WO2021087766A1 - 混合自动重传请求应答传输方法及装置、设备及介质 - Google Patents

混合自动重传请求应答传输方法及装置、设备及介质 Download PDF

Info

Publication number
WO2021087766A1
WO2021087766A1 PCT/CN2019/115775 CN2019115775W WO2021087766A1 WO 2021087766 A1 WO2021087766 A1 WO 2021087766A1 CN 2019115775 W CN2019115775 W CN 2019115775W WO 2021087766 A1 WO2021087766 A1 WO 2021087766A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
embb
ack
harq
time domain
Prior art date
Application number
PCT/CN2019/115775
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2019/115775 priority Critical patent/WO2021087766A1/zh
Priority to EP19952024.8A priority patent/EP4057734B1/en
Priority to CN201980002832.8A priority patent/CN113170439B/zh
Priority to US17/774,015 priority patent/US20230007648A1/en
Publication of WO2021087766A1 publication Critical patent/WO2021087766A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the embodiments of the present disclosure relate to the field of wireless communication technology but are not limited to the field of wireless communication technology, and in particular to a hybrid automatic Repeat ReQuest ACKnowledgement (Hybrid automatic Repeat ReQuest ACKnowledgement, HARQ-ACK) transmission method, device, device, and medium.
  • Hybrid automatic Repeat ReQuest ACKnowledgement Hybrid automatic Repeat ReQuest ACKnowledgement, HARQ-ACK
  • URLLC Ultra reliable and low latency communication
  • NR New Radio
  • URLLC services usually require very high reliability and very low latency.
  • eMBB Enhanced Mobile Boardband
  • This service type usually requires larger bandwidth, and has looser requirements for reliability and delay, and its service priority is usually lower than URLLC's business.
  • the embodiments of the present application disclose a hybrid automatic repeat request response transmission method and device, communication equipment, and computer non-transient media.
  • the first aspect of the embodiments of the present application provides a HARQ-ACK transmission method, which is applied to User Equipment (UE) and includes:
  • the PUCCH resource carrying eMBB HARQ-ACK and eMBB PUSCH resource overlap in time domain
  • the eMBB HARQ-ACK is sent on the PUCCH resource of the eMBB HARQ-ACK, where the predetermined time is: the time domain start time of the eMBB PUSCH resource and The earlier one of the start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the determined time is obtained according to the receiving time and the demodulation duration of the uplink scheduling instruction for scheduling the URLLC PDSCH resource, where the demodulation duration is: The duration of the UE demodulating the uplink scheduling instruction; the determining moment is: determining the PUCCH resource of the URLLC HARQ-ACK, which overlaps the time domain of the PUCCH resource carrying the eMBB HARQ-ACK and the eMBB PUSCH resource respectively Moment of relationship.
  • the demodulation duration is a predetermined number of symbols.
  • the method further includes: determining the demodulation duration, wherein the determining the demodulation duration includes one of the following:
  • the demodulation duration is determined according to the received configuration information.
  • the method further includes:
  • the eMBB PUSCH resource is discarded or the eMBB PUSCH resource is punctured.
  • the second aspect of the embodiments of the present application provides a HARQ-ACK transmission method, which is applied in a base station, and includes:
  • the UE has determined the PUCCH carrying the ultra-reliable low-latency communication URLLC HARQ-ACK before the predetermined time.
  • the eMBB HARQ-ACK is received on the PUCCH resource of the eMBB HARQ-ACK, where
  • the predetermined time is the earlier one of the time domain start time of the eMBB PUSCH resource and the time domain start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the determined time of the user equipment UE is obtained.
  • the demodulation duration is: the duration for the UE to demodulate the uplink scheduling instruction;
  • the determining moment is: determining the PUCCH resource of the URLLC HARQ-ACK, which is different from the PUCCH resource and the PUCCH resource carrying the eMBB HARQ-ACK The time when the eMBB PUSCH resource overlaps in the time domain.
  • the method further includes:
  • the eMBB PUSCH resource is discarded or the eMBB PUSCH resource is punctured.
  • the third aspect of the embodiments of the present application provides a hybrid automatic repeat request response HARQ-ACK transmission device, which is applied to a user equipment UE and includes:
  • the first sending module is configured to determine that the PUCCH resource carrying URLLC HARQ-ACK and the eMBB PUSCH resource overlap with the eMBB PUSCH resource before a predetermined time when the PUCCH resource of eMBB HARQ-ACK and the eMBB PUSCH resource overlap And when there is no time domain overlap with the PUCCH resource of the eMBB HARQ-ACK, the eMBB HARQ-ACK is sent on the PUCCH resource of the eMBB HARQ-ACK, where the predetermined time is: the eMBB PUSCH resource The earlier one of the time domain start time of the eMBB HARQ-ACK and the time domain start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the device further includes:
  • the first determining module is configured to determine the first time domain resource location of the PUCCH resource carrying the eMBB HARQ-ACK;
  • the second determining module is configured to determine the second time domain resource location of the eMBB PUSCH resource
  • the third determining module is configured to determine whether the PUCCH resource carrying the eMBB HARQ-ACK and the eMBB PUSCH resource overlap in time domain based on the location of the first time domain resource and the location of the second time domain resource.
  • the device further includes:
  • the fourth determining module is configured to determine the third time domain resource location of the PUCCH resource carrying the URLLC HARQ-ACK;
  • the fifth determining module is configured to determine whether the PUCCH resource carrying the URLLC HARQ-ACK and the PUCCH resource carrying the eMBB HARQ-ACK are determined based on the position of the first time domain resource and the position of the third time domain resource Sometimes the domains overlap;
  • the device further includes:
  • the first obtaining module is configured to obtain the determined time according to the receiving time and the demodulation duration of the uplink scheduling instruction for scheduling the URLLC PDSCH resource in the case of dynamically scheduling the URLLC PDSCH resource, wherein the solution
  • the timing length is: the duration for the UE to demodulate the uplink scheduling instruction; the determining moment is: determining the PUCCH resource of the URLLC HARQ-ACK, respectively, and the PUCCH resource carrying the eMBB HARQ-ACK and the eMBB The time when the PUSCH resource overlaps in the time domain.
  • the demodulation duration is a predetermined number of symbols.
  • the device further includes:
  • the sixth determining module is configured to determine the demodulation duration, wherein the determining the demodulation duration includes one of the following:
  • the demodulation duration is determined according to the received configuration information.
  • the device further includes:
  • the first resource processing module is configured to discard the eMBB PUSCH resource or puncture the eMBB PUSCH resource.
  • the third aspect of the embodiments of the present application provides a HARQ-ACK transmission device, which is applied in a base station, and includes:
  • the first receiving module is configured to determine that the PUCCH resource carrying URLLC HARQ-ACK and the PUCCH resource carrying URLLC HARQ-ACK and the PUSCH resource of the eMBB physical uplink shared channel overlap
  • the eMBB PUSCH resource overlaps in the time domain and there is no time domain overlap with the PUCCH resource of the eMBB HARQ-ACK
  • the eMBB HARQ-ACK is received on the PUCCH resource of the eMBB HARQ-ACK, where the predetermined The time is: the earlier one of the time domain start time of the eMBB PUSCH resource and the time domain start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the device further includes:
  • the second obtaining module is configured to obtain the user equipment according to the issuance time and demodulation duration of the uplink scheduling instruction for scheduling the URLLC PDSCH resource in the case of dynamic scheduling of the URLLC physical downlink shared channel PDSCH resource
  • the device further includes:
  • the second resource processing module is configured to discard the eMBB PUSCH resource or puncture the eMBB PUSCH resource.
  • a fifth aspect of the embodiments of the present application provides a communication device, which includes:
  • the processor is respectively connected to the transceiver and the memory, and is used to control the transceiver's wireless signal transmission and reception by executing computer-executable instructions stored on the memory, and implement any technology of the first aspect or the second aspect The method provided by the program.
  • a sixth aspect of the embodiments of the present application provides a computer non-transitory storage medium, wherein the computer non-transitory storage medium stores computer-executable instructions; the first aspect or the second aspect after the computer-executable instructions are executed by a processor
  • the method provided by any technical solution.
  • the PUCCH resource carrying eMBB HARQ-ACK and the eMBB PUSCH resource overlap in time domain
  • the PUCCH resource carrying URLLC HARQ-ACK and the eMBB PUSCH resource overlap in time domain, and are overlapped with the PUCCH resource carrying URLLC HARQ-ACK and the eMBB PUSCH resource.
  • the PUCCH resource of the eMBB HARQ-ACK does not overlap in the time domain, if the time domain start time of the eMBB PUSCH resource and the time domain start time of the PUCCH resource carrying the eMBB HARQ-ACK are the earlier one It was previously determined that the UE will still use PUCCH resources to send eMBB HARQ-ACK instead of multiplexing eMBB HARQ-ACK onto eMBB PUSCH resources for transmission, reducing the burst URLLC HARQ ACK that causes eMBB PUSCH resources to be discarded or punctured.
  • the eMBB HARQ-ACK loss phenomenon can reduce the unnecessary retransmission of eMBB service data in the base station.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the disclosure
  • FIG. 2 is a schematic flowchart of a HARQ-ACK transmission method provided by an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of a process for determining whether PUCCH resources carrying eMBB HARQ-ACK and eMBB PUSCH resources overlap in time domains according to an embodiment of the disclosure
  • FIG. 4 is a schematic flow diagram of whether a PUCCH resource carrying URLLC HARQ-ACK is overlapped with PUCCH resource and eMBB PUSCH resource carrying eMBB HARQ-ACK according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a HARQ-ACK transmission method provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of a HARQ-ACK transmission device provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of a HARQ-ACK transmission device provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic flowchart of a HARQ-ACK transmission method provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the time-domain relationship between PUCCH resources carrying URLLC HARQ-ACK, PUCCH resources carrying eMBB HARQ-ACK, and eMBB PUSCH resources provided by an embodiment of the disclosure;
  • FIG. 10 is a schematic diagram of the time-domain relationship between PUCCH resources carrying URLLC HARQ-ACK, PUCCH resources carrying eMBB HARQ-ACK, and eMBB PUSCH resources provided by an embodiment of the disclosure;
  • FIG. 11 is a schematic diagram of the time-domain relationship between PUCCH resources carrying URLLC HARQ-ACK, PUCCH resources carrying eMBB HARQ-ACK, and eMBB PUSCH resources provided by the embodiments of the disclosure;
  • FIG. 12 is a schematic structural diagram of a UE provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic structural diagram of a base station provided by an embodiment of the disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several base stations 12.
  • the UE 11 may be a device that provides voice and/or data connectivity to the user.
  • the UE 11 can communicate with one or more core networks via the Radio Access Network (RAN).
  • the UE 11 can be an Internet of Things UE, such as sensor devices, mobile phones (or “cellular” phones), and
  • the computer of the Internet of Things UE for example, may be a fixed, portable, pocket-sized, handheld, computer built-in device, or a vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote UE ( remote terminal), access UE (access terminal), user equipment (user terminal), user agent (user agent), user equipment (user device), or user UE (user equipment, UE).
  • the UE 11 may also be a device of an unmanned aerial vehicle.
  • the UE 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device with an external trip computer.
  • the UE 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a 5G system, also known as a new radio (NR) system or a 5G NR system.
  • the wireless communication system may be a system that supports New Radio-Unlicense (NR-U).
