WO2021009900A1 - 保護継電装置 - Google Patents

保護継電装置 Download PDF

Info

Publication number
WO2021009900A1
WO2021009900A1 PCT/JP2019/028248 JP2019028248W WO2021009900A1 WO 2021009900 A1 WO2021009900 A1 WO 2021009900A1 JP 2019028248 W JP2019028248 W JP 2019028248W WO 2021009900 A1 WO2021009900 A1 WO 2021009900A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
circuit
key
main
fail
Prior art date
Application number
PCT/JP2019/028248
Other languages
English (en)
French (fr)
Inventor
庄野 貴也
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to JP2021531521A priority Critical patent/JP6952936B1/ja
Priority to PCT/JP2019/028248 priority patent/WO2021009900A1/ja
Priority to KR1020227001243A priority patent/KR20220020932A/ko
Publication of WO2021009900A1 publication Critical patent/WO2021009900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Definitions

  • An embodiment of the present invention relates to a protective relay device.
  • the power system for distributing the power supplied from the power plant to the consumers is provided with a circuit breaker for protecting various facilities of the power system.
  • the circuit breaker is controlled by a protective relay device that detects an accident on the power system, or is controlled by a monitoring control device. High reliability is required for the protective relay device, but there is a problem that the structure becomes complicated in order to improve the reliability.
  • the problem to be solved by the present invention is to provide a protective relay device capable of simplifying the structure without impairing reliability.
  • the protection relay device of the embodiment includes a first protection control calculation means, a first control circuit, a second protection control calculation means, and a second control circuit.
  • the first protection control calculation means makes a determination based on the information obtained by converting the analog information indicating the state of the power system into digital information.
  • the first control circuit controls the circuit breaker provided in the power system based on the determination result of the first protection control calculation means.
  • the second protection control calculation means makes a determination based on the information obtained by converting the analog information indicating the state of the power system into digital information.
  • the second control circuit controls the circuit breaker provided in the power system based on the determination result of the second protection control calculation means.
  • the first control circuit includes a first key code generation circuit that generates a first key code.
  • the first protection control calculation means has a first key synthesis code generation circuit that generates a first key synthesis code based on the first key code.
  • the second control circuit has a second key code generation circuit that generates a second key code.
  • the second protection control calculation means has a second key synthesis code generation circuit that generates a second key synthesis code based on the second key code.
  • the first control circuit has a first decoding / collation circuit for determining whether or not the first key synthesis code corresponds to the first key code, and the first key synthesis code corresponds to the first key code.
  • the circuit breaker provided in the power system is controlled on condition that the power system is operated.
  • the second control circuit has a second decoding / collation circuit that determines whether or not the second key synthesis code and the second key code correspond to each other, and the second key synthesis code corresponds to the second key code.
  • the circuit breaker provided in the power system is controlled on condition that the power system is operated.
  • the functional block block diagram of the protection relay device 10 of 1st Embodiment The functional block block diagram of the protection relay device 10 of the 2nd Embodiment.
  • the functional block block diagram of the protection relay device 10 of the 3rd Embodiment The functional block block diagram of the protection relay device 10 of 4th Embodiment.
  • FIG. 1 is a functional block configuration diagram of the protective relay device 10 of the first embodiment.
  • the protective relay device 10 controls, for example, a circuit breaker provided in a power system for distributing electric power supplied from a power plant to consumers.
  • the protective relay device 10 controls the power supply destination and the power supply amount in the power system by controlling the circuit breaker in the cutoff state and the energized state.
  • the protective relay device 10 is not limited to a device for eliminating an accident in the event of an accident, but can also be applied as a monitoring and control device that constantly switches the system.
  • the protective relay device 10 includes a main processing unit 100 and a fail-safe processing unit 200.
  • Analog information is input to the protection relay device 10 by, for example, a transformer in the power system.
  • the analog information is input to the main processing unit 100 and the fail-safe processing unit 200, respectively.
  • the analog information includes state information such as current value and voltage value measured in the power system.
  • the protection relay device 10 outputs control information for controlling the circuit breaker to the circuit breaker 20.
  • the circuit breaker 20 is provided, for example, on a power transmission line. Based on the control information from the protective power relay device 10, the circuit breaker 20 sets the portion of the transmission line where the circuit breaker 20 is installed in a cutoff state or an energized state.
  • the circuit breaker 20 includes a first switch 22 and a second switch 24.
  • the circuit breaker 20 When the circuit breaker 20 is cut off, power is not supplied to the equipment on the downstream side from the location where the circuit breaker 20 is installed on the transmission line. For example, when the equipment on the downstream side of the circuit breaker 20 fails, the circuit breaker 20 is set to the cutoff state and the equipment in which the failure occurs is temporarily disconnected from the sound power system. After that, for example, the circuit breaker 20 is left in the circuit breaker state and waits for the arc to be extinguished due to a failure of equipment or the like, and then the circuit breaker 20 is returned to the energized state.
  • the disconnector 30 is a switch that opens and closes in a state where no current flows through the transmission line SL.
  • the disconnector 30 plays a role of disconnecting the device from the power source (power generation device 2), for example, when changing the connection or inspecting / repairing the device.
  • the circuit breaker 20 is energized, electric power is supplied to the equipment on the downstream side from the location where the circuit breaker 20 is installed in the transmission line.
  • the protection relay device 10 has a redundant configuration by including a main processing unit 100 and a fail-safe processing unit 200.
  • the protective relay device 10 has a redundant configuration to prevent erroneous control due to a transient defect of the system component of the protective relay device 10.
  • the main processing unit 100 includes, for example, a main protection / control calculation means (an example of a first protection control calculation means) 110 and a main control circuit (an example of a first control circuit) 120.
  • the fail-safe processing unit 200 includes a fail-safe protection / control calculation means (an example of a second protection control calculation means) 210 and a fail-safe control circuit (an example of a second control circuit) 220.
  • the main protection / control calculation means 110 in the main processing unit 100 includes, for example, an AD (Analog-digital) conversion circuit 112, a main control calculation unit 114, a main protection calculation unit 116, and a main key synthesis code generation circuit (first). (Example) 118 of the key synthesis code generation circuit.
  • the main control circuit 120 includes an energization control circuit 122, a main key code generation circuit (an example of a first key code generation circuit) 124, and a main key synthesis code decoding / verification circuit (an example of a first decoding / verification circuit) 126. , Equipped with.
  • the AD conversion circuit 112 holds analog information input by the power system at regular time intervals, and converts the held analog information into digital information.
  • the state information includes information detected by a state sensor such as a voltage / current value sensor and converted from analog information, and temperature information output by the temperature sensor depending on the protection target.
  • the AD conversion circuit 112 outputs the state information to the main protection calculation unit 116.
  • the information input to the AD conversion circuit 112 by the contact input is converted into digital information, and includes instruction information for shutting off or energizing the circuit breaker 20.
  • the instruction information is, for example, information input by an operator or the like using an input device or the like, and is information for instructing whether to put the circuit breaker 20 in the cutoff state or the energized state.
  • the instruction information is output to the main control calculation unit 114.
  • the main control calculation unit 114 determines whether to shut off or energize the circuit breaker 20 based on the instruction information output by the AD conversion circuit 112.
  • the main control calculation unit 114 generates cutoff / energization control information based on the determination result of whether to shut off or energize the circuit breaker 20.
  • the cutoff / energization control information includes the cutoff control information for shutting off the circuit breaker 20 and the energization control information for energizing the circuit breaker 20.
  • the main control calculation unit 114 outputs the generated cutoff / energization control information to the main control circuit 120.
  • the main protection calculation unit 116 determines whether or not to forcibly shut off the circuit breaker 20 based on the state information output by the AD conversion circuit 112.
  • the main protection calculation unit 116 generates forced cutoff control information based on the determination result that the circuit breaker 20 is forced.
  • the main protection calculation unit 116 compares, for example, the measured value of each state information with the threshold value set in advance for each state information.
  • the main protection calculation unit 116 generates forced cutoff control information when the value indicated by the state information exceeds the threshold value.
  • the main protection calculation unit 116 outputs the generated forced cutoff control information to the main control circuit 120.
  • the main key synthesis code generation circuit 118 performs arithmetic processing using the synthesis function code.
  • the synthetic function code used by the main key synthetic code generation circuit 118 for arithmetic processing is, for example, a synthetic function code for performing a known logical operation.
  • the logical operation used in the composite function code may be any operation, for example, an operation including an AND operation and an inversion operation.
  • the main key synthesis code generation circuit 118 performs a logical operation using the synthetic function code on the main key code (an example of the first key code) output by the main control circuit 120, and performs a logical operation on the main key synthesis code (first key synthesis code). Generate an example of key synthesis code).
  • the main key synthesis code generation circuit 118 outputs the generated main key synthesis code to the main key synthesis code decoding / collation circuit 126 of the main control circuit 120.
  • the main key synthesis code generation circuit 118 may output the main key synthesis code at any timing.
  • the main key synthesis code generation circuit 118 may generate a main key synthesis code each time a main key code is input and output it to the main control circuit 120.
  • the main key synthesis code generation circuit 118 may generate a main key synthesis code when outputting the forced cutoff control information to the main control circuit 120, add it to the forced cutoff control information, and output it to the main control circuit 120. ..
  • the energization control circuit 122 in the main control circuit 120 controls the circuit breaker 20 based on the determination result in the main control circuit 120 based on the interruption / energization control information output by the main control calculation unit 114.
  • the energization control circuit 122 controls the circuit breaker 20 based on the determination result in the main control circuit 120 based on the forced cutoff control information output by the main protection calculation unit 116.
  • the energization control circuit 122 outputs the cutoff information to the first switch 22 when the cutoff control information is output by the main control calculation unit 114, and controls the circuit breaker 20 to be in the cutoff state.
  • the energization control circuit 122 outputs the energization information to the first switch 22 of the circuit breaker 20 and controls the circuit breaker 20 to be in the energized state.
  • the energization control circuit 122 sends the forced cutoff information to the first switch 22 on condition that the main key code and the main key synthesis code, which will be described later, correspond to each other. It outputs and controls the circuit breaker 20 so that it is forcibly shut off.
  • the main key code generation circuit 124 generates a random number every predetermined cycle, for example, every 30 seconds to generate the main key code.
  • the predetermined period for generating the random number may be a time other than 30 seconds.
  • the form and composition of the main key code are not limited, and the main key code may be other than one that generates a random number at a predetermined cycle. The more complicated the key code, the higher the security strength.
  • the synthetic function code in the main key synthesis code generation circuit 118 may be matched to the main key code generated by the main key code generation circuit 124, and may be other than the synthetic function code.
  • the main key code generation circuit 124 outputs the generated main key code to the main key synthesis code generation circuit 118 and the main key synthesis code decoding / verification circuit 126.
  • the main key code is used as the main key synthesis code in the main key synthesis code generation circuit 118.
  • the main key synthesis code decoding / verification circuit 126 decodes the main key synthesis code output by the main key synthesis code generation circuit 118 and collates it with the main key code generated by the main key code generation circuit 124.
  • the main key synthesis code decoding / verification circuit 126 includes the same synthesis function code as the synthesis function code included in the main key synthesis code generation circuit 118.
  • the main key synthesis code decoding / collation circuit 126 performs a logical operation using the synthesis function code on the main key code output by the main key code generation circuit 124 to generate a collation code.
  • the main key synthesis code decoding / collation circuit 126 decodes the main key synthesis code output by the main protection / control calculation means 110 and collates it with the calculated collation code.
  • the main key synthesis code decoding / collation circuit 126 collates the result obtained by performing a logical operation using the synthetic function code included in the main key synthesis code generation circuit 118 with respect to the main key code generated by the main key code generation circuit 124. It may be stored in advance as a code.
  • the main control circuit 120 determines whether or not the main key code and the main key synthesis code correspond to each other by collation in the main key synthesis code decoding / collation circuit 126. Correspondence between the main key code and the main key synthesis code means that the main key synthesis code and the collation code match.
  • the main control circuit 120 determines in the main key synthesis code decoding / collation circuit 126 that the main key code and the main key synthesis code correspond to each other. In this case, the main control circuit 120 forcibly controls the circuit breaker 20 in the circuit breaker state in the energization control circuit 122. When the circuit breaker 20 is forcibly controlled to the circuit breaker state, the main control circuit 120 outputs the forced circuit breaker control information to the circuit breaker 20.
