WO2021014900A1 - 作業機械および作業機械の制御方法 - Google Patents

作業機械および作業機械の制御方法 Download PDF

Info

Publication number
WO2021014900A1
WO2021014900A1 PCT/JP2020/025654 JP2020025654W WO2021014900A1 WO 2021014900 A1 WO2021014900 A1 WO 2021014900A1 JP 2020025654 W JP2020025654 W JP 2020025654W WO 2021014900 A1 WO2021014900 A1 WO 2021014900A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
work machine
relief
speed
hydraulic
Prior art date
Application number
PCT/JP2020/025654
Other languages
English (en)
French (fr)
Inventor
知樹 根田
健 大井
健二郎 嶋田
憲史 大岩
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN202080045084.4A priority Critical patent/CN114008275B/zh
Priority to US17/618,954 priority patent/US12098515B2/en
Priority to DE112020002415.6T priority patent/DE112020002415T5/de
Priority to KR1020217040452A priority patent/KR102641393B1/ko
Publication of WO2021014900A1 publication Critical patent/WO2021014900A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/024Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6653Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member

Definitions

  • This disclosure relates to excavation control of work machines.
  • Patent Document 1 hydraulic oil from a hydraulic pump is supplied to a control valve for driving a boom, arm and bucket via a hydraulic circuit, and these boom, arm and bucket are supplied.
  • the configuration for operating the is disclosed.
  • the hydraulic excavator of Patent Document 1 is provided with a function of changing the relief pressure of the relief valve of the hydraulic circuit to power up.
  • the hydraulic excavator of Patent Document 1 is a function of powering up when turning the hoist, not a function of powering up during excavation control with a high excavation load. As a result, excavation control may not operate normally.
  • An object of the present disclosure is to provide a work machine and a control method of the work machine that can be powered up when excavation control with a high excavation load is executed.
  • a work machine includes a work machine, a hydraulic cylinder that operates the work machine by hydraulic oil, a hydraulic pump that supplies hydraulic oil to the hydraulic cylinder via a hydraulic circuit, and a relief pressure of the hydraulic circuit.
  • a relief valve that can be set to either a first set pressure or a second set pressure that is higher than the first set pressure, a state determination unit that determines whether the control state of the work equipment is an excavation state, and an oil pressure.
  • a detector that detects at least one of the hydraulic oil pressure of the circuit and the speed of the work equipment, and at least one of the hydraulic oil pressure of the hydraulic circuit and the speed of the work equipment when the control state of the work equipment is the excavation state. It is provided with a relief pressure changing unit that changes the relief pressure of the relief valve from the first set pressure to the second set pressure based on the detected value.
  • the control method of the work machine includes a step of determining whether or not the control state of the work machine is the excavation state, and a hydraulic pressure for operating the work machine when the control state of the work machine is the excavation state.
  • Flood control based on the step of detecting at least one of the hydraulic oil pressure and the speed of the work machine supplied to the cylinder through the hydraulic circuit and the detection value of at least one of the hydraulic oil pressure of the hydraulic circuit and the speed of the work machine. It includes a step of changing the relief pressure of the relief valve of the circuit from the first set pressure to the second set pressure higher than the first set pressure.
  • the work machine and the control method of the work machine of the present disclosure can be powered up when excavation control with a high excavation load is executed.
  • FIG. 1 is an external view of the work machine 100 based on the embodiment.
  • a hydraulic excavator including a work machine 2 operated by a flood control as a work machine to which the idea of the present disclosure can be applied will be described as an example.
  • the hydraulic excavator includes a vehicle body 1 and a working machine 2.
  • the vehicle body 1 includes a turning body 3, a driver's cab 4, and a traveling device 5.
  • the swivel body 3 is arranged on the traveling device 5.
  • the traveling device 5 supports the swivel body 3.
  • the swivel body 3 can swivel around the swivel shaft AX.
  • the driver's cab 4 is provided with a driver's seat 4S on which the operator sits.
  • the operator operates the hydraulic excavator in the driver's cab 4.
  • the traveling device 5 has a pair of tracks 5Cr.
  • the hydraulic excavator runs by the rotation of the track 5Cr.
  • the traveling device 5 may be composed of wheels (tires).
  • the front-rear direction means the front-rear direction of the operator seated in the driver's seat 4S.
  • the left-right direction refers to the left-right direction with respect to the operator seated in the driver's seat 4S.
  • the left-right direction coincides with the width direction of the vehicle (vehicle width direction).
  • the direction facing the front of the operator seated in the driver's seat 4S is the front direction, and the direction opposite to the front direction is the rear direction.
  • the right side and the left side are the right direction and the left direction, respectively.
  • the swivel body 3 has an engine room 9 in which an engine is housed and a counter weight provided at the rear of the swivel body 3.
  • a handrail 19 is provided in front of the engine room 9.
  • An engine, a hydraulic pump, and the like are arranged in the engine room 9.
  • the work machine 2 is supported by the swivel body 3.
  • the working machine 2 has a boom 6, an arm 7, a bucket 8, a boom cylinder 10, an arm cylinder 11, and a bucket cylinder 12.
  • the boom 6 is connected to the swivel body 3 via the boom pin 13.
  • the arm 7 is connected to the boom 6 via the arm pin 14.
  • the bucket 8 is connected to the arm 7 via the bucket pin 15.
  • the boom cylinder 10 drives the boom 6.
  • the arm cylinder 11 drives the arm 7.
  • the bucket cylinder 12 drives the bucket 8.
  • the base end portion (boom foot) of the boom 6 and the swivel body 3 are connected.
  • the tip end portion (boom top) of the boom 6 and the base end portion (arm foot) of the arm 7 are connected.
  • the tip end portion (arm top) of the arm 7 and the base end portion of the bucket 8 are connected.
  • the boom cylinder 10, arm cylinder 11, and bucket cylinder 12 are all hydraulic cylinders driven by hydraulic oil.
  • the boom 6 is rotatable with respect to the swivel body 3 about the boom pin 13 which is the central axis.
  • the arm 7 is rotatable with respect to the boom 6 about the arm pin 14, which is a central axis parallel to the boom pin 13.
  • the bucket 8 is rotatable with respect to the arm 7 about a bucket pin 15 which is a central axis parallel to the boom pin 13 and the arm pin 14.
  • FIG. 2 is a diagram illustrating a configuration of a control system of the work machine 100 based on the embodiment.
  • the work machine 100 includes a boom cylinder 10, an arm cylinder 11, a bucket cylinder 12, a swivel motor 24, a controller 26, an engine controller 30, an engine 38, a hydraulic pump 40, and the like. It includes a main valve 25, a relief valve 44, a pump pressure sensor 32, a pump controller 34, a self-pressure reducing valve 46, and an EPC valve 50.
  • the engine 38 is, for example, a diesel engine and is controlled according to the control of the engine controller 30. Specifically, the engine controller 30 controls the output torque and the rotation speed of the engine 38 by controlling the injection amount of fuel from a fuel injection device (not shown).
  • the hydraulic pump 40 is driven by the engine 38 and discharges hydraulic oil.
  • the hydraulic pump 40 is a fixed-capacity hydraulic pump that changes the discharge amount of hydraulic oil according to the rotation speed of the engine 38.
  • a configuration using one hydraulic pump 40 will be described, but the configuration is not particularly limited to this, and a configuration using a plurality of hydraulic pumps is also possible.
  • the main valve 25 receives the hydraulic oil supplied from the hydraulic pump 40, and distributes and supplies the hydraulic oil to the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the swivel motor 24, respectively.
  • the controller 26 outputs a command current to the EPC valve 50.
  • the EPC valve 50 controls the main valve 25 according to the command current from the controller 26.
  • the controller 26 is composed of a CPU (Central Processing Unit), a memory, and the like, and controls the work machine 2 by executing a control program stored in the memory.
  • a control program that automatically controls the work machine 2 and executes a plurality of work processes is stored in the memory.
  • an excavation process in which an excavation operation is executed by using a work machine 2 on a work terrain, a turning process in which an excavation operation is performed by a swivel body 3, and excavation held in a bucket 8 by the excavation operation. Includes a soil removal step in which a work machine 2 is used to discharge soil on an object.
