WO2021051323A1 - 混合自动重传请求反馈方法、装置和通信设备 - Google Patents

混合自动重传请求反馈方法、装置和通信设备 Download PDF

Info

Publication number
WO2021051323A1
WO2021051323A1 PCT/CN2019/106518 CN2019106518W WO2021051323A1 WO 2021051323 A1 WO2021051323 A1 WO 2021051323A1 CN 2019106518 W CN2019106518 W CN 2019106518W WO 2021051323 A1 WO2021051323 A1 WO 2021051323A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
ack
ack codebook
base station
hybrid automatic
Prior art date
Application number
PCT/CN2019/106518
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980002096.6A priority Critical patent/CN112823482B/zh
Priority to PCT/CN2019/106518 priority patent/WO2021051323A1/zh
Publication of WO2021051323A1 publication Critical patent/WO2021051323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • This application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to a hybrid automatic repeat request feedback method, device and communication equipment.
  • New Radio-Unlicensed Frequency Band Communication (NR-U, New Radio-Unlicense) is the extended application of cellular mobile communication technology to unlicensed frequency bands.
  • a semi-static physical uplink shared channel (PUSCH, Physical Uplink shared channel) transmission mode also called configuration authorized physical uplink shared channel transmission mode.
  • PUSCH Physical Uplink shared channel
  • HARQ-ACK Hybrid Automatic Repeat request acknowledgment
  • PDSCH Physical Downlink shared channel
  • the embodiments of the present disclosure provide a hybrid automatic repeat request feedback method and device.
  • a hybrid automatic repeat request feedback method wherein the method includes:
  • the size of the HARQ-ACK codebook is determined according to the maximum number of downlink hybrid automatic repeat request HARQ processes.
  • a hybrid automatic repeat request feedback method wherein, when applied to a base station, the method includes:
  • HARQ-ACK codebook for a hybrid automatic repeat request response authorized for transmission using the configured authorized physical uplink shared channel; wherein, the size of the HARQ-ACK codebook is determined according to the maximum number of downlink hybrid automatic repeat request HARQ processes.
  • a hybrid automatic repeat request feedback device which is applied to a terminal, and the device includes: a first determining module, wherein,
  • the first determining module is configured to determine the HARQ according to the maximum number of HARQ processes in the downlink hybrid automatic repeat request when the HARQ-ACK codebook is multiplexed into the configured authorized physical uplink shared channel for transmission. -The size of the ACK codebook.
  • a hybrid automatic repeat request feedback device which is applied in a base station, and the device includes: a second receiving module, wherein,
  • the second receiving module is configured to receive a hybrid automatic repeat request response HARQ-ACK codebook that uses a configured authorized physical uplink shared channel grant for transmission; wherein the size of the HARQ-ACK codebook is based on the maximum downlink HARQ process The number is ok.
  • a communication device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program During the procedure, the steps of the hybrid automatic repeat request feedback method described in the first aspect or the second aspect are executed.
  • the hybrid automatic repeat request feedback method, device and communication equipment provided by the embodiments of the present disclosure, when the hybrid automatic repeat request response HARQ-ACK codebook is multiplexed into the configured authorized physical uplink shared channel for transmission, according to the maximum number of downlink HARQ processes , To determine the size of the HARQ-ACK codebook.
  • the HARQ-ACK codebook can set the position of the HARQ-ACK information for each HARQ process, thereby improving the feedback accuracy of the HARQ-ACK codebook.
  • a fixed HARQ-ACK codebook format is provided to avoid the inconsistency of the HARQ-ACK codebook sent by the terminal and the HARQ-ACK codebook that the base station needs to parse, and improve the decoding efficiency of the HARQ-ACK codebook.
  • Fig. 1 is a schematic structural diagram showing a wireless communication system according to an exemplary embodiment
  • Fig. 2a is a schematic diagram showing a HARQ-ACK feedback method according to an exemplary embodiment
  • Fig. 2b is a schematic diagram showing another HARQ-ACK feedback manner according to an exemplary embodiment
  • Fig. 2c is a schematic diagram showing yet another HARQ-ACK feedback method according to an exemplary embodiment
  • Fig. 2d is a schematic diagram showing still another HARQ-ACK feedback manner according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart showing a method for feedback of a hybrid automatic repeat request according to an exemplary embodiment
  • Fig. 4 is a schematic diagram showing a HARQ-ACK feedback manner according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart showing a method for feedback of a hybrid automatic repeat request according to an exemplary embodiment
  • Fig. 6 is a block diagram showing a hybrid automatic repeat request feedback device according to an exemplary embodiment
  • Fig. 7 is a block diagram showing another hybrid automatic repeat request feedback device according to an exemplary embodiment
  • Fig. 8 is a block diagram showing an apparatus for hybrid automatic repeat request feedback according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a 5G system, also known as a new radio (NR) system or a 5G NR system.
  • the wireless communication system may be a system that supports New Radio-Unlicense (NR-U) communication.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 12 may be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 12 usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard.
  • the wireless air interface is a new air interface; or, the wireless air interface can also be a next-generation mobile based on 5G.
  • Wireless air interface of communication network technology standard is a wireless air interface based on the fifth-generation mobile communication network technology standard.
  • an E2E (End to End) connection can also be established between the terminals 11.
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • the execution subject involved in the embodiments of the present disclosure includes, but is not limited to: communication equipment supporting NR-U, where user equipment includes, but is not limited to: user terminals, mobile terminals, in-vehicle communication equipment, roadside infrastructure devices, smart wearable devices, Tablet computers, user nodes, base stations, etc.
  • An application scenario of the embodiments of the present disclosure is that in the 5G NR protocol, the HARQ-ACK feedback mode of the dynamic HARQ-ACK codebook is adopted.
  • the Downlink Assignment Indicator (DAI) contained in the DCI counts the number of physical downlink shared channels (PDSCH, Physical Downlink Shared CHannel), where one PDSCH corresponds to one HARQ process, and one The process can feed back a HARQ-ACK message.
  • the UE can determine how many HARQ-ACK information needs to be fed back.
  • the UE will guess the missing HARQ-ACK information based on the DAI indication. Number, and then add NACK at the corresponding position and feed it back to the base station. In this way, the number of HARQ-ACK information sent by the UE is the same as the number of HARQ-ACK information that the base station needs to receive, and no HARQ-ACK information demodulation error will occur.
  • the UE if the UE misses the PDSCH data corresponding to the last DCI, or the last multiple DCIs, for example, misses the PDSCH data corresponding to DCI4, the UE cannot detect that it missed the PDSCH data of the PDSCH.
  • the number of HARQ-ACK information sent by the UE is different from the number of HARQ-ACK information that the base station needs to receive.
  • an error may occur when the base station demodulates the HARQ-ACK information.
  • the base station will include a DAI indicator in the uplink scheduling grant (UL grant, Uplink grant) for scheduling the PUSCH, which is used to indicate that the PUSCH scheduled by the UL grant is to be replicated.
  • a semi-static PUSCH transmission mode is defined in NR-U, also called the configuration authorized physical uplink shared channel transmission mode.
  • PUSCH transmission is semi-statically configured and does not need to be scheduled with DCI, that is, there is no UL grant scheduling information mentioned above, and therefore there is no DAI indication in UL grant; if the UE has HARQ-ACK information, it needs to be multiplexed to Configure the authorized physical uplink shared channel, and if the UE misses the PDSCH data of the PDSCH corresponding to the last DCI, the number of HARQ-ACK information sent by the UE is the same as the number of HARQ-ACK information that the base station needs to receive Is different. Errors may occur when the base station demodulates HARQ-feedback.
  • this exemplary embodiment provides a hybrid automatic repeat request feedback method.
  • the hybrid automatic repeat request feedback method may be applied to a terminal, and the method includes:
  • Step 301 When the hybrid automatic repeat request response HARQ-ACK codebook is multiplexed into the configured authorized physical uplink shared channel for transmission, the size of the HARQ-ACK codebook is determined according to the maximum number of downlink HARQ processes.
  • the base station schedules multiple consecutive PDSCHs for data transmission within its channel occupation time (COT, Channel Occupied Time,), and schedules the HARQ-ACK information corresponding to multiple PDSCHs in the same HARQ -Feedback in ACK codebook.
  • the terminal can multiplex the HARQ-ACK codebook to the configured authorized physical uplink shared channel for transmission.
  • the HARQ-ACK codebook may be formed by arranging the HARQ-ACK information of multiple HARQ processes in a predetermined order.
  • the HARQ-ACK information in the HARQ-ACK codebook is arranged in the order of the respective corresponding HARQ process numbers to form HARQ-ACK Codebook.
  • One HARQ process can correspond to one PDSCH scheduled by the terminal.
  • PDSCH data is data transmitted using PDSCH, and one terminal PDSCH data corresponds to one HARQ-ACK information.
  • the corresponding HARQ-ACK information can be set in the corresponding position of the HARQ-ACK codebook according to the reception status of the received PDSCH data.
  • the size of the HARQ-ACK codebook is determined according to the maximum number of downlink HARQ processes.
  • the HARQ-ACK codebook may be set in the HARQ-ACK codebook with the same HARQ-ACK information as the maximum number of downlink HARQ processes.
  • the size of the HARQ-ACK codebook may be the capacity of the HARQ-ACK codebook that can accommodate HARQ-ACK information. For example, if one HARQ-ACK message occupies 1 bit and the maximum number of downlink HARQ processes is 16, the size of the HARQ-ACK codebook can be 16 bits, so that the HARQ of each HARQ process can be accommodated in the HARQ-ACK codebook -ACK information.
  • the maximum number of downlink HARQ processes is the maximum number of HARQ processes scheduled by the base station during data downlink; during data transmission, the base station can schedule all HARQ processes or schedule some HARQ processes within the maximum number range.
  • One HARQ process has one HARQ-ACK information. Multiple HARQ-ACK information may be included in the HARQ-ACK codebook. Each HARQ-ACK message can occupy one bit or multiple bits. Exemplarily, one HARQ-ACK message can occupy one bit. "1" indicates that the HARQ-ACK message is acknowledged (ACK), and "0" indicates that the HARQ-ACK message is non-acknowledged (NACK); or, " 0" indicates that the HARQ-ACK information is acknowledged (ACK), and "1” indicates that the HARQ-ACK information is non-acknowledged (NACK). One HARQ-ACK message can occupy multiple bits.
  • HARQ-ACK messages can occupy M Bits, each bit is used to feed back the reception of each CBG.
  • M is a positive integer equal to or greater than 1.
  • ACK indicates that the corresponding data was successfully received, and NACK indicates that the corresponding data was not successfully received. If a NACK is received, a retransmission mechanism may be triggered, so that the base station retransmits the PDSCH data corresponding to the NACK.
  • the HARQ-ACK information in the HARQ-ACK codebook occupies 1 bit.
  • the maximum number of downlink HARQ processes is 16, which are represented by HARQ ID0 to HARQ ID15.
  • the HARQ-ACK codebook can be as shown in Table 1.
  • an "X" represents a HARQ-ACK message.
  • Each HARQ-ACK message has a relatively fixed position.
  • the size of the HARQ-ACK codebook is determined.
  • the HARQ-ACK codebook can set the position of the HARQ-ACK information for each HARQ process to improve the feedback accuracy of the HARQ-ACK codebook.
  • a fixed HARQ-ACK codebook format is provided to avoid the situation that the size of the HARQ-ACK codebook sent by the terminal and the HARQ-ACK codebook that the base station needs to parse is inconsistent, and the decoding efficiency of the HARQ-ACK codebook is improved.
  • the method further includes: when the HARQ process has corresponding PDSCH data, determining the received data corresponding to the HARQ process in the HARQ-ACK codebook according to the receiving status of the PDSCH data.
  • HARQ-ACK information of PDSCH data HARQ-ACK information of PDSCH data
  • the HARQ-ACK information corresponding to the HARQ process in the HARQ-ACK codebook is determined as an unacknowledged NACK.
  • the HARQ process has corresponding PDSCH data, which may be that the terminal receives PDSCH data on the PDSCH corresponding to the HARQ process.