  • the main control circuit 120 determines in the main key synthesis code decoding / verification circuit 126 that the main key code and the main key synthesis code do not correspond to each other. In this case, the main control circuit 120 does not control the circuit breaker 20 to be forcibly cut off in the energization control circuit 122. Therefore, the main control circuit 120 does not output the forced cutoff control information for forcibly controlling the circuit breaker 20 to the circuit breaker 20 to the circuit breaker 20.
  • the fail-safe protection / control calculation means 210 in the fail-safe processing unit 200 includes, for example, an AD conversion circuit 212, a fail-safe control calculation unit 214, a fail-safe protection calculation unit 216, and a fail-safe key synthesis code generation circuit (second). (Example) 218 of the key synthesis code generation circuit.
  • the fail-safe control circuit 220 includes an energization control circuit 222, a fail-safe key code generation circuit (an example of a second key code generation circuit) 224, and a fail-safe key synthesis code decoding / verification circuit (an example of a second decoding / verification circuit). ) 226 and.
  • the AD conversion circuit 212, the fail-safe control calculation unit 214, the fail-safe protection calculation unit 216, and the energization control circuit 222 in the fail-safe processing unit 200 are the AD conversion circuit 112, the main control calculation unit 114, and the main protection in the main processing unit 100. It has the same functions as the arithmetic unit 116 and the energization control circuit 122.
  • the fail-safe key synthesis code generation circuit 218 of the fail-safe protection / control operation means 210 uses a composite function code for the fail-safe key code (an example of the second key code) output by the fail-safe control circuit 220. Performs a logical operation to generate a fail-safe key synthesis code (an example of a second key synthesis code).
  • the fail-safe key synthesis code generation circuit 218 outputs the generated fail-safe key synthesis code to the fail-safe key synthesis code decoding / verification circuit 226 of the fail-safe control circuit 220.
  • the fail-safe key synthesis code decoding / verification circuit 226 performs a logical operation using the composite function code on the fail-safe key code output by the fail-safe key code generation circuit 224 to generate a verification code.
  • the fail-safe key synthesis code decoding / collation circuit 226 decodes the main key synthesis code output by the fail-safe protection / control calculation means 210 and collates it with the calculated collation code.
  • the fail-safe key code generated by the fail-safe key code generation circuit 224 is a key code different from the main key code generated by the main key code generation circuit 124.
  • the fail-safe key code may be the same key code as the main key code.
  • the synthetic function code included in the fail-safe key synthetic code generation circuit 218 is a synthetic function code different from the synthetic function code included in the main key synthetic code generation circuit 118. The same synthetic function code as the synthetic function code provided in the main key synthetic code generation circuit 118 may be used.
  • the verification code used in the fail-safe key synthesis code decoding / verification circuit 226 may be a fail-safe key code output by the fail-safe key code generation circuit 224 obtained by performing a logical operation using a synthetic function code.
  • the verification code used in the fail-safe key synthesis code decoding / verification circuit 226 is a logic using the fail-safe key code generated by the fail-safe key code generation circuit 224 and the synthetic function code provided in the fail-safe key synthesis code generation circuit 218. It may be stored in advance as a result obtained by performing the calculation.
  • the energization control circuit 222 in the fail-safe control circuit 220 controls the circuit breaker 20 based on the interruption / energization control information output by the fail-safe control calculation unit 214.
  • the energization control circuit 222 outputs the circuit breaker information to the second switch 24 of the circuit breaker 20 when the fail-safe control calculation unit 214 outputs the circuit breaker control information, and controls the circuit breaker 20 to be in the circuit breaker state. ..
  • the energization control circuit 222 outputs the energization information to the second switch 24 of the circuit breaker 20 when the fail-safe control calculation unit 214 outputs the energization control information, and controls the circuit breaker 20 to be in the energized state. ..
  • the energization control circuit 222 is the second switch 24 of the circuit breaker 20, provided that the fail-safe key code and the fail-safe key synthesis code correspond to each other when the forced cutoff control information is output by the fail-safe protection calculation unit 216.
  • the forced shutoff information is output to the circuit breaker 20 to control the circuit breaker 20 to be forced into the shutoff state.
  • the circuit breaker 20 is controlled to an energized state or a cutoff state based on the cutoff information, the energization information, and the forced cutoff information output by the main processing unit 100 and the fail-safe processing unit 200.
  • the first switch 22 and the second switch 24 are directly connected.
  • the first switch 22 sets the voltage generation source and the second switch 24 in a connected state or an open state.
  • Information output by the main processing unit 100 is input to the control terminal of the first switch 22.
  • the first switch 22 is opened when the cutoff information is output by the main control circuit 120, and is connected when the energization information is output.
  • the first switch 22 is forcibly put into a connected state when the forced cutoff information is output by the main control circuit 120.
  • the second switch 24 sets the connection state or the open state between the first switch 22 and the power system.
  • the cutoff information, energization information, and forced cutoff information output by the fail-safe control circuit 220 are input to the control terminal of the second switch 24.
  • the second switch 24 is opened when the fail-safe control circuit 220 outputs the cutoff information, and is in the connected state when the energization information is output.
  • the second switch 24 is forcibly put into the connected state when the forced cutoff control information is output by the fail-safe control circuit 220.
  • the circuit breaker 20 is forcibly cut off when both the first switch 22 and the second switch 24 are connected.
  • a key code and a key synthesis code are input / output between the main control circuit 120 and the main protection / control calculation means 110 when making a determination for forcibly shutting off the circuit breaker 20.
  • the key code and the key synthesis code are input / output between the fail-safe control circuit 220 and the fail-safe protection / control calculation means 210.
  • the main control circuit 120 blocks on the condition that the collation code generated by the key code and the key synthesis code output by the main protection / control calculation means 110 match and the key code and the key synthesis code correspond to each other. Control is performed to forcibly shut off the vessel 20.
  • the fail-safe control circuit 220 the verification code generated by the key code and the key synthesis code output by the fail-safe protection / control calculation means 210 match, and the key code and the key synthesis code correspond to each other. As a condition, control is performed to forcibly shut off the circuit breaker 20.
  • the reliability of the protective relay device 10 can be improved, the reliability can be sufficiently maintained even if each electronic component is mounted on one substrate, for example. As a result, the structure can be simplified without compromising reliability.
  • the protection relay device 10 of the first embodiment generates a random number at a predetermined cycle in the main key code generation circuit 124 to generate the main key code. Therefore, since the key code is changed at predetermined intervals, it is possible to suppress unauthorized duplication of the key code outside the protection relay device 10. Therefore, the reliability of the protective relay device 10 can be further improved.
  • the protective relay device 10 of the first embodiment can also be used as a security incident countermeasure by determining the correspondence between the key code and the key synthesis code. For example, even if an arithmetic element in the protective power transfer device 10, for example, a CPU is attacked and affected by a security threat, it is affected by determining the correspondence between the key code and the key synthesis code. The control of the circuit breaker 20 in the case can be stopped. Therefore, the soundness of the protective relay device 10 can be confirmed, and the reliability of the protective relay device 10 can be improved in combination with the redundancy.
  • the protective relay 10 of the first embodiment can standardize the hardware, which is a general merit of the digital relay.
  • the protective relay device 10 of the first embodiment can easily add an automatic inspection / automatic monitoring function.
  • FIG. 2 is a functional block configuration diagram of the protective relay device 10 of the second embodiment.
  • the protective relay device 10 of the second embodiment has the same configuration as the protective relay device 10 of the first embodiment.
  • the main key code generation circuit 124 generates a main key code having a bit string of a plurality of bits, for example, 16 bits, as the main key code.
  • a spare bit is provided in the main key code. Similar spare bits are provided in each code described below.
  • the main key synthesis code generation circuit 118 includes a synthesis function code of the number of bit strings included in the main key code.
  • the main key synthesis code generation circuit 118 uses a synthesis function code based on the main key code output by the main key code generation circuit 124, and has the same number as the number of bit strings, here, a main key synthesis having a 16-bit bit string. Generate code.
  • the same operation and effect as the protective relay device 10 of the first embodiment can be obtained.
  • the protection relay device 10 of the second embodiment uses a main key code having a plurality of bits, for example, 16 bits. Therefore, the protective relay device 10 can increase the security strength when controlling the circuit breaker 20.
  • FIG. 3 is a functional block configuration diagram of the protective relay device 10 of the third embodiment.
  • the protective relay device 10 of the third embodiment has the same configuration as the protective relay device 10 of the first embodiment.
  • the AD conversion circuit 112 of the protection relay device 10 of the third embodiment includes a composite function code.
  • the synthetic function code included in the AD conversion circuit 112 is a synthetic function code different from the synthetic function code included in the main key synthetic code generation circuit 118.
  • the main key code generation circuit 124 in the main control circuit 120 generates a main key code including a bit string of a plurality of bits and outputs the main key code to the main protection / control calculation means 110.
  • the synthetic function code included in the main key synthetic code generation circuit 118 is a synthetic function code for performing a logical operation on all the bits of the main key.
  • the synthetic function code included in the AD conversion circuit 112 is a synthetic function code for performing a logical operation on some bits of the main key.
  • the AD conversion circuit 112 generates a main key synthesis code (hereinafter, AD main key synthesis code) obtained by a logical operation using a synthesis function code.
  • the AD main key synthesis code is generated, for example, by performing a logical operation using a synthetic function code for a specific part of the main key code.
  • the main protection / control calculation means 110 outputs the AD main key synthesis code generated by the AD conversion circuit 112 to the main control circuit 120.
  • the main key synthesis code decoding / collation circuit 126 in the main control circuit 120 includes a collation code for collating the main key synthesis code, and a part of the main key code that generates an AD main key synthesis code (hereinafter, AD).
  • a collation code for collating the AD main key synthesis code is generated using the main key code).
  • This collation code can be obtained, for example, by performing a logical operation on a part of the main key code used when generating the AD main key synthesis code by using the synthesis function code included in the AD conversion circuit 112.
  • the main control circuit 120 determines whether or not the main key code and the main key synthesis code correspond to each other by collation in the main key synthesis code decoding / collation circuit 126. At this time, the main control circuit 120 determines whether or not the AD main key code and the AD main key synthesis code correspond to each other by the collation in the main key synthesis code decoding / collation circuit 126.
  • the main key code and the main key synthesis code change in the first embodiment. Perform the same processing as when it is determined to correspond.
  • the main control circuit 120 determines that the main key code and the main key synthesis code, and the AD main key code and the AD main key synthesis code do not correspond to each other or both, the main key code and the main key code in the first embodiment are used. Performs the same processing as when it is determined that the key synthesis code does not correspond.
  • the fail-safe processing unit 200 is a fail-safe key synthesis code (hereinafter, AD fail-safe key synthesis code) obtained by performing a logical operation using a synthetic function code in the AD conversion circuit 212. Code) is generated.
  • the fail-safe processing unit 200 generates a fail-safe key synthesis code in the fail-safe key synthesis code generation circuit 218 by using a part of the fail-safe key code (hereinafter, AD fail-safe key code).
  • the fail-safe processing unit 200 determines whether or not the fail-safe key code and the fail-safe key synthesis code correspond to each other by the verification in the fail-safe key synthesis code decoding / verification circuit 226. To do. At this time, the fail-safe processing unit 200 determines whether or not the AD fail-safe key code and the AD fail-safe key synthesis code correspond to each other by the collation in the fail-safe key synthesis code decoding / collation circuit 226.
  • the fail-safe key code in the first embodiment Performs the same processing as when it is determined that the fail-safe key synthesis code corresponds to.
  • the fail-safe processing unit 200 determines that either or both of the fail-safe key code and the fail-safe key synthesis code and the AD fail-safe key code and the AD fail-safe key synthesis code do not correspond to each other. Performs the same processing as when it is determined that the fail-safe key code and the fail-safe key synthesis code do not correspond.
  • the protection relay device 10 of the third embodiment uses the AD main key synthesis code and the AD fail-safe key synthesis code in the AD conversion circuit 112 of the main processing unit 100 and the AD conversion circuit 212 of the fail-safe processing unit 200, respectively. Generate.
  • the AD main key synthesis code and the AD fail-safe key synthesis code correspond to the AD main key code and the AD fail-safe key code, respectively. It is determined whether or not the circuit breaker 20 is controlled. Therefore, it is possible to suppress a malfunction (erroneous cutoff) of the circuit breaker 20 due to a failure of the AD conversion circuits 112 and 212 in the main processing unit 100 and the fail-safe processing unit 200.
  • FIG. 4 is a functional block configuration diagram of the protective relay device 10 of the fourth embodiment.
  • the protection relay device 10 of the fourth embodiment has an analog filter circuit (Analog filter circuit, hereinafter referred to as AF circuit) 119 in the main protection / control calculation means 110 as compared with the protection relay device 10 of the third embodiment.
  • AF circuit analog filter circuit
  • the point to prepare is different. Further, it is different in that the AF circuit 219 of the fail-safe protection / control calculation means 210 is provided. Other than that, it has the same configuration as the protective relay device 10 of the third embodiment.
  • the AF circuits 119 and 219 may also be provided in the first to third embodiments. In this case, the AF circuits 119 and 219 do not have to include the composite function code described later.
