WO2021012354A1 - 导电胶及其制备方法 - Google Patents

导电胶及其制备方法 Download PDF

Info

Publication number
WO2021012354A1
WO2021012354A1 PCT/CN2019/104082 CN2019104082W WO2021012354A1 WO 2021012354 A1 WO2021012354 A1 WO 2021012354A1 CN 2019104082 W CN2019104082 W CN 2019104082W WO 2021012354 A1 WO2021012354 A1 WO 2021012354A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive adhesive
silane
resin
adhesive according
film
Prior art date
Application number
PCT/CN2019/104082
Other languages
English (en)
French (fr)
Inventor
张霞
王海军
陈孝贤
李泳锐
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2021012354A1 publication Critical patent/WO2021012354A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays

Definitions

  • the present disclosure relates to the field of liquid crystal display technology, in particular to a conductive adhesive and a preparation method thereof.
  • anisotropic conductive film (ACF) is used for signal transmission. This kind of anisotropic conductive adhesive will be more and more widely used.
  • the mainstream ACF products on the market consist of resin, curing agent, conductive particles and additives. Due to the differences in the components of the ACF products, the adhesive strength of the conductive adhesives on the market is not very satisfactory, and the conductive adhesives cannot be closely connected to the substrate. In addition, traditional conductive adhesives are generally cured by heating. This method has the problems of slow curing speed, concentrated stress, and easy deformation of the substrate. At the same time, when exposed to light or in use, the interface adhesion of the anisotropic conductive adhesive is not high, and the connection with other devices is not tight. At the same time, there are cavities and gaps between the polymer film and the substrate during the pressing process. , Is not conducive to product performance.
  • the existing conductive adhesive has a low adhesive force, cannot fully adhere to the substrate, and cannot be cured quickly. It is necessary to propose further improvements and improvements.
  • the present disclosure provides a conductive adhesive and a preparation method thereof to solve the technical problems of the conductive adhesive in the prior art such as low adhesion and interface adhesion, inability to fully adhere to the substrate, and inability to fast curing. Improve product stability and other comprehensive performance.
  • a conductive adhesive including:
  • the photo-initiated cationic curing agent Under illumination, the photo-initiated cationic curing agent generates cations, the cations initiate the polymerization of the photo-cationically polymerizable compound, the light-sensitive small molecule monomers undergo structural isomerism, and drive the molecular structure of the conductive adhesive to renew arrangement;
  • the mass fraction of the photosensitive small molecule monomer is 10%-40%
  • the mass fraction of the photocationic polymerizable compound is 10%-40%
  • the mass fraction of the photoinitiated cationic curing agent is 0.05%- 10%.
  • a diluent and other auxiliary agents are further included.
  • the mass fraction of the diluent is 3% to 15%, and the mass fraction of the other auxiliary agents is 0.01% to 5%.
  • the photosensitive small molecule monomer includes a spiropyran derivative
  • the photocationic polymerizable compound includes an alicyclic epoxy compound, a glycidyl ether type epoxy compound, and a glycidyl ester epoxy compound.
  • the photoinitiated cationic curing agent includes one or more of aromatic diazonium salt, iodonium salt, sulfonium salt, selenonium salt, and phosphonium salt.
  • the cationic polymerization inhibitor includes toluidine, triazine or triphenylphosphine.
  • the film-forming resin includes phenoxy resin, urethane resin, polyimide resin, polyvinyl methyl acetal, xylene resin, polyamide resin, polyester resin, polyvinyl butyral One or more of them, the molecular weight of the film-forming resin is 100000-1000000.
  • the film-forming resin includes a hydroxyl group or a carboxyl group
  • the molecular weight of the film-forming resin is 20000-60000
  • the molecular weight of the acrylic rubber is 100000-1000000
  • the glass transition temperature of the acrylic rubber is less than 0°.
  • the conductive particles include polystyrene balls
  • the diluent includes one or more of methyl ethyl ketone, butyl glycidyl ether, toluene, tetrahydrofuran, and dichloromethane.
  • the auxiliary agent further includes an anti-aging agent or a silane coupling agent
  • the anti-aging agent includes one or more of amines, phenols, sulfides, and phosphites
  • the silane coupling agent includes vinyl silane, amino silane, methacryloxy silane, vinyl triethoxy silane, vinyl trimethoxy silane, vinyl tris ( ⁇ -methoxyethoxy) silane
  • 2,3 epoxypropyl propyl trimethoxy silane, amino functional group trimethoxy silane, or (3-aminopropyl) triethoxy silane is a silane coupling agent.
  • a conductive adhesive including:
  • the photo-initiated cationic curing agent Under illumination, the photo-initiated cationic curing agent generates cations, the cations initiate the polymerization of the photo-cationically polymerizable compound, the light-sensitive small molecule monomers undergo structural isomerism, and drive the molecular structure of the conductive adhesive to renew arrangement.
  • a diluent and other auxiliary agents are further included.
  • the mass fraction of the diluent is 3% to 15%, and the mass fraction of the other auxiliary agents is 0.01% to 5%.
  • the photosensitive small molecule monomer includes a spiropyran derivative
  • the photocationic polymerizable compound includes an alicyclic epoxy compound, a glycidyl ether type epoxy compound, and a glycidyl ester epoxy compound.
  • the photoinitiated cationic curing agent includes one or more of aromatic diazonium salt, iodonium salt, sulfonium salt, selenonium salt, and phosphonium salt.
  • the cationic polymerization inhibitor includes toluidine, triazine or triphenylphosphine.