  • the controller 26 holds the state data indicating each work process of the plurality of automatically controlled work processes in the memory, and outputs the state data to the pump controller 34.
  • the controller 26 holds at least one of the state data of the automatic excavation state data, the automatic turning state data, and the automatic soil removal state data, and outputs the state data to the pump controller 34.
  • the pump controller 34 can determine, for example, an automatic excavation state based on the state data output from the controller 26.
  • the present invention is not particularly limited to this, and the pump controller 34 may access the controller 26 to acquire the state data stored in the memory. good.
  • the hydraulic oil output from the hydraulic pump 40 is reduced to a constant pressure by the self-pressure pressure reducing valve 46 and supplied to the pilot.
  • the pump pressure sensor 32 detects the pressure of hydraulic oil in the hydraulic circuit between the hydraulic pump 40 and the main valve 25.
  • the relief valve 44 is connected to a hydraulic circuit having a flow path between the hydraulic pump 40 and the main valve 25. Further, the relief valve 44 opens when the hydraulic circuit is higher than a predetermined relief pressure to allow hydraulic oil to flow into the tank.
  • the relief valve 44 makes it possible to compensate the pressure of the hydraulic oil flowing through the hydraulic circuit to a predetermined pressure or less.
  • the relief valve 44 is provided so that a predetermined relief pressure can be changed to a first set pressure or a second set pressure higher than the first set pressure.
  • the pump controller 34 receives input of hydraulic oil pressure data of the hydraulic circuit detected by the pump pressure sensor 32.
  • the pump controller 34 receives input of cylinder length data from the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12.
  • the pump controller 34 receives input of data regarding the state of automatic control from the controller 26.
  • the pump controller 34 is based on data on the hydraulic oil pressure of the hydraulic circuit detected by the pump pressure sensor 32, data on cylinder lengths from the boom cylinder 10, arm cylinder 11, and bucket cylinder 12, and data on the state of automatic control.
  • the relief pressure of the relief valve 44 is adjusted.
  • the hydraulic pump 40, the relief valve 44, the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 are examples of the “hydraulic pump”, “relief valve”, and “hydraulic cylinder” of the present disclosure.
  • FIG. 3 is a diagram illustrating a functional block of the pump controller 34 of the work machine 100 based on the embodiment.
  • the pump controller 34 includes a state determination unit 102, a pressure detection unit 103, a bucket speed detection unit 104, a relief pressure change unit 106, and an engine adjustment unit 108.
  • the state determination unit 102 receives the input of data related to the automatic control state from the controller 26, and determines whether or not the control state of the working machine is the automatic excavation state.
  • the pressure detection unit 103 receives input of hydraulic oil pressure data of the hydraulic circuit detected by the pump pressure sensor 32.
  • the bucket speed detection unit 104 receives input of cylinder length data from sensors provided in each of the boom cylinder 10, arm cylinder 11, and bucket cylinder 12, and detects the bucket speed based on the cylinder length data.
  • the relief pressure changing unit 106 includes the pump pressure of the hydraulic circuit that received the input by the pressure detecting unit 103, the bucket speed detected by the bucket speed detecting unit 104, and the control state of the work machine determined by the state determining unit 102.
  • the relief pressure of the relief valve 44 is changed based on the above.
  • the relief valve 44 is preset to the first set pressure.
  • the relief pressure changing unit 106 changes the relief pressure of the relief valve 44 to a second set pressure higher than the first set pressure.
  • the engine adjusting unit 108 instructs the engine controller 30 to adjust the rotation speed of the engine 38.
  • the state determination unit 102, the pressure detection unit 103, the bucket speed detection unit 104, the relief pressure change unit 106, and the engine adjustment unit 108 are the “state determination unit”, “pressure detection unit”, and “speed detection unit” of the present disclosure. , “Relief pressure change part”, “Engine adjustment part” is an example.
  • FIG. 4 is a diagram illustrating a control flow of the pump controller 34 according to the embodiment.
  • the pump controller 34 determines whether or not it is in the automatic excavation mode (step S2). Specifically, the state determination unit 102 receives the input of the state data from the controller 26 and determines whether or not it is in the automatic excavation mode.
  • step S2 If the pump controller 34 does not determine in the automatic excavation mode in step S2 (NO in step S2), the determination in step S2 is repeated.
  • step S2 when the pump controller 34 determines that the automatic excavation mode is set (YES in step S2), the pump controller 34 detects the pressure of the hydraulic oil (step S4). Specifically, the pressure detection unit 103 acquires the pressure of the hydraulic oil detected by the pump pressure sensor 32. The pressure detection unit 103 may acquire the pressure of the hydraulic oil detected by the pressure sensors attached to the head side and the bottom side of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12.
  • the pump controller 34 determines whether or not the acquired pressure is equal to or higher than a predetermined value (step S6). Specifically, the relief pressure changing unit 106 determines whether or not the pressure of the hydraulic oil acquired by the pressure detecting unit 103 is a pressure equal to or higher than a predetermined value. When it is determined that the pressure of the hydraulic oil detected by the pump pressure sensor 32 is a pressure equal to or higher than a predetermined value, it can be determined that the work process has a high excavation load.
  • step S6 when the pump controller 34 determines that the pressure of the hydraulic oil is equal to or higher than a predetermined value (YES in step S6), the pump controller 34 acquires the bucket speed (step S7A).
  • the relief pressure changing unit 106 instructs the bucket speed detecting unit 104 to calculate the bucket speed.
  • the bucket speed detection unit 104 calculates the speed of the bucket 8 of the work machine 2 based on the cylinder length data from the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12.
  • the bucket speed detection unit 104 outputs the calculated speed of the bucket 8 to the relief pressure change unit 106.
  • the pump controller 34 determines whether or not the bucket speed is equal to or lower than the predetermined speed (step S7B). Specifically, the relief pressure changing unit 106 determines whether or not the bucket speed output from the bucket speed detecting unit 104 is equal to or lower than a predetermined speed (for example, the speed is 0). When it is determined that the bucket speed output from the bucket speed detection unit 104 is equal to or lower than the predetermined speed, it can be determined that the work process has a high excavation load.
  • a predetermined speed for example, the speed is 0
  • step S7B If the pump controller 34 determines in step S7B that the speed is equal to or lower than the predetermined speed (YES in step S7B), the relief pressure is set to the second set pressure (step S8). Specifically, when the relief pressure changing unit 106 determines that the bucket speed output from the bucket speed detecting unit 104 is equal to or lower than a predetermined speed, the relief pressure changing unit 106 changes the relief pressure of the relief valve 44 to the second set pressure. ..
  • the pump controller 34 determines whether or not a predetermined period of time has elapsed since the relief pressure was set to the second set pressure (step S10).
  • the relief pressure changing unit 106 determines whether or not a predetermined period has elapsed since the relief pressure was set to the second set pressure.
  • step S10 when the pump controller 34 determines that a predetermined period has not elapsed since the relief pressure was set to the second set pressure (NO in step S10), the determination in step S10 is repeated.
  • step S10 when the pump controller 34 determines in step S10 that a predetermined period has elapsed since the relief pressure was set to the second set pressure (YES in step S10), the pump controller 34 sets the relief pressure to the first set pressure. Is set to (step S12). Then, the process ends (end). Specifically, the relief pressure changing unit 106 changes the relief pressure of the relief valve 44 to the first set pressure when it is determined that a predetermined period has elapsed since the relief pressure was set to the second set pressure. .. As a result, it is possible to reduce the load on the hydraulic circuit by maintaining the relief pressure in a high state for a long period of time.