  • the AF circuit 119 filters the analog information input by the power system outside the protection relay device 10, and removes a predetermined component included in the analog information, for example, a high frequency component.
  • the AF circuit 119 generates verification analog information in which the main key code output by the main control circuit 120 is superimposed on the analog information as a low frequency component.
  • the AF circuit 119 passes the verification analog information and outputs it to the AD conversion circuit 112.
  • the AF circuit 219 in the fail-safe processing unit 200 performs the same processing as the AF circuit 119 in the main processing unit 100.
  • the AF circuit 119 includes a composite function code.
  • the synthetic function code included in the AF circuit 119 is a synthetic function code different from the synthetic function code included in the AD conversion circuit 112 and the main key synthetic code generation circuit 118.
  • the AF circuit 219 includes a composite function code.
  • the synthetic function code included in the AF circuit 219 is a synthetic function code different from the synthetic function code included in the AD conversion circuit 212 and the fail-safe key synthetic code generation circuit 218.
  • the AD conversion circuit 112 generates an AD main key synthesis code in the same manner as in the third embodiment.
  • the AD conversion circuit 112 writes the digital information obtained by converting the main key code superimposed on the verification analog information to the spare bit in the AD main key synthesis code.
  • the AD conversion circuit 112 outputs the code as digital information (hereinafter referred to as AF main key synthesis code) obtained by converting the main key code superimposed on the verification analog information to the main key synthesis code generation circuit 118 as it is. May be good.
  • the main key synthesis code generation circuit 118 writes the AF main key synthesis code to the spare bit in the main key synthesis code.
  • the main protection / control calculation means 110 outputs the AD main key synthesis code generated by the AD conversion circuit 112 to the main control circuit 120.
  • the main key synthesis code decoding / collation circuit (example of the verification unit) 126 in the main control circuit 120 collates the AF main key synthesis code in addition to the collation code for collating the main key synthesis code and the AD main key synthesis code. Generate a collation code for.
  • This collation code can be obtained, for example, by performing a logical operation on a part of the main key code used when generating the AF main key synthesis code by using the synthesis function code provided in the AD conversion circuit 112.
  • the main processing unit 100 determines the main key code and the main key synthesis code, and the AD main key code and the AD main key code by collation in the main key synthesis code decoding / collation circuit 126. Determine whether or not each corresponds. At this time, the main processing unit 100 determines whether or not the AF main key code and the AF main key synthesis code correspond to each other by collation in the main key synthesis code decoding / collation circuit 126. The main key synthesis code decoding / collation circuit 126 verifies the operation of the AF circuit 119 by determining whether or not the AF main key code AF main key synthesis code corresponds.
  • the main key synthesis code decoding / collation circuit 126 determines that the operation of the AF circuit 119 is normal, and when the AF main key code AF main key synthesis code does not correspond. In addition, it is determined that the operation of the AF circuit 119 is abnormal.
  • the main processing unit 100 determines that the main key code and the main key synthesis code, and the AD main key code and the AD main key synthesis code correspond to both the AF main key code and the AF main key synthesis code
  • the first embodiment In, the same processing as when it is determined that the main key code and the main key synthesis code correspond to each other is performed.
  • the main processing unit 100 determines that at least one set of the main key code and the main key synthesis code, the AD main key code and the AD main key synthesis code, and the AF main key code and the AF main key synthesis code does not correspond to each other.
  • the same processing as when it is determined that the main key code and the main key synthesis code do not correspond is performed.
  • the fail-safe processing unit 200 generates an AD main key synthesis code in the AD conversion circuit 212 in the same manner as in the third embodiment, similarly to the main processing unit 100.
  • the AD conversion circuit 212 writes the digital information obtained by converting the fail-safe key code superimposed on the analog information into the spare bit in the AD main key synthesis code.
  • the AD conversion circuit 212 outputs the code as digital information (hereinafter referred to as AF fail-safe key synthesis code) obtained by converting the fail-safe key code superimposed on the analog information to the fail-safe key synthesis code generation circuit 218 as it is. You may.
  • the fail-safe key synthesis code generation circuit 218 writes the AF fail-safe key synthesis code in the spare bits in the fail-safe key synthesis code.
  • the fail-safe protection / control calculation means 210 outputs the AD fail-safe key synthesis code generated by the AD conversion circuit 212 to the fail-safe control circuit 220.
  • the fail-safe key synthesis code decoding / collation circuit 226 in the fail-safe control circuit 220 collates the fail-safe key synthesis code, the AD fail-safe key synthesis code, and the AF fail-safe key synthesis code. Generate a collation code for. This collation code can be obtained, for example, by performing a logical operation on a part of the fail-safe key code used when generating the AF fail-safe key synthesis code by using the synthetic function code provided in the AD conversion circuit 212.
  • the fail-safe processing unit 200 determines whether or not the fail-safe key code and the fail-safe key synthesis code correspond to each other by the verification in the fail-safe key synthesis code decoding / verification circuit 226. To do. At this time, the fail-safe processing unit 200 determines whether or not the AF fail-safe key code and the AF fail-safe key synthesis code correspond to each other by the verification in the fail-safe key synthesis code decoding / verification circuit 226.
  • the fail-safe key synthesis code decoding / collation circuit 226 determines that the operation of the AF circuit 219 is normal when the AF main key code AF main key synthesis code corresponds, and the AF main key code AF main key synthesis code does not correspond. In this case, the operation of the AF circuit 219 is determined to be abnormal.
  • the fail-safe processing unit 200 has determined that the fail-safe key code and the fail-safe key synthesis code, and the AD fail-safe key code and the AD fail-safe key synthesis code correspond to both the AF fail-safe key code and the AF fail-safe key synthesis code. In this case, the same processing as in the case where it is determined that the fail-safe key code and the fail-safe key synthesis code correspond to each other in the first embodiment is performed.
  • the fail-safe processing unit 200 supports at least one set of a fail-safe key code and a fail-safe key synthesis code, an AD fail-safe key code and an AD fail-safe key synthesis code, and an AF fail-safe key code and an AF fail-safe key synthesis code. When it is determined that the key is not provided, the same processing as when it is determined that the fail-safe key code and the fail-safe key synthesis code do not correspond in the first embodiment is performed.
  • the protection relay device 10 of the fourth embodiment generates an AF main key synthesis code and an AF fail-safe key synthesis code in the AF circuit 119 of the main processing unit 100 and the AF circuit 219 of the fail-safe processing unit 200, respectively. ..
  • the AF main key synthesis code and the AF fail-safe key synthesis code correspond to the AF main key code and the AF fail-safe key code, respectively. It is determined whether or not the circuit breaker 20 is controlled. Therefore, it is possible to suppress a malfunction (erroneous cutoff) of the circuit breaker 20 due to a failure of the AF circuits 119 and 219 in the main processing unit 100 and the fail-safe processing unit 200.
  • the AD conversion circuits 112 and 212 are provided in the main processing unit 100 and the fail-safe processing unit 200, respectively, but other embodiments may be used.
  • one AD conversion circuit that outputs digital information to each of the main processing unit 100 and the fail-safe processing unit 200 may be provided outside the main processing unit 100 and the fail-safe processing unit 200.
  • AF circuits 119 and 219 are provided in the main processing unit 100 and the fail-safe processing unit 200, respectively, but other embodiments may be used.
  • one AF circuit that outputs analog information to each of the main processing unit 100 and the fail-safe processing unit 200 may be provided outside the main processing unit 100 and the fail-safe processing unit 200.
  • an AF circuit that outputs analog information may be provided in the AD conversion circuit.
  • each chip component mounted on the substrate does not specify a relative positional relationship, and each chip component can be arranged at an arbitrary position on the substrate.
  • FIG. 5 is a diagram showing a first configuration example of the hardware of the protective relay device 10.
  • the protective relay device 10 includes a substrate 500.
  • the substrate 500 includes a first AF circuit 510, a first AD conversion circuit 520, a first CPU (Central Processing Unit) 530, a first FPGA (field-programmable gate array) 540, a second AF circuit 550, a second AD conversion circuit 560, a second CPU 570, and
  • the second FPGA 580 is mounted.
  • the first AF circuit 510 functions as the AF circuit 119 of the main processing unit 100.
  • the first AD conversion circuit 520 functions as the AD conversion circuit 112 of the main processing unit 100.
  • the first CPU 530 functions as the main protection / control calculation means 110.
  • the first FPGA 540 functions as the main control circuit 120.
  • the second AF circuit 550 functions as the AF circuit 219 of the fail-safe processing unit 200.
  • the second AD conversion circuit 560 functions as the AD conversion circuit 212 of the fail-safe processing unit 200.
  • the second CPU 570 functions as a fail-safe protection / control calculation means 210.
  • the second FPGA 580 functions as a fail-safe control circuit 220.
  • the two CPUs and the FPGA are used as the main protection / control calculation means 110, the main control circuit 120, the fail-safe protection / control calculation means 210, and the fail-safe control circuit 220, respectively. I'm letting you.
  • other parts may be used as parts such as chip parts fulfilling each function.
  • a chip component used for the main protection / control calculation means 110 and the fail-safe protection / control calculation means 210 a component other than the CPU, for example, an FPGA may be used.
  • a component other than the FPGA for example, a CPU may be used.
  • suitable chip components may be appropriately used, such as using an FPGA instead of the CPU or using a CPU instead of the FPGA.
  • FIG. 6 is a diagram showing a second configuration example of the hardware of the protective relay device 10.
  • the protective relay device 10 includes a substrate 600.
  • a first AF circuit 610, a first AD conversion circuit 620, a common CPU (an example of a first chip component) 630, a first FPGA 640, a second AF circuit 650, a second AD conversion circuit 660, and a second FPGA 670 are mounted on the substrate 600.
  • the first AF circuit 610 functions as the AF circuit 119 of the main processing unit 100.
  • the first AD conversion circuit 620 functions as the AD conversion circuit 112 of the main processing unit 100.
  • the common CPU 630 functions as a main protection / control calculation means 110 and a fail-safe protection / control calculation means 210.
  • the first FPGA 640 functions as the main control circuit 120.
  • the second AF circuit 650 functions as the AF circuit 219 of the fail-safe processing unit 200.
  • the second AD conversion circuit 660 functions as the AD conversion circuit 212 of the fail-safe processing unit 200.
  • the second FPGA 680 functions as a fail-safe control circuit 220.
  • two signal lines are provided between the common CPU 630 and the first FPGA 640.
  • Two signal lines are provided between the common CPU 630 and the second FPGA 680.
  • the common CPU 630 is used as a chip component that functions as the main protection / control calculation means 110 and the fail-safe protection / control calculation means 210. For this reason, even with a single board (calculation board) on which chip components such as a CPU are mounted, system redundancy is achieved while ensuring the soundness of functional calculations as the main processing unit 100 and the fail-safe processing unit 200. Can be planned. Therefore, it is possible to contribute to the simplification of the structure by reducing the number of substrates and reducing the number of chip parts.
  • Two signal lines are provided between the common CPU 630 and the first FPGA 640 and between the common CPU 630 and the second FPGA 680, respectively. Therefore, the main key code can be output from the first FPGA 640, the main key synthesis code from the common CPU 630, the fail-safe key code from the second FPGA 68, and the fail-safe key synthesis code from the common CPU 630 at the same time. Therefore, time loss when inputting / outputting information can be suppressed.
  • FIG. 7 is a diagram showing a third configuration example of the hardware of the protective relay device 10.
  • the protective relay device 10 includes a substrate 700.
  • a first AF circuit 710, a first AD conversion circuit 720, a common CPU 730, a common FPGA (an example of a second chip component) 740, a second AF circuit 750, and a second AD conversion circuit 760 are mounted on the substrate 700.
  • the first AF circuit 710 functions as the AF circuit 119 of the main processing unit 100.
  • the first AD conversion circuit 720 functions as the AD conversion circuit 112 of the main processing unit 100.
  • the common CPU 730 functions as a main protection / control calculation means 110 and a fail-safe protection / control calculation means 210.
  • the common FPGA 740 functions as a main control circuit 120 and a fail-safe control circuit 220.
  • the second AF circuit 750 functions as the AF circuit 219 of the fail-safe processing unit 200.
  • the second AD conversion circuit 760 functions as the AD conversion circuit 212 of the fail-safe processing unit 200.
  • four signal lines are provided between the common CPU 630 and the common FPGA 740.
  • the common CPU 730 is used as a chip component that functions as the main protection / control calculation means 110 and the fail-safe protection / control calculation means 210.
  • a common FPGA is used as a chip component that functions as a main control circuit 120 and a fail-safe control circuit 220.
  • the main key code and the fail-safe key code can be output from the common FPGA 740, and the main key synthesis code and the fail-safe key synthesis code can be output from the common CPU 730 at the same time. Therefore, time loss when inputting / outputting information can be suppressed.
  • 10 protection relay device, 20 ... circuit breaker, 100 ... main processing unit, 110 ... main protection / control calculation means, 112 ... AD conversion circuit, 114 ... main control calculation unit, 116 ... main protection calculation unit, 118 ... main Key synthesis code generation circuit, 119 ... AF circuit, 120 ... Main control circuit, 122 ... Energization control circuit, 124 ... Main key code generation circuit, 126 ... Main key synthesis code decoding / verification circuit, 200 ... Fail-safe processing unit, 210 ... Fail-safe protection / control calculation means, 212 ... AD conversion circuit, 214 ... Fail-safe control calculation unit, 216 ... Fail-safe protection calculation unit, 218 ...
  • Fail-safe key synthesis code generation circuit 219 ... AF circuit, 220 ... Fail-safe Control circuit, 222 ... Energization control circuit, 224 ... Fail-safe key code generation circuit, 226 ... Fail-safe key synthesis code decoding / verification circuit, 500, 600, 700 ... Board, 510, 610, 710 ... First AF circuit, 520, 620, 720 ... 1st AD conversion circuit, 530 ... 1st CPU, 540, 640 ... 1st FPGA, 550, 650 ... 2nd AF circuit, 560, 660 ... 2nd AD conversion circuit, 570 ... 2nd CPU, 580, 680 ... 2nd FPGA, 630, 730 ... common CPU, 740 ... common FPGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