  • the HARQ process does not have corresponding PDSCH data, and the terminal may miss the PDSCH data received on the PDSCH corresponding to the HARQ process, or the PDSCH corresponding to the HARQ process is not scheduled.
  • the terminal receives the PDSCH data transmitted by the base station using each PDSCH, demodulates and decodes each PDSCH data, and determines the HARQ-ACK information corresponding to each PDSCH data.
  • the HARQ-ACK information is set at the position corresponding to the HARQ process in the HARQ-ACK codebook.
  • the HARQ process in which the terminal receives PDSCH data may be a part or all of the maximum number of HARQ processes.
  • the terminal transmits HARQ-ACK information
  • it transmits the HARQ-ACK codebook as a unit.
  • the HARQ-ACK codebook contains the HARQ-ACK information corresponding to the received PDSCH data, and also includes the HARQ-ACK information of the missed PDSCH data and the HARQ-ACK information of the unscheduled PDSCH.
  • the received PDSCH data can be fed back in an acknowledgement (ACK) or non-acknowledgement (NACK) manner according to the acceptance status.
  • ACK acknowledgement
  • NACK non-acknowledgement
  • the base station can determine the HARQ-ACK corresponding to the PDSCH data in the PDSCH scheduled by the base station according to the HARQ process corresponding to the PDSCH scheduled by the base station from the HARQ-ACK codebook. information.
  • the terminal may set the determined HARQ-ACK information to the corresponding position of the HARQ-ACK codebook.
  • Table 1 As an example, when the PDSCH is used to transmit data, the actually scheduled HARQ-ACK process is HARQ ID5-12, and each HARQ-ACK process corresponds to one PDSCH. However, the UE missed the PDSCH data corresponding to HARQ ID12. The UE only demodulates the PDSCH corresponding to the HARQ process of HARQ ID5-11. Assume that the HARQ-ACK feedback corresponding to HARQ ID 5-11 is 1110111 (0 means NACK, 1 means ACK).
  • the HARQ-ACK codebook setting structure can be shown in Table 2. In Table 2, the identification bit corresponding to HARQ ID 5-11 is the HARQ-ACK feedback of the HARQ process of HARQ ID 5-12.
  • the terminal will supplement the HARQ-ACK information of the unscheduled HARQ processes in the HARQ-ACK codebook to "0" according to the maximum number of HARQ processes, and also set the HARQ-ACK information corresponding to the HARQ ID12 that the terminal missed to "0" "In this way, the feedback of PDSCH data corresponding to the missed HARQ process is realized.
  • the terminal feeds back the obtained HARQ-ACK codebook: 0000011101110000 to the base station. Received by the base station.
  • the base station and the terminal use the same rule to set the HARQ-ACK codebook, the corresponding position of the HARQ-ACK information of each HARQ process can be determined. Therefore, the base station can determine the HARQ-ACK information corresponding to the PDSCH data in the PDSCH scheduled by the base station from the HARQ-ACK codebook according to the HARQ process corresponding to the PDSCH scheduled by the base station.
  • the base station schedules HARQ processes of HARQ ID 5-12 to send data to the terminal.
  • the base station receives the HARQ-ACK codebook shown in Table 3, from the corresponding position of the HARQ-ACK information of the HARQ process of HARQ ID5-12, the HARQ-ACK information is determined as: 11101110; it can be determined that the two HARQ ID8 and HARQ ID12
  • the data sent by a HARQ process was not successfully received by the terminal.
  • the PDSCH data corresponding to the HARQ process of HARQ ID8 is unsuccessful reception, and the PDSCH data corresponding to the HARQ process of HARQ ID8 is missed detection.
  • the data sent by the two HARQ processes can be retransmitted.
  • the HARQ-ACK information of the unscheduled HARQ process is located at the beginning and the end of the HARQ-ACK codebook.
  • the base station can directly discard the HARQ-ACK information of the unscheduled HARQ process at the beginning and end of the HARQ-ACK codebook according to its own HARQ process scheduling. Only the bits occupied by the HARQ-ACK information for scheduling the HARQ process are decoded. In this way, the decoding efficiency of the HARQ-ACK codebook of the base station can be improved.
  • the terminal can multiplex the HARQ-ACK codebook to the configured authorized physical uplink shared channel for transmission, that is, transmit the HARQ-ACK codebook on CG-PUSCH3.
  • the terminal can realize feedback on the received PDSCH data, and at the same time, feedback on the PDSCH that has not received data.
  • the base station can compare the PDSCH of the data sent by itself and the feedback of each PDSCH, and then can determine the data that has not been successfully received including missed detection, and then perform retransmission. Reduce data transmission errors due to feedback errors.
  • the HARQ-ACK codebook includes HARQ-ACK information of PDSCH data of each HARQ process.
  • each HARQ process corresponding to the PDSCH data transmitted in the PDSCH has one HARQ-ACK information in the HARQ-ACK codebook.
  • One PDSCH data may include transport block (TB, Transport Block) or code block group (CBG, Code Block Group), etc.
  • TB transport block
  • CBG code block group
  • one HARQ-ACK message may include feedback information of one or more TBs or CBGs.
  • the HARQ-ACK codebook includes HARQ-ACK information of PDSCH data of each HARQ process, including: the HARQ-ACK codebook includes information about each transport block of each HARQ process HARQ-ACK information; or, the HARQ-ACK codebook includes HARQ-ACK information for each code block group of each HARQ process.
  • one PDSCH resource can be used to transmit one TB, that is, one PDSCH data contains one TB, and one TB has one HARQ-ACK information.
  • the number of identification bits in the HARQ-ACK codebook can be the same as the number of HARQ processes.
  • the length of the HARQ-ACK codebook is the same as the number of HARQ processes.
  • the number of HARQ-ACK information in the HARQ-ACK codebook can be the number of HARQ processes double.
  • the length of the HARQ-ACK codebook is the product of 2 times the number of HARQ processes.
  • the code block group (CBG, Code Block Group) feedback data is used, that is, there can be multiple CBGs in one PDSCH data, and one CBG has one HARQ-ACK information
  • the number of CBG groups in one PDSCH data can be multiplied by
  • the product of the number of HARQ processes is determined as the number of identification bits in the HARQ-ACK codebook.
  • the length of the HARQ-ACK codebook is the product of the number of CBG groups multiplied by the number of HARQ processes.
  • the multiplexing of the HARQ-ACK codebook into the configured authorized physical uplink shared channel for transmission of the hybrid automatic repeat request response HARQ-ACK includes: when the time domain of the configured authorized physical uplink shared channel transmission resource includes the base station When the configured time domain for transmitting the transmission resource of the HARQ-ACK codebook is configured, the HARQ-ACK codebook is multiplexed into the configured authorized physical uplink shared channel for transmission.
  • the terminal can multiplex the HARQ-ACK codebook to the configured authorized physical uplink shared channel for transmission.
  • the method further includes: receiving the maximum number of downlink HARQ processes sent by the base station.
  • the maximum number of downlink HARQ processes can be configured for the terminal through high-level signaling of the base station.
  • this exemplary embodiment provides a hybrid automatic repeat request feedback method.
  • the hybrid automatic repeat request feedback method may be applied to a base station, and the method includes:
  • the base station schedules multiple consecutive PDSCHs for data transmission within its channel occupation time (COT, Channel Occupied Time,), and schedules the HARQ-ACK information corresponding to multiple PDSCHs in the same HARQ -Feedback in ACK codebook.
  • the terminal can multiplex the HARQ-ACK codebook to the configured authorized physical uplink shared channel for transmission.
  • the HARQ-ACK codebook may be formed by arranging the HARQ-ACK information of multiple HARQ processes in a predetermined order.
  • the HARQ-ACK information in the HARQ-ACK codebook is arranged in the order of the respective corresponding HARQ process numbers to form HARQ-ACK Codebook.
  • One HARQ process can correspond to one PDSCH scheduled by the terminal.
  • PDSCH data is data transmitted using PDSCH, and one terminal PDSCH data corresponds to one HARQ-ACK information.
  • the corresponding HARQ-ACK information can be set in the corresponding position of the HARQ-ACK codebook according to the reception status of the received PDSCH data.
  • the size of the HARQ-ACK codebook is determined according to the maximum number of downlink HARQ processes.
  • the HARQ-ACK codebook may be set in the HARQ-ACK codebook with the same HARQ-ACK information as the maximum number of downlink HARQ processes.
  • the size of the HARQ-ACK codebook may be the capacity of the HARQ-ACK codebook that can accommodate HARQ-ACK information.
  • HARQ-ACK information occupies 1 bit, and the maximum number of downlink HARQ processes is 16, the size of the HARQ-ACK codebook can be 16 bits, so that the HARQ-ACK of each HARQ process can be accommodated in the HARQ-ACK codebook.
  • ACK information is determined according to the maximum number of downlink HARQ processes.
  • the HARQ-ACK codebook may be set in the HARQ-ACK codebook with the same HARQ-ACK information as the maximum number of downlink HARQ processes.
  • the size of the HARQ-ACK codebook may be the
  • the maximum number of downlink HARQ processes is the maximum number of HARQ processes scheduled by the base station during data downlink; during data transmission, the base station can schedule all HARQ processes or schedule some HARQ processes within the maximum number range.
  • One HARQ process has one HARQ-ACK information. Multiple HARQ-ACK information may be included in the HARQ-ACK codebook. Each HARQ-ACK message can occupy one bit or multiple bits. Exemplarily, HARQ-ACK information can occupy one bit, “1" indicates that HARQ-ACK information is acknowledgement (ACK), and "0” indicates that HARQ-ACK information is non-acknowledgement (NACK); or, "0" "Indicates that the HARQ-ACK information is acknowledged (ACK), and "1” indicates that the HARQ-ACK information is non-acknowledged (NACK). One HARQ-ACK message can occupy multiple bits.
  • HARQ-ACK messages can occupy M Bits, each bit is used to feed back the reception of each CBG.
  • M is a positive integer equal to or greater than 1.
  • ACK indicates that the corresponding data was successfully received, and NACK indicates that the corresponding data was not successfully received. If a NACK is received, a retransmission mechanism may be triggered, so that the base station retransmits the PDSCH data corresponding to the NACK.
  • the HARQ-ACK information in the HARQ-ACK codebook occupies 1 bit.
  • the maximum number of downlink HARQ processes is 16, which are represented by HARQ ID0 to HARQ ID15.
  • the HARQ-ACK codebook can be as shown in Table 1.
  • an "X" represents a HARQ-ACK message.
  • Each HARQ-ACK message has a relatively fixed position.
  • the size of the HARQ-ACK codebook is determined.
  • the HARQ-ACK codebook can set the position of the HARQ-ACK information for each HARQ process to improve the feedback accuracy of the HARQ-ACK codebook.
  • a fixed HARQ-ACK codebook format is provided to avoid the situation that the size of the HARQ-ACK codebook sent by the terminal and the HARQ-ACK codebook that the base station needs to parse is inconsistent, and the decoding efficiency of the HARQ-ACK codebook is improved.
  • the method further includes:
  • the HARQ-ACK information of the PDSCH data of the HARQ process scheduled by the base station is determined in the HARQ-ACK codebook.
  • the terminal determines the HARQ-ACK information of the received PDSCH data corresponding to the HARQ process in the HARQ-ACK codebook according to the receiving status of the PDSCH data;
  • the terminal determines the HARQ-ACK information corresponding to the HARQ process in the HARQ-ACK codebook as an unacknowledged NACK.
  • the HARQ process has corresponding PDSCH data, which may be that the terminal receives PDSCH data on the PDSCH corresponding to the HARQ process.
  • the HARQ process does not have corresponding PDSCH data, and the terminal may miss the PDSCH data received on the PDSCH corresponding to the HARQ process, or the PDSCH corresponding to the HARQ process is not scheduled.
  • the terminal receives the PDSCH data transmitted by the base station using each PDSCH, demodulates and decodes each PDSCH data, and determines the HARQ-ACK information corresponding to each PDSCH data.
  • the HARQ-ACK information is set at the position corresponding to the HARQ process in the HARQ-ACK codebook.
  • the HARQ process in which the terminal receives PDSCH data may be a part or all of the maximum number of HARQ processes.
  • the terminal transmits HARQ-ACK information
  • it transmits the HARQ-ACK codebook as a unit.
  • the HARQ-ACK codebook contains the HARQ-ACK information corresponding to the received PDSCH data, and also includes the HARQ-ACK information of the missed PDSCH data and the HARQ-ACK information of the unscheduled PDSCH.
  • the received PDSCH data can be fed back in an acknowledgement (ACK) or non-acknowledgement (NACK) manner according to the acceptance status.
  • ACK acknowledgement
  • NACK non-acknowledgement