  • the film-forming resin includes phenoxy resin, urethane resin, polyimide resin, polyvinyl methyl acetal, xylene resin, polyamide resin, polyester resin, polyvinyl butyral One or more of them, the molecular weight of the film-forming resin is 100000-1000000.
  • the film-forming resin includes a hydroxyl group or a carboxyl group
  • the molecular weight of the film-forming resin is 20000-60000
  • the molecular weight of the acrylic rubber is 100000-1000000
  • the glass transition temperature of the acrylic rubber is less than 0°.
  • the conductive particles include polystyrene balls
  • the diluent includes one or more of methyl ethyl ketone, butyl glycidyl ether, toluene, tetrahydrofuran, and dichloromethane.
  • the auxiliary agent further includes an anti-aging agent or a silane coupling agent
  • the anti-aging agent includes one or more of amines, phenols, sulfides, and phosphites
  • the silane coupling agent includes vinyl silane, amino silane, methacryloxy silane, vinyl triethoxy silane, vinyl trimethoxy silane, vinyl tris ( ⁇ -methoxyethoxy) silane
  • 2,3 epoxypropyl propyl trimethoxy silane, amino functional group trimethoxy silane, or (3-aminopropyl) triethoxy silane is a silane coupling agent.
  • a method for preparing a conductive adhesive including the following steps:
  • S100 Mix photosensitive small molecule monomers, photocationic polymerizable compounds, photoinitiated cationic curing agents, cationic polymerization inhibitors, film-forming resins, acrylic rubbers, diluents, and other additives in a yellow light environment;
  • step S101 The components uniformly mixed in step S100 are subjected to the steps of mixing, stirring and defoaming to form a homogenous gel;
  • step S102 coating the uniform glue formed in step S101 on a release film, and drying it at a temperature of 50-100° C. for 1-15 minutes to form a first conductive glue;
  • step S103 Cut the first conductive glue in step S102 into a plurality of second conductive glues with different widths.
  • the embodiments of the present disclosure provide a conductive adhesive and a preparation method thereof.
  • the conductive adhesive is formed by mixing multiple components in different proportions. After the components are mixed uniformly and dried, they form an all-directional adhesive. Anisotropic conductive adhesive. This anisotropic conductive adhesive has good adhesion, can be completely attached to and tightly connected to the substrate, and the conductive adhesive of the present disclosure can be cured quickly. At the same time, the gap between the polymer film and the substrate in the traditional anisotropic conductive adhesive is also eliminated.
  • FIG. 1 is a flow chart of the preparation process of the conductive adhesive of the disclosed embodiment
  • FIG. 2 is a flow chart of the homogenization process of the conductive adhesive of the disclosed embodiment.
  • the present disclosure provides a conductive adhesive whose components include:
  • the mass fraction of the photosensitive small molecule monomer is 10%-40%
  • the mass fraction of the photocationically polymerizable compound is 10%-40%
  • the photoinitiated cationic curing The mass fraction of the agent is 0.05% to 10%
  • the mass fraction of the cationic polymerization inhibitor is 0.01% to 10%
  • the mass fraction of the film-forming resin is 10% to 40%
  • the mass fraction of the acrylic rubber is 10% to 40%
  • the mass fraction of the conductive particles is 1% to 20%
  • the mass fraction of the diluent is 3% to 15%
  • the mass fraction of the other auxiliary agents is 0.01% to 5%.
  • the photo-initiated cationic curing agent generates cations, and the cations initiate the polymerization of the photo-cationically polymerizable compound, and the photosensitive small molecule monomers undergo structural isomerization and drive the
  • the molecular structure of the conductive adhesive is rearranged, and the rearranged molecules eliminate the cavities and gaps between the polymer film and the substrate, thus effectively improving the interfacial adhesion of the system.
  • the photosensitive small molecule monomers include spiropyran derivatives (SP-1), the structural formula of which is:
  • the structure will change.
  • the internal polymer chains and doping molecules will rearrange, and then Fill up the cavities and gaps inside the photosensitive small molecule monomer.
  • the attractive force between molecules will become stronger, which will increase the interface adhesion of the conductive adhesive, thereby improving the conductive adhesive follow force.
  • the photocationic polymerizable compound includes one or a mixture of alicyclic epoxy compounds, glycidyl ether type epoxy compounds, glycidyl ester type epoxy resins, glycidylamine type epoxy resins, and the like. After the material is irradiated by ultraviolet light, it can be initiated by the cationic curing agent and then polymerized, thereby enhancing the adhesive force of the conductive adhesive.
  • the photo-initiated cationic curing agent includes one or more of aromatic diazonium salts, iodonium salts, sulfonium salts, selenoium salts, and phosphonium salts.
  • the photo-initiated cationic curing agent generates cations, such as sulfonium salts, onium salts, etc., after being exposed to ultraviolet light.
  • aromatic sulfonium salts absorb part of the light in the wavelength band above 300 nm, and the photosensitive small molecules are single The volume absorption band is also around 300 nm, so in order to avoid the occurrence of secondary light, the aromatic sulfonium salt can be appropriately selected.
  • the cationic polymerization inhibitor can slow or inhibit cationic polymerization reaction through light irradiation, thereby prolonging the operation time.
  • Such substances can be toluidine, triazine, triphenylphosphine and the like.
  • the film-forming resin includes one of phenoxy resin, urethane resin, polyimide resin, polyvinyl methyl acetal, xylene resin, polyamide resin, polyester resin, polyvinyl butyral or Its mixture.