第1保護制御演算手段と、第1制御回路と、第2保護制御演算手段と、第2制御回路と、を持つ。両制御回路は、両保護制御演算手段の判定結果に基づいて、電力系統に設けられた遮断器を制御する。両制御回路は、鍵コードを発生させる。両保護制御手段は、鍵コードに基づいて、鍵合成コードを生成する。両制御回路は、鍵コードと鍵合成コードが対応することを条件に電力系統に設けられた遮断器を制御する。

Description

保護継電装置
 本発明の実施形態は、保護継電装置に関する。
 発電所から供給される電力を需要家に分配するための電力系統には、電力系統の諸設備の保護のための遮断器が設けられる。遮断器は、電力系統上の事故を検出する保護継電装置によって制御され、または監視制御装置により開閉制御される。保護継電装置には高い信頼性が求められるが、信頼性を高めるために構造が複雑化する課題がある。
特開昭56-139025号公報 特開昭57-106330号公報 特開平5-207637号公報 特許第2839030号公報
 本発明が解決しようとする課題は、信頼性を損なうことなく構造を簡素化することができる保護継電装置を提供することである。
 実施形態の保護継電装置は、第1保護制御演算手段と、第1制御回路と、第2保護制御演算手段と、第2制御回路と、を持つ。第1保護制御演算手段は、電力系統の状態を示すアナログ情報をデジタル情報に変換した情報に基づく判定を行う。第1制御回路は、前記第1保護制御演算手段の判定結果に基づいて、前記電力系統に設けられた遮断器を制御する。第2保護制御演算手段は、前記電力系統の状態を示すアナログ情報をデジタル情報に変換した情報に基づく判定を行う。第2制御回路は、前記第2保護制御演算手段の判定結果に基づいて、前記電力系統に設けられた遮断器を制御する。前記第1制御回路は、第1鍵コードを発生させる第1鍵コード発生回路を有する。前記第1保護制御演算手段は、前記第1鍵コードに基づいて、第1鍵合成コードを生成する第1鍵合成コード生成回路を有する。前記第2制御回路は、第2鍵コードを発生させる第2鍵コード発生回路を有する。前記第2保護制御演算手段は、前記第2鍵コードに基づいて、第2鍵合成コードを生成する第2鍵合成コード生成回路を有する。前記第1制御回路は、第1鍵合成コードと前記第1鍵コードが対応するか否かを判定する第1解読・照合回路を有し、第1鍵合成コードと前記第1鍵コードが対応することを条件に前記電力系統に設けられた遮断器を制御する。前記第2制御回路は、第2鍵合成コードと前記第2鍵コードが対応するか否かを判定する第2解読・照合回路を有し、第2鍵合成コードと前記第2鍵コードが対応することを条件に前記電力系統に設けられた遮断器を制御する。
第1実施形態の保護継電装置10の機能ブロック構成図。 第2実施形態の保護継電装置10の機能ブロック構成図。 第3実施形態の保護継電装置10の機能ブロック構成図。 第4実施形態の保護継電装置10の機能ブロック構成図。 保護継電装置10のハードウェアの第1の構成例を示す図。 保護継電装置10のハードウェアの第2の構成例を示す図。 保護継電装置10のハードウェアの第3の構成例を示す図。
 以下、実施形態の保護継電装置を、図面を参照して説明する。
 ≪第1実施形態≫
 図1は、第1実施形態の保護継電装置10の機能ブロック構成図である。保護継電装置10は、例えば、発電所から供給される電力を需要家に分配するための電力系統に設けられる遮断器を制御する。保護継電装置10は、遮断器を遮断状態と通電状態とに制御することにより、電力系統における電力の供給先や供給量を制御する。保護継電装置10は、事故時の事故除去のためのものに限らず、常時の系統切換えなどを行う監視制御装置としても適用可能である。
 保護継電装置10は、メイン処理部100と、フェールセーフ処理部200と、を備える。保護継電装置10には、例えば、電力系統における変成器によりアナログ情報が入力される。アナログ情報は、メイン処理部100と、フェールセーフ処理部200とにそれぞれ入力される。アナログ情報には、電力系統において計測された電流値、電圧値等の状態情報が含まれる。保護継電装置10は、遮断器を制御する制御情報を遮断器20に出力する。
 遮断器20は、例えば送電線に設けられる。遮断器20は、保護継電装置10からの制御情報に基づき、送電線における遮断器20が設置されている箇所を遮断状態、または通電状態とする。遮断器20は、第1スイッチ22と、第2スイッチ24とを備える。
 遮断器20が遮断状態となった場合、送電線における遮断器20が設置されている箇所から下流側の設備は、電力が供給されない状態となる。例えば、遮断器20の下流側の設備が故障等した場合に、遮断器20を遮断状態として故障が発生した設備を健全な電力系統から一時的に切り離す。その後、例えば遮断器20を遮断状態としたままとして設備の故障等によりアークの消弧などを待ってから、遮断器20通電状態に復帰させる。断路器30は、送電線SLに電流が流れない状態で開閉するスイッチである。断路器30は、例えば、接続の変更や機器の点検・修理の時に機器を電源(発電装置2)から切り離す役割を果たす。一方で、遮断器20が通電状態となった場合、送電線における遮断器20が設置されている箇所から下流側の設備に電力が供給される。
 保護継電装置10は、メイン処理部100とフェールセーフ処理部200とを備えることにより、冗長化構成とされる。保護継電装置10は、冗長化構成とされることにより、保護継電装置10のシステム構成要素の一過性の不良による誤制御を防止する。
 メイン処理部100は、例えば、メイン保護・制御演算手段(第1保護制御演算手段の一例)110と、メイン制御回路(第1制御回路の一例)120と、を備える。フェールセーフ処理部200は、フェールセーフ保護・制御演算手段(第2保護制御演算手段の一例)210と、フェールセーフ制御回路(第2制御回路の一例)220と、を備える。
 メイン処理部100におけるメイン保護・制御演算手段110は、例えば、AD(Analog- digital)変換回路112と、メイン制御演算部114と、メイン保護演算部116と、メイン鍵合成コード生成回路(第1鍵合成コード生成回路の一例)118と、を備える。メイン制御回路120は、通電制御回路122と、メイン鍵コード発生回路(第1鍵コード発生回路の一例)124と、メイン鍵合成コード解読・照合回路(第1解読・照合回路の一例)126と、を備える。
 AD変換回路112は、電力系統により入力されるアナログ情報を一定の時間間隔で保持し、保持したアナログ情報をデジタル情報に変換する。その状態情報は、電圧・電流値センサ等の状態センサにより検出され、アナログ情報から変換された情報、及び保護対象によっては温度センサにより出力された温度情報を含む。AD変換回路112は、状態情報をメイン保護演算部116に出力する。
 また、接点入力によりAD変換回路112へ入力された情報はデジタル情報に変換され、遮断器20を遮断または通電させるための指示情報が含まれる。指示情報は、例えば、入力装置等を用いてオペレータ等により入力された情報であり、遮断器20を遮断状態とするか通電状態とするかを指示する情報である。デジタル情報のうち、指示情報をメイン制御演算部114に出力する。
 メイン制御演算部114は、AD変換回路112により出力された指示情報に基づいて、遮断器20を遮断させるか通電させるかを判定する。メイン制御演算部114は、遮断器20を遮断させるか通電させるかの判定結果に基づく遮断/通電制御情報を生成する。遮断/通電制御情報は、遮断器20を遮断させるための遮断制御情報及び遮断器20を通電させるための通電制御情報を含む。メイン制御演算部114は、生成した遮断/通電制御情報をメイン制御回路120に出力する。
 メイン保護演算部116は、AD変換回路112により出力された状態情報に基づいて、遮断器20を強制遮断させるか否かを判定する。メイン保護演算部116は、遮断器20を強制させるとの判定結果に基づく強制遮断制御情報を生成する。
 メイン保護演算部116は、例えば、各状態情報の計測値と、状態情報ごとに予め設定された閾値と、を比較する。メイン保護演算部116は、状態情報が示す値が閾値を超える場合に、強制遮断制御情報を生成する。メイン保護演算部116は、生成した強制遮断制御情報をメイン制御回路120に出力する。
 メイン鍵合成コード生成回路118には、合成関数コードを利用して演算処理を行う。メイン鍵合成コード生成回路118が演算処理に利用する合成関数コードは、例えば、既知の論理演算を行うための合成関数コードである。合成関数コードに用いられる論理演算は、どのようなものでもよく、例えば、AND演算や反転演算を含む演算でもよい。
 メイン鍵合成コード生成回路118は、メイン制御回路120により出力されるメイン鍵コード(第1鍵コードの一例)に対して、合成関数コードを用いた論理演算を行い、メイン鍵合成コード(第1鍵合成コードの一例)を生成する。メイン鍵合成コード生成回路118は、生成したメイン鍵合成コードをメイン制御回路120のメイン鍵合成コード解読・照合回路126に出力する。
 メイン鍵合成コード生成回路118は、どのようなタイミングでメイン鍵合成コードを出力してもよい。メイン鍵合成コード生成回路118は、例えば、メイン鍵コードが入力されるごとにメイン鍵合成コードを生成し、メイン制御回路120に出力してもよい。メイン鍵合成コード生成回路118は、強制遮断制御情報をメイン制御回路120に出力する際に、メイン鍵合成コードを生成し、強制遮断制御情報に付加してメイン制御回路120に出力してもよい。
 メイン制御回路120における通電制御回路122は、メイン制御演算部114により出力される遮断/通電制御情報により、メイン制御回路120における判定結果に基づいて遮断器20を制御する。通電制御回路122は、メイン保護演算部116により出力される強制遮断制御情報により、メイン制御回路120における判定結果に基づいて遮断器20を制御する。
 通電制御回路122は、メイン制御演算部114により遮断制御情報が出力された場合に、第1スイッチ22に遮断情報を出力し、遮断器20が遮断状態となるように制御する。通電制御回路122は、メイン制御演算部114により通電制御情報が出力された場合に、遮断器20の第1スイッチ22に通電情報を出力し、遮断器20が通電状態となるように制御する。通電制御回路122は、メイン保護演算部116により強制遮断制御情報が出力された場合に、後述するメイン鍵コードとメイン鍵合成コードが対応することを条件として、第1スイッチ22に強制遮断情報を出力し、遮断器20が強制的に遮断状態となるように制御する。
 メイン鍵コード発生回路124は、所定周期ごと、例えば30秒ごとに乱数を発生させて、メイン鍵コードを発生させる。乱数を発生させる所定周期は、30秒以外の時間であってもよい。メイン鍵コードの形態や組成は限定されず、メイン鍵コードは、所定周期ごとに乱数を発生させて発生させるもの以外でもよい。鍵コードが複雑になるほどセキュリティ強度が高くなる。メイン鍵合成コード生成回路118における合成関数コードは、メイン鍵コード発生回路124が発生させるメイン鍵コードに合わせたものでよく、合成関数コード以外のものでもよい。
 メイン鍵コード発生回路124は、発生させたメイン鍵コードをメイン鍵合成コード生成回路118及びメイン鍵合成コード解読・照合回路126に出力する。メイン鍵コードは、メイン鍵合成コード生成回路118において、メイン鍵合成コードとされる。