  • step S6 when the pump controller 34 determines that the pressure of the hydraulic oil is not equal to or higher than a predetermined value (NO in step S6), the pump controller 34 returns to step S4 and repeats the above process.
  • step S7B determines in step S7B that the bucket speed is not equal to or lower than the predetermined speed (NO in step S7B)
  • the pump controller 34 returns to step S4 and repeats the above process.
  • the relief pressure changing unit 106 has the control state output from the controller 26 in the automatic excavation mode, the pressure of the hydraulic oil in the hydraulic circuit is equal to or higher than the predetermined pressure, and the speed of the bucket 8 is equal to or lower than the predetermined speed. (For example, in the stopped state), the relief pressure of the relief valve 44 is changed to a second set pressure higher than the first set pressure.
  • the relief pressure changing unit 106 of the above embodiment is executed in the automatic excavation mode as a predetermined condition, the pressure of the hydraulic oil in the hydraulic circuit is equal to or higher than the predetermined pressure, and the speed of the bucket 8 is equal to or lower than the predetermined speed.
  • the relief pressure changing unit 106 may change the relief pressure of the relief valve 44 based on at least one of the hydraulic oil pressure of the hydraulic circuit and the speed of the bucket 8 in the automatic excavation mode.
  • the relief pressure changing unit 106 of the relief valve 44 is in the automatic excavation mode, and when the pressure of the hydraulic oil in the hydraulic circuit is at least one of the predetermined pressure or more and the speed of the bucket 8 is at least one of the predetermined speeds or less.
  • the relief pressure may be changed to a second set pressure higher than the first set pressure.
  • the relief pressure changing unit 106 determines that the relief pressure is set as the second set pressure for a predetermined period, the relief pressure of the relief valve 44 is set to the first setting. The case of changing to pressure was described.
  • the relief pressure of the relief valve 44 may be changed to the first set pressure.
  • the relief pressure of the relief valve 44 may be changed to the first set pressure.
  • the relief pressure changing unit 106 may change the relief pressure of the relief valve 44 to the first set pressure when the speed of the bucket 8 exceeds a predetermined speed.
  • the relief pressure changing unit 106 may change the relief pressure of the relief valve 44 to the first set pressure when the pressure of the hydraulic oil in the hydraulic circuit becomes less than a predetermined pressure.
  • the relief pressure of the relief valve 44 may be changed to the first set pressure. For example, when the relief pressure changing unit 106 determines that the excavation state has ended and the operation has shifted to the turning state based on the input of data regarding the state of automatic control from the controller 26, the relief pressure of the relief valve 44 has been changed. May be changed to the first set pressure. Alternatively, if it is determined by using the visual sensor that the cutting edge of the bucket 8 has come out of the ground, it is determined that the excavation state is completed and the relief pressure of the relief valve 44 is changed to the first set pressure. Good.
  • the relief pressure changing unit 106 determines using the visual sensor that the cutting edge of the bucket 8 exceeds the current terrain height, changes the relief pressure of the relief valve 44 to the first set pressure. It may be. Alternatively, when it is determined that the excavation state is completed based on the posture of the working machine, the relief pressure of the relief valve 44 may be changed to the first set pressure. Specifically, the relief pressure changing unit 106 is said to have a posture in which the bucket 8 holds the soil inside the bucket 8 based on the cylinder length data from the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12. If it is determined, the relief pressure of the relief valve 44 may be changed to the first set pressure.
  • ⁇ Modification example 1> During the automatic excavation mode, there is a possibility that the speed of the bucket 8 becomes 0 momentarily due to a collision with an obstacle (for example, a rock), or the pressure of the hydraulic oil becomes a predetermined value or more. In that case, the relief pressure changing unit 106 may change the relief pressure of the relief valve 44 to a second set pressure higher than the first set pressure.
  • the relief pressure changing unit 106 adds to the condition whether or not the state of high excavation load continues for a predetermined period in order to prevent malfunction.
  • the relief pressure changing unit 106 is executed in the automatic excavation mode as a predetermined condition, the pressure of the hydraulic oil in the hydraulic circuit continues to be equal to or higher than a predetermined value for a predetermined period, and the speed of the bucket 8 is set to a predetermined period.
  • the relief pressure of the relief valve 44 may be changed to a second set pressure higher than the first set pressure when the speed is kept below the predetermined speed.
  • the determination may be made using the measured value after the moving average processing using the filter circuit.
  • the pressure detection unit 103 may be provided with a filter circuit for moving average processing, and the measured value after passing through the filter circuit may be output to the relief pressure change unit 106.
  • the bucket speed detection unit 104 may be provided with a filter circuit for moving average processing, and the calculated value after passing through the filter circuit may be output to the relief pressure change unit 106.
  • FIG. 5 is a diagram for explaining the relationship between the pump absorption torque and the engine speed according to the embodiment.
  • the engine output characteristic line EL1 of the engine 38 is shown.
  • the pump absorption torque is controlled by the EPC valve 50 so as to match the engine output torque at the matching point based on the engine output characteristic line EL1 and the pump absorption torque characteristic line PL.
  • the pump absorption torque characteristic line PL1 and the pump absorption torque characteristic line PL2 are provided, and normally, the pump absorption torque characteristic line PL1 and the engine output characteristic line EL1 are matched at the matching point M1. Is controlled by.
  • the pump absorption torque characteristic line PL1 is changed to the pump absorption torque characteristic line PL2.
  • the pump absorption torque characteristic line PL1 and the engine output characteristic line EL2 are controlled to match at the matching point M2.
  • the engine adjusting unit 108 instructs the engine controller 30 to increase the engine speed.
  • the relief pressure of the relief valve 44 is changed from the first set pressure to the second set pressure in the hydraulic circuit. It is possible to further increase (power up) the output of the work equipment 2 by increasing the pressure of the hydraulic oil and increasing the engine speed.
  • a method of increasing the output of the work machine 2 mainly when executing the control of automatic excavation has been described, but the method is not particularly limited to the control of automatic excavation, and when the normal excavation control is executed. Is also applicable.
  • the flow described with reference to FIG. 4 may be executed. For example, instead of the process of determining whether or not the automatic excavation mode is in step S2, a process of determining whether or not the excavation state is performed is executed, and if it is in the excavation state, steps S2 and subsequent steps described in FIG. 4 are performed. The flow may be executed.
  • the flow after step S2 described in FIG. 4 may be executed.
  • the flow after step S2 described in FIG. 4 may be executed.
  • the bucket speed detection unit 104 has described a method of calculating the speed of the bucket 8 of the work machine 2 based on the cylinder length data from the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12.
  • the speed of the bucket 8 may be detected by using an IMU (inertial measurement unit).
  • a visual sensor (Lidar, stereo camera, etc.) attached to the front surface of the driver's cab 4 may be used to acquire the feature amount of the bucket 8 and detect the speed of the bucket 8 based on the movement of the feature amount.
  • a marker may be attached to the bucket 8 to detect the speed of the bucket 8 based on the movement of the marker.
  • the hydraulic excavator is mentioned as an example of the work machine, but it is not limited to the hydraulic excavator and can be applied to other types of work machines such as a bulldozer and a wheel loader.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