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 12 may be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 12 usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Medium Access Control, MAC) layer protocol stack; distribution;
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 12.
  • a wireless connection can be established between the base station 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard.
  • the wireless air interface is a new air interface; or, the wireless air interface can also be a next-generation mobile based on 5G.
  • the wireless air interface of the communication network technology standard is a wireless air interface based on the fifth-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between UEs 11.
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • the PUCCH resource carrying HARQ-ACK and the PUSCH resource carrying data of the same service type if the two overlap in the time domain, the PUCCH resource should be discarded and HARQ-ACK multiplexed To PUSCH resource transmission.
  • the eMBB PUSCH resource will be discarded or partially discarded.
  • the bearer eMBB HARQ-ACK may be discarded or partially discarded, resulting in the base station not being able to receive or correctly receiving the HARQ of the eMBB service fed back by the UE. -ACK, which causes unnecessary retransmission of eMBB data.
  • this embodiment provides a HARQ-ACK transmission method, which is applied to a user equipment UE and includes:
  • the eMBB HARQ-ACK is sent on the PUCCH resources of the eMBB HARQ-ACK, where the predetermined time is: the time domain start of the eMBB PUSCH resource The earlier one of the time and the time domain start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the method is applied to various UEs.
  • the UE may be a human-borne mobile terminal and/or a vehicle-mounted mobile terminal.
  • the human-borne mobile terminal may be a mobile phone, a tablet computer, or a wearable device.
  • the vehicle-mounted mobile terminal may include: vehicle-mounted equipment on vehicles such as private cars and buses.
  • the PUCCH resources are: communication resources allocated to the PUCCH, and the communication resources include time domain resources and frequency domain resources.
  • the PUCCH resource that carries the eMBB HARQ-ACK is: the communication resource used to transmit the eMBB HARQ-ACK is scheduled on the PUCCH.
  • the eMBB HARQ-ACK is feedback information of downlink eMBB service data.
  • the PUCCH resource carrying the URLLC HARQ-ACK is: the communication resource used to transmit the URLLC HARQ-ACK is scheduled on the PUCCH.
  • the eMBB PUSCH resource may be a PUSCH resource used for the UE to upload eMBB service data. In this way, the UE can send eMBB service data to the base station on the corresponding resources of the PUSCH.
  • eMBB HARQ-ACK is feedback information for eMBB service data transmitted on PDSCH, which can be divided into acknowledgement (ACK) and non-acknowledgement (NACK). ACK indicates successful data reception; NACK indicates failure of data reception.
  • ACK acknowledgement
  • NACK non-acknowledgement
  • URLLC HARQ-ACK is feedback information for URLLC service data transmitted on PDSCH, which can also be divided into ACK and NACK.
  • the PUCCH resource carrying eMBB HARQ-ACK and the eMBB PUSCH resource overlap in time domain
  • the PUCCH resource carrying URLLC HARQ-ACK will be further judged, and the PUCCH resource carrying eMBB HARQ-ACK will be separated from the eMBB PUSCH resource and the PUCCH resource carrying eMBB HARQ-ACK. Overlapping relationship in the time domain.
  • the overlap relationship includes: time domain overlap and no time domain overlap.
  • the time domain weight here is: the time occupied by the two resources have overlapping parts; the no time domain overlap is the time occupied by the two resources without overlapping parts.
  • the predetermined time is the relatively earlier one of the time domain start time of the eMBB PUSCH resource and the time domain start time of the PUCCH resource carrying the eMBB HARQ-ACK. For example, if the start time of the eMBB PUSCH resource is earlier than the start time of the PUCCH resource carrying the eMBB HARQ-ACK, the predetermined time is: the start time of the eMBB PUSCH resource. If the start time of the eMBB PUSCH resource is later than the start time of the PUCCH resource carrying the eMBB HARQ-ACK, the predetermined time is: the start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the delay of the URLLC service is lower than the delay of the eMBB service. If the URLLC HARQ-ACK is sent, due to the limitation of the UE's transmit power and/or the UE simultaneously sends URLLC HARQ-ACK and sends eMBB service data on PUSCH resources at the same time to cause high power consumption, the UE The eMBB PUSCH resource may be discarded. At this time, if the eMBB HARQ-ACK is still multiplexed on the eMBB PUSCH resource for transmission, the base station will not receive the eMBB HARQ ACK, and the base station does not need to retransmit the eMBB service data downlink.
  • the PUCCH resource carrying eMBB HARQ-ACK and the PUCCH resource carrying URLLC HARQ-ACK do not overlap in the time domain, then eMBB HARQ-ACK will not be required to avoid due to the low latency of URLLC HARQ-ACK at this time. Therefore, at this time, the PUCCH resource carrying the eMBB HARQ-ACK is still used to send the eMBB HARQ-ACK.
  • the PUCCH resource carrying URLLC HARQ-ACK and the PUCCH resource carrying eMBB HARQ-ACK do not overlap in the time domain, in the time domain position of the eMBB PUSCH resource, the PUCCH resource carrying eMBB HARQ-ACK and the PUCCH resource carrying URLLC can be used respectively.
  • the PUCCH resource of HARQ-ACK sends eMBB HARQ-ACK and URLLC HARQ-ACK respectively, thereby reducing the time domain of carrying eMBB HARQ-ACK and eMBB PUSCH resources overlap, directly multiplexing eMBB HARQ-ACK with eMBB PUSCH resource transmission. The missed transmission of eMBB HARQ-ACK.
  • the method further includes:
  • S101 Determine the first time domain resource location of the PUCCH resource carrying the eMBB HARQ-ACK;
  • S103 Based on the location of the first time domain resource and the location of the second time domain resource, determine whether the PUCCH resource carrying the eMBB HARQ-ACK and the eMBB PUSCH resource overlap in time domain.
  • the transmission resource of the eMBB service and the transmission resource of the eMBB HARQ-ACK have a relatively large interval in the time domain. Therefore, when the UE determines that there is URLLC HARQ-ACK that needs to be fed back, based on this resource configuration feature, it can predict in advance whether the eMBB PUSCH resource and the PUCCH resource carrying eMBB HARQ-ACK overlap in time domain. If there is no time domain overlap, Then the eMBB HARQ-ACK is sent on the corresponding PUCCH resource, and whether the eMBB PUSCH resource is discarded depends on whether the time domain overlaps with the PUCCH resource carrying the URLLC HARQ-ACK. If the eMBB PUSCH resource and the PUCCH resource carrying URLLC HARQ-ACK overlap in time domain, the eMBB PUSCH resource is discarded or the eMBB PUSCH resource is punctured.
  • the first time domain resource position is the position of the time domain resource occupied by the PUCCH resource carrying the eMBB HARQ-ACK, for example, the start time and the end time of the PUCCH resource.
  • the second time domain resource position is the position of the time domain resource occupied by the eMBB PUSCH resource, for example, the start time and the end time of the eMBB PUSCH resource.
  • the location of the first time domain resource and the location of the second time domain resource There are many ways to determine the location of the first time domain resource and the location of the second time domain resource. Specifically, it can be determined according to the scheduling method of the eMBB Physical Downlink Shared Channel (PDSCH) and the scheduling method of the eMBB PUSCH of.
  • PDSCH Physical Downlink Shared Channel
  • the location of the first time domain resource is determined according to a downlink scheduling instruction for scheduling the eMBB PDSCH.
  • the downlink scheduling instruction for scheduling the eMBB PDSCH may be carried in Downlink Control Information (DCI) of the physical layer.
  • DCI Downlink Control Information
  • the DCI will indicate the resource identifier of the eMBB PDSCH resource.
  • the time domain resource location of the eMBB PDSCH resource can be determined based on the resource identifier.
  • the downlink scheduling instruction for scheduling the eMBB PDSCH also carries an offset (K1) information field and a PUCCH resource indicator (PUCCH Resource Indicator, PRI).
  • the PUCCH resource indicator indicates the time domain resource set of the PUCCH resource carrying eMBB HARQ-ACK.
  • the K1 information field indicates the number of slots between the eMBB PDSCH resource and the PUCCH resource carrying eMBB HARQ-ACK. In this way, the PUCCH resource carrying eMBB HARQ-ACK is determined from the PUCCH resources indicated by the PRI based on the K1, and the first resource location can be determined.
  • the location of the first time domain resource is determined according to the configuration information of the semi-persistent scheduling eMBB PDSCH resource and the activation indication carried by the activated DCI.
  • the base station sends the configuration information of the eMBB PDSCH resource through high-level signaling (for example, Radio Resource Control (RCC)).
  • the configuration information may include: the semi-persistent scheduling period of the eMBB PDSCH resource. This half is the half.
  • the period of continuous scheduling may have a default starting time.
  • the default starting time of the period of semi-persistent scheduling is the first symbol contained in a time slot.
  • the active DCI may carry an active semi-persistent scheduling period
  • the offset is relative to the default starting time, and the starting time when the semi-persistent scheduling period is activated is known.
  • the activated DCI may also carry the eMBB PDSCH resource occupation time ( duration).
  • the first resource location can be determined by combining the relationship between the PUCCH resources carrying eMBB HARQ-ACK corresponding to the semi-persistent scheduling eMBB PDSCH resources.
  • the eMBB HARQ-ACK is feedback information of the eMBB service data transmitted on the eMBB PDSCH resource.
  • the eMBB PUSCH resource also has two situations: dynamic scheduling and configured authorized scheduling.
  • the position of the second time domain resource is determined according to an uplink scheduling instruction for scheduling the eMBB PUSCH.
  • the uplink scheduling instruction can be carried in the DCI, and the DCI can directly indicate the eMBB PUSCH resource. In this way, the location of the second time domain resource can be quickly and easily determined according to the uplink scheduling instruction.
  • the second time domain resource location is determined according to the configured authorized scheduling information.
  • the configuration authorization scheduling information is scheduling information generated by performing configuration authorization scheduling of eMBB PUSCH resources.
  • the configuration authorization scheduling of the eMBB PUSCH resource may include:
  • the second semi-persistent scheduling method of eMBB PUSCH resources is described.
  • the base station sends configuration authorization scheduling information through high-level signaling.
  • the configuration authorization scheduling information includes: all scheduling information of eMBB PUSCH resources, for example, the semi-static period of eMBB PUSCH resources and the semi-static period The offset and the resource length of the eMBB PUSCH resource.
  • the base station initially configures the eMBB PUSCH resources through the configuration authorization scheduling information issued by the higher layer, and then jointly schedules the eMBB PUSCH resources in conjunction with the activated DCI issued by the physical layer.
  • the initial configuration defines the semi-static period of the eMBB PUSCH resource.
  • the offset of the semi-static period and the resource length of the eMBB PUSCH resource can be carried in the activated DCI.
  • the method for determining the location of the first time domain resource and the location of the second time domain resource is given above, and the specific implementation is not limited to this.
  • the method further includes:
  • S104 Determine the third time domain resource location of the PUCCH resource carrying the URLLC HARQ-ACK;
  • S105 Based on the position of the first time domain resource and the position of the third time domain resource, determine whether the PUCCH resource carrying the URLLC HARQ-ACK and the PUCCH resource carrying the eMBB HARQ-ACK overlap in time domain;
  • S106 Based on the position of the second time domain resource and the position of the third time domain resource, determine whether the PUCCH resource carrying the URLLC HARQ-ACK and the eMBB PUSCH resource overlap in time domain.
  • URLLC HARQ-ACK and eMBB HARQ-ACK both belong to control information
  • eMBB service data belongs to service information.
  • the delay requirement of URLLC service is higher than the delay requirement of eMBB.