 メイン鍵合成コード解読・照合回路126は、メイン鍵合成コード生成回路118により出力されるメイン鍵合成コードを解読し、メイン鍵コード発生回路124で発生させたメイン鍵コードと照合する。メイン鍵合成コード解読・照合回路126は、メイン鍵合成コード生成回路118が備える合成関数コードと同一の合成関数コードを備える。
 メイン鍵合成コード解読・照合回路126は、メイン鍵コード発生回路124により出力されたメイン鍵コードに合成関数コードを用いた論理演算を行い、照合コードを生成する。メイン鍵合成コード解読・照合回路126は、メイン保護・制御演算手段110により出力されるメイン鍵合成コードを解読し、算出した照合コードと照合する。メイン鍵合成コード解読・照合回路126は、メイン鍵コード発生回路124が発生するメイン鍵コードを、メイン鍵合成コード生成回路118が備える合成関数コードを用いた論理演算を行って得られる結果を照合コードとして予め記憶しておいてもよい。
 メイン制御回路120は、強制遮断制御情報が出力された場合に、メイン鍵合成コード解読・照合回路126における照合により、メイン鍵コードとメイン鍵合成コードが対応するか否かを判定する。メイン鍵コードとメイン鍵合成コードが対応するとは、メイン鍵合成コードと照合コードが合致することである。
 メイン制御回路120は、メイン鍵合成コード解読・照合回路126において、メイン鍵コードとメイン鍵合成コードが対応すると判定したとする。この場合、メイン制御回路120は、通電制御回路122において、遮断器20を強制的に遮断状態に制御する。遮断器20を強制的に遮断状態に制御するにあたり、メイン制御回路120は、強制遮断制御情報を遮断器20に出力する。
 メイン制御回路120は、メイン鍵合成コード解読・照合回路126において、メイン鍵コードとメイン鍵合成コードが対応していないと判定したとする。この場合、メイン制御回路120は、通電制御回路122において、遮断器20を強制的に遮断状態にする制御を行わない。このため、メイン制御回路120は、遮断器20を強制的に遮断状態に制御するための強制遮断制御情報を遮断器20に出力しない。
 フェールセーフ処理部200におけるフェールセーフ保護・制御演算手段210は、例えば、AD変換回路212と、フェールセーフ制御演算部214と、フェールセーフ保護演算部216と、フェールセーフ鍵合成コード生成回路(第2鍵合成コード生成回路の一例)218と、を備える。
 フェールセーフ制御回路220は、通電制御回路222と、フェールセーフ鍵コード発生回路(第2鍵コード発生回路の一例)224と、フェールセーフ鍵合成コード解読・照合回路(第2解読・照合回路の一例)226と、を備える。フェールセーフ処理部200におけるAD変換回路212、フェールセーフ制御演算部214、フェールセーフ保護演算部216、及び通電制御回路222は、メイン処理部100におけるAD変換回路112、メイン制御演算部114、メイン保護演算部116、及び通電制御回路122と同様の機能を有する。
 フェールセーフ保護・制御演算手段210のフェールセーフ鍵合成コード生成回路218は、フェールセーフ制御回路220により出力されるフェールセーフ鍵コード(第2鍵コードの一例)に対して、合成関数コードを用いた論理演算を行い、フェールセーフ鍵合成コード(第2鍵合成コードの一例)を生成する。フェールセーフ鍵合成コード生成回路218は、生成したフェールセーフ鍵合成コードをフェールセーフ制御回路220のフェールセーフ鍵合成コード解読・照合回路226に出力する。
 フェールセーフ鍵合成コード解読・照合回路226は、フェールセーフ鍵コード発生回路224により出力されたフェールセーフ鍵コードに合成関数コードを用いた論理演算を行い、照合コードを生成する。フェールセーフ鍵合成コード解読・照合回路226は、フェールセーフ保護・制御演算手段210により出力されるメイン鍵合成コードを解読し、算出した照合コードと照合する。
 フェールセーフ鍵コード発生回路224が発生するフェールセーフ鍵コードは、メイン鍵コード発生回路124が発生するメイン鍵コードと異なる鍵コードである。フェールセーフ鍵コードは、メイン鍵コードと同一の鍵コードでもよい。フェールセーフ鍵合成コード生成回路218が備える合成関数コードは、メイン鍵合成コード生成回路118が備える合成関数コードと異なる合成関数コードである。メイン鍵合成コード生成回路118が備える合成関数コードと同一の合成関数コードでもよい。
 フェールセーフ鍵合成コード解読・照合回路226で用いられる照合コードは、フェールセーフ鍵コード発生回路224により出力されたフェールセーフ鍵コードに合成関数コードを用いた論理演算を行ったものでもよい。フェールセーフ鍵合成コード解読・照合回路226で用いられる照合コードは、フェールセーフ鍵コード発生回路224が発生するフェールセーフ鍵コードを、フェールセーフ鍵合成コード生成回路218が備える合成関数コードを用いた論理演算を行って得られる結果として予め記憶しておいたものでもよい。
 フェールセーフ制御回路220における通電制御回路222は、フェールセーフ制御演算部214により出力される遮断/通電制御情報に基づいて、遮断器20を制御する。通電制御回路222は、フェールセーフ制御演算部214により遮断制御情報が出力された場合に、遮断器20の第2スイッチ24に遮断情報を出力し、遮断器20が遮断状態となるように制御する。通電制御回路222は、フェールセーフ制御演算部214により通電制御情報が出力された場合に、遮断器20の第2スイッチ24に通電情報を出力し、遮断器20が通電状態となるように制御する。通電制御回路222は、フェールセーフ保護演算部216により強制遮断制御情報が出力された場合に、フェールセーフ鍵コードとフェールセーフ鍵合成コードが対応することを条件として、遮断器20の第2スイッチ24に強制遮断情報を出力し、遮断器20が強制的に遮断状態となるように制御する。
 遮断器20は、メイン処理部100及びフェールセーフ処理部200により出力される遮断情報、通電情報、及び強制遮断情報に基づいて、通電状態または遮断状態に制御される。第1スイッチ22と第2スイッチ24は直接に接続されている。第1スイッチ22は、電圧発生源と第2スイッチ24との間を接続状態または開放状態とする。第1スイッチ22の制御端子には、メイン処理部100により出力される情報が入力される。第1スイッチ22は、メイン制御回路120により、遮断情報が出力された場合に開放状態となり、通電情報が出力された場合に接続状態とされる。第1スイッチ22は、メイン制御回路120により強制遮断情報が出力された場合に、強制的に接続状態とされる。
 第2スイッチ24は、第1スイッチ22と電力系統との間を接続状態または開放状態とする。第2スイッチ24の制御端子には、フェールセーフ制御回路220により出力される遮断情報、通電情報、及び強制遮断情報が入力される。第2スイッチ24は、フェールセーフ制御回路220により遮断情報が出力された場合に開放状態となり、通電情報が出力された場合に接続状態とされる。第2スイッチ24は、フェールセーフ制御回路220により強制遮断制御情報が出力された場合に、強制的に接続状態とされる。
 したがって、メイン処理部100及びフェールセーフ処理部200によりそれぞれ強制遮断情報が出力される場合に、第1スイッチ22と第2スイッチ24とが共に接続状態となる。遮断器20は、第1スイッチ22と第2スイッチ24とが共に接続状態となることにより、強制的に遮断状態となる。
 第1実施形態の保護継電装置10では、遮断器20を強制遮断ための判定を行うにあたり、メイン制御回路120とメイン保護・制御演算手段110との間で鍵コード及び鍵合成コードを入出力する。同様に、保護継電装置10では、フェールセーフ制御回路220とフェールセーフ保護・制御演算手段210との間で鍵コード及び鍵合成コードを入出力する。メイン制御回路120は、鍵コードにより生成される照合コードと、メイン保護・制御演算手段110により出力される鍵合成コードが一致して鍵コードと鍵合成コードとが対応することを条件に、遮断器20を強制遮断するための制御を行う。同様に、フェールセーフ制御回路220は、鍵コードにより生成される照合コードと、フェールセーフ保護・制御演算手段210により出力される鍵合成コードが一致して鍵コードと鍵合成コードが対応することを条件に、遮断器20を強制遮断するための制御を行う。
 このため、例えば保護継電装置10におけるシステムの構成要素に一過性の不良による誤作動があったとしても、鍵コードと鍵合成コードと対応を見ることにより、システムの構成要素における誤作動による遮断器20の誤作動(誤遮断)を抑制できる。したがって、遮断器20を制御する際、特に遮断器20を強制遮断するための制御が意図した制御指令情報である信憑性を高めることができる。よって、保護継電装置10における信頼性を高めることができるので、例えば、1枚の基板で各電子部品を搭載したものとしても、十分に信頼性を維持することができる。その結果、信頼性を損なうことなく、構造を簡素化することができる。
 第1実施形態の保護継電装置10は、メイン鍵コード発生回路124において、所定周期ごとに乱数を発生させて、メイン鍵コードを発生させる。このため、鍵コードが所定周期ごとに変更されるので、保護継電装置10の外部における鍵コードの不正な複製を抑制できる。したがって、保護継電装置10における信頼性をさらに高めることができる。
 第1実施形態の保護継電装置10は、鍵コードと鍵合成コードとの対応を判定することにより、セキュリティインシデント対策としても活用できる。例えば、保護継電装置10における演算素子、例えばCPUがセキュリティ上の脅威によって攻撃を受けて影響を受けたとしても、鍵コードと鍵合成コードとの対応を判定することにより、その影響を受けた場合の遮断器20の制御を中止できる。したがって、保護継電装置10の健全性の確証を得ることができ、冗長化と相俟って、保護継電装置10の信頼性を向上させることができる。第1実施形態の保護継電装置10は、デジタルリレーの一般的なメリットであるハードウェアの標準化が可能である。第1実施形態の保護継電装置10は、自動点検・自動監視機能の付加が容易である。
 ≪第2実施形態≫
 次に、第2実施形態について説明する。図2は、第2実施形態の保護継電装置10の機能ブロック構成図である。第2実施形態の保護継電装置10は、第1実施形態の保護継電装置10と同様の構成を有する。第2実施形態の保護継電装置10において、メイン鍵コード発生回路124は、メイン鍵コードとして、複数ビット、例えば16ビットのビット列を備えるメイン鍵コードを発生させる。メイン鍵コードには、予備ビットが設けられる。以下に説明する各コードにおいても、同様の予備ビットが設けられる。
 メイン鍵合成コード生成回路118は、メイン鍵コードが備えるビット列の数の合成関数コードを備える。メイン鍵合成コード生成回路118は、メイン鍵コード発生回路124が出力したメイン鍵コードに基づいて、合成関数コードを用いて、そのビット列の数と同数、ここでは16ビットのビット列を備えるメイン鍵合成コードを生成する。
 第2実施形態の保護継電装置10によれば、第1実施形態の保護継電装置10と同様の作用効果を得ることができる。さらに、第2実施形態の保護継電装置10は、複数ビット、例えば16ビットのメイン鍵コードを用いている。このため、保護継電装置10は、遮断器20を制御する際のセキュリティ強度を高めることができる。
