WO2021008238A1 - 反馈信息传输方法、装置、终端及存储介质 - Google Patents

反馈信息传输方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2021008238A1
WO2021008238A1 PCT/CN2020/092100 CN2020092100W WO2021008238A1 WO 2021008238 A1 WO2021008238 A1 WO 2021008238A1 CN 2020092100 W CN2020092100 W CN 2020092100W WO 2021008238 A1 WO2021008238 A1 WO 2021008238A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
ack
terminal
side chain
chain
Prior art date
Application number
PCT/CN2020/092100
Other languages
English (en)
French (fr)
Inventor
周欢
张飒
王化磊
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Priority to KR1020227005171A priority Critical patent/KR20220103691A/ko
Priority to JP2022503441A priority patent/JP7346704B2/ja
Priority to EP20840384.0A priority patent/EP4002736B1/en
Publication of WO2021008238A1 publication Critical patent/WO2021008238A1/zh
Priority to US17/576,524 priority patent/US20220140958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a feedback information transmission method, device, terminal, and storage medium.
  • V2X Vehicle to Everything
  • vehicle-mounted equipment and other equipment such as other vehicle-mounted equipment, roadside infrastructure, etc.
  • sidelinks Terms: sidelink
  • the side-chain communication method based on access network device scheduling includes: the access network device sends scheduling information to the side-chain communication sending end user equipment (referred to as the first) through Downlink Control Information (DCI). Terminal), the first terminal sends the side-chain resource to the side-chain communication receiving end user equipment (referred to as the second terminal for short) according to the scheduling information of the access network equipment and through the sidelink.
  • DCI Downlink Control Information
  • Type 1 HARQ-ACK codebook In the New Radio (NR) system, two types of Hybrid Auto Repeat Request (HARQ) feedback codebooks are supported, one is Type 1 HARQ-ACK codebook, and the other is Type 2 HARQ -ACK codebook. Since the Type 1HARQ-ACK codebook is generated based on the time domain resources of the Physical Downlink Shared Channel (PDSCH), when the DCI contains side chain resources, the first terminal cannot associate the side chain resources with the PDSCH length indicator (English: SLIV) Correspondence. Therefore, when the Type 1 HARQ-ACK codebook needs to be fed back, there is currently no solution for how to transmit the HARQ-ACK codebook.
  • PDSCH Physical Downlink Shared Channel
  • the present disclosure proposes a feedback information transmission method, device, terminal and storage medium.
  • the technical solution is as follows:
  • a feedback information transmission method including:
  • the first terminal sends the side-chain HARQ-ACK codebook on the physical layer uplink channel within the target time unit, and the side-chain HARQ-ACK codebook Including side chain HARQ-ACK information corresponding to at least one side chain data;
  • the side chain HARQ-ACK information is used to indicate the receiving state corresponding to the side chain data
  • the side chain data is physical layer data sent by the first terminal through the side link.
  • the first terminal sending the side-chain HARQ-ACK codebook on the physical layer uplink channel within the target time unit includes:
  • the first terminal sends the side-chain HARQ-ACK codebook on the physical uplink control channel PUCCH or the uplink shared channel PUSCH within the target time unit.
  • the first terminal when the side-chain hybrid automatic repeat request HARQ-ACK information needs to be sent within the target time unit, the first terminal sends it on the physical layer uplink channel within the target time unit
  • the side chain HARQ-ACK codebook includes:
  • the first terminal sends the target HARQ-ACK feedback on the physical layer uplink channel within the target time unit Codebook
  • the target HARQ-ACK feedback codebook includes an uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook
  • the uplink HARQ-ACK codebook includes at least one uplink HARQ-ACK information corresponding to downlink data.
  • the method before the first terminal sends the target HARQ-ACK feedback codebook on the physical layer uplink channel within the target time unit, the method further includes:
  • the first terminal combines the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook to obtain the target HARQ-ACK feedback codebook.
  • the generation of the side chain HARQ-ACK codebook by the first terminal includes:
  • the first terminal generates the side-chain HARQ-ACK codebook according to the time-domain position of the resource pool of the side-link channel, and the side-link channel includes a physical side-link shared channel (Physical Sidelink Shared Channel, PSSCH) or physical Sidelink Feedback Channel (Physical Sidelink Feedback Channel, PSFCH).
  • PSSCH Physical Sidelink Shared Channel
  • PSFCH Physical Sidelink Feedback Channel
  • the first terminal generating the side-chain HARQ-ACK codebook according to the time-domain position of the resource pool of the side-link channel includes:
  • the target time unit is a time slot m, and m is a positive integer
  • the method further includes:
  • Each time slot corresponds to the number of bits of side chain HARQ-ACK information generated.
  • the method further includes:
  • the time domain resource information of the side of the link channel resource pool it is determined whether the timeslot may mk i side of the link channel time domain location;
  • the number of the side performs link channel resources allow the transmission according to the slot mk i, determined
  • Each time slot of the pool corresponds to the step of generating the number of bits of the side chain HARQ-ACK information.
  • the number of the transmitting-side link of the channel according to the allowed time slots mk i, side chain HARQ- determining the resource pool corresponding to each slot generated The number of ACK information bits, including:
  • the number of bits of the HARQ-ACK information of the side chain when the number of the allowed transmission slots mk i side of said plurality of link channel is determined each time slot corresponding to the generation of said resource pool is at most Is the P bit, where the P is the time domain minimum resource granularity configured to transmit the side link channel when the resource pool is configured by the high-level signaling.
  • the side link channel that can be accommodated in the next time slot The number of.
  • the number of the transmitting-side link of the channel according to the allowed time slots mk i, side chain HARQ- determining the resource pool corresponding to each slot generated The number of ACK information bits, including:
  • the number of bits of the HARQ-ACK information of the side chain when different frequency domain means the slot mk i allows the transmitting-side plurality-link channel, to determine each time slot corresponding to the generation of said resource pool is at most P*Q bits;
  • the P is the number of the side link channel that can be accommodated in the next time slot that is configured when the high-level signaling configures the resource pool for the time domain minimum resource granularity used to transmit the side link channel.
  • the Q is a pre-configured number of frequency domain units divided by the resource pool when the minimum frequency domain resource is used.
  • the number of bits of the side-chain HARQ-ACK information corresponding to each time slot of the resource pool includes:
  • P is the time domain minimum resource granularity configured to transmit the side link channel when the resource pool is configured by the high-level signaling.
  • the side link channel that can be accommodated in the next time slot The number of; or,
  • the Q is a pre-configured number of frequency domain units divided by the resource pool when the minimum frequency domain resource is used.
  • the generation of the side chain HARQ-ACK codebook by the first terminal includes:
  • the first terminal generates the side chain HARQ-ACK codebook according to the monitoring time of the physical layer downlink control channel PDCCH and the length of the control resource set CORESET where it is located.
  • the first terminal generates the side chain HARQ-ACK codebook according to the listening time of the physical layer downlink control channel PDCCH and the length of the control resource set CORESET in which it is located, including:
  • the second set of time intervals includes the moment when the first terminal receives the scheduling side chain downlink control information DCI and the feedback of the side chain HARQ -A set of slot offset k i of the ACK codebook, the i and the k i are both positive integers;
  • the method further includes:
  • the number of PDCCHs scrambled by the side chain RNTI that is allowed to be sent in the time slot m-ki is multiple, it is determined that the number of bits of the side chain HARQ-ACK information generated corresponding to each time slot is at most K bits.
  • the K is the number of PDCCHs scrambled by the side chain RNTI configured by high-layer signaling.
  • the first terminal combining the uplink HARQ-ACK codebook and the side-chain HARQ-ACK codebook to obtain the target HARQ-ACK feedback codebook includes:
  • the first terminal combines the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook in a predetermined order to obtain the target HARQ-ACK feedback codebook;
  • the codebook types corresponding to the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook are both semi-static HARQ-ACK codebooks.
  • the predetermined sequence includes:
  • the sequence of the side chain HARQ-ACK codebook is before the uplink HARQ-ACK codebook; or,
  • the uplink HARQ-ACK codebook is sequenced before the side chain HARQ-ACK codebook.
  • a feedback information transmission device including:
  • the sending module is used to send the side-chain HARQ-ACK code on the physical layer uplink channel in the target time unit through the first terminal when the side-chain hybrid automatic repeat request HARQ-ACK information needs to be sent in the target time unit
  • the side chain HARQ-ACK codebook includes side chain HARQ-ACK information corresponding to at least one side chain data
  • the side chain HARQ-ACK information is used to indicate the receiving state corresponding to the side chain data
  • the side chain data is physical layer data sent by the first terminal through the side link.
  • the sending module is further configured to generate the side-chain HARQ-ACK codebook; send the physical uplink control channel PUCCH or the uplink shared channel PUSCH within the target time unit Side chain HARQ-ACK codebook.
  • the sending module is further configured to send the uplink HARQ-ACK information and the side-chain HARQ-ACK information in the target time unit when the target time unit Sending a target HARQ-ACK feedback codebook on an uplink channel of the internal physical layer, where the target HARQ-ACK feedback codebook includes an uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook;
  • the uplink HARQ-ACK codebook includes at least one uplink HARQ-ACK information corresponding to downlink data.
  • the device further includes: a processing module.
  • the processing module is configured to generate the uplink HARQ-ACK codebook; generate the side-chain HARQ-ACK codebook; combine the uplink HARQ-ACK codebook and the side-chain HARQ-ACK codebook, Obtain the target HARQ-ACK feedback codebook.
  • the processing module is further configured to generate the side-chain HARQ-ACK codebook according to the time domain position of the resource pool of the side-link channel, where the side-link channel includes PSSCH or PSFCH.
  • the processing module is further configured to traverse the multiple resource pools of the first terminal, and for each resource pool, according to the side in the resource pool Time domain position of the link channel, generating side chain HARQ-ACK information corresponding to the resource pool;
  • the target time unit is a time slot m, and the m is a positive integer
  • the device further includes: a receiving module.
  • the receiving module is configured to receive a first time interval set configured by an access network device through high-level signaling, where the first time interval set includes the time slot where the end symbol of the side link channel is located and feedback to the side A set of slot offset k i of the chain HARQ-ACK codebook, where the i and the k i are both positive integers;
  • the processing module is further configured to traverse the plurality of slots in the first time interval set bias k i, mk i for each slot, said slots determining the PSSCH allowed mk i transmitted number; resource pool for each of said plurality of said resource pool of the first terminal, according to the number of the side slots of the link channel transmitted allowed mk i, determining the resource Each slot of the pool corresponds to the number of bits of side chain HARQ-ACK information generated.
  • the processing module is further configured to i is possible in accordance with the resources of the time domain channel side link information of the resource pool, it determines the time slot mk temporal position side link channel; when it is determined that the time slot is possible mk i temporal location of the side link channel, perform the side link transmission in accordance with the time slot allows mk i
  • the number of channels is a step of determining the number of bits of side-chain HARQ-ACK information generated corresponding to each time slot of the resource pool.
  • the processing module is further configured to link the number of the side channel when the transmitted time slot mk i allowed is a determining each of said resource pool
  • the number of bits of the side chain HARQ-ACK information generated corresponding to the time slot is 1 bit
  • the number of bits of the HARQ-ACK information of the side chain when the number of the allowed transmission slots mk i side of said plurality of link channel is determined each time slot corresponding to the generation of said resource pool is at most Is the P bit, where the P is the time domain minimum resource granularity configured to transmit the side link channel when the resource pool is configured by the high-level signaling.
  • the side link channel that can be accommodated in the next time slot The number of.
  • the processing module is further configured to, when the time slot unit different frequency domain mk i allows the transmitting-side plurality-link channel, determining for each of said resource pool The number of bits of the side chain HARQ-ACK information generated corresponding to the time slot is at most P*Q bits;
  • the P is the number of the side link channel that can be accommodated in the next time slot that is configured when the high-level signaling configures the resource pool for the time domain minimum resource granularity used to transmit the side link channel.
  • the Q is a pre-configured number of frequency domain units divided by the resource pool when the minimum frequency domain resource is used.
  • the number of bits of the side-chain HARQ-ACK information corresponding to each time slot of the resource pool includes:
  • P is the time domain minimum resource granularity configured to transmit the side link channel when the resource pool is configured by the high-level signaling.
  • the side link channel that can be accommodated in the next time slot The number of; or,
  • the Q is a pre-configured number of frequency domain units divided by the resource pool when the minimum frequency domain resource is used.
  • the processing module is further configured to generate the side-chain HARQ- by the first terminal according to the listening time of the physical layer downlink control channel PDCCH and the length of the control resource set CORESET. ACK codebook.
  • the device further includes: a receiving module.
  • the receiving module is configured to receive a second time interval set configured by an access network device for the first terminal, where the second time interval set includes the moment when the first terminal receives the scheduling side chain downlink control information DCI And a set of slot offset k i for feeding back the side chain HARQ-ACK codebook, where both i and k i are positive integers;
  • the processing module is further configured to traverse multiple slot offsets ki in the first time interval set, and for each slot m-ki, according to the start symbol of the PDCCH monitoring moment scrambled by the side chain RNTI And the length of the CORESET to generate the side chain HARQ-ACK codebook.
  • the processing module is further used for the side chains of RNTI when the allowed time slot mk i scrambled PDCCH transmitted for one time slot determined for each
  • the number of bits corresponding to the generated side chain HARQ-ACK information is 1 bit;
  • the number of PDCCHs scrambled by the side chain RNTI that is allowed to be sent in the time slot m-ki is multiple, it is determined that the number of bits of the side chain HARQ-ACK information generated corresponding to each time slot is at most K bits.
  • the K is the number of PDCCHs scrambled by the side chain RNTI configured by high-layer signaling.
  • the processing module is further configured to combine the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook in a predetermined order to obtain the target HARQ-ACK feedback Codebook
  • the codebook types corresponding to the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook are both semi-static HARQ-ACK codebooks.
  • the predetermined sequence includes:
  • the sequence of the side chain HARQ-ACK codebook is before the uplink HARQ-ACK codebook; or,
  • the uplink HARQ-ACK codebook is sequenced before the side chain HARQ-ACK codebook.
  • a terminal including:
  • a memory for storing processor executable instructions
  • the processor is configured to:
  • the side-chain HARQ-ACK codebook is sent on the physical layer uplink channel in the target time unit, and the side-chain HARQ-ACK
  • the codebook includes side chain HARQ-ACK information corresponding to at least one side chain data
  • the side chain HARQ-ACK information is used to indicate the receiving state corresponding to the side chain data
  • the side chain data is physical layer data sent by the first terminal through the side link.
  • a non-volatile computer-readable storage medium having computer program instructions stored thereon, and the computer program instructions implement the above-mentioned method when executed by a processor.
  • the first terminal when the side-chain HARQ-ACK information needs to be sent in the target time unit, the first terminal sends the side-chain HARQ-ACK codebook on the physical layer uplink channel in the target time unit, so that the first terminal can support Data transmission when the side chain HARQ-ACK information needs to be sent within the target time unit, avoiding the situation that the first terminal cannot associate the side chain resources with the PDSCH SLIV when the side chain resources are included in the DCI in the related technology.
  • the success rate of the side-chain HARQ-ACK codebook feedback in the side-chain communication scenario when the side-chain HARQ-ACK information needs to be sent in the target time unit.
  • FIGS 1 to 6 show schematic diagrams of the principles involved in the feedback information transmission method in related technologies
  • FIG. 7 shows a schematic diagram of a network architecture to which the embodiments of the present disclosure may be applicable.
  • Fig. 8 is a flow chart showing a method for transmitting feedback information according to an exemplary embodiment
  • Fig. 9 is a flow chart showing a method for transmitting feedback information according to another exemplary embodiment.
  • Fig. 10 is a schematic diagram showing a principle involved in a method for transmitting feedback information according to an exemplary embodiment
  • Fig. 11 is a schematic diagram showing a principle involved in a method for transmitting feedback information according to another exemplary embodiment
  • Fig. 12 is a flowchart showing a method for transmitting feedback information according to another exemplary embodiment
  • FIG. 13 shows a schematic structural diagram of a feedback information transmission device provided by an embodiment of the present disclosure
  • Fig. 14 is a block diagram showing a terminal according to an exemplary embodiment.
  • the 80th Plenary Session of the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) has passed the 5G New Radio (NR) vehicle networking (Vehicle to Everything, V2X) research project.
  • NR New Radio
  • the NR air interface (English: Uu) corresponds to two types of control information: Downlink Control Information (DCI) and Uplink Control Information (UCI).
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • NR V2X also defines two kinds of control information: Sidelink Control Information (SCI) and Sidelink Feedback Control Information (SFCI). Among them, SCI is used to carry the necessary information for PSSCH demodulation.
  • SCI Sidelink Control Information
  • SFCI Sidelink Feedback Control Information
  • SFCI is used to carry feedback information, such as Sidelink Hybrid Automatic Repeat reQuest (Sidelink HARQ) Acknowledgement status (Acknowledgement, ACK)/Non-Acknowledgement status (Non-Acknowledgement, NACK), sidechain Scheduling Request (Sidelink Scheduling Request, Sidelink SR), Sidelink Channel State Information (Sidelink Channel State Information, Sidelink CSI), etc.
  • Sidelink HARQ Sidelink Hybrid Automatic Repeat reQuest
  • the first mode is that the access network equipment schedules side chain resources to the first terminal for side chain communication, and the second mode is determined by the first terminal Side chain resources.
  • the access network device first informs the first terminal of the resources used for side-chain transmission through the Physical Downlink Control Channel (PDCCH), which can be one or two, and they are at different times. Resources.
  • PDCCH Physical Downlink Control Channel
  • the access network device will not reschedule resources for the first terminal again. In this case, a large delay will be caused.