  • the molecular weight of the resin in these components is between 100000-1000000. If the film-forming resin can contain more hydroxyl or carboxyl groups, it is more suitable.
  • the film-forming resin of this structure is beneficial to improve the adhesion of the adhesive. At the same time, the film-forming resin must have sufficient heat resistance and a small volume change rate when the temperature changes. For example, choose a phenoxy resin with a molecular weight between 20,000 and 60,000.
  • the molecular weight of the acrylic rubber with carboxyl group is between 100000-1000000.
  • the glass transition temperature of this rubber should be less than 0°C.
  • the more hydroxyl and carboxyl groups in the rubber molecular structure the better. Conducive to increase the adhesion of conductive adhesive.
  • the acid value acrylic rubber is preferred.
  • the above-mentioned conductive particles are any known conductive particles used in an anisotropic conductive film. Such as gold ball particles, conductive particles coated with a conductive coating on the resin surface (such as carbon nanotube modified polystyrene beads, graphene coated SiO2 beads), etc.
  • conductive particles coated with a conductive coating on the resin surface such as carbon nanotube modified polystyrene beads, graphene coated SiO2 beads
  • polystyrene beads modified with carbon nanotubes are preferred.
  • the carbon nanotubes are uniformly coated on the surface of the polystyrene beads. Because the carbon nanotubes have better electrical conductivity, they are manufactured by Adjust the particle size of the polystyrene beads and prepare conductive beads with different particle sizes.
  • the diluent has good solubility to the polymer resin and rubber in the component.
  • This diluent includes one or a mixture of methyl ethyl ketone, butyl glycidyl ether, toluene, tetrahydrofuran, and methylene chloride.
  • butyl glycidyl ether with epoxy groups is preferred, because butyl glycidyl ether with epoxy groups contains epoxy groups, and the epoxy groups can further react with the remaining solvent, and further Increase the curing of the colloid.
  • the added mass ratio of the epoxy-containing butyl glycidyl ether is 3%-15%.
  • an anti-aging agent, a silane coupling agent, etc. are added to the auxiliary agent.
  • the amount of addition depends on the demand.
  • the added anti-aging agents include: amines, phenols, sulfides, phosphites, etc.
  • the added silane coupling agents include: vinyl silane, amino silane, methacryloxy silane, A151 (vinyl triethoxy silane), A171 (vinyl trimethoxy silane), A172 (vinyl trimethoxy silane) ( ⁇ -methoxyethoxy) silane), 2,3 epoxypropyl propyl trimethoxy silane, amino functional group trimethoxy silane, (3-aminopropyl) triethoxy silane, etc.
  • the addition of additives will further improve the performance of the conductive adhesive.
  • the embodiment of the present disclosure also provides a method for preparing a conductive adhesive.
  • the process flow is shown in Figure 1 and includes the following step:
  • S100 Mix photosensitive small molecule monomers, photocationic polymerizable compounds, photoinitiated cationic curing agents, cationic polymerization inhibitors, film-forming resins, acrylic rubbers, diluents, and other additives in a yellow light environment;
  • step S101 The components uniformly mixed in step S100 are subjected to the steps of mixing, stirring and defoaming to form a homogenous gel;
  • step S102 coating the uniform glue formed in step S101 on a release film, and drying it at a temperature of 50-100° C. for 1-15 minutes to form a first conductive glue;
  • step S103 Cut the first conductive glue in step S102 into a plurality of second conductive glues with different widths.
  • Step S102 is the homogenization process, as shown in the flow chart of the homogenization process in FIG. 2, in the above step S102, it also includes
  • Step S200 First, weigh a certain amount of phenoxy resin and dissolve it in the diluent, and then soak the reagent at 25-80°C for 30 minutes to 48 hours.
  • Step S201 After the immersion is completed, in the obtained phenoxy resin dispersion, under yellow light environment, sequentially add photocationic polymerizable compound, cationic polymerization inhibitor, acrylic rubber, auxiliary agent, and cationic curing agent, and manually stir first. Use a homogenizer to mix for 3 minutes, add conductive particles after ensuring sufficient mixing, and repeat the above mixing action to obtain the required ACF glue.
  • Step S202 Next, coat ACF with a thickness of 10-100um on the release film to obtain a uniform complete film layer, and then dry at a temperature of 50-100°C for a drying time of 1-15min, and coat The thickness of the film is 8-50um, and a large ACF film is produced.
  • the prepared conductive adhesive is tested for bonding strength, conduction resistance, and insulation resistance.
  • the examples of this disclosure provide the following examples of different proportioning schemes, and the above-mentioned properties of the prepared conductive adhesives have been tested.
  • the specific experimental data are shown in Table 1 and Table 2 below. Table 1 shows the content of each component in the conductive adhesive. (wt%), Table 2 shows the performance parameters of the conductive adhesive.
  • the component photosensitive small molecule is a spiropyran derivative (SP-1)
  • the photocationic polymerizable compound is an alicyclic epoxy compound
  • the cationic polymerization inhibitor is N,N-diethyl Meta-toluidine
  • film-forming resin is phenoxy resin
  • acrylic rubber is acrylic rubber with carboxyl group
  • diluent is butyl glycidyl ether.
  • the conductive adhesive provided by the embodiments of the present disclosure and the preparation method thereof are described in detail above.
  • Each component prepares a new conductive adhesive according to different proportions, and the adhesive of the new conductive adhesive is obtained.
  • the bonding performance is higher, the bonding effect is better, and the curing speed is faster.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