  • the base station can determine the HARQ-ACK corresponding to the PDSCH data in the PDSCH scheduled by the base station according to the HARQ process corresponding to the PDSCH scheduled by the base station from the HARQ-ACK codebook. information.
  • the terminal may set the determined HARQ-ACK information to the corresponding position of the HARQ-ACK codebook.
  • Table 1 As an example, when the PDSCH is used to transmit data, the actually scheduled HARQ-ACK process is HARQ ID5-12, and each HARQ-ACK process corresponds to one PDSCH. However, the UE missed the PDSCH data corresponding to HARQ ID12. The UE only demodulates the PDSCH corresponding to the HARQ process of HARQ ID5-11. Assume that the HARQ-ACK feedback corresponding to HARQ ID 5-11 is 1110111 (0 means NACK, 1 means ACK).
  • the HARQ-ACK codebook setting structure can be shown in Table 2. In Table 2, the identification bit corresponding to HARQ ID 5-11 is the HARQ-ACK feedback of the HARQ process of HARQ ID 5-12.
  • the terminal will supplement the HARQ-ACK information of the unscheduled HARQ processes in the HARQ-ACK codebook to "0" according to the maximum number of HARQ processes, and also set the HARQ-ACK information corresponding to the HARQ ID12 that the terminal missed to "0" "In this way, the feedback of PDSCH data corresponding to the missed HARQ process is realized.
  • the terminal feeds back the obtained HARQ-ACK codebook: 0000011101110000 to the base station. Received by the base station.
  • the base station and the terminal use the same rule to set the HARQ-ACK codebook, the corresponding position of the HARQ-ACK information of each HARQ process can be determined. Therefore, the base station can determine the HARQ-ACK information corresponding to the PDSCH data in the PDSCH scheduled by the base station from the HARQ-ACK codebook according to the HARQ process corresponding to the PDSCH scheduled by the base station.
  • the base station schedules HARQ processes of HARQ ID 5-12 to send data to the terminal.
  • the base station receives the HARQ-ACK codebook shown in Table 3, from the corresponding position of the HARQ-ACK information of the HARQ process of HARQ ID5-12, the HARQ-ACK information is determined as: 11101110; it can be determined that the two HARQ ID8 and HARQ ID12
  • the data sent by a HARQ process was not successfully received by the terminal.
  • the PDSCH data corresponding to the HARQ process of HARQ ID8 is unsuccessful reception, and the PDSCH data corresponding to the HARQ process of HARQ ID8 is missed detection.
  • the data sent by the two HARQ processes can be retransmitted.
  • the HARQ-ACK information of the unscheduled HARQ process is located at the head and tail of the HARQ-ACK codebook.
  • the base station can directly discard the HARQ-ACK information of the head and tail of the HARQ-ACK codebook according to its own HARQ process scheduling. Only the bits occupied by the HARQ-ACK information for scheduling the HARQ process are decoded. In this way, the decoding efficiency of the HARQ-ACK codebook of the base station can be improved.
  • the terminal can multiplex the HARQ-ACK codebook to the configured authorized physical uplink shared channel for transmission, that is, transmit the HARQ-ACK codebook on CG-PUSCH3.
  • the terminal can realize feedback on the received PDSCH data, and at the same time, feedback on the PDSCH that has not received data.
  • the base station can compare the PDSCH of the data sent by itself and the feedback of each PDSCH, and then can determine the data that has not been successfully received including missed detection, and then perform retransmission. Reduce data transmission errors due to feedback errors.
  • the determination of the HARQ-ACK information of the PDSCH data of the HARQ process scheduled by the base station in the HARQ-ACK codebook includes:
  • the HARQ-ACK information of each code block group of the HARQ process scheduled by the base station is determined in the HARQ-ACK codebook.
  • each HARQ process corresponding to the PDSCH data transmitted in the PDSCH has one HARQ-ACK information in the HARQ-ACK codebook.
  • One PDSCH data can include transport block (TB, Transport Block) or code block group (CBG, Code Block Group), etc.
  • TB transport block
  • CBG code Block Group
  • one HARQ-ACK message can include one or more TB or CBG feedback information.
  • one PDSCH resource can be used to transmit one TB, that is, one PDSCH data contains one TB, and one TB has one HARQ-ACK information.
  • the number of identification bits in the HARQ-ACK codebook can be the same as the number of HARQ processes.
  • the length of the HARQ-ACK codebook is the same as the number of HARQ processes.
  • the number of HARQ-ACK information in the HARQ-ACK codebook can be the number of HARQ processes double.
  • the length of the HARQ-ACK codebook is the product of 2 times the number of HARQ processes.
  • the code block group (CBG, Code Block Group) feedback data is used, that is, there can be multiple CBGs in one PDSCH data, and one CBG has one HARQ-ACK information
  • the number of CBG groups in one PDSCH data can be multiplied by
  • the product of the number of HARQ processes is determined as the number of identification bits in the HARQ-ACK codebook.
  • the length of the HARQ-ACK codebook is the product of the number of CBG groups multiplied by the number of HARQ processes.
  • the method before receiving the HARQ-ACK codebook, the method further includes: sending the maximum number of downlink HARQ processes to the terminal.
  • the maximum number of downlink HARQ processes can be configured for the terminal through high-level signaling of the base station.
  • the base station schedules multiple continuous PDSCH transmissions in its COT, and the HARQ-ACK information corresponding to the multiple PDSCHs is scheduled to be fed back in the same HARQ-ACK codebook .
  • the UE will multiplex the HARQ-ACK codebook on the configured authorized physical uplink shared channel for transmission, that is, multiplex it on the CG-PUSCH 3 for transmission.
  • the maximum number of HARQ processes is configured by the base station for the UE through high-level signaling, which is 16, and the corresponding HARQ ID is 0-15.
  • the HARQ process corresponding to the PDSCH actually scheduled in the HARQ-ACK codebook is HARQ ID 5-12, but the UE missed the DCI/PDSCH of the HARQ process 12.
  • the UE will only demodulate the PDSCH of HARQ processes 5-11, assuming that the corresponding HARQ-ACK information is 1110111 (0 means NACK, 1 means ACK).
  • the HARQ-ACK codebook is supplemented with NACK according to the maximum number of HARQ processes and becomes 0000011101110000, which respectively correspond to HARQ processes 0-15.
  • the size of the supplemented HARQ-ACK codebook is a fixed 16 bit.
  • the size of the HARQ-ACK codebook is the number of CBG groups * the maximum number of HARQ processes.
  • the size of the HARQ-ACK codebook is 2*the maximum number of HARQ processes.
  • the length of the HARQ-ACK codebook can always be fixed and known by the base station, and the HARQ-ACK information sent by the UE will not occur.
  • the problem is that the number is different from the number of HARQ-ACK information to be received as understood by the base station.
  • Encoding, modulating, and multiplexing the supplemented HARQ-ACK codebook can be the same as those defined in the NR protocol.
  • the base station After the base station receives the PUSCH multiplexed with HARQ-feedback, it will perform demultiplexing, demodulation and decoding according to the method defined in the NR protocol. And recover the supplemented HARQ-ACK codebook. Since the base station knows which HARQ process PDSCH it actually schedules, it can find the corresponding HARQ-ACK information in the supplemented HARQ-ACK codebook.
  • the embodiment of the present invention also provides a hybrid automatic repeat request feedback device 100, which is applied to a wireless communication terminal.
  • the device 100 includes: a first determining module 110, wherein:
  • the first determining module 110 is configured to determine HARQ-ACK according to the maximum number of HARQ processes in the downlink hybrid automatic repeat request when the HARQ-ACK codebook is multiplexed into the configured authorized physical uplink shared channel for transmission.
  • the size of the ACK codebook is configured to determine HARQ-ACK according to the maximum number of HARQ processes in the downlink hybrid automatic repeat request when the HARQ-ACK codebook is multiplexed into the configured authorized physical uplink shared channel for transmission. The size of the ACK codebook.
  • the device 100 further includes:
  • the second determining module 120 is configured to, when the HARQ process has corresponding PDSCH data, determine the value of the received PDSCH data corresponding to the HARQ process in the HARQ-ACK codebook according to the receiving status of the PDSCH data.
  • HARQ-ACK information
  • the third determining module 130 is configured to determine the HARQ-ACK information corresponding to the HARQ process in the HARQ-ACK codebook as an unacknowledged NACK when the HARQ process does not have corresponding PDSCH data.
  • the HARQ-ACK codebook includes HARQ-ACK information of PDSCH data of each HARQ process.
  • the device further includes:
  • the first sending module 140 is configured to copy the HARQ-ACK codebook when the time domain configured to authorize the physical uplink shared channel transmission resource includes the time domain configured by the base station to transmit the HARQ-ACK codebook.
  • the configuration is used to authorize transmission in the physical uplink shared channel.
  • the device 100 further includes: a first receiving module 150 configured to receive the maximum number of downlink HARQ processes sent by the base station.
  • the embodiment of the present invention also provides a hybrid automatic repeat request feedback device 200, which is applied to a wireless communication base station.
  • the device 200 includes a second receiving module 210, wherein:
  • the second receiving module 210 is configured to receive a hybrid automatic repeat request response HARQ-ACK codebook for transmission using the configured authorized physical uplink shared channel authorization; wherein, the size of the HARQ-ACK codebook is based on the maximum downlink HARQ The number of processes is determined.
  • the device 100 further includes:
  • the fourth determining module 220 is configured to determine HARQ-ACK information of PDSCH data of the HARQ process scheduled by the base station in the HARQ-ACK codebook according to the HARQ process scheduled by the base station.
  • the fourth determining module 220 includes:
  • the apparatus 200 further includes: a second sending module 230 configured to send the maximum number of downlink HARQ processes to the terminal before receiving the HARQ-ACK codebook.
  • the first determining module 110, the second determining module 120, the third determining module 130, the sending module 140, the first receiving module 150, the second receiving module 210, the fourth determining module 220, and the second sending Module 230, etc. can be configured by one or more central processing units (CPU, Central Processing Unit), graphics processing unit (GPU, Graphics Processing Unit), baseband processor (BP, baseband processor), application specific integrated circuit (ASIC, Application Specific Integrated Circuit) Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processor , A controller, a microcontroller (MCU, Micro Controller Unit), a microprocessor (Microprocessor), or other electronic components are implemented to execute the foregoing method.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic
  • Fig. 8 is a block diagram showing a device 3000 for hybrid automatic repeat request feedback according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • a processing component 3002 a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • the processing component 3002 generally controls the overall operations of the device 3000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 3002 may include one or more modules to facilitate the interaction between the processing component 3002 and other components.
  • the processing component 3002 may include a multimedia module to facilitate the interaction between the multimedia component 3008 and the processing component 3002.
  • the memory 3004 is configured to store various types of data to support the operation of the device 3000. Examples of these data include instructions for any application or method operating on the device 3000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 3006 provides power for various components of the device 3000.
  • the power supply component 3006 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 3000.
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), and when the device 3000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 3004 or transmitted via the communication component 3016.
  • the audio component 3010 further includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 3014 includes one or more sensors for providing the device 3000 with various aspects of status assessment.
  • the sensor component 3014 can detect the on/off status of the device 3000 and the relative positioning of components, such as the display and keypad of the device 3000.
  • the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000. The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000, and the temperature change of the device 3000.
  • the sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the device 3000 and other devices.
  • the device 3000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 3000 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 3004 including instructions, which may be executed by the processor 3020 of the device 3000 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and so on.