  • the access network device informs the first terminal 10 of the two resources at different times for side-chain transmission through the PDCCH, and the first terminal 10 uses the physical side-link control channel (PSCCH) or the physical side-chain shared channel ( Physical Sidelink Shared Channel (PSSCH) fails to send side-chain data to the second terminal 20 on these two resources, the first terminal sends a NACK to the access network device.
  • PSCCH physical side-link control channel
  • PSSCH Physical Sidelink Shared Channel
  • the second terminal feeds back the HARQ-ACK codebook to the access network device to inform the first terminal that retransmission resources are needed.
  • the access network device informs the first terminal 10 of the two resources at different times for side-chain transmission through the PDCCH, and the first terminal 10 sends side-chain data to the second terminal 20 on these two resources through PSCCH or PSSCH.
  • the second terminal 20 sends a NACK to the access network device.
  • the 3GPP meeting decided to adopt the above-mentioned first method, that is, the method in which the first terminal feeds back the HARQ-ACK codebook to the access network device.
  • HARQ is a technology that combines forward error correction (Forward Error Correction, FEC) and automatic repeat request (Automatic Repeat reQuest, ARQ) methods.
  • FEC Forward Error Correction
  • ARQ Automatic Repeat reQuest
  • the downlink data scheduling time indication is shown in Figure 3.
  • the units of K0 and K1 are time slots (English: slot)
  • K0 represents the time interval between PDSCH and PDCCH
  • PDSCH is used to transmit downlink data
  • PDCCH is used to transmit DCI
  • K1 represents the time interval between the HARQ-ACK codebook and the PDSCH
  • the HARQ-ACK codebook can be carried by PUCCH and PUSCH.
  • Downlink Semi-Persistent Scheduling (SPS) PDSCH is a periodic downlink PDSCH resource semi-statically allocated by the access network equipment.
  • the first terminal also feeds back HARQ-ACK codebook, SPS PDSCH and HARQ-ACK codes This timing relationship is indicated in the DCI.
  • the DCI used to indicate the deactivation of the downlink SPS also requires the first terminal to feed back the HARQ-ACK codebook, and the time indication is shown in FIG. 4.
  • the first terminal receives the DCI sent by the access network device, and K2 in the DCI is used to indicate the time interval between the HARQ-ACK codebook and the PDCCH.
  • the first terminal activates the downlink SPS according to the indication of the DCI, and sends the HARQ-ACK codebook corresponding to the DCI to the access network device through the PUSCH.
  • NR supports two types of HARQ-ACK codebooks, one is Type 1 HARQ-ACK codebook, and the other is Type 2 HARQ-ACK codebook.
  • the HARQ-ACK codebook in the embodiments of the present disclosure is mainly for Type 1 HARQ-ACK codebook.
  • the DCI format of the downlink scheduled PDSCH in NR includes DCI format 1_0 and DCI format 1_1. All DCI formats include a time domain resource assignment (English: time domain resource assignment) field, which is used to notify the PDSCH time domain resource location used by the first total segment.
  • Scheduling DCI indicates the Orthogonal Frequency Division Multiplexing (OFDM) symbols used for PDSCH transmission by indicating the index of a time domain resource configuration table, including the starting OFDM symbol and the length of the allocated OFDM symbol.
  • the scheduling DCI and The PDSCH transmission time interval is K0 (in a time slot), and the PDSCH mapping type is Type A or Type B.
  • the time domain resource configuration table is configured by high-level signaling.
  • the codebook type of the HARQ-ACK codebook includes one of a semi-static HARQ-ACK codebook and a dynamic HARQ-ACK codebook.
  • a semi-static HARQ-ACK codebook compared with LTE, NR adds many new functions and is more flexible, which also increases the complexity of the semi-static HARQ-ACK codebook.
  • the factors that affect the semi-static HARQ-ACK codebook include but are not limited to: PDCCH monitoring time, semi-static uplink and downlink configuration (English: semi-static DL/UL assignment), time domain resource allocation configuration, and HARQ-ACK required by each PDSCH Number of bits and number of cells.
  • NR supports multiple monitoring moments in one time slot, each monitoring moment can schedule PDSCH, and one time slot can schedule multiple PDSCHs. At the same time, NR supports time domain resource allocation.
  • each PDSCH mapping type is Type B
  • each PDSCH can be 2, 4, or 7 OFDM symbols.
  • the semi-static HARQ-ACK codebook needs to consider all possible situations (including the worst case) to determine the number of bits in the HARQ-ACK codebook, so as to ensure that the HARQ of other PDSCHs is correctly fed back in the case of DCI missed detection.
  • the semi-static HARQ-ACK codebook design takes into account the semi-static uplink and downlink configuration of the cell, and eliminates the conflict between the downlink scheduling and the semi-static uplink and downlink configuration of the cell to reduce the size of the semi-static codebook.
  • the first terminal does not report the ability to support receiving multiple PDSCHs in one time slot, then it will be considered that the first terminal will only receive one PDSCH in one time slot. Otherwise, the first terminal determines each PDSCH according to the time domain resource configuration. The maximum possible PDSCH received in each time slot determines the length of the semi-static HARQ-ACK codebook.
  • the first terminal feeds back the HARQ-ACK codebook in time slot n, and the high-level signaling configuration for DCI format 1_0, the set of K1 is ⁇ 1, 2, 3, 4 ⁇ , A terminal receives the PDSCH in the downlink feedback window, namely time slots n-4, n-3, n-2, n-1, and the first terminal feeds back the corresponding HARQ- to the access network device on the PUCCH or PUSCH in the time slot n ACK codebook.
  • the set of K0 is ⁇ 0 ⁇ , and the set of K0 is obtained from the time domain resource allocation table configured by high-level signaling.
  • the embodiments of the present disclosure provide a feedback information transmission method.
  • the first terminal accesses the physical layer uplink channel in the target time unit.
  • the network device sends the side-chain HARQ-ACK codebook, so that the first terminal can support data transmission when the side-chain HARQ-ACK information needs to be sent within the target time unit, which avoids the first time when the DCI contains side-chain resources in the related technology.
  • the situation that a terminal cannot associate the side chain resources with the PDSCH SLIV ensures the success rate of the side chain HARQ-ACK codebook feedback in the side chain communication scenario.
  • FIG. 7 shows a schematic diagram of a network architecture to which the embodiments of the present disclosure may be applicable.
  • the network architecture may be a network architecture of a C-V2X system.
  • C refers to cellular (English: Cellular)
  • the C-V2X system is a vehicle-mounted wireless communication system based on the evolution of cellular network communication systems such as 3G, 4G, or 5G.
  • the network architecture may include: a core network 71, an access network 72, a terminal 73, and a vehicle 74.
  • the core network 71 includes several core network devices.
  • the function of the core network equipment is mainly to provide user connections, manage users, and complete the bearing of services, as the bearer network to provide an interface to the external network.
  • the core network of the Long Term Evolution (Long Term Evolution, LTE) system may include mobility management nodes (Mobility Management Entity, MME), Serving Gateway (S-GW), and PDN Gateway (PDN Gateway, P-GW). And other equipment.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • PDN Gateway PDN Gateway
  • the core network of the 5G NR system can include Access and Mobility Management Function (AMF) entities, User Plane Function (UPF) entities, and Session Management Function (SMF) entities And other equipment.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • the access network 72 includes several access network devices 720.
  • the access network device 720 and the core network device 770 communicate with each other through a certain interface technology, such as the S7 interface in the LTE system, and the NG interface in the 5G NR system.
  • the access network equipment 720 may be a base station (Base Station, BS), which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in LTE systems, they are called eNodeB or eNB; in 5G NR systems, they are called gNodeB or gNB.
  • the name "base station” may change.
  • the above-mentioned devices that provide wireless communication functions for terminals are collectively referred to as access network devices.
  • the terminal 73 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of User Equipment (UE), mobile stations ( Mobile Station, MS), terminal (English: terminal device), etc. For ease of description, the devices mentioned above are collectively referred to as terminals.
  • the access network device 720 and the terminal 73 communicate with each other through a certain air interface technology, such as a Uu interface.
  • the vehicle 74 may be an autonomous vehicle or a non-autonomous vehicle.
  • the vehicle 74 is equipped with an on-board device, and the vehicle 74 realizes communication with other vehicles, a terminal 73 or other devices through the on-board device, such as a road side unit (RSU).
  • the in-vehicle device may also be called an in-vehicle terminal, an in-vehicle communication device, or other names, which are not limited in the embodiment of the present disclosure.
  • the vehicle-mounted equipment can be a device integrated in a telematics BOX (T-BOX) or a device separated from the vehicle body.
  • the in-vehicle equipment may be installed in the vehicle 74 before the vehicle 74 leaves the factory, or may be installed in the vehicle 74 after the vehicle 74 leaves the factory.
  • the on-board equipment of the vehicle 74 and other equipment can communicate with each other through the side-chain communication interface (such as the PC5 interface). Accordingly, the communication link established based on the side-chain communication interface It can be called a side chain link or a side link.
  • the on-board equipment of the vehicle 74 and other equipment can also be transferred through the access network 72 and the core network 71, that is, the communication link between the terminal 73 and the access network equipment 720 in the original cellular network is used for communication. .
  • the communication based on the side-chain communication interface has the characteristics of short delay and low overhead, and is suitable for communication between vehicle-mounted equipment and other peripheral equipment that is close to the geographical position.
  • the above-mentioned network architecture shown in FIG. 7 can implement V2X service scenarios.
  • the above-mentioned network architecture may also include devices such as RSU, V2X application servers, and V2X control function nodes, which are not limited in the embodiments of the present disclosure.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system.
  • a feedback information transmission method is provided for the side-chain communication scenario in the foregoing V2X service scenario to solve the foregoing technical problem.
  • the first terminal and the second terminal are devices at both ends of the side chain communication in the V2X service scenario, and the first terminal and the second terminal can be established through the side chain communication interface (such as the PC5 interface)
  • the side link is then used to exchange user plane data and control plane signaling through the side link.
  • the first terminal may be the in-vehicle equipment of the vehicle 74 in the network architecture shown in FIG. 7, and the second terminal may be the in-vehicle equipment of other vehicles, or the terminal 73 or RSU.
  • the first terminal may be the terminal 73 in the network architecture shown in FIG. 7, and the second terminal may be other terminals, and may also be the on-board equipment of the vehicle 74 or the RSU.
  • the same device for example, the same vehicle-mounted device or the same terminal
  • it may serve as the first terminal in some scenarios, and may also serve as the second terminal in other scenarios.
  • the first terminal is also referred to as side-chain communication transmitting end user equipment (English: Transmiter UE), and the second terminal is also referred to as side-chain communication receiving end user equipment (English: Receive UE).
  • side-chain communication transmitting end user equipment English: Transmiter UE
  • side-chain communication receiving end user equipment English: Receive UE
  • Fig. 8 is a flow chart showing a method for transmitting feedback information according to an exemplary embodiment. This method can be applied to the network architecture shown in FIG. 7. The method may include the following steps.
  • Step 801 When the side-chain HARQ-ACK information needs to be sent in the target time unit, the first terminal sends the side-chain HARQ-ACK codebook on the physical layer uplink channel in the target time unit.
  • the side-chain HARQ-ACK codebook includes Side chain HARQ-ACK information corresponding to at least one side chain data.
  • the side-chain HARQ-ACK information is used to indicate the receiving state corresponding to the side-chain data
  • the side-chain data is the physical layer data sent by the first terminal through the side link.
  • the side chain data is physical layer data sent by the first terminal to the second terminal through the side link.
  • the receiving status corresponding to the side chain data includes: ACK or NACK.
  • ACK is used to indicate that the side chain data is correctly received by the second terminal.
  • NACK includes an unreceived state and/or an incorrectly received state. The unreceived state is used to indicate that the side chain data has not been received by the second terminal; the incorrectly received state is used to indicate that although the side chain data is received by the second terminal, the side chain data received by the second terminal is sent with the first terminal
  • the side chain data of is different, the wrong side chain data is received, that is, the valid side chain data is not received.
  • the target time unit refers to the corresponding time unit when the terminal needs to feed back the side chain HARQ-ACK codebook.
  • the target time unit includes at least one symbol, or symbol group or time slot or subframe, which is not limited in this embodiment. In the following description, only the target time unit is a time slot as an example.
  • the physical layer uplink channel in the target time unit is the uplink channel between the first terminal and the access network device.
  • the physical layer uplink channel is the uplink channel used to send the side chain HARQ-ACK codebook to the access network device.
  • the physical layer uplink channel is PUCCH.
  • the first terminal when the side-chain HARQ-ACK information needs to be sent in the target time unit, the first terminal sends the side-chain HARQ-ACK codebook on the physical layer uplink channel in the target time unit, so that the A terminal can support data transmission when the side-chain HARQ-ACK information needs to be sent within the target time unit, which avoids the inability of the first terminal to associate the side-chain resource with the PDSCH SLIV in the related technology when the DCI contains the side-chain resource. In the situation, the success rate of the side-chain HARQ-ACK codebook feedback in the side-chain communication scenario is guaranteed.
  • Fig. 9 is a flow chart showing a method for transmitting feedback information according to another exemplary embodiment. This method can be applied to the network architecture shown in FIG. 7. The method can include the following steps.
  • step 901 the access network device sends DCI to the first terminal, and the DCI carries side chain resource information.
  • the access network device sends the DCI to the first terminal through the downlink channel.
  • the downlink channel includes PDCCH.
  • the side chain resource information includes one or more side chain resource information.
  • the side chain resource information is used to indicate time-frequency resources and/or modulation and coding schemes.
  • the access network device configures a time interval set for the first terminal through high-layer signaling, and the time interval set is used to instruct the first terminal to feed back one or more side chains
  • the target time unit of the side chain HARQ-ACK information corresponding to the data is the set K3 ⁇ k1, k2, k3...kn ⁇ .
  • the DCI also carries a first time interval set.
  • the first terminal receives the DCI sent by the access network device in time slot n, and the target time unit is time slot n+ki, that is, the first terminal needs to feed back the side chain HARQ-ACK codebook in time slot n+ki, Then, before the time slot n+ki, the first terminal may receive multiple side chain resource information, and the first terminal is required to feed back in the time slot n+ki.
  • n and ki are both positive integers.
  • step 902 the first terminal sends side chain data to the second terminal through the side link according to the side chain resource information.
  • the first terminal sends the side chain data to the second terminal through the side link according to the time-frequency resource and/or the modulation and coding mode indicated by the side chain resource information.
  • the second terminal includes one or more second terminals.
  • the side-chain communication mode of the first terminal and the second terminal in the embodiment of the present disclosure is a side-chain communication mode based on scheduling of an access network device. That is, the first terminal sends data based on the scheduling of the access network equipment.
  • the side chain HARQ-ACK codebook corresponding to the side chain data needs to be transmitted from the second terminal back to the access network equipment to It is convenient for the access network equipment side to schedule data retransmission or new data transmission.
  • the first terminal and the second terminal may be under the coverage of different access network equipment, or outside the network coverage, the side chain HARQ-ACK codebook needs to be transmitted from the second terminal to the first terminal. Then the first terminal reports to the access network device.
  • the side chain data is physical layer data sent by the first terminal to the second terminal through the side link.
  • the first terminal uses the time-frequency resource indicated by the side-chain resource information to send the side-chain data to the second terminal.
  • step 903 the second terminal feeds back side chain information to the first terminal.
  • the second terminal receives the side chain data sent by the first terminal.
  • the second terminal receives the side-chain data sent by the first terminal using the target time-frequency resource of the side-link.
  • the second terminal feeds back side-chain information to the first terminal, and the side-chain information is used to indicate the receiving state of the side-chain data received by the second terminal from the first terminal.
  • the side chain information includes: ACK or NACK corresponding to at least one side chain data.
  • the second terminal sends the side chain information to the first terminal through the PSFCH.
  • step 904 the first terminal receives the side chain information fed back by the second terminal.
  • the first terminal receives the side chain information sent by the second terminal through the PSFCH.
  • step 905 when the side-chain HARQ-ACK information needs to be sent within the target time unit, the first terminal generates a side-chain HARQ-ACK codebook.
  • the side chain HARQ-ACK codebook includes side chain HARQ-ACK information corresponding to at least one side chain data.
  • the side chain HARQ-ACK information is used to indicate the receiving status corresponding to the side chain data, and the side chain data is the physical layer data sent by the first terminal through the side link.
  • the first terminal generates the side-chain HARQ-ACK codebook, including but not limited to the following two possible implementation manners.
  • the first terminal generates the side-chain HARQ-ACK codebook according to the time domain position of the resource pool of the side-link channel, and the side-link channel includes the PSSCH or PSFCH.
  • the first terminal generates a side-chain HARQ-ACK codebook according to the monitoring time of the PDCCH and the length of the CORESET.
  • step 906 the first terminal sends the side-chain HARQ-ACK codebook to the access network device on the PUCCH or PUSCH in the target time unit.
  • the first terminal sends the side chain HARQ-ACK codebook to the access network device on the PUCCH or PUSCH in the target time unit.
  • the access network device receives the side chain HARQ-ACK codebook sent on the physical layer uplink channel within the target time unit.
  • the above step 905 can be replaced by the following step: when the side-chain HARQ-ACK information needs to be sent within the target time unit, the first terminal according to the time domain of the resource pool of the side-link channel The position generates the side-chain HARQ-ACK codebook, and the side-link channel includes PSSCH or PSFCH.
  • the number of bits of the side-chain HARQ-ACK codebook and/or the arrangement of the side-chain HARQ-ACK codebook can also be defined.