  • the transmission priority of eMBB service data transmitted by URLLC HARQ-ACK, eMBB HARQ-ACK and eMBB PUSCH resources is: the priority of transmitting URLLC HARQ-ACK is higher than the priority of transmitting eMBB HARQ-ACK, and transmitting eMBB
  • the priority of HARQ-ACK is higher than the priority of eMBB service data.
  • the time domain overlap relationship includes: time domain overlap and no time domain overlap.
  • the method further includes:
  • Figures 8, 9 and 10 show that the determined time is earlier than the predetermined time.
  • URLLC PDSCH resources are dynamically scheduled through downlink scheduling instructions; in Figure 9, URLLC PDSCH resources are semi-statically configured.
  • URLLC PDSCH resources are dynamically scheduled through downlink scheduling instructions.
  • Figure 11 shows that the scheduled time is later than the determined time.
  • URLLC PDSCH resources are dynamically scheduled through downlink scheduling instructions.
  • the S104 may include:
  • the third time domain resource location is determined according to the configuration information of the semi-persistent scheduling URLLC PDSCH resources and the activated DCI, where the activated DCI includes: carrying the URLLC HARQ-ACK The resource identifier of the PUCCH resource, the offset and duration of the URLLC PDSCH resource for semi-persistent scheduling.
  • URLLC HARQ-ACK is the feedback information for using URLLC PDSCH resources to transmit URLLC service data.
  • the downlink scheduling instruction for scheduling the URLLC PDSCH resource can be carried in the DCI, and the DCI directly carries the resource identification information of the URLLC PDSCH resource, the resource identification information of the PUCCH resource carrying URLLC HARQ-ACK, URLLC PDSCH resource, and URLLC carrying URLLC.
  • Information such as the number of time slot offsets between PUCCH resources of HARQ-ACK, so the position of the third time domain resource can be determined directly according to the downlink scheduling instruction.
  • the semi-persistent scheduling of the URLLC PDSCH resource is similar to the semi-persistent scheduling of the eMBB PDSCH resource. Therefore, the third time domain resource location can be determined based on the configuration information issued by the high-level signaling and the activated DCI.
  • the method further includes:
  • the determined time is obtained according to the receiving time and the demodulation duration of the uplink scheduling instruction for scheduling the URLLC PDSCH resource, where the demodulation duration is: the UE demodulates The duration of the uplink scheduling instruction; the determining moment is: determining the PUCCH resource of the URLLC HARQ-ACK, and the time domain overlapping relationship of the PUCCH resource carrying the eMBB HARQ-ACK and the eMBB PUSCH resource respectively.
  • the demodulation duration is introduced in the embodiment of this application.
  • the demodulation duration may be known in advance by both the UE and the base station.
  • the demodulation duration is the duration for the UE to demodulate and schedule the uplink scheduling instruction of the URLLC PDSCH resource jointly recognized by the UE and the base station. In this way, it is convenient for the base station to determine whether to receive the eMBB HARQ-ACK on the PUCCH resource or the eMBB HARQ-ACK on the PUSCH resource according to the demodulation duration.
  • the demodulation duration is a predetermined number of symbols.
  • the demodulation duration is accurate to the symbol level, so that the accuracy of the determination is improved.
  • the demodulation duration can be 1 or 2 symbols.
  • the demodulation duration of the dynamically scheduled DCI by the UE may be 1 symbol.
  • the downlink scheduling instructions for dynamically scheduling URLLC PDSCH resources shown in FIG. 8 and FIG. 12 are all 1 symbol.
  • the method further includes: determining the demodulation duration, wherein the determining the demodulation duration includes one of the following:
  • the demodulation duration is determined according to the received configuration information.
  • the demodulation duration is stipulated in the communication protocol.
  • the UE and the base station are preset with the content of the communication protocol, so the demodulation duration can be determined according to the protocol agreement in the communication protocol.
  • the UE may report its own demodulation capability information.
  • the base station will estimate the demodulation duration according to the demodulation capability information reported by the UE, and deliver configuration information to the UE according to the estimated demodulation duration.
  • the UE can determine its approximate location in the time domain according to the configuration information, and can ascertain the time domain overlap relationship between the PUCCH resource carrying URLLC HARQ-ACK, the eMBB PUSCH resource and the PUCCH resource carrying eMBB HARQ-ACK, respectively.
  • the specific time-domain overlap relationship is determined by the UE based on the demodulation content, but when selecting the eMBB HARQ-ACK resource to be sent, the determined time and the scheduled time are determined based on the demodulation duration that is commonly known to the base station To determine the relationship between.
  • the relationship between the two includes: the determined time is earlier than the predetermined time, the determined time is equal to the predetermined time, and the determined time is later than the predetermined time.
  • the determined time is equal to or later than the predetermined time, even if the PUCCH resource carrying eMBB HARQ-ACK and eMBB PUSCH resource overlap, and the PUCCH resource carrying URLLC HARQ-ACK and the eMBB PUSCH resource sometimes overlap
  • the UE may also determine the demodulation duration according to its own demodulation capability.
  • the UE will report the demodulation capability information indicating its demodulation capability to the base station, and the base station and the UE will convert the demodulation duration based on the demodulation capability information of the UE according to the same determination logic.
  • the foregoing configuration information indicating the demodulation duration may be determined by the base station according to the recommended duration reported by the UE. For example, the UE converts one or more recommended durations according to its own demodulation capability to report to the base station, and the base station can randomly select or select a recommended duration based on the current self-set load, etc., and send the UE a message indicating the demodulation duration. Configuration information.
  • the method further includes:
  • the eMBB PUSCH resource is discarded or the eMBB PUSCH resource is punctured.
  • the discarding here refers to the entire discarding and the eMBB PUSCH resource carrying the eMBB HARQ-ACK and the PUCC resource carrying the URLLC HARQ-ACK.
  • Punching the eMBB PUSCH resources is: discarding the eMBB PUSCH resources and the PUCC resources carrying eMBB HARQ-ACK and URLLC HARQ-ACK, respectively, part of the resources that overlap in time domain.
  • eMBB PUSCH resources are used to transmit eMBB service data, and eMBB service data is usually configured with repeated transmission in order to improve the reception success rate.
  • the base station can still receive all eMBB data, so Even if the eMBB PUSCH resources are discarded, the impact on the use of eMBB service data is relatively small.
  • this embodiment provides a HARQ-ACK transmission method, including:
  • the PUCCH resource of eMBB HARQ-ACK and the eMBB PUSCH resource overlap in time domain, it is determined that the PUCCH resource carrying URLLC HARQ-ACK and the eMBB PUSCH resource overlap in time domain and are overlapped with the PUCCH resource carrying URLLC HARQ-ACK before the predetermined time.
  • the eMBB HARQ-ACK is received on the PUCCH resources of the eMBB HARQ-ACK, where the predetermined time is: the time domain start of the eMBB PUSCH resource The earlier one of the time and the time domain start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the base station determines that the UE can determine the overlap relationship between the above three resources before the predetermined time.
  • the UE may report to the base station after the determination, or the base station may determine it by itself.
  • the base station is determined based on the calculation logic for calculating the determined time in the foregoing embodiment that is commonly known to the UE.
  • the method further includes: determining a first time domain resource location of the PUCCH resource carrying the eMBB HARQ-ACK; determining a second time domain resource location of the eMBB PUSCH resource; based on the first time domain resource location and all The second time domain resource location determines whether the PUCCH resource carrying the eMBB HARQ-ACK and the eMBB PUSCH resource overlap in time domain.
  • the method further includes: determining a third time domain resource location of the PUCCH resource carrying the URLLC HARQ-ACK; based on the first time domain resource location and the third time domain resource location, Determine whether the PUCCH resource carrying the URLLC HARQ-ACK and the PUCCH resource carrying the eMBB HARQ-ACK overlap in time domain; based on the location of the second time domain resource and the location of the third time domain resource, determine the location of the bearer Whether the PUCCH resource of the URLLC HARQ-ACK and the eMBB PUSCH resource overlap in time domain.
  • the base station determines the position of the first time domain resource, the position of the second time domain resource and the time domain overlap relationship between the third time domain resource in the same manner as that of the UE, so you can refer to the corresponding part of the foregoing embodiment. , I won’t repeat it here.
  • the determining the third time domain resource location of the PUCCH resource carrying the URLLC HARQ-ACK includes: in the case of dynamically scheduling the physical downlink shared channel PDSCH resource of the URLLC, according to scheduling the URLLC PDSCH
  • the downlink scheduling instruction of the resource determines the position of the third time domain resource; in the case of semi-persistent scheduling URLLC PDSCH resources, the position of the third time domain resource is determined according to the configuration information of the semi-persistent scheduling URLLC PDSCH resource and the activation of DCI
  • the activated DCI includes: the resource identifier of the PUCCH resource carrying the URLLC HARQ-ACK, the offset and the duration of the semi-persistent scheduling URLLC PDSCH resource.
  • the manner in which the base station determines the position of the third time domain resource may be the same as the manner in which the UE determines the position of the third time domain resource.
  • the base station is the scheduler of various resources, and the base station can determine the first time domain resource location, the second time domain resource location, and the third time domain resource location when scheduling resources, and it does not need to be based on itself.
  • the base station when determining the UE's definite time, if the URLLC PDSCH resource is dynamically configured, the base station needs to determine it by combining the high-level signaling issued by itself and the activation of the DCI.
  • the method further includes:
  • the determined time of the user equipment UE is obtained, where the demodulation duration is: The duration of the UE demodulating the uplink scheduling instruction; the determining moment is: determining the PUCCH resource of the URLLC HARQ-ACK, respectively, and the PUCCH resource carrying the eMBB HARQ-ACK and the time domain of the eMBB PUSCH resource Moments of overlapping relationships.
  • the determination method of the determination time is commonly known by the base station and the terminal.
  • the base station and the terminal use the same determination method to determine the determination time, whether the determination time of the terminal obtained by the base station and the terminal is greater than The result of the early scheduled time is the same.
  • the terminal and the base station can know whether the eMBB HARQ-ACK is currently sent on the PUCCH resource or the PUSCH resource without negotiating.
  • the demodulation duration is a predetermined number of symbols.
  • the method further includes: determining the demodulation duration, wherein the determining the demodulation duration includes one of the following:
  • the demodulation duration is determined according to the configuration information delivered to the UE.
  • the base station needs to deliver configuration information indicating the demodulation duration to the UE.
  • the method further includes:
  • the eMBB PUSCH resource is discarded or the eMBB PUSCH resource is punctured.
  • the eMBB PUSCH resource is discarded, the eMBB service data will not be received on the corresponding eMBB PUSCH resource.
  • the base station will not perform data reception on the discarded eMBB PUSCH resource.
  • an embodiment of the present application provides a HARQ-ACK transmission device, which is applied to a user equipment UE and includes:
  • the first sending module 610 is configured to determine the PUCCH resource carrying URLLC HARQ-ACK and the eMBB PUSCH resource time domain before a predetermined time when the PUCCH resource of eMBB HARQ-ACK and the eMBB PUSCH resource time domain overlap
  • the eMBB HARQ-ACK is sent on the PUCCH resource of the eMBB HARQ-ACK, where the predetermined time is: the eMBB PUSCH The earlier one of the time domain start time of the resource and the time domain start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the device further includes:
  • the first determining module is configured to determine the first time domain resource location of the PUCCH resource carrying the eMBB HARQ-ACK;
  • the second determining module is configured to determine the second time domain resource location of the eMBB PUSCH resource
  • the third determining module is configured to determine whether the PUCCH resource carrying the eMBB HARQ-ACK and the eMBB PUSCH resource overlap in time domain based on the location of the first time domain resource and the location of the second time domain resource.
  • the device further includes:
  • the fourth determining module is configured to determine the third time domain resource location of the PUCCH resource carrying the URLLC HARQ-ACK;
  • the fifth determining module is configured to determine whether the PUCCH resource carrying the URLLC HARQ-ACK and the PUCCH resource carrying the eMBB HARQ-ACK are determined based on the position of the first time domain resource and the position of the third time domain resource Sometimes the domains overlap;
  • the device further includes:
  • the first obtaining module is configured to obtain the determined time according to the receiving time and the demodulation duration of the uplink scheduling instruction for scheduling the URLLC PDSCH resource in the case of dynamically scheduling the URLLC PDSCH resource, wherein the solution
  • the timing length is: the duration for the UE to demodulate the uplink scheduling instruction; the determining moment is: determining the PUCCH resource of the URLLC HARQ-ACK, respectively, and the PUCCH resource carrying the eMBB HARQ-ACK and the eMBB The time when the PUSCH resource overlaps in the time domain.
  • the demodulation duration is a predetermined number of symbols.
  • the device further includes:
  • the sixth determining module is configured to determine the demodulation duration, wherein the determining the demodulation duration includes one of the following:
  • the demodulation duration is determined according to the received configuration information.
  • the device further includes:
  • the first resource processing module is configured to discard the eMBB PUSCH resource or puncture the eMBB PUSCH resource.
  • an embodiment of the present application provides a HARQ-ACK transmission device, which is applied in a base station, and includes:
  • the first receiving module 710 is configured to determine that the UE determines the PUCCH resource carrying URLLC HARQ-ACK before the predetermined time when the PUCCH resource carrying eMBB HARQ-ACK and the PUSCH resource of the eMBB physical uplink shared channel overlap.
  • the time domain overlaps with the eMBB PUSCH resource and there is no time domain overlap with the PUCCH resource of the eMBB HARQ-ACK the eMBB HARQ-ACK is received on the PUCCH resource of the eMBB HARQ-ACK, where the The predetermined time is the earlier one of the time domain start time of the eMBB PUSCH resource and the time domain start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the HARQ-ACK transmission device applied to the base station further includes:
  • the seventh determining module is configured to determine the first time domain resource location of the PUCCH resource carrying the eMBB HARQ-ACK;
  • An eighth determining module configured to determine the second time domain resource location of the eMBB PUSCH resource
  • the ninth determining module is configured to determine whether the PUCCH resource carrying the eMBB HARQ-ACK and the eMBB PUSCH resource overlap in time domain based on the location of the first time domain resource and the location of the second time domain resource.
  • the HARQ-ACK transmission device applied in the base station also includes:
  • the tenth determining module is configured to determine the third time domain resource location of the PUCCH resource carrying the URLLC HARQ-ACK;
  • An eleventh determining module configured to determine the PUCCH resource carrying the URLLC HARQ-ACK and the PUCCH resource carrying the eMBB HARQ-ACK based on the position of the first time domain resource and the position of the third time domain resource Whether the time domain overlaps; and based on the second time domain resource location and the third time domain resource location, determine whether the PUCCH resource carrying the URLLC HARQ-ACK and the eMBB PUSCH resource overlap.
  • the device further includes:
  • the second obtaining module is configured to obtain the user equipment according to the issuance time and demodulation duration of the uplink scheduling instruction for scheduling the URLLC PDSCH resource in the case of dynamic scheduling of the URLLC physical downlink shared channel PDSCH resource
  • the device further includes:
  • the second resource processing module is configured to discard the eMBB PUSCH resource or puncture the eMBB PUSCH resource.
  • This example proposes a method for transmitting eMBB HARQ-ACK.
  • Both the PUCCH resource carrying URLLC HARQ-ACK and the PUCCH resource carrying eMBB HARQ-ACK overlap with the eMBB PUSCH resource, but there is no overlap between the PUCCH resource carrying URLLC HARQ-ACK and the PUCCH resource carrying eMBB HARQ-ACK.
  • the earlier of the start time of the eMBB PUSCH resource and the start time of the PUCCH resource of the eMBB HARQ-ACK is selected.
  • the UE can determine that there will be PUCCH resources carrying URLLC HARQ-ACK and eMBB PUSCH resources overlap in time domain, then the UE will use PUCCH resources to transmit eMBB HARQ-ACK instead of The eMBB HARQ-ACK is multiplexed onto the eMBB PUSCH resource for transmission.
  • Using the above method of transmitting eMBB HARQ-ACK can reduce the situation of eMBB HARQ-ACK being discarded or partially discarded in the above specific scenarios, so that the base station can correctly receive the eMBB HARQ-ACK fed back by the UE, thereby reducing unnecessary eMBB Data retransmission.
  • the UE When the UE can determine the time domain resource location of the PUCCH resource carrying URLLC HARQ-ACK, and can determine the time domain resource location of the eMBB PUSCH resource, the UE compares the time domain resource location of the PUCCH resource carrying URLLC HARQ-ACK with The time domain resource location of the eMBB PUSCH resource can determine whether there will be URLLC HARQ-ACK overlapping eMBB PUSCH.
  • the specific determination method may be determined according to the scheduling method of URLLC PDSCH and/or eMBB PUSCH.
  • the UE will receive a downlink scheduling instruction (DL grant) for scheduling the PDSCH at the same time or before receiving the information transmitted by the PDSCH resource.
  • the downlink scheduling instruction may be a type of DCI.
  • the downlink scheduling instruction will indicate the time-frequency resource position of the PUCCH channel carrying the HARQ-ACK corresponding to the PDSCH resource. Therefore, after successfully demodulating the downlink scheduling instruction for scheduling URLLC PDSCH resource transmission, the UE can determine the time domain resource location of the PUCCH resource carrying URLLC HARQ-ACK.
  • the time required for the UE to successfully demodulate the downlink scheduling instruction may be agreed upon by agreement, or after the UE reports the UE capability information to the base station, the base station configures the UE. For example, it may be agreed or configured that the UE can successfully demodulate the downlink scheduling instruction within 1 symbol after the PDCCH resource carrying the downlink scheduling instruction.
  • the time-frequency domain position of the eMBB PUSCH resource can be predicted in advance by the base station and the UE. That is, in the case of semi-persistent scheduling of URLLC PDSCH resources: the time-frequency domain position of the PDSCH resource and the time-frequency domain position of the HARQ-ACK PUCCH resource can be predicted in advance by the base station and the UE. For another example, in the case of statically configuring the URLLC PDSCH resource, the time-frequency domain position of the PDSCH resource and the HARQ-ACK PUCCH resource time-frequency domain position are also predictable by the base station and the UE in advance.
  • the UE learns that there will be PUCCH resources carrying URLLC HARQ-ACK and eMBB PUSCH resources that overlap in time domain, which is earlier than eMBB.
  • the start time of the PUSCH resource and the start time of the PUCCH resource carrying eMBB HARQ-ACK is the earlier.
  • the UE will use the PUCCH resource to transmit eMBB HARQ-ACK instead of multiplexing the eMBB HARQ-ACK onto the eMBB PUSCH resource for transmission.
  • the eMBB PUSCH will be discarded or punctured.
  • the UE learns that there will be PUCCH resources carrying URLLCHARQ-ACK and eMBB PUSCH resources that overlap in time domain, which is earlier than eMBB
  • the start time of the PUSCH resource and the start time of the PUCCH resource carrying eMBB HARQ-ACK is the earlier.
  • the UE will use PUCCH resources to transmit eMBB HARQ-ACK instead of multiplexing eMBB HARQ-ACK onto eMBB PUSCH resources for transmission.
  • eMBB PUSCH will be discarded.
  • the UE learns that the PUCCH resource that will carry the HARQ-ACK of URLLC and the eMBB PUSCH resource overlap in time, which is earlier than The earlier of the start time of the eMBB PUSCH resource and the start time of the bearer eMBB HARQ-ACK PUCCH resource. Then the UE will use PUCCH resources to transmit eMBB HARQ-ACK instead of multiplexing eMBB HARQ-ACK onto eMBB PUSCH resources for transmission. At the same time, eMBB PUSCH resources will be discarded or punctured.
  • the UE learns that the PUCCH resource that will carry the HARQ-ACK of URLLC and the eMBB PUSCH resource overlap in time, which is later than The earlier of the start time of the eMBB PUSCH resource and the start time of the PUCCH resource carrying the eMBB HARQ-ACK.
  • the UE will multiplex the eMBB HARQ-ACK into the eMBB PUSCH resource for transmission according to the agreement in the existing protocol, discard the PUCCH resource that carries the eMBB HARQ-ACK, and then know that it will carry the URLLC HARQ-ACK.
  • the corresponding discarding or puncturing operation is performed.
  • Fig. 12 shows a UE according to an exemplary embodiment.
  • the UE may specifically be a mobile phone, a computer, a digital broadcasting UE, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • UE 800 may include one or more of the following components: processing component 802, memory 804, power component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, And the communication component 816.
  • the processing component 802 generally controls the overall operations of the UE 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations at the UE 800. Examples of these data include instructions for any application or method operating on the UE 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 806 provides power for various components of the UE 800.
  • the power component 806 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the UE 800.
  • the multimedia component 808 includes a screen that provides an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the UE 800 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC).
  • the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors, which are used to provide the UE 800 with various aspects of state evaluation.
  • the sensor component 814 can detect the on/off status of the UE 800 and the relative positioning of components, such as the display and keypad of the UE 800.
  • the sensor component 814 can also detect the position change of the UE 800 or a component of the UE 800. The presence or absence of contact with the UE 800, the orientation or acceleration/deceleration of the UE 800, and the temperature change of the UE 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the UE 800 and other devices.
  • the UE 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the UE 800 can be configured by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, for example, the memory 804 including instructions, and the foregoing instructions may be executed by the processor 820 of the UE 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and so on.
  • Figure 13 is a schematic diagram of a base station.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute the PDCCH monitoring method shown in FIG. 4 and/or FIG. 5.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the storage 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种混合自动重传请求应答传输方法及装置、设备及介质。该方法可包括:在承载增强移动带宽eMBB HARQ-ACK的PUCCH资源与eMBB物理上行共享信道PUSCH资源有时域重叠的情况下,在预定时刻之前确定出承载超高可靠低时延通信URLLC HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠,且与eMBB HARQ-ACK的PUCCH资源无时域重叠时,在eMBB HARQ-ACK的PUCCH资源上发送eMBB HARQ-ACK,预定时刻为:eMBB PUSCH资源的时域起始时刻和承载eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。