Abstract

本公开实施例是关于混合自动重传请求反馈方法、装置和通信设备。当混合自动重传请求应答HARQ-ACK码本复用到配置授权物理上行共享信道中传输时,根据最大下行混合自动重传请求HARQ进程数,确定HARQ-ACK码本的大小。

Description

混合自动重传请求反馈方法、装置和通信设备 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及混合自动重传请求反馈方法、装置和通信设备。
背景技术
新空口非授权频段通信(NR-U,New Radio-Unlicense)是将蜂窝移动通信技术扩展应用到非授权频段上,在NR-U中定义了一种半静态的物理上行共享信道(PUSCH,Physical Uplink shared channel)传输方式,也叫配置授权物理上行共享信道传输方式。如果用户设备(UE,User Equipment)有混合自动重传请求应答(HARQ-ACK,Hybrid Automatic Repeat request ACKnowledgement)信息需要复用到配置授权物理上行共享信道上,且发生了UE漏检最后的下行控制信息(DCI,Downlink Control Information)及其对应的物理下行共享信道(PDSCH,Physical Downlink shared channel)中的数据的情况,则UE所发送的HARQ-ACK信息的个数就与基站需要接收的HARQ-ACK信息的个数是不同的。此时基站在解调HARQ-ACK信息时就可能会发生错误。
发明内容
有鉴于此,本公开实施例提供了一种混合自动重传请求反馈方法和装置。
根据本公开实施例的第一方面,提供一种混合自动重传请求反馈方法,其中,所述方法包括:
当混合自动重传请求应答HARQ-ACK码本复用到配置授权物理上行 共享信道中传输时,根据最大下行混合自动重传请求HARQ进程数,确定所述HARQ-ACK码本的大小。
根据本公开实施例的第二方面,提供一种混合自动重传请求反馈方法,其中,应用于基站中,所述方法包括:
接收利用配置授权物理上行共享信道授权进行传输的混合自动重传请求应答HARQ-ACK码本;其中,所述HARQ-ACK码本的大小是根据最大下行混合自动重传请求HARQ进程数确定的。
根据本公开实施例的第三方面,提供一种混合自动重传请求反馈装置,其中,应用于终端中,所述装置包括:第一确定模块,其中,
所述第一确定模块,配置为当混合自动重传请求应答HARQ-ACK码本复用到配置授权物理上行共享信道中传输时,根据最大下行混合自动重传请求HARQ进程数,确定所述HARQ-ACK码本的大小。
根据本公开实施例的第四方面,提供一种混合自动重传请求反馈装置,其中,应用于基站中,所述装置包括:第二接收模块,其中,
所述第二接收模块,配置为接收利用配置授权物理上行共享信道授权进行传输的混合自动重传请求应答HARQ-ACK码本;其中,所述HARQ-ACK码本的大小是根据最大下行HARQ进程数确定的。
根据本公开实施例的第五方面,提供一种通讯设备,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行第一方面或第二方面所述混合自动重传请求反馈方法的步骤。本公开实施例提供的混合自动重传请求反馈方法、装置和通信设备,当混合自动重传请求应答HARQ-ACK码本复用到配置授权物理上行共享信道中传输时,根据最大下行HARQ进程数,确定HARQ-ACK码本的大小。如此,一方面,HARQ-ACK码本可以为每个HARQ进程设置了HARQ-ACK信息的位置,提高HARQ-ACK码本的反馈精度。 另一方面,提供了固定的HARQ-ACK码本格式,避免出现终端发送HARQ-ACK码本和基站需要解析的HARQ-ACK码本大小不一致的情况,提高HARQ-ACK码本解码效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2a是根据一示例性实施例示出的一种HARQ-ACK反馈方式示意图;
图2b是根据一示例性实施例示出的另一种HARQ-ACK反馈方式示意图;
图2c是根据一示例性实施例示出的又一种HARQ-ACK反馈方式示意图
图2d是根据一示例性实施例示出的再一种HARQ-ACK反馈方式示意图;
图3是根据一示例性实施例示出的一种混合自动重传请求反馈方法的流程示意图;
图4是根据一示例性实施例示出的一种HARQ-ACK反馈方式示意图;
图5是根据一示例性实施例示出的一种混合自动重传请求反馈方法的流程示意图;
图6是根据一示例性实施例示出的一种混合自动重传请求反馈装置的框图;
图7是根据一示例性实施例示出的另一种混合自动重传请求反馈装置的框图;
图8是根据一示例性实施例示出的一种用于混合自动重传请求反馈的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为 “蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。该无线通信系统可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统可以是支持新空口非授权频段通信(NR-U,New Radio-Unlicense)的系统。或者该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站12可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第五代移动通信网络技术(5G)标准的无线 空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:支持NR-U的通信设备,其中,用户设备包括但不限于:用户终端、移动终端、车载通信设备、路边基础设施装置、智能穿戴装置、平板电脑、用户节点和基站等。
本公开实施例的一个应用场景为,在5G NR协议中,采用动态HARQ-ACK码本的HARQ-ACK反馈方式。如图2a所示,DCI中包含的下行分配指示(DAI,Downlink Assignment Indicator)会对物理下行共享信道(PDSCH,Physical Downlink Shared CHannel)个数进行计数,其中,一个PDSCH对应于一个HARQ进程,一个进程可以反馈一个HARQ-ACK信息。UE在反馈HARQ-ACK信息时,能确定需要反馈多少个HARQ-ACK信息。
如图2b所示,如果一个HARQ-ACK码本对应的多个PDSCH里非最后一个PDSCH中的PDSCH数据发生了漏检例如DCI2,则UE会根据DAI的指示推测出丢失的HARQ-ACK信息的个数,进而在对应的位置补NACK 并反馈给基站。如此,UE所发送的HARQ-ACK信息的个数就与基站需要接收的HARQ-ACK信息的个数是相同的,不会发生HARQ-ACK信息的解调错误。
如图2c所示,如果UE漏检了最后一个DCI对应的PDSCH数据,或者最后多个DCI,例如漏检了DCI4对应的PDSCH数据,UE是无法察觉自己漏检了该PDSCH的PDSCH数据。此时UE所发送的HARQ-ACK信息的个数就与基站需要接收的HARQ-ACK信息的个数是不同的。此时基站在解调HARQ-ACK信息时就可能会发生错误。
如图2d所示,在5G NR协议中,当UE要发送的HARQ-ACK信息与PUSCH信息有时域重叠时,则需要将HARQ-ACK信息复用在PUSCH中。为了避免上述UE漏检最后的DCI的对应PDSCH数据情况,基站会在调度PUSCH的上行调度授权(UL grant,Uplink grant)中包含DAI指示,用于指示要在该UL grant所调度的PUSCH中复用的HARQ-ACK信息数。如此,使UE发送的HARQ-反馈的个数与基站需要接收的HARQ-ACK信息的个数匹配。
在NR-U中定义了一种半静态的PUSCH传输方式,也叫配置授权物理上行共享信道传输方式。在该方式下,PUSCH的传输是半静态配置的,不需要使用DCI进行调度,即没有上述UL grant调度信息,从而也没有UL grant中的DAI指示;如果UE有HARQ-ACK信息需要复用到配置授权物理上行共享信道上,且发生了UE漏检最后的DCI对应PDSCH的PDSCH数据的情况,则UE所发送的HARQ-ACK信息的个数就与基站需要接收的HARQ-ACK信息的个数是不同的。基站在解调HARQ-反馈时就可能会发生错误。
如图3所示,本示例性实施例提供一种混合自动重传请求反馈方法,混合自动重传请求反馈方法可以应用于终端,所述方法包括:
步骤301:当混合自动重传请求应答HARQ-ACK码本复用到配置授权物理上行共享信道中传输时,根据最大下行HARQ进程数,确定HARQ-ACK码本的大小。
在NR-U系统中,如果基站在其信道占用时长(COT,Channel Occupied Time,)内调度了多个连续的PDSCH进行数据传输,并且调度多个PDSCH所对应的HARQ-ACK信息在同一个HARQ-ACK码本中反馈。终端可以把HARQ-ACK码本复用到配置授权物理上行共享信道上传输。
这里,HARQ-ACK码本可以由多个HARQ进程的HARQ-ACK信息按预定顺序排列形成的,例如:HARQ-ACK码本中的HARQ-ACK信息按照各自对应HARQ进程序号顺序排列形成HARQ-ACK码本。一个HARQ进程可以对应于终端调度的一个PDSCH。PDSCH数据为利用PDSCH传输的数据,一个终端PDSCH数据对应于一个HARQ-ACK信息。可以根据接收的PDSCH数据的接收状况,将相应的HARQ-ACK信息设置在HARQ-ACK码本对应位置。
根据最大下行HARQ进程数,确定HARQ-ACK码本的大小,可以是在HARQ-ACK码本中设置与最大下行HARQ进程数相同的HARQ-ACK信息。这里,HARQ-ACK码本的大小可以是HARQ-ACK码本的可以容纳HARQ-ACK信息的容量。例如,一个HARQ-ACK信息占用1个比特位,最大下行HARQ进程数为16,则HARQ-ACK码本的大小可以是16比特,如此可以在HARQ-ACK码本中容纳每个HARQ进程的HARQ-ACK信息。
最大下行HARQ进程数,是基站在进行数据下行时调度的HARQ进程数量的最大值;数据传输中,基站可以在最大数量范围内调度所有的HARQ进程或调度其中的部分HARQ进程。