  • the first terminal generates the side-chain HARQ-ACK codebook according to the time domain position of the resource pool of the side link channel, including: traversing multiple resource pools of the first terminal, and for each resource pool, according to the resource pool The time domain position of the side link channel of the resource pool is generated, and the side chain HARQ-ACK information corresponding to the resource pool is generated; according to the order of the resource pool index from small to large, the side chain HARQ-ACK information corresponding to each of the multiple resource pools is sorted to obtain Side chain HARQ-ACK codebook.
  • the method for determining the number of bits of the side chain HARQ-ACK information generated corresponding to each time slot of the resource pool includes: the first terminal receives access The first time interval set configured by the network equipment through high-level signaling.
  • the first time interval set includes the set of the time slot where the end symbol of the side link channel is located and the time slot offset k i of the feedback side chain HARQ-ACK codebook, i and K i are positive integers; traverse a first plurality of slot offset time interval set K i, i MK for each time slot, determining the number of transmitted slots PSSCH MK i permitted; for the first each resource pool resource pool of a plurality of terminals, the number of side link channel transmitted from the slot mk i allowed is determined each time slot corresponding to the side chain of the resource pool HARQ-ACK information generated bits number.
  • the first time interval set includes the time slot where the PSSCH resource end symbol scheduled from the access network device is located and the time slot offset ki of the feedback side chain HARQ-ACK codebook. set.
  • the first time interval set includes the set of the time slot in which the PSFCH resource end symbol is received from the first terminal and the time slot offset ki of the feedback side chain HARQ-ACK codebook.
  • this embodiment does not limit the execution sequence of the first terminal to traverse the multiple resource pools of the first terminal and to traverse the multiple time slot offsets k i in the first time interval set.
  • the number of bits of the side chain HARQ-ACK information corresponding to each time slot of the resource pool includes: 1 bit; or, at most P bits; or, at most P*Q bits.
  • P is the time domain minimum resource granularity configured for sending side link channels configured when the high-level signaling configures the resource pool.
  • the number of side link channels that can be accommodated in the next time slot, and Q is the pre-configured minimum when used
  • the frequency domain resource is the number of frequency domain units divided by the resource pool.
  • the first terminal side of the link channel transmission permitted by the slot mk i determining the resource pool corresponding to the number of bits per slot side chain HARQ-ACK information is generated, including but not limited to Three possible implementations.
  • the time slot mk i link channel transmission side allows the determination of each time slot to resource pool 1 Bits.
  • the time slot of the side mk i link channel transmitted to a plurality of time allowed determining the resource pool corresponding to the side chain of each slot HARQ-ACK information generated At most P bits.
  • the different time slot unit mk i frequency domain allows the transmission of a plurality of side link channel, determining the number of bits per slot resource pool corresponding to the side chain of the generated HARQ-ACK information is up It is P*Q bits.
  • P is the time domain minimum resource granularity configured for sending side link channels configured when the high-level signaling configures the resource pool.
  • the number of side link channels that can be accommodated in the next time slot, and Q is the pre-configured minimum when used
  • the frequency domain resource is the number of frequency domain units divided by the resource pool.
  • the first terminal it is determined whether the time slot mk i possible side link channel time-domain position; when it is determined that it is possible slot mk i the number of bits the number of steps of time domain position side link channel, perform the side link channel transmitted from the slot permitted mk i, determining the resource pool corresponding to the side chain of each slot HARQ-ACK information generated .
  • both PSCCH/PSSCH are transmitted in their respective resource pools, where the resource pool includes two parts, a time domain set and a frequency domain set, which are usually configured by high-level parameters.
  • the first terminal only sends PSCCH/PSSCH in the sending resource pool, and the second terminal only receives PSCCH/PSSCH in the receiving resource pool.
  • the side link channels comprises PSSCH, according to a first terminal of the time domain resource information PSSCH resource pool, it is determined whether the time slot mk i PSSCH possible time-domain location.
  • the first terminal determines the time slot according to the time domain resource information of the PSSCH in the resource pool m-7 is the possible time domain position of the PSSCH.
  • the access network device sends DCI to the first terminal through the PDCCH, and the DCI carries the indicated side chain resource, that is, the time slot m-7.
  • the side-chain information fed back by the second terminal is received as ACK, which indicates that the side-chain data in time slot m-7 is The second terminal receives it correctly.
  • the side chain HARQ-ACK information that the first terminal feeds back to the access network device on the PUCCH in time slot m is ⁇ NACK, ACK, NACK ⁇ , where the first NACK represents the side chain data in time slot m-9 Valid side-chain data has not been received or received.
  • the first ACK indicates that the side-chain data in time slot m-7 has been received correctly
  • the second NACK indicates that the side-chain data in time slot m-6 has not been received.
  • Valid side chain data was received or not received.
  • the time offset of the PSSCH and PSFCH is determined semi-statically, and no implicit notification is required.
  • multiple PSSCH resources can correspond to one PSFCH resource, and the period can be 1, 2, or 4.
  • the time offset from PSSCH is 4 time slots.
  • the four resource pools of the first terminal correspond to time slots m-9, m-7, m-6, and m-3 respectively.
  • the period of PSFCH and PSSCH is 2, so the first terminal According to the time domain resource information of the PSFCH in the resource pool, the time slot offset of the PSSCH and the PSFCH, and the feedback period of the PSSCH and the PSFCH, it is determined that the possible PSFCH positions are time slots m-7 and m-3.
  • the side chain resource indicated by the access network device to the first terminal through the PDCCH is time slot m-7
  • the side chain information that the first terminal receives from the second terminal in time slot m-3 is NACK+ACK
  • the first NACK indicates that the side chain data in time slot m-7 has not been received or valid side chain data has not been received
  • the second ACK indicates that the side chain data in time slot m-3 has been correctly received.
  • the side-chain HARQ-ACK information that the first terminal feeds back to the access network device on the PUCCH in time slot m is ⁇ NACK, NACK, NACK, ACK ⁇ , where the first NACK represents the time slot m-9 Side chain data has not been received or valid side chain data has not been received.
  • the second NACK indicates that side chain data in time slot m-7 has not been received or no valid side chain data has been received.
  • the third NACK Indicates that the side chain data in time slot m-6 has not been received or valid side chain data has not been received.
  • the first ACK indicates that the side chain data in time slot m-3 has been correctly received.
  • the first terminal generates the side-chain HARQ-ACK codebook according to the time-domain position of the resource pool of the side-link channel, so that the generation of the side-chain HARQ-ACK codebook is diversified and further guarantees The success rate of the subsequent side chain HARQ-ACK codebook transmission is calculated.
  • step 905 can be replaced by the following step: when the side chain HARQ-ACK information needs to be sent within the target time unit, the first terminal is based on the PDCCH monitoring time and the CORESET time. Length, generate side chain HARQ-ACK codebook.
  • the first terminal generates a side-chain HARQ-ACK codebook according to the PDCCH monitoring moment and the length of the control resource set CORESET, which includes: receiving a second time interval set configured by the access network device for the first terminal,
  • the second time interval set includes a set of the time when the first terminal receives the scheduling side-chain DCI and the time slot offset ki of the feedback side-chain HARQ-ACK codebook, i and ki are both positive integers; traverse the first time interval set For each time slot m-ki, the side-chain HARQ-ACK codebook is generated according to the start symbol of the PDCCH monitoring time scrambled by the side-chain RNTI and the length of the CORESET of the multiple time slot offsets ki.
  • the scheduling side chain DCI is the scheduling DCI including SCI information.
  • the first terminal traverses the PDSCH resource allocation table to obtain the maximum number of PDSCHs that do not overlap in a time slot.
  • the PDSCH resource allocation table may have several rows, and each row indicates the starting position and the symbol length.
  • the first terminal uses the start symbol of the PDCCH monitoring time scrambled by the side chain RNTI and the length of the CORESET as a virtual row of resources, and together with the PDSCH resource allocation table, calculates the most PDSCH in a time slot
  • the number and the number of PDCCHs scrambled by the side-chain RNTI is the number of DCIs that schedule the SCI.
  • the first terminal determines the number of bits of side-chain HARQ-ACK information generated corresponding to each time slot according to the calculated number of PDSCHs and/or the number of PDCCHs scrambled by the side-chain RNTI.
  • the number of bits of the side chain HARQ-ACK information generated corresponding to each time slot is determined to be 1 bit.
  • the number of side-chain RNTI scrambled PDCCHs allowed to be sent in time slot m-ki is one and the calculated number of PDSCH is one, determine the side-chain HARQ-ACK information generated corresponding to each time slot
  • the number of bits is 2 bits.
  • the number of PDCCHs scrambled by the side chain RNTI that is allowed to be sent in the time slot m-ki is multiple, determine the side chain HARQ-ACK generated for each time slot in the resource pool.
  • the number of information bits is at most K bits, and K is the number of PDCCHs scrambled by the side chain RNTI configured by high-level signaling.
  • the number of side-chain RNTI scrambled PDCCHs allowed to be sent in the time slot m-ki is multiple and the calculated number of PDSCH is one, determine the side-chain HARQ-ACK corresponding to each time slot.
  • the number of bits of information is at most K+1 bits.
  • this embodiment does not limit the definition of the number of bits of the side chain HARQ-ACK information generated corresponding to each time slot.
  • the first terminal determines the number of bits of side-chain HARQ-ACK information corresponding to each time slot according to the PDCCH monitoring time and the length of the CORESET to generate side-chain HARQ-ACK.
  • the codebook diversifies the generation of the side-chain HARQ-ACK codebook, and further ensures the success rate of subsequent side-chain HARQ-ACK codebook transmission.
  • the target HARQ-ACK feedback codebook includes an uplink HARQ-ACK codebook and a side chain HARQ-ACK codebook.
  • step 1201 when the uplink HARQ-ACK information and the side chain HARQ-ACK information need to be sent within the target time unit, the first terminal generates the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook.
  • the uplink HARQ-ACK codebook includes at least one uplink HARQ-ACK information corresponding to downlink data.
  • the access network device sends downlink data to the first terminal through a downlink channel, and the corresponding first terminal receives the downlink data sent by the access network device through the downlink channel.
  • the downlink channel includes PDSCH.
  • the uplink HARQ-ACK codebook generated by the first terminal is also called the uplink HARQ-ACK subcodebook.
  • the side-chain HARQ-ACK codebook is also called the side-chain HARQ-ACK sub-codebook.
  • the uplink HARQ-ACK information is used to indicate the reception status corresponding to the downlink data.
  • the receiving state corresponding to the downlink data includes: ACK or NACK.
  • ACK is used to indicate that the downlink data is correctly received by the first terminal.
  • NACK includes an unreceived state and/or an incorrectly received state.
  • the unreceived state is used to indicate that the downlink data has not been received by the first terminal; the incorrectly received state is used to indicate that although the downlink data is received by the first terminal, the downlink data received by the first terminal is the same as the downlink data sent by the access network device.
  • the data is different, that is, wrong downlink data is received.
  • the process of generating the side-chain HARQ-ACK codebook by the first terminal may refer to the relevant details in the foregoing embodiment for analogy, which will not be repeated here.
  • the first terminal combines the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook to obtain the target HARQ-ACK feedback codebook.
  • the first terminal combines the uplink HARQ-ACK codebook and the side-chain HARQ-ACK codebook to obtain the target HARQ-ACK feedback codebook, including: the first terminal combines the uplink HARQ-ACK codebook and the side-chain HARQ -ACK codebooks are combined in a predetermined order to obtain the target HARQ-ACK feedback codebook.
  • the codebook types corresponding to the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook are both semi-static HARQ-ACK codebooks.
  • the method further includes: the access network device sends a downlink signal to the first terminal
  • the first terminal receives the downlink signaling sent by the access network device, and the downlink signaling is used to indicate the codebook type of the configured target HARQ-ACK feedback codebook.
  • the codebook type of the target HARQ-ACK feedback codebook includes one of a semi-static HARQ-ACK codebook and a dynamic HARQ-ACK codebook.
  • the codebook type of the target HARQ-ACK feedback codebook is a semi-static HARQ-ACK codebook, it is used to indicate that the codebook types corresponding to the uplink HARQ-ACK codebook and the side-chain HARQ-ACK codebook are both semi-static HARQ-ACK codes this.
  • the predetermined sequence includes: the side-chain HARQ-ACK codebook is sequenced before the uplink HARQ-ACK codebook; or, the uplink HARQ-ACK codebook is sequenced before the side-chain HARQ-ACK codebook.
  • This embodiment does not limit the arrangement sequence of the side chain HARQ-ACK codebook and the uplink HARQ-ACK codebook.
  • step 1203 the first terminal sends the target HARQ-ACK feedback codebook to the access network device on the physical layer uplink channel in the target time unit.
  • the first terminal receives the third configuration information sent by the access network device, and determines the physical resource of the physical layer uplink channel in the target time unit according to the third configuration information.
  • the physical layer uplink channel is an uplink channel used to send the target HARQ-ACK feedback codebook to the access network device.
  • the first terminal sends the target HARQ-ACK feedback codebook to the access network device in the physical resources of the physical layer uplink channel in the target time unit.
  • the access network device receives the target HARQ-ACK feedback codebook sent by the first terminal.
  • the first terminal when the uplink HARQ-ACK information and the side-chain HARQ-ACK information need to be sent in the target time unit, the first terminal can send the target HARQ on the physical layer uplink channel in the target time unit.
  • the target HARQ-ACK feedback codebook includes uplink HARQ-ACK codebook and side-chain HARQ-ACK codebook, so that the first terminal can support when it needs to send uplink HARQ-ACK information and
  • the data transmission during the side chain HARQ-ACK information further ensures the flexibility of feedback information transmission.
  • FIG. 13 shows a schematic structural diagram of a feedback information transmission device provided by an embodiment of the present disclosure.
  • the feedback information transmission device can be implemented as all or part of the first terminal through software, hardware, and a combination of the two.
  • the feedback information transmission device includes: a sending module 1310.
  • the sending module 1310 is used to send the side-chain HARQ-ACK codebook on the physical layer uplink channel in the target time unit through the first terminal when the side-chain HARQ-ACK information needs to be sent in the target time unit.
  • the ACK codebook includes side chain HARQ-ACK information corresponding to at least one side chain data;
  • the side-chain HARQ-ACK information is used to indicate the receiving state corresponding to the side-chain data
  • the side-chain data is the physical layer data sent by the first terminal through the side link.
  • the sending module 1310 is also used to generate the side-chain HARQ-ACK codebook; send the side-chain HARQ-ACK codebook on the physical uplink control channel PUCCH or the uplink shared channel PUSCH in the target time unit .
  • the sending module 1310 is also used to send uplink HARQ-ACK information and side-chain HARQ-ACK information in the target time unit, on the physical layer uplink channel in the target time unit Send the target HARQ-ACK feedback codebook, the target HARQ-ACK feedback codebook includes the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook;
  • the uplink HARQ-ACK codebook includes at least one uplink HARQ-ACK information corresponding to downlink data.
  • the device further includes: a processing module.
  • the processing module is used to generate the uplink HARQ-ACK codebook; generate the side-chain HARQ-ACK codebook; combine the uplink HARQ-ACK codebook and the side-chain HARQ-ACK codebook to obtain the target HARQ-ACK feedback codebook.
  • the processing module is further configured to generate a side-chain HARQ-ACK codebook according to the time domain position of the resource pool of the side-link channel, where the side-link channel includes PSSCH or PSFCH.
  • the processing module is also used to traverse multiple resource pools of the first terminal, and for each resource pool, according to the time domain position of the side link channel in the resource pool, generate a resource pool corresponding HARQ-ACK information of the side chain;
  • the side chain HARQ-ACK information corresponding to each of the multiple resource pools is sorted to obtain the side chain HARQ-ACK codebook.
  • the target time unit is a time slot m, and m is a positive integer
  • the device further includes: a receiving module.
  • the receiving module is used to receive a first time interval set configured by the access network device through high-level signaling.
  • the first time interval set includes the time slot where the end symbol of the side link channel is located and the time when the side link HARQ-ACK codebook is fed back.
  • the set of gap offset k i , i and k i are both positive integers;
  • the processing module is further configured to traverse a first set time interval a plurality of slots offset k i, mk i for each slot, determining the number of time slots mk i PSSCH allowed transmission; for the first terminal each of the plurality of resource pool resource pool, the number of side link channel transmitted from the slot mk i permitted, determined number of bits per slot resource pool corresponding to the side chain of the generated HARQ-ACK information.
  • the processing module is further configured to time domain resource information-side link channel resource pool, it is determined whether the time slot mk i possible side link channel time domain position; when determines that the number of slots is possible mk i side link channel time domain position, the side performs link channel transmission according to the allowed time slots mk i, determining the resource pool corresponding to the side chain of each slot generated Steps for the number of bits of HARQ-ACK information.
  • the processing module is further configured to time when the number of side link channel transmission gap mk i allowed is a determining resource pool corresponding to each time slot to generate a side chain HARQ-
  • the number of ACK information bits is 1 bit
  • the number of side link channel transmission gap mk i allowed is plurality, determining a resource pool corresponding to the number of bits of each time slot side chain HARQ-ACK information generated up to the P bit, P is level signaling
  • P is level signaling
  • the processing module is further configured to time slot unit different frequency domain mk i permissible transmission channel a plurality of side links, each slot is determined resource pool corresponding to the side chain of the generated HARQ-
  • the number of bits of ACK information is at most P*Q bits;
  • P is the time domain minimum resource granularity configured for sending side link channels configured when the high-level signaling configures the resource pool.
  • the number of side link channels that can be accommodated in the next time slot, and Q is the pre-configured minimum when used
  • the frequency domain resource is the number of frequency domain units divided by the resource pool.
