 2017-11-10 江南大学 一种功能化非织造布海水淡化材料及其制备方法和应用
CN109183394A (zh) * 2018-08-30 2019-01-11 东华大学 一种光热转换蓄热调温棉织物的制备方法
CN109206553A (zh) * 2018-08-28 2019-01-15 深圳大学 一种太阳能光热转换材料及其制备方法
CN109304088A (zh) * 2017-07-28 2019-02-05 中国科学院宁波材料技术与工程研究所 一种耐强酸强碱的海水淡化膜及其制备方法与应用
CN109401152A (zh) * 2018-10-19 2019-03-01 天津工业大学 一种聚乙烯醇基太阳能水清洁凝胶的制备方法
CN110284323A (zh) * 2019-07-30 2019-09-27 清华大学 柔性光热转换材料及其制备方法、在海水淡化中的用途

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465152B1 (en) * 2000-06-26 2002-10-15 Kodak Polychrome Graphics Llc Imaging member containing heat sensitive thiosulfate polymer on improved substrate and methods of use
US6893796B2 (en) * 2002-08-20 2005-05-17 Kodak Polychrome Graphics Llc Flexographic element having an integral thermally bleachable mask layer
CN106601338B (zh) * 2016-11-18 2018-11-23 深圳先进技术研究院 一种具有功能化的柔性电极及其制备方法
CN106744865B (zh) * 2016-12-01 2019-04-30 无锡第六元素电子薄膜科技有限公司 一种激光供体膜及其制备方法、利用激光供体膜转移石墨烯薄膜的方法
CN107461948A (zh) * 2017-08-03 2017-12-12 山东圣泉新材料股份有限公司 一种太阳能选择性吸收涂层、其制备方法及光热转换装置
CN107611341B (zh) * 2017-08-31 2020-06-09 柔电(武汉)科技有限公司 一种具有涂覆层的柔性电极片及其制备方法
CN109455698A (zh) * 2017-09-06 2019-03-12 南开大学 基于石墨烯的光热转换材料、其制备方法及应用
CN108483427B (zh) * 2018-03-06 2020-10-30 清华大学 光热转换材料及其用途、水处理设备、太阳能热水器以及生态房系统
CN108585092A (zh) * 2018-04-28 2018-09-28 清华大学 基于光热转换材料进行太阳能生产清洁水的生态房装置
CN109896775B (zh) * 2019-03-19 2021-12-24 黑龙江大学 一种含有还原氧化石墨烯和聚合物的复合膜及其制备和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110073847A1 (en) * 2009-09-29 2011-03-31 Dai Nippon Printing Co., Ltd. Laminate, preparatory support, method for producing laminate, and method for producing device
CN106256768A (zh) * 2016-04-11 2016-12-28 南京大学 一种多层体及其制备方法和用途
CN106744831A (zh) * 2016-11-24 2017-05-31 湖北大学 一种可重复使用的还原氧化石墨烯基光热转化薄膜及其制法
CN106958141A (zh) * 2017-04-24 2017-07-18 东华大学 一种制备光热转换织物的方法
CN107338642A (zh) * 2017-06-16 2017-11-10 江南大学 一种功能化非织造布海水淡化材料及其制备方法和应用
CN109304088A (zh) * 2017-07-28 2019-02-05 中国科学院宁波材料技术与工程研究所 一种耐强酸强碱的海水淡化膜及其制备方法与应用
CN109206553A (zh) * 2018-08-28 2019-01-15 深圳大学 一种太阳能光热转换材料及其制备方法
CN109183394A (zh) * 2018-08-30 2019-01-11 东华大学 一种光热转换蓄热调温棉织物的制备方法
CN109401152A (zh) * 2018-10-19 2019-03-01 天津工业大学 一种聚乙烯醇基太阳能水清洁凝胶的制备方法
CN110284323A (zh) * 2019-07-30 2019-09-27 清华大学 柔性光热转换材料及其制备方法、在海水淡化中的用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO, GUANGMING: "Medical Engineering in China, first edition", CHINA MEDICAL SCIENCE AND TECHNOLOGY PRESS ISBN: 7-5067-0951-1, 30 June 1994 (1994-06-30) *
GANG WANG ET AL.: "Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation", CARBON, vol. 114, 2 December 2016 (2016-12-02), XP029887556, ISSN: 0008-6223 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023812A (zh) * 2021-03-02 2021-06-25 中国矿业大学 一种含铜碳基复合高效光热转换材料及其制备方法
CN113023812B (zh) * 2021-03-02 2022-03-11 中国矿业大学 一种含铜碳基复合高效光热转换材料及其制备方法

Also Published As

Publication number Publication date
CN110284323B (zh) 2021-05-25
CN110284323A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2021017353A1 (zh) 柔性光热转换材料及其制备方法、在海水淡化中的用途
CN105949512B (zh) 插层组装氮化硼-石墨烯复合材料、应用及其制备方法
CN109546056B (zh) 隔膜涂覆液和水系纳米对位芳纶涂隔膜
WO2022000608A1 (zh) 一种气凝胶复合膜及制备方法和应用
CN113667400B (zh) 一种兼具光热和自清洁性能的防覆冰除冰涂层及其制备方法
CN107915853A (zh) 一种纳米纤维素/石墨烯复合柔性薄膜及其制备方法与应用
CN100593861C (zh) 染料敏化纳晶薄膜太阳能电池光电极及其制备方法
CN110003509A (zh) 一种具有光热转化功能的石墨烯/纳米纤维杂化凝胶膜的制备方法
CN110911612B (zh) 一种基于醋酸纤维素的交联复合型锂离子电池隔膜及其制备方法与应用
CN111600000B (zh) 一种碳纳米管石墨烯/硅碳复合材料、其制备方法及应用
CN108183192A (zh) 一种陶瓷浆料及锂离子电池隔膜
TW201332192A (zh) 電化學元件用分隔件及其製造方法
CN110323396B (zh) 一种锂离子电池复合隔膜及其制备方法
US11820679B1 (en) Energy self-sufficient high-efficiency photo-thermal evaporative nano-particle porous membrane, preparation method and application thereof
CN114560701B (zh) 铋基光热转换纳米纤维材料及其制备方法
CN115275155B (zh) 一种易加工的磷酸铁锂复合材料及其制备方法
CN115275514A (zh) 电池隔膜及其制备方法和电池
CN116130880A (zh) 一种锂电池复合隔膜及其生产工艺
CN109265717A (zh) 一种具有抗菌性能的多孔光热膜及其制备和应用
CN111333903A (zh) 一种基于黑磷纳米片的太阳能海水淡化材料的制备方法
CN114421091A (zh) 一种多层结构的锂电复合隔膜的制备方法
CN109772183A (zh) 一种阴离子化合物插层g-C3N4复合膜的制备方法及其应用
CN105561810A (zh) 一种碳纳米纤维层对超滤膜改性的方法
CN109721893B (zh) 自漂浮的隔热导水材料及其制备方法和应用
CN115975499B (zh) 一种用于太阳能界面蒸发的光热涂层复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939637

Country of ref document: EP

Kind code of ref document: A1