 ≪第3実施形態≫
 次に、第3実施形態について説明する。図3は、第3実施形態の保護継電装置10の機能ブロック構成図である。第3実施形態の保護継電装置10は、第1実施形態の保護継電装置10と同様の構成を有する。第3実施形態の保護継電装置10のAD変換回路112は、合成関数コードを備える。AD変換回路112が備える合成関数コードは、メイン鍵合成コード生成回路118が備える合成関数コードと異なる合成関数コードである。
 メイン制御回路120におけるメイン鍵コード発生回路124は、第2実施形態と同様に、複数ビットのビット列を備えるメイン鍵コードを生成してメイン保護・制御演算手段110に出力する。メイン鍵合成コード生成回路118が備える合成関数コードは、メイン鍵の全ビットについての論理演算を行うための合成関数コードである。AD変換回路112が備える合成関数コードは、メイン鍵の一部のビットについての論理演算を行うための合成関数コードである。
 AD変換回路112は、合成関数コードを用いた論理演算により得られるメイン鍵合成コード(以下、ADメイン鍵合成コード)を生成する。ADメイン鍵合成コードは、例えば、メイン鍵コードにおける特定の一部に合成関数コードを用いた論理演算を行うことにより生成される。メイン保護・制御演算手段110は、AD変換回路112により生成されたADメイン鍵合成コードをメイン制御回路120に出力する。
 メイン制御回路120におけるメイン鍵合成コード解読・照合回路126は、メイン鍵合成コードを照合するための照合コードのほか、メイン鍵コードのうち、ADメイン鍵合成コードを生成する一部(以下、ADメイン鍵コード)を用いてADメイン鍵合成コードを照合するための照合コードを生成する。この照合コードは、例えば、ADメイン鍵合成コードを生成する際に用いるメイン鍵コードの一部を、AD変換回路112が備える合成関数コードを用いて論理演算を行うことで得られる。
 メイン制御回路120は、強制遮断制御情報が出力された場合に、メイン鍵合成コード解読・照合回路126における照合により、メイン鍵コードとメイン鍵合成コードが対応するか否かを判定する。このとき、メイン制御回路120は、メイン鍵合成コード解読・照合回路126における照合により、ADメイン鍵コードとADメイン鍵合成コードが対応するか否かを判定する。
 メイン制御回路120は、メイン鍵コードとメイン鍵合成コード、及びADメイン鍵コードとADメイン鍵合成コードがいずれも対応すると判定した場合に、第1実施形態においてメイン鍵コードとメイン鍵合成コードが対応すると判定した場合と同様の処理を行う。メイン制御回路120は、メイン鍵コードとメイン鍵合成コード、及びADメイン鍵コードとADメイン鍵合成コードがいずれかまたは両方が対応しないと判定した場合に、第1実施形態においてメイン鍵コードとメイン鍵合成コードが対応しないと判定した場合と同様の処理を行う。
 フェールセーフ処理部200は、メイン処理部100と同様に、AD変換回路212において、合成関数コードを用いた論理演算を行いた論理演算により得られるフェールセーフ鍵合成コード(以下、ADフェールセーフ鍵合成コード)を生成する。フェールセーフ処理部200は、フェールセーフ鍵合成コード生成回路218において、フェールセーフ鍵コードの一部(以下、ADフェールセーフ鍵コード)を用いて、フェールセーフ鍵合成コードを生成する。
 フェールセーフ処理部200は、強制遮断制御情報が出力された場合に、フェールセーフ鍵合成コード解読・照合回路226における照合により、フェールセーフ鍵コードとフェールセーフ鍵合成コードが対応するか否かを判定する。このとき、フェールセーフ処理部200は、フェールセーフ鍵合成コード解読・照合回路226における照合により、ADフェールセーフ鍵コードとADフェールセーフ鍵合成コードが対応するか否かを判定する。
 フェールセーフ処理部200は、フェールセーフ鍵コードとフェールセーフ鍵合成コード、及びADフェールセーフ鍵コードとADフェールセーフ鍵合成コードがいずれも対応すると判定した場合に、第1実施形態においてフェールセーフ鍵コードとフェールセーフ鍵合成コードが対応すると判定した場合と同様の処理を行う。フェールセーフ処理部200は、フェールセーフ鍵コードとフェールセーフ鍵合成コード、及びADフェールセーフ鍵コードとADフェールセーフ鍵合成コードがいずれかまたは両方が対応しないと判定した場合に、第1実施形態においてフェールセーフ鍵コードとフェールセーフ鍵合成コードが対応しないと判定した場合と同様の処理を行う。
 第3実施形態の保護継電装置10によれば、第1実施形態の保護継電装置10と同様の作用効果を得ることができる。さらに、第3実施形態の保護継電装置10は、メイン処理部100のAD変換回路112及びフェールセーフ処理部200のAD変換回路212において、ADメイン鍵合成コード及びADフェールセーフ鍵合成コードをそれぞれ生成する。メイン鍵合成コード解読・照合回路126及びフェールセーフ鍵合成コード解読・照合回路226において、ADメイン鍵合成コード及びADフェールセーフ鍵合成コードが、それぞれADメイン鍵コード及びADフェールセーフ鍵コードと対応するか否かを判定して、遮断器20を制御する。このため、メイン処理部100及びフェールセーフ処理部200におけるAD変換回路112,212の故障等に基づく遮断器20の誤作動(誤遮断)を抑制することができる。
 ≪第4実施形態≫
 次に、第4実施形態について説明する。図4は、第4実施形態の保護継電装置10の機能ブロック構成図である。第4実施形態の保護継電装置10は、第3実施形態の保護継電装置10と比較して、メイン保護・制御演算手段110にアナログフィルタ回路(Analog filter回路、以下、AF回路)119を備える点が異なる。さらに、及びフェールセーフ保護・制御演算手段210のAF回路219を備える点が異なる。その他の点は、第3実施形態の保護継電装置10と同様の構成を有する。なお、上記第1実施形態~第3実施形態においても、AF回路119,219が設けられた構成としてもよい。この場合、AF回路119,219は、後述する合成関数コードを備えていなくてもよい。
 AF回路119は、保護継電装置10の外部である電力系統により入力されるアナログ情報をフィルタリングし、アナログ情報に含まれる所定成分、例えば高周波成分を除去する。AF回路119は、メイン制御回路120により出力されるメイン鍵コードを低周波成分としてアナログ情報に重畳させた検証アナログ情報を生成する。AF回路119は、検証アナログ情報を通過させてAD変換回路112に出力する。フェールセーフ処理部200におけるAF回路219は、メイン処理部100におけるAF回路119と同様の処理を行う。
 AF回路119は、合成関数コードを備える。AF回路119が備える合成関数コードは、AD変換回路112、メイン鍵合成コード生成回路118が備える合成関数コードと異なる合成関数コードである。AF回路219は、合成関数コードを備える。AF回路219が備える合成関数コードは、AD変換回路212、フェールセーフ鍵合成コード生成回路218が備える合成関数コードと異なる合成関数コードである。
 AD変換回路112は、第3実施形態と同様にしてADメイン鍵合成コードを生成する。AD変換回路112は、検証アナログ情報に重畳されたメイン鍵コードを変換して得られたデジタル情報を、ADメイン鍵合成コードにおける予備ビットに書き込む。AD変換回路112は、検証アナログ情報に重畳されたメイン鍵コードを変換して得られたデジタル情報としてのコード(以下、AFメイン鍵合成コード)、そのままメイン鍵合成コード生成回路118に出力してもよい。この場合、メイン鍵合成コード生成回路118は、AFメイン鍵合成コードを、メイン鍵合成コードにおける予備ビットに書き込む。メイン保護・制御演算手段110は、AD変換回路112により生成されたADメイン鍵合成コードをメイン制御回路120に出力する。
 メイン制御回路120におけるメイン鍵合成コード解読・照合回路(検証部の一例)126は、メイン鍵合成コード及びADメイン鍵合成コードを照合するための照合コードのほか、AFメイン鍵合成コードを照合するための照合コードを生成する。この照合コードは、例えば、AFメイン鍵合成コードを生成する際に用いるメイン鍵コードの一部を、AD変換回路112が備える合成関数コードを用いて論理演算を行うことで得られる。
 メイン処理部100は、強制遮断制御情報が出力された場合に、メイン鍵合成コード解読・照合回路126における照合により、メイン鍵コードとメイン鍵合成コード、及びADメイン鍵コードとADメイン鍵コードがそれぞれ対応するか否かを判定する。このとき、メイン処理部100は、メイン鍵合成コード解読・照合回路126における照合により、AFメイン鍵コードAFメイン鍵合成コードが対応するか否かを判定する。メイン鍵合成コード解読・照合回路126は、AFメイン鍵コードAFメイン鍵合成コードが対応するか否かを判定により、AF回路119の動作を検証する。メイン鍵合成コード解読・照合回路126は、AFメイン鍵コードAFメイン鍵合成コードが対応する場合に、AF回路119の動作は正常と判定し、AFメイン鍵コードAFメイン鍵合成コードが対応しない場合に、AF回路119の動作は異常と判定する。
 メイン処理部100は、メイン鍵コードとメイン鍵合成コード、ADメイン鍵コードとADメイン鍵合成コードが、AFメイン鍵コードとAFメイン鍵合成コードいずれも対応すると判定した場合に、第1実施形態においてメイン鍵コードとメイン鍵合成コードが対応すると判定した場合と同様の処理を行う。メイン処理部100は、メイン鍵コードとメイン鍵合成コード、ADメイン鍵コードとADメイン鍵合成コード、及びAFメイン鍵コードとAFメイン鍵合成コードの少なくとも1組が対応しないと判定した場合に、第1実施形態においてメイン鍵コードとメイン鍵合成コードが対応しないと判定した場合と同様の処理を行う。
 フェールセーフ処理部200は、メイン処理部100と同様に、AD変換回路212において、第3実施形態と同様にしてADメイン鍵合成コードを生成する。AD変換回路212は、アナログ情報に重畳されたフェールセーフ鍵コードを変換して得られたデジタル情報を、ADメイン鍵合成コードにおける予備ビットに書き込む。AD変換回路212は、アナログ情報に重畳されたフェールセーフ鍵コードを変換して得られたデジタル情報としてのコード(以下、AFフェールセーフ鍵合成コード)、そのままフェールセーフ鍵合成コード生成回路218に出力してもよい。この場合、フェールセーフ鍵合成コード生成回路218は、AFフェールセーフ鍵合成コードを、フェールセーフ鍵合成コードにおける予備ビットに書き込む。フェールセーフ保護・制御演算手段210は、AD変換回路212により生成されたADフェールセーフ鍵合成コードをフェールセーフ制御回路220に出力する。
 フェールセーフ制御回路220におけるフェールセーフ鍵合成コード解読・照合回路226は、フェールセーフ鍵合成コード及びADフェールセーフ鍵合成コードを照合するための照合コードのほか、AFフェールセーフ鍵合成コードを照合するための照合コードを生成する。この照合コードは、例えば、AFフェールセーフ鍵合成コードを生成する際に用いるフェールセーフ鍵コードの一部を、AD変換回路212が備える合成関数コードを用いて論理演算を行うことで得られる。