  • the number of bits of side-chain HARQ-ACK information corresponding to each time slot of the resource pool includes:
  • P is the number of side link channels that can be accommodated in the next time slot of the time domain minimum resource granularity configured for the sending side link channel configured when the higher layer signaling configures the resource pool;
  • Q is the pre-configured number of frequency domain units divided by the resource pool when the minimum frequency domain resource is used.
  • the processing module is also used for the first terminal to generate a side-chain HARQ-ACK codebook according to the listening time of the physical layer downlink control channel PDCCH and the length of the control resource set CORESET.
  • the device further includes: a receiving module.
  • the receiving module is configured to receive a second time interval set configured by the access network device for the first terminal.
  • the second time interval set includes the moment when the first terminal receives the scheduling side chain downlink control information DCI and the feedback side chain HARQ-ACK code
  • This set of time slot offset k i , i and k i are both positive integers;
  • the processing module is also used to traverse multiple time slot offsets ki in the first time interval set, and for each time slot m-ki, according to the side-chain wireless network temporary identification RNTI scrambled PDCCH monitoring moment start symbol And the length of the CORESET to generate the side chain HARQ-ACK codebook.
  • the processing module is further configured to time slot if the number mk i allowed side chain RNTI transmitted PDCCH scrambled for a determined each time slot corresponding to the side chain of the generated HARQ-
  • the number of bits of ACK information is 1 bit
  • the processing module is further configured to combine the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook in a predetermined order to obtain the target HARQ-ACK feedback codebook;
  • the codebook types corresponding to the uplink HARQ-ACK codebook and the side chain HARQ-ACK codebook are both semi-static HARQ-ACK codebooks.
  • the predetermined sequence includes:
  • the side chain HARQ-ACK codebook is sorted before the uplink HARQ-ACK codebook; or,
  • the uplink HARQ-ACK codebook is ordered before the side chain HARQ-ACK codebook.
  • the device provided in the above embodiment realizes its functions, only the division of the above-mentioned functional modules is used as an example.
  • the above-mentioned functions can be allocated by different functional modules according to actual needs, namely The content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • Fig. 14 is a block diagram showing a terminal 1400 according to an exemplary embodiment.
  • the terminal 1400 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the terminal 1400 may include one or more of the following components: a processing component 1402, a memory 1404, a power supply component 1406, a multimedia component 1408, an audio component 1410, an input/output (I/O) interface 1412, a sensor component 1414, And the communication component 1416.
  • a processing component 1402 a memory 1404, a power supply component 1406, a multimedia component 1408, an audio component 1410, an input/output (I/O) interface 1412, a sensor component 1414, And the communication component 1416.
  • the processing component 1402 generally controls the overall operations of the terminal 1400, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1402 may include one or more processors 1420 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 1402 may include one or more modules to facilitate the interaction between the processing component 1402 and other components.
  • the processing component 1402 may include a multimedia module to facilitate the interaction between the multimedia component 1408 and the processing component 1402.
  • the memory 1404 is configured to store various types of data to support operations in the terminal 1400. Examples of these data include instructions for any application or method operated on the terminal 1400, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 1404 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 1406 provides power for various components of the terminal 1400.
  • the power supply component 1406 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the terminal 1400.
  • the multimedia component 1408 includes a screen that provides an output interface between the terminal 1400 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 1408 includes a front camera and/or a rear camera. When the terminal 1400 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1410 is configured to output and/or input audio signals.
  • the audio component 1410 includes a microphone (MIC).
  • the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 1404 or transmitted via the communication component 1416.
  • the audio component 1410 further includes a speaker for outputting audio signals.
  • the I/O interface 1412 provides an interface between the processing component 1402 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 1414 includes one or more sensors for providing the terminal 1400 with various aspects of status assessment.
  • the sensor component 1414 can detect the open/close state of the terminal 1400 and the relative positioning of components.
  • the component is the display and the keypad of the terminal 1400.
  • the sensor component 1414 can also detect the position change of the terminal 1400 or a component of the terminal 1400. , The presence or absence of contact between the user and the terminal 1400, the orientation or acceleration/deceleration of the terminal 1400, and the temperature change of the terminal 1400.
  • the sensor assembly 1414 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 1414 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1414 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1416 is configured to facilitate wired or wireless communication between the terminal 1400 and other devices.
  • the terminal 1400 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 1416 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1416 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 1400 can be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • a non-volatile computer-readable storage medium such as a memory 1404 including computer program instructions, which can be executed by the processor 1420 of the terminal 1400 to complete the foregoing method.
  • the present disclosure may be a system, method, and/or computer program product.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for enabling a processor to implement various aspects of the present disclosure.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon
  • the computer-readable storage medium used here is not interpreted as a transient signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, light pulses through fiber optic cables), or through wires Transmission of electrical signals.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, optical fiber transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network, and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or in one or more programming languages.
  • Source code or object code written in any combination, the programming language includes object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
  • Computer-readable program instructions can be executed entirely on the user's computer, partly on the user's computer, executed as a stand-alone software package, partly on the user's computer and partly executed on a remote computer, or entirely on the remote computer or server carried out.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to access the Internet connection).
  • LAN local area network
  • WAN wide area network
  • an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), can be customized by using the status information of the computer-readable program instructions.
  • the computer-readable program instructions are executed to realize various aspects of the present disclosure.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine such that when these instructions are executed by the processor of the computer or other programmable data processing device , A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is produced. It is also possible to store these computer-readable program instructions in a computer-readable storage medium. These instructions make computers, programmable data processing apparatuses, and/or other devices work in a specific manner, so that the computer-readable medium storing instructions includes An article of manufacture, which includes instructions for implementing various aspects of the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more functions for implementing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or actions Or it can be realized by a combination of dedicated hardware and computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本公开涉及通信技术领域,尤其涉及一种反馈信息传输方法、装置、终端及存储介质。所述方法包括:当需要在目标时间单元内发送侧链混合自动重传请求HARQ-ACK信息时,第一终端在目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息。本公开通过上述方式使得第一终端能够支持当需要在目标时间单元内发送侧链HARQ-ACK信息时的数据传输,避免了相关技术中当DCI中包含侧链资源时第一终端无法将侧链资源与PDSCH SLIV对应起来的情况,保证了在侧链通信场景中侧链HARQ-ACK码本反馈的成功率。

Description

反馈信息传输方法、装置、终端及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种反馈信息传输方法、装置、终端及存储介质。
背景技术
在车联网(Vehicle to Everything,V2X)技术中,车载设备与其它设备(如其它车载设备、路侧基础设施等)之间可以通过侧链路(英文:sidelink)进行侧链通信。
相关技术中,基于接入网设备调度的侧链通信方式包括:接入网设备通过下行控制信息(Downlink Control Information,DCI)将调度信息发送至侧链通信发送端用户设备(简称为:第一终端),第一终端根据接入网设备的调度信息与通过sidelink将侧链资源发送至侧链通信接收端用户设备(简称为:第二终端)。
在新空口(New Radio,NR)系统中,支持两种混合自动重传请求(Hybrid Auto Repeat Request,HARQ)反馈码本,一种为Type 1 HARQ-ACK码本,另一种为Type 2 HARQ-ACK码本。由于Type 1HARQ-ACK码本是基于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的时域资源生成的,当DCI中包含侧链资源时,第一终端无法将侧链资源与PDSCH长度指示符(英文:SLIV)对应起来。因此,当需要反馈Type 1 HARQ-ACK码本时,如何进行HARQ-ACK码本的传输,目前还没有解决方案。
发明内容
有鉴于此,本公开提出了一种反馈信息传输方法、装置、终端及存储介质。所述技术方案如下:
根据本公开的一方面,提供了一种反馈信息传输方法,所述方法包括:
当需要在目标时间单元内发送侧链HARQ-ACK信息时,第一终端在所述目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,所述侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息;
其中,所述侧链HARQ-ACK信息用于指示所述侧链数据对应的接收状态,所述侧链数据为所述第一终端通过侧链路发送的物理层数据。
在一种可能的实现方式中,所述第一终端在所述目标时间单元内的物理层上行信道上发送所述侧链HARQ-ACK码本,包括:
所述第一终端生成所述侧链HARQ-ACK码本;
所述第一终端在所述目标时间单元内的物理上行控制信道PUCCH或者上行共享信道PUSCH上发送所述侧链HARQ-ACK码本。
在另一种可能的实现方式中,所述当需要在目标时间单元内发送侧链混合自动重传请求HARQ-ACK信息时,第一终端在所述目标时间单元内的物理层上行信道上发送所述侧链HARQ-ACK码本,包括:
当需要在所述目标时间单元内发送上行HARQ-ACK信息和所述侧链HARQ-ACK信息时,所述第一终端在所述目标时间单元内的物理层上行信道上发送目标HARQ-ACK反馈码本,所述目标HARQ-ACK反馈码本包括上行HARQ-ACK码本和所述侧链HARQ-ACK码本;
其中,所述上行HARQ-ACK码本包括至少一个下行数据对应的上行HARQ-ACK信息。
在另一种可能的实现方式中,所述第一终端在所述目标时间单元内的物理层上行信道上发送目标HARQ-ACK反馈码本之前,还包括:
所述第一终端生成所述上行HARQ-ACK码本;
所述第一终端生成所述侧链HARQ-ACK码本;
所述第一终端将所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本进行合并,得到所述目标HARQ-ACK反馈码本。
在另一种可能的实现方式中,所述第一终端生成所述侧链HARQ-ACK码本,包括:
所述第一终端根据侧链路信道的资源池的时域位置生成所述侧链HARQ-ACK码本,所述侧链路信道包括物理侧链共享信道(Physical Sidelink Shared Channel,PSSCH)或者物理侧链反馈信道(Physical Sidelink Feedback Channel,PSFCH)。
在另一种可能的实现方式中,所述第一终端根据侧链路信道的资源池的时域位置生成所述侧链HARQ-ACK码本,包括:
遍历所述第一终端的多个所述资源池,针对每个所述资源池,根据所述资源池中的所述侧链路信道的时域位置,生成所述资源池对应的侧链HARQ-ACK信息;
按照所述资源池索引从小到大的顺序,对多个所述资源池各自对应的侧链HARQ-ACK信息进行排序,得到所述侧链HARQ-ACK码本。
在另一种可能的实现方式中,所述目标时间单元为时隙m,所述m为正整数,所述方法还包括:
接收接入网设备通过高层信令配置的第一时间间隔集合,所述第一时间间隔集合包括所述侧链路信道的结束符号所处时隙与反馈所述侧链HARQ-ACK码本的时隙偏置k i的集合,所述i和所述k i均为正整数;
遍历所述第一时间间隔集合中的多个时隙偏置k i,针对每个时隙m-k i,确定所述时隙m-k i所允许发送的所述PSSCH的个数;
针对所述第一终端的多个所述资源池中的每个所述资源池,根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数。
在另一种可能的实现方式中,所述方法,还包括:
根据所述资源池中的所述侧链路信道的时域资源信息,判断所述时隙m-k i是否为可能的所述侧链路信道的时域位置;
当判断出所述时隙m-k i是可能的所述侧链路信道的时域位置时,执行根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数的步骤。
在另一种可能的实现方式中,所述根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数,包括:
当所述时隙m-k i所允许发送的所述侧链路信道的个数为一个时,确定所述资源池的每个时隙对应生成的所述侧链HARQ-ACK信息的比特数为1比特;
当所述时隙m-k i所允许发送的所述侧链路信道的个数为多个时,确定所述资源池的每个时隙对应生成的所述侧链HARQ-ACK信息的比特数至多为P比特,所述P是所述高层信令配置所述资源池时所配置的用于发送所述侧链路信道的时域最小资源粒度下一个时隙可容纳的所述侧链路信道的个数。
在另一种可能的实现方式中,所述根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数,包括:
当所述时隙m-k i的不同频域单元允许发送多个所述侧链路信道时,确定所述资源池的每个时隙对应生成的所述侧链HARQ-ACK信息的比特数至多为P*Q比特;
其中,所述P是所述高层信令配置所述资源池时所配置的用于发送所述侧链路信道的时域最小资源粒度下一个时隙可容纳的所述侧链路信道的个数,所述Q是预配置的当使用最小频域资源时所述资源池划分的频域单元的个数。
在另一种可能的实现方式中,所述资源池的每个时隙对应的所述侧链HARQ-ACK信息的比特数,包括:
1比特;或者,
至多P比特,所述P是所述高层信令配置所述资源池时所配置的用于发送所述侧链路信道的时域最小资源粒度下一个时隙可容纳的所述侧链路信道的个数;或者,
至多所述P*Q比特,所述Q是预配置的当使用最小频域资源时所述资源池划分的频域单元的个数。
在另一种可能的实现方式中,所述第一终端生成所述侧链HARQ-ACK码本,包括:
所述第一终端根据物理层下行控制信道PDCCH的监听时刻及所处控制资源集合CORESET的长度, 生成所述侧链HARQ-ACK码本。
在另一种可能的实现方式中,所述第一终端根据物理层下行控制信道PDCCH的监听时刻及所处控制资源集合CORESET的长度,生成所述侧链HARQ-ACK码本,包括:
接收接入网设备为所述第一终端配置的第二时间间隔集合,所述第二时间间隔集合包括所述第一终端接收到调度侧链下行控制信息DCI的时刻与反馈所述侧链HARQ-ACK码本的时隙偏置k i的集合,所述i和所述k i均为正整数;
遍历所述第一时间间隔集合中的多个时隙偏置ki,针对每个时隙m-ki,根据侧链无线网络临时标识(Radio Network Tempory Identity,RNTI)加扰的PDCCH的监听时刻的起始符号及所处CORESET的长度,生成所述侧链HARQ-ACK码本。
在另一种可能的实现方式中,所述方法还包括:
当所述时隙m-k i所允许发送的所述侧链RNTI加扰的PDCCH的个数为一个时,确定每个时隙对应生成的所述侧链HARQ-ACK信息的比特数为1比特;
当所述时隙m-ki所允许发送的侧链RNTI加扰的PDCCH的个数为多个时,确定每个时隙对应生成的所述侧链HARQ-ACK信息的比特数至多为K比特,所述K是高层信令配置的所述侧链RNTI加扰的PDCCH的个数。
在另一种可能的实现方式中,所述第一终端将所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本进行合并,得到所述目标HARQ-ACK反馈码本,包括:
所述第一终端将所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本按照预定顺序进行合并,得到所述目标HARQ-ACK反馈码本;
其中,所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本对应的码本类型均为半静态HARQ-ACK码本。
在另一种可能的实现方式中,所述预定顺序包括:
所述侧链HARQ-ACK码本排序在所述上行HARQ-ACK码本之前;或者,
所述上行HARQ-ACK码本排序在所述侧链HARQ-ACK码本之前。
根据本公开的另一方面,提供了一种反馈信息传输装置,所述装置包括:
发送模块,用于当需要在目标时间单元内发送侧链混合自动重传请求HARQ-ACK信息时,通过第一终端在所述目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,所述侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息;
其中,所述侧链HARQ-ACK信息用于指示所述侧链数据对应的接收状态,所述侧链数据为所述第一终端通过侧链路发送的物理层数据。
在一种可能的实现方式中,所述发送模块,还用于生成所述侧链HARQ-ACK码本;在所述目标时间单元内的物理上行控制信道PUCCH或者上行共享信道PUSCH上发送所述侧链HARQ-ACK码本。
在另一种可能的实现方式中,所述发送模块,还用于当需要在所述目标时间单元内发送上行HARQ-ACK信息和所述侧链HARQ-ACK信息时,在所述目标时间单元内的物理层上行信道上发送目标HARQ-ACK反馈码本,所述目标HARQ-ACK反馈码本包括上行HARQ-ACK码本和所述侧链HARQ-ACK码本;
其中,所述上行HARQ-ACK码本包括至少一个下行数据对应的上行HARQ-ACK信息。
在另一种可能的实现方式中,所述装置还包括:处理模块。所述处理模块,用于生成所述上行HARQ-ACK码本;生成所述侧链HARQ-ACK码本;将所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本进行合并,得到所述目标HARQ-ACK反馈码本。
在另一种可能的实现方式中,所述处理模块,还用于根据侧链路信道的资源池的时域位置生成所述侧链HARQ-ACK码本,所述侧链路信道包括PSSCH或者PSFCH。
在另一种可能的实现方式中,所述处理模块,还用于遍历所述第一终端的多个所述资源池,针对每个所述资源池,根据所述资源池中的所述侧链路信道的时域位置,生成所述资源池对应的侧链HARQ-ACK信息;
按照所述资源池索引从小到大的顺序,对多个所述资源池各自对应的侧链HARQ-ACK信息进行排序,得到所述侧链HARQ-ACK码本。
在另一种可能的实现方式中,所述目标时间单元为时隙m,所述m为正整数,所述装置还包括:接收模块。
所述接收模块,用于接收接入网设备通过高层信令配置的第一时间间隔集合,所述第一时间间隔集合包括所述侧链路信道的结束符号所处时隙与反馈所述侧链HARQ-ACK码本的时隙偏置k i的集合,所述i和所述k i均为正整数;
所述处理模块,还用于遍历所述第一时间间隔集合中的多个时隙偏置k i,针对每个时隙m-k i,确定所述时隙m-k i所允许发送的所述PSSCH的个数;针对所述第一终端的多个所述资源池中的每个所述资源池,根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数。
在另一种可能的实现方式中,所述处理模块,还用于根据所述资源池中的所述侧链路信道的时域资源信息,判断所述时隙m-k i是否为可能的所述侧链路信道的时域位置;当判断出所述时隙m-k i是可能的所述侧链路信道的时域位置时,执行根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数的步骤。
在另一种可能的实现方式中,所述处理模块,还用于当所述时隙m-k i所允许发送的所述侧链路信道的个数为一个时,确定所述资源池的每个时隙对应生成的所述侧链HARQ-ACK信息的比特数为1比特;
当所述时隙m-k i所允许发送的所述侧链路信道的个数为多个时,确定所述资源池的每个时隙对应生成的所述侧链HARQ-ACK信息的比特数至多为P比特,所述P是所述高层信令配置所述资源池时所配置的用于发送所述侧链路信道的时域最小资源粒度下一个时隙可容纳的所述侧链路信道的个数。
在另一种可能的实现方式中,所述处理模块,还用于当所述时隙m-k i的不同频域单元允许发送多个所述侧链路信道时,确定所述资源池的每个时隙对应生成的所述侧链HARQ-ACK信息的比特数至多为P*Q比特;
其中,所述P是所述高层信令配置所述资源池时所配置的用于发送所述侧链路信道的时域最小资源粒度下一个时隙可容纳的所述侧链路信道的个数,所述Q是预配置的当使用最小频域资源时所述资源池划分的频域单元的个数。
在另一种可能的实现方式中,所述资源池的每个时隙对应的所述侧链HARQ-ACK信息的比特数,包括:
1比特;或者,
至多P比特,所述P是所述高层信令配置所述资源池时所配置的用于发送所述侧链路信道的时域最小资源粒度下一个时隙可容纳的所述侧链路信道的个数;或者,
至多所述P*Q比特,所述Q是预配置的当使用最小频域资源时所述资源池划分的频域单元的个数。
在另一种可能的实现方式中,所述处理模块,还用于所述第一终端根据物理层下行控制信道PDCCH的监听时刻及所处控制资源集合CORESET的长度,生成所述侧链HARQ-ACK码本。
在另一种可能的实现方式中,所述装置还包括:接收模块。
所述接收模块,用于接收接入网设备为所述第一终端配置的第二时间间隔集合,所述第二时间间隔集合包括所述第一终端接收到调度侧链下行控制信息DCI的时刻与反馈所述侧链HARQ-ACK码本的时隙偏置k i的集合,所述i和所述k i均为正整数;
所述处理模块,还用于遍历所述第一时间间隔集合中的多个时隙偏置ki,针对每个时隙m-ki,根据侧链RNTI加扰的PDCCH的监听时刻的起始符号及所处CORESET的长度,生成所述侧链HARQ-ACK码本。
在另一种可能的实现方式中,所述处理模块,还用于当所述时隙m-k i所允许发送的所述侧链RNTI加扰的PDCCH的个数为一个时,确定每个时隙对应生成的所述侧链HARQ-ACK信息的比特数为1比特;
当所述时隙m-ki所允许发送的侧链RNTI加扰的PDCCH的个数为多个时,确定每个时隙对应生成的所述侧链HARQ-ACK信息的比特数至多为K比特,所述K是高层信令配置的所述侧链RNTI加扰的 PDCCH的个数。
在另一种可能的实现方式中,所述处理模块还用于将所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本按照预定顺序进行合并,得到所述目标HARQ-ACK反馈码本;
其中,所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本对应的码本类型均为半静态HARQ-ACK码本。
在另一种可能的实现方式中,所述预定顺序包括:
所述侧链HARQ-ACK码本排序在所述上行HARQ-ACK码本之前;或者,
所述上行HARQ-ACK码本排序在所述侧链HARQ-ACK码本之前。
根据本公开的另一方面,提供了一种终端,所述终端包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
当需要在目标时间单元内发送侧链混合自动重传请求HARQ-ACK信息时,在所述目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,所述侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息;
其中,所述侧链HARQ-ACK信息用于指示所述侧链数据对应的接收状态,所述侧链数据为所述第一终端通过侧链路发送的物理层数据。
根据本公开的另一方面,提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述的方法。
本公开实施例通过当需要在目标时间单元内发送侧链HARQ-ACK信息时,第一终端在目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,使得第一终端能够支持当需要在目标时间单元内发送侧链HARQ-ACK信息时的数据传输,避免了相关技术中当DCI中包含侧链资源时第一终端无法将侧链资源与PDSCH SLIV对应起来的情况,保证了在侧链通信场景中侧链HARQ-ACK码本反馈的成功率。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1至图6示出了相关技术中反馈信息传输方法涉及的原理示意图;
图7示出了本公开实施例可能适用的一种网络架构的示意图;
图8是根据一示例性实施例示出的一种反馈信息传输方法的流程图;
图9是根据另一示例性实施例示出的一种反馈信息传输方法的流程图;
图10是根据一示例性实施例示出的一种反馈信息传输方法涉及的原理示意图;
图11是根据另一示例性实施例示出的一种反馈信息传输方法涉及的原理示意图;
图12是根据另一示例性实施例示出的一种反馈信息传输方法的流程图;
图13示出了本公开一个实施例提供的反馈信息传输装置的结构示意图;
图14是根据一示例性实施例示出的一种终端的框图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员 应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
目前,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)第80次全会通过了5G新空口(New Radio,NR)车联网(Vehicle to Everything,V2X)的研究项目。
NR空中接口(英文:Uu)对应有两种控制信息:下行控制信息(Downlink Control Information,DCI)和上行控制信息(Uplink Control Inforamtion,UCI)。NR V2X也定义了两种控制信息:侧链控制信息(Sidelink Control Information,SCI)和侧链反馈控制信息(Sidelink Feedback Control Information,SFCI),其中,SCI用于携带解调PSSCH所需的必要信息,SFCI用于携带反馈信息,例如侧链混合式自动重传请求(Sidelink Hybrid Automatic Repeat reQuest,Sidelink HARQ)确认接收状态(Acknowledgement,ACK)/非确认接收状态(Non-Acknowledgement,NACK)、侧链调度请求(Sidelink Scheduling Request,Sidelink SR)、侧链信道状态信息(Sidelink Channel State Information,Sidelink CSI)等。
目前在NR-V2X侧链通信中支持两种侧链资源分配模式,第一种模式是接入网设备调度侧链资源给第一终端用于侧链通信,第二种模式是第一终端决定侧链资源。第一种模式中接入网设备先通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)通知第一终端用于侧链传输的资源,可以为一个,也可以为两个,且处于不同时间的资源。但是如果第一终端在这两个资源上发送侧链数据均没有成功,接入网设备也不会再次给第一终端重新调度资源。这种情况下会造成较大时延。目前有两种方式可以解决上述问题。
一种方式是第一终端向接入网设备反馈HARQ-ACK码本,以告知需要重传资源。示意性的,该种方式如图1所示。接入网设备通过PDCCH通知第一终端10用于侧链传输的两个处于不同时间的资源,第一终端10通过物理侧链控制信道(Physical Sidelink Control Channel,PSCCH)或者物理侧链共享信道(Physical Sidelink Shared Channel,PSSCH)在这两个资源上向第二终端20发送侧链数据均没有成功时,第一终端向接入网设备发送NACK。
另一种方式是第二终端向接入网设备反馈HARQ-ACK码本,以告知第一终端需要重传资源。示意性的,该种方式如图2所示。接入网设备通过PDCCH通知第一终端10用于侧链传输的两个处于不同时间的资源,第一终端10通过PSCCH或者PSSCH在这两个资源上向第二终端20发送侧链数据均没有成功时,第二终端20向接入网设备发送NACK。
目前3GPP会议决定采用上述第一种方式即第一终端向接入网设备反馈HARQ-ACK码本的方式。
HARQ是一种结合前向纠错(Forward Error Correction,FEC)与自动重传请求(Automatic Repeat reQuest,ARQ)方法的技术。
下行数据调度时间指示如图3所示。在5G NR中,K0,K1单位都是时隙(英文:slot),K0表示PDSCH与PDCCH的时间间隔,PDSCH用于传输下行数据,PDCCH用于传输DCI。K1表示HARQ-ACK码本与PDSCH的时间间隔,HARQ-ACK码本可以用PUCCH和PUSCH承载。
下行半静态调度(Semi-Persistent Scheduling,SPS)PDSCH是接入网设备半静态分配的周期性下行PDSCH资源,针对SPS PDSCH,第一终端同样反馈HARQ-ACK码本,SPS PDSCH与HARQ-ACK码本的定时关系是在DCI中指示的。用于指示下行SPS去激活的DCI也需要第一终端反馈HARQ-ACK码本,其时间指示如图4所示。
如图5所示,第一终端接收接入网设备发送的DCI,该DCI中的K2用于指示HARQ-ACK码本与PDCCH的时间间隔。第一终端根据该DCI的指示对下行SPS进行激活,通过PUSCH向接入网设备发送该DCI对应的HARQ-ACK码本。
NR中支持两种HARQ-ACK码本,一种为Type 1 HARQ-ACK码本,另一种为Type 2 HARQ-ACK码本。本公开实施例中的HARQ-ACK码本主要是针对Type 1 HARQ-ACK码本。
NR中下行调度PDSCH的DCI格式包含DCI格式1_0和DCI格式1_1。所有DCI格式中都包含时域资源分配(英文:time domain resource assignment)域,用于通知第一总段使用的PDSCH时域资源位置。调度DCI通过指示一个时域资源配置表的索引来指示用于PDSCH传输的正交频分复用(Orthogonal Frequency  Division Multiplexing,OFDM)符号,包含起始OFDM符号和分配的OFDM符号长度,调度DCI和发送PDSCH时间间隔为K0(以时隙为单位),PDSCH的映射类型Type A或Type B。时域资源配置表由高层信令来配置。
HARQ-ACK码本的码本类型包括半静态HARQ-ACK码本和动态HARQ-ACK码本中的一种。对于半静态HARQ-ACK码本,由于NR与LTE相比,增加了很多新的功能,更加的灵活,这样也提高了半静态HARQ-ACK码本的复杂度。影响半静态HARQ-ACK码本的因素包括但不限于:PDCCH监听时刻、半静态上下行配置(英文:semi-static DL/UL assignment)、时域资源分配配置、每个PDSCH需要的HARQ-ACK比特数和小区数。
NR支持一个时隙内可以有多个监听时刻,每个监听时刻都可以调度PDSCH,一个时隙内可以调度多个PDSCH。同时,NR支持时域资源分配,PDSCH的映射类型采用Type B时,每个PDSCH可以是2、4或7个OFDM符号,每个PDSCH起始OFDM符号没有限制,一个时隙内可以传输多个PDSCH,因此需要对多个PDSCH进行HARQ-ACK反馈。半静态HARQ-ACK码本需要考虑所有可能的情况(包括最恶劣的情况),来确定HARQ-ACK码本的比特数,这样可以确保在DCI漏检的情况下正确的反馈其他PDSCH的HARQ-ACK码本,但是却会造成PUCCH资源的严重浪费,因此在设计半静态HARQ-ACK码本时应尽可能的减少码本长度。目前,半静态HARQ-ACK码本设计时考虑了小区半静态上下行配置的情况,将下行调度与小区半静态上下行配置冲突的情况排除掉,以减少半静态码本的大小。此外,如果第一终端没有上报可以支持在一个时隙接收多个PDSCH的能力,那么会认为第一终端在一个时隙只会接收一个PDSCH,否则,第一终端根据时域资源配置来确定每个时隙最多可能收到的PDSCH从而确定半静态HARQ-ACK码本长度。
如图6所示,对某一个小区,第一终端在时隙n内反馈HARQ-ACK码本,高层信令配置对于DCI格式1_0,K1的集合为{1,2,3,4},第一终端在下行反馈窗口即时隙n-4、n-3、n-2、n-1内接收PDSCH,第一终端在时隙n内的PUCCH或者PUSCH上向接入网设备反馈对应的HARQ-ACK码本。K0的集合为{0},K0的集合由高层信令配置的时域资源分配表得到。
相关技术中,由于Type 1 HARQ-ACK码本是基于PDSCH时域资源生成的,但是当DCI中包含侧链资源时,无法将侧链资源与PDSCH SLIV对应起来。为此,本公开实施例提供了一种反馈信息传输方法,通过当需要在目标时间单元内发送侧链HARQ-ACK信息时,第一终端在目标时间单元内的物理层上行信道上向接入网设备发送侧链HARQ-ACK码本,使得第一终端能够支持当需要在目标时间单元内发送侧链HARQ-ACK信息时的数据传输,避免了相关技术中当DCI中包含侧链资源时第一终端无法将侧链资源与PDSCH SLIV对应起来的情况,保证了在侧链通信场景中侧链HARQ-ACK码本反馈的成功率。
图7示出了本公开实施例可能适用的一种网络架构的示意图。该网络架构可以是一种C-V2X系统的网络架构。其中,C是指蜂窝(英文:Cellular),C-V2X系统是基于3G、4G或5G等蜂窝网通信系统演进形成的车载无线通信系统。该网络架构可以包括:核心网71、接入网72、终端73和车辆74。
核心网71中包括若干核心网设备。核心网设备的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。例如,长期演进(Long Term Evolution,LTE)系统的核心网中可以包括移动管理节点(Mobility Management Entity,MME)、服务网关(Serving Gateway,S-GW)、PDN网关(PDN Gateway,P-GW)等设备。5G NR系统的核心网中可以包括接入和移动性管理功能(Access and Mobility Management Function,AMF)实体、用户平面功能(User Plane Function,UPF)实体和会话管理功能(Session Management Function,SMF)实体等设备。