一个HARQ进程具有一个HARQ-ACK信息。在HARQ-ACK码本中可以包括多个HARQ-ACK信息。每个HARQ-ACK信息可以占用一个比特位 或多个比特位。示例性的,一个HARQ-ACK信息可以占用一个比特位,用“1”表示HARQ-ACK信息为确认(ACK),用“0”表示HARQ-ACK信息为非确认(NACK);或者,用“0”表示HARQ-ACK信息为确认(ACK),用“1”表示HARQ-ACK信息为非确认(NACK)。一个HARQ-ACK信息可以占用多个比特位,当一个HARQ-ACK信息用于指示1个传输块(TB)中M个码块组(CBG)的接收情况时,HARQ-ACK信息可以占用M个比特位,分别用每个比特位反馈各CBG的接收情况。其中M为等于或大于1的正整数。
ACK表示成功接收对应的数据,NACK表示未成功接收对应的数据。若接收到NACK可能会触发重传机制,从而使得基站重新发送NACK对应的PDSCH数据。
示例性的,HARQ-ACK码本中HARQ-ACK信息占用1个比特位。最大下行HARQ进程数量为16个,分别用HARQ ID0至HARQ ID15表示。则HARQ-ACK码本可以如表1所示。其中,一个“X”表示一个HARQ-ACK信息。每个HARQ-ACK信息都具有一个相对固定的位置。
表1
HARQ ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HARQ-ACK码本 X X X X X X X X X X X X X X X X
根据最大下行HARQ进程数,确定HARQ-ACK码本的大小,一方面,HARQ-ACK码本可以为每个HARQ进程设置了HARQ-ACK信息的位置,提高HARQ-ACK码本的反馈精度。另一方面,提供了固定的HARQ-ACK码本格式,避免出现终端发送HARQ-ACK码本和基站需要解析的HARQ-ACK码本大小不一致的情况,提高HARQ-ACK码本解码效率。
在一个实施例中,所述方法还包括:当所述HARQ进程具有对应的PDSCH数据时,根据PDSCH数据的接收状况,确定所述HARQ-ACK码本中所述HARQ进程对应的所述接收到的PDSCH数据的HARQ-ACK信 息;
当所述HARQ进程不具有对应的PDSCH数据时,将所述HARQ-ACK码本中所述HARQ进程对应的HARQ-ACK信息确定为非确认NACK。
这里,HARQ进程具有对应的PDSCH数据,可以是终端在HARQ进程对应的PDSCH上接收到PDSCH数据。HARQ进程不具有对应的PDSCH数据,可以终端漏检HARQ进程对应的PDSCH上接收到PDSCH数据,或者,没有调度该HARQ进程对应的PDSCH。
终端接收基站分别利用每个PDSCH传输的PDSCH数据,对各PDSCH数据进行解调译码等操作,确定各PDSCH数据对应的HARQ-ACK信息。将HARQ-ACK信息设置在HARQ-ACK码本中对应HARQ进程的位置。其中,终端接收PDSCH数据的HARQ进程可以是最大数量的HARQ进程中的一部分或全部。
终端在传输HARQ-ACK信息时,以HARQ-ACK码本为单位进行传输。在HARQ-ACK码本中包含了接收到的PDSCH数据对应的HARQ-ACK信息,还包括漏检的PDSCH数据的HARQ-ACK信息,以及未调度的PDSCH的HARQ-ACK信息。针对接收到的PDSCH数据,可以根据接受状况采用确认(ACK)或非确认(NACK)的方式进行反馈。针对漏检的HARQ进程对应的PDSCH数据或未调度的HARQ进程对应的HARQ-ACK信息可以采用NACK进行反馈。
基站和终端由于采用相同的规则设置HARQ-ACK码本,因此,基站可以根据自身调度的PDSCH对应的HARQ进程,从HARQ-ACK码本中确定自身调度的PDSCH中的PDSCH数据对应的HARQ-ACK信息。
终端可以将确定的HARQ-ACK信息设置到HARQ-ACK码本对应位置。示例性的,以表1所示情况为例,在该示例中,采用PDSCH传输数据时,实际调度的HARQ-ACK进程为HARQ ID5-12,每个HARQ-ACK进程 对应一个PDSCH。但是,UE漏检了HARQ ID12对应的PDSCH数据。UE只解调HARQ ID5-11的HARQ进程对应的PDSCH。假定HARQ ID 5-11对应的HARQ-ACK反馈为1110111(0表示NACK,1表示ACK)。HARQ-ACK码本设置结构可以如表2所示。表2中,HARQ ID 5-11对应的标识位为HARQ ID5-12的HARQ进程的HARQ-ACK反馈。
表2
HARQ ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HARQ-ACK码本 X X X X X 1 1 1 0 1 1 1 X X X X
终端将按照最大HARQ进程数补充将HARQ-ACK码本中未调度的HARQ进程的HARQ-ACK信息都设置为“0”,对于终端漏检的HARQ ID12对应的HARQ-ACK信息同样设置为“0”,如此,实现对漏检HARQ进程对应PDSCH数据的反馈。
如表3所示。终端将得到的HARQ-ACK码本:0000011101110000反馈给基站。由基站进行接收。
表3
HARQ ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HARQ-ACK码本 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0
基站和终端由于采用相同的规则设置HARQ-ACK码本,因此,可以确定各HARQ进程的HARQ-ACK信息对应位置。因此,基站可以根据自身调度的PDSCH对应的HARQ进程,从HARQ-ACK码本中确定自身调度的PDSCH中的PDSCH数据对应的HARQ-ACK信息。
示例性的,以表3情况为例,基站调度HARQ ID5-12的HARQ进程向终端发送数据。基站接收到的表3所示的HARQ-ACK码本后,从HARQ ID5-12的HARQ进程的HARQ-ACK信息对应位置确定出HARQ-ACK信息为:11101110;可以确定出HARQ ID8和HARQ ID12两个HARQ进程发送的数据终端没有接收成功。其中,HARQ ID8的HARQ进程对应PDSCH 数据为接收未成功,HARQ ID8的HARQ进程对应PDSCH数据为漏检。可以对该两个HARQ进程发送的数据进行重发。未调度HARQ进程的HARQ-ACK信息位于HARQ-ACK码本首部和尾部,基站可以根据自身HARQ进程调度情况,直接丢弃HARQ-ACK码本首部和尾部未调度HARQ进程的HARQ-ACK信息所占比特位,仅解码调度HARQ进程的HARQ-ACK信息所占比特位,如此,可以提高基站HARQ-ACK码本解码效率。
如图4所示,终端可以把HARQ-ACK码本复用到配置授权物理上行共享信道上传输,即在CG-PUSCH3上传输HARQ-ACK码本。
如此,终端可以实现对接收的PDSCH数据进行反馈,同时,对于未接收数据的PDSCH也进行反馈。提供的完整的数据接收反馈。基站可以对比自身发送数据的PDSCH和各PDSCH的反馈,进而可以确定包括漏检在内的没有接收成功的数据,进而进行重传。减少由于反馈错误产生的数据传输错误。
在一个实施例中,所述HARQ-ACK码本包括每个所述HARQ进程的PDSCH数据的HARQ-ACK信息。
这里,每个HARQ进程对应PDSCH中传输的PDSCH数据在HARQ-ACK码本中都具有一个HARQ-ACK信息。
一个PDSCH数据可以包括传输块(TB,Transport Block)或码块组(CBG,Code Block Group)等,一个HARQ-ACK信息可以包括一个或多个TB或CBG的反馈信息。
在一个示例中,所述HARQ-ACK码本包括每个所述HARQ进程的PDSCH数据的HARQ-ACK信息,包括:所述HARQ-ACK码本包括每个所述HARQ进程的每个传输块的HARQ-ACK信息;或者,所述HARQ-ACK码本包括每个所述HARQ进程的每个码块组的HARQ-ACK信息。
如果一个PDSCH资源可以用于传输一个TB,即一个PDSCH数据中为一个TB,一个TB具有一个HARQ-ACK信息,如此,HARQ-ACK码本中标识位的数量可以与HARQ进程的数量相同。示例性的,一个HARQ-ACK信息占用一个比特位时,HARQ-ACK码本的长度和HARQ进程的数量相同。
如果采用空分复用的方式传输数据,即一个PDSCH数据中包含两个TB,一个TB具有一个HARQ-ACK信息,则HARQ-ACK码本中HARQ-ACK信息的数量可以是HARQ进程的数量的两倍。示例性的,一个HARQ-ACK信息占用一个比特位时,HARQ-ACK码本的长度为2乘以HARQ进程的数量之积。
如果采用码块组(CBG,Code Block Group)的反馈方式数据,即一个PDSCH数据中可以有多个CBG,一个CBG具有一个HARQ-ACK信息,则可以将一个PDSCH数据中CBG的组数乘以HARQ进程的数量之积,确定为HARQ-ACK码本中标识位的数量。示例性的,一个HARQ-ACK信息占用一个比特位时,HARQ-ACK码本的长度为CBG的组数乘以HARQ进程的数量之积。
在一个实施例中,所述混合自动重传请求应答HARQ-ACK码本复用到配置授权物理上行共享信道中传输,包括:当所述配置授权物理上行共享信道传输资源的时域,包含基站配置的传输所述HARQ-ACK码本的传输资源的时域时,将HARQ-ACK码本复用到所述配置授权物理上行共享信道中传输。
这里,基站指定的HARQ-ACK码本反馈的资源与配置授权物理上行共享信道的资源在时域上有重叠时。终端可以把HARQ-ACK码本复用到配置授权物理上行共享信道上传输。在一个实施例中,所述方法还包括:接收基站发送的所述最大下行HARQ进程数。
这里,最大下行HARQ进程数可以通过基站的高层信令对终端进行配置。
如图5所示,本示例性实施例提供一种混合自动重传请求反馈方法,混合自动重传请求反馈方法可以应用于基站,所述方法包括:
接收利用配置授权物理上行共享信道授权进行传输的混合自动重传请求应答HARQ-ACK码本;其中,所述HARQ-ACK码本的大小是根据最大下行HARQ进程数确定的。
在NR-U系统中,如果基站在其信道占用时长(COT,Channel Occupied Time,)内调度了多个连续的PDSCH进行数据传输,并且调度多个PDSCH所对应的HARQ-ACK信息在同一个HARQ-ACK码本中反馈。终端可以把HARQ-ACK码本复用到配置授权物理上行共享信道上传输。