作業機械は、作業機と、作動油によって作業機を動作させる油圧シリンダと、油圧回路を介して油圧シリンダに作動油を供給する油圧ポンプと、油圧回路のリリーフ圧を、第1の設定圧および第1の設定圧よりも高い第2の設定圧のいずれかに設定可能なリリーフ弁と、作業機の制御状態が掘削状態か否かを判断する状態判断部と、油圧回路の作動油の圧力および作業機の速度の少なくとも一方を検出する検出部と、作業機の制御状態が掘削状態である場合に、油圧回路の作動油の圧力および作業機の速度の少なくとも一方の検出値に基づいてリリーフ弁のリリーフ圧を第1の設定圧から第2の設定圧に変更するリリーフ圧変更部とを備える。

Description

作業機械および作業機械の制御方法
 本開示は、作業機械の掘削制御に関する。
 従来、油圧ショベル等の作業車両が知られている。たとえば、国際公開第2017/138070号(特許文献1)には、油圧ポンプからの作動油を油圧回路を介してブーム、アームおよびバケットを駆動するコントロールバルブに供給して、これらブーム、アームおよびバケットを作動させる構成が開示されている。
 この点で、特許文献1の油圧ショベルには、油圧回路のリリーフ弁のリリーフ圧を変更してパワーアップする機能が設けられている。
国際公開第2017/138070号
 一方で、特許文献1の油圧ショベルは、ホイスト旋回時にパワーアップする機能であり、掘削負荷が高い掘削制御中にパワーアップする機能ではない。これにより掘削制御が正常に動作しない可能性がある。
 本開示の目的は、掘削負荷の高い掘削制御が実行される場合にはパワーアップさせることが可能な作業機械および作業機械の制御方法を提供することである。
 本開示のある局面に従う作業機械は、作業機と、作動油によって作業機を動作させる油圧シリンダと、油圧回路を介して油圧シリンダに作動油を供給する油圧ポンプと、油圧回路のリリーフ圧を、第1の設定圧および第1の設定圧よりも高い第2の設定圧のいずれかに設定可能なリリーフ弁と、作業機の制御状態が掘削状態か否かを判断する状態判断部と、油圧回路の作動油の圧力および作業機の速度の少なくとも一方を検出する検出部と、作業機の制御状態が掘削状態である場合に、油圧回路の作動油の圧力および作業機の速度の少なくとも一方の検出値に基づいてリリーフ弁のリリーフ圧を第1の設定圧から第2の設定圧に変更するリリーフ圧変更部とを備える。
 本開示のある局面に従う作業機械の制御方法は、作業機の制御状態が掘削状態であるか否かを判断するステップと、作業機の制御状態が掘削状態である場合に作業機を動作させる油圧シリンダに油圧回路を介して供給される作動油の圧力および作業機の速度の少なくとも一方を検出するステップと、油圧回路の作動油の圧力および作業機の速度の少なくとも一方の検出値に基づいて油圧回路のリリーフ弁のリリーフ圧を第1の設定圧から第1の設定圧よりも高い第2の設定圧に変更するステップとを備える。
 本開示の作業機械および作業機械の制御方法は、掘削負荷の高い掘削制御が実行される場合にはパワーアップさせることが可能である。
実施形態に基づく作業機械100の外観図である。 実施形態に基づく作業機械100の制御系の構成を説明する図である。 実施形態に基づく作業機械100のポンプコントローラ34の機能ブロックを説明する図である。 実施形態に従うポンプコントローラ34の制御フローを説明する図である。 実施形態に従うポンプ吸収トルクとエンジン回転数との関係を説明する図である。
 以下、実施形態について図面を参照しながら説明する。以下の説明では、同一部品には、同一の符号を付している。それらの名称および機能の同じである。したがって、それらについての詳細な説明については繰り返さない。
 <作業機械の全体構成>
 図1は、実施形態に基づく作業機械100の外観図である。
 図1に示されるように、本開示の思想を適用可能な作業機械として油圧により作動する作業機2を備える油圧ショベルを例に挙げて説明する。
 油圧ショベルは、車両本体1と、作業機2とを備える。
 車両本体1は、旋回体3と、運転室4と、走行装置5とを有する。
 旋回体3は、走行装置5の上に配置される。走行装置5は、旋回体3を支持する。旋回体3は、旋回軸AXを中心に旋回可能である。運転室4には、オペレータが着座する運転席4Sが設けられる。オペレータは、運転室4において油圧ショベルを操作する。走行装置5は、一対の履帯5Crを有する。履帯5Crの回転により、油圧ショベルが走行する。走行装置5は、車輪(タイヤ)で構成されていてもよい。
 実施形態では、運転席4Sに着座したオペレータを基準として各部の位置関係について説明する。前後方向とは、運転席4Sに着座したオペレータの前後方向をいう。左右方向とは、運転席4Sに着座したオペレータを基準とした左右方向をいう。左右方向は、車両の幅方向(車幅方向)に一致する。運転席4Sに着座したオペレータに正面に正対する方向を前方向とし、前方向とは反対の方向を後方向とする。運転席4Sに着座したオペレータが正面に正対したとき右側、左側をそれぞれ右方向、左方向とする。
 旋回体3は、エンジンが収容されるエンジンルーム9と、旋回体3の後部に設けられるカウンタウェイトとを有する。旋回体3において、エンジンルーム9の前方に手すり19が設けられる。エンジンルーム9には、エンジン及び油圧ポンプなどが配置されている。
 作業機2は、旋回体3に支持される。作業機2は、ブーム6と、アーム7と、バケット8と、ブームシリンダ10と、アームシリンダ11と、バケットシリンダ12とを有する。
 ブーム6は、ブームピン13を介して旋回体3に接続される。アーム7は、アームピン14を介してブーム6に接続される。バケット8は、バケットピン15を介してアーム7に接続される。ブームシリンダ10は、ブーム6を駆動する。アームシリンダ11は、アーム7を駆動する。バケットシリンダ12は、バケット8を駆動する。ブーム6の基端部(ブームフート)と旋回体3とが接続される。ブーム6の先端部(ブームトップ)とアーム7の基端部(アームフート)とが接続される。アーム7の先端部(アームトップ)とバケット8の基端部とが接続される。ブームシリンダ10、アームシリンダ11およびバケットシリンダ12はいずれも、作動油によって駆動される油圧シリンダである。
 ブーム6は、中心軸であるブームピン13を中心に旋回体3に対して回転可能である。アーム7は、ブームピン13と平行な中心軸であるアームピン14を中心にブーム6に対して回転可能である。バケット8は、ブームピン13およびアームピン14と平行な中心軸であるバケットピン15を中心にアーム7に対して回転可能である。
 なお、バケット8、作業機2は、本開示の「バケット」、「作業機」の一例である。
 〔制御系の構成〕
 図2は、実施形態に基づく作業機械100の制御系の構成を説明する図である。
 図2を参照して、作業機械100は、ブームシリンダ10と、アームシリンダ11と、バケットシリンダ12と、旋回モータ24と、コントローラ26と、エンジンコントローラ30と、エンジン38と、油圧ポンプ40と、メインバルブ25と、リリーフ弁44と、ポンプ圧力センサ32と、ポンプコントローラ34と、自己圧減圧弁46と、EPC弁50とを備えている。
 エンジン38は、例えば、ディーゼル式のエンジンであり、エンジンコントローラ30の制御に従って制御される。具体的には、エンジンコントローラ30は、図示しない燃料噴射装置からの燃料の噴射量を制御することにより、エンジン38の出力トルクと回転数とを制御する。
 油圧ポンプ40は、エンジン38によって駆動され、作動油を吐出する。油圧ポンプ40は、エンジン38の回転数に応じて作動油の吐出量を変化させる固定容量型の油圧ポンプである。なお、本例においては、1つの油圧ポンプ40を用いた構成について説明するが、特にこれに限られず複数の油圧ポンプを用いた構成とすることも可能である。
 メインバルブ25は、油圧ポンプ40から供給される作動油を受けて、ブームシリンダ10,アームシリンダ11,バケットシリンダ12および旋回モータ24にそれぞれ作動油を分配して供給する。
 コントローラ26は、EPC弁50に指令電流を出力する。EPC弁50は、コントローラ26からの指令電流に従って、メインバルブ25を制御する。
 実施形態に従うコントローラ26は、CPU(Central Processing Unit)およびメモリ等で構成され、メモリに格納されている制御プログラムを実行することにより、作業機2を制御する。一例として、メモリには、作業機2を自動制御して複数の作業工程を実行する制御プログラムが格納されている。具体的には、複数の作業工程として、作業地形に対して作業機2を用いて掘削動作を実行する掘削工程、旋回体3により旋回動作する旋回工程、掘削動作によりバケット8に抱え込まれた掘削対象物に対して作業機2を用いて排土動作する排土工程を含む。
 コントローラ26は、自動制御の複数の作業工程の各作業工程を示す状態データをメモリに保持するとともに、当該状態データをポンプコントローラ34に出力する。一例として、コントローラ26は、自動掘削状態データ、自動旋回状態データ、自動排土状態データの少なくともいずれかの状態データを保持するとともに、当該状態データをポンプコントローラ34に出力する。ポンプコントローラ34は、コントローラ26から出力された状態データに基づいて、例えば自動掘削状態であることを判断することが可能である。