接入网72中包括若干接入网设备720。接入网设备720与核心网设备770之间通过某种接口技术互相通信,例如LTE系统中的S7接口,5G NR系统中的NG接口。接入网设备720可以是基站(Base Station,BS),所述基站是一种部署在接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR系统中,称为gNodeB 或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本公开实施例中,上述为终端提供无线通信功能的装置统称为接入网设备。
终端73可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端(英文:terminal device)等等。为方便描述,上面提到的设备统称为终端。接入网设备720与终端73之间通过某种空口技术互相通信,例如Uu接口。
车辆74可以是自动驾驶车辆,也可以是非自动驾驶车辆。车辆74具备一车载设备,车辆74通过车载设备实现和其它车辆、终端73或者其它设备的通信,例如路侧单元(Road Side Unit,RSU)。该车载设备也可以称为车载终端、车载通信装置或其它名称,本公开实施例对此不作限定。车载设备可以是一集成在车载通信盒(Telematics BOX,T-BOX)里的装置,也可以是一跟车体分离的装置。此外,车载设备可以在车辆74出厂前装配在车辆74中,也可以在车辆74出厂后装配在车辆74中。
车辆74的车载设备与其它设备(如其它车载设备、终端73、RSU等)之间可以通过侧链通信接口(如PC5接口)互相通信,相应地,该基于侧链通信接口建立的通信链路可以称为侧链链路或侧链路。此外,车辆74的车载设备与其它设备之间还可以通过接入网72以及核心网71进行中转,即利用原有的蜂窝网络中终端73与接入网设备720之间的通信链路进行通信。与基于Uu接口通信相比,基于侧链通信接口通信具有时延短、开销小等特点,适合用于车载设备和地理位置接近的其它周边设备之间的通信。
上述图7所示的网络架构可以实现V2X业务场景,上述网络架构中还可以包括RSU、V2X应用服务器、V2X控制功能节点等设备,本公开实施例对此不作限定。另外,本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
在本公开实施例中,针对上述V2X业务场景中的侧链通信场景,提供了一种反馈信息传输方法,以解决上述技术问题。
在本公开实施例中,第一终端和第二终端是V2X业务场景中,进行侧链通信的两端设备,第一终端和第二终端之间可以通过侧链通信接口(如PC5接口)建立侧链路,然后通过该侧链路进行用户面数据和控制面信令的交互。例如,第一终端可以是图7所示网络架构中的车辆74的车载设备,第二终端可以是其它车辆的车载设备,也可以是终端73或者RSU等。又例如,第一终端可以是图7所示网络架构中的终端73,第二终端可以是其它终端,也可以是车辆74的车载设备或者RSU等。在一些实施例中,对于同一设备(如同一车载设备或同一终端)来讲,其在某些场景下可以作为第一终端,在另一些场景下也可以作为第二终端。
在本公开实施例中,第一终端也称为侧链通信发送端用户设备(英文:Transmiter UE),第二终端也称为侧链通信接收端用户设备(英文:Receive UE)。
本公开实施例描述的网络架构以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本公开实施例所涉及的一部分相关名词可参考3GPP协议中对应的相关描述,比如,DCI、PDCCH、PSCCH、PSSCH、PSFCH、SCI、ACK/NACK等,本文对此不再赘述。
下面,通过几个示例性实施例对本公开技术方案进行介绍说明。
图8是根据一示例性实施例示出的一种反馈信息传输方法的流程图。该方法可应用于图7所示的网络架构中。该方法可以包括如下步骤。
步骤801,当需要在目标时间单元内发送侧链HARQ-ACK信息时,第一终端在目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息。
其中,侧链HARQ-ACK信息用于指示侧链数据对应的接收状态,侧链数据为第一终端通过侧链路发送的物理层数据。
可选的,侧链数据为第一终端通过侧链路向第二终端发送的物理层数据。侧链数据对应的接收状态 包括:ACK或NACK。ACK用于指示侧链数据被第二终端正确接收到。NACK包括未接收状态和/或未正确接收状态。未接收状态用于指示侧链数据未被第二终端接收到;未正确接收状态用于指示侧链数据虽然被第二终端接收到,但是第二终端接收到的侧链数据与第一终端发送的侧链数据不同,接收到错误的侧链数据,即未接收到有效的侧链数据。
可选的,目标时间单元是指终端需要反馈侧链HARQ-ACK码本时对应的时间单元。示意性的,目标时间单元包括至少一个符号、或符号组或时隙或子帧,本实施例对此不加以限定。下面仅以目标时间单元为一个时隙为例进行说明。
可选的,目标时间单元内的物理层上行信道为第一终端与接入网设备之间的上行信道。物理层上行信道为用于向接入网设备发送侧链HARQ-ACK码本的上行信道。示意性的,物理层上行信道是PUCCH。
综上所述,本实施例通过当需要在目标时间单元内发送侧链HARQ-ACK信息时,第一终端在目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,使得第一终端能够支持当需要在目标时间单元内发送侧链HARQ-ACK信息时的数据传输,避免了相关技术中当DCI中包含侧链资源时第一终端无法将侧链资源与PDSCH SLIV对应起来的情况,保证了在侧链通信场景中侧链HARQ-ACK码本反馈的成功率。
图9是根据另一示例性实施例示出的一种反馈信息传输方法的流程图。该方法可应用于图7所示的网络架构中。该方法可以包括如下几个步骤。
在步骤901中,接入网设备向第一终端发送DCI,该DCI中携带有侧链资源信息。
接入网设备通过下行信道向第一终端发送DCI。示意性的,下行信道包括PDCCH。
侧链资源信息包括一个或者多个侧链资源信息。可选的,侧链资源信息用于指示时频资源和/或调制编码方式。
可选的,在接入网设备向第一终端发送DCI之前,接入网设备通过高层信令为第一终端配置时间间隔集合,时间间隔集合用于指示第一终端反馈一个或者多个侧链数据对应的侧链HARQ-ACK信息的目标时间单元。比如,第一时间间隔集合为集合K3{k1,k2,k3……kn}。
可选的,DCI中还携带有第一时间间隔集合。示意性的,第一终端在时隙n接收接入网设备发送的DCI,目标时间单元为时隙n+ki,即第一终端需要在时隙n+ki反馈侧链HARQ-ACK码本,则在时隙n+ki之前,第一终端可能收到多个侧链资源信息,且要求第一终端均在时隙n+ki中反馈。其中,n和ki均为正整数。
在步骤902中,第一终端根据侧链资源信息通过侧链路向第二终端发送侧链数据。
第一终端根据侧链资源信息所指示的时频资源和/或调制编码方式,通过侧链路向第二终端发送侧链数据。可选的,第二终端包括一个或者多个第二终端。
需要说明的是,本公开实施例中第一终端与第二终端的侧链通信方式是基于接入网设备调度的侧链通信方式。即第一终端基于接入网设备的调度进行数据发送。对于基于接入网设备调度的侧链通信方式,由于调度是由接入网设备侧完成的,侧链数据对应的侧链HARQ-ACK码本需要从第二终端传回接入网设备,以方便接入网设备侧调度数据重传或者新数据的发送。考虑到第一终端可能和第二终端处在不同的接入网设备覆盖范围之下,或者处在网络覆盖之外,侧链HARQ-ACK码本需要先从第二终端传给第一终端,再由第一终端上报给接入网设备。
其中,侧链数据为第一终端通过侧链路向第二终端发送的物理层数据。
可选的,第一终端使用侧链资源信息所指示的时频资源将侧链数据发送至第二终端。
在步骤903中,第二终端向第一终端反馈侧链信息。
对应的,第二终端接收第一终端发送的侧链数据。可选的,第二终端接收第一终端使用侧链路的目标时频资源发送的侧链数据。
第二终端向第一终端反馈侧链信息,侧链信息用于指示第二终端接收来自第一终端的侧链数据的接收状态。其中,侧链信息包括:至少一个侧链数据对应的ACK或NACK。
可选的,第二终端通过PSFCH向第一终端发送侧链信息。
在步骤904中,第一终端接收第二终端反馈的侧链信息。
对应的,第一终端接收第二终端通过PSFCH发送的侧链信息。
在步骤905中,当需要在目标时间单元内发送侧链HARQ-ACK信息时,第一终端生成侧链HARQ-ACK码本。
其中,侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息。侧链HARQ-ACK信息用于指示侧链数据对应的接收状态,侧链数据为第一终端通过侧链路发送的物理层数据。
可选的,第一终端生成侧链HARQ-ACK码本,包括但不限于以下两种可能的实现方式。
在一种可能的实现方式中,第一终端根据侧链路信道的资源池的时域位置生成侧链HARQ-ACK码本,侧链路信道包括PSSCH或者PSFCH。
在另一种可能的实现方式中,第一终端根据PDCCH的监听时刻及所处CORESET的长度,生成侧链HARQ-ACK码本。
需要说明的是,上述两种可能的实现方式的实施过程可参考下述实施例中的相关细节,在此先不介绍。
在步骤906中,第一终端在目标时间单元内的PUCCH或者PUSCH上向接入网设备发送侧链HARQ-ACK码本。
第一终端在目标时间单元内的PUCCH或者PUSCH上向接入网设备发送侧链HARQ-ACK码本。对应的,接入网设备接收在目标时间单元内的物理层上行信道上发送的侧链HARQ-ACK码本。
在一种可能的实现方式中,上述步骤905可被替代实现成为如下步骤:当需要在目标时间单元内发送侧链HARQ-ACK信息时,第一终端根据侧链路信道的资源池的时域位置生成侧链HARQ-ACK码本,侧链路信道包括PSSCH或者PSFCH。
在生成侧链HARQ-ACK码本的过程中,还可以定义该侧链HARQ-ACK码本的比特数和/或侧链HARQ-ACK码本的排列方式。
可选的,第一终端根据侧链路信道的资源池的时域位置生成侧链HARQ-ACK码本,包括:遍历第一终端的多个资源池,针对每个资源池,根据资源池中的侧链路信道的时域位置,生成资源池对应的侧链HARQ-ACK信息;按照资源池索引从小到大的顺序,对多个资源池各自对应的侧链HARQ-ACK信息进行排序,得到侧链HARQ-ACK码本。
可选的,以目标时间单元为时隙m,m为正整数为例,资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数的确定方式包括:第一终端接收接入网设备通过高层信令配置的第一时间间隔集合,第一时间间隔集合包括侧链路信道的结束符号所处时隙与反馈侧链HARQ-ACK码本的时隙偏置k i的集合,i和k i均为正整数;遍历第一时间间隔集合中的多个时隙偏置k i,针对每个时隙m-k i,确定时隙m-k i所允许发送的PSSCH的个数;针对第一终端的多个资源池中的每个资源池,根据时隙m-k i所允许发送的侧链路信道的个数,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数。
示意性的,当侧链路信道包括PSSCH时,第一时间间隔集合包括从接入网设备调度的PSSCH资源结束符号所处时隙与反馈侧链HARQ-ACK码本的时隙偏置ki的集合。
示意性的,当侧链路信道包括PSFCH时,第一时间间隔集合包括从第一终端接收PSFCH资源结束符号所处时隙与反馈侧链HARQ-ACK码本的时隙偏置ki的集合。
需要说明的是,本实施例对第一终端遍历第一终端的多个资源池和遍历第一时间间隔集合中的多个时隙偏置k i的执行先后顺序不加以限定。
可选的,资源池的每个时隙对应的侧链HARQ-ACK信息的比特数,包括:1比特;或者,至多P比特;或者,至多P*Q比特。
其中,P是高层信令配置资源池时所配置的用于发送侧链路信道的时域最小资源粒度下一个时隙可容纳的侧链路信道的个数,Q是预配置的当使用最小频域资源时资源池划分的频域单元的个数。
可选的,第一终端根据时隙m-k i所允许发送的侧链路信道的个数,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数,包括但不限于以下三种可能的实现方式。
在一种可能的实现方式中,当时隙m-k i所允许发送的侧链路信道的个数为一个时,确定资源池的每 个时隙对应生成的侧链HARQ-ACK信息的比特数为1比特。
在另一种可能的实现方式中,当时隙m-k i所允许发送的侧链路信道的个数为多个时,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数至多为P比特。
在另一种可能的实现方式中,当时隙m-k i的不同频域单元允许发送多个侧链路信道时,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数至多为P*Q比特。
其中,P是高层信令配置资源池时所配置的用于发送侧链路信道的时域最小资源粒度下一个时隙可容纳的侧链路信道的个数,Q是预配置的当使用最小频域资源时资源池划分的频域单元的个数。
可选的,第一终端根据资源池中的侧链路信道的时域资源信息,判断时隙m-k i是否为可能的侧链路信道的时域位置;当判断出时隙m-k i是可能的侧链路信道的时域位置时,执行根据时隙m-k i所允许发送的侧链路信道的个数,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数的步骤。
需要说明的一点是,在V2X系统中,PSCCH/PSSCH均在各自的资源池内传输,其中资源池包括时域集合和频域集合两部分,通常由高层参数配置。第一终端只在发送资源池内发送PSCCH/PSSCH,第二终端只在接收资源池内接收PSCCH/PSSCH。示意性的,当侧链路信道包括PSSCH时,第一终端根据资源池中的PSSCH的时域资源信息,判断时隙m-k i是否为可能的PSSCH的时域位置。
在一个示意性的例子中,侧链路信道包括PSSCH,如图10所示,P=1,Q=1,且第一时间间隔集合K3={7,8,9},目标时间单元为时隙m,第一终端的四个资源池分别对应时隙m-9、m-7、m-6和m-3,第一终端根据资源池中的PSSCH的时域资源信息,判断出时隙m-7为可能的PSSCH的时域位置。接入网设备通过PDCCH向第一终端发送DCI,该DCI中携带有指示的侧链资源即时隙m-7。对应的,第一终端采用时隙m-7向第二终端发送侧链数据之后,接收到第二终端反馈的侧链信息为ACK,该ACK表示时隙m-7内的侧链数据被第二终端正确接收到。则第一终端在时隙m内的PUCCH上向接入网设备反馈的侧链HARQ-ACK信息为{NACK,ACK,NACK},其中第一个NACK表示时隙m-9内的侧链数据未被接收到或者未接收到有效的侧链数据,第一个ACK表示时隙m-7内的侧链数据被正确接收到,第二个NACK表示时隙m-6内的侧链数据未被接收到或者未接收到有效的侧链数据。
需要说明的另一点是,在V2X系统中,PSSCH与PSFCH的时间偏置是半静态决定的,不需要隐式通知。而且可以多个PSSCH资源对应一个PSFCH资源,其周期可以是1,2,4。示意性的,当侧链路信道包括PSFCH时,第一终端根据资源池中的PSFCH的时域资源信息、PSSCH与PSFCH的时隙偏置和PSSCH与PSFCH的反馈周期,判断时隙m-k i是否为可能的PSFCH的时域位置。
在一个示意性的例子中,侧链路信道包括PSFCH,如图11所示,P=1,Q=1,且第一时间间隔集合K3={3,4,5,6,7},PSFCH与PSSCH的时间偏置为4时隙,第一终端的四个资源池分别对应时隙m-9、m-7、m-6和m-3,PSFCH与PSSCH周期为2,所以第一终端根据资源池中的PSFCH的时域资源信息、PSSCH与PSFCH的时隙偏置和PSSCH与PSFCH的反馈周期,判断出可能的PSFCH的位置为时隙m-7和m-3。
接入网设备通过PDCCH向第一终端指示的侧链资源为时隙m-7,且第一终端在时隙m-3收到第二终端反馈的侧链信息为NACK+ACK,第一个NACK表示时隙m-7内的侧链数据未被接收到或者未接收到有效的侧链数据,第二个ACK表示时隙m-3内的侧链数据被正确接收到。则第一终端在时隙m内的PUCCH上向接入网设备反馈的侧链HARQ-ACK信息为{NACK,NACK,NACK,ACK},其中,第一个NACK表示时隙m-9内的侧链数据未被接收到或者未接收到有效的侧链数据,第二个NACK表示时隙m-7内的侧链数据未被接收到或者未接收到有效的侧链数据,第三个NACK表示时隙m-6内的侧链数据未被接收到或者未接收到有效的侧链数据,第一个ACK表示时隙m-3内的侧链数据被正确接收到。
综上所述,本实施例还通过第一终端根据侧链路信道的资源池的时域位置生成侧链HARQ-ACK码本,使得侧链HARQ-ACK码本的生成方式多样化,进一步保证了后续侧链HARQ-ACK码本传输的成功率。
在另一种可能的实现方式中,上述步骤905可被替代实现成为如下步骤:当需要在目标时间单元内发送侧链HARQ-ACK信息时,第一终端根据PDCCH的监听时刻及所处CORESET的长度,生成侧链 HARQ-ACK码本。
可选的,第一终端根据PDCCH的监听时刻及所处控制资源集合CORESET的长度,生成侧链HARQ-ACK码本,包括:接收接入网设备为第一终端配置的第二时间间隔集合,第二时间间隔集合包括第一终端接收到调度侧链DCI的时刻与反馈侧链HARQ-ACK码本的时隙偏置ki的集合,i和ki均为正整数;遍历第一时间间隔集合中的多个时隙偏置ki,针对每个时隙m-ki,根据侧链RNTI加扰的PDCCH的监听时刻的起始符号及所处CORESET的长度,生成侧链HARQ-ACK码本。其中,调度侧链DCI为包括SCI信息的调度DCI。
第一终端通过遍历PDSCH资源分配表格,得到一个时隙内最多不重叠的PDSCH个数。其中,PDSCH资源分配表格可以有若干行,每行指示起始位置和符号长度。可选的,第一终端将侧链RNTI加扰的PDCCH的监听时刻的起始符号及所处CORESET的长度作为虚拟的一行资源,并与PDSCH资源分配表格一起,计算一个时隙内最多的PDSCH个数和侧链RNTI加扰的PDCCH个数,侧链RNTI加扰的PDCCH的个数即为调度SCI的DCI的个数。第一终端根据计算得到的PDSCH个数和/或侧链RNTI加扰的PDCCH个数,确定每个时隙对应生成的侧链HARQ-ACK信息的比特数。
在一种可能的实现方式中,当时隙m-ki所允许发送的侧链RNTI加扰的PDCCH的个数为一个时,确定每个时隙对应生成的侧链HARQ-ACK信息的比特数为1比特。
可选的,当时隙m-ki所允许发送的侧链RNTI加扰的PDCCH的个数为一个且计算得到的PDSCH个数为一个时,确定每个时隙对应生成的侧链HARQ-ACK信息的比特数为2比特。
在另一种可能的实现方式中,当时隙m-ki所允许发送的侧链RNTI加扰的PDCCH的个数为多个时,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数至多为K比特,K是高层信令配置的侧链RNTI加扰的PDCCH的个数。
可选的,当时隙m-ki所允许发送的侧链RNTI加扰的PDCCH的个数为多个且计算得到的PDSCH个数为一个时,确定每个时隙对应生成的侧链HARQ-ACK信息的比特数至多为K+1比特。
需要说明的是,本实施例对每个时隙对应生成的侧链HARQ-ACK信息的比特数的定义方式不加以限定。
综上所述,本实施例还通过第一终端根据PDCCH的监听时刻及所处CORESET的长度,确定每个时隙对应生成的侧链HARQ-ACK信息的比特数,从而生成侧链HARQ-ACK码本,使得侧链HARQ-ACK码本的生成方式多样化,进一步保证了后续侧链HARQ-ACK码本传输的成功率。
需要说明的是,当需要在目标时间单元内发送上行HARQ-ACK信息和侧链HARQ-ACK信息时,第一终端在目标时间单元内的物理层上行信道上发送目标HARQ-ACK反馈码本,目标HARQ-ACK反馈码本包括上行HARQ-ACK码本和侧链HARQ-ACK码本。上述步骤905和步骤906可被替代实现成为如下几个步骤,如图12所示:
在步骤1201中,当需要在目标时间单元内发送上行HARQ-ACK信息和侧链HARQ-ACK信息时,第一终端生成上行HARQ-ACK码本和侧链HARQ-ACK码本。
其中,上行HARQ-ACK码本包括至少一个下行数据对应的上行HARQ-ACK信息。
可选的,在步骤1201之前,接入网设备通过下行信道向第一终端发送下行数据,对应的第一终端接收接入网设备通过下行信道发送的下行数据。示意性的,下行信道包括PDSCH。
可选的,当需要在目标时间单元内发送上行HARQ-ACK信息和侧链HARQ-ACK信息时,第一终端生成的上行HARQ-ACK码本也称为上行HARQ-ACK子码本,生成的侧链HARQ-ACK码本也称为侧链HARQ-ACK子码本。
上行HARQ-ACK信息用于指示下行数据对应的接收状态。下行数据对应的接收状态包括:ACK或NACK。其中,ACK用于指示下行数据被第一终端正确接收到。NACK包括未接收状态和/或未正确接收状态。未接收状态用于指示下行数据未被第一终端接收到;未正确接收状态用于指示下行数据虽然被第一终端接收到,但是第一终端接收到的下行数据与接入网设备发送的下行数据不同,即,接收到错误的下行数据。
需要说明的是,第一终端生成侧链HARQ-ACK码本的过程可类比参考上述实施例中的相关细节,在此不再赘述。
在步骤1202中,第一终端将上行HARQ-ACK码本和侧链HARQ-ACK码本进行合并,得到目标HARQ-ACK反馈码本。
可选的,第一终端将上行HARQ-ACK码本和侧链HARQ-ACK码本进行合并,得到目标HARQ-ACK反馈码本,包括:第一终端将上行HARQ-ACK码本和侧链HARQ-ACK码本按照预定顺序进行合并,得到目标HARQ-ACK反馈码本。
其中,上行HARQ-ACK码本和侧链HARQ-ACK码本对应的码本类型均为半静态HARQ-ACK码本。
可选的,在第一终端将上行HARQ-ACK码本和侧链HARQ-ACK码本进行合并,得到目标HARQ-ACK反馈码本之前,还包括:接入网设备向第一终端发送下行信令,对应的,第一终端接收接入网设备发送的下行信令,下行信令用于指示配置的目标HARQ-ACK反馈码本的码本类型。
可选的,目标HARQ-ACK反馈码本的码本类型包括半静态HARQ-ACK码本和动态HARQ-ACK码本中的一种。目标HARQ-ACK反馈码本的码本类型为半静态HARQ-ACK码本时用于指示上行HARQ-ACK码本和侧链HARQ-ACK码本对应的码本类型均为半静态HARQ-ACK码本。
可选的,预定顺序包括:侧链HARQ-ACK码本排序在上行HARQ-ACK码本之前;或者,上行HARQ-ACK码本排序在侧链HARQ-ACK码本之前。本实施例对侧链HARQ-ACK码本和上行HARQ-ACK码本的排列顺序不加以限定。
在步骤1203中,第一终端在目标时间单元内的物理层上行信道上向接入网设备发送目标HARQ-ACK反馈码本。
可选的,第一终端接收到接入网设备发送的第三配置信息,根据第三配置信息确定目标时间单元内的物理层上行信道的物理资源。
可选的,物理层上行信道为用于向接入网设备发送目标HARQ-ACK反馈码本的上行信道。
第一终端在目标时间单元内的物理层上行信道的物理资源中向接入网设备发送目标HARQ-ACK反馈码本。对应的,接入网设备接收第一终端发送的目标HARQ-ACK反馈码本。
综上所述,本实施例还通过当需要在目标时间单元内发送上行HARQ-ACK信息和侧链HARQ-ACK信息时,第一终端能够在目标时间单元内的物理层上行信道上发送目标HARQ-ACK反馈码本,该目标HARQ-ACK反馈码本包括上行HARQ-ACK码本和侧链HARQ-ACK码本,使得第一终端能够支持当需要在目标时间单元内发送上行HARQ-ACK信息和侧链HARQ-ACK信息时的数据传输,进一步保证了反馈信息传输的灵活性。
以下为本公开实施例的装置实施例,对于装置实施例中未详细阐述的部分,可以参考上述方法实施例中公开的技术细节。
请参考图13,其示出了本公开一个实施例提供的反馈信息传输装置的结构示意图。该反馈信息传输装置可以通过软件、硬件以及两者的组合实现成为第一终端的全部或一部分。该反馈信息传输装置包括:发送模块1310。