本揭示提供一种导电胶及其制备方法,导电胶包括光敏小分子单体、光阳离子聚合型化合物、光引发型阳离子型固化剂、阳离子阻聚剂、成膜树脂、丙烯酸橡胶、导电粒子、稀释剂以及其他助剂,本揭示的导电胶的粘接性能高,粘接效果好,固化速度快。

Description

导电胶及其制备方法 技术领域
本揭示涉及液晶显示技术领域,尤其涉及一种导电胶及其制备方法。
背景技术
在显示器产品中,液晶面板与覆晶薄膜(Chip On Film,COF)连接时,以及印刷电路布线板和COF连接时,皆使用各向异性导电膜(Anisotropic Conductive Films,ACF)进行信号传输,这种各向异性导电胶的应用会越来越广泛。
目前市场上主流的ACF产品,基本组成为树脂、固化剂、导电粒子及助剂。由于在ACF产品中各组分的差异,市场上的导电胶的接着力不是很理想,导电胶无法与基材紧密连接。并且传统的导电胶一般都采用加热固化,这种方式存在着固化速度慢、应力集中,基材容易变形的问题。同时,在光照或者使用时,各向异性导电胶的界面黏附性不高,与其他器件之间的连接不紧密,同时在本压过程中,聚合物膜和基底之间也存在空腔和间隙,不利于产品的性能。
因此需要对现有技术中的问题提出解决方法。
技术问题
因此,现有导电胶的存在着粘接力不高,无法与基材完全贴合并且在无法快速固化的技术问题,需要提出进一步的完善和改进方案。
技术解决方案
为解决上述问题,本揭示提供一种导电胶及其制备方法,以解决 现有技术中的导电胶的接着力和界面黏附性低,无法与基材完全贴合以及无法快速固化等技术问题,提高产品的稳定性等综合性能。
为解决上述技术问题,本揭示提供的技术方案如下:
根据本揭示实施例的第一方面,提供了一种导电胶,包括:
混合均匀的光敏小分子单体、光阳离子聚合型化合物、光引发型阳离子固化剂、阻聚剂、成膜树脂、丙烯酸橡胶以及导电粒子;
在光照下,所述光引发型阳离子固化剂生成阳离子,所述阳离子引发所述光阳离子聚合型化合物聚合,所述光敏小分子单体发生结构异构,并驱动所述导电胶的分子结构重新排列;
其中,所述光敏小分子单体的质量分数为10%~40%,所述光阳离子聚合型化合物的质量分数为10%~40%,光引发型阳离子型固化剂的质量分数为0.05%~10%。
根据本揭示一实施例,还包括稀释剂和其他助剂,所述稀释剂的质量分数为3%~15%,所述其他助剂的质量分数为0.01%~5%。
根据本揭示一实施例,所述光敏小分子单体包括螺吡喃衍生物,所述光阳离子聚合型化合物包括脂环式环氧化合物、缩水甘油醚型环氧化合物、缩水甘油酯型环氧树脂、缩水甘油胺型环氧树脂中的一种或多种。
根据本揭示一实施例,所述光引发型阳离子型固化剂包括芳香族重氮鎓盐、碘鎓盐、硫鎓盐、硒鎓盐、磷鎓盐中的一种或多种。
根据本揭示一实施例,所述阳离子阻聚剂包括甲苯胺、三嗪或三苯基膦。
根据本揭示一实施例,所述成膜树脂包括苯氧树脂、尿醛树脂、聚酰亚胺树脂、聚乙烯甲缩醛、二甲苯树脂、聚酰胺树脂、聚酯树脂、聚乙烯丁缩醛中的一种或多种,所述成膜树脂的分子量为100000-1000000。
根据本揭示一实施例,所述成膜树脂包括羟基或羧基,所述成膜树脂的分子量为20000-60000,所述丙烯酸橡胶的分子量为100000-1000000,所述丙烯酸橡胶的玻璃化转变温度小于0°。
根据本揭示一实施例,所述导电粒子包括聚苯乙烯球,所述稀释剂包括甲乙酮、丁基缩水甘油醚、甲苯、四氢呋喃、二氯甲烷中的一种或多种。
根据本揭示一实施例,所述助剂还包括防老化剂或硅烷偶联剂,所述防老化剂包括胺类、酚类、硫化物类、亚磷酸酯类中的一种或多种,所述硅烷偶联剂包括乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、2,3环氧丙基丙基三甲氧基硅烷、氨基官能团三甲氧基硅烷、或(3-氨丙基)三乙氧基硅烷中的一种或多种。
根据本揭示实施例的第二方面,提供了一种导电胶,包括:
混合均匀的光敏小分子单体、光阳离子聚合型化合物、光引发型阳离子固化剂、阻聚剂、成膜树脂、丙烯酸橡胶以及导电粒子;
在光照下,所述光引发型阳离子固化剂生成阳离子,所述阳离子引发所述光阳离子聚合型化合物聚合,所述光敏小分子单体发生结构异构,并驱动所述导电胶的分子结构重新排列。
根据本揭示一实施例,还包括稀释剂和其他助剂,所述稀释剂的质量分数为3%~15%,所述其他助剂的质量分数为0.01%~5%。
根据本揭示一实施例,所述光敏小分子单体包括螺吡喃衍生物,所述光阳离子聚合型化合物包括脂环式环氧化合物、缩水甘油醚型环氧化合物、缩水甘油酯型环氧树脂、缩水甘油胺型环氧树脂中的一种或多种。
根据本揭示一实施例,所述光引发型阳离子型固化剂包括芳香族重氮鎓盐、碘鎓盐、硫鎓盐、硒鎓盐、磷鎓盐中的一种或多种。
根据本揭示一实施例,所述阳离子阻聚剂包括甲苯胺、三嗪或三苯基膦。
根据本揭示一实施例,所述成膜树脂包括苯氧树脂、尿醛树脂、聚酰亚胺树脂、聚乙烯甲缩醛、二甲苯树脂、聚酰胺树脂、聚酯树脂、聚乙烯丁缩醛中的一种或多种,所述成膜树脂的分子量为100000-1000000。