 なお、本例においては、コントローラ26が状態データを出力する場合について説明するが特にこれに限られず、ポンプコントローラ34がコントローラ26にアクセスしてメモリに格納された状態データを取得するようにしても良い。
 油圧ポンプ40から出力された作動油は、自己圧減圧弁46によって一定の圧力に減らされてパイロット用に供給される。
 ポンプ圧力センサ32は、油圧ポンプ40とメインバルブ25との間の油圧回路内の作動油の圧力を検出する。
 リリーフ弁44は、油圧ポンプ40と、メインバルブ25との間の流路を有する油圧回路に接続されている。また、リリーフ弁44は、油圧回路が所定のリリーフ圧よりも高い場合には開いて作動油をタンクへ流す。リリーフ弁44により油圧回路を流れる作動油の圧力を所定の圧力以下に補償することが可能となる。リリーフ弁44は、所定のリリーフ圧を第1の設定圧あるいは第1の設定圧よりも高い第2の設定圧に変更可能に設けられている。
 ポンプコントローラ34は、ポンプ圧力センサ32で検出された油圧回路の作動油の圧力のデータの入力を受ける。ポンプコントローラ34は、ブームシリンダ10、アームシリンダ11、バケットシリンダ12からのシリンダ長のデータの入力を受ける。ポンプコントローラ34は、コントローラ26から自動制御の状態に関するデータの入力を受ける。ポンプコントローラ34は、ポンプ圧力センサ32で検出された油圧回路の作動油の圧力のデータ、ブームシリンダ10、アームシリンダ11、バケットシリンダ12からのシリンダ長のデータ、自動制御の状態に関するデータとに基づいてリリーフ弁44のリリーフ圧を調整する。
 なお、油圧ポンプ40、リリーフ弁44およびブームシリンダ10、アームシリンダ11、バケットシリンダ12は、本開示の「油圧ポンプ」、「リリーフ弁」および「油圧シリンダ」の一例である。
 図3は、実施形態に基づく作業機械100のポンプコントローラ34の機能ブロックを説明する図である。
 図3に示されるように、ポンプコントローラ34は、状態判断部102と、圧力検出部103と、バケット速度検出部104と、リリーフ圧変更部106と、エンジン調整部108とを含む。
 状態判断部102は、コントローラ26から自動制御の状態に関するデータの入力を受けて、作業機の制御状態が自動掘削状態か否かを判断する。
 圧力検出部103は、ポンプ圧力センサ32で検出された油圧回路の作動油の圧力のデータの入力を受ける。
 バケット速度検出部104は、ブームシリンダ10、アームシリンダ11およびバケットシリンダ12のそれぞれに設けられたセンサからのシリンダ長データの入力を受け付ける、当該シリンダ長データに基づいてバケット速度を検出する。
 リリーフ圧変更部106は、圧力検出部103で入力を受け付けた油圧回路のポンプ圧と、バケット速度検出部104で検出されたバケット速度と、状態判断部102で判断された作業機の制御状態とに基づいてリリーフ弁44のリリーフ圧を変更する。
 リリーフ弁44は、第1の設定圧に予め設定されている。リリーフ圧変更部106は、所定条件が成立した場合に、リリーフ弁44のリリーフ圧を第1の設定圧よりも高い第2の設定圧に変更する。
 エンジン調整部108は、エンジン38の回転数を調整するようにエンジンコントローラ30に指示する。
 なお、状態判断部102、圧力検出部103、バケット速度検出部104、リリーフ圧変更部106、エンジン調整部108は、本開示の「状態判断部」、「圧力検出部」、「速度検出部」、「リリーフ圧変更部」、「エンジン調整部」の一例である。
 <ポンプコントローラの制御>
 図4は、実施形態に従うポンプコントローラ34の制御フローを説明する図である。
 図4を参照して、ポンプコントローラ34は、自動掘削モードであるか否かを判断する(ステップS2)。具体的には、状態判断部102は、コントローラ26からの状態データの入力を受けて自動掘削モードであるか否かを判断する。
 ステップS2において、ポンプコントローラ34は、自動掘削モードであると判断しない場合(ステップS2においてNO)には、ステップS2の判断を繰り返す。
 一方、ステップS2において、ポンプコントローラ34は、自動掘削モードであると判断した場合(ステップS2においてYES)には、作動油の圧力を検出する(ステップS4)。具体的には、圧力検出部103は、ポンプ圧力センサ32で検出された作動油の圧力を取得する。なお、圧力検出部103は、ブームシリンダ10、アームシリンダ11、バケットシリンダ12のヘッド側とボトム側に取り付けた圧力センサで検出された作動油の圧力を取得しても良い。
 次に、ポンプコントローラ34は、取得した圧力が所定値以上であるか否かを判断する(ステップS6)。具体的には、リリーフ圧変更部106は、圧力検出部103で取得した作動油の圧力が所定値以上の圧力であるか否かを判断する。ポンプ圧力センサ32で検出された作動油の圧力が所定値以上の圧力であると判断される場合には、掘削負荷の高い作業工程と判断することが可能である。
 ステップS6において、ポンプコントローラ34は、作動油の圧力が所定値以上であると判断した場合(ステップS6においてYES)には、バケット速度を取得する(ステップS7A)。リリーフ圧変更部106は、バケット速度検出部104に対してバケット速度を算出するように指示する。バケット速度検出部104は、ブームシリンダ10、アームシリンダ11、バケットシリンダ12からのシリンダ長のデータに基づいて作業機2のバケット8の速度を算出する。バケット速度検出部104は、算出したバケット8の速度をリリーフ圧変更部106に出力する。
 次に、ポンプコントローラ34は、バケット速度が所定速度以下であるか否かを判断する(ステップS7B)。具体的には、リリーフ圧変更部106は、バケット速度検出部104から出力されたバケット速度が所定速度以下(例えば速度が0)であるか否かを判断する。バケット速度検出部104から出力されたバケット速度が所定速度以下であると判断される場合には、掘削負荷の高い作業工程と判断することが可能である。
 ステップS7Bにおいて、ポンプコントローラ34は、所定速度以下であると判断した場合(ステップS7BにおいてYES)には、リリーフ圧を第2の設定圧に設定する(ステップS8)。具体的には、リリーフ圧変更部106は、バケット速度検出部104から出力されたバケット速度が所定速度以下であると判断した場合にはリリーフ弁44のリリーフ圧を第2の設定圧に変更する。
 次に、ポンプコントローラ34は、リリーフ圧を第2の設定圧に設定してから所定期間経過したか否かを判断する(ステップS10)。リリーフ圧変更部106は、リリーフ圧を第2の設定圧に設定してから所定期間経過したか否かを判断する。
 一方、ステップS10において、ポンプコントローラ34は、リリーフ圧を第2の設定圧に設定してから所定期間経過していないと判断した場合(ステップS10においてNO)には、ステップS10の判断を繰り返す。
 次に、ポンプコントローラ34は、ステップS10において、リリーフ圧を第2の設定圧に設定してから所定期間経過したと判断した場合(ステップS10においてYES)には、リリーフ圧を第1の設定圧に設定する(ステップS12)。そして、処理を終了する(エンド)。具体的には、リリーフ圧変更部106は、リリーフ圧を第2の設定圧に設定してから所定期間経過したと判断した場合にはリリーフ弁44のリリーフ圧を第1の設定圧に変更する。これにより、長期間の間、リリーフ圧を高い状態に維持することによる油圧回路の負荷を軽減することが可能である。
 一方、ステップS6において、ポンプコントローラ34は、作動油の圧力が所定値以上でないと判断した場合(ステップS6においてNO)には、ステップS4に戻り、上記処理を繰り返す。
 一方、ステップS7Bにおいて、ポンプコントローラ34は、バケット速度が所定速度以下でないと判断した場合(ステップS7BにおいてNO)には、ステップS4に戻り、上記処理を繰り返す。
 実施形態においては、リリーフ圧変更部106は、コントローラ26から出力される制御の状態が自動掘削モードであり、油圧回路の作動油の圧力が所定圧以上、かつ、バケット8の速度が所定速度以下(例えば停止状態)である場合に、リリーフ弁44のリリーフ圧を第1の設定圧よりも高い第2の設定圧に変更する。
 リリーフ弁44のリリーフ圧を第1の設定圧から第2の設定圧に変更することにより油圧回路内の作動油の圧力を高めることが可能である。したがって、掘削負荷の高い自動掘削の制御を実行する場合に、メインバルブ25と接続される作業機2の出力を上昇(パワーアップ)させて動作させることが可能となる。
 なお、上記の実施形態のリリーフ圧変更部106は、所定条件として、自動掘削モードが実行されており、油圧回路の作動油の圧力が所定圧以上、かつ、バケット8の速度が所定速度以下である場合に、リリーフ弁44のリリーフ圧を第1の設定圧よりも高い第2の設定圧に変更する場合について説明した。これに限られず、リリーフ圧変更部106は、自動掘削モードであり、油圧回路の作動油の圧力およびバケット8の速度の少なくとも一方に基づいてリリーフ弁44のリリーフ圧を変更しても良い。具体的には、リリーフ圧変更部106は、自動掘削モード、かつ、油圧回路の作動油の圧力が所定圧以上およびバケット8の速度が所定速度以下の少なくとも一方である場合に、リリーフ弁44のリリーフ圧を第1の設定圧よりも高い第2の設定圧に変更してもよい。