发送模块1310,用于当需要在目标时间单元内发送侧链HARQ-ACK信息时,通过第一终端在目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息;
其中,侧链HARQ-ACK信息用于指示侧链数据对应的接收状态,侧链数据为第一终端通过侧链路发送的物理层数据。
在一种可能的实现方式中,发送模块1310,还用于生成侧链HARQ-ACK码本;在目标时间单元内的物理上行控制信道PUCCH或者上行共享信道PUSCH上发送侧链HARQ-ACK码本。
在另一种可能的实现方式中,发送模块1310,还用于当需要在目标时间单元内发送上行HARQ-ACK信息和侧链HARQ-ACK信息时,在目标时间单元内的物理层上行信道上发送目标HARQ-ACK反馈码本,目标HARQ-ACK反馈码本包括上行HARQ-ACK码本和侧链HARQ-ACK码本;
其中,上行HARQ-ACK码本包括至少一个下行数据对应的上行HARQ-ACK信息。
在另一种可能的实现方式中,该装置还包括:处理模块。处理模块,用于生成上行HARQ-ACK码本;生成侧链HARQ-ACK码本;将上行HARQ-ACK码本和侧链HARQ-ACK码本进行合并,得到目标HARQ-ACK反馈码本。
在另一种可能的实现方式中,处理模块,还用于根据侧链路信道的资源池的时域位置生成侧链HARQ-ACK码本,侧链路信道包括PSSCH或者PSFCH。
在另一种可能的实现方式中,处理模块,还用于遍历第一终端的多个资源池,针对每个资源池,根据资源池中的侧链路信道的时域位置,生成资源池对应的侧链HARQ-ACK信息;
按照资源池索引从小到大的顺序,对多个资源池各自对应的侧链HARQ-ACK信息进行排序,得到侧链HARQ-ACK码本。
在另一种可能的实现方式中,目标时间单元为时隙m,m为正整数,装置还包括:接收模块。
接收模块,用于接收接入网设备通过高层信令配置的第一时间间隔集合,第一时间间隔集合包括侧链路信道的结束符号所处时隙与反馈侧链HARQ-ACK码本的时隙偏置k i的集合,i和k i均为正整数;
处理模块,还用于遍历第一时间间隔集合中的多个时隙偏置k i,针对每个时隙m-k i,确定时隙m-k i所允许发送的PSSCH的个数;针对第一终端的多个资源池中的每个资源池,根据时隙m-k i所允许发送的侧链路信道的个数,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数。
在另一种可能的实现方式中,处理模块,还用于根据资源池中的侧链路信道的时域资源信息,判断时隙m-k i是否为可能的侧链路信道的时域位置;当判断出时隙m-k i是可能的侧链路信道的时域位置时,执行根据时隙m-k i所允许发送的侧链路信道的个数,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数的步骤。
在另一种可能的实现方式中,处理模块,还用于当时隙m-k i所允许发送的侧链路信道的个数为一个时,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数为1比特;
当时隙m-k i所允许发送的侧链路信道的个数为多个时,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数至多为P比特,P是高层信令配置资源池时所配置的用于发送侧链路信道的时域最小资源粒度下一个时隙可容纳的侧链路信道的个数。
在另一种可能的实现方式中,处理模块,还用于当时隙m-k i的不同频域单元允许发送多个侧链路信道时,确定资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数至多为P*Q比特;
其中,P是高层信令配置资源池时所配置的用于发送侧链路信道的时域最小资源粒度下一个时隙可容纳的侧链路信道的个数,Q是预配置的当使用最小频域资源时资源池划分的频域单元的个数。
在另一种可能的实现方式中,资源池的每个时隙对应的侧链HARQ-ACK信息的比特数,包括:
1比特;或者,
至多P比特,P是高层信令配置资源池时所配置的用于发送侧链路信道的时域最小资源粒度下一个时隙可容纳的侧链路信道的个数;或者,
至多P*Q比特,Q是预配置的当使用最小频域资源时资源池划分的频域单元的个数。
在另一种可能的实现方式中,处理模块,还用于第一终端根据物理层下行控制信道PDCCH的监听时刻及所处控制资源集合CORESET的长度,生成侧链HARQ-ACK码本。
在另一种可能的实现方式中,该装置还包括:接收模块。
接收模块,用于接收接入网设备为第一终端配置的第二时间间隔集合,第二时间间隔集合包括第一终端接收到调度侧链下行控制信息DCI的时刻与反馈侧链HARQ-ACK码本的时隙偏置k i的集合,i和k i均为正整数;
处理模块,还用于遍历第一时间间隔集合中的多个时隙偏置ki,针对每个时隙m-ki,根据侧链无线网络临时标识RNTI加扰的PDCCH的监听时刻的起始符号及所处CORESET的长度,生成侧链HARQ-ACK码本。
在另一种可能的实现方式中,处理模块,还用于当时隙m-k i所允许发送的侧链RNTI加扰的PDCCH的个数为一个时,确定每个时隙对应生成的侧链HARQ-ACK信息的比特数为1比特;
当时隙m-ki所允许发送的侧链RNTI加扰的PDCCH的个数为多个时,确定每个时隙对应生成的侧链HARQ-ACK信息的比特数至多为K比特,K是高层信令配置的侧链RNTI加扰的PDCCH的个数。
在另一种可能的实现方式中,处理模块还用于将上行HARQ-ACK码本和侧链HARQ-ACK码本按照预定顺序进行合并,得到目标HARQ-ACK反馈码本;
其中,上行HARQ-ACK码本和侧链HARQ-ACK码本对应的码本类型均为半静态HARQ-ACK码本。
在另一种可能的实现方式中,预定顺序包括:
侧链HARQ-ACK码本排序在上行HARQ-ACK码本之前;或者,
上行HARQ-ACK码本排序在侧链HARQ-ACK码本之前。
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图14是根据一示例性实施例示出的一种终端1400的框图。例如,终端1400可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图14,终端1400可以包括以下一个或多个组件:处理组件1402,存储器1404,电源组件1406,多媒体组件1408,音频组件1410,输入/输出(I/O)的接口1412,传感器组件1414,以及通信组件1416。
处理组件1402通常控制终端1400的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1402可以包括一个或多个处理器1420来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1402可以包括一个或多个模块,便于处理组件1402和其他组件之间的交互。例如,处理组件1402可以包括多媒体模块,以方便多媒体组件1408和处理组件1402之间的交互。
存储器1404被配置为存储各种类型的数据以支持在终端1400的操作。这些数据的示例包括用于在终端1400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1406为终端1400的各种组件提供电力。电源组件1406可以包括电源管理系统,一个或多个电源,及其他与为终端1400生成、管理和分配电力相关联的组件。
多媒体组件1408包括在所述终端1400和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1408包括一个前置摄像头和/或后置摄像头。当终端1400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1410被配置为输出和/或输入音频信号。例如,音频组件1410包括一个麦克风(MIC),当终端1400处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1404或经由通信组件1416发送。在一些实施例中,音频组件1410还包括一个扬声器,用于输出音频信号。
I/O接口1412为处理组件1402和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1414包括一个或多个传感器,用于为终端1400提供各个方面的状态评估。例如,传感器组件1414可以检测到终端1400的打开/关闭状态,组件的相对定位,例如所述组件为终端1400的显示器和小键盘,传感器组件1414还可以检测终端1400或终端1400一个组件的位置改变,用户与终端1400接触 的存在或不存在,终端1400方位或加速/减速和终端1400的温度变化。传感器组件1414可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1414还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1414还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1416被配置为便于终端1400和其他设备之间有线或无线方式的通信。终端1400可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1416经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1416还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端1400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1404,上述计算机程序指令可由终端1400的处理器1420执行以完成上述方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了 实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (19)

  1. 一种反馈信息传输方法,其特征在于,所述方法包括:
    当需要在目标时间单元内发送侧链混合自动重传请求HARQ-ACK信息时,第一终端在所述目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,所述侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息;
    其中,所述侧链HARQ-ACK信息用于指示所述侧链数据对应的接收状态,所述侧链数据为所述第一终端通过侧链路发送的物理层数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端在所述目标时间单元内的物理层上行信道上发送所述侧链HARQ-ACK码本,包括:
    所述第一终端生成所述侧链HARQ-ACK码本;
    所述第一终端在所述目标时间单元内的物理上行控制信道PUCCH或者上行共享信道PUSCH上发送所述侧链HARQ-ACK码本。
  3. 根据权利要求1所述的方法,其特征在于,所述当需要在目标时间单元内发送侧链混合自动重传请求HARQ-ACK信息时,第一终端在所述目标时间单元内的物理层上行信道上发送所述侧链HARQ-ACK码本,包括:
    当需要在所述目标时间单元内发送上行HARQ-ACK信息和所述侧链HARQ-ACK信息时,所述第一终端在所述目标时间单元内的物理层上行信道上发送目标HARQ-ACK反馈码本,所述目标HARQ-ACK反馈码本包括上行HARQ-ACK码本和所述侧链HARQ-ACK码本;
    其中,所述上行HARQ-ACK码本包括至少一个下行数据对应的上行HARQ-ACK信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第一终端在所述目标时间单元内的物理层上行信道上发送目标HARQ-ACK反馈码本之前,还包括:
    所述第一终端生成所述上行HARQ-ACK码本;
    所述第一终端生成所述侧链HARQ-ACK码本;
    所述第一终端将所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本进行合并,得到所述目标HARQ-ACK反馈码本。
  5. 根据权利要求2或4所述的方法,其特征在于,所述第一终端生成所述侧链HARQ-ACK码本,包括:
    所述第一终端根据侧链路信道的资源池的时域位置生成所述侧链HARQ-ACK码本,所述侧链路信道包括物理侧链共享信道PSSCH或者物理侧链反馈信道PSFCH。
  6. 根据权利要求5所述的方法,其特征在于,所述第一终端根据侧链路信道的资源池的时域位置生成所述侧链HARQ-ACK码本,包括:
    遍历所述第一终端的多个所述资源池,针对每个所述资源池,根据所述资源池中的所述侧链路信道的时域位置,生成所述资源池对应的侧链HARQ-ACK信息;
    按照所述资源池索引从小到大的顺序,对多个所述资源池各自对应的侧链HARQ-ACK信息进行排序,得到所述侧链HARQ-ACK码本。
  7. 根据权利要求5所述的方法,其特征在于,所述目标时间单元为时隙m,所述m为正整数,所述方法还包括:
    接收接入网设备通过高层信令配置的第一时间间隔集合,所述第一时间间隔集合包括所述侧链路信道的结束符号所处时隙与反馈所述侧链HARQ-ACK码本的时隙偏置k i的集合,所述i和所述k i均为正整数;
    遍历所述第一时间间隔集合中的多个时隙偏置k i,针对每个时隙m-k i,确定所述时隙m-k i所允许发 送的所述PSSCH的个数;
    针对所述第一终端的多个所述资源池中的每个所述资源池,根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数。
  8. 根据权利要求7所述的方法,其特征在于,所述方法,还包括:
    根据所述资源池中的所述侧链路信道的时域资源信息,判断所述时隙m-k i是否为可能的所述侧链路信道的时域位置;
    当判断出所述时隙m-k i是可能的所述侧链路信道的时域位置时,执行根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数的步骤。
  9. 根据权利要求7所述的方法,其特征在于,所述根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数,包括:
    当所述时隙m-k i所允许发送的所述侧链路信道的个数为一个时,确定所述资源池的每个时隙对应生成的所述侧链HARQ-ACK信息的比特数为1比特;
    当所述时隙m-k i所允许发送的所述侧链路信道的个数为多个时,确定所述资源池的每个时隙对应生成的所述侧链HARQ-ACK信息的比特数至多为P比特,所述P是所述高层信令配置所述资源池时所配置的用于发送所述侧链路信道的时域最小资源粒度下一个时隙可容纳的所述侧链路信道的个数。
  10. 根据权利要求7所述的方法,其特征在于,所述根据所述时隙m-k i所允许发送的所述侧链路信道的个数,确定所述资源池的每个时隙对应生成的侧链HARQ-ACK信息的比特数,包括:
    当所述时隙m-k i的不同频域单元允许发送多个所述侧链路信道时,确定所述资源池的每个时隙对应生成的所述侧链HARQ-ACK信息的比特数至多为P*Q比特;
    其中,所述P是所述高层信令配置所述资源池时所配置的用于发送所述侧链路信道的时域最小资源粒度下一个时隙可容纳的所述侧链路信道的个数,所述Q是预配置的当使用最小频域资源时所述资源池划分的频域单元的个数。
  11. 根据权利要求7所述的方法,其特征在于,所述资源池的每个时隙对应的所述侧链HARQ-ACK信息的比特数,包括:
    1比特;或者,
    至多P比特,所述P是所述高层信令配置所述资源池时所配置的用于发送所述侧链路信道的时域最小资源粒度下一个时隙可容纳的所述侧链路信道的个数;或者,
    至多所述P*Q比特,所述Q是预配置的当使用最小频域资源时所述资源池划分的频域单元的个数。
  12. 根据权利要求2或4所述的方法,其特征在于,所述第一终端生成所述侧链HARQ-ACK码本,包括:
    所述第一终端根据物理层下行控制信道PDCCH的监听时刻及所处控制资源集合CORESET的长度,生成所述侧链HARQ-ACK码本。
  13. 根据权利要求12所述的方法,其特征在于,所述第一终端根据物理层下行控制信道PDCCH的监听时刻及所处控制资源集合CORESET的长度,生成所述侧链HARQ-ACK码本,包括:
    接收接入网设备为所述第一终端配置的第二时间间隔集合,所述第二时间间隔集合包括所述第一终端接收到调度侧链下行控制信息DCI的时刻与反馈所述侧链HARQ-ACK码本的时隙偏置k i的集合,所述i和所述k i均为正整数;
    遍历所述第一时间间隔集合中的多个时隙偏置ki,针对每个时隙m-ki,根据侧链无线网络临时标识 RNTI加扰的PDCCH的监听时刻的起始符号及所处CORESET的长度,生成所述侧链HARQ-ACK码本。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    当所述时隙m-k i所允许发送的所述侧链RNTI加扰的PDCCH的个数为一个时,确定每个时隙对应生成的所述侧链HARQ-ACK信息的比特数为1比特;
    当所述时隙m-ki所允许发送的侧链RNTI加扰的PDCCH的个数为多个时,确定每个时隙对应生成的所述侧链HARQ-ACK信息的比特数至多为K比特,所述K是高层信令配置的所述侧链RNTI加扰的PDCCH的个数。
  15. 根据权利要求4所述的方法,其特征在于,所述第一终端将所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本进行合并,得到所述目标HARQ-ACK反馈码本,包括:
    所述第一终端将所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本按照预定顺序进行合并,得到所述目标HARQ-ACK反馈码本;
    其中,所述上行HARQ-ACK码本和所述侧链HARQ-ACK码本对应的码本类型均为半静态HARQ-ACK码本。
  16. 根据权利要求15所述的方法,其特征在于,所述预定顺序包括:
    所述侧链HARQ-ACK码本排序在所述上行HARQ-ACK码本之前;或者,
    所述上行HARQ-ACK码本排序在所述侧链HARQ-ACK码本之前。
  17. 一种反馈信息传输装置,其特征在于,所述装置包括:
    发送模块,用于当需要在目标时间单元内发送侧链混合自动重传请求HARQ-ACK信息时,通过第一终端在所述目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,所述侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息;
    其中,所述侧链HARQ-ACK信息用于指示所述侧链数据对应的接收状态,所述侧链数据为所述第一终端通过侧链路发送的物理层数据。
  18. 一种终端,其特征在于,所述终端包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    当需要在目标时间单元内发送侧链混合自动重传请求HARQ-ACK信息时,在所述目标时间单元内的物理层上行信道上发送侧链HARQ-ACK码本,所述侧链HARQ-ACK码本包括至少一个侧链数据对应的侧链HARQ-ACK信息;
    其中,所述侧链HARQ-ACK信息用于指示所述侧链数据对应的接收状态,所述侧链数据为所述第一终端通过侧链路发送的物理层数据。
  19. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至16中任意一项所述的方法。
PCT/CN2020/092100 2019-07-16 2020-05-25 反馈信息传输方法、装置、终端及存储介质 WO2021008238A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227005171A KR20220103691A (ko) 2019-07-16 2020-05-25 피드백 정보 전송 방법, 장치, 단말 및 기억 매체
JP2022503441A JP7346704B2 (ja) 2019-07-16 2020-05-25 フィードバック情報伝送方法、装置、端末及び記憶媒体
EP20840384.0A EP4002736B1 (en) 2019-07-16 2020-05-25 Feedback information transmission method and apparatus, terminal, and storage medium
US17/576,524 US20220140958A1 (en) 2019-07-16 2022-01-14 Feedback information transmission method, terminal, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910642562.9 2019-07-16
CN201910642562.9A CN110311762B (zh) 2019-07-16 2019-07-16 反馈信息传输方法、装置、终端及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/576,524 Continuation US20220140958A1 (en) 2019-07-16 2022-01-14 Feedback information transmission method, terminal, and storage medium

Publications (1)

Publication Number Publication Date
WO2021008238A1 true WO2021008238A1 (zh) 2021-01-21

Family

ID=68080292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092100 WO2021008238A1 (zh) 2019-07-16 2020-05-25 反馈信息传输方法、装置、终端及存储介质

Country Status (6)

Country Link
US (1) US20220140958A1 (zh)
EP (1) EP4002736B1 (zh)
JP (1) JP7346704B2 (zh)
KR (1) KR20220103691A (zh)
CN (1) CN110311762B (zh)
WO (1) WO2021008238A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236714A1 (zh) * 2021-05-11 2022-11-17 Oppo广东移动通信有限公司 码本反馈方法、装置、设备及存储介质

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102470254B1 (ko) * 2017-09-14 2022-11-22 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 시간 도메인 자원을 결정하는 방법 및 기기
CN111294159B (zh) * 2019-01-11 2021-04-27 北京紫光展锐通信技术有限公司 用于组播通信的harq反馈方法及装置、存储介质、终端
CN110311762B (zh) * 2019-07-16 2021-04-16 北京紫光展锐通信技术有限公司 反馈信息传输方法、装置、终端及存储介质
JP2022547779A (ja) * 2019-07-18 2022-11-16 日本電気株式会社 端末、ネットワーク装置、端末の方法、及びネットワーク装置の方法
CN111818659B (zh) * 2019-07-24 2022-03-01 维沃移动通信有限公司 sidelink信息发送方法、接收方法、终端和控制节点
CN115102675A (zh) * 2019-10-12 2022-09-23 华为技术有限公司 通信方法及装置
CN112997431B (zh) * 2019-10-14 2023-01-17 北京小米移动软件有限公司 混合自动重传请求应答信息发送方法、装置以及存储介质