根据本揭示一实施例,所述成膜树脂包括羟基或羧基,所述成膜树脂的分子量为20000-60000,所述丙烯酸橡胶的分子量为100000-1000000,所述丙烯酸橡胶的玻璃化转变温度小于0°。
根据本揭示一实施例,所述导电粒子包括聚苯乙烯球,所述稀释剂包括甲乙酮、丁基缩水甘油醚、甲苯、四氢呋喃、二氯甲烷中的一种或多种。
根据本揭示一实施例,所述助剂还包括防老化剂或硅烷偶联剂,所述防老化剂包括胺类、酚类、硫化物类、亚磷酸酯类中的一种或多 种,所述硅烷偶联剂包括乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、2,3环氧丙基丙基三甲氧基硅烷、氨基官能团三甲氧基硅烷、或(3-氨丙基)三乙氧基硅烷中的一种或多种。
根据本揭示的另一方面,还提供一种导电胶的制备方法,包括如下步骤:
S100:将光敏小分子单体、光阳离子聚合型化合物、光引发型阳离子型固化剂、阳离子阻聚剂、成膜树脂、丙烯酸橡胶、稀释剂、以及其他助剂在黄光环境下均匀混合;
S101:将步骤S100中均匀混合的所述组分进行混胶、搅拌和脱泡工序,形成匀胶;
S102:将步骤S101中形成的所述匀胶涂布到离型膜上,并在50~100℃的温度下干燥处理1~15分钟,形成第一导电胶;
S103:将步骤S102中的所述第一导电胶裁切成具有不同宽度的多个第二导电胶。
有益效果
相综上所述,本揭示的有益效果为:
本揭示实施例提供了一种导电胶及其制备方法,所述的导电胶由多种组分按照不同的比例混合而成,各组分经过混合均匀并干燥等处理后,形成一种各向异性导电胶,这种各向异性导电胶的接着力很好,能与基材之间完全贴合并紧密连接,并且,本揭示的导电胶,能够快速的固化。同时,还消除了传统各向异性导电胶中聚合物膜与基底之 间的空隙。
附图说明
图1为本揭示实施例导电胶的制备工艺流程图;
图2为本揭示实施例导电胶的匀胶工艺流程图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本揭示可用以实施的特定实施例。
本揭示提供了一种导电胶,其组分包括:
相对于整体组合物的质量,所述光敏小分子单体的质量分数为10%~40%,所述光阳离子聚合型化合物的质量分数为10%~40%,所述光引发型阳离子型固化剂的质量分数为0.05%~10%,所述阳离子阻聚剂的质量分数为0.01%~10%,所述成膜树脂的质量分数为10%~40%,所述丙烯酸橡胶的质量分数为10%~40%,所述导电粒子的质量分数为1%~20%,所述稀释剂的质量分数为3%~15%、所述其他助剂的质量分数为0.01%~5%。
其中,在光照下,如紫外光,所述光引发型阳离子固化剂生成阳离子,所述阳离子引发所述光阳离子聚合型化合物聚合,所述光敏小分子单体发生结构异构,并驱动所述导电胶的分子结构重新排列,重排后的分子消除了聚合物膜与基底之间的空腔以及间隙,因此,有效的提高了体系的界面黏附性。
在上述的各组分中,其中:
所述的光敏小分子单体中,包括螺吡喃衍生物(SP-1),其结构 式为:
Figure PCTCN2019104082-appb-000001
该光敏小分子单体聚合物经过紫外线光照射1分钟(min)后,结构会发生变化,同时,这种聚合物质在退火的过程中,内部的聚合物链和掺杂分子会重新排列,进而将光敏小分子单体内部的空腔和间隙填满,由于内部的空腔和间隙减少,分子间的吸引力会变得更强,进而使得导电胶的界面黏附性增强,从而提高导电胶的接着力。
所述的光阳离子聚合型化合物,包括脂环式环氧化合物、缩水甘油醚型环氧化合物、缩水甘油酯型环氧树脂、缩水甘油胺型环氧树脂等中的一种或者其混合物。该物质在受到紫外光的照射后,能由阳离子固化剂引发进而发生聚合,从而加强导电胶的接着力。
所述的光引发型阳离子型固化剂,包括:芳香族重氮鎓盐、碘鎓盐、硫鎓盐、硒鎓盐、磷鎓盐等中的一种或几种。所述的光引发型阳离子型固化剂在受紫外光照后会产生阳离子,如锍盐、鎓盐等,其中芳香族硫鎓盐会吸收部分300nm以上波段的光,而所述的光敏小分子单体吸光波段也在300nm附近,因此为了避免发生2次光照,可适当选择所述芳香族硫鎓盐。
所述的阳离子阻聚剂,可以通过光线照射来减缓或抑制阳离子的聚合反应,从而延长操作时间。这种物质可以为甲苯胺、三嗪、三苯基膦等。
所述的成膜树脂,包括苯氧树脂、尿醛树脂、聚酰亚胺树脂、聚 乙烯甲缩醛、二甲苯树脂、聚酰胺树脂、聚酯树脂、聚乙烯丁缩醛中的一种或者其混合物。这些组分中树脂的分子量在100000-1000000之间,所述的成膜树脂中如果能够含有较多的羟基或者羧基就更合适,这种结构的成膜树脂有利于提高胶黏剂的附着力,同时,该成膜树脂必须具有足够强的耐热性,在温度变化时体积变化率较小,例如选择分子量在20000-60000之间的苯氧树脂。