Description

混合自动重传请求应答传输方法及装置、设备及介质 技术领域
本公开实施例涉及无线通信技术领域但是不限于无线通信技术领域,尤其涉及一种混合自动重传请求应答(Hybridautomatic Repeat ReQuest ACKnowledgement,HARQ-ACK)传输方法及装置、设备及介质。
背景技术
在第五代(5 th Generation,5G)蜂窝移动通信的新无线(New Radio,NR)中,高可靠低时延(Ultra reliable and low latency communication,URLLC)业务是非常重要的一种业务类型,将广泛应用于工厂自动化、远程控制、增强现实(Augment Reality,AR)/虚拟现实(Virtual Reality,VR)等5G场景中。URLLC业务通常会要求非常高的可靠性和非常低的时延。另外,还有一种业务类型是增强移动宽带业务(Enhanced Mobile Boardband,eMBB),该业务类型通常要求较大的带宽,对可靠性的和时延的要求较为宽松,其业务优先级通常会低于URLLC的业务。
在应用过程中发现eMBB HARQ-ACK有丢失的现象,这种丢失现象会导致基站重复发送不必要的eMBB业务数据。
发明内容
本申请实施例公开了一种混合自动重传请求应答传输方法及装置、通信设备及计算机非瞬间介质。
本申请实施例第一方面提供一种HARQ-ACK传输方法,其中,应用于用户设备(User Equipment,UE),包括:
在承载eMBB HARQ-ACK的PUCCH资源与eMBB PUSCH资源有 时域重叠的情况下,在预定时刻之前确定出承载URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上发送所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
基于上述方案,所述方法还包括:
确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;
确定所述eMBB PUSCH资源的第二时域资源位置;
基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
基于上述方案,所述方法还包括:
确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;
基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;
基于所述第二时域资源位置及所述第三时域资源位置,确定承载所述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
基于上述方案,所述方法还包括:
在动态调度所述URLLC物理下行共享信道PDSCH资源的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的接收时刻及解调时 长,得到确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
基于上述方案,所述解调时长为预定个数的符号。
基于上述方案,所述方法还包括:确定所述解调时长,其中,所述确定解调时长包括以下之一:
根据协议约定确定所述解调时长;
根据接收的配置信息确定所述解调时长。
基于上述方案,所述方法还包括:
丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
本申请实施例第二方面提供一种HARQ-ACK传输方法,应用于基站中,包括:
在承载增强移动带宽eMBB HARQ-ACK的PUCCH资源与eMBB物理上行共享信道PUSCH资源有时域重叠的情况下,确定出UE在预定时刻之前确定出承载超高可靠低时延通信URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上接收所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
基于上述方案,所述方法还包括:
确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;
确定所述eMBB PUSCH资源的第二时域资源位置;
基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
基于上述方案,所述方法还包括:
确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;
基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;
基于所述第二时域资源位置及所述第三时域资源位置,确定承载所述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
基于上述方案,所述方法还包括:
在动态调度所述URLLC物理下行共享信道PDSCH资源的情况下的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的下发时刻及解调时长,得到用户设备UE的确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
基于上述方案,所述方法还包括:
丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
本申请实施例第三方面提供一种混合自动重传请求应答HARQ-ACK传输装置,其中,应用于用户设备UE中,包括:
第一发送模块,被配置为在eMBB HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的情况下,在预定时刻之前确定出承载 URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上发送所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
基于上述方案,所述装置还包括:
第一确定模块,被配置为确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;
第二确定模块,被配置为确定所述eMBB PUSCH资源的第二时域资源位置;
第三确定模块,被配置为基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
基于上述方案,所述装置还包括:
第四确定模块,用于确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;
第五确定模块,用于基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;
基于所述第二时域资源位置及所述第三时域资源位置,确定承载所述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
基于上述方案,所述装置还包括:
第一得到模块,被配置为用于在动态调度所述URLLC PDSCH资源的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的接收时 刻及解调时长,得到确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
基于上述方案,所述解调时长为预定个数的符号。
基于上述方案,所述装置还包括:
第六确定模块,被配置为确定所述解调时长,其中,所述确定解调时长包括以下之一:
根据协议约定确定所述解调时长;
根据接收的配置信息确定所述解调时长。
基于上述方案,所述装置还包括:
第一资源处理模块,被配置为丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
本申请实施例第三方面提供一种HARQ-ACK传输装置,应用于基站中,包括:
第一接收模块,被配置为在承载eMBB HARQ-ACK的PUCCH资源与eMBB物理上行共享信道PUSCH资源有时域重叠的情况下,确定出UE在预定时刻之前确定出承载URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上接收所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
基于上述方案,所述装置还包括:
第二得到模块,被配置为在动态调度所述URLLC物理下行共享信 道PDSCH资源的情况下的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的下发时刻及解调时长,得到用户设备UE的确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
基于上述方案,所述装置还包括:
第二资源处理模块,被配置为丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
本申请实施例第五方面提供一种通信设备,其中,包括:
收发器;
存储器;
处理器,分别与所述收发器及所述存储器连接,用于通过执行存储在所述存储器上的计算机可执行指令,控制收发器的无线信号收发,并实现第一方面或第二方面任意技术方案提供的方法。
本申请实施例第六方面提供一种计算机非瞬间存储介质,其中,所述计算机非瞬间存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后第一方面或第二方面任意技术方案提供的方法。
本申请实施例提供的技术方案,在承载eMBB HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的情况下,在承载URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,若在所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个之前确定出来,则UE会依旧利用PUCCH资源发送eMBB HARQ-ACK,而不是将eMBB HARQ-ACK复用到eMBB  PUSCH资源上传输,减少因为突发的URLLC HARQ ACK使得eMBB PUSCH资源丢弃或打孔导致的eMBB HARQ-ACK丢失现象,从而减少这种丢失现象使得基站不必要的eMBB业务数据的重输。
附图说明
图1为本公开实施例提供的一种无线通信系统的结构示意图;
图2为本公开实施例提供的一种HARQ-ACK传输方法的流程示意图;
图3为本公开实施例提供的一种确定承载eMBB HARQ-ACK的PUCCH资源和eMBB PUSCH资源是否有时域重叠的流程示意图;
图4为本公开实施例提供的一种承载URLLC HARQ-ACK的PUCCH资源,分别与承载eMBB HARQ-ACK的PUCCH资源和eMBB PUSCH资源是否有时域重叠的流程示意图;
图5为本公开实施例提供的一种HARQ-ACK传输方法的流程示意图;
图6为本公开实施例提供的一种HARQ-ACK传输装置的结构示意图;
图7为本公开实施例提供的一种HARQ-ACK传输装置的结构示意图;
图8为本公开实施例提供的一种HARQ-ACK传输方法的流程示意图;
图9为本公开实施例提供的一种承载URLLC HARQ-ACK的PUCCH资源、承载eMBB HARQ-ACK的PUCCH资源和eMBB PUSCH资的时域关系示意图;
图10为本公开实施例提供的一种承载URLLC HARQ-ACK的PUCCH资源、承载eMBB HARQ-ACK的PUCCH资源和eMBB PUSCH资的时域关系示意;
图11为本公开实施例提供的一种承载URLLC HARQ-ACK的PUCCH资源、承载eMBB HARQ-ACK的PUCCH资源和eMBB PUSCH资的时域关系示意;
图12为本公开实施例提供的一种UE的结构示意图;
图13为本公开实施例提供的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE 11以及若干个基站12。
其中,UE 11可以是指向用户提供语音和/或数据连通性的设备。UE 11 可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE 11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE 11也可以是无人飞行器的设备。或者,UE 11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE 11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。该无线通信系统可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统可以是支持新空口非授权频谱通信(NR-U,New Radio-Unlicense)的系统。或者该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站12可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Medium Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和UE 11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE 11之间还可以建立E2E(End to End,端到端)连接。在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
在5G NR通信协议中,对于承载HARQ-ACK的PUCCH资源与承载同一种业务类型的数据的PUSCH资源,如果两者在时域上有重叠,则应该丢弃该PUCCH资源,将HARQ-ACK复用到PUSCH资源上传输。但是当承载URLLC的HARQ-ACK PUCCH资源与eMBB PUSCH资源在时域上有重叠时,eMBB PUSCH资源将会被丢弃或者部分丢弃。如果,此时eMBB PUSCH资源上复用有eMBB HARQ-ACK的话,该承载eMBB HARQ-ACK将可能会被丢弃或者部分丢弃,导致基站无法接收到或者无法正确的接收到UE反馈的eMBB业务的HARQ-ACK,从而引起不必要的eMBB数据重传。
如果承载URLLC HARQ-ACK的PUCCH资源与承载eMBB HARQ-ACK的PUCCH资源都与eMBB PUSCH资源有时域重叠,但是承载URLLC  HARQ-ACK的PUCCH资源与承载eMBB HARQ-ACK的PUCCH资源之间不重叠,那么将eMBB HARQ-ACK复用到eMBB PUSCH资源上传输将可能导致eMBB HARQ-ACK被丢弃或者部分丢弃。
如图2所示,本实施例提供一种HARQ-ACK传输方法,其中,应用于用户设备UE中,包括:
S110:在承载eMBB HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的情况下,在预定时刻之前确定出承载URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上发送所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
在本申请实施例中,该方法应用于各种UE上。该UE可为人载移动终端和/或车载移动终端。例如,人载移动终端可为手机、平板电脑或可穿戴式设备等。该车载移动终端可包括:私家车、公交车等交通工具上的车载设备。
所述PUCCH资源为:分配给PUCCH的通信资源,该通信资源包括时域资源和频域资源。
承载eMBB HARQ-ACK的PUCCH资源为:在PUCCH上调度用来传输eMBB HARQ-ACK的通信资源。该eMBB HARQ-ACK为下行eMBB业务数据的反馈信息。
承载URLLC HARQ-ACK的PUCCH资源为:在PUCCH上调度用来传输URLLC HARQ-ACK的通信资源。
所述eMBB PUSCH资源可为:用于UE上传eMBB业务数据的PUSCH资源。如此,UE可以在PUSCH的对应资源上向基站发送eMBB 业务数据。
eMBB HARQ-ACK为针对在PDSCH上传输的eMBB业务数据的反馈信息,可分为确认符(ACK)和非确认符(NACK)。ACK指示数据接收成功;NACK指示数据接收失败。
URLLC HARQ-ACK为针对在PDSCH上传输的URLLC业务数据的反馈信息,同样可分为ACK和NACK。
在承载eMBB HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的情况下,会进一步判断承载URLLC HARQ-ACK的PUCCH资源,分别与所述eMBB PUSCH资源和承载eMBB HARQ-ACK的PUCCH资源之间在时域的重叠关系。
所述重叠关系包括:有时域重叠和无时域重叠。此处的有时域重为:两种资源占用的时间有重合的部分;无时域重叠为两种资源占用的时间无重合部分。
所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中相对较早的一个。例如,若eMBB PUSCH资源的起始时刻早于承载所述eMBB HARQ-ACK的PUCCH资源的起始时刻,则该预定时刻为:eMBB PUSCH资源的起始时刻。若eMBB PUSCH资源的起始时刻晚于承载所述eMBB HARQ-ACK的PUCCH资源的起始时刻,则该预定时刻为:承载所述eMBB HARQ-ACK的PUCCH资源的起始时刻。
参考图8至图11所示,比较承载eMBB HARQ-ACK的PUCCH资源和eMBB PUSCH资源中在时域起始位置更早的一个。
由于URLLC业务的延时低于eMBB业务的延时。若在URLLC HARQ-ACK发送时,出于UE的发射功率的局限性和/或UE在一个时间点同时发送URLLC HARQ-ACK和在PUSCH资源上发送eMBB业务数 据导致的高功耗的现象,UE可能会丢弃eMBB PUSCH资源,此时,若依然将eMBB HARQ-ACK复用到eMBB PUSCH资源上传输,会导致基站接收不到所述eMBB HARQ ACK,从而基站不必要eMBB业务数据的下行重发。
有鉴于此,若承载URLLC HARQ-ACK的PUCCH资源与eMBB PUSCH资源重叠的情况下,且承载eMBB HARQ-ACK也与eMBB PUSCH资源有重叠的情况下,为了确保eMBB HARQ-ACK及时传输,不会将eMBB HARQ-ACK复用到eMBB PUSCH资源上进行传输。而是进一步根据承载eMBB HARQ-ACK的PUCCH资源和承载URLLC HARQ-ACK的PUCCH资源在时域的重叠关系,确定是否丢弃承载eMBB HARQ-ACK的PUCCH资源。如果,承载eMBB HARQ-ACK的PUCCH资源和承载URLLC HARQ-ACK的PUCCH资源在时域无重叠,则此时不会因为URLLC HARQ-ACK的低延时性,需要eMBB HARQ-ACK进行避让。故此时,依然使用承载eMBB HARQ-ACK的PUCCH资源发送所述eMBB HARQ-ACK。且由于承载URLLC HARQ-ACK的PUCCH资源与承载eMBB HARQ-ACK的PUCCH资源无时域重叠,则在eMBB PUSCH资源的时域位置内,可以分别使用承载eMBB HARQ-ACK的PUCCH资源和承载承载URLLC HARQ-ACK的PUCCH资源,分别发送eMBB HARQ-ACK和URLLC HARQ-ACK,从而减少了在承载eMBB HARQ-ACK与eMBB PUSCH资源有时域重叠时,直接将eMBB HARQ-ACK复用eMBB PUSCH资源传输导致的eMBB HARQ-ACK的漏传现象。
如图3所示,所述方法还包括:
S101:确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;
S102:确定所述eMBB PUSCH资源的第二时域资源位置;
S103:基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