这里,HARQ-ACK码本可以由多个HARQ进程的HARQ-ACK信息按预定顺序排列形成的,例如:HARQ-ACK码本中的HARQ-ACK信息按照各自对应HARQ进程序号顺序排列形成HARQ-ACK码本。一个HARQ进程可以对应于终端调度的一个PDSCH。PDSCH数据为利用PDSCH传输的数据,一个终端PDSCH数据对应于一个HARQ-ACK信息。可以根据接收的PDSCH数据的接收状况,将相应的HARQ-ACK信息设置在HARQ-ACK码本对应位置。
根据最大下行HARQ进程数,确定HARQ-ACK码本的大小,可以是在HARQ-ACK码本中设置与最大下行HARQ进程数相同的HARQ-ACK信息。这里,HARQ-ACK码本的大小可以是HARQ-ACK码本的可以容纳HARQ-ACK信息的容量。例如,HARQ-ACK信息占用1个比特位,最大下行HARQ进程数为16,则HARQ-ACK码本的大小可以是16比特,如此可以在HARQ-ACK码本中容纳每个HARQ进程的HARQ-ACK信息。
最大下行HARQ进程数,是基站在进行数据下行时调度的HARQ进程 数量的最大值;数据传输中,基站可以在最大数量范围内调度所有的HARQ进程或调度其中的部分HARQ进程。
一个HARQ进程具有一个HARQ-ACK信息。在HARQ-ACK码本中可以包括多个HARQ-ACK信息。每个HARQ-ACK信息可以占用一个比特位或多个比特位。示例性的,HARQ-ACK信息可以占用一个比特位,用“1”表示HARQ-ACK信息为确认(ACK),用“0”表示HARQ-ACK信息为非确认(NACK);或者,用“0”表示HARQ-ACK信息为确认(ACK),用“1”表示HARQ-ACK信息为非确认(NACK)。一个HARQ-ACK信息可以占用多个比特位,当一个HARQ-ACK信息用于指示1个传输块(TB)中M个码块组(CBG)的接收情况时,HARQ-ACK信息可以占用M个比特位,分别用每个比特位反馈各CBG的接收情况。其中M为等于或大于1的正整数。
ACK表示成功接收对应的数据,NACK表示未成功接收对应的数据。若接收到NACK可能会触发重传机制,从而使得基站重新发送NACK对应的PDSCH数据。
示例性的,HARQ-ACK码本中HARQ-ACK信息占用1个比特位。最大下行HARQ进程数量为16个,分别用HARQ ID0至HARQ ID15表示。则HARQ-ACK码本可以如表1所示。其中,一个“X”表示一个HARQ-ACK信息。每个HARQ-ACK信息都具有一个相对固定的位置。
根据最大下行HARQ进程数,确定HARQ-ACK码本的大小,一方面,HARQ-ACK码本可以为每个HARQ进程设置了HARQ-ACK信息的位置,提高HARQ-ACK码本的反馈精度。另一方面,提供了固定的HARQ-ACK码本格式,避免出现终端发送HARQ-ACK码本和基站需要解析的HARQ-ACK码本大小不一致的情况,提高HARQ-ACK码本解码效率。
在一个实施例中,所述方法还包括:
根据基站调度的HARQ进程,在所述HARQ-ACK码本中确定所述基站调度的HARQ进程的PDSCH数据的HARQ-ACK信息。
当所述HARQ进程具有对应的PDSCH数据时,终端根据PDSCH数据的接收状况,确定所述HARQ-ACK码本中所述HARQ进程对应的所述接收到的PDSCH数据的HARQ-ACK信息;
当所述HARQ进程不具有对应的PDSCH数据时,终端将所述HARQ-ACK码本中所述HARQ进程对应的HARQ-ACK信息确定为非确认NACK。
这里,HARQ进程具有对应的PDSCH数据,可以是终端在HARQ进程对应的PDSCH上接收到PDSCH数据。HARQ进程不具有对应的PDSCH数据,可以终端漏检HARQ进程对应的PDSCH上接收到PDSCH数据,或者,没有调度该HARQ进程对应的PDSCH。
终端接收基站分别利用每个PDSCH传输的PDSCH数据,对各PDSCH数据进行解调译码等操作,确定各PDSCH数据对应的HARQ-ACK信息。将HARQ-ACK信息设置在HARQ-ACK码本中对应HARQ进程的位置。其中,终端接收PDSCH数据的HARQ进程可以是最大数量的HARQ进程中的一部分或全部。
终端在传输HARQ-ACK信息时,以HARQ-ACK码本为单位进行传输。在HARQ-ACK码本中包含了接收到的PDSCH数据对应的HARQ-ACK信息,还包括漏检的PDSCH数据的HARQ-ACK信息,以及未调度的PDSCH的HARQ-ACK信息。针对接收到的PDSCH数据,可以根据接受状况采用确认(ACK)或非确认(NACK)的方式进行反馈。针对漏检的HARQ进程对应的PDSCH数据或未调度的HARQ进程对应的HARQ-ACK信息可以采用NACK进行反馈。
基站和终端由于采用相同的规则设置HARQ-ACK码本,因此,基站可 以根据自身调度的PDSCH对应的HARQ进程,从HARQ-ACK码本中确定自身调度的PDSCH中的PDSCH数据对应的HARQ-ACK信息。
终端可以将确定的HARQ-ACK信息设置到HARQ-ACK码本对应位置。示例性的,以表1所示情况为例,在该示例中,采用PDSCH传输数据时,实际调度的HARQ-ACK进程为HARQ ID5-12,每个HARQ-ACK进程对应一个PDSCH。但是,UE漏检了HARQ ID12对应的PDSCH数据。UE只解调HARQ ID5-11的HARQ进程对应的PDSCH。假定HARQ ID 5-11对应的HARQ-ACK反馈为1110111(0表示NACK,1表示ACK)。HARQ-ACK码本设置结构可以如表2所示。表2中,HARQ ID 5-11对应的标识位为HARQ ID5-12的HARQ进程的HARQ-ACK反馈。
终端将按照最大HARQ进程数补充将HARQ-ACK码本中未调度的HARQ进程的HARQ-ACK信息都设置为“0”,对于终端漏检的HARQ ID12对应的HARQ-ACK信息同样设置为“0”,如此,实现对漏检HARQ进程对应PDSCH数据的反馈。
如表3所示。终端将得到的HARQ-ACK码本:0000011101110000反馈给基站。由基站进行接收。
基站和终端由于采用相同的规则设置HARQ-ACK码本,因此,可以确定各HARQ进程的HARQ-ACK信息对应位置。因此,基站可以根据自身调度的PDSCH对应的HARQ进程,从HARQ-ACK码本中确定自身调度的PDSCH中的PDSCH数据对应的HARQ-ACK信息。
示例性的,以表3情况为例,基站调度HARQ ID5-12的HARQ进程向终端发送数据。基站接收到的表3所示的HARQ-ACK码本后,从HARQ ID5-12的HARQ进程的HARQ-ACK信息对应位置确定出HARQ-ACK信息为:11101110;可以确定出HARQ ID8和HARQ ID12两个HARQ进程发送的数据终端没有接收成功。其中,HARQ ID8的HARQ进程对应PDSCH 数据为接收未成功,HARQ ID8的HARQ进程对应PDSCH数据为漏检。可以对该两个HARQ进程发送的数据进行重发。未调度HARQ进程的HARQ-ACK信息位于HARQ-ACK码本首部和尾部,基站可以根据自身HARQ进程调度情况,直接丢弃HARQ-ACK码本首部和尾部未调度HARQ进程的HARQ-ACK信息所占比特位,仅解码调度HARQ进程的HARQ-ACK信息所占比特位,如此,可以提高基站HARQ-ACK码本解码效率。
如图4所示,终端可以把HARQ-ACK码本复用到配置授权物理上行共享信道上传输,即在CG-PUSCH3上传输HARQ-ACK码本。
如此,终端可以实现对接收的PDSCH数据进行反馈,同时,对于未接收数据的PDSCH也进行反馈。提供的完整的数据接收反馈。基站可以对比自身发送数据的PDSCH和各PDSCH的反馈,进而可以确定包括漏检在内的没有接收成功的数据,进而进行重传。减少由于反馈错误产生的数据传输错误。
在一个实施例中,所述在所述HARQ-ACK码本中确定所述基站调度的HARQ进程的PDSCH数据的HARQ-ACK信息,包括:
在所述HARQ-ACK码本中确定所述基站调度的HARQ进程的每个传输块TB的HARQ-ACK信息;
或者,
在所述HARQ-ACK码本中确定所述基站调度的HARQ进程的每个码块组的HARQ-ACK信息。
这里,每个HARQ进程对应PDSCH中传输的PDSCH数据在HARQ-ACK码本中都具有一个HARQ-ACK信息。
一个PDSCH数据可以包括传输块(TB,Transport Block)或码块组(CBG,Code Block Group)等,一个HARQ-ACK信息可以包括一个或多 个TB或CBG的反馈信息。
如果一个PDSCH资源可以用于传输一个TB,即一个PDSCH数据中为一个TB,一个TB具有一个HARQ-ACK信息,如此,HARQ-ACK码本中标识位的数量可以与HARQ进程的数量相同。示例性的,一个HARQ-ACK信息占用一个比特位时,HARQ-ACK码本的长度和HARQ进程的数量相同。
如果采用空分复用的方式传输数据,即一个PDSCH数据中包含两个TB,一个TB具有一个HARQ-ACK信息,则HARQ-ACK码本中HARQ-ACK信息的数量可以是HARQ进程的数量的两倍。示例性的,一个HARQ-ACK信息占用一个比特位时,HARQ-ACK码本的长度为2乘以HARQ进程的数量之积。
如果采用码块组(CBG,Code Block Group)的反馈方式数据,即一个PDSCH数据中可以有多个CBG,一个CBG具有一个HARQ-ACK信息,则可以将一个PDSCH数据中CBG的组数乘以HARQ进程的数量之积,确定为HARQ-ACK码本中标识位的数量。示例性的,一个HARQ-ACK信息占用一个比特位时,HARQ-ACK码本的长度为CBG的组数乘以HARQ进程的数量之积。
在一个实施例中,在接收所述HARQ-ACK码本前,所述方法还包括:向终端发送所述最大下行HARQ进程数。
这里,最大下行HARQ进程数可以通过基站的高层信令对终端进行配置。
以下结合上述任意实施例提供一个具体示例:
如图6所示,在NR-U系统中,如果基站在其COT内调度了多个连续的PDSCH传输,并且调度多个PDSCH所对应的HARQ-ACK信息在同一个HARQ-ACK码本中反馈。基站指定的HARQ-ACK码本反馈的资源与配 置授权物理上行共享信道(CG-PUSCH)的资源在时域上有重叠。此时,UE将会把HARQ-ACK码本复用到配置授权物理上行共享信道上传输,也即复用到CG-PUSCH 3上传输。