所述的带羧基的丙烯酸橡胶,其分子量位于100000-1000000之间,这种橡胶的玻璃化转变温度要小于0℃,同时橡胶分子结构中的羟基及羧基的含量越多越好,这样,有利于增加导电胶的附着力。根据化学物质中的酸价,优先选择酸价丙烯酸橡胶。
所述的导电粒子,为在各向异性导电膜中使用的公知的任意导电性粒子。如金球粒子、树脂表面包覆导电涂层的导电颗粒(如碳纳米管修饰的聚苯乙烯小球、石墨烯包裹SiO2小球)等。本揭示实施例中优选则碳纳米管修饰的聚苯乙烯小球,碳纳米管被均匀的包覆在聚苯乙烯小球的表面,由于碳纳米管的导电性能较好,在制作时,通过调整聚苯乙烯小球的粒径和即可制备出不同粒径的导电小球。
所述的稀释剂,对组分中的高分子树脂和橡胶有较好的溶解性。这种稀释剂包括甲乙酮、丁基缩水甘油醚、甲苯、四氢呋喃、二氯甲烷中的一种或其混合物。本揭示实施例优先选用带环氧基的丁基缩水甘油醚,因为带环氧基的丁基缩水甘油醚中含有带环氧基,带环氧基还能与残留的溶剂进一步发生反应,进一步的增加胶体的固化。所述带环氧基的丁基缩水甘油醚所添加的质量比例为3%~15%,在充分分 散苯氧树脂的情况下,尽可能少的添加所述带环氧基的丁基缩水甘油醚,以减少后续制程中对溶剂处理的时间。
优选的,在所述的助剂中添加防老化剂、硅烷偶联剂等。添加的量视需求而定。所添加的防老化剂包括:胺类、酚类、硫化物类、亚磷酸酯类等。所添加的硅烷偶联剂包括:乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷、A151(乙烯基三乙氧基硅烷)、A171(乙烯基三甲氧基硅烷)、A172(乙烯基三(β-甲氧乙氧基)硅烷)、2,3环氧丙基丙基三甲氧基硅烷、氨基官能团三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷等。助剂的加入会进一步提高导电胶的性能。
上述对各组分的类型以及各组分所添加的比例和注意事项进行了细致的说明,同时本揭示实施例还提供了一种导电胶的制备方法,工艺流程如图1所示,包括以下步骤:
S100:将光敏小分子单体、光阳离子聚合型化合物、光引发型阳离子型固化剂、阳离子阻聚剂、成膜树脂、丙烯酸橡胶、稀释剂、以及其他助剂在黄光环境下均匀混合;
S101:将步骤S100中均匀混合的所述组分进行混胶、搅拌和脱泡工序,形成匀胶;
S102:将步骤S101中形成的所述匀胶涂布到离型膜上,并在50~100℃的温度下干燥处理1~15分钟,形成第一导电胶;
S103:将步骤S102中的所述第一导电胶裁切成具有不同宽度的多个第二导电胶。
步骤S102为匀胶工艺,如图2所示的匀胶工艺流程图,在上述 步骤S102中,还包括
步骤S200:首先称取一定量的苯氧树脂,并溶于稀释剂中,然后该试剂在25~80℃下浸泡30分钟到48小时。
步骤S201:浸泡完成后,在得到的苯氧树脂分散液中,在黄光环境下,依次加入光阳离子聚合型化合物、阳离子阻聚剂、丙烯酸橡胶、助剂、阳离子固化剂,先手动搅拌,在使用匀胶机混合3分钟,在确保充分混合后加入导电粒子,重复上述混胶动作,从而得到所需要的ACF胶材。
步骤S202:紧接着,在所述离型膜上涂覆厚度为10~100um的ACF,得到均匀的完整膜层,再在温度为50~100℃下干燥,干燥时间为1~15min,涂布的膜厚度为8~50um,制得大片ACF膜。
得到所需要的导电胶后,对制备的导电胶进行粘接强度、导通阻抗以及绝缘阻抗进行测试。本揭示实施例提供如下不同配比方案的实施例,并分别对制得的导电胶进行了上述性测试,具体实验数据如下表1、表2所示,表1为导电胶中各组分含量(wt%),表2为导电胶的性能参数。
表1导电胶中各组分(wt%)
Figure PCTCN2019104082-appb-000002
表2导电胶的性能参数
Figure PCTCN2019104082-appb-000003
其中,在上述实施例中,组分光敏小分子为螺吡喃衍生物(SP-1),光阳离子聚合型化合物为脂环式环氧化合物,阳离子阻聚剂为 N,N-二乙基间甲苯胺,成膜树脂为苯氧树脂,丙烯酸橡胶为带羧基的丙烯酸橡胶,稀释剂采用丁基缩水甘油醚。
上述表格1中的实施例一共有7组,编号分别为1至7。通过对上述实验数据进行分析,在编号1-5的实施例中,都是缺少部分组分,而编号6、7两组实施例为全部组分,通过表2中实验性能数据,看出采用编号6、7实施例所制得的导电胶的粘接强度比其他组的粘结强度高出很多,粘接性能更强,所述导电胶在应用到显示器产品中粘接效果会更好。
综上所述,以上对本揭示实施例所提供的一种导电胶及其制备方法进行了详细的介绍,各组分按照不同的配比来制备新的导电胶,得到的新的导电胶的粘接性能更高,粘接效果也更好,并且固化速度也更快。
本文中应用了具体个例对本揭示的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本揭示的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本揭示各实施例的技术方案的范围。