由于URLLC业务一般是突发且是低延时的业务,如果有需要传输时,需要尽快的调度对应的资源进行传输,并且需要及时的知道URLLC的传输状况,在出现传输失败时需要尽快的重传。故基站在调度承载URLLC业务的资源时所使用的下行调度指令的下发时刻,与调度的承载URLLC业务的PUSCH资源或者传输URLLC HARQ-ACK的起始时刻之间的时间间隔小。而eMBB业务的时延要求低于URLLC业务的时延要求,如此,承载eMBB业务的传输资源和eMBB HARQ-ACK的传输资源在时域的间隔比较大。故在UE会在确定有URLLC HARQ-ACK需要反馈时,基于这种资源配置特性,可以提前预知eMBB PUSCH资源和承载eMBB HARQ-ACK的PUCCH资源之间是否有时域重叠,如果没有时域重叠,则eMBB HARQ-ACK在对应的PUCCH资源上发送,而eMBB PUSCH资源是否有丢弃,则取决于与承载URLLC HARQ-ACK的PUCCH资源之间是否有时域重叠。若eMBB PUSCH资源与承载URLLC HARQ-ACK的PUCCH资源有时域重叠,则丢弃eMBB PUSCH资源或者对eMBB PUSCH资源进行打孔。
第一时域资源位置是承载所述eMBB HARQ-ACK的PUCCH资源所占用的时域资源的位置,例如,该PUCCH资源的起始时刻及终止时刻。
第二时域资源位置是承载所述eMBB PUSCH资源所占用的时域资源的位置,例如,该eMBB PUSCH资源的起始时刻及终止时刻。
确定所述第一时域资源位置和第二时域资源位置的方式有多种,具体的可以根据eMBB物理下行共享信道(Physical Downlink Shared  Channel,PDSCH)的调度方式及eMBB PUSCH的调度方式来确定的。
例如,在动态调度eMBB PDSCH资源的情况下,根据调度所述eMBB PDSCH的下行调度指令,确定所述第一时域资源位置。该调度所述eMBB PDSCH的下行调度指令可以携带在物理层的下行控制信息(Downlink Control Information,DCI)中。该DCI中会指示eMBB PDSCH资源的资源标识,如此,根据该资源标识就能够确定出eMBB PDSCH资源的时域资源位置。于此同时,该调度所述eMBB PDSCH的下行调度指令还会携带一个偏移量(K1)信息域和一个PUCCH资源指示符(PUCCH Resource Indicator,PRI)。该PUCCH资源指示符,指示了承载eMBB HARQ-ACK的PUCCH资源的时域资源集合。该K1信息域指示了eMBB PDSCH资源和承载eMBB HARQ-ACK的PUCCH资源之间间隔的时隙(slot)个数。如此,基于该K1从PRI指示的PUCCH资源中确定出承载eMBB HARQ-ACK的PUCCH资源,进而可以确定出所述第一资源位置。
在半持续调度eMBB PDSCH的情况下,根据半持续调度eMBB PDSCH资源的配置信息及激活DCI携带的激活指示,确定所述第一时域资源位置。
例如,基站通过高层信令(例如,无线资源控制(Radio Resource Control,RCC)下发了所述eMBB PDSCH资源的配置信息。该配置信息可包括:eMBB PDSCH资源的半持续调度的周期。该半持续调度的周期可具有默认的起始时刻。例如,该半持续调度的周期默认的起始时刻为一个时隙所包含的首个符号。在所述激活DCI中可携带有激活半持续调度周期的偏移量(offset),偏移量相对于默认的起始时刻,就知道半持续调度周期被激活的起始时刻。再例如,该激活DCI中还可携带有eMBB PDSCH资源的占用时长(duration)。在结合半持续调度eMBB PDSCH资源所对应的承载eMBB HARQ-ACK的PUCCH资源的之间关系,就能 够确定出所述第一资源位置。
在本申请实施例中,所述eMBB HARQ-ACK为所述eMBB PDSCH资源上传输的eMBB业务数据的反馈信息。
同样地,所述eMBB PUSCH资源也存在动态调度和配置授权调度两种情况。
例如,在动态调度所述eMBB PUSCH资源的情况下,根据调度所述eMBB PUSCH的上行调度指令,确定所述第二时域资源位置。
该上行调度指令可以携带在DCI中,该DCI可以直接指示所述eMBB PUSCH资源,如此,可以简便的根据上行调度指令快捷确定出所述第二时域资源位置。
在配置授权调度所述所述确定所述eMBB PUSCH资源的情况下,根据配置授权调度信息,确定所述第二时域资源位置。
所述配置授权调度信息为进行eMBB PUSCH资源的配置授权调度所产生的调度信息。该eMBB PUSCH资源的配置授权调度可包括:
eMBB PUSCH资源的半静态调度方式一;
eMBB PUSCH资源的半静态调度方式二。
在半静态调度方式一中,基站通过高层信令下发配置授权调度信息,该配置授权调度信息包含了:eMBB PUSCH资源的所有调度信息,例如,eMBB PUSCH资源的半静态周期、该半静态周期的偏移量及eMBB PUSCH资源的资源长度。
在半静态调度方式二中,基站通过高层下发的配置授权调度信息对eMBB PUSCH资源进行了初始配置,然后结合物理层下发的激活DCI共同调度所述eMBB PUSCH资源。例如,该初始配置限定了eMBB PUSCH资源的半静态周期。此时激活DCI中可携带有该半静态周期的偏移量及eMBB PUSCH资源的资源长度。
以上给出了第一时域资源位置和第二时域资源位置的确定方式,具体实现时不局限于此。
在一些实施例中,所述方法还包括:
S104:确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;
S105:基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;
S106:基于所述第二时域资源位置及所述第三时域资源位置,确定承载所述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
考虑到信息类型,例如,URLLC HARQ-ACK和eMBB HARQ-ACK都属于控制信息,而eMBB业务数据属于业务信息。同时考虑到业务类型的差异,URLLC业务的延时要求高于eMBB延时要求。针对URLLC HARQ-ACK、eMBB HARQ-ACK及eMBB PUSCH资源传输的eMBB业务数据三者的传输优先顺序是:传输URLLC HARQ-ACK的优先级级高于传输eMBB HARQ-ACK的优先级,且传输eMBB HARQ-ACK的优先级高于eMBB业务数据的优先级。
在确定出所述第一时域资源位置和所述第二时域资源位置之后,就可以通过比对的方式,确定出上述三种资源之间是否存在时域重叠关系。该时域重叠关系包括:有时域重叠和无时域重叠。
参考图8、图9、图10及图11所示,所述方法还包括:
确定出承载URLLC HARQ-ACK的PUCCH资源分别与eMBB PUSCH资源和承载eMBB HARQ-ACK的PUCCH资源之间时域重叠关系的确定时刻。
图8、图9及图10所示均为确定时刻早于预定时刻。在图8中,URLLC PDSCH资源是通过下行调度指令动态调度的;在图9中,URLLC PDSCH资源是半静态配置的。在图10中,URLLC PDSCH资源是通过下行调度指令动态调度的。图11所示为预定时刻晚于确定时刻。在图11中,URLLC PDSCH资源是通过下行调度指令动态调度的。
在一些实施例中,所述S104可包括:
在动态调度URLLC的物理下行共享信道PDSCH资源的情况下,根据调度所述URLLC PDSCH资源的下行调度指令,确定所述第三时域资源位置;
在半持续调度URLLC PDSCH资源的情况下,根据半持续调度URLLC PDSCH资源的配置信息以及激活DCI,确定所述第三时域资源位置,其中,所述激活DCI包含:承载所述URLLC HARQ-ACK的PUCCH资源的资源标识、半持续调度URLLC PDSCH资源的偏移量及持续长度。
URLLC HARQ-ACK为利用URLLC PDSCH资源传输URLLC业务数据的反馈信息。
同样地,调度所述URLLC PDSCH资源的下行调度指令可携带在DCI中,DCI直接会携带URLLC PDSCH资源的资源标识信息、承载URLLC HARQ-ACK的PUCCH资源的资源标识信息、URLLC PDSCH资源和承载URLLC HARQ-ACK的PUCCH资源之间时隙偏移个数等信息,故可以直接根据下行调度指令,确定所述第三时域资源位置。
在URLLC PDSCH资源的半持续调度与eMBB PDSCH资源的半持续调度类似,故同样的可以基于高层信令下发的配置信息及激活DCI确定出第三时域资源位置。
在一些实施例中,所述方法还包括:
在动态调度所述URLLC PDSCH资源的情况下,根据调度所述 URLLC PDSCH资源的上行调度指令的接收时刻及解调时长,得到确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
为了便于基站知晓UE是否在预定时刻之前能够承载URLLC HARQ-ACK的PUCCH资源,分别与所述eMBB PUSCH资源和承载eMBB HARQ-ACK的PUCCH资源之间的时域重叠关系。在本申请实施例中引入了解调时长。该解调时长可为UE和基站都预先知道的。
该解调时长为UE和基站之间共同认定的UE解调调度所述URLLC PDSCH资源的上行调度指令的时长。如此,方便基站根据该解调时长,确定在出现上述情况是在PUCCH资源上接收eMBB HARQ-ACK,还是在PUSCH资源上接收eMBB HARQ-ACK。
所述解调时长为预定个数的符号。在本申请实施例中,该解调时长是精确到符号级别的,如此,提升确定的精确性。例如,该解调时长可为1个或2个符号。参考图8至图11所示,UE对动态调度的DCI的解调时长可为1个符号。图8和图12所示的动态调度URLLC PDSCH资源的下行调度指令都是1个符号。
在一些实施例中,所述方法还包括:确定所述解调时长,其中,所述确定解调时长包括以下之一:
根据协议约定确定所述解调时长;
根据接收的配置信息确定所述解调时长。
例如,在通信协议中约定了解调时长,如此,UE和基站都会因为被预置了通信协议的内容,故可以根据通信协议中的协议约定确定出该解调时长。
在一些实施例中,UE可以上报自己的解调能力信息,如此,基站会根据UE上报的解调能力信息估算出解调时长,并根据估算出的解调时长向UE下发配置信息。如此,UE可以根据配置信息确定出自己大概在什么时域位置可以确知承载URLLC HARQ-ACK的PUCCH资源分别与eMBB PUSCH资源和承载eMBB HARQ-ACK的PUCCH资源之间的时域重叠关系。具体的时域重叠关系,是由UE根据解调内容来确定的,但是在选择发送的eMBB HARQ-ACK的资源时,是根据与基站共同都知道的解调时长来确定的确定时刻和预定时刻之间的关系来确定的。例如,这两者的关系包括:确定时刻早于预定时刻、确定时刻等于预定时刻、确定时刻晚于预定时刻。如果,确定时刻等于或晚于预定时刻,即便出现了在承载eMBB HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的情况下,且承载URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠,也会将eMBB HARQ-ACK复用到eMBB PUSCH资源上发送,如此,实现保持基站和UE对选择PUCCH资源或者PUSCH资源发送eMBB HARQ-ACK确认的一致性。
在一些实施例中,UE还可以根据自身的解调能力,确定所述解调时长。而UE会将指示自身的解调能力的解调能力信息上报给基站,基站和UE根据同样的确定逻辑,基于UE的解调能力信息换算出所述解调时长。
在还有一些实施例中,前述指示解调时长的配置信息可为基站根据UE上报的建议时长确定的。例如,UE根据自身的解调能力换算出一个或多个建议时长报给基站,而基站可以随机选择或者根据当前自设的负载量等选择一个建议时长,向UE发送指示所述解调时长的配置信息。
在一些实施例中,所述方法还包括:
丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
此处的丢弃为整个的丢弃与承载eMBB HARQ-ACK和承载URLLC HARQ-ACK的PUCC资源的所述eMBB PUSCH资源。
对所述eMBB PUSCH资源进行打孔为:丢弃掉eMBB PUSCH资源分别与承载eMBB HARQ-ACK和承载URLLC HARQ-ACK的PUCC资源有时域重叠的部分资源。
由于eMBB PUSCH资源用于传输eMBB业务数据,而eMBB业务数据为了提升接收成功率,通常都配置了重复传输,在丢弃重复传输中的少量次数的传输时,基站依然可以接收全部的eMBB数据,故即便丢弃了eMBB PUSCH资源,也对使用eMBB业务数据的影响较小。
在UE侧,若丢弃了eMBB PUSCH资源,则在对应的eMBB PUSCH资源上不发送eMBB业务数据。
如图5所示,本实施例提供一种HARQ-ACK传输方法,包括:
在eMBB HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的情况下,确定出UE在预定时刻之前确定出承载URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上接收所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
基站确定UE在预定时刻之前能够确定出上述三种资源之间的重叠关系,可以由UE在确定之后上报告知基站,也可以是基站自行确定。例如,基站,基于和UE共同知晓的计算前述实施例中确定时刻的计算逻辑确定。
所述方法还包括:确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;确定所述eMBB PUSCH资源的第二时域资源位置;基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述 eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
在一些实施例中,所述方法还包括:确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;基于所述第二时域资源位置及所述第三时域资源位置,确定承载所述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
此处,基站确定第一时域资源位置、第二时域资源位置和第三时域资源之间的时域重叠关系的确定方式与UE的确定方式相同,故可以参照前述实施例的对应部分,此处就不再重复了。
在一些实施例中,所述确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置,包括:在动态调度URLLC的物理下行共享信道PDSCH资源的情况下,根据调度所述URLLC PDSCH资源的下行调度指令,确定所述第三时域资源位置;在半持续调度URLLC PDSCH资源的情况下,根据半持续调度URLLC PDSCH资源的配置信息以及激活DCI,确定所述第三时域资源位置,其中,所述激活DCI包含:承载所述URLLC HARQ-ACK的PUCCH资源的资源标识、半持续调度URLLC PDSCH资源的偏移量及持续长度。
同样地,基站确定第三时域资源位置的方式可以与前述UE确定第三时域资源位置的方式相同。
在另一些实施例中,基站是进行各种资源的调度者,基站在调度资源时就能够确定出第一时域资源位置、第二时域资源位置和第三时域资源位置,无需基于自身的高层信令和激活DCI来确定。
但是在确定UE的确定时刻时,若URLLC PDSCH资源是动态配置的,则基站需要结合自身下发的高层信令和激活DCI的下发来确定。例如,所述方法还包括:
在动态调度所述URLLC PDSCH资源的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的下发时刻及解调时长,得到用户设备UE的确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
在本申请实施例中,该确定时刻的确定方式为基站和终端所共同知晓的,如此,基站和终端采用相同的确定方式确定所述确定时刻时,基站和终端得到的终端的确定时刻是否比预定时刻早的结果是相同,如此,可以使得终端和基站可以不用协商的情况下,知晓当前是在PUCCH资源上还是PUSCH资源上发送所述eMBB HARQ-ACK。
所述解调时长为预定个数的符号。
所述方法还包括:确定所述解调时长,其中,所述确定解调时长包括以下之一:
根据协议约定确定所述解调时长;
根据所述UE上报的能力信息,确定所述解调时长;
根据下发给UE的配置信息,确定所述解调时长。
若是根据配置信息来确定解调时长,则基站需要向UE下发指示解调时长的配置信息。
在一些实施例中,所述方法还包括:
丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
在基站侧,若丢弃了eMBB PUSCH资源,则在对应的eMBB PUSCH 资源上不接收eMBB业务数据。
若该eMBB PUSCH资源被丢弃了,则基站不会在丢弃了eMBB PUSCH资源上进行数据接收。
如图6所示,本申请实施例提供一种HARQ-ACK传输装置,其中,应用于用户设备UE中,包括:
第一发送模块610,被配置为在eMBB HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的情况下,在预定时刻之前确定出承载URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上发送所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
基于上述方案,所述装置还包括:
第一确定模块,被配置为确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;
第二确定模块,被配置为确定所述eMBB PUSCH资源的第二时域资源位置;
第三确定模块,被配置为基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
基于上述方案,所述装置还包括:
第四确定模块,用于确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;
第五确定模块,用于基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所 述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;
基于所述第二时域资源位置及所述第三时域资源位置,确定承载所述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
基于上述方案,所述装置还包括:
第一得到模块,被配置为用于在动态调度所述URLLC PDSCH资源的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的接收时刻及解调时长,得到确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
基于上述方案,所述解调时长为预定个数的符号。
基于上述方案,所述装置还包括:
第六确定模块,被配置为确定所述解调时长,其中,所述确定解调时长包括以下之一:
根据协议约定确定所述解调时长;
根据接收的配置信息确定所述解调时长。
基于上述方案,所述装置还包括:
第一资源处理模块,被配置为丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
如图7所示,本申请实施例提供一种HARQ-ACK传输装置,应用于基站中,包括:
第一接收模块710,被配置为在承载eMBB HARQ-ACK的PUCCH资源与eMBB物理上行共享信道PUSCH资源有时域重叠的情况下,确定出UE在预定时刻之前确定出承载URLLC HARQ-ACK的PUCCH资源 与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上接收所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
在一些实施例中,应用于基站中的HARQ-ACK传输装置,还包括:
第七确定模块,被配置为确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;
第八确定模块,被配置为确定所述eMBB PUSCH资源的第二时域资源位置;
第九确定模块,被配置为基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
应用于基站中的HARQ-ACK传输装置,还包括:
第十确定模块,用于确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;
第十一确定模块,用于基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;并基于所述第二时域资源位置及所述第三时域资源位置,确定承载所述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
基于上述方案,所述装置还包括:
第二得到模块,被配置为在动态调度所述URLLC物理下行共享信道PDSCH资源的情况下的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的下发时刻及解调时长,得到用户设备UE的确定时刻, 其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
基于上述方案,所述装置还包括:
第二资源处理模块,被配置为丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
以下结合上述任意实施例提供几个示例:
示例1:
本示例提出了一种传输eMBB HARQ-ACK的方法。在承载URLLC HARQ-ACK的PUCCH资源与承载eMBB HARQ-ACK的PUCCH资源都与eMBB PUSCH资源有时域重叠,但是承载URLLC HARQ-ACK的PUCCH资源与承载eMBB HARQ-ACK的PUCCH资源之间不重叠的场景下,选取eMBB PUSCH资源起始时刻与eMBB HARQ-ACK的PUCCH资源的起始时刻两者中时间较早者。如果在该较早的起始时刻之前,UE已经能确定将会有承载URLLC HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠,那么UE将使用PUCCH资源传输eMBB HARQ-ACK,而不会将eMBB HARQ-ACK复用到eMBB PUSCH资源上传输。
采用上述传输eMBB HARQ-ACK的方法,能够在上述特定场景下,减少eMBB HARQ-ACK被丢弃或者部分丢弃的情况,使得基站能正确的接收到UE反馈的eMBB HARQ-ACK从而减少不必要的eMBB数据重传。
示例2:
当UE能确定出承载URLLC HARQ-ACK的PUCCH资源的时域资 源位置,且能确定出eMBB PUSCH资源的时域资源位置时,UE通过对比承载URLLC HARQ-ACK的PUCCH资源的时域资源位置与eMBB PUSCH资源的时域资源位置,即可确定是否将会有URLLC HARQ-ACK与eMBB PUSCH重叠。
具体的确定方式可以根据URLLC PDSCH和/或eMBB PUSCH的调度方式来确定。
在动态调度URLLC PDSCH的情况下:
UE会在接收PDSCH资源传输的信息的同时或者之前收到调度该PDSCH的下行调度指令(DL grant)。该下行调度指令可以是DCI的一种。
在该下行调度指令中会指示承载对应于该PDSCH资源的HARQ-ACK的PUCCH信道的时频资源位置。因此UE在解调成功该调度URLLC PDSCH资源传输的下行调度指令之后,即可确定出承载URLLC HARQ-ACK的PUCCH资源的时域资源位置。UE成功解调下行调度指令所需的时间可以有协议约定,也可以由UE上报UE能力信息给基站后,基站对UE进行配置。例如,可以约定或者配置UE在承载该下行调度指令的PDCCH资源之后1个符号内能成功解调出下行调度指令。
在配置授权调度eMBB PUSCH的情况下:eMBB PUSCH资源的时频域位置都是基站和UE能够提前预知的。即在半持续调度URLLC PDSCH资源的情况下:PDSCH资源的时频域位置和HARQ-ACK PUCCH资源的时频域位置都是基站和UE能够提前预知的。再例如,静态配置URLLC PDSCH资源的情况下,PDSCH资源的时频域位置和HARQ-ACK PUCCH资源的时频域位置也都是基站和UE能够提前预知的。
示例3:
参考图8所述,在动态调度的eMBB PUSCH资源和动态调度URLLC PDSCH资源的场景下,UE得知将会有承载URLLC HARQ-ACK的 PUCCH资源与eMBB PUSCH资源有时域重叠的时刻,早于eMBB PUSCH资源的起始时刻与承载eMBB HARQ-ACK的PUCCH资源的起始时刻两者中时间较早者。那么UE将使用PUCCH资源传输eMBB HARQ-ACK,而不会将eMBB HARQ-ACK复用到eMBB PUSCH资源上传输,同时,eMBB PUSCH将会被丢弃或被打孔。
示例4:
如图9所示,在动态调度的eMBB PUSCH资源和半持续调度URLLC PDSCH资源的场景下,UE得知将会有承载URLLCHARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的时刻,早于eMBB PUSCH资源起始时刻与承载eMBB HARQ-ACK的PUCCH资源的起始时刻两者中时间较早者。那么UE将使用PUCCH资源传输eMBB HARQ-ACK,而不会将eMBB HARQ-ACK复用到eMBB PUSCH资源上传输。同时,eMBB PUSCH将会被丢弃。
示例5:
如图10所示,在半持续调度的eMBB PUSCH资源和动态调度URLLC PDSCH资源的场景下,UE得知将会承载URLLC的HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的时刻,早于eMBB PUSCH资源的起始时刻与承载eMBB HARQ-ACK PUCCH资源的起始时刻两者中时间较早者。那么UE将使用PUCCH资源传输eMBB HARQ-ACK,而不会将eMBB HARQ-ACK复用到eMBB PUSCH资源上传输。同时,eMBB PUSCH资源将会被丢弃或被打孔。
示例6:
如图11所示,在半持续调度的eMBB PUSCH资源和动态调度URLLC PDSCH资源的场景下,UE得知将会承载URLLC的HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠的时刻,晚于eMBB  PUSCH资源的起始时刻与承载eMBB HARQ-ACK的PUCCH资源的起始时刻两者中时间较早者。此种情况下,UE将按照现有协议中的约定将eMBB HARQ-ACK复用到eMBB PUSCH资源中传输,丢弃承载eMBB HARQ-ACK的PUCCH资源,然后在得知将会承载URLLC HARQ-ACK的PUCCH资源与eMBB PUSCH资源有时域重叠后,再进行相应的丢弃或者打孔操作。
图12是根据一示例性实施例示出的一种UE,该UE具体可是移动电话,计算机,数字广播UE,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,UE 800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE 800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE 800的操作。这些数据的示例包括用于在UE 800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为UE 800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为UE 800生成、管理和分配电力相关联的组件。
多媒体组件808包括在UE 800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE 800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE 800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE 800提供各个方面的状态评估。例如,传感器组件814可以检测到UE 800的打开/关闭状态,组件的相对定位,例如组件为UE 800的显示器和小键盘,传感器组件814还可以检测UE 800或UE 800一个组件的位置改变,用户与UE 800接触的 存在或不存在,UE 800方位或加速/减速和UE 800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE 800和其他设备之间有线或无线方式的通信。UE 800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE 800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE 800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图13是一基站的示意图。参照图13,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模 块。此外,处理组件922被配置为执行指令,以执行图4和/或图5所示的PDCCH监听方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种混合自动重传请求应答HARQ-ACK传输方法,其中,应用于用户设备UE中,包括:
    在承载增强移动带宽eMBB HARQ-ACK的物理下行控制信道PUCCH资源与eMBB物理上行共享信道PUSCH资源有时域重叠的情况下,在预定时刻之前确定出承载超高可靠低时延通信URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上发送所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;
    确定所述eMBB PUSCH资源的第二时域资源位置;
    基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;
    基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;
    基于所述第二时域资源位置及所述第三时域资源位置,确定承载所 述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    在动态调度所述URLLC物理下行共享信道PDSCH资源的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的接收时刻及解调时长,得到确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
  5. 根据权利要求4所述的方法,其中,所述解调时长为预定个数的符号。
  6. 根据权利要求4或5所述的方法,其中,所述方法还包括:确定所述解调时长,其中,所述确定解调时长包括以下之一:
    根据协议约定确定所述解调时长;
    根据接收的配置信息确定所述解调时长。
  7. 根据权利要求1至5任一项所述的方法,其中,所述方法还包括:
    丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
  8. 一种HARQ-ACK传输方法,其中,应用于基站中,包括:
    在承载增强移动带宽eMBB HARQ-ACK的物理上行控制信道PUCCH资源与eMBB物理上行共享信道PUSCH资源有时域重叠的情况下,确定出UE在预定时刻之前确定出承载超高可靠低时延通信URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上接收所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB  HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;
    确定所述eMBB PUSCH资源的第二时域资源位置;
    基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;
    基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;
    基于所述第二时域资源位置及所述第三时域资源位置,确定承载所述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    在动态调度所述URLLC物理下行共享信道PDSCH资源的情况下的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的下发时刻及解调时长,得到用户设备UE的确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
  12. 根据权利要求8或9所述的方法,其中,所述方法还包括:
    丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
  13. 一种混合自动重传请求应答HARQ-ACK传输装置,其中,应用于用户设备UE中,包括:
    第一发送模块,被配置为在承载增强移动带宽eMBB HARQ-ACK的物理下行控制信道PUCCH资源与eMBB物理上行共享信道PUSCH资源有时域重叠的情况下,在预定时刻之前确定出承载超高可靠低时延通信URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上发送所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
  14. 根据权利要求13所述的装置,其中,所述装置还包括:
    第一确定模块,被配置为确定承载所述eMBB HARQ-ACK的PUCCH资源的第一时域资源位置;
    第二确定模块,被配置为确定所述eMBB PUSCH资源的第二时域资源位置;
    第三确定模块,被配置为基于所述第一时域资源位置及所述第二时域资源位置,确定承载所述eMBB HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
  15. 根据权利要求14所述的装置,其中,所述装置还包括:
    第四确定模块,用于确定承载所述URLLC HARQ-ACK的PUCCH资源的第三时域资源位置;
    第五确定模块,用于基于所述第一时域资源位置及所述第三时域资源位置,确定出承载所述URLLC HARQ-ACK的PUCCH资源与承载所述eMBB HARQ-ACK的PUCCH资源是否有时域重叠;基于所述第二时 域资源位置及所述第三时域资源位置,确定承载所述URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源是否有时域重叠。
  16. 根据权利要求13所述的装置,其中,所述装置还包括:
    第一得到模块,被配置为用于在动态调度所述URLLC PDSCH资源的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的接收时刻及解调时长,得到确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
  17. 根据权利要求16所述的装置,其中,所述解调时长为预定个数的符号。
  18. 根据权利要求16或17所述的装置,其中,所述装置还包括:
    第六确定模块,被配置为确定所述解调时长,其中,所述确定解调时长包括以下之一:
    根据协议约定确定所述解调时长;
    根据接收的配置信息确定所述解调时长。
  19. 根据权利要求13至17任一项所述的装置,其中,所述装置还包括:
    第一资源处理模块,被配置为丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
  20. 一种HARQ-ACK传输装置,其中,应用于基站中,包括:
    第一接收模块,被配置为在承载增强移动带宽eMBB HARQ-ACK的物理上行控制信道PUCCH资源与eMBB物理上行共享信道PUSCH资源有时域重叠的情况下,确定出UE在预定时刻之前确定出承载超高可靠低时延通信URLLC HARQ-ACK的PUCCH资源与所述eMBB PUSCH资源 有时域重叠,且与所述eMBB HARQ-ACK的PUCCH资源无时域重叠时,在所述eMBB HARQ-ACK的PUCCH资源上接收所述eMBB HARQ-ACK,其中,所述预定时刻为:所述eMBB PUSCH资源的时域起始时刻和承载所述eMBB HARQ-ACK的PUCCH资源的时域起始时刻中较早的一个。
  21. 根据权利要求20所述的装置,其中,所述装置还包括:
    第二得到模块,被配置为在动态调度所述URLLC物理下行共享信道PDSCH资源的情况下的情况下,根据调度所述URLLC PDSCH资源的上行调度指令的下发时刻及解调时长,得到用户设备UE的确定时刻,其中,所述解调时长为:所述UE解调所述上行调度指令的时长;所述确定时刻为:确定所述URLLC HARQ-ACK的PUCCH资源,分别与承载所述eMBB HARQ-ACK的PUCCH资源和所述eMBB PUSCH资源的时域重叠关系的时刻。
  22. 根据权利要求20或21所述的装置,其中,所述装置还包括:
    第二资源处理模块,被配置为丢弃所述eMBB PUSCH资源或对所述eMBB PUSCH资源进行打孔。
  23. 一种通信设备,其中,包括:
    收发器;
    存储器;
    处理器,分别与所述收发器及所述存储器连接,用于通过执行存储在所述存储器上的计算机可执行指令,控制收发器的无线信号收发,并实现权利要求1至7或8至13任一项提供的方法。
  24. 一种计算机非瞬间存储介质,其中,所述计算机非瞬间存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后实现权利要求1至7或8至13任一项提供的方法。
PCT/CN2019/115775 2019-11-05 2019-11-05 混合自动重传请求应答传输方法及装置、设备及介质 WO2021087766A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/115775 WO2021087766A1 (zh) 2019-11-05 2019-11-05 混合自动重传请求应答传输方法及装置、设备及介质
EP19952024.8A EP4057734B1 (en) 2019-11-05 2019-11-05 Hybrid automatic repeat request acknowledgement transmission method and apparatus, device and medium
CN201980002832.8A CN113170439B (zh) 2019-11-05 2019-11-05 混合自动重传请求应答传输方法及装置、设备及介质
US17/774,015 US20230007648A1 (en) 2019-11-05 2019-11-05 Methods for transmitting hybrid automatic repeat request acknowledgemnt and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115775 WO2021087766A1 (zh) 2019-11-05 2019-11-05 混合自动重传请求应答传输方法及装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2021087766A1 true WO2021087766A1 (zh) 2021-05-14