 なお、上記の例においては、リリーフ圧変更部106は、所定期間の間、リリーフ圧が第2の設定圧として設定されていると判断した場合にはリリーフ弁44のリリーフ圧を第1の設定圧に変更する場合について説明した。
 一方で、掘削負荷が低くなった場合には、リリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。
 例えば、作業機の速度が回復した場合にはリリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。具体的には、リリーフ圧変更部106は、バケット8の速度が所定速度を超えた場合にはリリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。あるいは、リリーフ圧変更部106は、油圧回路の作動油の圧力が所定圧未満となった場合にはリリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。
 また、リリーフ圧変更部106は、掘削状態が終了したと判断した場合には、リリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。例えば、リリーフ圧変更部106は、コントローラ26からの自動制御の状態に関するデータの入力に基づいて掘削状態が終了して旋回状態に動作が移行したと判断した場合には、リリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。あるいは、視覚センサを用いてバケット8の刃先が地面から出たと判断した場合には、掘削状態が終了したと判断してリリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。具体的には、リリーフ圧変更部106は、視覚センサを用いてバケット8の刃先が現況地形高さを超えたと判断した場合にはリリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。あるいは、作業機の姿勢に基づいて掘削状態が終了したと判断した場合には、リリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。具体的には、リリーフ圧変更部106は、ブームシリンダ10、アームシリンダ11、バケットシリンダ12からのシリンダ長のデータに基づいてバケット8の姿勢がバケット8の内部の土を抱え込んだ姿勢であると判断した場合にはリリーフ弁44のリリーフ圧を第1の設定圧に変更するようにしてもよい。
 <変形例1>
 自動掘削モード中に障害物(例えば岩など)に衝突して瞬間的にバケット8の速度が0になったり、作動油の圧力が所定値以上になる可能性がある。その場合に、リリーフ圧変更部106は、リリーフ弁44のリリーフ圧を第1の設定圧よりも高い第2の設定圧に変更する可能性がある。
 本変形例1においては、当該誤動作を防止する方式について説明する。
 具体的には、リリーフ圧変更部106は、誤動作を防止するために掘削負荷の高い状態が所定期間継続するか否かを条件に加える。
 例えば、リリーフ圧変更部106は、所定条件として、自動掘削モードが実行されており、油圧回路の作動油の圧力が所定期間、所定値以上を継続し、かつ、バケット8の速度が所定期間、所定速度以下を継続している場合にリリーフ弁44のリリーフ圧を第1の設定圧よりも高い第2の設定圧に変更してもよい。
 別の方式として、フィルタ回路を用いて移動平均処理した後の計測値を用いて判定してもよい。
 具体的には、圧力検出部103に移動平均処理するフィルタ回路を設けて、当該フィルタ回路を通過した後の計測値をリリーフ圧変更部106に出力するようにしても良い。あるいは、バケット速度検出部104に、移動平均処理するフィルタ回路を設けて、当該フィルタ回路を通過した後の算出値をリリーフ圧変更部106に出力するようにしても良い。
 実施形態の変形例1に基づく処理により突発的に生じた外乱を除去することが可能となり、誤動作を防止することが可能である。
 なお、本例においては、リリーフ弁44のリリーフ圧を第1の設定圧から第2の設定圧に変更する場合の条件について説明したが、リリーフ弁44のリリーフ圧を第2の設定圧から第1の設定圧に変更する場合についても同様に適用可能である。
 <変形例2>
 上記の実施形態においては、掘削負荷の高い自動掘削の制御を実行する場合に、リリーフ弁44のリリーフ圧を第1の設定圧から第2の設定圧に変更することにより油圧回路内の作動油の圧力を高めて作業機2の出力を上昇(パワーアップ)させる場合について説明した。この点で、リリーフ圧変更部106は、リリーフ弁44のリリーフ圧を第1の設定圧よりも高い第2の設定圧に変更するとともに、エンジン調整部108にエンジンの回転数を調整するように指示する。
 図5は、実施形態に従うポンプ吸収トルクとエンジン回転数との関係を説明する図である。
 図5に示されるように、エンジン38のエンジン出力特性線EL1が示されている。そして、エンジン出力特性線EL1と、ポンプ吸収トルク特性線PLとに基づいてポンプ吸収トルクがエンジン出力トルクとマッチング点でマッチングするようにEPC弁50で制御される。本例においては、ポンプ吸収トルク特性線PL1と、ポンプ吸収トルク特性線PL2とが設けられており、通常時には、ポンプ吸収トルク特性線PL1とエンジン出力特性線EL1とのマッチング点M1でマッチングするように制御される。そして、掘削負荷の高い自動掘削の制御を実行する場合には、ポンプ吸収トルク特性線PL1をポンプ吸収トルク特性線PL2に変更する。これにより、ポンプ吸収トルク特性線PL1とエンジン出力特性線EL2とのマッチング点M2でマッチングするように制御される。具体的には、エンジン調整部108は、エンジンコントローラ30に指示してエンジン回転数を上昇させる。
 実施形態の変形例2においては、掘削負荷の高い自動掘削の制御を実行する場合に、リリーフ弁44のリリーフ圧を第1の設定圧から第2の設定圧に変更することにより油圧回路内の作動油の圧力を高めるとともに、エンジン回転数を上昇させることにより作業機2の出力をさらに上昇(パワーアップ)させることが可能である。
 上記の実施形態では、主に自動掘削の制御を実行する場合に作業機2の出力を上昇させる方式について説明したが特に自動掘削の制御の際に限られず、通常の掘削制御を実行する場合にも同様に適用可能である。具体的には、コントローラ26からの制御の状態に関するデータの入力に基づいて掘削状態と判断した場合には、図4で説明したフローを実行するようにしてもよい。例えば、ステップS2における自動掘削モードであるか否かの判断処理の代わりに、掘削状態であるか否かを判断する処理を実行して、掘削状態であれば図4で説明したステップS2以降のフローを実行するようにしてもよい。あるいは、視覚センサを用いてバケット8の刃先が地面に入ったと判断した場合には、掘削状態であると判断して図4で説明したステップS2以降のフローを実行するようにしてもよい。あるいは、作業機の姿勢に基づいて掘削状態であると判断した場合には、図4で説明したステップS2以降のフローを実行するようにしてもよい。
 上記の実施形態では、バケット速度検出部104は、ブームシリンダ10、アームシリンダ11、バケットシリンダ12からのシリンダ長のデータに基づいて作業機2のバケット8の速度を算出する方式について説明したが、これに限られず、IMU(inertial measurement unit)を用いてバケット8の速度を検出しても良い。
 運転室4の前面に取り付けた視覚センサ(Lidar、ステレオカメラ等)を用いて、バケット8の特徴量を取得し、当該特徴量の動きに基づいてバケット8の速度を検出してもよい。あるいは、バケット8にマーカを取り付けて当該マーカの動きに基づいてバケット8の速度を検出しても良い。
 上記の実施形態では、作業機械の一例として油圧ショベルを挙げているが油圧ショベルに限らず、ブルドーザ、ホイールローダ等の他の種類の作業機械にも適用可能である。
 以上、本開示の実施形態について説明したが、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 1 車両本体、2 作業機、3 旋回体、4 運転室、4S 運転席、5 走行装置、5Cr 履帯、6 ブーム、7 アーム、8 バケット、8A 刃先、9 エンジンルーム、10 ブームシリンダ、11 アームシリンダ、12 バケットシリンダ、13 ブームピン、14 アームピン、15 バケットピン、19 手すり、21 アンテナ、21A 第1アンテナ、21B 第2アンテナ、26 コントローラ、30 エンジンコントローラ、32 ポンプ圧力センサ、38 エンジン、40 油圧ポンプ、44 リリーフ弁、46 自己圧減圧弁、50 EPC弁。