假定最大HARQ进程数量是基站通过高层信令为UE配置的,为16,对应的HARQ ID为0-15。该HARQ-ACK码本中实际调度的PDSCH对应的HARQ进程为HARQ ID 5-12,但是,UE漏检了HARQ进程12的DCI/PDSCH。UE只会解调HARQ进程5-11的PDSCH,假定其对应的HARQ-ACK信息为1110111(0表示NACK,1表示ACK)。将该HARQ-ACK码本按照最大HARQ进程数补充NACK后为0000011101110000,分别对应HARQ进程0-15。补充后的HARQ-ACK码本的size就是固定的16bit。
如果采用CBG(code block group)的反馈方式,HARQ-ACK码本的size为CBG组数*最大HARQ进程数。
如果采用空分复用的方式传输,也即一个PDSCH中有2个TB,则HARQ-ACK码本的size为2*最大HARQ进程数。
按照最大HARQ进程数来填充HARQ-ACK码本的码位后,能够使得HARQ-ACK码本的长度总是固定的,且是基站已知的,不会发生UE所发送的HARQ-ACK信息的个数与基站所理解的要接收的HARQ-ACK信息的个数不同的问题。
对补充后的HARQ-ACK码本进行编码、调制和复用,编码、调制和复用的方式可以与NR协议中定义的方式相同。
基站收到该复用了HARQ-反馈的PUSCH后,会根据NR协议中定义的方式进行解复用、解调和解码。并恢复出该补充后的HARQ-ACK码本。由于基站知道自己究竟调度了哪些HARQ进程的PDSCH,从而可以补充后的HARQ-ACK码本找到对应的HARQ-ACK信息。
本发明实施例还提供了一种混合自动重传请求反馈装置100,应用于无 线通信的终端中,如图6所示,所述装置100包括:第一确定模块110,其中,
所述第一确定模块110,配置为当混合自动重传请求应答HARQ-ACK码本复用到配置授权物理上行共享信道中传输时,根据最大下行混合自动重传请求HARQ进程数,确定HARQ-ACK码本的大小。
在一个实施例中,所述装置100还包括:
第二确定模块120,配置为当所述HARQ进程具有对应的PDSCH数据时,根据PDSCH数据的接收状况,确定所述HARQ-ACK码本中所述HARQ进程对应的所述接收到的PDSCH数据的HARQ-ACK信息;
第三确定模块130,配置为当所述HARQ进程不具有对应的PDSCH数据时,将所述HARQ-ACK码本中所述HARQ进程对应的HARQ-ACK信息确定为非确认NACK。
在一个实施例中,所述HARQ-ACK码本包括每个所述HARQ进程的PDSCH数据的HARQ-ACK信息。
在一个实施例中,所述装置还包括,
第一发送模块140,配置为当所述配置授权物理上行共享信道传输资源的时域,包含基站配置的传输所述HARQ-ACK码本的传输资源的时域时,将HARQ-ACK码本复用到所述配置授权物理上行共享信道中传输。
在一个实施例中,所述装置100还包括:第一接收模块150,配置为接收基站发送的所述最大下行HARQ进程数。
本发明实施例还提供了一种混合自动重传请求反馈装置200,应用于无线通信的基站中,如图7所示,所述装置200包括:第二接收模块210,其中,
所述第二接收模块210,配置为接收利用配置授权物理上行共享信道授权进行传输的混合自动重传请求应答HARQ-ACK码本;其中,所述 HARQ-ACK码本的大小是根据最大下行HARQ进程数确定的。
在一个实施例中,所述装置100还包括:
第四确定模块220,配置为根据基站调度的HARQ进程,在所述HARQ-ACK码本中确定所述基站调度的HARQ进程的PDSCH数据的HARQ-ACK信息。
在一个实施例中,所述第四确定模块220,包括:
在一个实施例中,所述装置200还包括:第二发送模块230,配置为在接收所述HARQ-ACK码本前,向终端发送所述最大下行HARQ进程数。
在示例性实施例中,第一确定模块110、第二确定模块120、第三确定模块130、发送模块140、第一接收模块150、第二接收模块210、第四确定模块220和第二发送模块230等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图8是根据一示例性实施例示出的一种用于混合自动重传请求反馈的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在设备3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当设备3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统 或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到设备3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA) 技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种混合自动重传请求反馈方法,其特征在于,应用于终端中,所述方法包括:
    当混合自动重传请求应答HARQ-ACK码本复用到配置授权物理上行共享信道中传输时,根据最大下行混合自动重传请求HARQ进程数,确定所述HARQ-ACK码本的大小。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述HARQ进程具有对应的物理下行共享信道PDSCH数据时,根据所述PDSCH数据的接收状况,确定所述HARQ-ACK码本中所述HARQ进程对应的所述接收到的所述PDSCH数据的HARQ-ACK信息;
    当所述HARQ进程不具有对应的PDSCH数据时,将所述HARQ-ACK码本中所述HARQ进程对应的HARQ-ACK信息确定为非确认NACK。
  3. 根据权利要求1或2所述的方法,其特征在于,所述HARQ-ACK码本包括每个所述HARQ进程的PDSCH数据的HARQ-ACK信息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:接收基站发送的所述最大下行HARQ进程数。
  5. 一种混合自动重传请求反馈方法,其特征在于,应用于基站中,所述方法包括:
    接收利用配置授权物理上行共享信道进行传输的混合自动重传请求应答HARQ-ACK码本;其中,所述HARQ-ACK码本的大小是根据最大下行混合自动重传请求HARQ进程数确定的。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    根据基站调度的HARQ进程,在所述HARQ-ACK码本中确定所述基站调度的所述HARQ进程的PDSCH数据的HARQ-ACK信息。
  7. 根据权利要求5至6任一项所述的方法,其特征在于,在接收所述 HARQ-ACK码本前,所述方法还包括:
    向终端发送所述最大下行HARQ进程数。
  8. 一种混合自动重传请求反馈装置,其特征在于,应用于终端中,所述装置包括:第一确定模块,其中,
    所述第一确定模块,配置为当混合自动重传请求应答HARQ-ACK码本复用到配置授权物理上行共享信道中传输时,根据最大下行混合自动重传请求HARQ进程数,确定所述HARQ-ACK码本的大小。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括:
    第二确定模块,配置为当所述HARQ进程具有对应的PDSCH数据时,根据所述PDSCH数据的接收状况,确定所述HARQ-ACK码本中所述HARQ进程对应的所述接收到的所述PDSCH数据的HARQ-ACK信息;
    第三确定模块,配置为当所述HARQ进程不具有对应的PDSCH数据时,将所述HARQ-ACK码本中所述HARQ进程对应的HARQ-ACK信息确定为非确认NACK。
  10. 根据权利要求8或9所述的装置,其特征在于,所述HARQ-ACK码本包括每个所述HARQ进程的PDSCH数据的HARQ-ACK信息。
  11. 根据权利要求8或9所述的装置,其中,所述装置还包括:第一接收模块,配置为接收基站发送的所述最大下行HARQ进程数。
  12. 一种混合自动重传请求反馈装置,其特征在于,应用于基站中,所述装置包括:第二接收模块,其中,
    所述第二接收模块,配置为接收利用配置授权物理上行共享信道授权进行传输的混合自动重传请求应答HARQ-ACK码本;其中,所述HARQ-ACK码本的大小是根据最大下行HARQ进程数确定的。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    第四确定模块,配置为根据基站调度的HARQ进程,在所述 HARQ-ACK码本中确定所述基站调度的所述HARQ进程的PDSCH数据的HARQ-ACK信息。
  14. 根据权利要求12或13所述的装置,其特征在于,所述装置还包括:第二发送模块,配置为在接收所述HARQ-ACK码本前,向终端发送所述最大下行HARQ进程数。
  15. 一种通讯设备,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至4或5至7任一项所述混合自动重传请求反馈方法的步骤。
PCT/CN2019/106518 2019-09-18 2019-09-18 混合自动重传请求反馈方法、装置和通信设备 WO2021051323A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002096.6A CN112823482B (zh) 2019-09-18 2019-09-18 混合自动重传请求反馈方法、装置和通信设备
PCT/CN2019/106518 WO2021051323A1 (zh) 2019-09-18 2019-09-18 混合自动重传请求反馈方法、装置和通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106518 WO2021051323A1 (zh) 2019-09-18 2019-09-18 混合自动重传请求反馈方法、装置和通信设备