Family

ID=75849376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115775 WO2021087766A1 (zh) 2019-11-05 2019-11-05 混合自动重传请求应答传输方法及装置、设备及介质

Country Status (4)

Country Link
US (1) US20230007648A1 (zh)
EP (1) EP4057734B1 (zh)
CN (1) CN113170439B (zh)
WO (1) WO2021087766A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11765765B2 (en) * 2021-04-30 2023-09-19 Qualcomm Incorporated Multiplexing techniques for multiple uplink component carriers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180107417A (ko) * 2017-03-20 2018-10-02 주식회사 케이티 Nr을 위한 하향 링크 harq 동작 방법 및 장치
CN109802819A (zh) * 2017-11-16 2019-05-24 北京三星通信技术研究有限公司 上行控制信息处理方法及终端
CN110024467A (zh) * 2017-08-04 2019-07-16 联发科技股份有限公司 超可靠低时延通信以及增强移动宽带上行链路传输的冲突处理

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547170B (zh) * 2017-09-22 2021-06-29 中国电信股份有限公司 数据传输方法、网络侧设备及通信系统
WO2019169634A1 (zh) * 2018-03-09 2019-09-12 北京小米移动软件有限公司 信息传输方法、装置、系统及存储介质
US11451284B2 (en) * 2019-03-28 2022-09-20 Qualcomm Incorporated Multiplexing codebooks generated for transmissions having different service types

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180107417A (ko) * 2017-03-20 2018-10-02 주식회사 케이티 Nr을 위한 하향 링크 harq 동작 방법 및 장치
CN110024467A (zh) * 2017-08-04 2019-07-16 联发科技股份有限公司 超可靠低时延通信以及增强移动宽带上行链路传输的冲突处理
CN109802819A (zh) * 2017-11-16 2019-05-24 北京三星通信技术研究有限公司 上行控制信息处理方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4057734A4 *

Also Published As

Publication number Publication date
CN113170439A (zh) 2021-07-23
CN113170439B (zh) 2022-07-01
EP4057734B1 (en) 2024-03-27
EP4057734A4 (en) 2022-12-14
US20230007648A1 (en) 2023-01-05
EP4057734A1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
CN110945826B (zh) 反馈方法、反馈装置及存储介质
CN113079709B (zh) Harq-ack处理方法及装置、通信设备及存储介质
EP4057549A1 (en) Feedback method, feedback apparatus and storage medium
CN113261223B (zh) Harq-ack信息传输方法及装置、通信设备
CN113597814B (zh) Drx定时器的启动方法、装置、通信设备及存储介质
WO2022077295A1 (zh) 联合调度多个传输块的方法、装置、通信设备及存储介质
CN111201825B (zh) 传输块配置参数传输方法、装置、通信设备及存储介质
CN110574332B (zh) 数据传输方法、装置及存储介质
CN113115591B (zh) Harq-ack传输方法及装置、通信设备及存储介质
CN110809868B (zh) Harq反馈传输方法及装置、通信设备及存储介质
WO2021092732A1 (zh) Harq-ack传输方法及装置、通信设备
WO2021051323A1 (zh) 混合自动重传请求反馈方法、装置和通信设备
WO2021051325A1 (zh) 上行控制信息处理方法及装置、通信设备及存储介质
WO2021087766A1 (zh) 混合自动重传请求应答传输方法及装置、设备及介质
WO2021164034A1 (zh) 上行传输的处理方法、装置、通信设备及存储介质
US20230171759A1 (en) Data transmission scheduling mehtod and apparatus, communicaiton device and storage medium
WO2021203247A1 (zh) 非授权频段反馈方法、非授权频段反馈装置及存储介质
WO2022126369A1 (zh) 传输数据的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019952024

Country of ref document: EP

Effective date: 20220607