Claims (19)

  1. 一种导电胶,包括:
    混合均匀的光敏小分子单体、光阳离子聚合型化合物、光引发型阳离子固化剂、阻聚剂、成膜树脂、丙烯酸橡胶以及导电粒子;
    在光照下,所述光引发型阳离子固化剂生成阳离子,所述阳离子引发所述光阳离子聚合型化合物聚合,所述光敏小分子单体发生结构异构,并驱动所述导电胶的分子结构重新排列;
    其中,所述光敏小分子单体的质量分数为10%~40%,所述光阳离子聚合型化合物的质量分数为10%~40%,所述光引发型阳离子型固化剂的质量分数为0.05%~10%。
  2. 根据权利要求1所述的导电胶,还包括稀释剂和其他助剂,所述稀释剂的质量分数为3%~15%,所述其他助剂的质量分数为0.01%~5%。
  3. 根据权利要求1所述的导电胶,其中所述光敏小分子单体包括螺吡喃衍生物,所述光阳离子聚合型化合物包括脂环式环氧化合物、缩水甘油醚型环氧化合物、缩水甘油酯型环氧树脂、缩水甘油胺型环氧树脂中的一种或多种。
  4. 根据权利要求1所述的导电胶,其中所述光引发型阳离子型固化剂包括芳香族重氮鎓盐、碘鎓盐、硫鎓盐、硒鎓盐、磷鎓盐中的一种或多种。
  5. 根据权利要求1所述的导电胶,其中所述阳离子阻聚剂包括甲苯胺、三嗪或三苯基膦。
  6. 根据权利要求1所述的导电胶,其中所述成膜树脂包括苯氧树脂、尿醛树脂、聚酰亚胺树脂、聚乙烯甲缩醛、二甲苯树脂、聚酰胺树脂、聚酯树脂、聚乙烯丁缩醛中的一种或多种。
  7. 根据权利要求1所述的导电胶,其中所述成膜树脂包括羟基或羧基,所述成膜树脂的分子量为20000-60000,所述丙烯酸橡胶的分子量为100000-1000000,所述丙烯酸橡胶的玻璃化转变温度小于0°。
  8. 根据权利要求1所述的导电胶,其中所述导电粒子包括聚苯乙烯球,所述稀释剂包括甲乙酮、丁基缩水甘油醚、甲苯、四氢呋喃、二氯甲烷中的一种或多种。
  9. 根据权利要求2所述的导电胶,其中所述其他助剂包括防老化剂或硅烷偶联剂,所述防老化剂包括胺类、酚类、硫化物类、亚磷酸酯类中的一种或多种,所述硅烷偶联剂包括乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、2,3环氧丙基丙基三甲氧基硅烷、氨基官能团三甲氧基硅烷、或(3-氨丙基)三乙氧基硅烷中的一种或多种。
  10. 一种导电胶,包括:
    混合均匀的光敏小分子单体、光阳离子聚合型化合物、光引发型阳离子固化剂、阻聚剂、成膜树脂、丙烯酸橡胶以及导电粒子;
    在光照下,所述光引发型阳离子固化剂生成阳离子,所述阳离子引发所述光阳离子聚合型化合物聚合,所述光敏小分子单体发生结构异构,并驱动所述导电胶的分子结构重新排列。
  11. 根据权利要求10所述的导电胶,还包括稀释剂和其他助剂,所述稀释剂的质量分数为3%~15%,所述其他助剂的质量分数为0.01%~5%。
  12. 根据权利要求10所述的导电胶,其中所述光敏小分子单体包括螺吡喃衍生物,所述光阳离子聚合型化合物包括脂环式环氧化合物、缩水甘油醚型环氧化合物、缩水甘油酯型环氧树脂、缩水甘油胺型环氧树脂中的一种或多种。
  13. 根据权利要求10所述的导电胶,其中所述光引发型阳离子型固化剂包括芳香族重氮鎓盐、碘鎓盐、硫鎓盐、硒鎓盐、磷鎓盐中的一种或多种。
  14. 根据权利要求10所述的导电胶,其中所述阳离子阻聚剂包括甲苯胺、三嗪或三苯基膦。
  15. 根据权利要求10所述的导电胶,其中所述成膜树脂包括苯氧树脂、尿醛树脂、聚酰亚胺树脂、聚乙烯甲缩醛、二甲苯树脂、聚酰胺树脂、聚酯树脂、聚乙烯丁缩醛中的一种或多种。
  16. 根据权利要求10所述的导电胶,其中所述成膜树脂包括羟基或羧基,所述成膜树脂的分子量为20000-60000,所述丙烯酸橡胶的分子量为100000-1000000,所述丙烯酸橡胶的玻璃化转变温度小于0°。
  17. 根据权利要求10所述的导电胶,其中所述导电粒子包括聚苯乙烯球,所述稀释剂包括甲乙酮、丁基缩水甘油醚、甲苯、四氢呋喃、二氯甲烷中的一种或多种。
  18. 根据权利要求11所述的导电胶,其中所述其他助剂包括防老化剂或硅烷偶联剂,所述防老化剂包括胺类、酚类、硫化物类、亚磷酸酯类中的一种或多种,所述硅烷偶联剂包括乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、2,3环氧丙基丙基三甲氧基硅烷、氨基官能团三甲氧基硅烷、或(3-氨丙基)三乙氧基硅烷中的一种或多种。
  19. 一种导电胶的制备方法,包括如下步骤:
    S100:将光敏小分子单体、光阳离子聚合型化合物、光引发型阳离子型固化剂、阳离子阻聚剂、成膜树脂、丙烯酸橡胶、稀释剂、以及其他助剂在黄光环境下均匀混合;
    S101:将步骤S100中均匀混合的所述组分进行混胶、搅拌和脱泡工序,形成匀胶;
    S102:将步骤S101中形成的所述匀胶涂布到离型膜上,并在50~100℃的温度下干燥处理1~15分钟,形成第一导电胶;
    S103:将步骤S102中的所述第一导电胶裁切成具有不同宽度的多个第二导电胶。
PCT/CN2019/104082 2019-07-23 2019-09-03 导电胶及其制备方法 WO2021012354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910668757.0A CN110358484A (zh) 2019-07-23 2019-07-23 导电胶及其制备方法
CN201910668757.0 2019-07-23