Claims (13)

  1.  作業機と、
     作動油によって前記作業機を動作させる油圧シリンダと、
     油圧回路を介して前記油圧シリンダに前記作動油を供給する油圧ポンプと、
     前記油圧回路のリリーフ圧を、第1の設定圧および前記第1の設定圧よりも高い第2の設定圧のいずれかに設定可能なリリーフ弁と、
     前記作業機の制御状態が掘削状態か否かを判断する状態判断部と、
     前記油圧回路の前記作動油の圧力および前記作業機の速度の少なくとも一方を検出する検出部と、
     前記作業機の制御状態が掘削状態である場合に、前記油圧回路の前記作動油の圧力および前記作業機の速度の少なくとも一方の検出値に基づいて前記リリーフ弁のリリーフ圧を前記第1の設定圧から前記第2の設定圧に変更するリリーフ圧変更部とを備える、作業機械。
  2.  前記検出部は、前記油圧回路の前記作動油の圧力を検出する圧力検出部を含む、請求項1記載の作業機械。
  3.  前記油圧ポンプは、エンジンによって駆動され、
     前記圧力検出部によって検出された前記作動油の圧力が所定値よりも大きい場合には、前記エンジンの回転数を増大させるエンジン調整部をさらに備える、請求項2記載の作業機械。
  4.  前記作業機の速度を検出する速度検出部をさらに備える、請求項1記載の作業機械。
  5.  前記リリーフ圧変更部は、前記リリーフ弁のリリーフ圧を前記第2の設定圧に変更後、所定時間経過後に前記第1の設定圧に変更する、請求項1記載の作業機械。
  6.  前記作業機は、バケットを有し、
     前記リリーフ圧変更部は、前記リリーフ弁のリリーフ圧を前記第2の設定圧に変更後、前記油圧回路の前記作動油の圧力が所定値未満および前記バケットの速度が所定速度より大きい速度の少なくとも一方である場合に前記第1の設定圧に変更する、請求項1記載の作業機械。
  7.  前記リリーフ圧変更部は、前記リリーフ弁のリリーフ圧を前記第2の設定圧に変更後、前記油圧回路の前記作動油の圧力が所定値未満および前記バケットの速度が所定速度より大きい速度である状態が所定期間以上継続した場合に前記第1の設定圧に変更する、請求項6記載の作業機械。
  8.  前記リリーフ圧変更部は、前記リリーフ弁のリリーフ圧を前記第2の設定圧に変更後、前記作業機の制御状態が掘削状態でない場合に、前記第1の設定圧に変更する、請求項1記載の作業機械。
  9.  前記作業機は、バケットを有し、
     リリーフ圧変更部は、前記作業機の制御状態が掘削状態であり、前記油圧回路の前記作動油の圧力が所定値以上および前記バケットの速度が所定速度以下の少なくとも一方である場合に前記リリーフ弁のリリーフ圧を前記第1の設定圧から前記第2の設定圧に変更する、請求項1記載の作業機械。
  10.  前記リリーフ圧変更部は、前記作業機の制御状態が掘削状態であり、前記油圧回路の前記作動油の圧力が所定期間の間、所定値以上および前記バケットの速度が所定期間の間、所定速度以下の少なくとも一方である場合に前記リリーフ弁のリリーフ圧を前記第1の設定圧から前記第2の設定圧に変更する、請求項1記載の作業機械。
  11.  前記検出部は、前記油圧回路の前記作動油の圧力および前記作業機の速度の少なくとも一方の検出値を移動平均処理して出力するフィルタ回路を含む、請求項1記載の作業機械。
  12.  前記作業機の制御状態は、自動掘削状態である、請求項1~11のいずれか1項に記載の作業機械。
  13.  作業機の制御状態が掘削状態であるか否かを判断するステップと、
     前記作業機の制御状態が掘削状態である場合に前記作業機を動作させる油圧シリンダに油圧回路を介して供給される作動油の圧力および前記作業機の速度の少なくとも一方を検出するステップと、
     前記油圧回路の前記作動油の圧力および前記作業機の速度の少なくとも一方の検出値に基づいて前記油圧回路のリリーフ弁のリリーフ圧を第1の設定圧から前記第1の設定圧よりも高い第2の設定圧に変更するステップとを備える、作業機械の制御方法。
PCT/JP2020/025654 2019-07-19 2020-06-30 作業機械および作業機械の制御方法 WO2021014900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080045084.4A CN114008275B (zh) 2019-07-19 2020-06-30 作业机械以及作业机械的控制方法
US17/618,954 US12098515B2 (en) 2019-07-19 2020-06-30 Work machine and method for controlling the same
DE112020002415.6T DE112020002415T5 (de) 2019-07-19 2020-06-30 Arbeitsmaschine und Verfahren zur Steuerung derselben
KR1020217040452A KR102641393B1 (ko) 2019-07-19 2020-06-30 작업 기계 및 작업 기계의 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-134035 2019-07-19
JP2019134035A JP7368130B2 (ja) 2019-07-19 2019-07-19 作業機械および作業機械の制御方法