CN112738888B (zh) * 2019-10-14 2022-02-01 维沃移动通信有限公司 时域资源的确定方法和设备
CN114365516A (zh) * 2019-10-15 2022-04-15 华为技术有限公司 一种混合自动重传请求反馈方法及装置
WO2021072770A1 (zh) * 2019-10-18 2021-04-22 Oppo广东移动通信有限公司 一种侧行反馈方法、设备及存储介质
EP4049490A4 (en) * 2019-10-25 2023-07-26 Qualcomm Incorporated ENHANCED HYBRID AUTOMATIC REPEAT REQUEST (HARQ) CODEBOOK AND UPLINK CONTROL (PUCCH) PHYSICAL CHANNEL RESOURCE DETERMINATION WITH SIDE LINK FEEDBACK REFERRAL
CN112751656B (zh) * 2019-10-30 2022-09-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114631373A (zh) * 2019-10-31 2022-06-14 上海诺基亚贝尔股份有限公司 用于侧链路信道的资源映射
JP2023500230A (ja) * 2019-11-04 2023-01-05 オッポ広東移動通信有限公司 Nrサイドリンク通信におけるフィードバックチャネルのマッピングおよびharq報告の多重化
US11652582B2 (en) * 2019-11-04 2023-05-16 Qualcomm Incorporated Acknowledgment feedback techniques in sidelink wireless communications
WO2021088047A1 (zh) * 2019-11-08 2021-05-14 Oppo广东移动通信有限公司 反馈信息生成方法、装置、终端和网络设备
CN112787782B (zh) * 2019-11-08 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112787765B (zh) * 2019-11-08 2021-11-12 大唐移动通信设备有限公司 一种harq反馈方法、终端、基站和存储介质
CN112788562B (zh) * 2019-11-08 2022-08-30 大唐移动通信设备有限公司 一种信息反馈、重传方法及终端
CN112788561B (zh) * 2019-11-08 2022-07-12 大唐移动通信设备有限公司 资源映射方法及终端
EP4057771A4 (en) * 2019-11-08 2023-07-19 NTT DoCoMo, Inc. COMMUNICATION TERMINAL AND METHOD
CN115066034A (zh) * 2019-11-09 2022-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112804032B (zh) * 2019-11-14 2022-07-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114944901A (zh) * 2019-11-15 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112911719B (zh) * 2019-12-03 2024-02-09 华硕电脑股份有限公司 处理不含物理侧链路反馈信道的设备到设备资源池的方法和装置
JP7244481B2 (ja) * 2019-12-03 2023-03-22 華碩電腦股▲ふん▼有限公司 無線通信システムにおいてデバイス・ツー・デバイスのサイドリンクharq-ackを生成するための方法および装置
WO2021128041A1 (zh) * 2019-12-25 2021-07-01 华为技术有限公司 一种数据传输方法、装置以及存储介质
CN114868447A (zh) * 2020-01-03 2022-08-05 Oppo广东移动通信有限公司 无线通信的方法和终端设备
WO2021134798A1 (zh) * 2020-01-03 2021-07-08 Oppo广东移动通信有限公司 无线通信的方法和终端设备
CN113132066B (zh) * 2020-01-14 2022-06-14 维沃移动通信有限公司 资源确定方法及通信设备
CN114600520A (zh) * 2020-01-19 2022-06-07 Oppo广东移动通信有限公司 通信方法、设备及存储介质
CN113141662B (zh) * 2020-01-20 2023-05-30 维沃移动通信有限公司 一种确定物理旁链路反馈信息的方法和通信设备
CN113141237B (zh) * 2020-01-20 2023-04-07 维沃移动通信有限公司 上行资源的确定方法和通信设备
CN113141663B (zh) * 2020-01-20 2022-11-18 维沃移动通信有限公司 确定旁链路反馈信息的方法和通信设备
CN113141664B (zh) * 2020-01-20 2023-04-07 维沃移动通信有限公司 信息传输方法及设备
CN114667769B (zh) * 2020-02-07 2023-10-31 Oppo广东移动通信有限公司 基于drx的侧行反馈方法及相关装置
US11677512B2 (en) * 2020-02-12 2023-06-13 Apple Inc. Sidelink HARQ
WO2021159386A1 (zh) * 2020-02-13 2021-08-19 富士通株式会社 上行信号的发送和接收方法、装置和通信系统
CN113259069B (zh) * 2020-02-13 2022-09-13 展讯半导体(南京)有限公司 资源调度方法、用户设备、装置及存储介质
CN112738892B (zh) * 2020-02-14 2023-04-18 华为技术有限公司 一种信道的接收机会确定方法及通信装置
CN113498200B (zh) * 2020-03-19 2023-06-06 维沃移动通信有限公司 一种传输配置方法及终端
US20210297964A1 (en) * 2020-03-23 2021-09-23 Qualcomm Incorporated Sidelink feedback reporting
EP4135363A4 (en) * 2020-04-10 2023-04-12 Huawei Technologies Co., Ltd. METHOD FOR SENDING INFORMATION, METHOD FOR RECEIVING INFORMATION, AND ASSOCIATED APPARATUS AND DEVICES
CN113677014A (zh) * 2020-05-15 2021-11-19 大唐移动通信设备有限公司 一种确定反馈信息传输位置的方法及设备
EP4156833A4 (en) * 2020-05-29 2023-08-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. HARQ-ACK CODEBOOK FEEDBACK METHOD AND TERMINAL EQUIPMENT
CN113766529A (zh) * 2020-06-02 2021-12-07 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN113891462B (zh) * 2020-07-03 2023-06-20 维沃移动通信有限公司 副链路反馈资源配置方法、信息处理方法和设备
CN113890698B (zh) * 2020-07-03 2023-06-02 维沃移动通信有限公司 旁链路传输方法、传输装置和通信设备
US11956087B2 (en) * 2020-07-14 2024-04-09 Lg Electronics Inc. Method and apparatus for selecting SL resources in NR V2X
CN114070486A (zh) * 2020-08-04 2022-02-18 夏普株式会社 由用户设备执行的方法以及用户设备
CN114070517A (zh) * 2020-08-06 2022-02-18 中国移动通信有限公司研究院 一种harq-ack码本传输方法、装置和存储介质
CN112039640A (zh) * 2020-08-07 2020-12-04 中兴通讯股份有限公司 码本确定方法、装置、设备和存储介质
US20220070906A1 (en) * 2020-08-27 2022-03-03 Qualcomm Incorporated Resource mapping for a scheduling request on a physical sidelink feedback channel
JP2023544791A (ja) * 2020-10-15 2023-10-25 富士通株式会社 情報フィードバック方法及び装置
BR112023013008A2 (pt) * 2021-01-12 2023-10-03 Qualcomm Inc Retroalimentação de enlace lateral para múltiplos pontos de transmissão e recebimento
CN115134053B (zh) * 2021-03-29 2024-04-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115174005A (zh) * 2021-04-06 2022-10-11 北京紫光展锐通信技术有限公司 重传响应反馈方法及装置、终端设备
US20220361152A1 (en) * 2021-05-10 2022-11-10 Qualcomm Incorporated Techniques for collecting sidelink channel feedback from a receiving ue
CN117730595A (zh) * 2021-09-10 2024-03-19 Oppo广东移动通信有限公司 无线通信的方法和通信设备
CN116170887A (zh) * 2021-11-22 2023-05-26 华为技术有限公司 通信方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190149275A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Resource set configurations using automatic repeat request information
US20190182807A1 (en) * 2018-02-16 2019-06-13 Intel Corporation Reliability mechanisms for physical downlink control channel (pdcch) transmissions in new radio (nr) systems
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126266A1 (en) * 2016-01-22 2017-07-27 Nec Corporation Methods and device for transmission collision detection and handling in vehicle to everything communication system
US10779295B2 (en) * 2016-04-01 2020-09-15 Lg Electronics Inc. Terminal operation method in accordance to uplink SPS in wireless communication system and terminal using same
US10461975B2 (en) * 2016-05-11 2019-10-29 Qualcomm Incorporated Dynamic cyclic prefix (CP) length in wireless communication
WO2018004322A1 (ko) * 2016-07-01 2018-01-04 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
CN107645774B (zh) * 2016-07-20 2020-07-28 普天信息技术有限公司 V2x网络中调度pc5口资源的确认方法
CN108923894B (zh) * 2017-03-23 2023-04-18 中兴通讯股份有限公司 一种信息传输的方法、用户设备、基站、存储介质和系统
CN117318905A (zh) * 2017-09-29 2023-12-29 北京三星通信技术研究有限公司 上行传输方法和相应设备
US10715283B2 (en) * 2017-10-02 2020-07-14 Kt Corporation Apparatus and method of transmitting and receiving HARQ ACK/NACK information for new radio
WO2019095202A1 (en) * 2017-11-16 2019-05-23 Lenovo (Beijing) Limited Method and apparatus for harq-ack codebook determination
CN109963264B (zh) * 2017-12-23 2021-06-04 华为技术有限公司 一种数据的传输方法、通信设备和网络设备
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
KR102206806B1 (ko) * 2018-05-04 2021-01-25 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 액티브 다운링크 대역폭 부분 변경을 고려한 다운링크 제어 정보 컨텐트 프로세싱을 위한 방법 및 장치
WO2020066025A1 (ja) * 2018-09-28 2020-04-02 株式会社Nttドコモ ユーザ端末及び無線通信方法
US20220053521A1 (en) * 2018-12-27 2022-02-17 Ntt Docomo, Inc. User equipment and communication apparatus
CN109792594B (zh) * 2018-12-29 2022-05-20 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统
CN114401554A (zh) * 2019-01-09 2022-04-26 北京小米移动软件有限公司 资源分配方法及装置
CN113615111A (zh) * 2019-01-10 2021-11-05 弗劳恩霍夫应用研究促进协会 侧链路中的高级反馈
JP6934965B2 (ja) * 2019-02-20 2021-09-15 華碩電腦股▲ふん▼有限公司 無線通信システムにおいてサイドリンクおよび上りリンクharq−ackフィードバックを処理するための方法および装置
US11252753B2 (en) * 2019-02-21 2022-02-15 Asustek Computer Inc. Method and apparatus for improving retransmission scheduling of sidelink communication in a wireless communication system
KR102353395B1 (ko) * 2019-03-21 2022-01-19 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에 있어서 디바이스-대-디바이스 피드백 송신을 핸들링하는 방법 및 장치
CN111867099B (zh) * 2019-04-30 2024-04-05 株式会社Kt 发射和接收侧链路harq反馈信息的方法和装置
KR20200145212A (ko) * 2019-06-21 2020-12-30 삼성전자주식회사 통신 시스템에서 사이드링크 피드백 송수신 방법 및 장치
US20210006318A1 (en) * 2019-07-03 2021-01-07 Electronics And Telecommunications Research Institute Method and apparatus for sidelink communication
US11632196B2 (en) * 2019-07-18 2023-04-18 Samsung Electronics Co., Ltd System and method for providing dynamic hybrid automatic repeat request (HARQ) codebook with multiple valid unicast downlink control information (DCI) per monitoring occasion index per serving cell
CN114258653A (zh) * 2019-08-16 2022-03-29 创新技术实验室株式会社 用于在无线通信中使用harq的方法和装置
CN114556979A (zh) * 2019-10-07 2022-05-27 Lg电子株式会社 用于在nr v2x中向基站发送harq反馈的方法和设备
US20210136783A1 (en) * 2019-10-30 2021-05-06 Qualcomm Incorporated Reversed sidelink communication initiated by receiving user equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190149275A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Resource set configurations using automatic repeat request information
US20190182807A1 (en) * 2018-02-16 2019-06-13 Intel Corporation Reliability mechanisms for physical downlink control channel (pdcch) transmissions in new radio (nr) systems
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Study on NR Vehicle-to-Everything (V2X) (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.885, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), no. V16.0.0, 28 March 2019 (2019-03-28), pages 1 - 122, XP051723188 *
HUAWEI ET AL.: "R1-1813555, Bandwidth Parts and Resource Pools for V2X sidelink", 3GPP TSG RAN WG1 MEETING #95, 16 November 2018 (2018-11-16), XP051479893, DOI: 20200724144959Y *
XIAOMI COMMUNICATIONS: "R1-1901017, On Physical layer procedures for V2x communications", 3GPP TSG RAN WG1 AD-HOC MEETING 1901, 25 January 2019 (2019-01-25), XP051593862, DOI: 20200724145420Y *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236714A1 (zh) * 2021-05-11 2022-11-17 Oppo广东移动通信有限公司 码本反馈方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP4002736A1 (en) 2022-05-25
EP4002736A4 (en) 2022-09-21
JP2022546193A (ja) 2022-11-04
US20220140958A1 (en) 2022-05-05
JP7346704B2 (ja) 2023-09-19
CN110311762B (zh) 2021-04-16
EP4002736B1 (en) 2024-05-08
CN110311762A (zh) 2019-10-08
KR20220103691A (ko) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2021008238A1 (zh) 反馈信息传输方法、装置、终端及存储介质
US11778596B2 (en) Data transmission method, apparatus, device and system for direct communication
US11936482B2 (en) Communicating direct HARQ feedback information
CN109792326B (zh) 直连通信的数据传输方法、装置、设备及系统
US11973599B2 (en) Method for transmitting feedback information in direct communication and terminal
CN110945826B (zh) 反馈方法、反馈装置及存储介质
CN104823499A (zh) 方法和装置
CN110311768B (zh) 反馈信息的发送方法、网元设备、终端及存储介质
CN115516805A (zh) 涉及子时隙物理上行链路控制信道(pucch)重复的系统和方法
CN110505045B (zh) 下行控制信息反馈方法及装置
JP2015503869A (ja) アップリンクでの制御信号に関する通信リソース割当
WO2021093699A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN111817824B (zh) 一种信息传输方法、终端设备和控制节点
CN110574332B (zh) 数据传输方法、装置及存储介质
CN111200487B (zh) 混合自动重传请求确认harq-ack的传输方法及装置
WO2021051323A1 (zh) 混合自动重传请求反馈方法、装置和通信设备
US20240072936A1 (en) Modification of Uplink (UL) Data Transmission with Repetition in Response to Preemption Indication
CN111727585A (zh) 数据传输调度方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020840384

Country of ref document: EP

Effective date: 20220216