Publications (1)

Publication Number Publication Date
WO2021012354A1 true WO2021012354A1 (zh) 2021-01-28

Family

ID=68219990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104082 WO2021012354A1 (zh) 2019-07-23 2019-09-03 导电胶及其制备方法

Country Status (2)

Country Link
CN (1) CN110358484A (zh)
WO (1) WO2021012354A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185931B (zh) * 2021-03-31 2023-03-31 浙江中科玖源新材料有限公司 一种透明导电膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1505672A (zh) * 2001-01-30 2004-06-16 3M 使用可光活化胶粘膜粘合基材的方法
CN101611066A (zh) * 2006-10-16 2009-12-23 兆科学公司 改良的环氧组合物
CN102869740A (zh) * 2010-04-19 2013-01-09 兆科学公司 含低分布型添加剂的单组分环氧树脂
CN107556955A (zh) * 2017-10-17 2018-01-09 烟台信友新材料股份有限公司 一种高隐蔽性紫外光深层固化胶粘剂的制备方法
WO2018180685A1 (ja) * 2017-03-30 2018-10-04 デクセリアルズ株式会社 異方性導電接着剤及び接続体の製造方法
CN109651987A (zh) * 2018-12-17 2019-04-19 深圳市华星光电技术有限公司 一种各向异性导电胶黏剂及其导电膜
CN109666413A (zh) * 2018-12-17 2019-04-23 深圳市华星光电技术有限公司 一种各向异性导电胶黏剂及其导电膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975930B2 (ja) * 2013-04-16 2016-08-23 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
CN104342058B (zh) * 2014-10-25 2016-08-24 深圳飞世尔新材料股份有限公司 一种光固化异方性导电膜的制备方法
KR102405117B1 (ko) * 2015-10-02 2022-06-08 삼성디스플레이 주식회사 표시장치 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1505672A (zh) * 2001-01-30 2004-06-16 3M 使用可光活化胶粘膜粘合基材的方法
CN101611066A (zh) * 2006-10-16 2009-12-23 兆科学公司 改良的环氧组合物
CN102869740A (zh) * 2010-04-19 2013-01-09 兆科学公司 含低分布型添加剂的单组分环氧树脂
WO2018180685A1 (ja) * 2017-03-30 2018-10-04 デクセリアルズ株式会社 異方性導電接着剤及び接続体の製造方法
CN107556955A (zh) * 2017-10-17 2018-01-09 烟台信友新材料股份有限公司 一种高隐蔽性紫外光深层固化胶粘剂的制备方法
CN109651987A (zh) * 2018-12-17 2019-04-19 深圳市华星光电技术有限公司 一种各向异性导电胶黏剂及其导电膜
CN109666413A (zh) * 2018-12-17 2019-04-23 深圳市华星光电技术有限公司 一种各向异性导电胶黏剂及其导电膜

Also Published As

Publication number Publication date
CN110358484A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
CN102559072B (zh) 粘接剂组合物、膜状粘接剂和电路部件的连接结构
US20100080995A1 (en) Method for connecting electronic part and joined structure
CN106189943A (zh) 粘结剂组合物及粘结膜
CN106189942A (zh) 粘结剂组合物及粘结膜
KR101202045B1 (ko) 저온 속경화형 이방 전도성 필름용 조성물 및 이를 이용한 저온 속경화형 이방 전도성 필름
CN109666413B (zh) 一种各向异性导电胶黏剂及其导电膜
WO2021012354A1 (zh) 导电胶及其制备方法
CN111892881A (zh) 一种耐高温的高持粘性覆盖膜或保护胶带的制备方法
JP2002097443A (ja) 接着剤組成物及びこれを用いた回路接続材料並びに接続体
JP6384234B2 (ja) ラジカル重合型接着剤組成物、及び電気接続体の製造方法
CN104312471A (zh) 一种含苯并恶嗪的异方性导电膜及其制备方法
CN116285760B (zh) 一种触摸屏双面光学胶带及其制备方法
JP4113191B2 (ja) 異方導電性フィルムを用いた電子機器
JP4532883B2 (ja) 光硬化性樹脂組成物、液晶表示素子用シール剤、液晶表示素子用封口剤、液晶表示素子用上下導通材料及び液晶表示装置
JP6379672B2 (ja) 透明基板
JP6232855B2 (ja) ラジカル重合型接着剤組成物、及び電気接続体の製造方法
CN109651987A (zh) 一种各向异性导电胶黏剂及其导电膜
CN111253883B (zh) 一种超快速光子固化导电胶及制备方法
JP2010024384A (ja) 異方導電性組成物
JP2006332037A (ja) 導電粒子の連結構造体
WO2021004024A1 (zh) 显示面板及其制造方法
WO2020093556A1 (zh) 一种各向异性导电胶黏剂及其导电膜
CN110461982B (zh) 粘接剂组合物及结构体
KR100477914B1 (ko) 이방성 도전 접착제용 수지 조성물
TWI355546B (en) Thermocuring sealant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938815

Country of ref document: EP

Kind code of ref document: A1