 フェールセーフ処理部200は、強制遮断制御情報が出力された場合に、フェールセーフ鍵合成コード解読・照合回路226における照合により、フェールセーフ鍵コードとフェールセーフ鍵合成コードが対応するか否かを判定する。このとき、フェールセーフ処理部200は、フェールセーフ鍵合成コード解読・照合回路226における照合により、AFフェールセーフ鍵コードとAFフェールセーフ鍵合成コードが対応するか否かを判定する。フェールセーフ鍵合成コード解読・照合回路226は、AFメイン鍵コードAFメイン鍵合成コードが対応する場合に、AF回路219の動作は正常と判定し、AFメイン鍵コードAFメイン鍵合成コードが対応しない場合に、AF回路219の動作は異常と判定する。
 フェールセーフ処理部200は、フェールセーフ鍵コードとフェールセーフ鍵合成コード、ADフェールセーフ鍵コードとADフェールセーフ鍵合成コードが、AFフェールセーフ鍵コードとAFフェールセーフ鍵合成コードいずれも対応すると判定した場合に、第1実施形態においてフェールセーフ鍵コードとフェールセーフ鍵合成コードが対応すると判定した場合と同様の処理を行う。フェールセーフ処理部200は、フェールセーフ鍵コードとフェールセーフ鍵合成コード、ADフェールセーフ鍵コードとADフェールセーフ鍵合成コード、及びAFフェールセーフ鍵コードとAFフェールセーフ鍵合成コードの少なくとも1組が対応しないと判定した場合に、第1実施形態においてフェールセーフ鍵コードとフェールセーフ鍵合成コードが対応しないと判定した場合と同様の処理を行う。
 第4実施形態の保護継電装置10によれば、第1実施形態の保護継電装置10と同様の作用効果を得ることができる。さらに、第4実施形態の保護継電装置10は、メイン処理部100のAF回路119及びフェールセーフ処理部200のAF回路219において、AFメイン鍵合成コード及びAFフェールセーフ鍵合成コードをそれぞれ生成する。メイン鍵合成コード解読・照合回路126及びフェールセーフ鍵合成コード解読・照合回路226において、AFメイン鍵合成コード及びAFフェールセーフ鍵合成コードが、それぞれAFメイン鍵コード及びAFフェールセーフ鍵コードと対応するか否かを判定して、遮断器20を制御する。このため、メイン処理部100及びフェールセーフ処理部200におけるAF回路119,219の故障等に基づく遮断器20の誤作動(誤遮断)を抑制することができる。
 上記各実施形態において、メイン処理部100及びフェールセーフ処理部200のそれぞれにAD変換回路112,212を設けているが、他の態様でもよい。例えば、メイン処理部100及びフェールセーフ処理部200の外部に、メイン処理部100及びフェールセーフ処理部200のそれぞれにデジタル情報を出力する1つのAD変換回路を設けてもよい。第4実施形態において、メイン処理部100及びフェールセーフ処理部200のそれぞれにAF回路119,219を設けているが、他の態様でもよい。例えば、メイン処理部100及びフェールセーフ処理部200の外部に、メイン処理部100及びフェールセーフ処理部200のそれぞれにアナログ情報を出力する1つのAF回路を設けてもよい。メイン処理部100及びフェールセーフ処理部200の外部に1つのAD変換回路が設けられる場合に、そのAD変換回路にアナログ情報を出力するAF回路を設けてもよい。
 ≪ハードウェアの構成≫
 次に、各実施形態における保護継電装置10のハードウェアの構成について説明する。なお、以下の説明において、基板上に実装される各チップ部品は、相対的な位置関係を特定するものではなく、各チップ部品は、基板上の任意の位置に配置可能である。
 ≪第1の構成例≫
 図5は、保護継電装置10のハードウェアの第1の構成例を示す図である。図5に示すように、第1の構成例において、保護継電装置10は、基板500を備える。基板500には第1AF回路510、第1AD変換回路520、第1CPU(Central Processing Unit)530、第1FPGA(field-programmable gate array)540、第2AF回路550、第2AD変換回路560、第2CPU570、及び第2FPGA580が実装されている。
 第1AF回路510は、メイン処理部100のAF回路119として機能する。第1AD変換回路520は、メイン処理部100のAD変換回路112として機能する。第1CPU530は、メイン保護・制御演算手段110として機能する。第1FPGA540は、メイン制御回路120として機能する。
 第2AF回路550は、フェールセーフ処理部200のAF回路219として機能する。第2AD変換回路560は、フェールセーフ処理部200のAD変換回路212として機能する。第2CPU570は、フェールセーフ保護・制御演算手段210として機能する。第2FPGA580は、フェールセーフ制御回路220として機能する。
 このように、第1の構成例では、2つのCPU及びFPGAを用いて、それぞれメイン保護・制御演算手段110、メイン制御回路120、フェールセーフ保護・制御演算手段210、フェールセーフ制御回路220として機能させている。なお、それぞれの機能を果たすチップ部品等の部品として、他の部品を用いてもよい。例えば、メイン保護・制御演算手段110やフェールセーフ保護・制御演算手段210に利用するチップ部品として、CPU以外の部品、例えばFPGAを用いてもよい。例えば、メイン制御回路120やフェールセーフ制御回路220に利用するチップ部品として、FPGA以外の部品、例えばCPUを用いてもよい。以下の他の構成例において、CPUに代えてFPGAを利用したり、FPGAに代えてCPUを利用したりするなど、好適となるチップ部品を適宜利用してもよい。
 ≪第2の構成例≫
 図6は、保護継電装置10のハードウェアの第2の構成例を示す図である。図6に示すように、第2の構成例において、保護継電装置10は、基板600を備える。基板600には第1AF回路610、第1AD変換回路620、共通CPU(第1チップ部品の一例)630、第1FPGA640、第2AF回路650、第2AD変換回路660、及び第2FPGA670が実装されている。
 第1AF回路610は、メイン処理部100のAF回路119として機能する。第1AD変換回路620は、メイン処理部100のAD変換回路112として機能する。共通CPU630は、メイン保護・制御演算手段110及びフェールセーフ保護・制御演算手段210として機能する。第1FPGA640は、メイン制御回路120として機能する。
 第2AF回路650は、フェールセーフ処理部200のAF回路219として機能する。第2AD変換回路660は、フェールセーフ処理部200のAD変換回路212として機能する。第2FPGA680は、フェールセーフ制御回路220として機能する。
 共通CPU630と、第1FPGA640及び第2FPGAと、の間の情報の入出力に関して、共通CPU630と第1FPGA640間には2本の信号線が設けられている。共通CPU630と第2FPGA680間には2本の信号線が設けられている。
 第2の構成例では、メイン保護・制御演算手段110及びフェールセーフ保護・制御演算手段210として機能するチップ部品として共通CPU630を用いている。このため、CPU等のチップ部品が実装された単独の基板(演算基板)でも、メイン処理部100及びフェールセーフ処理部200としての機能演算の健全性を確保した上で、システム的な冗長化を図ることができる。したがって、基板の数の削減やチップ部品の少量化による構造の簡素化寄与することができる。
 共通CPU630と第1FPGA640間及び共通CPU630と第2FPGA680の間には、それぞれ2本の信号線が設けられている。このため、第1FPGA640からメイン鍵コード、共通CPU630からメイン鍵合成コード、第2FPGA68からフェールセーフ鍵コード、共通CPU630からフェールセーフ鍵合成コードを同時に出力することができる。したがって、情報を入出力する際のタイムロスを抑制できる。
 ≪第3の構成例≫
 図7は、保護継電装置10のハードウェアの第3の構成例を示す図である。図6に示すように、第3の構成例において、保護継電装置10は、基板700を備える。基板700には第1AF回路710、第1AD変換回路720、共通CPU730、共通FPGA(第2チップ部品の一例)740、第2AF回路750、及び第2AD変換回路760が実装されている。
 第1AF回路710は、メイン処理部100のAF回路119として機能する。第1AD変換回路720は、メイン処理部100のAD変換回路112として機能する。共通CPU730は、メイン保護・制御演算手段110及びフェールセーフ保護・制御演算手段210として機能する。共通FPGA740は、メイン制御回路120及びフェールセーフ制御回路220として機能する。
 第2AF回路750は、フェールセーフ処理部200のAF回路219として機能する。第2AD変換回路760は、フェールセーフ処理部200のAD変換回路212として機能する。共通CPU730と、共通FPGA740との間の情報の入出力に関して、共通CPU630と共通FPGA740間には4本の信号線が設けられている。
 第3の構成例では、メイン保護・制御演算手段110及びフェールセーフ保護・制御演算手段210として機能するチップ部品として共通CPU730を用いている。さらに、メイン制御回路120及びフェールセーフ制御回路220として機能するチップ部品として共通FPGAを用いている。このため、CPU、FPGA等のチップ部品が実装された単独の基板(演算基板)でも、メイン処理部100及びフェールセーフ処理部200としての機能演算の健全性を確保した上で、システム的な冗長化を図ることができる。したがって、基板の数の削減やチップ部品の少量化による構造の簡素化に寄与することができる。
 共通CPU730と共通FPGA740間には、4本の信号線が設けられている。このため、共通FPGA740からメイン鍵コード及びフェールセーフ鍵コード、共通CPU730からメイン鍵合成コード及びフェールセーフ鍵合成コードを同時に出力することができる。したがって、情報を入出力する際のタイムロスを抑制できる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
10…保護継電装置、20…遮断器、100…メイン処理部、110…メイン保護・制御演算手段、112…AD変換回路、114…メイン制御演算部、116…メイン保護演算部、118…メイン鍵合成コード生成回路、119…AF回路、120…メイン制御回路、122…通電制御回路、124…メイン鍵コード発生回路、126…メイン鍵合成コード解読・照合回路、200…フェールセーフ処理部、210…フェールセーフ保護・制御演算手段、212…AD変換回路、214…フェールセーフ制御演算部、216…フェールセーフ保護演算部、218…フェールセーフ鍵合成コード生成回路、219…AF回路、220…フェールセーフ制御回路、222…通電制御回路、224…フェールセーフ鍵コード発生回路、226…フェールセーフ鍵合成コード解読・照合回路、500,600,700…基板、510,610,710…第1AF回路、520,620,720…第1AD変換回路、530…第1CPU、540,640…第1FPGA、550,650…第2AF回路、560,660…第2AD変換回路、570…第2CPU,580,680…第2FPGA,630,730…共通CPU、740…共通FPGA