Publications (1)

Publication Number Publication Date
WO2021051323A1 true WO2021051323A1 (zh) 2021-03-25

Family

ID=74883780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106518 WO2021051323A1 (zh) 2019-09-18 2019-09-18 混合自动重传请求反馈方法、装置和通信设备

Country Status (2)

Country Link
CN (1) CN112823482B (zh)
WO (1) WO2021051323A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115696616A (zh) * 2021-07-29 2023-02-03 华为技术有限公司 反馈信息的指示方法和通信装置
CN117397190A (zh) * 2021-08-05 2024-01-12 Oppo广东移动通信有限公司 反馈方法、终端设备及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359969A (zh) * 2016-05-10 2017-11-17 电信科学技术研究院 一种harq的反馈信息传输方法、ue、基站和系统
CN109905211A (zh) * 2017-12-08 2019-06-18 电信科学技术研究院 一种传输、接收方法、终端及基站
CN110149172A (zh) * 2018-02-13 2019-08-20 中兴通讯股份有限公司 一种信息处理方法及装置
WO2019157972A1 (en) * 2018-02-13 2019-08-22 Mediatek Singapore Pte. Ltd. Method and apparatus for reducing uplink overhead in mobile communications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019099670A1 (en) * 2017-11-15 2019-05-23 Idac Holdings, Inc. Method and apparatus for harq-ack codebook size determination and resource selection in nr

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359969A (zh) * 2016-05-10 2017-11-17 电信科学技术研究院 一种harq的反馈信息传输方法、ue、基站和系统
CN109905211A (zh) * 2017-12-08 2019-06-18 电信科学技术研究院 一种传输、接收方法、终端及基站
CN110149172A (zh) * 2018-02-13 2019-08-20 中兴通讯股份有限公司 一种信息处理方法及装置
WO2019157972A1 (en) * 2018-02-13 2019-08-22 Mediatek Singapore Pte. Ltd. Method and apparatus for reducing uplink overhead in mobile communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "On support of UL transmission with configured grants in NR-U", 3GPP DRAFT; R1-1906645 NR-U CONFIGURED GRANT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, US; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051728096 *
VIVO: "Feature lead summary#2 on Configured grant enhancement", 3GPP DRAFT; R1-1907775, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 16 May 2019 (2019-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051740048 *

Also Published As

Publication number Publication date
CN112823482A (zh) 2021-05-18
CN112823482B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
CN110574321B (zh) 数据传输方法及传输装置、通信设备及存储介质
CN113079709B (zh) Harq-ack处理方法及装置、通信设备及存储介质
US20220279584A1 (en) Method for determining contention window, and communication device and storage medium
CN113261223B (zh) Harq-ack信息传输方法及装置、通信设备
EP3968553A1 (en) Method and apparatus for transmitting hybrid automatic retransmission request feedback, and storage medium
WO2021051323A1 (zh) 混合自动重传请求反馈方法、装置和通信设备
CN110574332B (zh) 数据传输方法、装置及存储介质
CN110809868B (zh) Harq反馈传输方法及装置、通信设备及存储介质
CN111201825B (zh) 传输块配置参数传输方法、装置、通信设备及存储介质
WO2021051325A1 (zh) 上行控制信息处理方法及装置、通信设备及存储介质
WO2020243887A1 (zh) 混合自动重传请求反馈的传输方法、装置及存储介质
CN111316593B (zh) 数据传输方法、装置及存储介质
WO2021087766A1 (zh) 混合自动重传请求应答传输方法及装置、设备及介质
US20230171759A1 (en) Data transmission scheduling mehtod and apparatus, communicaiton device and storage medium
US20230371027A1 (en) Pucch resource determination method and apparatus
WO2022021162A1 (zh) 自动重传的指示方法及装置、网络设备、ue及存储介质
US20240114513A1 (en) Low priority uplink information retransmission method and apparatus, device and storage medium
CN114982327A (zh) 传输数据的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945545

Country of ref document: EP

Kind code of ref document: A1