Publications (1)

Publication Number Publication Date
WO2021014900A1 true WO2021014900A1 (ja) 2021-01-28

Family

ID=74193774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025654 WO2021014900A1 (ja) 2019-07-19 2020-06-30 作業機械および作業機械の制御方法

Country Status (6)

Country Link
US (1) US12098515B2 (ja)
JP (1) JP7368130B2 (ja)
KR (1) KR102641393B1 (ja)
CN (1) CN114008275B (ja)
DE (1) DE112020002415T5 (ja)
WO (1) WO2021014900A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230097563A1 (en) * 2021-09-28 2023-03-30 Deere & Company System and method for blade control on a utility vehicle
US20230272599A1 (en) * 2022-02-28 2023-08-31 Caterpillar Inc. Work machine safety zone control
WO2024071220A1 (ja) * 2022-09-30 2024-04-04 日立建機株式会社 ホイールローダ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136376A (ja) * 1997-07-17 1999-02-09 Komatsu Ltd 作業機における旋回起動制御装置
JPH11247233A (ja) * 1998-02-27 1999-09-14 Yutani Heavy Ind Ltd 油圧ショベルの昇圧制御方法及び同装置
JP3779488B2 (ja) * 1999-04-08 2006-05-31 日立建機株式会社 建設機械の油圧駆動装置
JP2010156134A (ja) * 2008-12-26 2010-07-15 Komatsu Ltd 作業車両および作業車両の制御方法
JP2012086617A (ja) * 2010-10-18 2012-05-10 Caterpillar Japan Ltd アーティキュレート車両における小旋回制御装置
WO2017138070A1 (ja) * 2016-02-08 2017-08-17 株式会社小松製作所 作業車両および動作制御方法
JP2018145685A (ja) * 2017-03-06 2018-09-20 日立建機株式会社 油圧ショベルの油圧駆動装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11336585A (ja) * 1998-05-27 1999-12-07 Hitachi Constr Mach Co Ltd 油圧パワーステアリング装置を有する車両
JP3876220B2 (ja) * 2002-12-10 2007-01-31 新キャタピラー三菱株式会社 作業機械の自動昇圧装置
CN101761105B (zh) * 2009-11-19 2011-08-17 龙工(上海)机械制造有限公司 一种液压挖掘机的功率匹配方法
JP5512311B2 (ja) * 2010-02-03 2014-06-04 住友重機械工業株式会社 建設機械
US9175456B2 (en) 2010-06-22 2015-11-03 Hitachi Construction Machinery Co., Ltd. Hydraulic control device for working vehicle
WO2013145341A1 (ja) * 2012-03-30 2013-10-03 株式会社小松製作所 ホイールローダ及びホイールローダの制御方法
JP7114429B2 (ja) * 2018-09-26 2022-08-08 日立建機株式会社 建設機械

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136376A (ja) * 1997-07-17 1999-02-09 Komatsu Ltd 作業機における旋回起動制御装置
JPH11247233A (ja) * 1998-02-27 1999-09-14 Yutani Heavy Ind Ltd 油圧ショベルの昇圧制御方法及び同装置
JP3779488B2 (ja) * 1999-04-08 2006-05-31 日立建機株式会社 建設機械の油圧駆動装置
JP2010156134A (ja) * 2008-12-26 2010-07-15 Komatsu Ltd 作業車両および作業車両の制御方法
JP2012086617A (ja) * 2010-10-18 2012-05-10 Caterpillar Japan Ltd アーティキュレート車両における小旋回制御装置
WO2017138070A1 (ja) * 2016-02-08 2017-08-17 株式会社小松製作所 作業車両および動作制御方法
JP2018145685A (ja) * 2017-03-06 2018-09-20 日立建機株式会社 油圧ショベルの油圧駆動装置

Also Published As

Publication number Publication date
JP2021017737A (ja) 2021-02-15
US20220316174A1 (en) 2022-10-06
JP7368130B2 (ja) 2023-10-24
KR102641393B1 (ko) 2024-02-27
KR20220007144A (ko) 2022-01-18
CN114008275A (zh) 2022-02-01
US12098515B2 (en) 2024-09-24
CN114008275B (zh) 2024-03-08
DE112020002415T5 (de) 2022-02-24

Similar Documents

Publication Publication Date Title
WO2021014900A1 (ja) 作業機械および作業機械の制御方法
EP2072691B1 (en) Shock absorption device and control method thereof for small swing radius excavator
US8548689B2 (en) Implement induced machine pitch detection
CN107306500B (zh) 作业机械的控制装置、作业机械以及作业机械的控制方法
WO2016133225A1 (ja) 作業車両の制御システム、制御方法、及び作業車両
CN103906877A (zh) 推土铲控制装置、作业机械及推土铲控制方法
US8600621B2 (en) System and method for controlling slip
US9002593B2 (en) System and method for re-directing a ripping path
WO2013051377A1 (ja) ブレード制御システム、建設機械及びブレード制御方法
US20130158818A1 (en) Implement control system for a machine
US20150008006A1 (en) Anti-bounce control system for a machine
WO2014181894A1 (ja) 作業車両および作業車両の制御方法
CN113924396B (zh) 作业机械及作业机械的控制方法
US7607245B2 (en) Construction machine
WO2017138070A1 (ja) 作業車両および動作制御方法
JP6901406B2 (ja) 作業機械および作業機械の制御方法
US11608610B2 (en) Control of a hydraulic system
JP2020204216A (ja) 建設機械
JP2009155903A (ja) 作業機械のフロント制御方法
JP2023025935A (ja) 作業機の油圧システム、作業機
KR20220063167A (ko) 구동 모터 배기량 제어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217040452

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20843911

Country of ref document: EP

Kind code of ref document: A1