Claims (7)

  1.  電力系統の状態を示すアナログ情報をデジタル情報に変換した情報に基づく判定を行う第1保護制御演算手段と、
     前記第1保護制御演算手段の判定結果に基づいて、前記電力系統に設けられた遮断器を制御する第1制御回路と、
     前記電力系統の状態を示すアナログ情報をデジタル情報に変換した情報に基づく判定を行う第2保護制御演算手段と、
     前記第2保護制御演算手段の判定結果に基づいて、前記電力系統に設けられた遮断器を制御する第2制御回路と、を備え、
     前記第1制御回路は、第1鍵コードを発生させる第1鍵コード発生回路を有し、
     前記第1保護制御演算手段は、前記第1鍵コードに基づいて、第1鍵合成コードを生成する第1鍵合成コード生成回路を有し、
     前記第2制御回路は、第2鍵コードを発生させる第2鍵コード発生回路を有し、
     前記第2保護制御演算手段は、前記第2鍵コードに基づいて、第2鍵合成コードを生成する第2鍵合成コード生成回路を有し、
     前記第1制御回路は、第1鍵合成コードと前記第1鍵コードが対応するか否かを判定する第1解読・照合回路を有し、第1鍵合成コードと前記第1鍵コードが対応することを条件に場合に前記電力系統に設けられた遮断器を制御し、
     前記第2制御回路は、第2鍵合成コードと前記第2鍵コードが対応するか否かを判定する第2解読・照合回路を有し、第2鍵合成コードと前記第2鍵コードが対応することを条件に前記電力系統に設けられた遮断器を制御する、
     保護継電装置。
  2.  前記第1鍵コード発生回路及び前記第2鍵コード発生回路は、それぞれ所定周期ごとに乱数を発生させて、第1鍵コード及び第2鍵コードを発生させる、
     請求項1に記載の保護継電装置。
  3.  前記第1鍵コード及び前記第2鍵コードは、複数ビットのビット列を備え、
     前記第1鍵合成コード生成回路及び前記第2鍵合成コード生成回路は、前記第1鍵コード及び前記第2鍵コードのビット列における各ビットに対して既知の論理演算を行った結果を前記第1鍵合成コード及び前記第2鍵合成コードとしてそれぞれ生成し、
     前記第1解読・照合回路は、前記論理演算に基づく検証を行って第1鍵合成コードと前記第1鍵コードが対応するか否かを判定し、
     前記第2解読・照合回路は、前記論理演算に基づく検証を行って第2鍵合成コードと前記第2鍵コードが対応するか否かを判定する、
     請求項1に記載の保護継電装置。
  4.  前記第1保護制御演算手段は、前記アナログ情報を前記デジタル情報に変換する第1AD変換回路を更に備え、
     前記第1鍵合成コード生成回路の一部が前記第1AD変換回路に設けられている、
     請求項1に記載の保護継電装置。
  5.  外部により入力されるアナログ情報をフィルタリングするアナログフィルタ回路と、
     前記第1鍵合成コードに基づいて、検証アナログ情報を生成し、前記アナログフィルタ回路を通過した前記検証アナログ情報に基づいて、前記アナログフィルタ回路の動作を検証する検証部と、を更に備える、
     請求項1に記載の保護継電装置。
  6.  前記第1保護制御演算手段及び前記第2保護制御演算手段は、基板に実装された第1チップ部品に設けられている、
     請求項1に記載の保護継電装置。
  7.  前記第1制御回路及び前記第2制御回路は、前記基板に実装された、前記第1チップ部品と異なる第2チップ部品に設けられている、
     請求項6に記載の保護継電装置。
PCT/JP2019/028248 2019-07-18 2019-07-18 保護継電装置 WO2021009900A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021531521A JP6952936B1 (ja) 2019-07-18 2019-07-18 保護継電装置
PCT/JP2019/028248 WO2021009900A1 (ja) 2019-07-18 2019-07-18 保護継電装置
KR1020227001243A KR20220020932A (ko) 2019-07-18 2019-07-18 보호 계전 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028248 WO2021009900A1 (ja) 2019-07-18 2019-07-18 保護継電装置

Publications (1)

Publication Number Publication Date
WO2021009900A1 true WO2021009900A1 (ja) 2021-01-21

Family

ID=74210357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028248 WO2021009900A1 (ja) 2019-07-18 2019-07-18 保護継電装置

Country Status (3)

Country Link
JP (1) JP6952936B1 (ja)
KR (1) KR20220020932A (ja)
WO (1) WO2021009900A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166486A (ja) * 2009-01-19 2010-07-29 Toshiba Corp 保護制御計測システムと装置、およびデータ伝送方法
US20130128392A1 (en) * 2011-11-19 2013-05-23 Chad Maglaque System and Method for Securely Connecting Energy Devices to a Power Bus
JP2018129885A (ja) * 2017-02-06 2018-08-16 株式会社東芝 保護継電装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139025A (en) 1980-03-31 1981-10-30 Tokyo Shibaura Electric Co Protection relay
JPS57106330A (en) 1980-12-19 1982-07-02 Tokyo Shibaura Electric Co Protection relay
JP2839030B2 (ja) 1988-02-29 1998-12-16 三菱電機株式会社 デジタルリレー装置
JPH05207637A (ja) 1992-01-23 1993-08-13 Fuji Electric Co Ltd ディジタルリレー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166486A (ja) * 2009-01-19 2010-07-29 Toshiba Corp 保護制御計測システムと装置、およびデータ伝送方法
US20130128392A1 (en) * 2011-11-19 2013-05-23 Chad Maglaque System and Method for Securely Connecting Energy Devices to a Power Bus
JP2018129885A (ja) * 2017-02-06 2018-08-16 株式会社東芝 保護継電装置

Also Published As

Publication number Publication date
JPWO2021009900A1 (ja) 2021-01-21
JP6952936B1 (ja) 2021-10-27
KR20220020932A (ko) 2022-02-21

Similar Documents

Publication Publication Date Title
US20180211734A1 (en) Reactor protection-processor-to-reactor-trip breaker interface and method for operating the same
KR100807342B1 (ko) 개별 계전기의 보호요소 동작신호를 사용한 3중화 보호 시스템
US8284531B2 (en) Voltage protection arrangement for an electronic device
WO2012105089A1 (ja) 安全装置、安全装置の演算方法
JP4731403B2 (ja) 総合後備保護機能付き母線保護継電装置
CN112041765A (zh) 风力涡轮机故障监测系统和方法
JP6952936B1 (ja) 保護継電装置
JP5517759B2 (ja) 保護継電器
KR20170124817A (ko) 디지털 보호 계전기 삼중화 시스템
JP5046867B2 (ja) 保護継電システム
JP5888941B2 (ja) 保護継電器
JP2006050813A (ja) デジタルリレー装置
JP7140020B2 (ja) 出力制御装置
JP2005312180A (ja) ディジタル保護リレーシステム
JP5190032B2 (ja) 遮断器用操作器
US20180294651A1 (en) Power distribution node
JP4403968B2 (ja) 高圧配電線の断線検出装置
JP2013070475A (ja) 継電装置
JP6099187B2 (ja) バス同期2重系のコンピュータシステム
Sikora et al. Emergency shutdown system
KR20220167541A (ko) 발전기차단기 차단실패 보호 계전기 및 이를 이용한 차단실패 보호 방법
JP5767922B2 (ja) ディジタル型保護継電システム
JP2011248625A (ja) 制御装置の故障診断回路および故障診断方法
JPH05216501A (ja) デジタル制御装置の出力回路
JP2716783B2 (ja) 監視制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531521

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227001243

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937462

Country of ref document: EP

Kind code of ref document: A1